\r\n\tThis book will describe the self-assembly of materials and supramolecular chemistry design principles for a broad spectrum of materials, including bio-inspired amphiphiles, metal oxides, metal nanoparticles, and organic-inorganic hybrid materials. It will provide fundamental concepts of self-assembly design approaches and supramolecular chemistry principles for research ideas in nanotechnology applications. The book will focus on three main themes, which include: the self-assembly and supramolecular chemistry of amphiplies by coordination programming, the supramolecular structures and devices of inorganic materials, and the assembly-disassembly of organic-inorganic hybrid materials. The contributing chapters will be written by leading scientists in their field, with the hope that this book will provide a foundation on supramolecular chemistry principles to students and active researchers who are interested in nanoscience and nanoengineering fields.
",isbn:"978-1-83969-702-9",printIsbn:"978-1-83969-701-2",pdfIsbn:"978-1-83969-703-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"e9cc643ae0a219e91e445a1e61b33a22",bookSignature:"Prof. Hemali Rathnayake and Dr. Gayani Pathiraja",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11908.jpg",keywords:"Amphiphiles, Artificial Siderophores, Coordination Chemistry, Self-Assembly Design, Supramolecular Structures, Metal Oxides, Metal Particles, 2D Inorganic Materials, Supramolecular Devices, Stimuli-Responsive Materials, Assembly-Disassembly Design, Superstructures",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 27th 2022",dateEndSecondStepPublish:"May 25th 2022",dateEndThirdStepPublish:"July 24th 2022",dateEndFourthStepPublish:"October 12th 2022",dateEndFifthStepPublish:"December 11th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"6 hours",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Rathnayake is a pioneering researcher in self-assembly and supramolecular chemistry, with a Ph.D. from the University of Massachusetts Amherst, US. She is an inventor of three innovative technologies, including the Bioinspried Sub-7 nm self-assembled structures for patterning, and holder of multiple registered patents.",coeditorOneBiosketch:"Dr. Gayani Pathiraja is a Postdoctoral Research Scholar at the Joint School of Nanoscience and Nanoengineering (JSNN). She received her Ph.D. in Nanoscience from the University of North Carolina at Greensboro in 2021. Her research interests focus on the crystal growth mechanism and kinetics of metal oxide nanostructure formation via self-assembly.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"323782",title:"Prof.",name:"Hemali",middleName:null,surname:"Rathnayake",slug:"hemali-rathnayake",fullName:"Hemali Rathnayake",profilePictureURL:"https://mts.intechopen.com/storage/users/323782/images/system/323782.jpg",biography:"Dr. Hemali Rathnayake, Associate Professor in the Department of Nanoscience at the Joint School of Nanoscience and Nanoengineering, the University of North Carolina at Greensboro, USA, obtained her B.S. in Chemistry from the University of Peradeniya in Sri Lanka. She obtained her Ph.D. from the University of Massachusetts Amherst (UMass), Department of Chemistry in 2007. She was a Postdoctoral research fellow at Polymer Science & Engineering, UMass Amherst. \r\nDr. Rathnayake is a pioneer scientist and a chemist in the field of Nanomaterials Chemistry, with a focus on the interfacial interaction of nanomaterials, molecules, macromolecules, and polymers in homogeneous and heterogeneous media. Her research on the design, synthesis, self-assembly, and application of well-defined superstructures in nanoelectronics, environmental remediation, and sustainable energy has impacted the scientific community with highly rated peer-reviewed journals publications, and more than 80 invited talks to scientific and non-scientific communities including colleges and high schools.",institutionString:"University of North Carolina at Greensboro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of North Carolina at Greensboro",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"427650",title:"Dr.",name:"Gayani",middleName:null,surname:"Pathiraja",slug:"gayani-pathiraja",fullName:"Gayani Pathiraja",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003CCSN2QAP/Profile_Picture_1644217020559",biography:"Dr. Gayani Pathiraja is a Postdoctoral Research Scholar at the Joint School of Nanoscience and Nanoengineering (JSNN). She received her Ph.D. in Nanoscience from the University of North Carolina at Greensboro (UNCG) in 2021. Her expertise area of focus is investigating the crystal growth mechanism and kinetics of metal oxide nanostructure formation via in-situ self-assembly design principles. \r\nDr. Pathiraja earned her master’s degree in electrochemistry/Environmental Engineering from the University of Peradeniya, Sri Lanka, and her Bachelor’s degree in Materials Science and Technology from Uva Wellassa University, Sri Lanka. Dr. Pathiraja started her academic career as a lecturer at the Department of Engineering Technology, University of Ruhuna, Sri Lanka in 2016. She is a co-author of several peer-reviewed journal publications and a book chapter, and she has presented her work at several regional, international, and national conferences.",institutionString:"University of North Carolina at Greensboro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of North Carolina at Greensboro",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40651",title:"Biomass Conversion to Energy in Tanzania: A Critique",doi:"10.5772/52956",slug:"biomass-conversion-to-energy-in-tanzania-a-critique",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
The United Republic of Tanzania (URT) is the largest country in East Africa in terms of size and population. It is made up by Tanzania Mainland and the island of Zanzibar. It is bordered by the Democratic Republic of Congo, Rwanda and Burundi in the west; Zambia, Malawi and Mozambique in the Southern part, Uganda and Kenya in the Northern side and the Indian Ocean on the East. The country lies between meridians 300E and 400E and parallels 10S and 120S.
\n\t\t\t
It has an area of 945,000 Square Kilometres.While about 62,000 square Kilometres of the land is covered by water, including three fresh trans-boundary lakes of Victoria, Tanganyika and Nyasa. Woodlands accounts for 33,500 square Kilometres [1] and arable land suitable for agriculture is concentrated in central part and Southern Highlands of the country, covering about 44 million hectares.
\n\t\t\t
According to URT, Economic survey report 2009 [2], the Tanzanian population was estimated to be 41,915,799 of which 21,311,150, that is about 50.8 percent, were female, while 20,604,730 about 49.2 percent were male. Tanzania mainland had an estimated population of 40,683,294, while Zanzibar had an estimated population of 1,232,505. The population distribution indicated that 31,143,439 of people, about 74.3 percent live in rural areas, while 10, 772, 360 people about 25.7 percent live in urban areas. These estimates are based on the population growth rate of 2.9 percent per annum established out of the Population and Housing Census of the years 2002. [3]
\n\t\t\t
Hydropower, Coal and Petroleum are Tanzania’s main source of commercial energy. However, solid biomass energy such as agro residue, forestry residue and wood fuels are used throughout the country and they account for 88 percent of total energy consumption in rural and semi-urban areas [4] while modern commercial energy contribute about 2 percent. Of the 24 mainland regions, Dar es Salaam region has the greatest access to electricity; however, less than 50 percent of all households in the regions are connected.
\n\t\t\t
The conventional energy sector, and in particular the electricity sector has not lived up to expectations of the Tanzanians. The sector is mainly characterized, among other problems, by unreliability power supply, low access levels at about 15% [5] low capacity utilization and availability factor; deficient maintenance of generation transmission facilities and equipment; poor procurement of spare parts due to liquidity problems; and high transmission and distribution losses at 20% [6] are typical problems.
\n\t\t\t
Provision of electricity is largely confined to urban middle and upper income groups as well as the formal commercial and industrial sub-sector. At the moment the energy sector is characterized by large and increasing import of liquid petroleum products, which account for significant proportions of export earnings. Liquid petroleum is used in electricity generation and in the transport sector. The transport sector is the major consumer of liquid petroleum product accounting to about 60% of total consumption. The high liquid petroleum products import bill expose the country’s energy sector to the external energy price shocks. Renewable energy such as ethanol would assist in mitigating the negative impact of high liquid petroleum fuel imports
\n\t\t\t
Tanzania is endowed with substantial renewable energy resources [4]. The renewable resource potential in the country has not been fully exploited, but only to limited investment level;. Rural Energy Agency (REA) is making initiatives to disseminate information as the importance of renewable energy in the energy balance of the country. In addition, technical and financial barriers have contributed to the low levels of uptake of Renewable Energy Technologies (RETs) in the country. However, these constrains are being addressed by REA.
\n\t\t
\n\t\t
\n\t\t\t
2. The Introduction and the Problem
\n\t\t\t
The objective of this chapter is to discuss the potential and implementation of biomass conversion to energy in Tanzania. Generally, the feasibility as well as suitability of the various categories of biomass to energy conversions in the country is presented. Detailed descriptions of potential conversion routes are included with their possible and existing scope of implementation. The most recent statistical data of food, commercial agricultural crops as source of biomass energy are reported from the available sources. Tanzania has abundant and diverse indigenous energy resources which are yet to be fully exploited. The sources include; hydropower, mini-hydro, natural gas, coal, petroleum, wind, solar, and geothermal.
\n\t\t\t
\n\t\t\t\t
2.1. Hydropower sources
\n\t\t\t\t
The generation capacity of electricity was on a 60:40 hydro/thermal proportion before 2005. Following introduction and expanded use of natural gas usage in power generation, the hydro-thermal mix is now standing at 41:59 (including the emergency plants).Up to June 2012, electricity installed capacity is about 1,375.74 [7]of which represent about 41 percent is from hydropower sources. The other percentage is from thermal and oil.
\n\t\t\t\t
Out of Tanzania\'s 41.9 million inhabitants, so far only 14 percent of urban and 2 percent of rural areas are electrified [5], which means that less than 12 percent have access to grid-based electricity or other forms of commercial electricity. The national electricity connectivity is about 14%; though, it is expected that electricity demand will triple by 2020[8]. On the supply side, TANESCO increased connections by almost 66,000 in 2010 bringing the total number of its customers to 868,953 by the end of 2010. REA currently (2011) implements grid extension projects initially benefitting 20,000 new customers [9]. In the current setting demand will therefore even more outpace supply.
\n\t\t\t\t
Moreover, Tanzania’s electricity sector faces another important challenge since it is heavily dependent on hydropower, which means that energy provision cannot be ascertained in times of drought. This was clearly visible in the years 2010/2011, where re-curing droughts effectively removed around 420 MW from a system of around 900 MW, forcing the country to endure a programme of load shedding coupled with unplanned outages. With consequently suppressed sales the countries\' utility TANESCO financial situation became increasingly parlous (on top of economic losses for non-productivity to the country as a whole).
\n\t\t\t\t
This led to the design of an 572 MW Emergency Power Plan at the end of 2011, to be fully fuelled by liquid fossil fuels (HFO, JetA1, diesel) at (fuel) costs varying from 30-43 ct/kWhThese are to be financed by TANESCO tariff revenues and through government guaranteed loans, leading to an increasing weaker financial position of TANESCO. There is quite some critique on the EPP because it does not take into account planned natural gas supply projects, dispersed capacity owned by the private sector, and power projects to be commissioned already in the short and medium term. In general there is a disconnect between expected power demand (both unconstrained -1089 MW- and constrained) and the total generation capacity (1855 MW) proposed by the EPP.[9]
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.2. Micro/Mini-hydro
\n\t\t\t\t
It is estimated that 32 GWh per year [10] is generated from smaller systems, many of which are private schemes run by religious missionaries. The potential for micro/mini-hydro is large [4]; however, exploitation is still low because of barriers hindering full exploitation of these potentials.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.3. Natural Gas
\n\t\t\t\t
Tanzania has so far made five onshore and shallow water discoveries of natural gas fields in the vicinity of SongoSongo Island, Mnazi bay, Mkuranga, Kiliwani North and Nyuni. Out of the five discoveries, only two gas fields, SongoSongo and Mnazi bay are producing. Mkuranga and Nyuni gas fields have not been assessed. It is estimated that about 27 trillion [11] cubic feet gas is available in the country. Natural gas is expected to become a reliable and economical source of energy to replace petroleum in the near future.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.4. Coal
\n\t\t\t\t
Coal reserves in Tanzania are estimated at about 1,200 million tonnes of which 304 million tonnes are proven [12]. Coal sites include Kiwira, Mchuchuma/Katewaka on the south east of Lake Nyasa, and Ngaka in Ruvuma region. Coal has been used in limited quantities for electricity generation as well as in some industries such as cement factories. Low coal consumption in the country is due to part to huge investment costs and quality of the coal itself. However, there is a plan to generate 600 MW from Mchuchuma coal mine in the near future.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.5. Petroleum
\n\t\t\t\t
Imported petroleum and related products are widely used in the transport and industrial sector. It also used to generate electricity in isolated grid-diesel power stations that have and installed capacity of 33.8 MW [10]. Petroleum and related by-products are imported by a single company and regulated by EWURA, which controls the price and standard.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.6. Wind
\n\t\t\t\t
Based on the available information much of the wind resources in Tanzania is located in the central part of the country, North-East part, and Southern part [4]. Currently wind energy is used to pump water for irrigation and to meet domestic and livestock water needs [10]. Very limited number of attempts has been made to install wind turbine for electricity generation. However, efforts are underway to utilize wind energy in electricity generation. Several companies like Geo-Wind Power (T) limited, Wind East Africa/ Six Telecoms, and Sino-Tanzania Renewable Energy Limited have been licenced to generate electricity of about 500 MW from wind [7].
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.7. Solar
\n\t\t\t\t
Solar has not been utilized fully as energy sources even though the country being one of the solar belts, that is being a county with 2800-3500 hours of sunshine per year and a global radiation of 4-7 kWh/m2 per day. Despite the huge solar potential, solar energy has predominately been used only for drying process. In the recent years solar PV technology has been promoted as an energy solution especially in rural areas where there is no access to the national grid. It is anticipated that in the near future, solar as a source of energy will play a great role in rural electrification.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.8. Geothermal
\n\t\t\t\t
The country is endowed with a huge geothermal potential, which has not yet exploited [13]. Geothermal power is a reliable, low-cost, environmental friendly, alternative energy supply, indigenous, renewable energy source and suitable for electricity generation. Estimations by analogue method [14] show that the geothermal potential in the country is about 650 MW of which most of the prospects are located within the East African Rift Valley system. Geothermal resource exploitation is a capital intensive investment; hence, private investment is not expected to come in before obtaining detail information on the resources, particularly on their economic viability as potential geothermal energy resource. It is anticipated that the country in order to move from surface assessments to further detailed investigation, public and donor fund will be required.
\n\t\t\t\t
Other energy sources are petroleum, which makes up 8 percent of total primary energy consumption, natural gas 2.4 percent, and hydropower 1.2 percent. About 6.6 percent of primary energy needs to be imported, primarily from Uganda (8 MW) and Zambia (5 MW) [15]
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.9. Wood fuel and other biomass fuels
\n\t\t\t\t
Tanzania’s energy supply depends mainly on biomass. Since 85-88 percent of the population are not connected to the electricity grid, the overwhelming majority of households use fire wood and charcoal for cooking. As a total, biomass makes up to 88 percent [4] of the total primary energy consumption in Tanzania. Unfortunately, this leads to the deforestation of 100,000 ha per year, of which is very serious since only about a quarter of the Tanzanian land is re-forested
\n\t\t\t\t
About 50% of the population lives in poverty, out of which 35% is unable to access all of the basic needs including energy services. The poor spend about 35% of their household income on energy while the well-off spends only 14%. Lack of access to modern energy services creates a vicious cycle of poverty for rural communities due to continued limited production opportunities and social facilities. This situation creates a very big challenge to the country. There is a need; to look for an alternative means for assisting the rural poor to have opportunities of accessing to modern energy for reason of alleviating poverty. This chapter is proposing biomass to be one of the alternatives of energy resource which can be employed in modern form to change the situation.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
3. Literature review
\n\t\t\t
Biomass is a term used to define all organic matter that is derived from plants as well as animals. Biomass resources include wood and wood waste, agricultural crops and their waste products, municipal and city solid waste, and wastes from food processing, aquatic plants and algae.
\n\t\t\t
Biomass is mainly composed of cellulose suitability of a particular biomass as a potential for energy generation depends on such characteristic; moisture content, calorific value, fixed carbon, oxygen, hydrogen, nitrogen volatiles, as contents, and cellulose/lignin ratio. Generally, cellulose is the largest fraction and constitutes about 38-50% of the biomass by weight. These characteristics are important to determine efficient biomass utilization and are provided in the paper.
\n\t\t\t
Biomass is considered to be one of the key renewable energy resources of the future at both small- and large-scale levels. It already supplies 14 per cent of the world\'s energy, and if many future projects being assessed, could be implemented, increase the role of biomass in the overall energy system. On average, biomass produces 38 per cent of the primary energy in developing countries (90 per cent in some countries), where it is the largest single energy source like Tanzania. Biomass energy is likely to remain an important global energy source in the next century
\n\t\t\t
Biomass is generally and wrongly regarded as a low-status fuel, and rarely finds its way into energy statistics. Nevertheless, biomass can lay claim to being considered as a renewable equivalent to fossil fuels. It offers considerable flexibility of fuel supply due to the range and diversity of fuels which can be produced. It can be converted into liquid and gaseous fuels and to electricity via gas turbines; it can also serve as a feedstock for direct combustion in modern devices, ranging from very-small-scale domestic boilers to multi-megawatt size power plants.
\n\t\t\t
Biomass-energy systems can increase the energy available for economic development without contributing to the greenhouse effect since it is not a net emitter of CO2 to the atmosphere when it is produced and used sustainably. It also has other benign environmental attributes such as lower sulphur and NOx emissions and can help rehabilitate degraded lands.
\n\t\t\t
Despite its wide use, biomass is usually used so inefficiently like firewood (Figure 1) that only a small percentage of useful energy is obtained. The overall energy efficiency in traditional use is only about 5-15 per cent, and biomass is often less convenient to use compared with fossil fuels. It can also be a health hazard in some circumstances; for example, cooking stoves can release particulates, CO, NOx, formaldehyde, and other organic compounds in poorly-ventilated homes. Furthermore, the traditional uses of biomass energy, i.e., burning fuel wood, animal dung and crop residues, are often associated with the increasing scarcity of hand-gathered wood, nutrient depletion, and the problems of deforestation and desertification
\n\t\t\t
Figure 1.
Women carrying firewood in rural Tanzania
\n\t\t\t
Figure 2.
Biomass heaps (bagasse) in rural areas
\n\t\t\t
There is an enormous biomass potential in the country such (Figure 2) as bagasse that can be tapped by improving the utilization of existing resources and by increasing plant productivity. Bioenergy can be modernized through the application of advanced technology to convert raw biomass into modern, easy-to-use energy carriers (such as electricity, liquid or gaseous fuels, or processed solid fuels). Therefore, much more useful energy could be extracted from biomass. The present lack of access to convenient energy sources limits the quality of life of millions of people, particularly in rural areas. Since biomass is a single most important energy resource in these areas its use should be enhanced to provide for increasing energy needs. Growing biomass is a rural, labour-intensive activity, and can, therefore, create jobs in rural areas and help to reduce rural-to-urban migration, whilst, at the same time, providing convenient energy carriers to help promote other rural industries.
\n\t\t\t
Enhanced biomass availability on a sustainable basis requires support and development of new biomass systems in which production, conversion and utilization are performed efficiently in an environmentally sustainable manner. Efforts to modernize biomass energy should concentrate on those applications for which there are favorable prospects of rapid market development, e.g., biogas, the generation of electricity from residues and biomass plantations through the gasifier/dual-fuel engines route or using advanced gas turbines fired by gasified biomass, and the production of alcohol fuels from sugarcane.
\n\t\t
\n\t\t
\n\t\t\t
4. Methodology
\n\t\t\t
The methodology used towards accomplishing the project on biomass conversion to energy in Tanzania involved analytical approach, data collection, and analysis.
\n\t\t\t
\n\t\t\t\t
4.1. Analytical approach
\n\t\t\t\t
A comprehensive study and review of documents relevant to biomass resources, conversion and application in the country, and other African countries, Asia, Latino America, United Stated of America (USA), Europe, the Middle East and China were made. The aims of the study were to find available and valuable information on the subject. In addition, situation analysis and brain storming on application of biomass, conversion methods with biomass entrepreneurs were discussed.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.2. Data collection and analysis
\n\t\t\t\t
Questionnaires were prepared and used in data collection. Interviews were held with leaders at the Regional, City, municipal, wards and subward levels on biomass conversion to modern energy instead of using raw biomass. Interviewees at this level were held with, Mayors, Municipal Directors, and City and Municipal Solid Waste Management experts from all the city councils. Others included relevant Ministries of Health, Lands and Human Settlements Development and Industries. The interviews were undertaken during day times in weekdays and weekends. Interviews were conducted in a tranquil and friendly atmosphere. The information disclosed by the interviewees was treated as confidential.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
5. Results
\n\t\t\t
The following findings were obtained from the analytical approach and the interviews:
\n\t\t\t
\n\t\t\t\t
5.1. Biomass potential
\n\t\t\t\t
\n\t\t\t\t\t
5.1.1. Agricultural biomass
\n\t\t\t\t\t
Agriculture is the mainstay of the economy; it employs about 80% of the work force and account for over 50% of gross domestic product (GDP) at factor cost and over 50% of foreign exchange earnings. It is also the major source of food supply and raw materials for industrial sector. Furthermore, it provides the market for industrial sector. Agricultural sector development has been undertaken with the objective of increasing production of food and cash crops in order to improve food security generate and raise income levels to alleviate poverty. Major food crops cultivated in the country include maize, rice, sorghum, cassava, groundnuts, cowpeas, banana, soya beans and sweet potatoes. A part from food crops, commercial crops cultivated include: cotton, sisal, coffee, coconut pineapples, palm oil, cocoa, sugarcane about 80% of farms in the country are less than 2 % owned by small scale holders. All of these crops contribute to biomass potential in the country.
\n\t\t\t\t\t \n\t\t\t\t\t
\n\t\t\t\t\t\t
5.1.1.1. Cash crops
\n\t\t\t\t\t\t
Production of main cash crops has been fluctuating depending on whether conditions, availability and usage of agricultural inputs and fluctuation in the World Market. Table 1 gives the trend of cash crops produced in the past 4 years.
