The prevalence of non-syndromic agenesis in permanent teeth (third molars excluded) in European population (summarized data).
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"3623",leadTitle:null,fullTitle:"Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems",title:"Advanced Microwave and Millimeter Wave Technologies",subtitle:"Semiconductor Devices Circuits and Systems",reviewType:"peer-reviewed",abstract:"This book is planned to publish with an objective to provide a state-of-the-art reference\r\nbook in the areas of advanced microwave, MM-Wave and THz devices, antennas and\r\nsystemtechnologies for microwave communication engineers, Scientists and post-graduate\r\nstudents of electrical and electronics engineering, applied physicists. This reference book\r\nis a collection of 30 Chapters characterized in 3 parts: Advanced Microwave and MM-wave\r\ndevices, integrated microwave and MM-wave circuits and Antennas and advanced microwave\r\ncomputer techniques, focusing on simulation, theories and applications. This book provides a\r\ncomprehensive overview of the components and devices used in microwave and MM-Wave\r\ncircuits, including microwave transmission lines, resonators, filters, ferrite devices, solid state devices, transistor oscillators and amplifiers, directional couplers, microstripeline components,\r\nmicrowave detectors, mixers, converters and harmonic generators, and microwave solid-state\r\nswitches, phase shifters and attenuators. Several applications area also discusses here, like\r\nconsumer, industrial, biomedical, and chemical applications of microwave technology. It also\r\ncovers microwave instrumentation and measurement, thermodynamics, and applications in\r\nnavigation and radio communication.",isbn:null,printIsbn:"978-953-307-031-5",pdfIsbn:"978-953-51-5885-1",doi:"10.5772/197",price:159,priceEur:175,priceUsd:205,slug:"advanced-microwave-and-millimeter-wave-technologies-semiconductor-devices-circuits-and-systems",numberOfPages:654,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:null,bookSignature:"Moumita Mukherjee",publishedDate:"March 1st 2010",coverURL:"https://cdn.intechopen.com/books/images_new/3623.jpg",numberOfDownloads:131504,numberOfWosCitations:50,numberOfCrossrefCitations:34,numberOfCrossrefCitationsByBook:8,numberOfDimensionsCitations:55,numberOfDimensionsCitationsByBook:7,hasAltmetrics:0,numberOfTotalCitations:139,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:null,dateEndSecondStepPublish:null,dateEndThirdStepPublish:null,dateEndFourthStepPublish:null,dateEndFifthStepPublish:null,currentStepOfPublishingProcess:1,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"24251",title:"Dr.",name:"Moumita",middleName:null,surname:"Mukherjee",slug:"moumita-mukherjee",fullName:"Moumita Mukherjee",profilePictureURL:"https://mts.intechopen.com/storage/users/24251/images/1920_n.jpg",biography:"Dr. Moumita Mukherjee completed higher-education from Presidency College, Calcutta, India and University of Calcutta, India. She received M.Sc. degree in Physics with specialization in Electronics and Communication and Ph.D. (Tech) in Radio Physics and Electronics from University of Calcutta, India. She worked as a Senior Research Fellow (SRF) of Defence Research and Development Organization (DRDO), Ministry of Defence, Govt. of India, under Visva Bharati University, India, Advanced Technology Centre, Jadavpur University, India and Centre for Millimeter-wave Semiconductor Devices & Systems (CMSDS), India. She is presently working as a ‘DRDO- Research Associate’ at CMSDS, IRPE, University of Calcutta. \nHer research interest is focused on the modeling/simulation and fabrication of Millimeter and Sub-millimeter (Terahertz) wave high power homo-junction/hetero-junction devices based on wide-band-gap semiconductors, photo-irradiation effects on the high power Terahertz IMPATT oscillators, nano-scale THz devices and Microwave photonics. She published more than 85 peer-reviewed research papers on semiconductor devices in reputed International refereed journals and reviewed IEEE-Proceedings. She is the author of a book on “Fundamentals of Engineering Physics”, a number of international book-chapters and worked as a Chief Editor and editor in a number of reputed international journals and publications in India and abroad. \nDr. Mukherjee obtained “National Merit Scholarship’, from Govt. of India, received “Top 100 Scientists-2009” award, “Woman of the Year-2010” award by ABI, Cambridge, UK and her biography is included in the “2000 outstanding Intellectuals of the 21st Century- 5th Edition – 2009-2010. Her biography is also published in the 26th and 27th editions of “Marquis Who’s Who in the World” -2009 and 2010 (NJ: USA) and “Marquis Who’s Who in Science & Engineering-2011”. She received “IEEE Best Paper Award” two times in 2009 and 2010 and is a member of IEEE (USA), IEEE-ED society (USA), IEEE-MTTs (USA) and Indian Science Congress.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Calcutta",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"750",title:"Microwave Engineering",slug:"microwave-engineering"}],chapters:[{id:"9966",title:"The Present and Future Trends in High Power Microwave and Millimeter Wave Technologies",doi:"10.5772/8749",slug:"the-present-and-future-trends-in-high-power-microwave-and-millimeter-wave-technologies",totalDownloads:8848,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"S. Azam and Q. Wahab",downloadPdfUrl:"/chapter/pdf-download/9966",previewPdfUrl:"/chapter/pdf-preview/9966",authors:[null],corrections:null},{id:"9972",title:"Explosive Pulsed Plasma Antennas for Information Protection",doi:"10.5772/8755",slug:"explosive-pulsed-plasma-antennas-for-information-protection",totalDownloads:4795,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Igor V. Minin and Oleg V. Minin",downloadPdfUrl:"/chapter/pdf-download/9972",previewPdfUrl:"/chapter/pdf-preview/9972",authors:[null],corrections:null},{id:"9985",title:"Exploiting the Semiconductor-Metal Phase Transition of VO2 Materials: a Novel Direction towards Tuneable Devices and Systems for RF-Microwave Applications",doi:"10.5772/8768",slug:"exploiting-the-semiconductor-metal-phase-transition-of-vo2-materials-a-novel-direction-towards-tunea",totalDownloads:5469,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Crunteanu Aurelian, Givernaud Julien, Blondy Pierre, Orlianges Jean-Christophe, Champeaux Corinne and Catherinot Alain",downloadPdfUrl:"/chapter/pdf-download/9985",previewPdfUrl:"/chapter/pdf-preview/9985",authors:[null],corrections:null},{id:"9979",title:"Analysis of Parasitic Effects in AIGaN/GaN HEMTs",doi:"10.5772/8762",slug:"analysis-of-parasitic-effects-in-aigan-gan-hemts",totalDownloads:4038,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Kazushige Horio",downloadPdfUrl:"/chapter/pdf-download/9979",previewPdfUrl:"/chapter/pdf-preview/9979",authors:[null],corrections:null},{id:"9974",title:"Study of Plasma Effects in HEMT-like Structures for THz Applications by Equivalent Circuit Approach",doi:"10.5772/8757",slug:"study-of-plasma-effects-in-hemt-like-structures-for-thz-applications-by-equivalent-circuit-approach",totalDownloads:2653,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Irina Khmyrova",downloadPdfUrl:"/chapter/pdf-download/9974",previewPdfUrl:"/chapter/pdf-preview/9974",authors:[null],corrections:null},{id:"9959",title:"Composite Right / Left Handed (CRLH) Based Devices for Microwave Applications",doi:"10.5772/8742",slug:"composite-right-left-handed-crlh-based-devices-for-microwave-applications",totalDownloads:5935,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Stefan Simon, Romolo Marcelli, Giancarlo Bartolucci, Florea Craciunoiu, Andrea Lucibello, Giorgio De Angelis, Andrei A. Muller, Alina Cristina Bunea and Gheorghe Ioan Sajin",downloadPdfUrl:"/chapter/pdf-download/9959",previewPdfUrl:"/chapter/pdf-preview/9959",authors:[null],corrections:null},{id:"9968",title:"Wide Band Gap Semiconductor Based Highpower ATT Diodes In The MM-wave and THz Regime: Device Reliability, Experimental Feasibility and Photo-sensitivity",doi:"10.5772/8751",slug:"wide-band-gap-semiconductor-based-highpower-att-diodes-in-the-mm-wave-and-thz-regime-device-reliabil",totalDownloads:4415,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Moumita Mukherjee",downloadPdfUrl:"/chapter/pdf-download/9968",previewPdfUrl:"/chapter/pdf-preview/9968",authors:[null],corrections:null},{id:"9981",title:"RF and Microwave Band-Pass Passive Filters for Mobile Transceivers with a Focus on BAW Technology",doi:"10.5772/8764",slug:"rf-and-microwave-band-pass-passive-filters-for-mobile-transceivers-with-a-focus-on-baw-technology",totalDownloads:9240,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Martha Suarez, Martine Villegas and Genevieve Baudoin",downloadPdfUrl:"/chapter/pdf-download/9981",previewPdfUrl:"/chapter/pdf-preview/9981",authors:[null],corrections:null},{id:"9970",title:"Demonstration of a Power Amplifier Linearization Based on Digital Predistortion in Mobile Wimax Application",doi:"10.5772/8753",slug:"demonstration-of-a-power-amplifier-linearization-based-on-digital-predistortion-in-mobile-wimax-appl",totalDownloads:4154,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Pooria Varahram, Somayeh Mohammady, M. Nizar Hamidon, Roslina M. Sidek and Sabira Khatun",downloadPdfUrl:"/chapter/pdf-download/9970",previewPdfUrl:"/chapter/pdf-preview/9970",authors:[null],corrections:null},{id:"9969",title:"A Fast Method to Compute Radiation Fields of Shaped Reflector Antennas by FFT",doi:"10.5772/8752",slug:"A-Fast-Method-to-Compute-Radiation-Fields-of-Shaped-Reflector-Antennas-by-FFT",totalDownloads:4914,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Abolghasem Zeidaabadi Nezhad, Zaker Hossein Firouzeh and Hamid Mirmohammad-Sadeghi",downloadPdfUrl:"/chapter/pdf-download/9969",previewPdfUrl:"/chapter/pdf-preview/9969",authors:[null],corrections:null},{id:"9960",title:"Numerical Analysis of the ElectromagneticShielding Effect of Reinforced Concrete Walls",doi:"10.5772/8743",slug:"numerical-analysis-of-the-electromagneticshielding-effect-of-reinforced-concrete-walls",totalDownloads:1368,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Gaobiao Xiao and Junfa Mao",downloadPdfUrl:"/chapter/pdf-download/9960",previewPdfUrl:"/chapter/pdf-preview/9960",authors:[null],corrections:null},{id:"9973",title:"52-GHz Millimetre-Wave PLL Synthesizer",doi:"10.5772/8756",slug:"52-ghz-millimetre-wave-pll-synthesizer",totalDownloads:3192,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ja-Yol Lee and Hyun-Kyu Yu",downloadPdfUrl:"/chapter/pdf-download/9973",previewPdfUrl:"/chapter/pdf-preview/9973",authors:[null],corrections:null},{id:"9987",title:"Metamaterial Transmission Line and its Applications",doi:"10.5772/8770",slug:"metamaterial-transmission-line-and-its-applications",totalDownloads:7781,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Changjun Liu and Kama Huang",downloadPdfUrl:"/chapter/pdf-download/9987",previewPdfUrl:"/chapter/pdf-preview/9987",authors:[null],corrections:null},{id:"9964",title:"Physics of Charging in Dielectrics and Reliability of Capacitive RF-MEMS Switches",doi:"10.5772/8747",slug:"physics-of-charging-in-dielectrics-and-reliability-of-capacitive-rf-mems-switches",totalDownloads:5068,totalCrossrefCites:8,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"George Papaioannou and Robert Plana",downloadPdfUrl:"/chapter/pdf-download/9964",previewPdfUrl:"/chapter/pdf-preview/9964",authors:[null],corrections:null},{id:"9980",title:"RF-MEMS Based Tuner for Microwave and Millimeterwave Applications",doi:"10.5772/8763",slug:"rf-mems-based-tuner-for-microwave-and-millimeterwave-applications",totalDownloads:3178,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"David Dubuc and Katia Grenier",downloadPdfUrl:"/chapter/pdf-download/9980",previewPdfUrl:"/chapter/pdf-preview/9980",authors:[null],corrections:null},{id:"9977",title:"Ultra Wideband Microwave Multi-Port Reflectometer in Microstrip-Slot Technology: Operation, Design and Applications",doi:"10.5772/8760",slug:"ultra-wideband-microwave-multi-port-reflectometer-in-microstrip-slot-technology-operation-design-and",totalDownloads:3051,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Marek E. Bialkowski and Norhudah Seman",downloadPdfUrl:"/chapter/pdf-download/9977",previewPdfUrl:"/chapter/pdf-preview/9977",authors:[null],corrections:null},{id:"9971",title:"Design of Multi-Passband Bandpass Filters With Low-Temperature Co-Fired Ceramic Technology",doi:"10.5772/8754",slug:"design-of-multi-passband-bandpass-filters-with-low-temperature-co-fired-ceramic-technology",totalDownloads:2740,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ching-Wen Tang and Huan-Chang Hsu",downloadPdfUrl:"/chapter/pdf-download/9971",previewPdfUrl:"/chapter/pdf-preview/9971",authors:[null],corrections:null},{id:"9962",title:"The Switched Mode Power Amplifiers",doi:"10.5772/8745",slug:"the-switched-mode-power-amplifiers",totalDownloads:6712,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Elisa Cipriani, Paolo Colantonio, Franco Giannini and Rocco Giofre",downloadPdfUrl:"/chapter/pdf-download/9962",previewPdfUrl:"/chapter/pdf-preview/9962",authors:[null],corrections:null},{id:"9983",title:"Developing the 150%-FBW Ku-Band Linear Equalizer",doi:"10.5772/8766",slug:"developing-the-150-fbw-ku-band-linear-equalizer",totalDownloads:2820,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Sungtek Kahng",downloadPdfUrl:"/chapter/pdf-download/9983",previewPdfUrl:"/chapter/pdf-preview/9983",authors:[null],corrections:null},{id:"9982",title:"Ultrawideband Bandpass Filter Using Composite Right- and Left-Handedness Line Metamaterial Unit-Cell",doi:"10.5772/8765",slug:"ultrawideband-bandpass-filter-using-composite-right-and-left-handedness-line-metamaterial-unit-cell",totalDownloads:3364,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Sungtek Kahng",downloadPdfUrl:"/chapter/pdf-download/9982",previewPdfUrl:"/chapter/pdf-preview/9982",authors:[null],corrections:null},{id:"9988",title:"Extended Source Size Correction Factor in Antenna Gain Measurements",doi:"10.5772/8771",slug:"extended-source-size-correction-factor-in-antenna-gain-measurements",totalDownloads:2349,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Aleksey Solovey and Raj Mittra",downloadPdfUrl:"/chapter/pdf-download/9988",previewPdfUrl:"/chapter/pdf-preview/9988",authors:[null],corrections:null},{id:"9984",title:"Electrodynamic Analysis of Antennas in Multipath Conditions",doi:"10.5772/8767",slug:"electrodynamic-analysis-of-antennas-in-multipath-conditions",totalDownloads:2017,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Eddy Luis Molina Morales and Leandro de Haro Ariet",downloadPdfUrl:"/chapter/pdf-download/9984",previewPdfUrl:"/chapter/pdf-preview/9984",authors:[null],corrections:null},{id:"9986",title:"Foamed Nanocomposites for EMI Shielding Applications",doi:"10.5772/8769",slug:"foamed-nanocomposites-for-emi-shielding-applications",totalDownloads:2847,totalCrossrefCites:4,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Isabel Molenberg, Isabelle Huynen, Anne-Christine Baudouin, Christian Bailly, Jean-Michel Thomassin and Christophe Detrembleur",downloadPdfUrl:"/chapter/pdf-download/9986",previewPdfUrl:"/chapter/pdf-preview/9986",authors:[null],corrections:null},{id:"9978",title:"Pseudo-Bessel Beams in Millimeter and Sub-Millimeter Range",doi:"10.5772/8761",slug:"pseudo-bessel-beams-in-millimeter-and-sub-millimeter-range",totalDownloads:2280,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Yanzhong Yu and Wenbin Dou",downloadPdfUrl:"/chapter/pdf-download/9978",previewPdfUrl:"/chapter/pdf-preview/9978",authors:[null],corrections:null},{id:"9961",title:"Receiver Front-End Architectures – Analysis and Evaluation",doi:"10.5772/8744",slug:"receiver-front-end-architectures-analysis-and-evaluation",totalDownloads:12067,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Pedro Cruz, Hugo Gomes and Nuno Carvalho",downloadPdfUrl:"/chapter/pdf-download/9961",previewPdfUrl:"/chapter/pdf-preview/9961",authors:[null],corrections:null},{id:"9963",title:"Microwave Measurement of the Wind Vector over Sea by Airborne Radars",doi:"10.5772/8746",slug:"microwave-measurement-of-the-wind-vector-over-sea-by-airborne-radars",totalDownloads:1993,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Alexey