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t CROP\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\tYEARS\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2006\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2007\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2008\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2009\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Cotton
\n\t\t\t\t\t\t\t\t\t
130,565,000
\n\t\t\t\t\t\t\t\t\t
199,954,000
\n\t\t\t\t\t\t\t\t\t
200,662,000
\n\t\t\t\t\t\t\t\t\t
267,004,200
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Tobacco
\n\t\t\t\t\t\t\t\t\t
50,617,400
\n\t\t\t\t\t\t\t\t\t
50,784,000
\n\t\t\t\t\t\t\t\t\t
55,356,000
\n\t\t\t\t\t\t\t\t\t
60,990,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Sugar
\n\t\t\t\t\t\t\t\t\t
290,863,000
\n\t\t\t\t\t\t\t\t\t
279,494,000
\n\t\t\t\t\t\t\t\t\t
276,605,000
\n\t\t\t\t\t\t\t\t\t
279,850,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Tea
\n\t\t\t\t\t\t\t\t\t
31,348,000
\n\t\t\t\t\t\t\t\t\t
34,763,000
\n\t\t\t\t\t\t\t\t\t
34,770,000
\n\t\t\t\t\t\t\t\t\t
33,160,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Pyrethrum
\n\t\t\t\t\t\t\t\t\t
2,046,800
\n\t\t\t\t\t\t\t\t\t
1,000,000
\n\t\t\t\t\t\t\t\t\t
1,500,000
\n\t\t\t\t\t\t\t\t\t
3,320,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Coffee
\n\t\t\t\t\t\t\t\t\t
1,049,900
\n\t\t\t\t\t\t\t\t\t
33,708,000
\n\t\t\t\t\t\t\t\t\t
58,053,000
\n\t\t\t\t\t\t\t\t\t
40,000,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Sisal
\n\t\t\t\t\t\t\t\t\t
30,847,000
\n\t\t\t\t\t\t\t\t\t
33,039,000
\n\t\t\t\t\t\t\t\t\t
33,000,000
\n\t\t\t\t\t\t\t\t\t
26,363,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Cashew nut
\n\t\t\t\t\t\t\t\t\t
88,213,000
\n\t\t\t\t\t\t\t\t\t
92,573,000
\n\t\t\t\t\t\t\t\t\t
99,017,000
\n\t\t\t\t\t\t\t\t\t
74,169,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Table 1.
Production of Cash crops in kg (Source: Ministry of Agriculture and Cooperatives (URT))\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
5.1.1.2.Food Crops
\n\t\t\t\t\t\t
Production of main food crops has been fluctuating depending on whether conditions, availability and usage of agricultural inputs and fluctuation in the World Market. Table 2 gives the trend of food crops produced in the past 4 years.
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\tCROP\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\tYEARS\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2006\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2007\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2008\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2009\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Maize
\n\t\t\t\t\t\t\t\t\t
2,423,000
\n\t\t\t\t\t\t\t\t\t
3,302,000
\n\t\t\t\t\t\t\t\t\t
3,555,000
\n\t\t\t\t\t\t\t\t\t
3,324,200
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Rice
\n\t\t\t\t\t\t\t\t\t
805,400
\n\t\t\t\t\t\t\t\t\t
872,000
\n\t\t\t\t\t\t\t\t\t
875,000
\n\t\t\t\t\t\t\t\t\t
885,610
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Wheat
\n\t\t\t\t\t\t\t\t\t
109,500
\n\t\t\t\t\t\t\t\t\t
83,000
\n\t\t\t\t\t\t\t\t\t
92,000
\n\t\t\t\t\t\t\t\t\t
93,690
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Millet
\n\t\t\t\t\t\t\t\t\t
941,500
\n\t\t\t\t\t\t\t\t\t
1,165,000
\n\t\t\t\t\t\t\t\t\t
1,064,000
\n\t\t\t\t\t\t\t\t\t
203,580
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Cassava
\n\t\t\t\t\t\t\t\t\t
2,052,800
\n\t\t\t\t\t\t\t\t\t
1,733,000
\n\t\t\t\t\t\t\t\t\t
1,797,000
\n\t\t\t\t\t\t\t\t\t
1,758,790
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Beans
\n\t\t\t\t\t\t\t\t\t
1,049,900
\n\t\t\t\t\t\t\t\t\t
1,156,000
\n\t\t\t\t\t\t\t\t\t
1,125,000
\n\t\t\t\t\t\t\t\t\t
1,183,880
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Banana
\n\t\t\t\t\t\t\t\t\t
1,169,200
\n\t\t\t\t\t\t\t\t\t
1,027,000
\n\t\t\t\t\t\t\t\t\t
982,000
\n\t\t\t\t\t\t\t\t\t
990,540
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Sweet potato
\n\t\t\t\t\t\t\t\t\t
1,396,400
\n\t\t\t\t\t\t\t\t\t
1,322,000
\n\t\t\t\t\t\t\t\t\t
1,379,000
\n\t\t\t\t\t\t\t\t\t
1,381,120
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Table 2.
Production of food crops in kg (Source: Ministry of Agriculture and Cooperatives (URT))\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
5.1.1.3.Oilseed crops
\n\t\t\t\t\t\t
Production of various important oil seeds such as Simsim, groundnuts, sunflower, palm oil and soya for food and Jatropha for petroleum producing continued to be emphasized. Already a policy on Jatropha production for biofuel is in place [4]. Table 3 gives production of oil seed crops for the past 5 years.
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\tCROP\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\tYEARS\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2006\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2007\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2008\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t2009\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Sunflower
\n\t\t\t\t\t\t\t\t\t
373,391,000
\n\t\t\t\t\t\t\t\t\t
369,803,000
\n\t\t\t\t\t\t\t\t\t
418,317,000
\n\t\t\t\t\t\t\t\t\t
466,831,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Groundnuts
\n\t\t\t\t\t\t\t\t\t
783,775,000
\n\t\t\t\t\t\t\t\t\t
408,058,000
\n\t\t\t\t\t\t\t\t\t
396,769,000
\n\t\t\t\t\t\t\t\t\t
385,480,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Simsim
\n\t\t\t\t\t\t\t\t\t
221,421,000
\n\t\t\t\t\t\t\t\t\t
155,794,000
\n\t\t\t\t\t\t\t\t\t
46,767,000
\n\t\t\t\t\t\t\t\t\t
115,895,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
Soya
\n\t\t\t\t\t\t\t\t\t
5,000,000
\n\t\t\t\t\t\t\t\t\t
3,000,000
\n\t\t\t\t\t\t\t\t\t
3,450,000
\n\t\t\t\t\t\t\t\t\t
3,900,000
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Table 3.
Production of oilseed crops
\n\t\t\t\t\t\t
There are factors, which determine whether a crop is suitable for energy use. The main material of interest during processing as an energy source relate to moisture contents, calorific value, proportions of fixed carbon dioxide and volatiles, ash content, alkali metal content and cellulose-to-lignin ratio.
\n\t\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.2.Agriculture crop residues
\n\t\t\t\t\t
A large amount of agricultural residues are produced in the country. These constitute a potential biomass feedstock for energy conversion. Generally agricultural residue is used to describe all organic materials which are produced as by-product from the harvesting or processing of agricultural crops. These residues can be further categorized into two groups. The first group consisting of the residues which are generated in the field at the time of harvest or field based residues such as rice straw, sugar cane tops etc.
\n\t\t\t\t\t
The second group is of those residues that are co-produced during processing or well known as processing based residues e.g. rice husk, cashewnut husk, coffee husk, bagasse, etc. the availability of the first category residue for energy conversion or application is usually low since collection is difficult and they have other uses as fertilizer, animal feeds, etc. Experience has shown that most of the first category residues are left or burnt in the farms. However, the secondary category residues are usually available in relatively large quantities at the processing site or mill and may be used as captive energy source for the same processing mill involving no or little transportation and handling costs. Figure 3 gives selected agricultural residue estimated potential in the country.
\n\t\t\t\t\t
These residues have a high potential for energy production and therefore contribute to the energy balance of the country. Major residues generated from harvesting and processing of maize/corn is potential biofuel feedstock. Similarly, the stalk of sorghum which is rich in sugar is a potential feedstock for ethanol production. Figures 4-7 show some of the crops and their corresponding residues available in the country at the moment
\n\t\t\t\t\t
Oil palm plantations can be found in Kigoma Region, along the shore of Lake Tanganyika, Western Tanzania. There are three main residues from oil palm processing, namely: empty fruit bunches, shells (Figure 5) and fronds. Empty fruit, bunches are rich in potassium and they can be used as fertilizer. The shells can be used for production of carbon and heating. The fronds are usually used for mulching.
\n\t\t\t\t\t
Coffee production in the country is increasing. The husk (Figure 6), which is the main residue generated during processing, can be utilized as an organic fertilizer as well as a source of energy. When compressed it can be used in modern energy generation; at the moment coffee husks are disposed by burning.
\n\t\t\t\t\t
Figure 3.
Selected agriculture residue potential in Tanzania (Source: National Bureau of Statistics, 2006)\n\t\t\t\t\t\t\t
\n\t\t\t\t\t
Figure 4.
Rice husk (Crop residue)
\n\t\t\t\t\t
Figure 5.
Palm Oil Shell
\n\t\t\t\t\t
Figure 6.
Coffee husk (Source of energy)
\n\t\t\t\t\t
Figure 7.
Coconut shells
\n\t\t\t\t\t
The residue from coconut harvestings are mainly the husk and shells. These residues (Figure 7) are a potential source of energy generation. Large plantation of coconut tree can be seen in the coastal area of Tanzania and in Zanzibar
\n\t\t\t\t\t
The main residues generated from harvesting and processing sugarcane namely, the tops, baggase and molasses are also sources of energy. However, only bagasse is utilized in co-generation of electricity. The tops and molasses are underutilized even though they are potential source of energy. Biomass contains sugars that are deemed uneconomical to remove. The recent and development in technology can assist in reducing sugar concentrate and hence the residue can be potential source of energy generation.
\n\t\t\t\t\t
Rice husk is underutilized, efforts are underway to use rice husk in briquette production. At the moment rice husk are used by brick markers to burn their bricks. Moving across the country in particularly in rice growing areas, large amount of rice husk are seen unutilized. Rice straws are virtually unutilized and could serve as major source of energy in the country.
\n\t\t\t\t\t
During harvesting period, most of agricultural residues are burnt on the farms to facilitate the harvesting process or as pest a control measure e.g. cotton some of the residues are also used as a substitute for firewood. However, at the moment there is no adequate information about the share of the agricultural residue in modern energy generation.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.3.Residue chemical composition
\n\t\t\t\t\t
Residue chemical composition of some of the agriculture residue was analysed, and the aim of the analysis was to establish if these residues have the characteristics as feedstock for conversion to usable energy using gasification method. The chemical compositions used in the analysis were: proximate analysis (%) dry basis, ultimate analysis (%) dry basis and heating value. Tables 4, 5 and 6 give the proximate, ultimate analyses and higher heating values.
\n\t\t\t\t\t
Other agro-residues: Cotton stalks, cassava stalks and straws are mainly used as local fuels in rural areas. Besides, the residues can be used in production of ethanol. Table 7 gives cellulose, Hemicelluloses, lignin and theatrical yield (litres/tones) from some of agro-residue.
\n\t\t\t\t\t
Experience gained from agriculture sector, particularly agricultural activities show that the agricultural crops generate considerable amount of residue which can be harnessed for modern energy generation. Annual evaluation of total amount of residue that originates from agricultural activities (Figure 3) is about 13 million tonnes; residues with higher potential for modern energy generation are:
\n\t\t\t\t\t\t\t\t\tTheoretical ethanol yield per litres \n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Rice straw
\n\t\t\t\t\t\t\t\t
41.36
\n\t\t\t\t\t\t\t\t
20.36
\n\t\t\t\t\t\t\t\t
12.06
\n\t\t\t\t\t\t\t\t
39.75
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Rice Husk
\n\t\t\t\t\t\t\t\t
44.06
\n\t\t\t\t\t\t\t\t
17.85
\n\t\t\t\t\t\t\t\t
17.20
\n\t\t\t\t\t\t\t\t
392.33
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Maize cob
\n\t\t\t\t\t\t\t\t
36.80
\n\t\t\t\t\t\t\t\t
27.90
\n\t\t\t\t\t\t\t\t
11.15
\n\t\t\t\t\t\t\t\t
418.21
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Maize husk
\n\t\t\t\t\t\t\t\t
43.39
\n\t\t\t\t\t\t\t\t
19.58
\n\t\t\t\t\t\t\t\t
22.82
\n\t\t\t\t\t\t\t\t
407.03
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Ground nut straw
\n\t\t\t\t\t\t\t\t
36.55
\n\t\t\t\t\t\t\t\t
13.94
\n\t\t\t\t\t\t\t\t
31.28
\n\t\t\t\t\t\t\t\t
319.96
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Sugarcane baggage
\n\t\t\t\t\t\t\t\t
33.60
\n\t\t\t\t\t\t\t\t
29.00
\n\t\t\t\t\t\t\t\t
18.50
\n\t\t\t\t\t\t\t\t
404.64
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t
Table 7.
Other chemical component
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.4. Economic and environmental implications of biomass
\n\t\t\t\t\t
Advantages of using crop residues as energy source are twofold: economic and environmental.
\n\t\t\t\t\t
\n\t\t\t\t\t\tEconomic: For the farmer, agricultural residues can be a cash crop. Traditionally, farmers burnt agricultural residue or left them in the field. The market ability of crop residues will boost local/village economies by providing jobs and services.
\n\t\t\t\t\t
\n\t\t\t\t\t\tEnvironment: the burning of agricultural residues causes air pollution, soil erosion and a decrease in soil biological activity, which eventually leads to low yields. Burning of agricultural residues yield smoke and other pollutants, which adversely affect air quantity, visibility and human and environmental health
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.5. Challenges with agricultural residues are
\n\t\t\t\t\t
Agricultural resources in the country are largely un- organized, scattered and not evenly distributed.
Collection, storage, pre-processing and distribution are a big challenge because of low land holdings and low level of mechanization in complete value chain.
Exact data on consumption of agriculture- residues in the country is not well known. Hence, more studies are needed
Overall agro-residue conversion is low through existing technology;
Agriculture-residue is marginalized in the country;
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.6. Agriculture waste
\n\t\t\t\t\t
Apart from agricultural residue from the farms, in Urban and semi-urban areas certain other residues and waste water also constitute a potential source of energy. The agro-processing industries such as fruit processing and vegetable, urban vegetable market places (Figure 8 and 9), road sweepings and road side are areas, which generates significant biomass waste. The management of these wastes are in hands of poor farmers, un-organized sector, rural and semi-urban households. Hence, large amount of these wastes are left to rot in open space resulting into air pollution. Good management of these wastes can contribute to energy generation in the country.
\n\t\t\t\t\t
\n\t\t\t\t\t
Figure 8.
Surplus Tomato Left as Waste
\n\t\t\t\t\t
Figure 9.
Heaps of Food waste in Urban Tanzania
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.7. Forestry residues
\n\t\t\t\t\t
Forest residues and wood waste represent a large potential resource for energy generation. They include forest thinning, primary mill residues, (Sao hill forest). Forest residues are left in the forest by harvesting operations (Figure 10) the residue could be collected after timber harvest and used for energy purposes.
\n\t\t\t\t\t
The primary advantage of using forest residue for power generation is that an existing collection infrastructure is already set up to harvest wood. Companies that harvest wood already own equipment and transport options that could be extended to collecting forest residue.
\n\t\t\t\t\t
Manufacturing operations that produce mill residues usually include sawmills (Urban sawmill), pulp and paper mills (Mufindi paper mills) and other millwork companies involved in producing pulp and other related material.
\n\t\t\t\t\t
Primary mill residues are usually in the form of bark, chips, saw dust, slabs etc. These primary mill residues are relatively homogenous and concentrated at one source. Nearly 98 percent of all primary residues in the country are currently used as fuel.
\n\t\t\t\t\t
Figure 10.
Forest harvesting waste at Sao Hill
\n\t\t\t\t\t
There about 80,000 hectares of state owned plantation forest that are mostly linked to state owned wood based panel industry and the pulp and paper industry. It is estimated that there are 25,000 hectares of private owned plantations. In addition, more than 75,000 hectares belongs to villagers, local government, NGOs and civil societies. Hence, the estimate forest residue potential m3 per year is about 205,400 tonnes. The residue can be used for modern energy conversion.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.8. City and Municipal solid waste (CMW)
\n\t\t\t\t\t
Millions of tons of household waste are collected each year with the vast majority, disposed affirm open fields. Table 9 gives quantity of solid waste collected in Tanzania by region. Biomass resource in solid waste comprises paper and plastic. City and Municipal solid waste (CMW) can be converted into energy by direct combustion, or by natural anaerobic digestion in the land fill.
\n\t\t\t\t\t
On other land fill sites the gas produced by natural anaerobic digestion, which is approximately 50% methane and 50% carbon dioxide can be collected form the stored material, scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power.
\n\t\t\t\t\t
The above compiled data clearly shows that large scope exist in the country for the exploitation of bio-crops for their conversion to bio-fuel, e.g. bio-diesel, ethanol, by thermo conversion and bio-chemical conversion routes.
\n\t\t\t\t\t
Apart from energy crops, a huge potential exist for energy generation from the various industrial wasters available in the country by bio-chemical routes. Similar, other biomass wastes such as forest residue, crop residue, animal manure and city and municipal waste (Figure 16) also bear a large potential for modern energy generation using bio-chemical as well as thermo-chemical routes. Hence biomass conversion to modern energy such as electricity and fuels may be rewarding for a future developed Tanzania.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.9. Animal Waste
\n\t\t\t\t\t
Rural population burn dried animal dung as a fuel, and this is a major source of energy. If a programme is institutes to use the dung as raw material for biogas production, it could benefit the livestock keepers. India for example has pursued a programme to generate biogas from gas with some success. However, at the moment there are more than 6,000 small scale biogas plants operating. The number is small compared to number of livestock the country having (Table 8).
\n\t\t\t\t\t
The advantage, from and environmental aspect is that methane that would be released is captured and used to generate heat for cooking purposes. This could reduce the pressure on forests and deforestation. Methane is about twenty times more potent than carbon dioxide as a greenhouse gas and oxidising it while producing usable heat make sense from a climate point of view.
\n\t\t\t\t\t
The solid residue remaining from fermentation process could be used as fertilizer in growing other biomass sources such as maize, wheat, cassava, etc.
\n\t\t\t\t\t
The challenge is how to quantify the energy potential from animal waste in the country. Advanced investigation is needed. Figure 11 shows cow dung, which is used as source of energy in rural areas.
\n\t\t\t\t\t
Figure 11.
Cow dung
\n\t\t\t\t\t
Decomposition of animal manure can occur either in an aerobic or anaerobic environment. Usually under aerobic condition, carbon dioxide (Co2) and stabilized organic material are produced. While under anaerobic conditions, methane (CH4), carbon dioxide (Co2) and stabilized organic material are produced. Basing on statistical data given in Table 9 the quantity of animal manure produced annually can be substantial for generation of methane (CH4) and hence energy potential of animal manure is significant. At the moment there are more than 6,000 biogas plants in the country, which use animal manure as their raw material.
\n\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tName of Livestock \n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tYEARS\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t2006\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t2007\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t2010\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t2011\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Cattle
\n\t\t\t\t\t\t\t\t
18,500,000
\n\t\t\t\t\t\t\t\t
19,100,000
\n\t\t\t\t\t\t\t\t
19,200,000
\n\t\t\t\t\t\t\t\t
21,300,000
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Goats
\n\t\t\t\t\t\t\t\t
13,500,000
\n\t\t\t\t\t\t\t\t
13,600,000
\n\t\t\t\t\t\t\t\t
13,700,000
\n\t\t\t\t\t\t\t\t
14,000,000
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Sheep
\n\t\t\t\t\t\t\t\t
3,500,000
\n\t\t\t\t\t\t\t\t
3,600,000
\n\t\t\t\t\t\t\t\t
3,600,000
\n\t\t\t\t\t\t\t\t
3,800,000
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Chicken
\n\t\t\t\t\t\t\t\t
30,000,000
\n\t\t\t\t\t\t\t\t
31,000,000
\n\t\t\t\t\t\t\t\t
33,000,000
\n\t\t\t\t\t\t\t\t
40,000,000
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t
Table 8.
Livestock statistic for the country
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.10. Food Industry Wastes
\n\t\t\t\t\t
The hotels, restaurants, Schools, and community kitchens produce a lot of waste such as vegetable peels, uneaten food, e.g. rice, bread, vegetables, etc., plate and dish washings, fruits and vegetable rejects. Similarly, a huge amount of wastes are generated from confectionary industry. Solid waste from these industries include peelings and scraps from fruits and vegetables, food that does not meet quality control standards, pulp and fibre from sugar and starch extraction, filter sludge and coffee grounds are disposed of and left to lot in the open space. However, all of these wastes make potential feedstock for biogas generation by anaerobic digestion. Usually these wastes are disposed of in landfill dumps [16].
\n\t\t\t\t\t
Liquid wastes are generated by washing meat, fruit and vegetables, blanching fruit and vegetables, pre-cooking meats, poultry and fish, cleaning and processing operations and wine making. These wastewaters contain sugars, starches and other dissolved and solid organic matter. There is a potential for these industrial wastes to be anaerobically digested to produce biogas or fermented to produce ethanol.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.1.11. Industrial Waste
\n\t\t\t\t\t
Such waste consists of lawn and tree trimmings, whole tree trunks, wood pallets and any other construction and demolition wastes made from timber (Figure 12). The rejected woody material can be collected after a construction or demolition project and turned into mulch, compost or used to fuel bioenergy plants
\n\t\t\t\t\t
Figure 12.
Wood waste in Mwanza Municipality
\n\t\t\t\t\t
Industrial waste such as bagasse (Figure 13) from sugar plants find application in co-generation process, which generates electricity that is used by the same plant. The excess is supplied to the nation grid
\n\t\t\t\t\t
Figure 13.
A heap of bagasse at Sugar Factory
\n\t\t\t\t
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
6. Benefit of biomass utilization
\n\t\t\t
Biomass is renewable, potentially sustainable and relatively environmentally benign source of energy. It is free from carbon dioxide. Thus, the substitution of fossil fuels for energy generation using biomass will result into a net reduction of greenhouse gas emissions and the replacement of a non-renewable energy source.
\n\t\t\t
Biomass fuels have negligible sulphur content and, hence, do not contribute to sulphur dioxide emissions, which cause acid rain. The combustion of biomass produces less ash than coal combustion, and the ash produced can be used as a soil additive on farm target.
\n\t\t\t
Biomass is a domestic resource, which is not subject to world price fluctuations or supply uncertainties. If well developed in the country, the use of biofuels, such as ethanol and biodiesel, reduces the economic pressures of importing petroleum products.
\n\t\t\t
\n\t\t\t\t
6.1. Environmental impact of biomass energy
\n\t\t\t\t
Biomass energy generation systems raise some environmental issues that must be addressed. Issues such as air pollution, impact on forests, and impact due to crop cultivation must be addressed case by case. Produced and consumed in a sustainable fashion, and there is no net contribution of carbon dioxide to global warming when fossil fuels are burnt, carbon dioxide is released that has been stored underground for millions of years, making a net contribution to atmospheric greenhouse gases. Hence, if managed carefully, biomass energy has significant environmental advantage over the use of fossil fuels. An appropriate level of biomass energy use can have less environmental impact than our current use of fossil fuels.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
6.2. Barriers
\n\t\t\t\t
Main barriers to wide spread uses of biomass in the country for modern power generation are:
\n\t\t\t\t
Cost
Low conversion efficiency;
Feed stock availability;
Lack of internalization of external costs in power generations;
Dependence on technology advances from outside instead of development of indigenous technology;
Competition for feed stock use; and
Lack of supply logistics.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
6.3. Risks
\n\t\t\t\t
Risks associated with widespread use of biomass are:
\n\t\t\t\t
Intensive framing;
Fertilizers and chemical uses; and
Biodiversity conservation
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
7. Biomass conversion
\n\t\t\t
Biomass feedstock can be converted into useful forms of energy using a number of different processes. This is possible in the country because there is potential biomass that could be used for the process. However, before conversion processes can be initiated, factors that influence the choice of conversion [17] have to be established. The critical factors are:-
\n\t\t\t
The type and quantity of biomass feedstock;
The desired form of energy i.e. end-use requirements ;
Environmental standards;
Economic conditions;
Project specific factors.
\n\t\t\t
Biomass can be converted into three main products [18].Two related to energy i.e. power or heat generation and transportation, and one as a chemical feedstock. Conversion of biomass to energy is usually undertaken using two main technologies: Thermo – chemical and bio-chemical. Within thermo-chemical conversion four process options are available. The processes are: Direct combustion, Gasification, pyrolysis and liquefaction. Thermo-chemical conversion route is given in Figure 14.
\n\t\t\t
Figure 14.
Biomass thermo-chemical conversion route
\n\t\t\t
\n\t\t\t\t
7.1. Thermo-Chemical conversion
\n\t\t\t\t
\n\t\t\t\t\t
7.1.1. Gasification
\n\t\t\t\t\t
Gasification is the conversion of biomass into a combustible gas mixture by the partial oxidation of biomass at high temperature [19] resulting in production of (CO), H2, and trace of Methane (CH4). The mixture of these gases is called producer gas. Producer gas can be used to run internal combustion engine, also it can be used as substitute for furnace oil in direct heat applications. The gas can be used to produce methanol-an extremely attractive chemical which is used as a fuel for heat engines as well as chemical feed stock for industries. Since any biomass material can undergo gasification, this process is much more attractive than ethanol production or biogas where only selected materials can produce the fuel. Gasification conversion is suitable for Tanzanian environment.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
7.1.2. Pyrolysis
\n\t\t\t\t\t
Pyrolysis is the process of converting biomass to liquid termed bio-oil, solid and gaseous fraction, by heating the biomass in the absence of air to around 500oc. Pyrolysis is used to produce predominantly bio-oil. The product i.e. bio-oil can be used in engines and turbine. Obstacle of Pyrolysis is the water dilution [20] of the bio-oil and it\'s corrosively due to the broad range of organic and inorganic compounds. Hence, the application of bio-oil as a raw material for electricity generation technology is difficult [21].
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
7.1.3. Other conversions
\n\t\t\t\t\t
Other conversions include direct combustion of biomass and liquefaction.
\n\t\t\t\t\t
\n\t\t\t\t\t\tDirect combustion is the process of burning biomass in air. It is used to convert the chemical energy stored in biomass into heat, mechanical power, or electricity using items such a stoves, furnaces, boilers steam turbines, turbo-generators, etc. However, direct combustion does not a fuel suitable for use in gas turbine, etc.
\n\t\t\t\t\t
\n\t\t\t\t\t\tLiquefaction is a process, which tries to clear the large biomass feedstock macro molecules by applying high pressure and how level of heat. Common process parameters of temperature in the range 200-4000C and pressure ranges of 50-200 bar [19, 22], the main products of liquefaction are liquid fuels with similar consistency like that of pyrolysis processes. Given that Liquefaction require high pressure reactor there are only a few commercially available Liquefaction processes. [22].
\n\t\t\t\t\t
\n\t\t\t\t\t\tRanking of thermo-chemical conversion technology\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\tTable 9 summarizes the findings of performance of thermo-chemical conversion technology and ranking the applicability. The assessments vary from very poor (-), good (+) and very good (+++).
From Table 9, it can be concluded that Gasification process has very good conversion level and applicability. Hence, the process is suitable biomass conversion technology in the country.
\n\t\t\t\t
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
7.2. Bio-chemical conversion
\n\t\t\t\t
Water diluted biomass such as sludge, manure, vegetable waste are difficult to be converted by thermo- chemical conversion process due to difficulties in vaporizing the water present in the biomass. Hence, for feed stock with significantly more than 50% moisture content, it is usually not to apply thermo-chemical technology at comparatively at low temperature is an economic alternative solution.
\n\t\t\t\t
Two main processes are employed: anaerobic digestion, where biomass is converted by bacteria, and fermentation using yeast to convert biomass. Anaerobic digestion is the standard solution for treating very high dilution levels of biomass, fermentation is used to biomass containing lower amount of water. [20].
\n\t\t\t\t
\n\t\t\t\t\t
7.2.1. Anaerobic digestion
\n\t\t\t\t\t
Anaerobic digestion is process of converting of organic material directly into a gas teemed biogas. Biogas is a mixture of methane (CH4) and carbon dioxide (CO2) with other small quantities of gases such as hydrogen suphide (H2S) [23]. Anaerobic digestion is a proven technology and is widely used for treating high moisture content organic waste [19]. Biogas a product from anaerobic digestion can be used directly in gas turbine to generate electricity, and can be upgraded to higher quality i.e. natural gas quality by removing carbon dioxide (CO2).
\n\t\t\t\t\t
By- product of anaerobic digestion are settled fibre, which can be used as soil conditioning and liquid fertilizer, which can be used in the farms directly without additional treatment [24-25].
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
7.2.2. Fermentation
\n\t\t\t\t\t
Fermentation process converts biomass into ethanol by the metabolism of microorganisms [26, 20]. The fermentation process is normally anaerobic, but also aerobic process can be feasible. The process consists of two notable steps. First, biomass starch, the sugars are fermented to ethanol using yeast.
\n\t\t\t\t\t
The solid residues from fermentation, which still consists of amount of biomass, can then be used for direct combustion or gasification. Typically sugarcane and sugar beet (in Europe) are can theoretically fermented [27].
\n\t\t\t\t\t
The final fermentation product allows easier handling and storage when compared to gases produced from anaerobic digestion. However, the intensive feedstock pre-treatment, the necessary temperatures and diluted intermediate product obtained, the fermentation process is complex than anaerobic digestion.
\n\t\t\t\t\t
Despite the advantages of storage and transportation, fermentation process is less suitable for micro-scale energy production than gas production technologies. Besides, a major environmental impact of fermentation is the waste water of fermentation process. Treating the waste water can be very energy intensive. The high contents of Nitrate and phosphates in the waste water might influence the development of certain species such as algae.
\n\t\t\t\t\t
\n\t\t\t\t\t\tRanking of bio-chemical conversion technology\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\tTable 10 summarizes the findings of performance of bio-chemical conversion technology and ranking the applicability. The assessments vary from very poor (-), good (+) and very good (+++).
\n\t\t\t\t\t\n\t\t\t\t\t
From the above ranking, it is evident that anaerobic diction is more promising as a biomass conversion technology in the country, especially due to its simplicity.
\n\t\t\t\t\t\n\t\t\t\t\t
Gasification and anaerobic digestion are promising conversion technologies in the country. Anaerobic digestion is an excellent technology to produce biogas from wastes in a very small scale i.e. at house hold level. The produced gas (biogas) can be utilized as cooking gas, transportation fuel, and for electricity generation. Gasification is a more demanding technology in small- scale projects with special feed stock requirements.
Direct combustion is an ancient technology for heat production purposes. It is a common technology in the country. Pyrolysis is a technology that can be used in large-scale for commercial purposes. The product from pyrolysis i.e. pyrolysis oil, is demanding to upgrade to transport fuel. The pyrolysis oil can be used for combined heat and power generation; however, the pyrolysis process is inefficient.
\n\t\t\t\t\t
Fermentation process is a commercial technology but competes with food production. The produced ethanol can be used for heat and power generation and preferably as transportation fuel.
\n\t\t\t\t\t
Sensitization on the use of these conversion technologies in the country is required. At the same time training institution should be involved in more research and development aiming at improving the technologies. With this approach, it is clear that the potential of biomass available in the country could contribute to energy mix of the country.
\n\t\t\t\t\t
Thermo-chemical and bio-chemical biomass technologies can be summarized in Tables 11 and 12.
Potential water impact of digestate spreading on land
\n\t\t\t\t\t\t\t\t
Land use impact
\n\t\t\t\t\t\t\t\t
-
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t
Table 12.
Summary of conversion Technologies
\n\t\t\t\t
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
8. Discussion
\n\t\t\t
A critical analysis of the potential of biomass as an energy source has been presented. The analysis shows that Tanzania has abundant biomass resources for modern power generation. It is evident from the analysis that a large potential exist for exploitation of available biomass to be converted into modern energy. Thus, it is the role of the government, private companies, NGOs, and individuals to increase the share of renewable energies i.e. biomass within the national energy mix. Since biomass is the most important renewable energy source used in the country, the demand for biomass as energy resource will inevitably increase in the near future.
\n\t\t\t
To what extent biomass will penetrate future energy markets in the country; this depends on various aspects; e.g. availability of the resources, the costs of biomass fuels, the development of conversion technologies, cost of converted biomass energy, and social and/or institutional factors. The use of agricultural crop residues, animal waste, and industrial waste as energy sources is a promising opportunity to reduce pressure on energy supply. Since the use is, in the most cases, in compliance with sustainability criteria such as protection of resources, compatibility with environment and climate, social compatibility issues, low risk and error tolerance, and furthermore, it promotes economic efficiency.
\n\t\t\t
Biomass could meet the primary energy demand of the country. And a considerable share could be used for modem power generation within the different conversion routes; the thermal- chemical conversion routes offer opportunities for those residues which are predominantly dry such as rice straw and husk. In view of the availability of waste biomass e.g. food waste, industrial waste, city and municipal solid waste (CMSW) anaerobic digestion is a promising route.
\n\t\t\t
Within the biological conversion technologies, the development of power generation from biogas is at advanced stage. Currently there are more than 6,000 biogas plants in operation. More plants are expected to be in operation in the future. However, awareness on use of biogas in particular to areas with large forks of livestock is still low. This is a challenge to the developers of biogas plants.
\n\t\t\t
There is an increasing interest in gasification technologies for power generation, but a commercial implementation has not yet been received since there are still draw backs such as system reliability, high operation and maintenance cost, which has to be solved first.
\n\t\t\t
Co-generation technology is the only technology at advanced stage of implementation in the country; in particular to sugar processing plants. Electricity generated from these plants is used by the same plants and the excess is supplied to the nation grid. It is anticipated that with "Kilimo Kwanza"[28] initiatives are in the pipe line, production of sugar is expected to increase in the near future; hence more electricity is expected to be generated and supplied into the grid.
\n\t\t\t
Modern energy generation from biomass resources has a great potential in saving for rural energy needs with sustainable benefits. The existing biomass conversion technology such as co-generation, biogas and recently improved thermo-chemical, could be effectively utilized in the process of energy conversion from biomass.
\n\t\t\t
These technologies should be used in the right way to utilize the available biomass energy potential. The power generation from biomass would make the rural areas productivity. The use of local resources would also enhance the employment opportunities and income generation in the rural areas. The available biomass potential in the country should be used to take the nation towards a clear and secure energy source.
\n\t\t
\n\t\t
\n\t\t\t
9. Conclusion
\n\t\t\t
Biomass is one of the renewable energy sources that can make a significant c contribution to the developing world’s future energy supply. Tanzania has a large potential for biomass production. The forms in which biomass can be used for energy are diverse, Optimal resources, technologies and entire systems will be shaped by local conditions, both physical and socio-economic in nature.
\n\t\t\t
Though I have mentioned it numerous times, it bears repeating that the majority of people in the country will continue using biomass as their primary energy source well into the next century. A critical issue for policy-makers concerned with public health, local environmental degradation, and global environmental change is that biomass-based energy truly can be modernized, and that such a transformation can yield multiple socioeconomic and environmental benefits. Conversion of biomass to energy carriers like electricity and transportation fuels will give biomass a commercial value, and potentially provide income for local rural economies. It will also reduce national dependence on imported fuels, and reduce the environmental and public health impacts of fossil fuel combustion. To make progress, biomass markets and necessary infrastructure must be developed with the realization that the large-scale commoditization of biomass resources can have negative impacts to poor households that rely on it for their basic needs. Hence, measures must be taken to ensure that the poor have an opportunity to participate in, and benefit from, the development of biomass markets.
\n\t\t\t
In addition, high efficiency conversion technologies and advanced fuel production systems for methanol, ethanol and hydrogen must be demonstrated and commercialized in the country. Meanwhile, and experiences in industrialized countries should be shared openly. Further, projects must not be concentrated in one region alone. Biomass is obviously a resource that intimately depends on local environmental factors, and experiences gained in other countries will not wholly apply. The benefits of modernized bioenergy systems will only be enjoyed globally if efforts are made to gain experience in a wide variety of ecological and socioeconomic venues.
\n\t\t\t
Biomass can play a major role in reducing the reliance on fossil fuels by making use of thermo-chemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas. The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in rural development. Biomass energy could also aid in modernizing the agricultural economy. A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fuelled gasifier in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the bioenergy industry can also be achieved by laying more stress on green power marketing.
\n\t\t
\n\t\t
\n\t\t\t
10. Recommendations
\n\t\t\t
Biomass plays an important role for the energy sustainable development in the country; the potential of biomass is huge, however, its conversion to modern energy is still low. Thus, the following recommendations are proposed:
\n\t\t\t
Some difficulties which are still faced in the increase of biomass conversions should be minimized..
Academic and Research institution should play an important role in accelerating biomass utilization and conversion to modern energy.
The Research and Development collaboration among researchers in East Africa community (EAC) members and SADC region should be developed and realized.
A biomass user network among East African community should be established to deal with biomass utilization.
\n\t\t
\n\t\t
\n\t\t\t
11. Glossary
\n\t\t\t
URT-United Republic of Tanzania
\n\t\t\t
REA- Rural Energy Agency
\n\t\t\t
RETs-Renewable Energy Technologies
\n\t\t\t
TANESCO- Tanzania Electric Supply Company Limited
\n\t\t\t
HFO- Heavy fuel Oil
\n\t\t\t
GPD- Gross Domestic Product
\n\t\t\t
C-Carbon
\n\t\t\t
H-Hydrogen
\n\t\t\t
N-Nitrogen
\n\t\t\t
O-Oxygen
\n\t\t\t
Cl-Chlorine
\n\t\t\t
S-Sulphur
\n\t\t\t
CH4-Methane gas
\n\t\t\t
CO- Carbon monoxide
\n\t\t\t
CO2-Carbon dioxide
\n\t\t\t
NGOs-Non – Government Organizations
\n\t\t\t
CMSW- City and Municipal Solid Waste
\n\t\t\t
MSW-Municipal solid waste
\n\t\t\t
MEM-Ministry of Energy and Minerals
\n\t\t\t
CHP- Combined Heat and Power
\n\t\t\t
Anaerobic- Digestion Combustible gas called biogas produced from biogas through low temperature biological processes
\n\t\t\t
Bagasse-The fibre residue that remain after juice extraction from sugarcane
\n\t\t\t
Bioenergyhe- conversion of biomass into useful forms of energy such as heat, electricity and liquid fuels
\n\t\t\t
Biogas-The common name for a gas produced by the biological process of anaerobic (without air) digestion of organic material
\n\t\t\t
Biomass-Organic, non-fossil material of biological origin constituting an exploitable energy source
\n\t\t\t
Carbon Dioxide (CO2)-The gas formed in the ordinary combustion of carbon, given out in the breathing of animals, burning of fossil fuel, etc. Human sources are very small in relation to the natural cycle
\n\t\t\t
Commercial Energy-Energy supplied on commercial terms; distinguished from non-commercial energy comprising fuelwood, agricultural waste and animal dung collected usually by the user
\n\t\t\t
Energy crops-Crops designed either exclusively for biomass energy feedstock or for the co-production of energy and other agricultural products
\n\t\t\t
Ethanol-Clean burning high efficiency fuel produced from fermentation of biomass that can substitute for conventional liquid petroleum fuels such as gasoline and kerosene
\n\t\t\t
Fossil Fuel-A device that produces electricity directly from chemical reactions in a galvanic cell wherein the reactants are replenished
\n\t\t\t
Gasification-Combustible gas called producer-gas produced from biomass through a high temperature thermochemical process. Involves burning biomass without sufficient air for full combustion, but with enough air to convert the solid biomass into a gaseous fuel
\n\t\t\t
Methane (CH4)-Gas emitted from coal seams, natural wetlands, rice paddies, enteric fermentation (gases emitted by ruminant animals), biomass burning, anaerobic decay or organic waste in landfill sites, gas drilling and venting, and the activities of termites
\n\t\t\t
Photovoltaic-The use of lenses or mirrors to concentrate direct solar radiation onto small areas of solar cells, or the use of flat-plate photovoltaic modules using large arrays of solar cells to convert the sun\'s radiation into electricity
\n\t\t\t
\n\t\t\t\tUNIT\n\t\t\t
\n\t\t\t
MW-MegaWatt
\n\t\t
\n\t\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/40651.pdf",chapterXML:"https://mts.intechopen.com/source/xml/40651.xml",downloadPdfUrl:"/chapter/pdf-download/40651",previewPdfUrl:"/chapter/pdf-preview/40651",totalDownloads:3031,totalViews:465,totalCrossrefCites:1,totalDimensionsCites:4,totalAltmetricsMentions:0,impactScore:2,impactScorePercentile:77,impactScoreQuartile:4,hasAltmetrics:0,dateSubmitted:"April 5th 2012",dateReviewed:"September 1st 2012",datePrePublished:null,datePublished:"March 13th 2013",dateFinished:"October 31st 2012",readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/40651",risUrl:"/chapter/ris/40651",book:{id:"3233",slug:"new-developments-in-renewable-energy"},signatures:"Mashauri Adam Kusekwa",authors:[{id:"64288",title:"Dr.",name:"Mashauri",middleName:"Adam",surname:"Kusekwa",fullName:"Mashauri Kusekwa",slug:"mashauri-kusekwa",email:"kusekwa_adam@yahoo.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Dar es Salaam Institute of Technology",institutionURL:null,country:{name:"Tanzania"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. The Introduction and the Problem",level:"1"},{id:"sec_2_2",title:"2.1. Hydropower sources",level:"2"},{id:"sec_3_2",title:"2.2. Micro/Mini-hydro",level:"2"},{id:"sec_4_2",title:"2.3. Natural Gas",level:"2"},{id:"sec_5_2",title:"2.4. Coal",level:"2"},{id:"sec_6_2",title:"2.5. Petroleum",level:"2"},{id:"sec_7_2",title:"2.6. Wind",level:"2"},{id:"sec_8_2",title:"2.7. Solar",level:"2"},{id:"sec_9_2",title:"2.8. Geothermal",level:"2"},{id:"sec_10_2",title:"2.9. Wood fuel and other biomass fuels",level:"2"},{id:"sec_12",title:"3. Literature review ",level:"1"},{id:"sec_13",title:"4. Methodology",level:"1"},{id:"sec_13_2",title:"4.1. Analytical approach ",level:"2"},{id:"sec_14_2",title:"4.2. Data collection and analysis",level:"2"},{id:"sec_16",title:"5. Results",level:"1"},{id:"sec_16_2",title:"5.1. Biomass potential",level:"2"},{id:"sec_16_3",title:"Table 1.",level:"3"},{id:"sec_16_4",title:"Table 1.",level:"4"},{id:"sec_17_4",title:"Table 2.",level:"4"},{id:"sec_18_4",title:"Table 3.",level:"4"},{id:"sec_20_3",title:"5.1.2.Agriculture crop residues",level:"3"},{id:"sec_21_3",title:"Table 4.",level:"3"},{id:"sec_22_3",title:"5.1.4. Economic and environmental implications of biomass",level:"3"},{id:"sec_23_3",title:"5.1.5. Challenges with agricultural residues are",level:"3"},{id:"sec_24_3",title:"5.1.6. Agriculture waste ",level:"3"},{id:"sec_25_3",title:"5.1.7. Forestry residues",level:"3"},{id:"sec_26_3",title:"5.1.8. City and Municipal solid waste (CMW)",level:"3"},{id:"sec_27_3",title:"Table 8.",level:"3"},{id:"sec_28_3",title:"5.1.10. Food Industry Wastes",level:"3"},{id:"sec_29_3",title:"5.1.11. Industrial Waste",level:"3"},{id:"sec_32",title:"6. Benefit of biomass utilization",level:"1"},{id:"sec_32_2",title:"6.1. Environmental impact of biomass energy",level:"2"},{id:"sec_33_2",title:"6.2. Barriers",level:"2"},{id:"sec_34_2",title:"6.3. Risks",level:"2"},{id:"sec_36",title:"7. Biomass conversion ",level:"1"},{id:"sec_36_2",title:"7.1. Thermo-Chemical conversion",level:"2"},{id:"sec_36_3",title:"7.1.1. Gasification",level:"3"},{id:"sec_37_3",title:"7.1.2. Pyrolysis",level:"3"},{id:"sec_38_3",title:"Table 9.",level:"3"},{id:"sec_40_2",title:"7.2. Bio-chemical conversion ",level:"2"},{id:"sec_40_3",title:"7.2.1. Anaerobic digestion",level:"3"},{id:"sec_41_3",title:"Table 10.",level:"3"},{id:"sec_44",title:"8. Discussion",level:"1"},{id:"sec_45",title:"9. Conclusion",level:"1"},{id:"sec_46",title:"10. Recommendations",level:"1"},{id:"sec_47",title:"11. Glossary",level:"1"}],chapterReferences:[{id:"B1",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCasmiri\n\t\t\t\t\t\t\tDamian.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tEnergy Systems: Vulnerability-Adaption-Resilience. Regional Focus: Sub-Saharan Africa-Tanzania\n\t\t\t\t\t 56, rue de Passy-75016 Paris-France\n\t\t\t\t\n\t\t\t'},{id:"B2",body:'\n\t\t\t\t\n\t\t\t\t\tURT\n\t\t\t\t\t2009\n\t\t\t\t\tEconomic Survey report\n\t\t\t\t\n\t\t\t'},{id:"B3",body:'\n\t\t\t\t\n\t\t\t\t\tURT\n\t\t\t\t\t2002\n\t\t\t\t\tPopulation and Housing Sensor\n\t\t\t\t\n\t\t\t'},{id:"B4",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKusekwa\n\t\t\t\t\t\t\tM. A. \n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2011\n\t\t\t\t\tA Review on the Renewable Energy Resources for Rural Application in TanzaniaRenewable Energy-Trends and Applications 978-9-53307-939-4\n\t\t\t\t\t10.5772/25715\n\t\t\t\t\n\t\t\t'},{id:"B5",body:'\n\t\t\t\t\n\t\t\t\t\tMrindoko and Mbise\n\t\t\t\t\t2011\n\t\t\t\t\tAnnual Engineers Day\n\t\t\t\t\t Dar es Salaam (AED), Tanzania\n\t\t\t\t\n\t\t\t'},{id:"B6",body:'\n\t\t\t\t\n\t\t\t\t\tSADC\n\t\t\t\t\t2009\n\t\t\t\t\tSouthern African Development Community Electrical Report\n\t\t\t\t\n\t\t\t'},{id:"B7",body:'\n\t\t\t\t\n\t\t\t\t\tMEM\n\t\t\t\t\t2012\n\t\t\t\t\tBudget report 2012/1013\n\t\t\t\t\n\t\t\t'},{id:"B8",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMagessa\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tContribution of Tanzania GVEP activities in Achieving Millennium Development Goals Retrieved October 27, 1010 from http://deafrica.net/workshops/Tanzania%201/Tanzania%20GVEP.ppt\n\t\t\t\t\n\t\t\t'},{id:"B9",body:'\n\t\t\t\t\n\t\t\t\t\tMEM\n\t\t\t\t\t2011\n\t\t\t\t\tFinal report on joint energy sector review for 2010/2011\n\t\t\t\t\n\t\t\t'},{id:"B10",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGwang’ombe\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tRenewable Energy Technologies in Tanzania-Biomass Based Co-generation.