Nekrasov",downloadPdfUrl:"/chapter/pdf-download/9963",previewPdfUrl:"/chapter/pdf-preview/9963",authors:[null],corrections:null},{id:"9976",title:"Passive Microwave Remote Sensing of Rain from Satellite Sensors",doi:"10.5772/8759",slug:"passive-microwave-remote-sensing-of-rain-from-satellite-sensors",totalDownloads:3485,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Sante Laviola and Vincenzo Levizzani",downloadPdfUrl:"/chapter/pdf-download/9976",previewPdfUrl:"/chapter/pdf-preview/9976",authors:[null],corrections:null},{id:"9965",title:"Use of GTEM-Cell and Wire Patch Cell in Calculating Thermal and Non-Thermal Biological Effects of Electromagnetic Fields",doi:"10.5772/8748",slug:"use-of-gtem-cell-and-wire-patch-cell-in-calculating-thermal-and-non-thermal-biological-effects-of-el",totalDownloads:2436,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Marija Salovarda Lozo and Kresimir Malaric",downloadPdfUrl:"/chapter/pdf-download/9965",previewPdfUrl:"/chapter/pdf-preview/9965",authors:[null],corrections:null},{id:"9967",title:"Bioelectric Effects of Low-Frequency Modulated Microwave Fields on Nervous System Cells",doi:"10.5772/8750",slug:"bioelectric-effects-of-low-frequency-modulated-microwave-fields-on-nervous-system-cells",totalDownloads:2866,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Maria J. Azanza, A. del Moral and R. N. Perez-Bruzon",downloadPdfUrl:"/chapter/pdf-download/9967",previewPdfUrl:"/chapter/pdf-preview/9967",authors:[null],corrections:null},{id:"9975",title:"Rain Attenuation on Terrestrial Wireless Links in the mm Frequency Bands",doi:"10.5772/8758",slug:"rain-attenuation-on-terrestrial-wireless-links-in-the-mm-frequency-bands",totalDownloads:5429,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Vaclav Kvicera and Martin Grabner",downloadPdfUrl:"/chapter/pdf-download/9975",previewPdfUrl:"/chapter/pdf-preview/9975",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"326",title:"Silicon Carbide",subtitle:"Materials, Processing and Applications in Electronic Devices",isOpenForSubmission:!1,hash:"6f4514052d329afb3bc5dc1a8cc2ac3f",slug:"silicon-carbide-materials-processing-and-applications-in-electronic-devices",bookSignature:"Moumita Mukherjee",coverURL:"https://cdn.intechopen.com/books/images_new/326.jpg",editedByType:"Edited by",editors:[{id:"24251",title:"Dr.",name:"Moumita",surname:"Mukherjee",slug:"moumita-mukherjee",fullName:"Moumita Mukherjee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3707",title:"Microwave and Millimeter Wave Technologies",subtitle:"from Photonic Bandgap Devices to Antenna and Applications",isOpenForSubmission:!1,hash:null,slug:"microwave-and-millimeter-wave-technologies-from-photonic-bandgap-devices-to-antenna-and-applications",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/3707.jpg",editedByType:"Edited by",editors:[{id:"123258",title:"Dr.",name:"Igor",surname:"Minin",slug:"igor-minin",fullName:"Igor Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1565",title:"Bolometers",subtitle:null,isOpenForSubmission:!1,hash:"c193ef12df5ac7a70b88a3b56c786e45",slug:"bolometers",bookSignature:"A. G. Unil Perera",coverURL:"https://cdn.intechopen.com/books/images_new/1565.jpg",editedByType:"Edited by",editors:[{id:"92217",title:"Prof.",name:"Unil",surname:"Perera",slug:"unil-perera",fullName:"Unil Perera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5436",title:"Microwave Systems and Applications",subtitle:null,isOpenForSubmission:!1,hash:"cdb6126a0b68bc14bc51600c8dc7ccfc",slug:"microwave-systems-and-applications",bookSignature:"Sotirios K. Goudos",coverURL:"https://cdn.intechopen.com/books/images_new/5436.jpg",editedByType:"Edited by",editors:[{id:"171056",title:"Dr.",name:"Sotirios",surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3708",title:"Microwave and Millimeter Wave Technologies",subtitle:"Modern UWB antennas and equipment",isOpenForSubmission:!1,hash:null,slug:"microwave-and-millimeter-wave-technologies-modern-uwb-antennas-and-equipment",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/3708.jpg",editedByType:"Edited by",editors:[{id:"123258",title:"Dr.",name:"Igor",surname:"Minin",slug:"igor-minin",fullName:"Igor Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4617",title:"Advanced Electromagnetic Waves",subtitle:null,isOpenForSubmission:!1,hash:"dffb45dc681f2d74f30ad9ab9c2c527f",slug:"advanced-electromagnetic-waves",bookSignature:"Saad Osman Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/4617.jpg",editedByType:"Edited by",editors:[{id:"100186",title:"Prof.",name:"Saad",surname:"Bashir",slug:"saad-bashir",fullName:"Saad Bashir"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6318",title:"Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing",subtitle:null,isOpenForSubmission:!1,hash:"67de575df6dcd16554dd8f575e8c8368",slug:"emerging-microwave-technologies-in-industrial-agricultural-medical-and-food-processing",bookSignature:"Kok Yeow You",coverURL:"https://cdn.intechopen.com/books/images_new/6318.jpg",editedByType:"Edited by",editors:[{id:"188673",title:"Dr.",name:"Kok Yeow",surname:"You",slug:"kok-yeow-you",fullName:"Kok Yeow You"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66068",slug:"addendum-an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia",title:"Addendum - An Overview of PET Radiopharmaceuticals in Clinical Use: Regulatory, Quality and Pharmacopeia Monographs of the United States and Europe",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66068.pdf",downloadPdfUrl:"/chapter/pdf-download/66068",previewPdfUrl:"/chapter/pdf-preview/66068",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66068",risUrl:"/chapter/ris/66068",chapter:{id:"62269",slug:"an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia-monograp",signatures:"Ya-Yao Huang",dateSubmitted:"February 25th 2018",dateReviewed:"May 31st 2018",datePrePublished:"November 5th 2018",datePublished:"July 24th 2019",book:{id:"7373",title:"Nuclear Medicine Physics",subtitle:null,fullTitle:"Nuclear Medicine Physics",slug:"nuclear-medicine-physics",publishedDate:"July 24th 2019",bookSignature:"Aamir Shahzad and Sajid Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/7373.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"247754",title:"Prof.",name:"Ya-Yao",middleName:null,surname:"Huang",fullName:"Ya-Yao Huang",slug:"ya-yao-huang",email:"careyyh@ntuh.gov.tw",position:null,institution:null}]}},chapter:{id:"62269",slug:"an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia-monograp",signatures:"Ya-Yao Huang",dateSubmitted:"February 25th 2018",dateReviewed:"May 31st 2018",datePrePublished:"November 5th 2018",datePublished:"July 24th 2019",book:{id:"7373",title:"Nuclear Medicine Physics",subtitle:null,fullTitle:"Nuclear Medicine Physics",slug:"nuclear-medicine-physics",publishedDate:"July 24th 2019",bookSignature:"Aamir Shahzad and Sajid Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/7373.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"247754",title:"Prof.",name:"Ya-Yao",middleName:null,surname:"Huang",fullName:"Ya-Yao Huang",slug:"ya-yao-huang",email:"careyyh@ntuh.gov.tw",position:null,institution:null}]},book:{id:"7373",title:"Nuclear Medicine Physics",subtitle:null,fullTitle:"Nuclear Medicine Physics",slug:"nuclear-medicine-physics",publishedDate:"July 24th 2019",bookSignature:"Aamir Shahzad and Sajid Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/7373.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11184",leadTitle:null,title:"Optimum Composite Structures - Recent Advances, New Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book presents research work on composite structures which includes particle reinforced composites, fiber-reinforced composites, green and biocomposites. The processing techniques used for preparing the composites and testing methods such as microstructure, hardness, tensile strength, impact strength, fatigue strength, wear and corrosion are reported. Research work pertaining to novel composites can be presented. The composites can be prepared by reinforcing two or three reinforcements which offer better properties when compared to matrix. The composites can be fabricated using a compression moulding technique, stir casting process, squeeze casting process, this casting and vapour deposition methods like chemical vapour deposition and physical vapour deposition. The properties can be examined using mechanical, physical and chemical testing methods. Optimum composite structures can be used in engineering applications using response surface methodology, Taguchi Design and other conventional optimization techniques. In addition, machinability studies on composites shall be added which will be used to produce end products.
",isbn:"978-1-80355-673-4",printIsbn:"978-1-80355-672-7",pdfIsbn:"978-1-80355-674-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"5778da09a915cb696defa03ac02322ea",bookSignature:"Dr. Samson Jerold Samuel Chelladurai and Prof. Ramakrishnan Thirumalaisamy",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11184.jpg",keywords:"Mechanical Properties, Corrosion, Tensile Strength, Impact Strength, Microstructure, Image Analysis, Matrix, Laminates, Mechanics, Fracture, Brittle, Ductile",numberOfDownloads:35,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 4th 2021",dateEndSecondStepPublish:"December 14th 2021",dateEndThirdStepPublish:"February 12th 2022",dateEndFourthStepPublish:"May 3rd 2022",dateEndFifthStepPublish:"July 2nd 2022",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Chelladurai is specialized in the manufacturing of metal matrix composites, tribology, optimization techniques and is a pioneer in composites. He is a holder of 5 patents and has won faculty awards from SKCET. He is a member of ISTE and IIF.",coeditorOneBiosketch:"Dr. Thirumalaisamy is a pioneer in polymer matrix composites research. He has published two patents have received the best researcher award and recognition for best paper publication from his institution.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai",profilePictureURL:"https://mts.intechopen.com/storage/users/247421/images/system/247421.jpg",biography:"Dr. Samson Jerold Samuel Chelladurai obtained his BE in Mechanical Engineering, ME in Manufacturing Engineering, and Ph.D. in Composite Materials from Anna University, India. He has published many research articles in SCI and Scopus-indexed journals. He has also published five books and three patents and received grants worth $89,000 USD. He has received several awards including grants, Best Research Paper, Best Faculty, Star Performer, and Shri. P. K. Das Memorial Best Faculty Award in Mechanical Engineering, Best Academic Non-Circuit Faculty, and Young Researcher Award in Mechanical Engineering from Sri Krishna College of Engineering & Technology (SKCET) and other organizations.",institutionString:"Sri Krishna College of Engineering and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:{id:"262813",title:"Prof.",name:"Ramakrishnan",middleName:null,surname:"Thirumalaisamy",slug:"ramakrishnan-thirumalaisamy",fullName:"Ramakrishnan Thirumalaisamy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRYYcQAO/Profile_Picture_1632721562192",biography:"Dr. Ramakrishnan Thirumalaisamy is working as a Professor of Mechanical Engineering at Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India. He has completed his Bachelor’s Degree in Mechanical Engineering and Master Degree in CAD/CAM from Anna University, India. He has completed his Ph.D in the area of polymer matrix composites during the year 2018. He has 12 years of experience in teaching and 6 years in research. He has published several research papers in various international and national journals and conferences. He has published several books and book chapters by reputed publishers. He is a life member of various Scientific and Professional bodies. He has received best researcher award and recognition for best paper publication from his institution.",institutionString:"Sri Eshwar College of Engineering",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"80435",title:"Experimental Investigation of the Mechanical and Thermal Properties of Natural Green Fibres",slug:"experimental-investigation-of-the-mechanical-and-thermal-properties-of-natural-green-fibres",totalDownloads:35,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429341",firstName:"Paula",lastName:"Gavran",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"paula@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10506",title:"Liquid Metals",subtitle:null,isOpenForSubmission:!1,hash:"a1c30d83631953e1c8905554d937bb10",slug:"liquid-metals",bookSignature:"Samson Jerold Samuel Chelladurai, S. Gnanasekaran and Suresh Mayilswamy",coverURL:"https://cdn.intechopen.com/books/images_new/10506.jpg",editedByType:"Edited by",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40799",title:"Protein Electrophoresis in Saliva Study",doi:"10.5772/48586",slug:"protein-electrophoresis-in-saliva-study",body:'Saliva started for been less studied than other body fluids, but in the last years it has being receiving an increased attention. Until now, more than 2000 different proteins and peptides have been identified in whole saliva and salivary glandular secretions [1]. From these, more than 90% derive from the secretion of the three pairs of “major” salivary glands (parotid, submandibular and sublingual glands). The remaining 10% derives from “minor” salivary glands and from extra-glandular sources, namely gingival crevicular fluid, mucosal transudations, bacteria and bacterial products, viruses and fungi, desquamated epithelial cells, and food debris [2].
Saliva secretion is mainly under autonomic nervous system regulation. Sympathetic and parasympathetic stimulation have different effects on the flow rate and composition of saliva secreted. Whereas parasympathetic stimulation results in the production of a high volume of saliva with low protein concentration, stimulation of the sympathetic branch of the autonomic nervous system is responsible for the secretion of a small amount of saliva with increased protein concentration. Besides this distinctive characteristic, and inversely to what is observed for the majority of body systems, the effects of parasympathetic and sympathetic innervations are not antagonic but rather exert relatively independent effects in which the activity of one branch may synergistically augment the effect of the other [3,4]. Despite the thought of an exclusive nervous regulation, recent in vivo animal experiments indicate a short-term endocrine regulation of salivary glandular activities as well [5-9].
The primordial function of saliva is to aid in the moistening and preprocessing of food, aiding in deglutition. Besides this, other important functions exist for saliva, which can generally be grouped in digestive (and ingestive) and protection [10]. For digestive (and ingestive) purposes, saliva contains enzymes, including proteases, lipases and glycohydrolases, which initiate partial break-down of food components. Among these enzymes, alpha-amylase is by far the enzyme present in higher amounts. There are also salivary proteins involved in food perception, such as: salivary PRPs (proline-rich proteins), which bind dietary polyphenols (mainly tannins) and are involved in astringency perception [11]; carbonic anhydrase VI, suggested to influence bitter taste sensitivity [12]; and alpha-amylase, involved in sweet taste sensitivity [13]. Additionally, recent studies suggest changes in saliva composition induced by taste [14-16], reinforcing the potential of saliva in food perception and ingestive choices. Concerning protection role, several different salivary proteins have been identified, namely mucins, acidic PRPs, statherins, among many others. For example, salivary proteins adsorbed to the enamel surface form the enamel pellicle, which helps to protect teeth [17]. It is also relevant to point the presence of proteins with more than one function, and the sharing of the same function by different families of proteins. This functional redundancy may help to ensure that a given function is always present under a broader range of physiological conditions [18, 19]. An in-depth analysis of saliva proteome, including the posttranslational modifications can therefore provide a valuable resource for saliva function research.