\n\t\t\t\t\tAFREPREN/FWD, Nairobi, Kenya\n\t\t\t\t\n\t\t\t'},{id:"B11",body:'\n\t\t\t\t\n\t\t\t\t\tTPDC\n\t\t\t\t\t2012\n\t\t\t\t\tPress release\n\t\t\t\t\n\t\t\t'},{id:"B12",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKassenga\n\t\t\t\t\t\t\tG. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997\n\t\t\t\t\tPromotion of Renewable Energy Technologies in TanzaniaResources, Conservation and Recycling. 19\n\t\t\t\t\t4\n\t\t\t\t\t257\n\t\t\t\t\t263\n\t\t\t\t\n\t\t\t'},{id:"B13",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMnjokava\n\t\t\t\t\t\t\tT. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tGeothermal Exploration \n\t\t\t\t\tin Tanzania-Status Report Lake Naivasha, Kenya\n\t\t\t\t\n\t\t\t'},{id:"B14",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacob\n\t\t\t\t\t\t\tMayalla.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKato\n\t\t\t\t\t\t\tKabaka.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNgereja\n\t\t\t\t\t\t\tMgejwa.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGabriel\n\t\t\t\t\t\t\tMbogoni.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2011\n\t\t\t\t\tGeothermal Development in Tanzania\n\t\t\t\t\tKenyatta International Conference Centre, Nairobi, Kenya\n\t\t\t\t\n\t\t\t'},{id:"B15",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFrey\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tBusiness Guide Ermeuerbare Energien Tanzania.\n\t\t\t\t\t Berlin: GTZ\n\t\t\t\t\t23\n\t\t\t\t\n\t\t\t'},{id:"B16",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZafar\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tBiomass wastes, alternative energy\n\t\t\t\t\teMagazine-Altenergy magazine\n\t\t\t\t\n\t\t\t'},{id:"B17",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGavrilescu\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChristi\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tBiotechnology-a sustainable alternative for chemical industry"\n\t\t\t\t\tBiotechnology Advances\n\t\t\t\t\t23\n\t\t\t\t\t471\n\t\t\t\t\t499\n\t\t\t\t\n\t\t\t'},{id:"B18",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMckendry\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tEnergy production from biomass part (1): Overview of BiomassBioresource Technology 83\n\t\t\t\t\t37\n\t\t\t\t\t46\n\t\t\t\t\n\t\t\t'},{id:"B19",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMckendry\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002\n\t\t\t\t\tEnergy production from biomass part (2): Conversion Technologies\n\t\t\t\t\tBioresource Technology\n\t\t\t\t\t47\n\t\t\t\t\t54\n\t\t\t\t\n\t\t\t'},{id:"B20",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLoeser\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRedfern\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tMicro-Scale Biomass Generation Plant Technology: Stand-Alone Design for remote customer\n\t\t\t\t\t16th European Biomass Conference and Exhibition, 2-6 June, Valencia, Spain.\n\t\t\t\t\t1468\n\t\t\t\t\t1477\n\t\t\t\t\n\t\t\t'},{id:"B21",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChiaramonti\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOasamaa\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSolantausta\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tPower Generation using fast pyrolysis liquid from biomass\n\t\t\t\t\tRenewable and Sustainable Energy Review\n\t\t\t\t\t11\n\t\t\t\t\t6\n\t\t\t\t\t1056\n\t\t\t\t\t1086\n\t\t\t\t\n\t\t\t'},{id:"B22",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDemirbas\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000\n\t\t\t\t\tMechanisms of liquefaction and pyrolysis reaction of biomass\n\t\t\t\t\tEnergy conversion and Management\n\t\t\t\t\t633\n\t\t\t\t\t646\n\t\t\t\t\n\t\t\t'},{id:"B23",body:'\n\t\t\t\t\n\t\t\t\t\tEU\n\t\t\t\t\t1999\n\t\t\t\t\tBiomass Conversion Technologies\n\t\t\t\t\tEUR 18029 EN\n\t\t\t\t\t9-28285-368-3\n\t\t\t\t\n\t\t\t'},{id:"B24",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChynoweth\n\t\t\t\t\t\t\tD. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOwens\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLegrand\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tRenewable methane from anaerobic digestion of brewery effluent\n\t\t\t\t\tRenewable Energy\n\t\t\t\t\t22\n\t\t\t\t\t1\n\t\t\t\t\t1\n\t\t\t\t\t8\n\t\t\t\t\n\t\t\t'},{id:"B25",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDagnall\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHill\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPegg\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000\n\t\t\t\t\tResource mapping and analysis of farm livestock manures-assessing the opportunities for biomass-energy schemes\n\t\t\t\t\tBioresource Technology\n\t\t\t\t\t71\n\t\t\t\t\t3\n\t\t\t\t\t225\n\t\t\t\t\t234\n\t\t\t\t\n\t\t\t'},{id:"B26",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPangraz\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tBiomass and Waste-to-Energy Technologies\n\t\t\t\t\tEnvironmental Impact assessment, Report based on the activities of technology Development and Adaption of the Micro Energy to Waste (MicrE) Northern Periphery Programme project.\n\t\t\t\t\thttp://nortech.oulu.fi\n\t\t\t\t\n\t\t\t'},{id:"B27",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJenner\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tTurning local biomass into new energy options\n\t\t\t\t\tBioCycle\n\t\t\t\t\t62\n\t\t\t\t\t70\n\t\t\t\t\n\t\t\t'},{id:"B28",body:'\n\t\t\t\t\n\t\t\t\t\tKilimo Kwanza Initiative\n\t\t\t\t\t2012\n\t\t\t\t\thttp://www.tanzania.gov.tz\n\t\t\t\t\n\t\t\t'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Mashauri Adam Kusekwa",address:"kusekwa_adam@yahoo.com",affiliation:'
Electrical Engineering Department, Dar es Salaam Institute of Technology, Tanzania
'}],corrections:null},book:{id:"3233",type:"book",title:"New Developments in Renewable Energy",subtitle:null,fullTitle:"New Developments in Renewable Energy",slug:"new-developments-in-renewable-energy",publishedDate:"March 13th 2013",bookSignature:"Hasan Arman and Ibrahim Yuksel",coverURL:"https://cdn.intechopen.com/books/images_new/3233.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-51-1040-8",pdfIsbn:"978-953-51-6322-0",reviewType:"peer-reviewed",numberOfWosCitations:44,isAvailableForWebshopOrdering:!0,editors:[{id:"143532",title:"Prof.",name:"Hasan",middleName:null,surname:"Arman",slug:"hasan-arman",fullName:"Hasan Arman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"143271",title:"Prof.",name:"Ibrahim",middleName:null,surname:"Yuksel",slug:"ibrahim-yuksel",fullName:"Ibrahim Yuksel"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"770"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"43272",type:"chapter",title:"Present Situation and Future Prospect of Energy Utilization and Climate Change in Turkey",slug:"present-situation-and-future-prospect-of-energy-utilization-and-climate-change-in-turkey",totalDownloads:2216,totalCrossrefCites:0,signatures:"İbrahim Yüksel, Kamil Kaygusuz and Hasan Arman",reviewType:"peer-reviewed",authors:[{id:"143532",title:"Prof.",name:"Hasan",middleName:null,surname:"Arman",fullName:"Hasan Arman",slug:"hasan-arman"}]},{id:"43288",type:"chapter",title:"Energy Savings Resulting from Installation of an Extensive Vegetated Roof System on a Campus Building in the Southeastern United States",slug:"energy-savings-resulting-from-installation-of-an-extensive-vegetated-roof-system-on-a-campus-buildin",totalDownloads:2300,totalCrossrefCites:0,signatures:"Robert W. Peters, Ronald D. Sherrod and Matt Winslett",reviewType:"peer-reviewed",authors:[{id:"160276",title:"Prof.",name:"Robert",middleName:null,surname:"Peters",fullName:"Robert Peters",slug:"robert-peters"}]},{id:"43656",type:"chapter",title:"On the Public Policies Supporting Renewables and Wind Power Overcapacity: Insights into the European Way Forward",slug:"on-the-public-policies-supporting-renewables-and-wind-power-overcapacity-insights-into-the-european-",totalDownloads:1955,totalCrossrefCites:0,signatures:"António Cardoso Marques, José Alberto Fuinhas and Rui Flora",reviewType:"peer-reviewed",authors:[{id:"65657",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Marques",fullName:"António Marques",slug:"antonio-marques"},{id:"157432",title:"Prof.",name:"José Alberto",middleName:null,surname:"Fuinhas",fullName:"José Alberto Fuinhas",slug:"jose-alberto-fuinhas"},{id:"165853",title:"MSc.",name:"Rui",middleName:null,surname:"Flora",fullName:"Rui Flora",slug:"rui-flora"}]},{id:"43621",type:"chapter",title:"Viewing Energy, Poverty and Sustainability in Developing Countries Through a Gender Lens",slug:"viewing-energy-poverty-and-sustainability-in-developing-countries-through-a-gender-lens",totalDownloads:2482,totalCrossrefCites:1,signatures:"Pius Fatona, Abiodun Abiodun, Adetayo Olumide, Adesanwo Adeola and Oladunjoye Abiodun",reviewType:"peer-reviewed",authors:[{id:"68528",title:"Mr.",name:"Pius",middleName:"Olugbenga",surname:"Fatona",fullName:"Pius Fatona",slug:"pius-fatona"},{id:"155231",title:"Dr.",name:"Oladunjoye",middleName:null,surname:"Abiodun",fullName:"Oladunjoye Abiodun",slug:"oladunjoye-abiodun"},{id:"155232",title:"Mrs.",name:"Adesanwo",middleName:null,surname:"Adeola",fullName:"Adesanwo Adeola",slug:"adesanwo-adeola"},{id:"155233",title:"Mr.",name:"Adetayo",middleName:null,surname:"Olumide",fullName:"Adetayo Olumide",slug:"adetayo-olumide"},{id:"164750",title:"Mr.",name:"Abiodun",middleName:null,surname:"Abiodun",fullName:"Abiodun Abiodun",slug:"abiodun-abiodun"}]},{id:"40535",type:"chapter",title:"Improved Stochastic Modeling: An Essential Tool for Power System Scheduling in the Presence of Uncertain Renewables",slug:"improved-stochastic-modeling-an-essential-tool-for-power-system-scheduling-in-the-presence-of-uncert",totalDownloads:2314,totalCrossrefCites:6,signatures:"Sajjad Abedi, Gholam Hossein Riahy, Seyed Hossein Hosseinian and Mehdi Farhadkhani",reviewType:"peer-reviewed",authors:[{id:"137718",title:"Dr.",name:"Gholam",middleName:null,surname:"Riahy",fullName:"Gholam Riahy",slug:"gholam-riahy"},{id:"157256",title:"MSc.",name:"Sajjad",middleName:null,surname:"Abedi",fullName:"Sajjad Abedi",slug:"sajjad-abedi"},{id:"157257",title:"Prof.",name:"Seyed Hossein",middleName:null,surname:"Hosseinian",fullName:"Seyed Hossein Hosseinian",slug:"seyed-hossein-hosseinian"},{id:"165489",title:"MSc.",name:"Mehdi",middleName:null,surname:"Farhadkhani",fullName:"Mehdi Farhadkhani",slug:"mehdi-farhadkhani"}]},{id:"41233",type:"chapter",title:"Modeling of Photovoltaic Cell Using Free Software Application for Training and Design Circuit in Photovoltaic Solar Energy",slug:"modeling-of-photovoltaic-cell-using-free-software-application-for-training-and-design-circuit-in-pho",totalDownloads:7159,totalCrossrefCites:1,signatures:"Miguel Pareja Aparicio, José Pelegrí-Sebastiá, Tomás Sogorb and Vicente Llario",reviewType:"peer-reviewed",authors:[{id:"2119",title:"Dr.",name:"Jose",middleName:null,surname:"Pelegri-Sebastia",fullName:"Jose Pelegri-Sebastia",slug:"jose-pelegri-sebastia"},{id:"156248",title:"Mr.",name:"Miguel",middleName:null,surname:"Pareja Aparicio",fullName:"Miguel Pareja Aparicio",slug:"miguel-pareja-aparicio"},{id:"164804",title:"Dr.",name:"Tomás",middleName:null,surname:"Sogorb",fullName:"Tomás Sogorb",slug:"tomas-sogorb"},{id:"164807",title:"MSc.",name:"Vicente",middleName:null,surname:"Llario",fullName:"Vicente Llario",slug:"vicente-llario"}]},{id:"43679",type:"chapter",title:"Steady State Modeling of Three Phase Self–Excited Induction Generator Under Unbalanced/Balanced Conditions",slug:"steady-state-modeling-of-three-phase-self-excited-induction-generator-under-unbalanced-balanced-cond",totalDownloads:2447,totalCrossrefCites:0,signatures:"A. Alsalloum and A. I. Alolah",reviewType:"peer-reviewed",authors:[{id:"158360",title:"Prof.",name:"A",middleName:null,surname:"Alolah",fullName:"A Alolah",slug:"a-alolah"},{id:"168340",title:"Dr.",name:"Ahmed M.",middleName:null,surname:"Al Salloum",fullName:"Ahmed M. Al Salloum",slug:"ahmed-m.-al-salloum"}]},{id:"43570",type:"chapter",title:"Maximum Power Extraction from Utility-Interfaced Wind Turbines",slug:"maximum-power-extraction-from-utility-interfaced-wind-turbines",totalDownloads:5099,totalCrossrefCites:2,signatures:"Ali M. Eltamaly, A. I. Alolah and Hassan M. Farh",reviewType:"peer-reviewed",authors:[{id:"158360",title:"Prof.",name:"A",middleName:null,surname:"Alolah",fullName:"A Alolah",slug:"a-alolah"},{id:"3360",title:"Prof.",name:"Ali",middleName:null,surname:"Eltamaly",fullName:"Ali Eltamaly",slug:"ali-eltamaly"},{id:"158361",title:"Mr.",name:"Hassan",middleName:null,surname:"Farh",fullName:"Hassan Farh",slug:"hassan-farh"}]},{id:"43569",type:"chapter",title:"Comparative Analysis of Endowments Effect Renewable Energy Efficiency Among OECD Countries",slug:"comparative-analysis-of-endowments-effect-renewable-energy-efficiency-among-oecd-countries",totalDownloads:2100,totalCrossrefCites:0,signatures:"Tser-Yieth Chen, Tsai-Lien Yeh and Yi Hsuan Ko",reviewType:"peer-reviewed",authors:[{id:"152352",title:"Prof.",name:"Tser",middleName:null,surname:"Chen",fullName:"Tser Chen",slug:"tser-chen"},{id:"162467",title:"Prof.",name:"Tsai-Lien",middleName:null,surname:"Yeh",fullName:"Tsai-Lien Yeh",slug:"tsai-lien-yeh"},{id:"162468",title:"MSc.",name:"Yi-Hsuan",middleName:null,surname:"Ko",fullName:"Yi-Hsuan Ko",slug:"yi-hsuan-ko"}]},{id:"43271",type:"chapter",title:"Wind Speed Regionalization Under Climate Change Conditions",slug:"wind-speed-regionalization-under-climate-change-conditions",totalDownloads:1811,totalCrossrefCites:0,signatures:"Masoomeh Fakhry, Mohammad Reza Farzaneh, Saeid Eslamian and Rouzbeh Nazari",reviewType:"peer-reviewed",authors:[{id:"58107",title:"Prof.",name:"Saeid",middleName:null,surname:"Eslamian",fullName:"Saeid Eslamian",slug:"saeid-eslamian"},{id:"166643",title:"MSc.",name:"Masoomeh",middleName:null,surname:"Fakhri",fullName:"Masoomeh Fakhri",slug:"masoomeh-fakhri"},{id:"167919",title:"Dr.",name:"Mohammad",middleName:null,surname:"Reza Farzaneh",fullName:"Mohammad Reza Farzaneh",slug:"mohammad-reza-farzaneh"}]},{id:"40651",type:"chapter",title:"Biomass Conversion to Energy in Tanzania: A Critique",slug:"biomass-conversion-to-energy-in-tanzania-a-critique",totalDownloads:3031,totalCrossrefCites:1,signatures:"Mashauri Adam Kusekwa",reviewType:"peer-reviewed",authors:[{id:"64288",title:"Dr.",name:"Mashauri",middleName:"Adam",surname:"Kusekwa",fullName:"Mashauri Kusekwa",slug:"mashauri-kusekwa"}]},{id:"42182",type:"chapter",title:"Ocean's Renewable Power and Review of Technologies: Case Study Waves",slug:"ocean-s-renewable-power-and-review-of-technologies-case-study-waves",totalDownloads:4107,totalCrossrefCites:2,signatures:"Ehsan Enferad and Daryoush Nazarpour",reviewType:"peer-reviewed",authors:[{id:"67994",title:"BSc.",name:"Ehsan",middleName:null,surname:"Enferad",fullName:"Ehsan Enferad",slug:"ehsan-enferad"},{id:"156169",title:"Dr.",name:"Daryoush",middleName:null,surname:"Nazarpour",fullName:"Daryoush Nazarpour",slug:"daryoush-nazarpour"}]},{id:"43619",type:"chapter",title:"ORC-Based Geothermal Power Generation and CO2-Based EGS for Combined Green Power Generation and CO2 Sequestration",slug:"orc-based-geothermal-power-generation-and-co2-based-egs-for-combined-green-power-generation-and-co2-",totalDownloads:4497,totalCrossrefCites:0,signatures:"Basel I. Ismail",reviewType:"peer-reviewed",authors:[{id:"62122",title:"Dr.",name:"Basel I.",middleName:"I.",surname:"Ismail",fullName:"Basel I. Ismail",slug:"basel-i.-ismail"}]},{id:"43620",type:"chapter",title:"Methodology of Designing Power Converters for Fuel Cell Based Systems: A Resonant Approach",slug:"methodology-of-designing-power-converters-for-fuel-cell-based-systems-a-resonant-approach",totalDownloads:4310,totalCrossrefCites:2,signatures:"Maria Teresa Outeiro and Adriano Carvalho",reviewType:"peer-reviewed",authors:[{id:"10304",title:"Prof.",name:"Adriano",middleName:null,surname:"Carvalho",fullName:"Adriano Carvalho",slug:"adriano-carvalho"},{id:"41964",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Outeiro",fullName:"Maria Teresa Outeiro",slug:"maria-teresa-outeiro"}]},{id:"41899",type:"chapter",title:"Wind Diesel Hybrid Power System with Hydrogen Storage",slug:"wind-diesel-hybrid-power-system-with-hydrogen-storage",totalDownloads:2626,totalCrossrefCites:0,signatures:"Mamadou Lamine Doumbia, Karim Belmokhtar and Kodjo Agbossou",reviewType:"peer-reviewed",authors:[{id:"2975",title:"Dr.",name:"Mamadou Lamine",middleName:null,surname:"Doumbia",fullName:"Mamadou Lamine Doumbia",slug:"mamadou-lamine-doumbia"}]},{id:"43284",type:"chapter",title:"Sustainable Power Generation Through Co-Combustion of Agricultural Residues with Coal in Existing Coal Power Plant",slug:"sustainable-power-generation-through-co-combustion-of-agricultural-residues-with-coal-in-existing-co",totalDownloads:3313,totalCrossrefCites:1,signatures:"Wan Azlina Wan Ab Karim Ghani and Azil Bahari Alias",reviewType:"peer-reviewed",authors:[{id:"65573",title:"Dr.",name:"Wan Azlina",middleName:null,surname:"Wan Ab Karim Ghani",fullName:"Wan Azlina Wan Ab Karim Ghani",slug:"wan-azlina-wan-ab-karim-ghani"}]}]},relatedBooks:[{type:"book",id:"6170",title:"Arid Environments and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"e0649511530c554a4cd5baf9432a4d3c",slug:"arid-environments-and-sustainability",bookSignature:"Hasan Arman and Ibrahim Yuksel",coverURL:"https://cdn.intechopen.com/books/images_new/6170.jpg",editedByType:"Edited by",editors:[{id:"143532",title:"Prof.",name:"Hasan",surname:"Arman",slug:"hasan-arman",fullName:"Hasan Arman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"58289",title:"Strategies to Enhance Sustainability of Land Resources in Arid Regions",slug:"strategies-to-enhance-sustainability-of-land-resources-in-arid-regions",signatures:"Selen Deviren Saygin",authors:[{id:"212830",title:"Dr.",name:"Selen",middleName:null,surname:"Deviren Saygın",fullName:"Selen Deviren Saygın",slug:"selen-deviren-saygin"}]},{id:"59125",title:"Simulating the Productivity of Desert Woody Shrubs in Southwestern Texas",slug:"simulating-the-productivity-of-desert-woody-shrubs-in-southwestern-texas",signatures:"Sumin Kim, Jaehak Jeong and James R. Kiniry",authors:[{id:"31229",title:"Dr.",name:"James R.",middleName:null,surname:"Kiniry",fullName:"James R. Kiniry",slug:"james-r.-kiniry"},{id:"226394",title:"Dr.",name:"Sumin",middleName:null,surname:"Kim",fullName:"Sumin Kim",slug:"sumin-kim"},{id:"235712",title:"Dr.",name:"Jaehak",middleName:null,surname:"Jeong",fullName:"Jaehak Jeong",slug:"jaehak-jeong"}]},{id:"57836",title:"Farmers’ Vulnerability to Climate Change Impacts in Semi-arid Environments in Tanzania: A Gender Perspective",slug:"farmers-vulnerability-to-climate-change-impacts-in-semi-arid-environments-in-tanzania-a-gender-persp",signatures:"Samwel J. Kabote",authors:[{id:"228164",title:"Dr.",name:"Samwel J.",middleName:null,surname:"Kabote",fullName:"Samwel J. Kabote",slug:"samwel-j.-kabote"}]},{id:"58011",title:"Long-Term Effects of Effluent Water Irrigation on Soil Chemical Properties of Sand-Based Putting Greens",slug:"long-term-effects-of-effluent-water-irrigation-on-soil-chemical-properties-of-sand-based-putting-gre",signatures:"Hanan Isweiri and Yaling Qian",authors:[{id:"214589",title:"Prof.",name:"Yaling",middleName:null,surname:"Qian",fullName:"Yaling Qian",slug:"yaling-qian"},{id:"214591",title:"Dr.",name:"Hanan",middleName:null,surname:"Isweiri",fullName:"Hanan Isweiri",slug:"hanan-isweiri"}]},{id:"57801",title:"Water Productivity Modeling by Remote Sensing in the Semiarid Region of Minas Gerais State, Brazil",slug:"water-productivity-modeling-by-remote-sensing-in-the-semiarid-region-of-minas-gerais-state-brazil",signatures:"Antônio Heriberto de Castro Teixeira, Fúlvio R. Simão, Janice F.\nLeivas, Reinaldo L. Gomide, João B.R. da S. Reis, Mauro K. Kobayashi\nand Flávio G. Oliveira",authors:[{id:"212840",title:"Dr.",name:"Antônio",middleName:null,surname:"Teixeira",fullName:"Antônio Teixeira",slug:"antonio-teixeira"},{id:"213180",title:"Dr.",name:"Janice",middleName:null,surname:"Leivas",fullName:"Janice Leivas",slug:"janice-leivas"},{id:"214781",title:"Dr.",name:"Fulvio",middleName:null,surname:"Simao",fullName:"Fulvio Simao",slug:"fulvio-simao"},{id:"214782",title:"Dr.",name:"João",middleName:null,surname:"Reis",fullName:"João Reis",slug:"joao-reis"},{id:"214783",title:"Dr.",name:"Reinaldo",middleName:null,surname:"Gomide",fullName:"Reinaldo Gomide",slug:"reinaldo-gomide"},{id:"214785",title:"Dr.",name:"Mauro",middleName:null,surname:"Koji",fullName:"Mauro Koji",slug:"mauro-koji"},{id:"224527",title:"Dr.",name:"Flávio",middleName:null,surname:"Oliveira",fullName:"Flávio Oliveira",slug:"flavio-oliveira"}]}]}],publishedBooks:[{type:"book",id:"3233",title:"New Developments in Renewable Energy",subtitle:null,isOpenForSubmission:!1,hash:"a0947d8bffd0d5847606888a4c1a1986",slug:"new-developments-in-renewable-energy",bookSignature:"Hasan Arman and Ibrahim Yuksel",coverURL:"https://cdn.intechopen.com/books/images_new/3233.jpg",editedByType:"Edited by",editors:[{id:"143532",title:"Prof.",name:"Hasan",surname:"Arman",slug:"hasan-arman",fullName:"Hasan Arman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7613",title:"Research Trends and Challenges in Smart Grids",subtitle:null,isOpenForSubmission:!1,hash:"ca836c407ba574b88af44b497d45d42b",slug:"research-trends-and-challenges-in-smart-grids",bookSignature:"Alfredo Vaccaro, Ahmed Faheem Zobaa, Prabhakar Karthikeyan Shanmugam and Kannaiah Sathish Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/7613.jpg",editedByType:"Edited by",editors:[{id:"24725",title:"Dr.",name:"Alfredo",surname:"Vaccaro",slug:"alfredo-vaccaro",fullName:"Alfredo Vaccaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3502",title:"Application of Solar Energy",subtitle:null,isOpenForSubmission:!1,hash:"666d24d8c1cbabe162464bb04e131bcd",slug:"application-of-solar-energy",bookSignature:"Radu Rugescu",coverURL:"https://cdn.intechopen.com/books/images_new/3502.jpg",editedByType:"Edited by",editors:[{id:"8615",title:"Prof.",name:"Radu",surname:"Rugescu",slug:"radu-rugescu",fullName:"Radu Rugescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7636",title:"Wind Solar Hybrid Renewable Energy System",subtitle:null,isOpenForSubmission:!1,hash:"49b63353c3d80ef6f449e55b1f6cee29",slug:"wind-solar-hybrid-renewable-energy-system",bookSignature:"Kenneth Eloghene Okedu, Ahmed Tahour and Abdel Ghani Aissaou",coverURL:"https://cdn.intechopen.com/books/images_new/7636.jpg",editedByType:"Edited by",editors:[{id:"172580",title:"Dr.",name:"Kenneth Eloghene",surname:"Okedu",slug:"kenneth-eloghene-okedu",fullName:"Kenneth Eloghene Okedu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3633",title:"Solar Energy",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"solar-energy",bookSignature:"Radu D Rugescu",coverURL:"https://cdn.intechopen.com/books/images_new/3633.jpg",editedByType:"Edited by",editors:[{id:"8615",title:"Prof.",name:"Radu",surname:"Rugescu",slug:"radu-rugescu",fullName:"Radu Rugescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"3233",title:"New Developments in Renewable Energy",subtitle:null,isOpenForSubmission:!1,hash:"a0947d8bffd0d5847606888a4c1a1986",slug:"new-developments-in-renewable-energy",bookSignature:"Hasan Arman and Ibrahim Yuksel",coverURL:"https://cdn.intechopen.com/books/images_new/3233.jpg",editedByType:"Edited by",editors:[{id:"143532",title:"Prof.",name:"Hasan",surname:"Arman",slug:"hasan-arman",fullName:"Hasan Arman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"61662",title:"The Human Epidermal Growth Factor Receptor 2 (HER2) as a Prognostic and Predictive Biomarker: Molecular Insights into HER2 Activation and Diagnostic Implications",doi:"10.5772/intechopen.78271",slug:"the-human-epidermal-growth-factor-receptor-2-her2-as-a-prognostic-and-predictive-biomarker-molecular",body:'\n
\n
1. Introduction
\n
Breast cancer is the most frequently diagnosed cancer among women worldwide, affecting over 1.5 million women each year. In 2015, it is estimated that worldwide 500,000 women have died from this malignancy, which represents 15% of all cancer-related deaths among women [1].
\n
It is now well recognized that breast cancer comprises a heterogeneous group of diseases in term of differentiation and proliferation, prognosis and treatment. Over the past decades, microarray-based gene expression studies have allowed the identification of breast cancer intrinsic subtypes [2, 3, 4]. One of these subtypes is the so-called human epidermal growth factor receptor 2 (HER2)-enriched subtype. HER2 is a transmembrane tyrosine kinase receptor [5]. This protein is encoded by the HER2 gene, which is located on the long arm of chromosome 17 (17q12–21.32) [6]. The HER2-enriched subtype is characterized by high expression of HER2 and other genes of the 17q amplicon, including growth factor receptor bound protein 7 (GRB7), and low to intermediate expression of luminal genes such as Estrogen Receptor 1 (ESR1) and Progesterone Receptor (PGR) [7]. Clinically, HER2-positive breast cancer occurs in 15–20% of breast cancer patients and is characterized by the overexpression of the HER2 receptor and/or HER2 gene amplification [8]. HER2-positive breast cancer patients have a particular worse prognosis. Importantly, HER2-positive breast cancer patients are eligible to receive targeted treatment with trastuzumab, a monoclonal antibody specifically directed against the HER2 receptor [9]. Trastuzumab treatment, in combination with chemotherapy, improves the outcome of early [10, 11] and metastatic [12, 13] HER2-positive breast cancer patients. The US Food and Drug Administration (FDA) approved trastuzumab for the treatment of metastatic HER2-positive breast cancer patients in 1998 and for the treatment of early HER2-positive breast cancer patients in 2006. Lapatinib is a small-molecule inhibitor of the intracellular tyrosine kinase domain of both HER2 and EGFR receptors [14]. Lapatinib has received FDA approval in 2007 as combination therapy with capecitabine for the treatment of patients with HER2-positive advanced breast cancer patients who had progressed on trastuzumab-based regimens [15]. Although anti-HER2 agents are generally well tolerated, trastuzumab administration has been associated with cardiac side effects, especially when used in combination with anthracyclines [16].
\n
HER2 plays a significant role in breast cancer pathogenesis. It is therefore essential to understand the biology of this receptor in order to better treat HER2-positive breast cancer patients. Evaluation of HER2 status in breast cancer specimens raises several technical considerations. In the last decades, several methods have been developed for HER2 assessment. In this article, we will review important aspects of the HER2 biology and its relevance in breast cancer and present the techniques that are used in clinical practice for the determination of HER2 status in breast cancer specimens.
\n
\n
\n
2. HER2 biology and methods of assessment of HER2 status
\n
\n
2.1. HER2 receptor
\n
The HER2 receptor is a 185 kDa transmembrane protein that is encoded by the HER2 (also known as erb-b2 receptor tyrosine kinase 2 [ERBB2]) gene, which is located on the long arm of chromosome 17 (17q12–21.32) [6]. HER2 is normally expressed on cell membranes of epithelial cells of several organs like the breast and the skin, as well as gastrointestinal, respiratory, reproductive, and urinary tract [17]. In normal breast epithelial cells, HER2 is expressed at low levels (two copies of the HER2 gene and up to 20,000 HER2 receptors) [18], whereas in HER2-positive breast cancer cells, there is an increase in the number of HER2 gene copies (up to 25–50, termed gene amplification) and HER2 receptors (up to 40 to 100 fold increase, termed protein overexpression), resulting in up to 2 million receptors expressed at the tumor cell surface [19]. Besides breast cancer, HER2 overexpression has also been reported in other types of tumors, including stomach, ovary, colon, bladder, lung, uterine cervix, head and neck, and esophageal cancer as well as uterine serous endometrial carcinoma [20].
\n
\n
2.1.1. HER2 structure and function
\n
HER2 belongs to the epidermal growth factor receptor (EGFR) family. This family is composed of four HER receptors: human epidermal growth factor receptor 1 (HER1) (also termed EGFR), HER2, human epidermal growth factor receptor 3 (HER3), and human epidermal growth factor receptor 4 (HER4) [5].
\n
HER family members are transmembrane receptor tyrosine kinases. Tyrosine kinases are enzymes that carry out tyrosine phosphorylation, namely the transfer of the γ phosphate of adenosine triphosphate (ATP) to tyrosine residues on protein substrate [21].
\n
HER receptors share a similar structure. They are composed of an extracellular domain (ECD), a transmembrane segment and an intracellular region [22]. The ECD domain is divided into four parts: domains I and III, which play a role in ligand binding, and domains II and IV, which contain several cysteine residues that are important for disulfide bond formation [23]. The transmembrane segment is composed of 19–25 amino acid residues. The intracellular region is composed of a juxtamembrane segment, a functional protein kinase domain (with the exception of HER3 that lacks tyrosine kinase activity [24] and must partner with another family member to be activated [25]), and a C-terminal tail containing multiple phosphorylation sites required for propagation of downstream signaling [23]. The catalytic domain contains the ATP binding pocket, a conserved site essential to ATP binding [26].
\n
HER receptors are activated by both homo- and heterodimerization, generally induced by ligand binding [27]. This suggests that HER receptor family has evolved to provide a high degree of signal diversity [28]. The cellular outcome produced by HER receptors activation depends on the signaling pathways that are induced, as well as their magnitude and duration, which are influenced by the composition of the dimer and the identity of the ligand [28].
\n
Several growth factor ligands interact with the HER receptors [29]. HER1 receptor is activated by six ligands: epidermal growth factor (EGF), epigen (EPG), transforming growth factor α (TGFα), amphiregulin, heparin-binding EGF-like growth factor, betacellulin and epiregulin. HER3 and HER4 receptors bind neuregulins (neuregulin-1, neuregulin-2, neuregulin-3, and neuregulin-4). HER2 is a co-receptor for many ligands and is often transactivated by EGF-like ligands, inducing the formation of HER1-HER2 heterodimers. Neuregulins induces the formation of HER2-HER3 and HER2-HER4 heterodimers [29]. However, no known ligand can promote HER2 homodimer formation, implying that no ligand can bind directly to HER2 [30].
\n
The structural basis for receptor dimerization has been elucidated in recent years through crystallographic studies [31, 32]. Dimerization is mediated by the dimerization arm, a region of the extracellular region of HER receptors. While in its inactivated state the dimerization arm of EGFR, HER3 and HER4 is hidden, ligand binding induces a receptor conformational change leading to exposure of the dimerization arm [31]. In contrast to the other three HER receptors, the dimerization arm of the HER2 receptor is permanently partially exposed, thus permitting its dimerization even if the HER2 receptor lacks ligand-binding activity [32].
\n
Interaction between the dimerization arms of two HER receptors promotes the formation of a stable receptor dimer in which the kinase regions of both receptors are closed enough to permit transphosphorylation of tyrosine residues, i.e. the transfer of a phosphate group by a protein kinase to a tyrosine residue in a different kinase molecule [33, 34]. The first member of the dimer mediates the phosphorylation of the second, and the second dimer mediates the phosphorylation of the first [23].
\n
The phosphorylation of specific tyrosine residues following HER receptor activation and the subsequent recruitment and activation of downstream signaling proteins leads to activation of downstream signaling pathways promoting cell proliferation, survival, migration, adhesion, angiogenesis and differentiation [35]. The Phosphatidylinositol 3′-kinase (PI3K)-Akt pathway and the Ras/Raf/MEK/ERK pathway (also known as extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway) are the two most important and most extensively studied downstream signaling pathways that are activated by the HER receptors [5, 36]. These downstream signaling cascades control cell cycle, cell growth and survival, apoptosis, metabolism and angiogenesis [37, 38]. Signaling from HER receptors is then terminated through the internalization of the activated receptors from the cell surface by endocytosis. Internalized receptors are then either recycled back to the plasma membrane (HER2, HER3, HER4) or degraded in lysosomes (HER1) [39, 40].
\n
HER heterodimers produce more potent signal transduction than homodimers. This can be explained by the fact that heterodimerization provides additional phosphotyrosine residues necessary for the recruitment of effector proteins [28]. Heterodimerization follows a strict hierarchical principle with HER2 representing the preferred dimerization and signaling partner for all other members of the HER family [41]. HER2 seems to function mainly as a co-receptor, increasing the affinity of ligand binding to dimerized receptor complexes [42, 43]. HER2 has the strongest catalytic kinase activity [41] and HER2-containing heterodimers produce intracellular signals that are significantly stronger than signals generated from other HER heterodimers [44]. The HER2-HER3 heterodimer in particular exhibits extremely potent mitogenic activity through the stimulation of the PI3K/Akt pathway, a master regulator of cell growth and survival [45]. Furthermore, HER2 containing heterodimers have a slow rate of receptor internalization, which results in prolonged stimulation of downstream signaling pathways [28]. HER2 can also be activated by complexing with other membrane receptors, such as Insulin-like growth factor I receptor (IGF-1R) [46].
\n
\n
\n
2.1.2. Consequences of constitutive HER2 receptor activation
\n
Whereas in normal cells the activity of tyrosine kinases is a tightly controlled mechanism, in cancer cells, alterations in tyrosine kinases—overexpression of receptor tyrosine kinase proteins, amplification or mutation in the corresponding gene, abnormal stimulation by autocrine growth factors loop or delayed degradation of activated receptor tyrosine kinase—lead to constitutive kinase activation and therefore to aberrant cellular growth and proliferation [34, 47]. Constitutive activation of HER1, HER2, HER3, IGF-1R, Fibroblast growth factor receptor (FGFR), c-Met, Insulin Receptor (IR), Vascular Endothelial Growth Factor Receptor (VEGFR), Jak kinases and Src have been associated with human cancer [34, 48, 49, 50, 51, 52].
\n
Several ways of aberrant activation of HER receptors have been described, including ligand binding, molecular structural alterations, lack of the phosphatase activity, or overexpression of the HER receptor [53].
\n
In HER2-positive tumors, receptor overexpression has been identified as the mechanism of HER2 activation. The increased amount of cell surface HER2 receptors associated with HER2 overexpression leads to increased receptor-receptor interactions, provoking a sustained tyrosine phosphorylation of the kinase domain and therefore constant activation of the signaling pathways. HER2 overexpression also enhances HER2 heterodimerization with HER1 and HER3 [54] resulting in an increased activation of the downstream signaling pathways. It has also been shown that HER2 overexpression leads to enhanced HER1 membrane expression and HER1 signaling activity through interference with the endocytic regulation of HER1 [54, 55, 56]. While HER1 undergoes endocytic degradation after ligand-mediated activation and homodimerization, HER1-HER2 heterodimers evade endocytic degradation in favor of the recycling pathway [57, 58], resulting in increased HER1 membrane expression and activity [55, 56, 59].
\n
It has also been reported that HER2 overexpression enhances cell proliferation through the rapid degradation of the cyclin-dependent kinase (Cdk) inhibitor p27 and the upregulation of factors that promote cell cycle progression, including Cdk6 and cyclins D1 and E [60].
\n
Several methods have been developed for the assessment of HER2 status in breast cancer specimens, at the protein level, DNA level, and RNA level. Here below, we present some of the existing techniques that are used for the HER2 determination in clinical practice.
\n
\n
\n
\n
2.2. Methods for the evaluation of HER2 status in breast cancer specimens
\n
\n
2.2.1. HER2 status evaluation at the protein level
\n
\n
2.2.1.1. Immunohistochemistry (IHC)
\n
IHC allows the evaluation of the HER2 protein expression in formalin-fixed, paraffin-embedded (FFPE) tissues using specific antibodies directed against the HER2 receptor protein [61]. HER2 receptor is then visualized with the chromogen 3,3′-diaminobenzidine tetrahydrochloride (DAB) resulting in a brownish membranous staining. Several commercially available diagnostic tests for the determination of HER2 expression have been approved by the FDA: the HercepTest™ kit (DAKO, Glostrup, Denmark), the InSite™ HER2/neu kit (clone CB11; BioGenex Laboratories, San Ramon, CA), the Pathway™ kit (clone 4B5; Ventana Medical Systems, Tucson, AZ), and the Bond Oracle HER2 IHC System (Leica Biosystems, Newcastle, UK).
\n
By this method, it is possible to estimate the number of cells showing membranous staining in the tissue section as well as the intensity of the staining [62]. Membranous staining in the invasive component of specimen is scored on a semi-quantitative scale. According to the American Society of Clinical oncology (ASCO) and the College of American Pathologists (CAP) recommendations for HER2 testing in breast cancer published in 2013, HER2 expression is scored as 0 (no staining or weak/incomplete membrane staining in ≤10% of tumor cells), 1+ (weak, incomplete membrane staining in >10% of tumor cells), 2+ (strong, complete membrane staining in ≤10% of tumor cells or weak/moderate and/or incomplete membrane staining in >10% of tumors cells) or 3+ (strong, complete, homogeneous membrane staining in >10% of tumor cells) [61]. In clinical practice, HER2 immunohistochemical status is evaluated as negative if the immunohistochemical score is 0 or 1+, equivocal is the score is 2+, and positive if the score is 3+. Patients with a positive HER2 status at the IHC are eligible for targeted therapy with HER2 inhibitors. The IHC 2+ category is considered borderline and confirmatory testing using an alternative assay (fluorescence in situ hybridization (FISH) or other in situ hybridization (ISH) methods, see Section 2.2.2) is required for final determination.
\n
IHC is an easy and relatively inexpensive method [63]. However, this technique can be affected by numerous factors, including warm/cold ischemic time [64], delay and duration of fixation [65], and antibody used [66, 67]. Moreover, since the interpretation of results is based on semiquantitative scoring, this technique is prone to interobserver variability and therefore to substantial discrepancies in the IHC results, particularly for cases scoring 2+ [68].
As mentioned before, HER2 receptor is composed of an extracellular domain (ECD), a transmembrane domain, and an intracellular domain with tyrosine kinase activity. The HER2 ECD can be cleaved from the HER2 full-length receptor through matrix metalloproteases and released into the serum [69]. HER2 ECD levels present in serum can be measured using an enzyme-linked immunosorbent assay (ELISA). HER2 ECD is detected using two antibodies that recognize two specific epitopes of the antigen. Several commercially available ELISA assays received FDA approval: the automated ELISA assay Immuno-1 (Siemens Healthcare Diagnostics, Tarrytown, NY), the manual ELISA assay (Siemens Healthcare Diagnostics) in 2000, and the automated ELISA assay ADVIA Centaur (Siemens Healthcare Diagnostics) in 2003 [70].
\n
Although some studies suggest that HER2 ECD levels measured in patient’s serum could be used as a biomarker for the monitoring of the disease course and the response of the patient to therapy, the clinical use of the ELISA assay for the evaluation of the HER2 ECD has not yet been widely implemented [71, 72]. This is mainly due to the fact that studies that analyzed the association between HER2 ECD levels and prognostic and predictive factors in breast cancer patients reported conflicting results, depending on which cutoff value was considered or which assay was used [71].
\n
ELISA is an easy and fast method. In addition, given that HER2 ECD can be measured directly in serum, ELISA can be used to monitor the dynamic changes of HER2 status following treatment or over the course of the disease progression [71]. Results obtained by ELISA, however, might not be reliable if the serum samples are from patients under treatment, as trastuzumab present in the patient’s serum might compete with the two antibodies used in the assay.
\n
\n
\n
\n
2.2.2. HER2 status evaluation at the DNA level
\n
\n
2.2.2.1. Fluorescence in situ hybridization (FISH)
\n
The FISH technique is a cytogenetic technique that uses fluorescent probes to target specific DNA sequences in FFPE tissue samples [73]. FISH is effectuated either as a single-color assay (HER2 probe only) to evaluate HER2 gene copies per nucleus or as a dual-color assay using differentially labeled HER2 and chromosome 17 centromere (chromosome enumeration probe 17, CEP17) probes simultaneously. The dual-color assay allows the determination of the HER2/CEP17 ratio [74]. The HER2/CEP17 ratio is often regarded as a better reflection of the HER2 amplification status, as the latter may be influenced by abnormal chromosome 17 copy number (mainly polysomy) [75].
\n
The HER2 gene locus on chromosome 17 is recognized by the HER2 probe, which is labeled with a fluorophore (orange as example). The α satellite DNA sequence located at the centromeric region of chromosome 17 is recognized by a fluorophore-labeled chromosome 17 centromere probe (green as example). Nuclei are then counterstained with 4,6′-diamino-2-phenylindole (DAPI). Fluorescent hybridization signals can be visualized using a fluorescence microscope equipped with appropriate filters (for example Spectrum Orange for locus-specific probe HER2, Spectrum Green for centromeric probe 17, and the UV filter for the DAPI nuclear counterstain) [76].
\n
Three FISH assay kits have been approved by the FDA for the determination of the HER2 gene amplification in breast cancer specimens: the single-probe INFORM HER2 FISH DNA kit (Ventana Medical Systems), the dual-probe PathVysion HER-2 DNA probe kit (Abbott Molecular, Des Plaines, IL), and the dual-probe HER2 FISH PharmDx kit (DAKO).
\n
According to the 2013 ASCO/CAP guidelines, a case is evaluated as amplified when the mean HER2 gene copy number is ≥6 signals/nucleus or HER2/CEP17 ratio is ≥2.0, else as equivocal if mean HER2 gene copy number is ≥4 and <6 signals/nucleus, and else as non-amplified when the mean HER2 gene copy number is <4 signals/nucleus. In order to adequately evaluate HER2 status, a minimum of 20 tumor cell nuclei are counted in at least two invasive tumor areas. For equivocal FISH specimens, results are confirmed by counting 20 additional cells [61]. Moreover, the equivocal category requires reflex testing with the alternative assay (IHC) on the same specimen for final determination. Reflex testing can also be performed using IHC or ISH methods on an alternative specimen. If specimen is evaluated as equivocal, even after reflex testing, the oncologist may consider targeted treatment.