The high potential of saliva as a source of biomarkers was one of the main responsible for the great interest in this fluid. Several analytes are present in saliva in amounts that relates to blood, with the great advantage of being collected using simple and non-invasive methods. Proteomic techniques such as two-dimensional electrophoresis (2-DE), 2D-liquid chromatography/mass spectrometry (2D-LC/MS), matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS), and surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF/MS), have been used in saliva studies. Based on those techniques, potential salivary biomarkers for diseases such as Sjögren syndrome [20], diabetes mellitus [21] and some different cancers [22] have been suggested. 2-DE has been one technique of choice for the global analysis and initial profiling of salivary proteins, being used as a first step for protein separation, followed by MS or tandem MS (MS/MS) [23].
Whereas the salivary proteins from humans have deserved substantial attention, both in terms of identification and characterization, as well as functional properties, animal saliva has been much less studied. However, interest for the latter is being increasing, due to the convenience on the use of animal models for diverse pathological and physiological conditions and due to the potential of this fluid for disease diagnostic and for understanding behavioral and physiological processes, important in animal production. Moreover, a multidisciplinary approach that integrates knowledge about salivary proteins in the animal kingdom (most important in mammals) and draws comparisons to possible functions in humans would be valuable.
The following sections will give an overview about the use of electrophoresis in saliva studies. Methodological issues and the major advantages and limitations for the use of this technique in human and animal saliva studies will be presented. We will finish the chapter by presenting alternatives to electrophoresis for the study of salivary proteome.
Even before the advent of proteomics, electrophoresis was frequently used for salivary protein separation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)[24], PAGE in non-denaturing conditions [25], isoelectric focusing [26], two-dimensional electrophoresis (2-DE) [27], capillary electrophoresis (CE)[28,29] and free flow electrophoresis [30] have all been used in saliva studies, with different purposes.
One-dimensional gel electrophoresis under denaturing conditions has several advantages: virtually all proteins are soluble in SDS, allowing their separation; it covers a relatively high range of molecular masses (from 10000 to 300000 Da) and allows the possibility of extremely acidic and basic proteins to be visualized [31]. Moreover, SDS-PAGE has the advantage of having a low sensitivity to salt concentration. However, by separating proteins only based in their molecular masses, only limited information is obtained, since each of the bands present in the gels is frequently constituted by different proteins. Limitation in the number of proteins separated also occur using IEF, which separates proteins only based in their charges.
2-DE takes advantages of the two different properties of proteins (molecular masses and isoelectric points), allowing the separation and visualization, in a gel matrix, of a considerable number of different proteins. This technique, which originates from the work of O’Farrell and Klose in the 1970’s [32,33] became very useful for the study of complex protein mixtures, such as saliva. Besides the very high separation capability of 2-DE, ensuring well-resolved protein maps with more than 2000 protein spots, this technique has also the advantage of mapping posttranslational modifications. Coupled to mass spectrometry, for protein identification, 2-DE has been considerably used in several different samples, including saliva [27,34]. Using this approach, the protein spots observed in 2-DE gels are subsequently digested using a protease (usually trypsin), with the resultant digest products analyzed by mass spectrometry. 2-DE can be used to compare expression levels of proteins in related samples, such as those from altered experimental conditions, allowing the response of classes of proteins to be determined. This approach has been suceffuly used in a number of saliva studies [e.g. 35].
Salivary peptides and proteins have been analyzed by a variety of CE approaches (reviewed in [36]. The term CE, although often used as shorthand for capillary zone electrophoresis, refers to a family of related techniques, all based on the performance of the separations in narrow-bore capillaries across which an electric field is applied. The types of CE that have the greatest potential in proteomics (commonly used together with mass spectrometry) are capillary zone electrophoresis and capillary isoelectric focusing [37]. The use of CE to analyze saliva proteome, have been described and allowed the profiling and identification of several salivary proteins [38]. Recently this technique was successfully used for the identification of salivary profiles in cancer diagnosis [29].
The existence of different electrophoretic methodologies, allowing separations based on different protein characteristics is of great utility in proteomics, contributing for the resolution of complex samples such as saliva. The electrophoretic methods described are complementary of each other and since all have advantages and limitations, the choice for each one will depend on the objectives of the study and on the salivary proteins of interest.
The concept of salivary proteome is related to the creation of a salivary protein catalogue, where information that can be further used for several different purposes (e.g diagnostics, physiological status) can be placed [39]. In this context, it is important that the results obtained from different laboratories can be compared. Accurate examination of salivary components requires optimal collection, processing and storage conditions. Moreover, most of the studies aim comparisons among pathological/physiological conditions, and as such it is essential that the differences obtained are not due to external factors. To avoid changes in the protein and peptide composition from salivary secretions, standardized salivary sampling protocols, processing and storage conditions need to be applied [23,39,40].
One of the particularities of saliva is its capacity of rapidly adapt to different conditions. This is related to the fact of salivary secretion being mainly regulated by the two branches of the autonomic nervous system (both sympathetic and parasympathetic), with only a minor regulation from hormonal origin. Such type of regulation results in variations in composition according to the stimulus. Circadian rhythm [41], gender [42], drugs [43], exercise [44], among others, are factors that change salivary flow rate and saliva composition. Additionally to variations in the composition from each salivary gland cell type, the contribution of each individual salivary gland to the total fluid is not the same. For example, minor salivary glands and submandibular glands have an important contribution at rest, whereas in response to strong stimuli during feeding is the parotid contribution that becomes dominant [45]. Concerning daytime, the flow rate of resting and stimulated saliva is higher in the afternoon than in the morning, with the peak occurring in the middle of the afternoon. The salivary protein concentration also follows this diurnal pattern [2]. Eating is another strong stimulus for the secretion of saliva, and as such the interval between feeding and saliva collection influences salivary flow rate, viscosity and protein composition.
The points referred above are important for the selection of the collection method: with or without stimulation. For unstimulated saliva collection the draining method is usually choose. Accordingly, saliva is allowed to drip off the lower lip to a tube maintained on ice. On the other hand, stimulated saliva is frequently obtained after parafilm mastication, or after sour taste stimulation [46].
Advantages and disadvantages exist for both approaches. Unstimulated saliva collection is several times preferred, as stimulated saliva contains a diluted concentration of several proteins, which may be of interest. However, it is difficult to have saliva completely free of stimulation: due to the high range of stimulus influencing salivary secretion, even small variations in collection conditions, among different saliva donors (e,g light intensity, temperature, emotional status, or others) may be sufficient to induce differences in results [39].
Stimulated saliva collection is generally used to have higher volumes of sample. In some pathological conditions (e.g Sjögren’s syndrome, xerostomia) or post-radiation, stimulation of salivary secretion may be the only way of obtaining adequate amounts of saliva samples for analysis. However,difficulties may exist to make uniform the intensity and duration of the stimulus and the secretion of certain proteins may be affected by the duration of stimulation. For example, with prolonged stimulation of salivary flow, certain glycoproteins may be incompletely glycosylated [39].
Another issue in regard with saliva sampling is the origin of the collected secretions, i.e. whether it is glandular or whole saliva. Glandular fluid can be obtained through the use of adapted collection devices, for both parotid and submandibular/sublingual secretions [47]. Through this, changes in salivary proteins by exogenous enzymes are avoided, since the fluid is collected before it reaches the mouth.
Most of the studies on saliva in general have been obtained from human saliva. Concerning animal saliva less is known and, although methodologies of collection, processing and storage are based on the ones reported for humans, in most cases it is difficult to obtain unstimulated saliva from animals. Only in domestic ruminants, which produce considerably high volumes of saliva daily, in a continuous flow, it is possible to obtain whole saliva samples by simply collecting the mouth flow into a large beaker [48]. Moreover, this method only works with domesticated animals that are used to be handled by man.
For all the animals that do not produce large amounts of saliva, or for specific investigation purposes, stimulation may be necessary. Under controlled experimental conditions, the collection of stimulated saliva can be initiated either mechanically or chemically. Cotton rolls (e.g. Sallivetes) are currently used for animal saliva collection for being both practical and efficient in getting this fluid. Animals chew for some time, being saliva production stimulated by mastication. The cotton roll moistened by the saliva is further centrifuged to release the fluid. There is the possibility of some salivary proteins such as mucins and/or other potential biomarkers irreversibly adsorb to the cotton roll, resulting in their loss. However, to our knowledge, studies to elucidate this aspect are lacking. Chemical (pharmacological) stimulation is sometimes used for saliva collection in animals with low amounts of saliva. For example, in small rodents, it is very difficult to collect sufficient amounts for analysis without stimulation and the use of parasympathetic agonists (e.g. pilocarpine) appears to be effective [49]. This type of stimulant is referred to increase the volume production without changing the proportion of the proteins secreted. Others types of chemical stimulants may be used. For example, sympathetic agonists, such as isoproterenol, induce the synthesis and secretion of granular proteins from salivary glands, thereby increasing salivary protein concentration and changing the salivary protein profile [50].
While whole saliva can be collected using the already mentioned cotton-rolls, or through direct aspiration from the mouth [49], glandular saliva collection can be achieved using catheters inserted into the ducts of the gland of interest. Although this method is invasive, the level of invasion is minimal, and once the collection period is finished, the catheter can easily be removed without causing any damage to the animal. This method was used to study sheep and goat parotid salivary proteomes [34,51]. Collection of glandular saliva has the advantage of accessing the secretion product of certain glands, as well as obtaining a clear saliva sample with virtually no interfering compounds, such as food debris or microorganisms. Glandular collection is most important for studies that aim on unraveling the effects of particular factors on the secretion from individual glands [e.g. effects of dietary constituents on parotid saliva [35]. However, this approach, if not carried properly, might have the disadvantage of faulty catheter insertion which causes leakage of plasma proteins into the salivary secretions due to disruption of epithelial integrity.
Wherever in humans or animals, the collection method of choice, as well as the origin of fluid selected, will affect the outcomesand thus should depend on the objectives of the study and on the specific group of proteins of interest.
In complex protein mixtures, such as saliva, sample preparation and fractionation constitute one of the most crucial processes for proteome study. None of the currently available proteomic techniques allow the analysis of the entire proteome in a single step. In body fluids such as saliva, proteins have different physicochemical characteristics and a wide concentration dynamic range and, as such, fractionation is essential. In this context, electrophoresis may also be useful for that purpose. Preparative isoelectric focusing using free flow electrophoresis is an example of the methods available for sample fractionation and which has been used in saliva [30].Before 2-DE separation, free flow electrophoresis has the advantage of generating different fractions, which can be independently run. For example, a first separation using isoelectric free flow electrophoresis results in fractions with different pI ranges. Each of the resulting fractions can be further separated according to charge, by using narrow pH ranges, in the first dimension allowing a more detailed picture of the protein profile [30].
Saliva contains proteins present in high levels, and numerous low abundant proteins, for which analysis may be of interest. The observation of the latter in electrophoretic gels is obscured by the presence of the high-abundant proteins. When salivary proteome is used for disease diagnostic purposes, the analysis of low abundant proteins is almost always necessary, since most of potential salivary biomarkers are present in relative low amounts. The major components of saliva are mucins, proline-rich glycoproteins, amylase and some antimicrobial proteins that include agglutinin, lisozyme, lactoferrin, immunoglobulins, histatins and defensins [27]. The protein alpha-amylase contributes to almost 60% of total salivary proteome [52] and its depletion allows the analysis of less abundant proteins. Salivary alpha amylase depletion can be achieved through elution of samples from starch columns to deplete this protein specifically [53].
One of the main concerns when working with protein sample is to avoid undesirable alterations during the several steps that go from collection to final analysis. One characteristic of saliva is that many salivary proteins enter post-translational modifications (PTMs), namely glycosylation, phosphorylation, sulfation and proteolysis. From the considerable amount of glycoproteins present in saliva, mucins represent an important group, which is responsible for bacterial agglutination and lubrication of the oral cavity tissues. Phosphoproteins also exist in a considerable amount of salivary proteins, with several diverse roles [54]. Such modifications start in the acinar cells of salivary glands, and continue when saliva enters the mouth, mainly due to the presence of host- and bacteria-derived enzymes, what results in additional protein modifications [55].
Since these forms of PTMs are responsible for many functions of this fluid, a particular attention should be directed to saliva collection processing and storage, in order to minimize proteolysis, de-glycosylation and de-phosphorylation. Different research groups have employed different methods for avoiding proteolysis, de-glycosylation and de-phosphorylation. The addition of 0,2% trifluoroacetic acid to saliva after collection has been one protocol used [56]. In a recent study, it was observed that the addition of protease inhibitors to saliva may allow its storage at 4°C for approximately two weeks, without significant degradation [53]. Nonetheless, some authors report that not even an inhibitor cocktail can prevent all protein degradation [57]. Additionally, it was suggested to be possible to keep the samples at room temperature (for a period of about two weeks), without considerable changes in salivary proteome occurred, only by adding ethanol, [53]. Nevertheless, working on ice for no longer than one hour and subsequent storage of samples at -80°C has been considered a safe and practical handling protocol [57-59]. Nonetheless, long time storage, as well as freeze-thaw cycles can induce protein precipitation, in particular from low molecular mass components [57]. In any case, little research has been directed on ways of minimizing degradative processes, and this is clearly needed [39].
Protein visualization is necessary for quantitative and qualitative analysis. In electrophoresis this is achieved through reversible or irreversible binding of a colored organic or inorganic chemical to the protein. An ideal staining procedure would be the one with a very low detection limit, an optimal signal to noise ratio, a wide dynamic range and a wide linear relationship between the quantity of protein and the staining intensity, and compatible to mass spectrometry [60]. However, such an ideal stain does not exist.
Silver, Coomassie Brilliant Blue (CBB) and fluorescent staining are the most frequently used methodologies. Silver staining presents a high sensitivity, making possible the visualization of proteins present in amounts as low as 1 ng [61]. Silver staining techniques are based upon saturating gels with silver ions, washing the less tightly bound metal ions out of the gel matrix and reducing the protein-bound metal ions to form metallic silver. In 2-DE, Silver staining is regularly used due to its potential for the visualization of low intensity protein spots. However, it presents a narrow dynamic range and the tendency of the dye to stain differently based on amino acid composition and PTMs. Moreover, by detecting low levels of protein, each of the stained spots may have not sufficient amounts o protein for subsequent analysis by mass spectrometry.
CBB is a disulfonated triphenylmethane textile dye. CBB staining presents a linear dynamic range and a moderately sensitivity. As such, CBB dyes are suitable for protein quantitative analysis, which is necessary in proteomics analysis. Moreover, this staining technique is compatible with mass spectrometry. Two modifications of CBB exist: R-250 and G-250. In acidic solutions the dye sticks to the amino groups of the proteins by electrostatic and hydrophobic interactions. Inversely to silver stain, CBB is not so extremely sensitive, thus being necessary to load higher amounts of proteins in the gel. Consequently, CBB stained spots contains considerable amounts of proteins, suitable for mass spectrometry analysis.
Saliva samples present particularities that should be considered for silver and CBB staining. Parotid saliva contains a considerable amount of proline-rich proteins (PRPs), which are difficult to stain with silver since they present low amounts of amino acids containing sulfur, necessary for the binding of silver ions [61]. On the other hand, when stained with CBB R-250 they usually present a violet-pink stain, which allows differentiating them from all the other salivary proteins that stain blue. A destain protocol of 10% acetic acid, instead of the common 10% acetic acid/ 10% methanol is generally used for this purpose [62].
The fluorescent dyes were more recently developed, presenting a high sensitivity and a linear dynamic range, and in this way, being advantageous relatively to common silver staining. For example, SYPRO staining technique has been used in several salivary proteomic studies [e.g. 63]. This is a novel, ruthenium-based fluorescent dye. SYPRO Red and Orange, bind to thedetergent coat surrounding proteins in SDS denaturing gels, thus, staining in such gels is not strongly selective for particularpolypeptides [64]. SYPRO stains are compatible with mass spectrometry and can be used in combination with other staining techniques, for detection of PTMs, such as glycosylations or phosphorylations.
DIGE (Difference Gel Electrophoresis) technology represented an improvement in 2-DE based proteomics, allowing more accurate comparisons among samples. Its convenience is also true for saliva samples [65]. DIGE is based on the modification of proteins, before electrophoresis, by attaching a fluorescent labeling. Cyanine-bases dyes (Cy2, Cy3 and Cy5) are used with this purpose. These dyes label the amine group of protein lysines specifically and covalently to form an amide. A different cyanine-based dye is added to each individual sample. The dyes are designed to have the same molecular mass and charge to ensure that proteins common to both samples have the same relative 2-DE mobility. The samples are mixed and resolved in a single 2-DE gel. The proteins from the different dyes are visualized by alternatively illuminating the gel at different wavelengths. With this technique, it is possible to avoid some inter-gel variation.
PTMs, such as glycosylation and phosphorylation, can be accessed in electrophoretic gels through staining procedures. As it was referred before, several different salivary proteins suffer PTMs, which confer their characteristic functions. Consequently, their visualization in electrophoretic gels is valuable. Detection of phosphoproteins can be achieved using different procedures. Recently, Pro-Q Diamond was developed for phosphoproteins staining. This affords wide specificity and high sensitivity. Phosphoserine, phosphothreonine and phosphotyrosine containing proteins are detected [66].
O- and N- glycosylated proteins are abundant in saliva. Some of the most well studied salivary glycoproteins are mucins (MUC5B and Muc7) and proline-rich glycoproteins. The most classical procedure for glycoproteins staining is periodic-acid Schiff (PAS) with the protocol that allows detection of glycoproteins in gels being adapted from protocols of histochemistry. However, it does not present a high sensitivity, resulting in the need of high levels of protein load [67]. Another possible method is the more recently developed stain Pro-Q Emerald that allows glycoprotein detection, presenting approximately 50-fold more sensitivity than PAS [68] very useful when amount of sample is limited.
Proteome studies may be performed with two main different but somewhat complementary purposes: to characterize a particular sample (e.g organism, cell, fluid), or to compare samples from different experimental conditions. Independently of which of these two is the focus, protein identification is a central aspect.In proteomic studies, electrophoresis is frequently coupled to mass spectrometry technologies. Proteins selected in the gels are excised and subjected to enzymatic in-gel digestion. In this process it is important that each of the excised spots (or bands) present the amount of protein sufficient for MS analysis. So, the choice of the staining methodology should take this into consideration, as well as the need for the use of dyes compatible with MS (referred in previous section).
After proteins being identified, MS identifications need further to be validated, by Western blotting, through the use of antibodies to the proteins of interest. This is only possible for proteins for which commercial antibodies are available. There are some particularities of saliva samples that may be considered for Western blotting. Using this technique, only the protein spots (or bands) that react with the antibody are visualized. When comparison among different samples is to be made, it is important to have the same load of protein in all lanes or 2-DE gels. Different loads may result in erroneous results. The existence of internal controls, i.e., proteins for which the levels are proportional to the amount of total protein loaded in the gels, is important and is commonly used to circumvent putative differences in protein loads [e.g 69]. The simultaneous use of a primary antibody for such internal control and the use of a primary antibody for the protein of interest may allow adjustments: by comparing the intensity of these internal controls, the relative amount of protein run for each sample can thus be estimated. For saliva studies such strategy is not possible, since it is not yet known one salivary protein which relative amount to total protein content remains constant. One way to circumvent this limitation is through the staining of the membrane, allowing the relative evaluation of protein content, before incubation with the primary antibody [70]. With this procedure, it is possible to visualize the several lanes and consequently the expression of the protein of interest may be compared as a percentage of the total band intensity. The reversible Ponceau red staining [71] is the standard procedure, despite its low sensitivity (detection limit in the range of 1 µg/spot).
Although in human saliva, protein identification can be generally performed with success, for animal saliva this is not always the case. One of the major limitations in animal proteomic studies is the lack of complete and annotated genome and protein sequences for a great number of species, making salivary protein identification challenging. As consequence there is the need for search in other related species databases, at the cost of eventually producing high number of false positive results [72]. Moreover, the inexistence of commercial antibodies for most of animal proteins makes validation of identifications more difficult. Nevertheless, recent advances in sequencing the genomes of various domestic animals (cattle, pigs and sheep) are increasing the ability to identify salivary proteins in these animal species.
Electrophoresis has been widely used in saliva characterization. Despite the advances in the knowledge of salivary protein composition that SDS-PAGE and IEF allowed, the development of 2-DE and its application to the study of saliva contributed for a great advance in the comprehension of this body fluid. 2-DE has played a major role in the birth and developments of proteomics, although it is no longer the exclusive separation tool used in this field. Nevertheless, 2-DE continues to be essential in proteomics studies. Apart from the great advantage arising from its efficiency in resolving a high number of proteins in complex samples such as saliva and allowing the visualization of PTMs, 2-DE method has also the advantage of being a method relatively inexpensive (at least comparatively to most of the other techniques used in proteomics).
Although the great advantages of electrophoresis for the study of salivary protein composition, saliva presents several particularities that need to be consider, and that will limit the use of this technique.One of these particularities is the considerable ionic content that saliva presents, which is important to account for when IEF or 2-DE is to be used in protein separation; since separation according to electrical charge will occur, the existence of charged compounds, or salts, in the sample may cause interference. Lowering of ions and salt content may be achieved using ultracentrifugation membranes[e.g. 51], or through protein acid precipitation (e.g. 10% TCA/90% acetone), in which the precipitate is subsequently re-suspended in a buffer. Both of these procedures will also increase the protein concentration, which may constitute an advantage since saliva samples may sometimes be too diluted (for example, after parasympathetic stimulation). In any case some protein loss will inevitably occur.
Another characteristic of saliva that limits its study by electrophoresis is the considerable amount of mucins present. These are glycoproteins with high molecular masses, which present particular physychochemical characteristics that difficult analysis using electrophoretic separation. Moreover, the presence of mucins also limits the study of other salivary proteins, since mucins form complexes with several proteins, interfering in the analysis of the latter. Human salivary glands secrete two types mucins: oligomeric mucin (MG1) with molecular mass above 1 MDa and monomeric mucin (MG2) with molecular mass of 200–250 kDa, which together represent about 26% of total proteins from saliva [73]. The high molecular mass of these molecules impede them to migrate through the polyacrylamide matrix, resulting in their deposition in the top of the gel [74]. The exact mucin content is dependent on the proportion of contribution from the different major salivary glands for the total saliva. As such, the type of stimulation will influence the amount of salivary mucins present. Stimuli that increase sublingual and submandibular saliva result in higher amount of these proteins than when parotid glands are the major contributors.
The presence of high amounts of mucins confers a high viscosity to saliva, what has practical drawbacks in sample preparation for analysis, such as difficulties in sample pipetting. Usage of denaturing conditions, such as buffers containing 4-6M guanidine hydrochloride (GdmCl), or the reducing agent dithiothreitol (DTT) can diminish the viscosity of mucous salivary secretions [75]. However, this effect is achieved at expense of effects in the structure of proteins, and should be avoided in studies where the maintenance of such structure is necessary (for example when studying salivary complexes). The centrifugation of saliva samples, which is one of the first approach usually performed in saliva preparation, also aids in the removing of mucins. However, mucins and other glycoproteins are frequently involved in protein complexes with other salivary proteins, namely amylase, statherin and PRPs, resulting in particular protein losses, when the pellet is discharged.
Another limitation for the study of saliva using electrophoresis, which is common to the majority of body fluids, is the high diversity in the levels of the different protein species. As it was mentioned in section 3.1., a few salivary proteins are present in high amounts, whereas many others appear in low levels. Depletion methods are needed, in order to visualize the low abundant proteins, which may be of particular importance. If considering the important application of saliva as source of disease biomarkers, and knowing that many of those potential biomarkers are not secreted by the salivary glands, it is essential to have access to the low abundant proteins, such as metabolic enzymes with antimicrobial activity (e.g. lysozyme and lactoperoxidase).
Finally, saliva contains several low-molecular mass components that have important functions, namely important bactericidal activity (e-g- histatins, defensins) [76]. The fact thatelectrophoresis does not allow the separation of these compounds constitutes another limitation in the application of electrophoresis to saliva characterization.
Through this chapter the use of electrophoresis in saliva proteome analysis has been emphasized. 2-DE and protein MS represent an integrated technology by which several thousand proteins can be separated, quantified and identified. And, as has been being referred, this approach has been considerably used in saliva proteome studies. However, although the advantages of 2-DE, it does not allow the study of the complete proteome. Moreover, as it was stated before, 2-DE have drawbacks which include poor gel-to-gel reproducibility, and the requirement of relatively large amounts of sample, as well as extensive labor and a considerable time required. As such, other proteomic techniques are valuable for the study of saliva proteome.
With the introduction of high-throughput LC coupled to tandem MS (MS/MS), the study of complex systems moved towards a bottom-up proteomics analysis, where complex protein samples are digested and the generated peptides, which are separated by high pressure liquid chromatography (HPLC), are introduced into a mass spectrometer for fragmentation and sequencing to identify and quantify the parent proteins. However, LC-MS analysis of highly complex proteomic samples remains a challenging endeavor [77]. With this approach, tryptic cleavage generates multiple peptides per protein so that proteomic samples typically consist of hundreds of thousands of peptides. To date, no separation method is capable of resolving so many components in a single analytical dimension prior to the MS analysis. Thus, many research efforts have focused on the development of a more sensitive multidimensional liquid chromatography (MudPIT) with higher peptide separation power [21,22]. Initially, large scale shotgun proteomics was defined as an ion exchange chromatography (specifically strong cation exchange-SCX) coupled to reverse phase (RP) and mass spectrometry [78]. Nowadays, alternative configurations to SCX with RP have also been investigated and include the use of anion exchange chromatography and RP, affinity chromatography (AC) and RP, isoelectric focusing (IEF) and RP, capillary electrophoresis (CE) [79,80]. Recently, a RPRP system was proposed for proteomics where the first RP column uses a pH of 10 and the second RP column uses a pH of 2.6 [81,82]. This later approach yielded higher proteome coverage when compared with the SCX-RP approach [81,83].
These methodologies have been applied to saliva proteome characterization aiming the extension of salivary proteins catalogue and further comparison within other biological fluids. For instance, the use of a classical MudPit approach through combination of SCX-RP, allowed the identification of more than 100 proteins [84]. In other experiments a shotgun approach using only LC-MS/MS resulted in the identification of more than 300 proteins[85]. Different chromatographic combinations have been succeeded [30,80,86] which in conjugation to instrumentation advances conducted to the identification of more than 3000 different components in saliva. Other approaches were also performed aiming the reduction of saliva sample complexity through the utilization of combinatorial chemistry derived hexapeptide libraries (Proteominer from BioRad) which lead to the identification of more 2300 different proteins [1]. This has been later used for PTM characterization mainly N-linked salivary glycoproteins and their glycosylation sites [87]. Other methodologies aimed at characterizing salivary glycoproteins consist in enrichment procedures based on affinity chromatography with lectins [88] acting as a first dimension. In fact, saliva is a rich source of both N- and O-linked glycoproteins, which play an important role inthe maintenance of oral health and protection of teeth [68]. In line with the characterization of the most abundant PTMs in salivary proteins, namely phosphorylation, other systems were also developed. For instance, Salih et al [89] developed an enrichment procedure based on chemical derivatization using dithiothreitol (DTT) leading to the identification of 65 phosphoproteins. In a different approach, combining hexapeptide libraries, immobilized metal ion affinity chromatography, SCX and RP, 217 unique phosphopeptides sites were positively identified representing 85 distinct phosphoproteins [54].
As stated above, and similarly to other bodily fluids, saliva contains several protein species of low molecular weight which comprise around 40-50% of the total secreted protein content [90]. Albeit particular functions can be attributed to the major peptide classes, several questions about their precise role in oral cavity remain unclear. A strategy based on acidic precipitation or passing the saliva supernatant through a defined cut-off filters and LC-MS/MS have been widely adopted to perform the characterization of this low molecular weight fraction [91-107]. Behind the identification of several fragments deriving from those major peptide classes, several PTMs were also assigned. For instance, novel N- and O- glycosylation sites were identified in PRPs [108] as well as S-Glutathionyl, S-cysteinyl and S-S 2-mer recently identified in cystatin B [109].
More than identification of proteins, many studies aim the evaluation of protein expression under different purposes and pathophysiological conditions. In fact, quantitative proteome profiling is keyfor comparative analysis of proteins fromnormal and diseased patients, as similar proteinsmay be present in both states but at significantlydifferent concentrations. Withoutquantitative information, the value of thesedifferentially abundant proteins as biomarkersmay be overlooked. In the pursuit of these goals, gel-free approaches using stable-isotope tagging or label free (based on spectral counting) have been used for comparative analysis involving salivary samples. In these approaches, the typical flowchart starts by protein digestion being, in case of isotope labeling, derivatized with respective isotope, mixed and analysed simultaneously. Depending on the approach, up to 8 different samples (iTRAQ-8plex, Absciex) can be compared at same time.As an example, Streckfus et al. [110] evaluated the salivary protein expression in patients with breast cancer using a iTRAQ approach identifying 55 proteins that were common to both cancer stages in comparison to each other and healthy controls while there were 20 proteins unique to Stage IIa and 28 proteins that were unique to Stage IIb. In case of label free, eluted peptides are aligned in terms of retention time and comparative analysis will be based on spectral counting [111]. For instance, Ambatipudi et al. [112] by MudPit and label free evaluated the aging effect in the abundance of human female parotid salivary proteins where extensive ageassociatedchanges in the abundance of many of salivary proteinswere noted, especially for proteins associated with host defensemechanisms.
The proteome of human saliva received considerable attention in the last years. However,the improvement of the methods to study and characterize salivary proteins and/or the changes in its profile is still an issue since the identification of potential biomarkers for several pathological and physiological conditions is yet to be established. Moreover, a complete knowledge on the importance of each salivary protein in oral environment is not completely understood. Additionally, the growing interest in animal saliva, both due to their value as models for humans, as well as for veterinarian and production purposes, justifies the efforts to develop new protocols adapted to the particularities of these samples.Despite the existence of limitations, electrophoresis continues to be an essential tool in the study of salivary proteome. It constitutes the bases for the separation of several different components, allowing a summary characterization and also providing a purification step prior the application of more selective and commonly more expensive methods. Nevertheless, enhanced methodologies for sample fractionation and processing might be useful to circumvent some of the limitations for the study of this fluid by electrophoresis. Profiling such a fluid that rapidly changes according stimulus and where some of its constituents interact with each other is challenging. Improved approaches will be necessary to cope with the challenges in understanding of these interactions, their functions and health consequences – the so called interactome – which will be the future in saliva characterization and biomarker identification.
Authors acknowledge the financial support from FCT - Fundação para a Ciência e a Tecnologia – Science and Technology Foundation (Lisbon, Portugal) of the Ministry of Science, Technology and Higher Education (Post-doctoral grant SFRH/BPD/63240/2009 Elsa Lamy) and by FEDER Funds through the Operational Programme for Competitiveness Factors - COMPETE and National Funds through FCT - Foundation for Science and Technology under the Strategic Projects PEst16C/AGR/UI0115/2011 and PEst-C/QUI/UI0062/2011.
The craniofacial growth and its harmonization with the dental apparatus take place according to a genetic program that acts in a coordinated manner, in both embryo foetal and postnatal stages. In addition to the structural pattern of development, the genetic program also ensures the control of each stage of ontogenesis, both in space and time, which eliminates the risk of developmental errors. During odontogenesis intricate genetic, molecular and cellular regulations establish accurate tooth number and precise location, size, morphology, and composition of each tooth.
However, deviations from usual structure, or function are possible. Any deviation, qualitative and/or quantitative, from usual pattern of development may be called developmental abnormality or anomaly. Developmental anomalies are also known as congenital anomalies or birth defects. Congenital anomalies are defined by the World Health Organization (WHO)“as structural or functional anomalies”. They can occur during antenatal life and can be detected”prenatally, at birth, or later in infancy” [1].