\n
Although still matter of debate, several researchers consider FISH as being more accurate and reliable than IHC in the assessment of HER2 status in breast cancer specimens [77, 78, 79, 80]. In addition, given that DNA is more stable than protein, preanalytical factors have less impact on assay results compared with IHC [81]. Although the FISH technique yields results that are considered more objective and quantitative than immunohistochemical scoring [73, 82], this method is nine times more time-consuming [83] and three times more expensive compared with IHC [84]. In addition, costly equipment is required for signal detection [67]. The FISH assay can be interpreted only by well-trained personnel, as distinguishing invasive breast cancer from breast carcinoma in situ under fluorescence is arduous [85].
\n
Moreover, fluorescence signal counting is time consuming. To overcome this limitation, image analysis software for the automated assessment of fluorescence signals has been developed. Several investigators have reported an excellent concordance between HER2/CEP17 ratios calculated through manual counting and those obtained with automated image analysis system [86, 87, 88]. Some image analysis systems has been approved by the FDA for the automated determination of HER2 gene amplification: the Metafer (MetaSystems, Altlussheim, Germany) and the Ariol HER2/neu FISH (Applied Imaging, San Jose, CA). Furthermore, this software allows the storing of captured images [86].
\n
\n
\n
2.2.2.2. Bright-field in situ hybridization (ISH) methods
\n
Given that FISH technology have some limitations, alternative ISH methods have been developed for the assessment of HER2 gene amplification in breast cancer specimens. Similar to FISH, these methods allow the quantification of HER2 gene copy number within tumor cell nuclei in FFPE tissues using a DNA probe that specifically recognizes specific DNA sequences. However, whereas the FISH assay is performed with DNA probes that are coupled to a fluorescent detection system, these alternative ISH methods are performed with probes that are coupled to chromogenic (chromogenic ISH [CISH]), or silver detection system (silver-enhanced ISH [ISH]), or a combination of CISH and SISH (bright-field double ISH [BDISH]) [89]. Similar to FISH, ISH methods are performed either as single-color assay or as a dual-color assay.
\n
Since visualization is achieved using other reactions than fluorescence-labeled probe, signals can be evaluated using a standard bright-field microscope, allowing the simultaneous analysis of HER2 gene amplification and morphologic features of tissues. Moreover, contrary to fluorescent signals that fade over time, bright-field ISH signals are permanent [90]. Here after, we will briefly describe the bright-field ISH methods that are used in clinics.
\n
\n
\n
2.2.2.3. Chromogenic in situ hybridization (CISH)
\n
CISH allows the visualization of target genes in breast cancer tissue sections through peroxidase enzyme-labeled probes [90]. The single-color CISH assay (SPOT-Light HER2 CISH kit; Life Technologies, Carlsbad, CA), and the dual-color CISH assay (HER2 CISH PharmDx kit; Dako) received FDA approval in 2008 and 2011, respectively [61].
\n
With the single-color CISH assay, only the absolute HER2 gene copy number is evaluated. The hybridized HER2 probe is visualized by DAB as chromogen. HER2 gene copies are recognizable as brown chromogenic reaction product signals within nuclei. Slides are then counterstained with hematoxylin [82, 91, 92]. HER2 signals are recognizable either as large brownish signal clusters or as numerous individual brownish small signals [92]. Cases with low-level amplification show six to 10 signals per nucleus in more than 50% of breast cancer cells, whereas high-level amplification cases are characterized by a mean HER2 gene copy number of more than 10 or by large gene copy clusters in more than 50% of breast cancer cell nuclei [92, 93].
\n
The dual-color CISH assay allows the simultaneous visualization of the HER2 and CEP17 probes on the same slide [94]. HER2 probes are visualized using a chromogen (green as example), whereas CEP17 probes are visualized using another chromogen (red as example). Slides are then counterstained with hematoxylin. Results obtained by dual-color CISH are reported as dual-color FISH [61].
\n
The CISH assay is twice cheaper [72] and 1.2 times faster [82] comparatively to FISH. Furthermore, since the CISH assay allows an easier identification of the invasive component compared with FISH, evaluation of CISH signals is less time-consuming than FISH [82, 94]. In addition, tumor heterogeneity is promptly recognizable, even at low magnification [95]. Moreover, the dual-color assay can be performed on an automated slide stainer, improving the reproducibility of the assay [96]. However, the assessment of HER2 gene copy number can be arduous in tumor regions showing high-level amplification, since overlapping dots lead to formation of signal clusters that are difficult to evaluate [94]. In addition, technical problems, including under- or overfixation, over- or underdigestion of tissue samples can lead to inaccurate results or loss of signals [91, 93].
\n
\n
\n
2.2.2.4. Silver-enhanced in situ hybridization (SISH)
\n
SISH is an automated enzyme metallography assay, in which an enzyme reaction is used to selectively deposit metallic silver from solution at the reaction site to produce a black staining [97]. All steps of the assay are performed on the Ventana BenchMark XT automated slide stainer [98, 99]. HER2 and chromosome 17 analysis is performed on sequential slides [98, 99]. As previously mentioned, HER2 and CEP17 probes are visualized through the process of enzyme metallography. During the process, silver precipitation is deposited in the nucleus, and HER2 or CEP17 signals are visualized as black dots within cell nuclei [99]. Similar to the FISH assay, HER2 gene amplification status assessed by SISH is reported as a HER2/CEP17 ratio, according to the ASCO/CAP guidelines [61].
\n
Given that the SISH assay is fully automated, this technique is six times faster to perform than the FISH assay [99]. In addition, black SISH signals are easier to evaluate compared with other bright-field ISH techniques [100, 101]. However, to correct for chromosome 17 aneusomy, the hybridization of a further section is required for separate assessment of CEP17 copy number [100].
\n
\n
\n
2.2.2.5. Bright-field double ISH (BDISH)
\n
Bright-field double ISH (BDISH) or dual-color in situ hybridization (dual ISH) is a fully automated bright-field ISH assay for the simultaneous determination of HER2 and CEP17 signals on the same FFPE breast cancer tissue sections [100]. This assay combines the visualization of HER2 gene copies through the deposition of metallic silver particles, similar to the mono-color SISH procedure, with the detection of CEP17 copies with a red chromogen, similar to the CISH assay [102]. HER2 signals are visualized as discrete black spots and the CEP17 signals as red spots in the nuclei. Slides are then counterstained with hematoxylin [100]. HER2 gene amplification status assessed by BDISH is reported as a HER2/CEP17 ratio, according to the ASCO/CAP guidelines.
\n
This technique is very pertinent especially for cases displaying chromosome 17 aneusomy or intratumoral heterogeneity, as it allows the simultaneous visualization of both HER2 and CEP17 probes on the same slide [100]. Furthermore, as the HER2 signals and CEP17 signals differ in color and size (HER2 black spots are smaller than CEP17 red spots), both signals can be distinguished from each other, even though they colocalize within cell nuclei [100]. Moreover, since this assay is completely automated, results are available within 6 h, in addition of being more reproducible, as risk of human errors are diminished [101]. The BDISH assay presents the same disadvantages as CISH and SISH.
\n
\n
\n
2.2.2.6. Instant-quality FISH (IQFISH) and automated HER2 FISH
\n
Recently, new FISH assays have been developed for the evaluation of HER2 gene amplification in breast cancer specimens, including instant-quality FISH (IQFISH), which received FDA approval, and automated HER2 FISH. In analogy to conventional FISH, these new assays allow the quantitative determination of HER2 gene amplification. The IQFISH assay is performed in the same way as manual FISH, with the exception of the hybridization buffer (IQFISH buffer), which considerably reduces the time required for the hybridization step (16 times faster) and therefore the total assay time [103, 104]. Moreover, while hybridization buffer provided in conventional FISH assay contain the toxic formamide, the IQFISH buffer is nontoxic [103]. Compared to conventional FISH, automated FISH is less expensive, since the full automation of the assay requires less human intervention [105]. Furthermore, automated FISH enables faster processing of samples and recording [105].
Polymerase chain reaction (PCR) is a technique used for the detection of DNA samples through the exponential amplification of target DNA sequences.
\n
Reverse transcription PCR (RT-PCR) assay allows the quantification of mRNA and can be used for the evaluation of HER2 expression in breast cancer specimens in both FFPE and frozen tissues [106, 107]. Extracted mRNA is at first reverse transcribed into complementary DNA (cDNA). cDNA is then measured by quantitative PCR (qPCR). The relative quantitation of HER2 gene expression is evaluated comparing the target gene expression with that of housekeeping genes. The relative HER2 gene expression measured in samples is then normalized to a calibrator obtained by mixing RNA from several normal breast tissue specimens. Of note, the Oncotype Dx (Genomic Health, Redwood City, CA) assay is a test based on RT-PCR technology and is used to analyze the expression of 21 genes involved in breast cancer biology, such as HER2, ER, and PR. This assay is used to predict the likelihood of breast cancer recurrence in patients with early-stage, node-negative, ER-positive breast cancer [106].
\n
RT-PCR has a large dynamic range, in addition of being a quantitative method. PCR results, however, are often associated with false-negative results due to dilution of amplified tumor cells with surrounding nonamplified stromal cells [108, 109]. In addition, the evaluation of HER2 status at the mRNA level by RT-PCR using FFPE tissues can be problematic, as mRNA integrity can be damaged by several factors, including tissue fixation and storage time [110].
\n
\n
\n
\n
\n
\n
3. Conclusion(s)
\n
HER2 is a prognostic marker in breast cancer. HER2 overexpression and HER2 gene amplification, which occur in 15–20% of breast cancer patients, cause aberrant constitutive activation of the signaling pathway. This leads to uncontrolled and unregulated cell growth and correlates with poor outcome of HER2-positive breast cancer patients.
\n
In addition, HER2-positive status is considered a predictive marker of response to HER2-targeted drugs, including trastuzumab and lapatinib [111]. Considering the clinical and economic implications of targeted anti-HER2 treatments, reliable HER2 test results are essential. False negative results would deny the patients access to the potential benefits of trastuzumab, whereas false positive results would expose patients to the potential cardiotoxic side effects of this expensive agent without experiencing any therapeutic advantages [89].
\n
Although several techniques have obtained FDA approval for the HER2 assessment in breast cancer specimens, the ASCO/CAP guidelines recommend performing IHC or ISH methods to determine HER2 status in breast cancer. The optimal method for evaluating HER2 status in breast cancer specimens, however, is still matter of debate, since each method is characterized by its own advantages and disadvantages. Therefore, emphasis must be put on standardization of procedures and quality control assessment of already existing methods. Also, development of new accurate assays should be promoted. Moreover, large clinical trials are needed to identify the technique that most reliably predicts a positive response to HER2 inhibitors.
\n
\n
Acknowledgments
\n
DF received doctoral fellowships from the Fonds de recherche du Québec—Santé (FRQS) and the Laval University Cancer Research. CD is a recipient of the Canadian Breast Cancer Foundation-Canadian Cancer Society Capacity Development award (award #703003) and the FRQS Research Scholar.
\n
Conflict of interest
The authors have no conflicts of interests to declare.
\n
Notes/thanks/other declarations
\n
The authors have no other declarations.
\n
Acronyms and abbreviations
HER2
Human epidermal growth factor receptor 2
GRB7
Growth factor receptor bound protein 7
ESR1
Estrogen Receptor 1
PGR
Progesterone Receptor
FDA
Food and Drug Administration
EGFR
Epidermal growth factor receptor
IHC
Immunohistochemistry
FISH
Fluorescence in situ hybridization
ERBB2
erb-b2 receptor tyrosine kinase 2
HER3
Human epidermal growth factor receptor 3
HER4
Human epidermal growth factor receptor 4
ATP
Adenosine triphosphate
ECD
extracellular domain
EGF
Epidermal growth factor
EPG
Epigen
TGFα
Transforming growth factor α
PI3K
Phosphatidylinositol 3′-kinase
ERK
Extracellular signal-regulated kinase
MAPK
Mitogen-activated protein kinase
FGFR
Fibroblast growth factor receptor
IR
Insulin Receptor
VEGFR
Vascular Endothelial Growth Factor Receptor
Cdk
Cyclin-dependent kinase
FFPE
Formalin-fixed, paraffin-embedded
DAB
3,3′-diaminobenzidine tetrahydrochloride
ASCO
American Society of Clinical Oncology
CAP
College of American Pathologists
ELISA
Enzyme-linked immunosorbent assay
CEP17
Chromosome enumeration probe 17
DAPI
4,6′-diamino-2-phenylindole
ISH
in situ hybridization
CISH
Chromogenic in situ hybridization
SISH
Silver-enhanced in situ hybridization
BDISH
Bright-field double ISH
PCR
polymerase chain reaction
RT-PCR
Reverse transcription PCR
cDNA
Complementary DNA
qPCR
Quantitative PCR
\n',keywords:"breast neoplasm, oncogene, tyrosine kinase receptor, molecular oncology, HER2 status, HER2 inhibitors",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/61662.pdf",chapterXML:"https://mts.intechopen.com/source/xml/61662.xml",downloadPdfUrl:"/chapter/pdf-download/61662",previewPdfUrl:"/chapter/pdf-preview/61662",totalDownloads:1672,totalViews:549,totalCrossrefCites:5,dateSubmitted:"February 6th 2018",dateReviewed:"May 2nd 2018",datePrePublished:"November 5th 2018",datePublished:"December 5th 2018",dateFinished:"May 24th 2018",readingETA:"0",abstract:"The human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor protein. HER2 gene amplification and receptor overexpression, which occur in 15–20% of breast cancer patients, are important markers for poor prognosis. Moreover, HER2-positive status is considered a predictive marker of response to HER2 inhibitors including trastuzumab and lapatinib. Therefore, reliable HER2 determination is essential to determine the eligibility of breast cancer patients to targeted anti-HER2 therapies. In this chapter, we aim to illustrate important aspects of the HER2 receptor as well as the molecular consequences of its aberrant constitutive activation in breast cancer. In addition, we will present the methods that can be used for the evaluation of HER2 status at different levels (protein, RNA, and DNA level) in clinical practice.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/61662",risUrl:"/chapter/ris/61662",signatures:"Daniela Furrer, Claudie Paquet, Simon Jacob and Caroline Diorio",book:{id:"6813",type:"book",title:"Cancer Prognosis",subtitle:null,fullTitle:"Cancer Prognosis",slug:"cancer-prognosis",publishedDate:"December 5th 2018",bookSignature:"Guy-Joseph Lemamy",coverURL:"https://cdn.intechopen.com/books/images_new/6813.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-775-8",printIsbn:"978-1-78984-774-1",pdfIsbn:"978-1-83881-722-0",isAvailableForWebshopOrdering:!0,editors:[{id:"182568",title:"Dr.",name:"Guy-Joseph",middleName:null,surname:"Lemamy",slug:"guy-joseph-lemamy",fullName:"Guy-Joseph Lemamy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. HER2 biology and methods of assessment of HER2 status",level:"1"},{id:"sec_2_2",title:"2.1. HER2 receptor",level:"2"},{id:"sec_2_3",title:"2.1.1. HER2 structure and function",level:"3"},{id:"sec_3_3",title:"2.1.2. Consequences of constitutive HER2 receptor activation",level:"3"},{id:"sec_5_2",title:"2.2. Methods for the evaluation of HER2 status in breast cancer specimens",level:"2"},{id:"sec_5_3",title:"2.2.1. HER2 status evaluation at the protein level",level:"3"},{id:"sec_5_4",title:"2.2.1.1. Immunohistochemistry (IHC)",level:"4"},{id:"sec_6_4",title:"2.2.1.2. Enzyme-linked immunosorbent assay (ELISA)",level:"4"},{id:"sec_8_3",title:"2.2.2. HER2 status evaluation at the DNA level",level:"3"},{id:"sec_8_4",title:"2.2.2.1. Fluorescence in situ hybridization (FISH)",level:"4"},{id:"sec_9_4",title:"2.2.2.2. Bright-field in situ hybridization (ISH) methods",level:"4"},{id:"sec_10_4",title:"2.2.2.3. Chromogenic in situ hybridization (CISH)",level:"4"},{id:"sec_11_4",title:"2.2.2.4. Silver-enhanced in situ hybridization (SISH)",level:"4"},{id:"sec_12_4",title:"2.2.2.5. Bright-field double ISH (BDISH)",level:"4"},{id:"sec_13_4",title:"2.2.2.6. Instant-quality FISH (IQFISH) and automated HER2 FISH",level:"4"},{id:"sec_15_3",title:"2.2.3. HER2 status evaluation at the RNA level",level:"3"},{id:"sec_15_4",title:"2.2.3.1. Polymerase chain reaction (PCR)-based assays",level:"4"},{id:"sec_19",title:"3. Conclusion(s)",level:"1"},{id:"sec_20",title:"Acknowledgments",level:"1"},{id:"sec_23",title:"Conflict of interest",level:"1"},{id:"sec_20",title:"Notes/thanks/other declarations",level:"1"},{id:"sec_23",title:"Acronyms and abbreviations",level:"1"}],chapterReferences:[{id:"B1",body:'WHO. 2017. Available from: http://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/ [Accessed: 2017-03-23]\n'},{id:"B2",body:'Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-752\n'},{id:"B3",body:'Sorlie T. Molecular classification of breast tumors: Toward improved diagnostics and treatments. Methods in Molecular Biology. 2007;360:91-114\n'},{id:"B4",body:'Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(14):8418-8423\n'},{id:"B5",body:'Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nature Reviews. Molecular Cell Biology. 2001;2(2):127-137\n'},{id:"B6",body:'Popescu NC, King CR, Kraus MH. Localization of the human erbB-2 gene on normal and rearranged chromosomes 17 to bands q12-21.32. Genomics. 1989;4(3):362-366\n'},{id:"B7",body:'Prat A, Pascual T, Adamo B. Intrinsic molecular subtypes of HER2+ breast cancer. Oncotarget. 2017;8(43):73362-73363\n'},{id:"B8",body:'Soerjomataram I, Louwman MW, Ribot JG, Roukema JA, Coebergh JW. An overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Research and Treatment. 2008;107(3):309-330\n'},{id:"B9",body:'Yersal O, Barutca S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World Journal of Clinical Oncology. 2014;5(3):412-424\n'},{id:"B10",body:'Gianni L, Dafni U, Gelber RD, Azambuja E, Muehlbauer S, Goldhirsch A, et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: A 4-year follow-up of a randomised controlled trial. The Lancet Oncology. 2011;12(3):236-244\n'},{id:"B11",body:'Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. The New England Journal of Medicine. 2005;353(16):1659-1672\n'},{id:"B12",body:'Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, et al. Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2001;19(10):2587-2595\n'},{id:"B13",body:'Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2002;20(3):719-726\n'},{id:"B14",body:'Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, et al. Anti-tumor activity of GW572016: A dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21(41):6255-6263\n'},{id:"B15",body:'Ryan Q, Ibrahim A, Cohen MH, Johnson J, Ko CW, Sridhara R, et al. FDA drug approval summary: Lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. The Oncologist. 2008;13(10):1114-1119\n'},{id:"B16",body:'Verma S, Ewer MS. Is cardiotoxicity being adequately assessed in current trials of cytotoxic and targeted agents in breast cancer? Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2011;22(5):1011-1018\n'},{id:"B17",body:'Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5(7):953-962\n'},{id:"B18",body:'Ross JS, Fletcher JA, Bloom KJ, Linette GP, Stec J, Clark E, et al. HER-2/neu testing in breast cancer. American Journal of Clinical Pathology. 2003;120(Suppl):S53-S71\n'},{id:"B19",body:'Kallioniemi OP, Kallioniemi A, Kurisu W, Thor A, Chen LC, Smith HS, et al. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(12):5321-5325\n'},{id:"B20",body:'Iqbal N, Iqbal N. Human Epidermal Growth Factor Receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Molecular Biology International. 2014;852748:2014\n'},{id:"B21",body:'Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annual Review of Biochemistry. 2000;69:373-398\n'},{id:"B22",body:'Carpenter G. Receptors for epidermal growth factor and other polypeptide mitogens. Annual Review of Biochemistry. 1987;56:881-914\n'},{id:"B23",body:'Roskoski R Jr. ErbB/HER protein-tyrosine kinases: Structures and small molecule inhibitors. Pharmacological Research. 2014;87:42-59\n'},{id:"B24",body:'Sierke SL, Cheng K, Kim HH, Koland JG. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein. The Biochemical Journal. 1997;322(Pt 3):757-763\n'},{id:"B25",body:'Kim HH, Vijapurkar U, Hellyer NJ, Bravo D, Koland JG. Signal transduction by epidermal growth factor and heregulin via the kinase-deficient ErbB3 protein. The Biochemical Journal. 1998;334(Pt 1):189-195\n'},{id:"B26",body:'Carrera AC, Alexandrov K, Roberts TM. The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(2):442-446\n'},{id:"B27",body:'Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117-1134\n'},{id:"B28",body:'Zaczek A, Brandt B, Bielawski KP. The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histology and Histopathology. 2005;20(3):1005-1015\n'},{id:"B29",body:'Wilson KJ, Gilmore JL, Foley J, Lemmon MA, Riese DJ 2nd. Functional selectivity of EGF family peptide growth factors: Implications for cancer. Pharmacology & Therapeutics. 2009;122(1):1-8\n'},{id:"B30",body:'Rubin I, Yarden Y. The basic biology of HER2. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2001;12(Suppl 1):S3-S8\n'},{id:"B31",body:'Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Molecular Cell. 2003;12(3):541-552\n'},{id:"B32",body:'Sliwkowski MX. Ready to partner. Nature Structural Biology. 2003;10(3):158-159\n'},{id:"B33",body:'Chen H, Xu CF, Ma J, Eliseenkova AV, Li W, Pollock PM, et al. A crystallographic snapshot of tyrosine trans-phosphorylation in action. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(50):19660-19665\n'},{id:"B34",body:'Paul MK, Mukhopadhyay AK. Tyrosine kinase—Role and significance in Cancer. International Journal of Medical Sciences. 2004;1(2):101-115\n'},{id:"B35",body:'Moasser MM. The oncogene HER2: Its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469-6487\n'},{id:"B36",body:'Nguyen B, Keane MM, Johnston PG. The biology of growth regulation in normal and malignant breast epithelium: From bench to clinic. Critical Reviews in Oncology/Hematology. 1995;20(3):223-236\n'},{id:"B37",body:'Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harbor Perspectives in Biology. 2012;4(9):a011189\n'},{id:"B38",body:'Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets. 2012;16(1):103-119\n'},{id:"B39",body:'Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G. All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. The Journal of Biological Chemistry. 1996;271(9):5251-5257\n'},{id:"B40",body:'Bertelsen V, Stang E. The mysterious ways of ErbB2/HER2 trafficking. Membranes. 2014;4(3):424-446\n'},{id:"B41",body:'Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Molecular and Cellular Biology. 1996;16(10):5276-5287\n'},{id:"B42",body:'Atalay G, Cardoso F, Awada A, Piccart MJ. Novel therapeutic strategies targeting the epidermal growth factor receptor (EGFR) family and its downstream effectors in breast cancer. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2003;14(9):1346-1363\n'},{id:"B43",body:'Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. The EMBO Journal. 1997;16(7):1647-1655\n'},{id:"B44",body:'Gutierrez C, Schiff R. HER2: Biology, detection, and clinical implications. Archives of Pathology & Laboratory Medicine. 2011;135(1):55-62\n'},{id:"B45",body:'Way TD, Lin JK. Role of HER2/HER3 co-receptor in breast carcinogenesis. Future Oncology. 2005;1(6):841-849\n'},{id:"B46",body:'Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Research. 2005;65(23):11118-11128\n'},{id:"B47",body:'Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, et al. Protein kinases and phosphatases in the control of cell fate. Enzyme Research. 2011;2011:329098\n'},{id:"B48",body:'Arteaga CL. Epidermal growth factor receptor dependence in human tumors: More than just expression? The Oncologist. 2002;7(Suppl 4):31-39\n'},{id:"B49",body:'Brooks AN, Kilgour E, Smith PD. Molecular pathways: Fibroblast growth factor signaling: A new therapeutic opportunity in cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2012;18(7):1855-1862\n'},{id:"B50",body:'Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(16):7727-7731\n'},{id:"B51",body:'Ocana A, Vera-Badillo F, Seruga B, Templeton A, Pandiella A, Amir E. HER3 overexpression and survival in solid tumors: A meta-analysis. Journal of the National Cancer Institute. 2013;105(4):266-273\n'},{id:"B52",body:'Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Critical Reviews in Oncology/Hematology. 2007;62(3):179-213\n'},{id:"B53",body:'Stern DF. Tyrosine kinase signalling in breast cancer: ErbB family receptor tyrosine kinases. Breast Cancer Research: BCR. 2000;2(3):176-183\n'},{id:"B54",body:'Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D. Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: Distribution of homo- and heterodimers depends on relative HER2 levels. The Journal of Biological Chemistry. 2003;278(26):23343-23351\n'},{id:"B55",body:'Huang G, Chantry A, Epstein RJ. Overexpression of ErbB2 impairs ligand-dependent downregulation of epidermal growth factor receptors via a post-transcriptional mechanism. Journal of Cellular Biochemistry. 1999;74(1):23-30\n'},{id:"B56",body:'Wang Z, Zhang L, Yeung TK, Chen X. Endocytosis deficiency of epidermal growth factor (EGF) receptor-ErbB2 heterodimers in response to EGF stimulation. Molecular Biology of the Cell. 1999;10(5):1621-1636\n'},{id:"B57",body:'Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN, Tzahar E, et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. The EMBO Journal. 1998;17(12):3385-3397\n'},{id:"B58",body:'Waterman H, Yarden Y. Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Letters. 2001;490(3):142-152\n'},{id:"B59",body:'Hendriks BS, Wiley HS, Lauffenburger D. HER2-mediated effects on EGFR endosomal sorting: Analysis of biophysical mechanisms. Biophysical Journal. 2003;85(4):2732-2745\n'},{id:"B60",body:'Timms JF, White SL, O’Hare MJ, Waterfield MD. Effects of ErbB-2 overexpression on mitogenic signalling and cell cycle progression in human breast luminal epithelial cells. Oncogene. 2002;21(43):6573-6586\n'},{id:"B61",body:'Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(31):3997-4013\n'},{id:"B62",body:'Varshney D, Zhou YY, Geller SA, Alsabeh R. Determination of HER-2 status and chromosome 17 polysomy in breast carcinomas comparing HercepTest and PathVysion FISH assay. American Journal of Clinical Pathology. 2004;121(1):70-77\n'},{id:"B63",body:'Hanna W, Kahn HJ, Trudeau M. Evaluation of HER-2/neu (erbB-2) status in breast cancer: From bench to bedside. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 1999;12(8):827-834\n'},{id:"B64",body:'Yildiz-Aktas IZ, Dabbs DJ, Bhargava R. The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 2012;25(8):1098-1105\n'},{id:"B65",body:'Middleton LP, Price KM, Puig P, Heydon LJ, Tarco E, Sneige N, et al. Implementation of American Society of Clinical Oncology/College of American Pathologists HER2 Guideline Recommendations in a tertiary care facility increases HER2 immunohistochemistry and fluorescence in situ hybridization concordance and decreases the number of inconclusive cases. Archives of Pathology & Laboratory Medicine. 2009;133(5):775-780\n'},{id:"B66",body:'Tsuda H, Sasano H, Akiyama F, Kurosumi M, Hasegawa T, Osamura RY, et al. Evaluation of interobserver agreement in scoring immunohistochemical results of HER-2/neu (c-erbB-2) expression detected by HercepTest, Nichirei polyclonal antibody, CB11 and TAB250 in breast carcinoma. Pathology International. 2002;52(2):126-134\n'},{id:"B67",body:'Zhao J, Wu R, Au A, Marquez A, Yu Y, Shi Z. Determination of HER2 gene amplification by chromogenic in situ hybridization (CISH) in archival breast carcinoma. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 2002;15(6):657-665\n'},{id:"B68",body:'Hoang MP, Sahin AA, Ordonez NG, Sneige N. HER-2/neu gene amplification compared with HER-2/neu protein overexpression and interobserver reproducibility in invasive breast carcinoma. American Journal of Clinical Pathology. 2000;113(6):852-859\n'},{id:"B69",body:'Sanderson MP, Dempsey PJ, Dunbar AJ. Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors. 2006;24(2):121-136\n'},{id:"B70",body:'Carney WP, Leitzel K, Ali S, Neumann R, Lipton A. HER-2/neu diagnostics in breast cancer. Breast Cancer Research: BCR. 2007;9(3):207\n'},{id:"B71",body:'Lam L, McAndrew N, Yee M, Fu T, Tchou JC, Zhang H. Challenges in the clinical utility of the serum test for HER2 ECD. Biochimica et Biophysica Acta. 2012;1826(1):199-208\n'},{id:"B72",body:'Moelans CB, de Weger RA, Van der Wall E, van Diest PJ. Current technologies for HER2 testing in breast cancer. Critical Reviews in Oncology/Hematology. 2011;80(3):380-392\n'},{id:"B73",body:'Hicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: A technical review with interpretive guidelines. Human Pathology. 2005;36(3):250-261\n'},{id:"B74",body:'Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: Ten years of targeted anti-HER-2 therapy and personalized medicine. The Oncologist. 2009;14(4):320-368\n'},{id:"B75",body:'Tse CH, Hwang HC, Goldstein LC, Kandalaft PL, Wiley JC, Kussick SJ, et al. Determining true HER2 gene status in breast cancers with polysomy by using alternative chromosome 17 reference genes: Implications for anti-HER2 targeted therapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(31):4168-4174\n'},{id:"B76",body:'Varga Z, Noske A, Ramach C, Padberg B, Moch H. Assessment of HER2 status in breast cancer: Overall positivity rate and accuracy by fluorescence in situ hybridization and immunohistochemistry in a single institution over 12 years: A quality control study. BMC Cancer. 2013;13:615\n'},{id:"B77",body:'Bartlett JM, Going JJ, Mallon EA, Watters AD, Reeves JR, Stanton P, et al. Evaluating HER2 amplification and overexpression in breast cancer. The Journal of Pathology. 2001;195(4):422-428\n'},{id:"B78",body:'Paik S, Bryant J, Tan-Chiu E, Romond E, Hiller W, Park K, et al. Real-world performance of HER2 testing--National Surgical Adjuvant Breast and bowel project experience. Journal of the National Cancer Institute. 2002;94(11):852-854\n'},{id:"B79",body:'Press MF, Hung G, Godolphin W, Slamon DJ. Sensitivity of HER-2/neu antibodies in archival tissue samples: Potential source of error in immunohistochemical studies of oncogene expression. Cancer Research. 1994;54(10):2771-2777\n'},{id:"B80",body:'Tubbs RR, Pettay JD, Roche PC, Stoler MH, Jenkins RB, Grogan TM. Discrepancies in clinical laboratory testing of eligibility for trastuzumab therapy: Apparent immunohistochemical false-positives do not get the message. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2001;19(10):2714-2721\n'},{id:"B81",body:'Yeh IT. Measuring HER-2 in breast cancer. Immunohistochemistry, FISH, or ELISA? American Journal of Clinical Pathology. 2002;117(Suppl):S26-S35\n'},{id:"B82",body:'Bhargava R, Lal P, Chen B. Chromogenic in situ hybridization for the detection of HER-2/neu gene amplification in breast cancer with an emphasis on tumors with borderline and low-level amplification: Does it measure up to fluorescence in situ hybridization? American Journal of Clinical Pathology. 2005;123(2):237-243\n'},{id:"B83",body:'Yaziji H, Goldstein LC, Barry TS, Werling R, Hwang H, Ellis GK, et al. HER-2 testing in breast cancer using parallel tissue-based methods. Journal of the American Medical Association. 2004;291(16):1972-1977\n'},{id:"B84",body:'Ridolfi RL, Jamehdor MR, Arber JM. HER-2/neu testing in breast carcinoma: A combined immunohistochemical and fluorescence in situ hybridization approach. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 2000;13(8):866-873\n'},{id:"B85",body:'Dowsett M, Hanna WM, Kockx M, Penault-Llorca F, Ruschoff J, Gutjahr T, et al. Standardization of HER2 testing: Results of an international proficiency-testing ring study. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 2007;20(5):584-591\n'},{id:"B86",body:'Furrer D, Jacob S, Caron C, Sanschagrin F, Provencher L, Diorio C. Validation of a new classifier for the automated analysis of the human epidermal growth factor receptor 2 (HER2) gene amplification in breast cancer specimens. Diagnostic Pathology. 2013;8:17\n'},{id:"B87",body:'Stevens R, Almanaseer I, Gonzalez M, Caglar D, Knudson RA, Ketterling RP, et al. Analysis of HER2 gene amplification using an automated fluorescence in situ hybridization signal enumeration system. The Journal of Molecular Diagnostics: JMD. 2007;9(2):144-150\n'},{id:"B88",body:'Tubbs RR, Pettay JD, Swain E, Roche PC, Powell W, Hicks DG, et al. Automation of manual components and image quantification of direct dual label fluorescence in situ hybridization (FISH) for HER2 gene amplification: A feasibility study. Applied Immunohistochemistry & Molecular Morphology: AIMM. 2006;14(4):436-440\n'},{id:"B89",body:'Furrer D, Sanschagrin F, Jacob S, Diorio C. Advantages and disadvantages of technologies for HER2 testing in breast cancer specimens. American Journal of Clinical Pathology. 2015;144(5):686-703\n'},{id:"B90",body:'Penault-Llorca F, Bilous M, Dowsett M, Hanna W, Osamura RY, Ruschoff J, et al. Emerging technologies for assessing HER2 amplification. American Journal of Clinical Pathology. 2009;132(4):539-548\n'},{id:"B91",body:'Gong Y, Gilcrease M, Sneige N. Reliability of chromogenic in situ hybridization for detecting HER-2 gene status in breast cancer: Comparison with fluorescence in situ hybridization and assessment of interobserver reproducibility. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 2005;18(8):1015-1021\n'},{id:"B92",body:'Isola J, Tanner M, Forsyth A, Cooke TG, Watters AD, Bartlett JM. Interlaboratory comparison of HER-2 oncogene amplification as detected by chromogenic and fluorescence in situ hybridization. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2004;10(14):4793-4798\n'},{id:"B93",body:'Gupta D, Middleton LP, Whitaker MJ, Abrams J. Comparison of fluorescence and chromogenic in situ hybridization for detection of HER-2/neu oncogene in breast cancer. American Journal of Clinical Pathology. 2003;119(3):381-387\n'},{id:"B94",body:'Garcia-Caballero T, Grabau D, Green AR, Gregory J, Schad A, Kohlwes E, et al. Determination of HER2 amplification in primary breast cancer using dual-colour chromogenic in situ hybridization is comparable to fluorescence in situ hybridization: A European multicentre study involving 168 specimens. Histopathology. 2010;56(4):472-480\n'},{id:"B95",body:'Lambros MB, Natrajan R, Reis-Filho JS. Chromogenic and fluorescent in situ hybridization in breast cancer. Human Pathology. 2007;38(8):1105-1122\n'},{id:"B96",body:'Hwang CC, Pintye M, Chang LC, Chen HY, Yeh KY, Chein HP, et al. Dual-colour chromogenic in-situ hybridization is a potential alternative to fluorescence in-situ hybridization in HER2 testing. Histopathology. 2011;59(5):984-992\n'},{id:"B97",body:'Powell RD, Pettay JD, Powell WC, Roche PC, Grogan TM, Hainfeld JF, et al. Metallographic in situ hybridization. Human Pathology. 2007;38(8):1145-1159\n'},{id:"B98",body:'Bartlett JM, Campbell FM, Ibrahim M, Wencyk P, Ellis I, Kay E, et al. Chromogenic in situ hybridization: A multicenter study comparing silver in situ hybridization with FISH. American Journal of Clinical Pathology. 2009;132(4):514-520\n'},{id:"B99",body:'Francis GD, Jones MA, Beadle GF, Stein SR. Bright-field in situ hybridization for HER2 gene amplification in breast cancer using tissue microarrays: Correlation between chromogenic (CISH) and automated silver-enhanced (SISH) methods with patient outcome. Diagnostic Molecular Pathology: The American Journal of Surgical Pathology, Part B. 2009;18(2):88-95\n'},{id:"B100",body:'Nitta H, Hauss-Wegrzyniak B, Lehrkamp M, Murillo AE, Gaire F, Farrell M, et al. Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH). Diagnostic Pathology. 2008;3:41\n'},{id:"B101",body:'Schiavon BN, Jasani B, de Brot L, Vassallo J, Damascena A, Cirullo-Neto J, et al. Evaluation of reliability of FISH versus brightfield dual-probe in situ hybridization (BDISH) for frontline assessment of HER2 status in breast cancer samples in a community setting: Influence of poor tissue preservation. The American Journal of Surgical Pathology. 2012;36(10):1489-1496\n'},{id:"B102",body:'Bartlett JM, Campbell FM, Ibrahim M, O’Grady A, Kay E, Faulkes C, et al. A UK NEQAS ISH multicenter ring study using the Ventana HER2 dual-color ISH assay. American Journal of Clinical Pathology. 2011;135(1):157-162\n'},{id:"B103",body:'Franchet C, Filleron T, Cayre A, Mounie E, Penault-Llorca F, Jacquemier J, et al. Instant-quality fluorescence in-situ hybridization as a new tool for HER2 testing in breast cancer: A comparative study. Histopathology. 2014;64(2):274-283\n'},{id:"B104",body:'Matthiesen SH, Hansen CM. Fast and non-toxic in situ hybridization without blocking of repetitive sequences. PLoS One. 2012;7(7):e40675\n'},{id:"B105",body:'Ohlschlegel C, Kradolfer D, Hell M, Jochum W. Comparison of automated and manual FISH for evaluation of HER2 gene status on breast carcinoma core biopsies. BMC Clinical Pathology. 2013;13:13\n'},{id:"B106",body:'Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, et al. Measurement of gene expression in archival paraffin-embedded tissues: Development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. The American Journal of Pathology. 2004;164(1):35-42\n'},{id:"B107",body:'Noske A, Loibl S, Darb-Esfahani S, Roller M, Kronenwett R, Muller BM, et al. Comparison of different approaches for assessment of HER2 expression on protein and mRNA level: Prediction of chemotherapy response in the neoadjuvant GeparTrio trial (NCT00544765). Breast Cancer Research and Treatment. 2011;126(1):109-117\n'},{id:"B108",body:'Jacquemier J, Spyratos F, Esterni B, Mozziconacci MJ, Antoine M, Arnould L, et al. SISH/CISH or qPCR as alternative techniques to FISH for determination of HER2 amplification status on breast tumors core needle biopsies: A multicenter experience based on 840 cases. BMC Cancer. 2013;13:351\n'},{id:"B109",body:'Merkelbach-Bruse S, Wardelmann E, Behrens P, Losen I, Buettner R, Friedrichs N. Current diagnostic methods of HER-2/neu detection in breast cancer with special regard to real-time PCR. The American Journal of Surgical Pathology. 2003;27(12):1565-1570\n'},{id:"B110",body:'Nistor A, Watson PH, Pettigrew N, Tabiti K, Dawson A, Myal Y. Real-time PCR complements immunohistochemistry in the determination of HER-2/neu status in breast cancer. BMC Clinical Pathology. 2006;6:2\n'},{id:"B111",body:'Esteva FJ, Yu D, Hung MC, Hortobagyi GN. Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Nature Reviews Clinical Oncology. 2010;7(2):98-107\n'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Daniela Furrer",address:null,affiliation:'
Cancer Research Center at Laval University, Canada
Oncology Axis, CHU of Quebec Research Center, Canada
Department of Social and Preventive Medicine, Laval University, Canada
Cancer Research Center at Laval University, Canada
Oncology Axis, CHU of Quebec Research Center, Canada
Department of Social and Preventive Medicine, Laval University, Canada
Deschênes-Fabia Center for Breast Diseases, Canada
'}],corrections:null},book:{id:"6813",type:"book",title:"Cancer Prognosis",subtitle:null,fullTitle:"Cancer Prognosis",slug:"cancer-prognosis",publishedDate:"December 5th 2018",bookSignature:"Guy-Joseph Lemamy",coverURL:"https://cdn.intechopen.com/books/images_new/6813.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-775-8",printIsbn:"978-1-78984-774-1",pdfIsbn:"978-1-83881-722-0",isAvailableForWebshopOrdering:!0,editors:[{id:"182568",title:"Dr.",name:"Guy-Joseph",middleName:null,surname:"Lemamy",slug:"guy-joseph-lemamy",fullName:"Guy-Joseph Lemamy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"48730",title:"MSc",name:"Jin",middleName:null,surname:"Wu",email:"wujin@suda.edu.cn",fullName:"Jin Wu",slug:"jin-wu",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"19383",title:"Programming Flash Memory in Freescale S08/S12/CordFire MCUs Family",slug:"programming-flash-memory-in-freescale-s08-s12-cordfire-mcus-family",abstract:null,signatures:"Yihuai Wang and Jin Wu",authors:[{id:"39529",title:"Prof.",name:"Yihuai",surname:"Wang",fullName:"Yihuai Wang",slug:"yihuai-wang",email:"yihuaiw@suda.edu.cn"},{id:"48730",title:"MSc",name:"Jin",surname:"Wu",fullName:"Jin Wu",slug:"jin-wu",email:"wujin@suda.edu.cn"}],book:{id:"252",title:"Flash Memories",slug:"flash-memories",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"32622",title:"Dr.",name:"Haruhiko",surname:"Kaneko",slug:"haruhiko-kaneko",fullName:"Haruhiko Kaneko",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"33529",title:"Dr.",name:"Xueqiang",surname:"Wang",slug:"xueqiang-wang",fullName:"Xueqiang Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"35181",title:"Dr.",name:"Guiqiang",surname:"Dong",slug:"guiqiang-dong",fullName:"Guiqiang Dong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"40093",title:"Dr.",name:"Amir Rizaan",surname:"Rahiman",slug:"amir-rizaan-rahiman",fullName:"Amir Rizaan Rahiman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"42897",title:"Prof.",name:"Igor",surname:"Stievano",slug:"igor-stievano",fullName:"Igor Stievano",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42897/images/251_n.jpg",biography:"Igor S. Stievano received the Laurea degree and the Ph.D. degree in electronic engineering from the Politecnico di Torino, Torino, Italy, in 1996 and in 2001, respectively. Currently he is an Associate Professor of Circuit Theory with the ElectroMagnetc Compatibility (EMC) group at the Dipartimento di Elettronica, Politecnico di Torino. His research interests are in the field of Electromagnetic Compatibility, where he works on the macromodeling of linear and nonlinear circuit elements, with specific application to the behavioral modeling of digital integrated circuits, transmission lines and linear junctions. He is Author of more than 90 papers published in international journals and conference proceedings. He is Senior Member of the Institute of Electrical and Electronics Engineers (IEEE). He has been a reviewer for several IEEE journals and since 2007 he has been member of the Scientific Steering Committee of the IEEE International Workshop on Electromagnetic Compatibility of Integrated Circuits, EMC Compo.",institutionString:null,institution:{name:"Polytechnic University of Turin",institutionURL:null,country:{name:"Italy"}}},{id:"50044",title:"MSc",name:"Michele",surname:"Fabiano",slug:"michele-fabiano",fullName:"Michele Fabiano",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Michele got his MSc. in Computer Science Engineering from Universita degli Studi di Napoli Federico II (Napoli, Italia) in December 2008.\nIn January 2009 he became PhD Student of Politecnico di Torino. His main topic of research is dependability assessment of NAND flash memories and of embedded systems for mission-critical applications.\n\nFor this scope he is also exploiting Yet Another Flash File System (YAFFS), a particular flash-based file-system currently used also in embedded systems like Google Android.\n\nIn particular he is developing a powerful YAFFS-based core kernel FLash Architecture Evaluation (FLARE) tool. It is able to emulate a flash-memory device, to implement different algorithms (e.g., Wear Leveling, ECC, etc.) and to evaluate them, by generating the desired statistics.\n\nIn addition he is working with ECCs for flash-memory devices, like binary\nBose-Chaudhuri-Hocquenghen (BCH) codes. A BCH-based design environment with an adaptable correction capability codes for flash memories was developed, while other ECCs suitable for flash memory are currently under research.\n\nFrom 1st March 2011 Michele Fabiano joined the TEC-EDD Section of European Space Agency (ESA) as visiting scientist, working\nmainly on the dependability assessment of NAND flashes.",institutionString:null,institution:null},{id:"50411",title:"Prof.",name:"Paolo",surname:"Prinetto",slug:"paolo-prinetto",fullName:"Paolo Prinetto",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"50412",title:"Prof.",name:"Stefano",surname:"Di Carlo",slug:"stefano-di-carlo",fullName:"Stefano Di Carlo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Turin",institutionURL:null,country:{name:"Italy"}}},{id:"50414",title:"MSc",name:"Maurizio",surname:"Caramia",slug:"maurizio-caramia",fullName:"Maurizio Caramia",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"50539",title:"Dr.",name:"Putra",surname:"Sumari",slug:"putra-sumari",fullName:"Putra Sumari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Sains Malaysia",institutionURL:null,country:{name:"Malaysia"}}}]},generic:{page:{slug:"our-story",title:"Our story",intro:"
The company was founded in Vienna in 2004 by Alex Lazinica and Vedran Kordic, two PhD students researching robotics. While completing our PhDs, we found it difficult to access the research we needed. So, we decided to create a new Open Access publisher. A better one, where researchers like us could find the information they needed easily. The result is IntechOpen, an Open Access publisher that puts the academic needs of the researchers before the business interests of publishers.