Development failure of one or more teeth is a result of specific disturbances (failure in the initiation of tooth formation, reduced odontogenic potential of the dental lamina, or premature arrest of tooth development) during the early stages (tooth initiation or morphogenesis stage) of odontogenesis affecting reciprocal interactions between the dental epithelium and mesenchyme and leading to absence of tooth germ [2]. Therefore, the usual number of deciduous and permanent dentitions, in both jaws, decrease and the condition is known as tooth agenesis. Family, twin, adoption and tooth development at molecular levels studies provide evidence-based interpretation of genetics as the predominant factors in the etiology of tooth agenesis. Frequently association of tooth agenesis with inherited monogenic syndromes supports the role of genetics in the etiology of missing teeth.
Absence of tooth developmental has direct clinical implications causing physical appearance, emotional, and functional impact on the affected individual. Most affected individuals lack only one or two permanent teeth, but patients who experience agenesis of more teeth are frequently encountered in dental practice as well. Severe forms of missing teeth lead to greater oral impairments. The lack of teeth, especially anterior teeth, malocclusion, drifting of teeth, diastemas between present teeth have negative impact on the oral health-related quality of life of the patients. Tooth agenesis poses medical problems due to ddysmorphic features that may only require cosmetic concern, or major anomalies that require clinical or cosmetic attention. Multidisciplinary teams1 will manage therapeutic options, such as retaining the primary tooth, orthodontic treatment to close the edentulous spaces, dental surgical implants, and fixed or removable dental prosthetic appliances. The proper treatment may be tailored to the individual. It not only improves speech and masticatory function but also psychosocial distress that may help to restore self-confidence.
There are several terms used to describe tooth agenesis: congenital absence of teeth, congenitally missing teeth, lack of teeth, or aplasia of teeth. Some suggest that the term” congenitally missing” teeth could be misleading because teeth are not visible at birth in the oral cavity and tooth development is completed after birth, or teeth may be lost by dental disease, or trauma, or extracted on clinical grounds. In the case of teeth, the development and differentiation continue long after birth, and instead of congenital many anomalies could rather be called developmental anomalies [3]. For the purpose of this chapter the term tooth agenesis will be used throughout. In the literature are used, most commonly, other descriptive terms mainly defined according to the number of missing teeth:
Hypodontia is the lack of one to six teeth missing (excluding the third molars) with mild to moderate levels of severity.
Oligodontia is the failure of development of more than six teeth missing (excluding the third molars) with severe level of severity.
Anodontia means the lack of all teeth without any associated abnormalities causing an extremely severe dental phenotype.
The terms hypodontia and oligodontia are sometimes used interchangeably being considered as a unique clinical entity. As stated by Nieminen [3] and Vastardis [4], this classification of tooth agenesis may not properly reflect the severity of the phenotype as the third molars are excluded. Wherefore tooth agenesis based on dental phenotype severity may be partial or selective, or hypodontia (mild forms of agenesis), severe forms of agenesis or oligodontia, and very rare cases of agenesis of whole the dentition or anodontia. According to OMIM [5], selective tooth agenesis (STHAG) with no other associated systemic features or isolated tooth agenesis has been separated into two entities. The first entity refers to oligodontia characterized by the developmental absence of six or more permanent teeth. The second one refers to hypodontia characterized by the developmental failure of fewer than six teeth. The number of missing teeth in both cases excludes agenesis of third molars, commonly called wisdom teeth.
Incisor-premolar hypodontia (IPH) is a term also used in the literature based on the high frequency of incisors and premolars missing teeth [6]. For the purpose of this chapter the term tooth agenesis will be used throughout.
Prevalence of tooth agenesis is an important information to be of use not only for the clinician and patients but also for policy makers, given the implication for treatment protocols. Many published studies reported large variation in the prevalence of tooth agenesis across the world due to differences between methods of sampling, sample size, age of subjects, orthodontic or non-orthodontic enrolled subjects, number of males and females, the third molars included or excluded, or ethnic population groups. Moreover, it has been claimed that agenesis of permanent teeth has increased over the years. Mattheeuws et al. [7] considered that the period of time was too short and the available data too limited to describe a possible trend in the human dentition. Their meta-analysis seems to confirm that tooth agenesis has been diagnosed more often in recent studies.
Both the primary and permanent dentitions may be affected by variations in the number of teeth, but the prevalence is different. A prevalence of less than 1% in the primary dentition has been reported in the European population ranging from 0.4 to 0.9%, and it has been reported to be 2.4% in Japanese population. [6, 8, 9]
Prevalence of permanent dentition has been studied extensively because it is no doubt more affected than primary dentition. Prevalence of tooth agenesis in permanent dentition also differs among studies of orthodontic/non-orthodontic subjects. Non-orthodontic population prevalence across the world varies between 1.6 and 9.6 per cent (most often-cited) [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and calculated overall prevalence of tooth agenesis was estimated to be 6.53% ± 3.3% [22]. So far, some systematic reviews compare and evaluate prevalence studies on non-syndromic permanent teeth agenesis in various populations showing the prevalence varying from 0.3% in Indian population [16] to 15.7% in Hungarian population [17]. Polder et al. [11] reported the prevalence of non-syndromic agenesis in permanent teeth of European population (third molars excluded) varying between 3.4% in Switzerland to 10.1% in Norway. The wide range of prevalence values observed in population studies has suggested geographic differences. Published data reviewed by Pemberton et al. [23] reported that people of Scandinavian descent are the most susceptible to tooth agenesis in the permanent dentition whilst those of Asian or Arabic descent are the most susceptible in the primary dentition.
Gender predominance in tooth agenesis has been reported (Table 1) suggesting gender as a risk factor. Tooth agenesis show prevalence rates higher in females compared to males [11, 12, 24]. However, other studies reported no significant difference between the prevalence of tooth agenesis in males and females [19, 20].
Type of dentition | Prevalence % | Prevalence % | ||
---|---|---|---|---|
Minimum | Maximum | Male | Females | |
Primary | 0.4 | 0.9 | No significant differences | |
Permanent | 3.4 | 10.1 | 4.6 | 6.3 |
The prevalence of non-syndromic agenesis in permanent teeth (third molars excluded) in European population (summarized data).
In most patients, dental agenesis involved only one (47.8%) (Figure 1) or two teeth (35.1%) (Figure 2) [11]. Absence of one or two permanent teeth was reported in 83% - 87.9% of the subjects with tooth agenesis [11, 19, 20]. Thus, most of the affected individuals suffer only a mild form of tooth agenesis.
Female patient, 22 years old with non-syndromic tooth agenesis. (1,2,3) intraoral photos showing the missing upper right lateral incisor and the microdontia of the contralateral tooth. (4) panoramic radiograph confirming the agenesis of the maxillary right lateral incisor. * position of the missing tooth.
A 28-year-old female patient with trisomy 21 presenting lower second premolars agenesis. Several dental anomalies are observed on the intraoral photos (1,2,3): Upper diastema, maxillary lateral incisors microdontia, ectopic canines and spaced lower teeth. (4) panoramic radiograph shows the absence of the lower second premolars and an agenesis diagnosis can be confirmed. * position of the missing tooth.
Although tooth agenesis is a common development anomaly, the prevalence becomes progressively smaller as the number of missing teeth increases. For example, isolated agenesis of at least six teeth is relatively rare, affecting 0.08% of the Dutch population [25] and 0.16% of the Danish population. [26] Polder et al. [11] reported an overall prevalence of 0.14% in affected patients with six or more teeth. In addition, lack of all teeth without associated abnormalities is extremely rare, and prevalence is unknown. [19]
Apparently, any tooth in the arch can be missing, but tooth agenesis tends to affect distinct tooth classes differentially. Some tooth types were more often missing than other ones. Thus, the frequency of the individual teeth involved varies [11].
In the deciduous dentition, the upper lateral incisors account for more than 50% and together with lower incisors for 90% of all affected teeth [27]. Nieminen highlighted that there is an obvious association between the agenesis of the temporary teeth and the permanent teeth; a temporary tooth affected by agenesis is almost every time followed by missing of the corresponding permanent tooth [3, 27].
The third molars are the most prevalent missing teeth in all reports. Up to 70% of the population experience problems with their third molars, whether it is failure of proper eruption (impaction) or not erupting at all (agenesis). Up to 25% of the population may lose at least one third molar [10] and therefore, usually, third molar is excluded from the classification. The lowest prevalence of third molar agenesis reported so far was 10.1% for African American population [28] and the highest prevalence was 41% for the Korean population. [30] Excluding the third molars, in European population, the most frequently missing tooth is mandibular second premolar (2.91%–3.22%), followed by maxillary lateral incisor (1.55%–1.78%) or second premolar (1.39%–1.61%), as reviewed by Gracco et al. [19].
Other data support the conclusion that the most commonly missing tooth was the maxillary lateral incisor, followed by mandibular and maxillary second premolars [22]. Figure 3 illustrates the bilateral absence of second lower premolars. Agenesis of lower central incisors is common in Asian populations in both primary and permanent dentitions [9].
Female patient aged 7 years old with confirmed trisomy 21 presenting all four second premolars agenesis. Intraoral photos (1,2,3) emphasize a mixed dentition with lack of space for the alignment of the permanent teeth. (4) panoramic radiograph shows the congenital absence of the second premolars in both dental arches. * position of the missing tooth.
Less commonly affected teeth are, in order, lower incisors, maxillary first premolars, mandibular first premolars, maxillary canines and mandibular second molars (Figure 4). Patients who experience agenesis of these teeth (e.g., canine or maxillary central incisor) more often present with many missing teeth [11].
Tooth agenesis in a non-syndromic 21-year-old female patient. Intraoral photos (1,2,3) emphasizing a generalized microdontia and as a result, teeth are spaced with larger gaps in the lower arch. (4) Anamnesis and the examination of the panoramic x-ray reveal the congenital absence of the lower second molars, both in the right and in the left quadrant. * position of the missing teeth.
The most stable teeth are maxillary central incisors (prevalence of agenesis 0.016%) and mandibular first molars and canines (prevalence of agenesis about 0.03%) [3]. Recently, Eshgian et al. [21] concluded that hypodontia affected specific type of teeth. In their study, the most commonly missing teeth were maxillary premolars, lateral incisors and mandibular premolars. Comparing their results with other data from previous studies, they explained the differences in patterns and prevalence of tooth agenesis between different population groups by ethnic diversity in the distributions of mutant genes. The explanation was supported by the prevalence of people with missing permanent teeth which was significantly lower in blacks than in whites in U.S.A. [28], and different type of affected tooth, mandibular incisor in Hong Kong children population [29] and mandibular second premolars among Italians. [19] Polder et al. [11] considered that difference in the ethnic groups is not the explanation of differences in prevalence between populations due to the small number of reported hypodontia cases and the difficulty of detecting the anomaly without appropriate evidence.
Distinct patterns of permanent teeth agenesis have been reported but, as a general rule, if only one or a few teeth are missing, the absent tooth will be the most distal tooth of any given morphological class [3, 15, 24, 31].
It is known that upper lateral incisors, second premolars, and third molars are the last forming teeth in their tooth family, are in the embryonic fusion of the maxilla and the medial nasal processes and erupt in the critical terminal area of the dental lamina. For these reasons, the last forming teeth are more vulnerable to the critical actions of both genetic and environmental factors during odontogenesis and fail to develop. This can explain why tooth agenesis most frequently affects premolars, lateral incisors, and molars. (Figure 5) The anomaly was called ‘end-of-series. [31, 32] In 2017, it has been assumed by Juuri and Balic that tooth agenesis most frequently affects the last tooth to develop within the tooth family due to a gradual decrease of the odontogenic potential of the dental lamina. [33]
A 13-year-old male with confirmed Down syndrome presenting different dental anomalies. Intraoral photos (1–3) show mixed dentition with delayed eruption of permanent teeth, remarking the absence of the upper left lateral incisor. (4) Examination of the panoramic radiograph reveals the absence of the upper second premolars and of the maxillary left lateral incisor. * position of the missing teeth.
Tooth agenesis may be either bilateral or unilateral. Pinho et al. [32] hypothesized that if the etiology of hypodontia is primarily genetic, then bilateral missing teeth phenotype would be expected to be more commonly observed. Unilateral hypodontia might be a variation in severity of a genetic trait showing a microdont or peg-shaped contralateral tooth.
Most studies reported predominance of bilateral missing teeth, as reviewed by Rakhshan [15]. Goya et al. [34] found that symmetry of congenitally missing teeth was predominant (74.6%), Kirzioglu et al. [35] observed that bilaterally missing teeth was 73.2%, and Endo et al. [36] reported that 89% of the patients presented bilaterally missing teeth. Other researchers have found unilateral tooth agenesis more common. [37] Polder et al. [11] compared (based on nine studies) the occurrence of bilateral and unilateral agenesis for the most four affected teeth showing that only for maxillary lateral incisors prevalence of unilateral agenesis was lower than bilateral agenesis.
Bilateral agenesis of maxillary lateral incisors occurred more often.
Unilateral agenesis involving mandibular second premolars occurred more common.
Unilateral agenesis affecting maxillary second premolars was more frequently.
Unilateral agenesis of mandibular central incisors occurred more often.
Medina [38] stated that while symmetrical dental missing affects the maxilla (Figure 6), the mandible shows mostly unilateral agenesis. In the opinion of other researchers, the most common symmetric missing tooth could be the mandibular second premolar agenesis, followed by the absence of the maxillary second premolar or maxillary lateral incisor, as reviewed by Rakhshan [15].
Non-syndromic tooth agenesis in a 26-year-old female patient. Clinical intraoral appearance (1,2,3) emphasizing multiple dental problems, accentuated by the bilateral absence of the upper lateral incisors and of the second premolars. (4) panoramic radiograph confirming the agenesis of the four upper teeth. * position of the missing teeth.
No overall difference in tooth agenesis has been reported between maxilla and mandible for permanent dentition [11]. However, Gomes et al. [20] found maxillary hypodontia in 59.2% of patients and in the mandible of 40.8% with an overall ratio of 1.45:1 in orthodontic patients. Several reports mentioned a small but not always significant predominance of missing teeth in the maxilla [19, 20, 24] whilst other reported more missing teeth in the mandible than in the maxilla [36].
For the primary teeth, agenesis is more common in the maxilla [27].
No significant difference between left and right sides of the jaw has been reported. Nevertheless, predominance of tooth agenesis on the left side has been reported in some Scandinavian studies, as reviewed by Arte S. [18] and Fekonja A. [24] have found the missing teeth were more commonly absent on the right side.
No clear difference in tooth agenesis has been found between the anterior and posterior regions. Most studies showed higher prevalence in the anterior segment [15] and the few remaining analyses found no significant differences [36]. Endo et al. [36] suggested that in mild cases of tooth agenesis, the anterior segment might be more involved while the posterior segment might be predominant in severe cases.
Polder et al. considered the age of detectability as an important issue. A meta-analysis study made by Polder et al. revealed that the visibility of tooth germs by X-ray examination hangs on their degree of mineralization. Subjects at the same chronological age can show significant differences in mineralization stages and dental age. The major differences in mineralization can be found especially in mandibular second premolar buds or third molar buds which present a late onset of mineralization. Therefore, radiographic examination may show a false-positive result and a misdiagnosis of tooth agenesis. [11]
All primary teeth have erupted by the age of three and all permanent teeth except the third molars between the age of 12 and 14. Therefore, three to four years of age children are suitable for diagnosis of missing primary teeth by clinical examination, and 12 to 14-year-old children (the precise determination of teeth mineralization stages), for diagnosis of permanent teeth [22, 39]. While some studies reported age of detectability after eight years of age for the permanent dentition, and failure for the third molar to form is detectable by age 11.
Investigations so far show that several heterogenous factors may be involved in tooth agenesis. Tooth development is a complex process which involves a combination of genetic, epigenetic, and environmental factors. Thus, there is no single etiology of tooth agenesis. Family, twin, and adoption studies2 are the primary exploration by which the genetic basis of a condition may be established. In addition, observed prevalence differences between populations, and association with heritable syndromes supplied evidence for strong genetic influences on tooth agenesis [8]. These findings provided the reasoning for recent efforts to identify the relevant susceptibility genes and the molecular mechanisms by which they interact with environmental influences, and to correlate tooth agenesis phenotypes with their causative factors. Furthermore, genetic studies on mouse models with dental agenesis have identified a few transcription factors and signaling molecules, such as WNTs (wingless-related integration site), BMPs (bone morphogenetic proteins), FGFs (fibroblast growth factor), and NF–κB (nuclear factor kappa B) as candidate genes in human isolated and syndromic agenesis [40].
More than 300 genes are expressed and control odontogenesis and, apparently, any of these gene mutations may cause tooth agenesis. Among these genes, PAX9 (paired box gene 9), MSX1 (muscle segment homeobox 1), EDA (ectodysplasin A), WNT10A (wingless-type MMTV integration site family, member 10A), and AXIN2 (axis inhibitor 2) are the most frequently reported mutations associated with non-syndromic tooth agenesis (hypodontia/oligodontia), as reviewed by Al-Ani et al. [41] and Liu et al. [42]. (Table 2) These all genes have roles in both signaling pathways and in mediating the signal transduction cascades.
Normal expression of these genes is important for the tooth development. MSX1 is a transcription factors active in regions of condensing ectomesenchyme in the tooth germ. PAX9 is a transcription factor as well, it is expressed in the tooth mesenchyme, playing a significant role during odontogenesis in the progressive and reciprocal signal transduction pathways that normally occur in epithelial–mesenchymal cells. Both Msx1 and Pax9 are involved in the Bmp and Fgf pathways and interact during the tooth-bud-to-cap transition. Their expression profiles during early tooth development are largely overlapping, and Pax9 is known to activate transcription of
Studying 34 unrelated patients with isolated tooth agenesis, van den Boogaard et al. [43] reported that 19 patients, representing 56% of them, had mutations in the WNT10A gene. Of 34 patients, 3% presented mutations in the MSX1 gene, 9% and 3% had mutations in the PAX9 and AXIN2 genes, respectively. It was concluded that WNT10A is a significant gene in the etiology of isolated hypodontia.
Frameshift and nonsense mutations are highly likely all causative because they involve profound alteration of the protein primary structure, but missense mutations in these genes are found to cause tooth agenesis phenotypes characteristic in terms of severity and affected teeth as well [44].
As a rule, homozygous (identical mutation on both alleles of a specific gene) or compound heterozygous (both alleles of a gene are mutant, but the mutations are different) carriers of gene mutations exhibit more severe phenotype of tooth agenesis than heterozygous carriers (two different alleles, but only one is mutant).
Besides the single-gene mutations, Michon [45] reported the functional role of miRNAs in proliferation and differentiation of cells and tissues during odontogenesis and possible dental defects development. His results support the view of complex genetic etiology of tooth agenesis.
Attention should be turned to the expression of a mutation in a family. In families with a probable dominant or recessive Mendelian inheritance, there seems to be a variable missing teeth phenotype. In other words, tooth agenesis patterns are different in expressivity among the affected members within a family having the same molecular cause. Vastardis studied incisor agenesis in families with dominant pattern of inheritance. Autosomal dominant disorders express variability in clinical manifestation caused by reduced penetrance and variable expressivity of mutant gene. Consequently, individuals in the same family who carry an identical mutation can vary in the severity of their incisor agenesis. Variable expressivity determines developmental alteration of lateral incisor shape (peg-shaped) or rudimentary third molars and unilateral agenesis may be the result of incomplete penetrance. [46]
Mostowska et al. described a three-generation family with severe autosomal dominant oligodontia. Those affected lacked all permanent molars, second premolars, and mandibular central incisors. The authors found a novel mutation of MSX1. Mutation occurs in exon 2, at nucleotide 581 a cytosine is changed to a thymine (c.581C → T transition), and disrupts the homeobox domain, which is highly conserved. The new mutation causes non-syndromic oligodontia (absence of 14 permanent teeth) in their proband. Two healthy members from the proband’s family carry the same missense mutation. [47] To date, many studies provide evidence for great intra- and inter-familial clinical variability in families with isolated tooth agenesis. [3, 13, 41]
There are several possible genetic mechanisms to explain these major differences in expressivity of the phenotype with the same molecular cause. One of them lies in the concepts of penetrance and expressivity. Reduced (incomplete) penetrance and variable expressivity are factors that influence the effects of particular genetic changes and are commonly seen with Mendelian dominant traits. Tooth agenesis shows incomplete penetrance, since pedigree studies demonstrate individuals who must carry the mutation but who do not appear to be affected themselves. Reduced penetrance probably occurs when final effect of a gene mutation can be indirectly influenced by modifier genes, epigenetic factors, or miRNAs. Potential modifier genes may act in the same or in different development pathways altering (exacerbate or attenuate the effect of the gene mutation) the clinical phenotype.
Epigenetic factors do not change the gene sequence. Epigenetic alterations may be induced spontaneously, in response to environmental factors, or may be part of a person’s make up (allele dosage, copy number variants, allele variants). Identical twins are ideal subjects for studying the effects of epigenetic modifications. Monozygotic co-twins sharing sex, age, and identical genomes display discordant phenotypes for missing teeth which may be explained by epigenetic differences. In their twin study, Townsend et al. supported the view that, even though there is a relatively strong genetic basis to missing teeth, the number or position of affected teeth can be influenced by epigenetic factors. Epigenetic alteration activities, such as DNA methylation and histone modification, at each stage, at the local level during the odontogenesis process, may account for distinct phenotypic differences in the final appearance of teeth of the identical twins. During tooth development, odontogenetic cells reply differently to epigenetic variation in spatiotemporal expression of local signaling molecules passing between cells. [48]
miRNAs play an important role in controlling gene activity by regulating translation during tooth development. Changes in miRNAs levels have been linked to several dental defects [45]. Thus, in a population, the missing teeth phenotype might not occur so often as the abnormal genotype. On the other hand, individuals with the same genetic condition may have more missing teeth than another having only one missing tooth. Thus, expressivity describes individual variability. Variable expressivity is probably caused by a combination of genetic, environmental, and lifestyle factors, most of which have not been identified.
Dreesen et al. analyzed hypo−/oligodontia phenotype variations in nine families at individual, intrafamilial and interfamilial levels aiming to evaluate whether the different agenesis patterns in the pedigrees are predictive of mutations in specific genes based on reported genotype–phenotype associations. Familial aggregation was noted but the tooth agenesis patterns were variable between family members, in terms of number of missing teeth. Therefore, tooth agenesis is not (always) a simple monogenic disorder. The authors proposed a multifactorial aetiological model with many genes and environmental factors modulating the clinical expression. [49]
Genetic heterogeneity describes different gene mutations or genetic mechanisms that produce the same or similar clinical phenotype. Heterogeneity can be recognized by subtle differences in clinical phenotype or evidence of different patterns of inheritance. Genetic testing can confirm the gene mutation responsible for a certain clinical phenotype. Usually, genetic heterogeneity complicates the risk estimation in genetic counseling and genetic prognoses.
Two types of genetic heterogeneity are recognized: locus heterogeneity (clinical phenotype is caused by mutations at two or more different loci), and allelic heterogeneity (clinical phenotype is caused by more than one mutation within the same gene, same locus).
Locus heterogeneity is well documented in selective tooth agenesis (STHAG).
There are ten loci associated with STHAG. Nine of them are autosomal loci (STHAG1 to STHAG9) and one STHAGX1 is sex-linked locus as it follows the X-linked dominant pattern of inheritance. The corresponding gene located at
In 1998, Ahmad et al. [50] reported an autosomal recessive form of hypodontia in a large consanguineous Pakistani family. This was the first report of hypodontia associated with other dental anomalies, such as enamel hypoplasia and failure of teeth eruption, leading to the edentulous state prematurely. The locus was named
In 2000, Wang et al. [51] described a rare, heritable, form of agenesis of permanent teeth. The tooth number anomaly was named He-Zhao deficiency. The only clinical feature of affected individuals was oligodontia. It was transmitted in an autosomal dominant manner with reduced penetrance in a large six successive generation family coming from a small village in China. The number of missing teeth ranged from “a few teeth to the entire set of teeth”. Some of the patients were more likely to have first and second molars. This distinct form of permanent tooth agenesis is associated with
In 2015, Huckert et al. [52] reported mutations in LTBP3 (latent transforming growth factor-beta-binding protein 3) gene causing different dental phenotypes and brachyolmia (short trunk, mild short stature with platyspondyly and scoliosis). The association of oligodontia with hypoplastic amelogenesis imperfecta, taurodontic molars and short stature has been designed as a distinct entity named DASS (dental anomalies and short stature) (OMIM 601216). So, STHAG6 was incorporated into DASS.
Another example of locus heterogeneity is provided by mutations in EDA, EDAR and EDARADD genes which express the similar phenotype of hypohidrotic ectodermal dysplasia. (Table 3).
Gene symbol/locus | Gene name | Cytogenetic location | Gene /locus OMIM number | Description of tooth agenesis clinical features | Inheritance | Phenotype OMIM Number |
---|---|---|---|---|---|---|
AXIN2 | axis inhibitor 2 | 17q24.1 | 604025 | Oligodontia – severe permanent teeth agenesis | Autosomal DOMINANT | 608615 |
EDA | ectodysplasin A | Xq13.1 | 300451 | Tooth agenesis, selective, X-linked 1 (STHAGX1) | X-linked DOMINANT | 313500 |
GREM2 | GREMLIN-2 homolog, cystine knot superfamily gene | 1q43 | 608832 | Tooth agenesis, selective,9 (STHAG9) | Autosomal DOMINANT | 617275 |
LRP6 | low density lipoprotein receptor-related protein-6 | 12p13.2 | 603507 | Tooth agenesis, selective,7 (STHAG7) | Autosomal DOMINANT | 616724 |
MSX1 | muscle segment homeobox 1 | 4p16.2 | 142983 | Tooth agenesis, selective,1, with or without orofacial cleft (STHAG1) | Autosomal DOMINANT | 106600 |
PAX9 | paired box gene 9 | 14q13.3 | 167416 | Tooth agenesis,selective,3 (STHAG3) Hypodontia/Oligodontia 3 | Autosomal DOMINANT | 604625 |
STHAG2 | 16q12.1* (*the disorder was placed on the map by statistical methods) | 602639 | Tooth agenesis, selective, (STHAG2) | Autosomal recessive | 602639 | |
STHAG5 | 10q11.2-q21* (*the disorder was placed on the map by statistical methods) | 610926 | Tooth agenesis, selective,5 (STHAG5) Hypodontia/Oligodontia 5 (He-Zhao deficiency) | 610926 | ||
WNT10A | wingless-type MMTV integration site family, member 10A | 2q35 | 606268 | Tooth agenesis, selective,4 (STHAG4) with or without ectodermal dysplasia | Autosomal DOMINANT or recessive | 150400 |
WNT10B | wingless-type MMTV integration site family, member-10B | 12q13.12 | 601906 | Tooth agenesis, selective,8 (STHAG8) | Autosomal DOMINANT | 617073 |
Gene mutations involved in NON-SYNDROMIC tooth agenesis are passed on to the next generation following different Mendelian patterns of inheritance (according to OMIM database).
Online Mendelian Inheritance in Man (OMIM™) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic phenotype compiled to support research and education in human genomics and the practice of clinical genetics. It is freely available and updated daily.
Gene symbol | Gene name | Cytogenetic location | Gene/locus OMIM number | Name of disorder associated with tooth agenesis | Inheritance | Phenotype OMIM Number |
---|---|---|---|---|---|---|
AXIN2 | axis inhibitor 2 | 17q24.1 | 604025 | Oligodontia-colorectal cancer syndrome | Autosomal DOMINANT | 608615 |
EDA | ectodysplasin A | Xq13.1 | 300451 | Hypohidrotic ectodermal dysplasia 1 (HED) | X-linked reccessive | 305100 |
EDAR | ectodysplasin A receptor | 2q13 | 604095 | Ectodermal dysplasia 10A, hypohidrotic/hair/nail type Ectodermal dysplasia 10B, hypohidrotic/hair/nail type | Autosomal DOMINANT Autosomal recessive | 129490 224900 |
EDARADD | edar-associated death domain | 1q42-q43 | 606603 | Ectodermal dysplasia 11A, hypohidrotic/hair/tooth type Ectodermal dysplasia 11B, hypohidrotic/hair/tooth type | Autosomal DOMINANT Autosomal recessive | 614940 614941 |
LTBP3 | latent transforming growth factor-beta-binding protein 3 | 11q13.1 | 602090 | Dental anomalies and short stature | Autosomal recessive | 601216 |
MSX1 | muscle segment homeobox 1 | 4p16.2 | 142983 | Ectodermal dysplasia 3, Witkop type Orofacial cleft 5 Wolf-Hirschhorn syndrome* (*a contiguous gene deletion syndrome in which multiple genes are involved) | Autosomal DOMINANT Autosomal DOMINANT Isolated cases | 189500 608874 194190 |
NEMO (IKBKG) | inhibitor of nuclear factor kappa-b kinase, regulatory subunit gamma | xq28 | 300248 | Incontinentia pigmenti | X-linked DOMINANT | 308300 |
PITX2 | paired-like homeodomain transcription factor 2 | 4q25 | 601542 | Axenfeld-Rieger syndrome, type 1 | Autosomal DOMINANT | 180500 |
WNT10A | wingless-type MMTV integration site family, member 10A | 2q35 | 606268 | Schopf-Schulz-Passarge syndrome Odontoonychodermal dysplasia | Autosomal recessive Autosomal recessive | 224750 257980 |
Gene mutations frequently associated with SYNDROMIC tooth agenesis.
Allelic heterogeneity is illustrated by the different mutations in the MSX1 and PAX9 genes. For example, MSX1 mutations show overlapping and non-overlapping phenotypes. Almost all mutations are responsible for autosomal dominant STHAG1 involving second premolars, first molars and third molars. Few MSX1 mutations are associated with combinations of tooth agenesis with oral clefting (cleft palate only and cleft lip and cleft palate) and nail abnormalities (Witkop syndrome). [49] (Table 3)
Genotype–phenotype correlations refer to the association between specific germline mutations, meaning genotype, and the resulting spectrum of disease expression of that mutation in the affected individual, meaning phenotype. Usually, such correlations are made for monogenic disorders which follow Mendelian inheritance patterns. Moreover, the correlations can clarify which characteristics of a mutation affect the severity of dental anomaly with a genetic background. On the other hand, the pattern of tooth agenesis provides useful information about how gene mutation might affect an individual and other member of the family. Tooth agenesis runs in families and hypodontia/oligodontia patients have one or more affected family members. [48] So, the family members can be appropriately counseled by a geneticist, and predictive/pre-symptomatic genetic testing should be considered for early diagnosis and early intervention, especially for children.
Research studies have linked non-syndromic hypodontia/oligodontia phenotype with specific gene mutations. For example, among identified mutations, MSX1 and PAX9 genes can cause variation in clinical phenotype of tooth agenesis. Kim et al. [53] studied the pattern of missing teeth in families with certain MSX1 and PAX9 mutations. The missing teeth pattern associated with MSX1 mutants was different from that associated with mutations in PAX9. MSX1-associated tooth agenesis involved bilaterally symmetrical absence of maxillary and mandibular second premolars and maxillary first premolars. PAX9-associated tooth agenesis involved also bilaterally symmetrical missing teeth, usually maxillary and mandibular second molars were affected. Yu et al. [54] stated that WNTB10B-associated oligodontia affected most lateral incisors. In contrast, genotype–phenotype analysis of oligodontia pattern associated with WNT10A mutations revealed that premolars were the most frequently missing teeth.
Mutations in nine genes (MSX1, PAX9, AXIN2, WNT10A, EDA, EDAR, EDARADD, NEMO and KRT17) have been associated with non-syndromic oligodontia, as reviewed by Liu et al. [42] Oligodontia phenotype is caused by haploinsufficiency. Mutations produce a reduction in functional gene product below a threshold required for normal dental development [8].
Apparently, reduced quantities of a gene product should equally affect the formation of all teeth. Oligodontia caused by defects in MSX1 and PAX9 yields typical, although variable and overlapping patterns of tooth agenesis [8]. Mutations of MSX1 result in the absence of all permanent third molars, all second premolars, maxillary first premolars and variably other teeth, whereas defects in PAX9 cause mainly agenesis of molars, typically of all permanent maxillary and the second and third mandibular molars as well as variably of other teeth. [55] Regarding AXIN2 gene, five mutations were reported to be associated with non-syndromic tooth agenesis: four missense and one frameshift mutations. The phenotype is variable in expression and involved at least seven teeth. One study reported that a mutation in EDARADD gene led to non-syndromic oligodontia. [41]
Not all of the tooth agenesis forms can be linked to precis genetic mutations, at a single gene locus. Tooth agenesis is a common developmental anomaly and has a definite familial tendency. However, the proportion of affected near relatives is less than what expected for a monogenic trait. One way to recognize a complex trait is through unpredictable inheritance patterns in successive generations. Tooth agenesis is probably caused by several independent defective genes, acting alone or in combination with other genes, and interacting with environmental factors, leading to a specific clinical phenotypic pattern. Being produced by multiple genes, a multifactorial trait seems to be more susceptible to environmental/stochastic or nongenetic factors.
Incomplete penetrance, genetic background, and variable expression levels did not explain all major differences in the expressivity of the phenotype with the same molecular cause. For these reasons, some authors based on evidence from genetic studies, animal models, and environmental correlates suggested an oligogenic or polygenic inheritance of tooth agenesis. [42, 45, 46, 47, 48]
For instance, Vastardis [45] stated that tooth development is a very complex process and involves many” players”. Thus, third molar agenesis cannot be explained in most cases with a simple model of autosomal dominant transmission. Fekonja et al. [24] suggested that genes could be the dominant factor for the agenesis in the anterior region, while the posterior teeth could be missing sporadically. Townsend et al. [56] proposed a multifactorial aetiological model, with possibly many genes, and also environmental and epigenetic factors contributing to tooth development based on lack of complete concordance for missing teeth in monozygotic twins.
It has been documented by various statistical analyses using single locus and polygenic patterns that both approaches are possible. From genetical point of view, multifactorial inheritance of tooth agenesis is troublesome to analyze. It is difficult to state whether hypodontia is a result of a polygenic or single gene defect. It arrives at a diagnosis of multifactorial inheritance for tooth agenesis only after the monogenic forms of inheritance have been considered and found unlikely.
Molecular basis or locus of isolated anodontia (OMIM 206780) are unknown. Gorlin et al. [57] described complete absence of the permanent dentition with the entire primary dentition present and erupted at a normal time. Anodontia presented evidence of autosomal recessive inheritance, including multiple affected sibs and consanguineous parents. Based on three family studies, it was documented that anodontia of permanent teeth is a homozygous state of the gene responsible for pegged or missing maxillary lateral incisors. [5]
Pseudoanodontia should not be confused with anodontia. Pseudoanodontia or false anodontia occurs, when teeth are absent clinically because of impaction, delayed eruption, exfoliation or extraction. In GAPO syndrome (GAPO syndrome is the acronymic designation for a complex of growth retardation, alopecia, pseudoanodontia, and progressive optic atrophy - OMIM 230740) is described pseudoanodontia, failure of tooth eruption. The syndrome is caused by mutations of ANTXR1 gene (anthrax toxin receptor 1) located on 2p13.3, and the pattern of inheritance is autosomal recessive [58].
Tooth agenesis is usually isolated, but gene mutations have been identified that either cause tooth agenesis as a sole isolated agenesis, or tooth agenesis in association with a wide variety of multiorgan malformation syndromes. (Table 3
Thus, tooth agenesis is a primary feature of many single-gene Mendelian syndromes that affect not only teeth but also several other ectodermal derivatives indicating that the development of teeth and certain tissues/organs are under the control of the same gene molecular functions and common molecular mechanisms are responsible for tooth and other organ development. A pleiotropic mutation may influence several, apparently unrelated, traits simultaneously, due to the gene coding for a product used by a myriad of cells or different targets that have the same signaling function. For instance, two AXIN2 nonsense mutations caused syndromic tooth agenesis, such as oligodontia and predispose to colorectal cancer, or oligodontia and variable other findings, including colonic polyposis, gastric polyps, a mild ectodermal dysplasia phenotype with sparse hair and eyebrows, and early onset colorectal and breast cancers [42].
Adventitious chromosomal abnormalities cause tooth agenesis in association with other clinical features and recognizable patterns of malformations known as chromosomal syndromes.
Down syndrome and tooth agenesis (OMIM 190685)
Down syndrome (DS), a common and well-known syndrome, is caused by an autosomal aneuploid defect called trisomy involving the human chromosome 21 (Ts21). The extra chromosome 21 or part of its long arm (including many genes) may come in distinct genetic ways, such as full trisomy 21, mosaic trisomy 21 or unbalanced translocation trisomy 21 causing DS distinctive facial features. The difference between DS people could be made by chromosome analysis because craniofacial features are similar. So, cytogenetic analysis is not relevant for predicting the severity of oro-dental features in DS [59].
Missing teeth were reported in 23–47% of cases (Figure 7). Third molars, second premolars, and lateral incisors are most frequently absent in the permanent dentition. Peg-shaped maxillary lateral incisors have been observed in 10%. In 12–17% of cases, deciduous lateral incisors are missing. Extreme hypodontia and anodontia have been noted occasionally. [60] There is a higher incidence of dental anomalies, such as taurodontism, fusion of deciduous lower lateral incisor with a canine, morphologic crown alterations, enamel hypoplasia and hypocalcification. Irregular alignment is common as well. Tooth eruption of both deciduous and permanent teeth is delayed in 75% of cases and irregular sequence of eruption is common. [60] DS children with missing teeth have a more obvious tendency in developing a Class III relationship of the jaws than DS children without tooth agenesis. This must be taken into account when treating a DS patient [61].
Wolf-Hirschhorn syndrome and missing teeth (OMIM 194190)
The deletion of the distal short arm of human chromosome 4 causes del(4p) syndrome known as Wolf-Hirschhorn syndrome. The critical region is 4p16.3 (WHSCR) and lies approximately 2 Mb from the telomere, so that multiple genes are deleted. Most important genes, playing a major role in early development, are NDS2 (nuclear receptor binding SET domain protein 2), LETM1 (leucine zipper and EF-hand containing transmembrane protein 1), and MSX1 (muscle segment homeo box homolog 1) cause the typical signs and symptoms of this disorder, such as characteristic facial appearance (microcephaly, high forehead, prominent glabella,” Greek warrior helmet” facies, broad and/or beaked nose, hypertelorism, short philtrum, micrognathia, downturned corners of the mouth, short upper lip, dysplastic ears, preauricular tags), delayed growth and development, intellectual disability, and seizures. Agenesis of many permanent teeth has been reported. [60]
About 10% of the patients have cleft lip and palate, 25% present cleft palate, and 50% with micrognathia and high arched palate.
Although, MSX1 gene is outside the WHSCR, in people with Wolf-Hirschhorn syndrome it is frequently deleted. Previous studies reported the critical role of MSX1 in dental, lip, and palate development. [62, 63] Some people with Wolf-Hirschhorn syndrome present mutations of MSX1 gene. It is expected that deletion of MSX1 gene might disrupt the formation of oral structures in early development, causing missing teeth and other dental abnormalities associated with an opening in the roof of the mouth (cleft palate) and/or a split in the upper lip (cleft lip). Nieminen et al. considered that haploinsufficiency of MSX1 gene is a possible mechanism for selective tooth agenesis 1 but a single copy of the gene is not sufficient to produce the oral cleft phenotype. [64]
Multiple tooth agenesis in a 14-year-old female patient with trisomy 21. (1–3) intraoral photos reveal a mixed dentition. It is important to note that the prolonged retention of several primary teeth, either due to the congenital absence of the permanent successor tooth (which is the case of the missing maxillary right lateral incisor) or the deviation in the eruptive path of the permanent successor which determinate the concomitant presence of both the deciduous and the permanent teeth on the arch (in the figures, the deciduous teeth are marked with red arrows while the permanent ones are labeled by blue arrows). The degree of complexity involved in this case is increased not only by the agenesis of the upper right lateral incisor, but its association with another three missing incisors in the lower arch. (4) based on the anamnesis and the examination of the panoramic radiograph, it was confirmed the agenesis of the upper right lateral incisor, lower lateral incisors, and the lower right central incisor. Moreover, left second molars in both arches present an elongated pulp chamber and apically displaced furcations, which are specific for the diagnosis of taurodontism. * position of the missing teeth.
Tooth agenesis cases are either familial or sporadic. Sporadic cases are commonly considered to be nonhereditary, with low risk for relatives or offspring.
By definition, a sporadic disorder arises in the absence of evidence for a heritable or environmental etiology. Affected individuals occur occasionally in families with no reported medical history of tooth agenesis. Consequently, apparently sporadic tooth agenesis may be not inherited from parents but may arise from different aetiologies. Fisher et al. considered that apparently sporadic disorders imply genetic or environmental factors. Sporadic cases can arise from new mutations in germs cells or somatic cells, as well as disorders with an environmental cause. [65].
Usually, environmental factors may cause arrested tooth development. Different kinds of trauma in the dental region, such as fractures, surgical procedures on the jaw, and extraction of the preceding primary tooth are mentioned in the literature, as reviewed by Arte. [18] Furthermore, Vastardis H. [46] reported that dental agenesis in association with other developmental abnormalities may occur because of syphilis, scarlet fever, rickets or nutritional disorders during pregnancy or childhood that act in the early stages of a developmental process. Besides, the authors emphasized the effects of cranial irradiation on endocrine function and tooth development.
Tooth agenesis is diagnosed by intraoral examination (teeth did not erupt), radiographic assessment of oral cavity (no visible mineralization), and a detailed dental history to rule out extractions and trauma. Unusual spacing in a child’s dentition should lead the parent or dentist to suspect tooth agenesis. Occasionally, tooth agenesis could be a clinical sign of a possible underlying syndrome and not only an isolated disease. Referrals to genetic specialists should be considered if a dentist suspects a patient is affected with tooth agenesis.
Using genetic testing, it is possible to screen or diagnose a patient and make a precise etiological diagnosis. Tooth agenesis may occur without a family history, although it is often familial. Monogenic forms of tooth agenesis have a strong genetic component and genetic testing has usually a confirmatory role. The known mutations in some genes can be screened for early signs of developing problems and identification of the individuals at risk.
The analysis is available for genes involved in both syndromic and non-syndromic forms of tooth agenesis, but the test is expensive, and it is not always covered by health insurance.
Known genotype–phenotype correlations can be used for mutation detection. Clinical features in tooth agenesis might be predictive of underlying genotype. For example, if specific teeth are missing, such as maxillary first premolars associated with MSX1 mutations or lateral incisors associated with WNT10B mutations, tooth agenesis pattern gives clue to the most appropriate genetic tests to follow. Genetic testing panel for selective tooth agenesis analyses changes in nine genes at once. Looking for tooth agenesis-associated gene mutations, MSX1, PAX9, WNT10A, LRP6, EDA, WNT10B cause non-syndromic selective tooth agenesis, AXIN2 causes oligodontia-colorectal cancer syndrome, LTBP3 causes dental anomalies and short stature, and PTH1R causes primary failure of tooth eruption.
http://ctgt.net/panel/oligodontia-selective-tooth-agenesis-ngs-panel
Combining the clinical features with genetic data is possible to increase precision in diagnosis, assess prognosis, and prediction of treatment response, provide information for healthcare management and family planning. Genetic counseling is indicated if an individual has a positive family history. For example, Boogaard et al. [43] consider that by including WNTA10A in the DNA diagnostics of isolated tooth agenesis, the yield of molecular testing in this condition was significantly increased from 15% to 71%.
Several dental anomalies have been reported in association with congenitally missing teeth. Tooth number reduction is frequently associated with a reduction in tooth size of (microdontia), altered crown morphology (molars with fewer cusps), short-rooted teeth, and enlarged tooth body and pulp chamber (taurodontic molar). The fusion of primary teeth is often followed by hypodontia in the permanent successors.
Clefting, or an aberrant space between normally fused tissues, usually occurs as either cleft lip with or without cleft palate (CL/P) or cleft palate only (CPO). Whether cases of clefts with dental anomalies should be considered isolated or syndromic cleft can be debated. However, the co-occurrence of cleft lip/palate and tooth agenesis is sometimes described as CL/P-hypodontia syndrome. Arte [18] described hypodontia as a very common anomaly in patients with oral and facial clefts. More studies analyzed tooth agenesis patterns in unilateral/bilateral, complete/incomplete, CL, CL/P or CPO, inside or outside the cleft region.
Published data show that tooth agenesis is more frequently observed in patients with cleft lip and palate (CLP) or their unaffected sisters and brother than in the general population because of close relationship between tooth and cleft formation with respect to the critical time of development and anatomical position. [66, 67, 68, 69] Bartzela et al. reported a higher prevalence of dental anomalies in people with cleft lip and palate than in the non-cleft population, even outside of the cleft region. They studied tooth agenesia patterns in human unilateral and bilateral cleft lip and palate and identified more than 50 different patterns of missing teeth. The most common pattern involved maxillary lateral incisors, and maxillary and mandibular second premolars. The frequency of tooth anomalies seems to be related to the severity of the cleft type. The prevalence of missing teeth reaches 100% in patients with the most severe type of isolated cleft, such as complete bilateral mixed clefting phenotype.
The prevalence of tooth agenesis in people complete unilateral cleft lip and palate has been reported within a range of 48.8% to 75.9% inside the cleft area. The prevalence outside the cleft region was found to be between 27.2% and 48.8%. [66] when compared with the prevalence of tooth agenesis in general population, which ranges between 3.2% to 7.6%, the prevalence of tooth agenesis in non-affected siblings of cleft lip and palate patients was found to be 11.1% outside the cleft area. [11, 70]
The high prevalence of missing teeth outside of cleft region suggests the common genetic background for both tooth agenesis and clefts. So, odontogenesis and palate formation are developmentally related events, and one gene or few genes, might be involved in both processes, in common genetic pathways. Other studies reported no absence of permanent teeth in the maxillary arch outside the cleft (distal to the canines) in unoperated patients with cleft, suggesting that the surgical procedure done to close palatal clefts disrupts the formation of the developing tooth buds, as reviewed by Slayton et al. [68]
Slayton et al. provided an overview of published data related to similar genetic component for non-syndromic simultaneous presence of both orofacial clefts and hypodontia. The combined phenotype of tooth agenesis with orofacial clefts outside the cleft region was described in both humans and animal models and provide evidence to support a common genetic etiology. Mouse knockout models for deficiency of MSX1 and PAX9 failed to form teeth and had cleft palate. [68]
Few monogenic disorders, such as Van der Woude syndrome (caused by mutation in the IRF6 gene - interferon regulatory factor 6), ectrodactyly-ectodermal dysplasia-clefting syndrome 3 (caused by mutation in the TP63 gene - tumor protein p63), and Kallmann’s syndrome (caused by mutation in the FGFR1 gene - fibroblast growth factor receptor 1) have both clefting and hypodontia as typical phenotypic findings. (Table A1) It should be pointed out that the same gene, IRF6 (interferon regulatory factor 6) may cause a disease as rare as Van der Woude syndrome and also to contribute to much more common defects, such as isolated cleft with or without cleft palate. [71]
Primary failure of tooth eruption (OMIM 125350) was reported in association with hypodontia. The most affected teeth are first, and second molars and involvement can be unilateral or bilateral. Based on family studies, the reported pattern of inheritance was consistent with autosomal dominant ones and molecular cause involved mutation of PTHR1 gene (parathyroid hormone 1 receptor) located on 3p21.31 [72]. Regarding permanent dentition, delayed development of posterior permanent teeth in association with the third molar agenesis was reported in the literature, as reviewed by Nieminen [3]. An average delay of two years was observed, with great variation, in a group of 85 patients with agenesis of on the average seven permanent teeth. It was also reported excessive retardation of development of teeth contralateral to missing teeth. Schalk-van der Weide [25] reported a tendency of early developing teeth of males to be retarded in association with severe agenesis, and in females with severe agenesis second mandibular molars to be significantly delayed in development (only mandibular teeth were studied). The delay correlated with the extent of agenesis was most prominent in positions next to the teeth that had failed to develop.
In population studies the relationship of tooth agenesis and microdontia has been shown to be statistically significant. Microdont teeth is small enough to be outside the usual limit of variation and along with the reduction in size, these teeth often exhibit a change in shape. Microdont teeth may be either usual form or with tapering (peg or conical) crowns (Figure 8). The most common form of microdontia is localized type, affecting maxillary incisors. Peg maxillary lateral incisors are seen in 1.2 to 3.2% of general population. This is a genetic trait which is manifest as either peg or missing maxillary lateral incisors. The microdont teeth show an autosomal dominant inheritance pattern and variable expressivity. Some studies reported families in which both genitors have pegged permanent maxillary lateral incisors. Their children had severe tooth agenesis involving primarily agenesis of succedaneous permanent teeth. It was suggested that children expressed the gene mutation in homozygous status. Some studies reported a 2:1 preference for the left side. In addition, reduced tooth sizes have also been observed within the healthy relatives of patients with severe tooth agenesis [3]. Baccetti [73] reported a significant reciprocal association between agenesis of second premolars and reduced upper lateral incisors. Third molar agenesis was associated with reduction in the cusp number of the molars, as reviewed by Arte. [18] The association of microdontia and tooth agenesis is frequently observed in Down syndrome and various types of ectodermal dysplasia. Generalized microdontia of all teeth is extremely rare in people without some sort of syndrome.
Tooth agenesis in a down syndrome male patient, aged 8 years old. (1–3) intraoral evaluation shows the absence of the right lateral incisors both in the upper and lower arches. (4) the panoramic radiograph confirms the agenesis of maxillary right lateral incisor which is associated to a peg-shaped in the contralateral quadrant. Moreover, agenesis of the lower right lateral incisor is also revealed together with a hypotaurodontism in all four first molars. * position of the missing teeth.
Abnormal positions, or ectopic placement, of teeth (OMIM 189490) are believed to result from a disturbance of the tooth developmental structure. Various forms of the position or eruption disturbance of teeth tend to be associated with tooth agenesis. Differences in frequencies of the abnormal trait between population groups have been observed, as well as differences in the pattern of associations among displaced maxillary canines (a typical type of malposition of canines) and tooth agenesis.
Pirinen et al. [74] studied the palatal displacement of the canine in regard to congenital absence of permanent teeth in 106 Finnish probands and their first- and second-degree relatives. All the probands had had surgical and orthodontic treatment for displaced maxillary canines. Incisor-premolar hypodontia and peg-shaped incisors were found to be strongly associated with palatally displaced canines. The authors concluded that palatally displaced canine belongs to a spectrum of dental anomalies related to incisor-premolar hypodontia.
Peck et al. reported a strong association of displaced maxillary canines with third molar agenesis and second premolar agenesis, whereas upper lateral incisor agenesis was not significantly interrelated [75]. Garib et al. reported an increased occurrence of displaced maxillary canines associated with second premolars agenesis [76]. Lagana et al. concluded that only the agenesis of maxillary lateral incisors should be considered directly connected with displaced maxillary canine. [77]
Taurodontism (OMIM 272700) is characterized by large pulp chambers, with changes usually most striking in the molars. The taurodont tooth lies deep in alveolar bone. Taurodont teeth are associated with missing teeth in chromosome aneuploydies, such as Down syndrome (Figure 9). It occurs also in other syndromes, especially those having an ectodermal defect, e.g., otodental dysplasia. A family having affected sibs with a combination of sparse hair, oligodontia, and taurodontism was reported in the literature. [78]
Multiple tooth agenesis in an 8-year-old male patient with down syndrome. (1,2,3) examination of the dental arches reveals a mixed dentition, with a delayed tooth eruption pattern. (4) panoramic radiograph showing the absence of both the lateral incisors in the maxillary arch and the agenesis of the lower right lateral incisor and the left central incisor. Moreover, the agenesis is associated with mesotaurodont first molars in both upper and lower arches * position of the missing teeth.
It has been documented by Baccetti T. [73] that rotation of premolars is significantly associated with missing upper lateral incisors. The author found a significant association between unilateral agenesis of upper lateral incisors and rotation of the lateral incisor on the other side of the dental arch, and between unilateral agenesia of premolars and rotation of premolars on the other side of the arch.
The finding that there is a significant association between enamel hypoplasia and hypodontia not involving systemic syndromes has been reported by Baccetti T. [73] and Lai et al. [79] It may indicate a common genetic origin for both dental anomalies. However, it also is possible that a single or concurrent environmental factor may have been responsible for the etiology of both defects. Some authors have noted that local infection, as well as radiation, may cause both hypodontia and enamel hypoplasia, as review by Lai et al. [79]
Concomitant hypo-hyperdontia (CHH) is a rare mixed numeric dental anomaly characterized by congenitally missing teeth and supernumerary teeth occurring in the same individual. These two conditions are considered as the opposite extremes in the development of the dentition. [80] The prevalence of CHH was found to range from 0.002 to 0.7%. Due to its rarity and sporadicity, the causes of CHH have been completely unknown. So far, only 80 cases have been reported in the literature. Wang et al. summarized prior research and concluded that more than two-thirds of cases had one supernumerary tooth, and the remaining, two or more teeth. The most commonly supernumerary tooth was mesiodens. Most frequently missing teeth were upper lateral incisors, lower incisors, and premolars. Only a few cases had canines and molars agenesis. Both jaws were affected, bimaxillary hypo-hyperdontia, in about three fourth of the cases. The remaining one-fourth presented maxillary hypo-hyperdontia, the only maxilla being involved. [81]. In most cases, CHH was diagnosed during a regular dental examination. Recently, Wang et al. [81] presented 21 cases of CHH, including 4 familial cases and a syndromic case, and scrutinized their dental phenotypes. Their study results indicated molar taurodontism as the most frequently (29%) observed concurrent dental anomaly of CHH. They also described the fusion of primary lower lateral incisors and canines followed by missing permanent lower laterals. More results described the central cusps of premolars identifiable from the panoramic radiograph of 3 cases. Only one case presented macrodontia of tooth number 9 (upper left central incisor), a premaxillary supernumerary toothand missing tooth number 10 (upper left lateral incisor). The authors concluded,” these concurrent dental aberrations suggested that molecular and cellular mechanisms regulating tooth number also play significant roles in tooth morphogenesis”.
Tooth agenesis has a high prevalence in human population. It was documented that missing tooth has a negative impact on daily quality of life causing significant complications, such as physical appearance problems, oral functional limitations, or psychosocial distress, and cost not only for the affected individual but also for the public health care system worldwide. Early diagnosis is still the best way to prevent complications of missing teeth but understanding the genetic make-up of affected individuals, the dentist must integrate the tools of genetics in the dental practice for prediction, prevention, and personalized dental therapy.
The authors declare no conflict of interest.
Syndrome name and prevalence | Tooth agenesis - levels of severity | Associated phenotypic features by region | Genetic cause | Inheritance | OMIM Orpha-code |
---|---|---|---|---|---|
ADULT syndrome <1/1,000,000 | associated dental anomalies: small teeth, dysplastic teeth, premature loss of secondary teeth (<25 years) | • Lacrimal duct obstruction • Conjunctivitis • Breast hypoplasia • Mammary gland hypoplasia • Widely spaced nipples • Absent nipples • Hypoplastic nipples • Ectrodactyly • Syndactyly • Ectodermal dysplasia • Atrophic skin • Thin skin • Dry skin • Freckling • Photosensitive skin • Dermatitis • Adermatoglyphia • Dysplastic nails • Nail pits • Blond hair • Thin scalp hair • Sparse axillary hair • Premature scalp hair loss (>30 years) | mutations of TP63 gene (tumor protein p63) 3q28 | AD | 103285 978 |
Axenfeld-Rieger syndrome, type 1 1/200,000 | • Maxillary hypoplasia • Short philtrum • Prominent supraorbital ridges • Iris dysplasia (goniodysgenesis) • Iris hypoplasia • Prominent Schwalbe line (posterior embryotoxon) • Glaucoma • Displaced pupils • Dyscoria • Polycoria • Aniridia • Microcornea • Megalocornea • Strabismus • Broad nasal bridge • Thin upper lip • Umbilical defect (redundant periumbilical skin) • Imperforate anus • Anal stenosis • Hypospadias • Growth hormone deficiency | mutations of PITX2 (paired-like homeodomain transcription factor 2) 4q25 | AD Genetic heterogeneity Variable expressivity | 180500 782 | |
Ectodermal dysplasia 3, Witkop type 1–2/10,000 | Normal to small primary teeth Partial to total absence of permanent teeth ( | • Normal facies • Lip eversion • Normal sweat glands • Thin, small friable nails • Koilonychia • Longitudinal ridging • Nail pits • Toenails often more affected than fingernails • Nail changes improve with age • Normal hair | mutations of MSX1 (muscle segment homeobox 1) 4p16.1 | AD | 189500 2228 |
Ectrodactyly, Ectodermal Dysplasia, and cleft lip/palate syndrome 3; EEC type 3 1–9/100.000 | Microdontia Caries | • Maxillary hypoplasia • Malar hypoplasia • Hearing loss • Small ears • Malformed auricles • Blue irides • Photophobia • Blepharophimosis • Blepharitis • Dacryocystitis • Lacrimal duct abnormalities • Flat nasal tip • Cleft lip • Cleft palate • Xerostomia • Absence of Stensen duct • Growth hormone deficiency • Hypogonadotropic hypogonadism • Central diabetes insipidus | mutations of TP63 3q28 | AD | 604292 1896 |
Hypohidrotic ectodermal dysplasia 1 (XHED) or Christ-Siemens-Touraine syndrome 1/15,000 (1/50,000 to 1/100,000 male births) | Microdontia Conical teeth Taurodontism | • Small cranial length • Frontal bossing • Hypoplastic maxilla • Small chin • Small facial height • Prominent supraorbital ridges • Periorbital wrinkles • Periorbital hyperpigmentation • Absent tears • Absent miebomian glands • Scant-absent eyebrows • Scant-absent eyelashes • Small nose • Hypoplastic alae nasi • Nasal mucosa atrophy • Ozena • Depressed nasal root and bridge (‘saddle nose’) • Decreased palatal depth • Prominent lips • Respiratory difficulties • Atrophic rhinitis • Atrophic pharyngeal mucosa • Hypoplastic or absent mucous glands which may lead to dried secretions and obstruction • Atrophic mucosa causing dysphonia • Hypoplastic-absent mammary glands • Hypoplastic-absent nipples • Hypohidrosis • Anhidrosis • Sweat pore aplasia • Soft, thin skin • Dry skin • Mild localized pigmentation abnormalities • Skin peeling/scaling (newborn) • Eczema • Periorbital wrinkling • Periorbital hyperpigmentation • Hypoplastic-absent sebaceous glands • Hypoplastic-absent eccrine sweat glands • Spoon-shaped nails • Hypotrichosis • Fine, brittle hair • Scanty hair • Absent or scanty eyelashes • Absent or scanty eyebrows • Blonde, fine scalp hair • Hoarse voice due to dry laryngeal mucosa • Intolerance to heat and fevers • Susceptible to hyperthermia | mutations of EDA (ectrodysplasin A) Xq13.1 | X-linked recessive Xq13.1 Heterozygous females show variable expressivity (mild to severe manifestations) including hypodontia, conical teeth, reduction in scalp/body hair, and difficulty nursing | 305100 238468 |
Kallmann syndrome 2 hypogonado-tropic hypogonadism 2 with or without anosmia; HH2 1/8,000 males and 1/40,000 females, but is probably underestimated. | (in some patients) | • Hearing loss, unilateral (rare) • Iris coloboma (rare) • Hyposmia/anosmia (in some patients) • Absence of nasal cartilage, unilateral (rare) • Cleft lip • Cleft palate • Osteopenia (in some patients) • Clinodactyly (rare) • Fusion of fourth and fifth metacarpal bones (rare) • Ectrodactyly (rare) • Ectrodactyly (rare) • Hypogonadotropic hypogonadism • Delayed or absent puberty • Low to undetectable gonadotropin levels • Low testosterone level • Low estradiol level • Micropenis • Cryptorchidism • Primary amenorrhea | mutation of FGFR1 (fibroblast growth factor receptor 1) 8p11.23 | AD | 147950 478 |
KBG syndrome unkown prevalence | Associated dental anomalies: macrodontia of the upper central incisors, wide upper central incisors, ridged teeth, fused incisors | • microcephaly • round face early in life • triangular face later in life • long philtrum • large prominent ears • hypertelorism • telecanthus • long palpebral fissures • broad bushy eyebrows • anteverted nares • hypoplastic alae nasi • cervical rib fusion • accessory cervical ribs • cryptorchidism • delayed bone maturation • vertebral body fusion • vertebral arch abnormalities • thoracic kyphosis • clinodactyly • decreased hand length • syndactyly • simian crease • broad bushy eyebrows • low anterior hairline • low posterior hairline • developmental delay • mental retardation • eeg anomalies (in some patients) • seizures (in some patients) | ankrd11 (ankyrin repeat-containing cofactor 1) 16q24.3 | AD | 148050 2332 |
1/50,000 – 1/250,000 | Dental caries Anomalous anterior teeth Enamel hypoplasia Supernumerary teeth | • Microcephaly • Frontal bossing • Facial asymmetry • Microretrognathia • Hypoplasia of the malar bones • Low-set ears • Hearing loss • Epicanthus • Hypertelorism • Telecanthus • Downslanting palpebral fissures • Broad nasal bridge • Hypoplastic alar cartilage • Hyperplastic oral frenuli • Buccal frenuli • Median cleft lip (in 45% of patients) • Pseudocleft of the upper lip • Lobulated tongue (30–45%) • Bifid tongue (30–45%) • Tongue nodule • Cleft palate • Tongue hamartoma (70%) • High-arched palate • Thickened alveolar ridges • Irregular margin of the lips • Cardiac anomalies • Fibrocystic liver (45%) • Dilatation and beading of the intrahepatic bile ducts • Hepatic fibrosis • Pancreatic cysts (29%) • Ovarian cysts • Adult onset polycystic kidney (50%) • Abnormalities of the fingers (45%) • Clinodactyly • Syndactyly • Brachydactyly • Polydactyly, preaxial or postaxial (rare) • X-ray shows irregular pattern of radiolucency and/or spicule-like formation in metacarpals and phalanges • Abnormalities of the toes (25%) • Duplication of the hallux • Polydactyly, preaxial or postaxial (rare) • Milia of upper face and ears (infancy) • Dry scalp • Dry, rough, sparse hair • Alopecia • Variable mental retardation (40%) • Central nervous system malformations (40%) • Abnormal gyrations • Absence of corpus callosum • Gray matter heterotopias • Myelomeningocele (rare) • Stenosis of the aqueduct of Sylvius (rare) • Hydrocephalus • Arachnoid cysts • Cerebellar abnormalities • Seizures • Hypothalamic hamartoma • Porencephaly • Major depression (rare) • Abnormal liver enzymes in those with hepatic cysts or fibrosis • Proteinuria in those with cystic kidneys | mutations of OFD1 gene Xp22.2 | X-linked DOMINANT Xp22.2 (usually lethal in males) | 311200 2750 |
Van der Woude syndrome 1 (VWS1) 1/35,000 – 1/100,000 | • Lower lip pits • Cleft lip • Cleft palate • Cleft uvula | mutations of IRF6 gene (interferon regulatory factor 6) 1q32.2 | AD | 119300 888 |
Tooth agenesis associated frequent in genetic syndromes based on OMIM database.
Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.
",metaTitle:"What Does It Cost?",metaDescription:"Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\\n\\nAll of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\\n\\nWe are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\n\nAll of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\n\n