",metaTitle:"Our story",metaDescription:"The company was founded in Vienna in 2004 by Alex Lazinica and Vedran Kordic, two PhD students researching robotics. While completing our PhDs, we found it difficult to access the research we needed. So, we decided to create a new Open Access publisher. A better one, where researchers like us could find the information they needed easily. The result is IntechOpen, an Open Access publisher that puts the academic needs of the researchers before the business interests of publishers.",metaKeywords:null,canonicalURL:"/page/our-story",contentRaw:'[{"type":"htmlEditorComponent","content":"
We started by publishing journals and books from the fields of science we were most familiar with - AI, robotics, manufacturing and operations research. Through our growing network of institutions and authors, we soon expanded into related fields like environmental engineering, nanotechnology, computer science, renewable energy and electrical engineering, Today, we are the world’s largest Open Access publisher of scientific research, with over 4,200 books and 54,000 scientific works including peer-reviewed content from more than 116,000 scientists spanning 161 countries. Our authors range from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery.
\\n\\n
In the same year that IntechOpen was founded, we launched what was at the time the first ever Open Access, peer-reviewed journal in its field: the International Journal of Advanced Robotic Systems (IJARS).
\\n\\n
The IntechOpen timeline
\\n\\n
2004
\\n\\n
\\n\\t
Intech Open is founded in Vienna, Austria, by Alex Lazinica and Vedran Kordic, two PhD students, and their first Open Access journals and books are published.
\\n\\t
Alex and Vedran launch the first Open Access, peer-reviewed robotics journal and IntechOpen’s flagship publication, the International Journal of Advanced Robotic Systems (IJARS).
\\n
\\n\\n
2005
\\n\\n
\\n\\t
IntechOpen publishes its first Open Access book: Cutting Edge Robotics.
\\n
\\n\\n
2006
\\n\\n
\\n\\t
IntechOpen publishes a special issue of IJARS, featuring contributions from NASA scientists regarding the Mars Exploration Rover missions.
\\n
\\n\\n
2008
\\n\\n
\\n\\t
Downloads milestone: 200,000 downloads reached
\\n
\\n\\n
2009
\\n\\n
\\n\\t
Publishing milestone: the first 100 Open Access STM books are published
\\n
\\n\\n
2010
\\n\\n
\\n\\t
Downloads milestone: one million downloads reached
\\n\\t
IntechOpen expands its book publishing into a new field: medicine.
\\n
\\n\\n
2011
\\n\\n
\\n\\t
Publishing milestone: More than five million downloads reached
\\n\\t
IntechOpen publishes 1996 Nobel Prize in Chemistry winner Harold W. Kroto’s “Strategies to Successfully Cross-Link Carbon Nanotubes”. Find it here.
\\n\\t
IntechOpen and TBI collaborate on a project to explore the changing needs of researchers and the evolving ways that they discover, publish and exchange information. The result is the survey “Author Attitudes Towards Open Access Publishing: A Market Research Program”.
\\n\\t
IntechOpen hosts SHOW - Share Open Access Worldwide; a series of lectures, debates, round-tables and events to bring people together in discussion of open source principles, intellectual property, content licensing innovations, remixed and shared culture and free knowledge.
\\n
\\n\\n
2012
\\n\\n
\\n\\t
Publishing milestone: 10 million downloads reached
\\n\\t
IntechOpen holds Interact2012, a free series of workshops held by figureheads of the scientific community including Professor Hiroshi Ishiguro, director of the Intelligent Robotics Laboratory, who took the audience through some of the most impressive human-robot interactions observed in his lab.
\\n
\\n\\n
2013
\\n\\n
\\n\\t
IntechOpen joins the Committee on Publication Ethics (COPE) as part of a commitment to guaranteeing the highest standards of publishing.
\\n
\\n\\n
2014
\\n\\n
\\n\\t
IntechOpen turns 10, with more than 30 million downloads to date.
\\n\\t
IntechOpen appoints its first Regional Representatives - members of the team situated around the world dedicated to increasing the visibility of our authors’ published work within their local scientific communities.
\\n
\\n\\n
2015
\\n\\n
\\n\\t
Downloads milestone: More than 70 million downloads reached, more than doubling since the previous year.
\\n\\t
Publishing milestone: IntechOpen publishes its 2,500th book and 40,000th Open Access chapter, reaching 20,000 citations in Thomson Reuters ISI Web of Science.
\\n\\t
40 IntechOpen authors are included in the top one per cent of the world’s most-cited researchers.
\\n\\t
Thomson Reuters’ ISI Web of Science Book Citation Index begins indexing IntechOpen’s books in its database.
\\n
\\n\\n
2016
\\n\\n
\\n\\t
IntechOpen is identified as a world leader in Simba Information’s Open Access Book Publishing 2016-2020 report and forecast. IntechOpen came in as the world’s largest Open Access book publisher by title count.
\\n
\\n\\n
2017
\\n\\n
\\n\\t
Downloads milestone: IntechOpen reaches more than 100 million downloads
\\n\\t
Publishing milestone: IntechOpen publishes its 3,000th Open Access book, making it the largest Open Access book collection in the world
We started by publishing journals and books from the fields of science we were most familiar with - AI, robotics, manufacturing and operations research. Through our growing network of institutions and authors, we soon expanded into related fields like environmental engineering, nanotechnology, computer science, renewable energy and electrical engineering, Today, we are the world’s largest Open Access publisher of scientific research, with over 4,200 books and 54,000 scientific works including peer-reviewed content from more than 116,000 scientists spanning 161 countries. Our authors range from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery.
\n\n
In the same year that IntechOpen was founded, we launched what was at the time the first ever Open Access, peer-reviewed journal in its field: the International Journal of Advanced Robotic Systems (IJARS).
\n\n
The IntechOpen timeline
\n\n
2004
\n\n
\n\t
Intech Open is founded in Vienna, Austria, by Alex Lazinica and Vedran Kordic, two PhD students, and their first Open Access journals and books are published.
\n\t
Alex and Vedran launch the first Open Access, peer-reviewed robotics journal and IntechOpen’s flagship publication, the International Journal of Advanced Robotic Systems (IJARS).
\n
\n\n
2005
\n\n
\n\t
IntechOpen publishes its first Open Access book: Cutting Edge Robotics.
\n
\n\n
2006
\n\n
\n\t
IntechOpen publishes a special issue of IJARS, featuring contributions from NASA scientists regarding the Mars Exploration Rover missions.
\n
\n\n
2008
\n\n
\n\t
Downloads milestone: 200,000 downloads reached
\n
\n\n
2009
\n\n
\n\t
Publishing milestone: the first 100 Open Access STM books are published
\n
\n\n
2010
\n\n
\n\t
Downloads milestone: one million downloads reached
\n\t
IntechOpen expands its book publishing into a new field: medicine.
\n
\n\n
2011
\n\n
\n\t
Publishing milestone: More than five million downloads reached
\n\t
IntechOpen publishes 1996 Nobel Prize in Chemistry winner Harold W. Kroto’s “Strategies to Successfully Cross-Link Carbon Nanotubes”. Find it here.
\n\t
IntechOpen and TBI collaborate on a project to explore the changing needs of researchers and the evolving ways that they discover, publish and exchange information. The result is the survey “Author Attitudes Towards Open Access Publishing: A Market Research Program”.
\n\t
IntechOpen hosts SHOW - Share Open Access Worldwide; a series of lectures, debates, round-tables and events to bring people together in discussion of open source principles, intellectual property, content licensing innovations, remixed and shared culture and free knowledge.
\n
\n\n
2012
\n\n
\n\t
Publishing milestone: 10 million downloads reached
\n\t
IntechOpen holds Interact2012, a free series of workshops held by figureheads of the scientific community including Professor Hiroshi Ishiguro, director of the Intelligent Robotics Laboratory, who took the audience through some of the most impressive human-robot interactions observed in his lab.
\n
\n\n
2013
\n\n
\n\t
IntechOpen joins the Committee on Publication Ethics (COPE) as part of a commitment to guaranteeing the highest standards of publishing.
\n
\n\n
2014
\n\n
\n\t
IntechOpen turns 10, with more than 30 million downloads to date.
\n\t
IntechOpen appoints its first Regional Representatives - members of the team situated around the world dedicated to increasing the visibility of our authors’ published work within their local scientific communities.
\n
\n\n
2015
\n\n
\n\t
Downloads milestone: More than 70 million downloads reached, more than doubling since the previous year.
\n\t
Publishing milestone: IntechOpen publishes its 2,500th book and 40,000th Open Access chapter, reaching 20,000 citations in Thomson Reuters ISI Web of Science.
\n\t
40 IntechOpen authors are included in the top one per cent of the world’s most-cited researchers.
\n\t
Thomson Reuters’ ISI Web of Science Book Citation Index begins indexing IntechOpen’s books in its database.
\n
\n\n
2016
\n\n
\n\t
IntechOpen is identified as a world leader in Simba Information’s Open Access Book Publishing 2016-2020 report and forecast. IntechOpen came in as the world’s largest Open Access book publisher by title count.
\n
\n\n
2017
\n\n
\n\t
Downloads milestone: IntechOpen reaches more than 100 million downloads
\n\t
Publishing milestone: IntechOpen publishes its 3,000th Open Access book, making it the largest Open Access book collection in the world
\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"56121318"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4380},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"285",title:"Design Engineering",slug:"technology-design-engineering",parent:{id:"24",title:"Technology",slug:"technology"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:226,numberOfWosCitations:215,numberOfCrossrefCitations:134,numberOfDimensionsCitations:307,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"285",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8374",title:"New Innovations in Engineering Education and Naval Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4019cba8abf5c1688f512dd73a1e79aa",slug:"new-innovations-in-engineering-education-and-naval-engineering",bookSignature:"Nur Md. Sayeed Hassan and Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/8374.jpg",editedByType:"Edited by",editors:[{id:"143363",title:"Dr.",name:"Nur Md. Sayeed",middleName:null,surname:"Hassan",slug:"nur-md.-sayeed-hassan",fullName:"Nur Md. Sayeed Hassan"}],equalEditorOne:{id:"248645",title:"Dr.",name:"Sérgio",middleName:null,surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada",profilePictureURL:"https://mts.intechopen.com/storage/users/248645/images/system/248645.jpg",biography:"Sérgio António Neves Lousada has an international Ph.D. in Civil Engineering (Hydraulics). He teaches Hydraulics, Environment, and Water Resources and Construction at the University of Madeira, Portugal. He has published articles and books and participated in events mainly in the areas of hydraulics, urban planning, and land management. Furthermore, he collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx); VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; CITUR - Madeira - Centre for Tourism Research, Development and Innovation, Madeira, Portugal; and Institute of Research on Territorial Governance and Inter-Organizational Cooperation, Dąbrowa Górnicza, Poland. Moreover, he holds an International master\\'s degree in Ports and Coasts Engineering.",institutionString:"University of Madeira",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Madeira",institutionURL:null,country:{name:"Portugal"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7249",title:"3D Printing",subtitle:null,isOpenForSubmission:!1,hash:"bd92f056fb3bb4793bf7f07413747568",slug:"3d-printing",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/7249.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1942",title:"Applied Measurement Systems",subtitle:null,isOpenForSubmission:!1,hash:"64893485e869fc18f5520846648ea70c",slug:"applied-measurement-systems",bookSignature:"Md. Zahurul Haq",coverURL:"https://cdn.intechopen.com/books/images_new/1942.jpg",editedByType:"Edited by",editors:[{id:"104292",title:"Prof.",name:"Md. Zahurul",middleName:null,surname:"Haq",slug:"md.-zahurul-haq",fullName:"Md. Zahurul Haq"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"307",title:"Rapid Prototyping Technology",subtitle:"Principles and Functional Requirements",isOpenForSubmission:!1,hash:"aa39f8a56e606bbc2935e87620674425",slug:"rapid-prototyping-technology-principles-and-functional-requirements",bookSignature:"Muhammad Enamul Hoque",coverURL:"https://cdn.intechopen.com/books/images_new/307.jpg",editedByType:"Edited by",editors:[{id:"39279",title:"Prof.",name:"Md Enamul",middleName:"Enamul",surname:"Hoque",slug:"md-enamul-hoque",fullName:"Md Enamul Hoque"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"930",title:"Advanced Applications of Rapid Prototyping Technology in Modern Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3775beff84516a387ab64fe05390fbea",slug:"advanced-applications-of-rapid-prototyping-technology-in-modern-engineering",bookSignature:"Muhammad Enamul Hoque",coverURL:"https://cdn.intechopen.com/books/images_new/930.jpg",editedByType:"Edited by",editors:[{id:"39279",title:"Prof.",name:"Md Enamul",middleName:"Enamul",surname:"Hoque",slug:"md-enamul-hoque",fullName:"Md Enamul Hoque"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"61889",doi:"10.5772/intechopen.78147",title:"Stereolithography",slug:"stereolithography",totalDownloads:2795,totalCrossrefCites:25,totalDimensionsCites:47,abstract:"The stereolithography (SLA) process and its methods are introduced in this chapter. After establishing SLA as pertaining to the high-resolution but also high-cost spectrum of the 3D printing technologies, different classifications of SLA processes are presented. Laser-based SLA and digital light processing (DLP), as well as their specialized techniques such as two-photon polymerization (TPP) or continuous liquid interface production (CLIP) are discussed and analyzed for their advantages and shortcomings. Prerequisites of SLA resins and the most common resin compositions are discussed. Furthermore, printable materials and their applications are briefly reviewed, and insight into commercially available SLA systems is given. Finally, an outlook highlighting challenges within the SLA process and propositions to resolve these are offered.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Christina Schmidleithner and Deepak M. Kalaskar",authors:[{id:"247897",title:"Dr.",name:"Deepak",middleName:null,surname:"Kalaskar",slug:"deepak-kalaskar",fullName:"Deepak Kalaskar"}]},{id:"29364",doi:"10.5772/36302",title:"Planar Microwave Sensors for Complex Permittivity Characterization of Materials and Their Applications",slug:"planar-microwave-sensors-for-complex-permittivity-characterization-of-materials-and-their-applicatio",totalDownloads:4865,totalCrossrefCites:16,totalDimensionsCites:26,abstract:null,book:{id:"1942",slug:"applied-measurement-systems",title:"Applied Measurement Systems",fullTitle:"Applied Measurement Systems"},signatures:"Kashif Saeed, Muhammad F. Shafique, Matthew B. Byrne and Ian C. Hunter",authors:[{id:"107789",title:"Dr.",name:"Kashif",middleName:null,surname:"Saeed",slug:"kashif-saeed",fullName:"Kashif Saeed"},{id:"108133",title:"Dr.",name:"Muhammad",middleName:"Farhan",surname:"Shafique",slug:"muhammad-shafique",fullName:"Muhammad Shafique"},{id:"112179",title:"Dr.",name:"Matthew",middleName:null,surname:"Byrne",slug:"matthew-byrne",fullName:"Matthew Byrne"},{id:"148470",title:"Dr.",name:"Ian C.",middleName:null,surname:"Hunter",slug:"ian-c.-hunter",fullName:"Ian C. Hunter"}]},{id:"20723",doi:"10.5772/24994",title:"Rapid Prototyping of Hybrid, Plastic-Quartz 3D-Chips for Battery-Operated Microplasmas",slug:"rapid-prototyping-of-hybrid-plastic-quartz-3d-chips-for-battery-operated-microplasmas",totalDownloads:2937,totalCrossrefCites:1,totalDimensionsCites:25,abstract:null,book:{id:"307",slug:"rapid-prototyping-technology-principles-and-functional-requirements",title:"Rapid Prototyping Technology",fullTitle:"Rapid Prototyping Technology - Principles and Functional Requirements"},signatures:"Weagant S., Li L. and Karanassios V.",authors:[{id:"60925",title:"Prof.",name:"Vassili",middleName:null,surname:"Karanassios",slug:"vassili-karanassios",fullName:"Vassili Karanassios"},{id:"96647",title:"Mr.",name:"Scott",middleName:null,surname:"Weagant",slug:"scott-weagant",fullName:"Scott Weagant"},{id:"96648",title:"Ms.",name:"Lu",middleName:null,surname:"Li",slug:"lu-li",fullName:"Lu Li"}]},{id:"61731",doi:"10.5772/intechopen.78145",title:"3D Printing of Scaffolds for Tissue Engineering",slug:"3d-printing-of-scaffolds-for-tissue-engineering",totalDownloads:2672,totalCrossrefCites:4,totalDimensionsCites:17,abstract:"Three-dimensional (3D) printing has demonstrated its great potential in producing functional scaffolds for biomedical applications. To facilitate tissue regeneration, scaffolds need to be designed to provide a suitable environment for cell growth, which generally depends on the selection of materials and geometrical features such as internal structures and pore size distribution. The mechanical property match with the original tissue to be repaired is also critical. In this chapter, the specific request of materials and structure for tissue engineering is briefly reviewed, and then an overview of the recent research in 3D printing technologies for tissue engineering will be provided, together with a discussion of possible future directions in this area.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Jingyu Liu and Cheng Yan",authors:[{id:"139494",title:"Prof.",name:"Cheng",middleName:null,surname:"Yan",slug:"cheng-yan",fullName:"Cheng Yan"},{id:"246713",title:"MSc.",name:"Jingyu",middleName:null,surname:"Liu",slug:"jingyu-liu",fullName:"Jingyu Liu"}]},{id:"20719",doi:"10.5772/20174",title:"Hyperelastic Modeling of Rubber-Like Photopolymers for Additive Manufacturing Processes",slug:"hyperelastic-modeling-of-rubber-like-photopolymers-for-additive-manufacturing-processes",totalDownloads:11538,totalCrossrefCites:7,totalDimensionsCites:14,abstract:null,book:{id:"307",slug:"rapid-prototyping-technology-principles-and-functional-requirements",title:"Rapid Prototyping Technology",fullTitle:"Rapid Prototyping Technology - Principles and Functional Requirements"},signatures:"Giovanni Berselli, Rocco Vertechy, Marcello Pellicciari and Gabriele Vassura",authors:[{id:"5972",title:"PhD",name:"Giovanni",middleName:null,surname:"Berselli",slug:"giovanni-berselli",fullName:"Giovanni Berselli"},{id:"100163",title:"Dr.",name:"Marcello",middleName:null,surname:"Pellicciari",slug:"marcello-pellicciari",fullName:"Marcello Pellicciari"},{id:"124391",title:"Prof.",name:"Gabriele",middleName:null,surname:"Vassura",slug:"gabriele-vassura",fullName:"Gabriele Vassura"},{id:"133521",title:"Prof.",name:"Rocco",middleName:null,surname:"Vertechy",slug:"rocco-vertechy",fullName:"Rocco Vertechy"}]}],mostDownloadedChaptersLast30Days:[{id:"72725",title:"Communication Subsystems for Satellite Design",slug:"communication-subsystems-for-satellite-design",totalDownloads:1318,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The objective of this chapter is to provide a comprehensive end-to-end overview of existing communication subsystems residing on both the satellite bus and payloads. These subsystems include command and mission data handling, telemetry and tracking, and the antenna payloads for both command, telemetry and mission data. The function of each subsystem and the relationships to the others will be described in detail. In addition, the recent application of software defined radio (SDR) to advanced satellite communication system design will be looked at with applications to satellite development, and the impacts on how SDR will affect future satellite missions are briefly discussed.",book:{id:"7030",slug:"satellite-systems-design-modeling-simulation-and-analysis",title:"Satellite Systems",fullTitle:"Satellite Systems - Design, Modeling, Simulation and Analysis"},signatures:"Hung H. Nguyen and Peter S. Nguyen",authors:[{id:"316857",title:"Dr.",name:"Hung H.",middleName:null,surname:"Nguyen",slug:"hung-h.-nguyen",fullName:"Hung H. Nguyen"},{id:"316861",title:"Mr.",name:"Peter S.",middleName:null,surname:"Nguyen",slug:"peter-s.-nguyen",fullName:"Peter S. Nguyen"}]},{id:"61731",title:"3D Printing of Scaffolds for Tissue Engineering",slug:"3d-printing-of-scaffolds-for-tissue-engineering",totalDownloads:2672,totalCrossrefCites:4,totalDimensionsCites:17,abstract:"Three-dimensional (3D) printing has demonstrated its great potential in producing functional scaffolds for biomedical applications. To facilitate tissue regeneration, scaffolds need to be designed to provide a suitable environment for cell growth, which generally depends on the selection of materials and geometrical features such as internal structures and pore size distribution. The mechanical property match with the original tissue to be repaired is also critical. In this chapter, the specific request of materials and structure for tissue engineering is briefly reviewed, and then an overview of the recent research in 3D printing technologies for tissue engineering will be provided, together with a discussion of possible future directions in this area.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Jingyu Liu and Cheng Yan",authors:[{id:"139494",title:"Prof.",name:"Cheng",middleName:null,surname:"Yan",slug:"cheng-yan",fullName:"Cheng Yan"},{id:"246713",title:"MSc.",name:"Jingyu",middleName:null,surname:"Liu",slug:"jingyu-liu",fullName:"Jingyu Liu"}]},{id:"63539",title:"The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques",slug:"the-evolution-of-3d-printing-in-aec-from-experimental-to-consolidated-techniques",totalDownloads:1733,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"The chapter leads the reader through the historical development of additive manufacturing (AM) techniques until the most recent developments. A tentative taxonomy is added to the historical perspective, in order to better understand the main lines of development and the potential cross-fertilization opportunities. Some case studies are analyzed in order to provide a clearer picture of the practical applications of AM in architecture engineering and construction (AEC), with a particular attention to the use of AM for final products rather than just prototypes. Eventually, some thoughts are shared as to the impact of AM on AEC beyond the mere cost-effectiveness and well into the potential change of paradigms in how architecture can be thought of and further developed embracing the new world of opportunities brought by AM.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Ingrid Paoletti and Lorenzo Ceccon",authors:[{id:"246398",title:"Associate Prof.",name:"Ingrid",middleName:null,surname:"Paoletti",slug:"ingrid-paoletti",fullName:"Ingrid Paoletti"},{id:"261886",title:"MSc.",name:"Lorenzo",middleName:null,surname:"Ceccon",slug:"lorenzo-ceccon",fullName:"Lorenzo Ceccon"}]},{id:"61889",title:"Stereolithography",slug:"stereolithography",totalDownloads:2795,totalCrossrefCites:25,totalDimensionsCites:47,abstract:"The stereolithography (SLA) process and its methods are introduced in this chapter. After establishing SLA as pertaining to the high-resolution but also high-cost spectrum of the 3D printing technologies, different classifications of SLA processes are presented. Laser-based SLA and digital light processing (DLP), as well as their specialized techniques such as two-photon polymerization (TPP) or continuous liquid interface production (CLIP) are discussed and analyzed for their advantages and shortcomings. Prerequisites of SLA resins and the most common resin compositions are discussed. Furthermore, printable materials and their applications are briefly reviewed, and insight into commercially available SLA systems is given. Finally, an outlook highlighting challenges within the SLA process and propositions to resolve these are offered.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Christina Schmidleithner and Deepak M. Kalaskar",authors:[{id:"247897",title:"Dr.",name:"Deepak",middleName:null,surname:"Kalaskar",slug:"deepak-kalaskar",fullName:"Deepak Kalaskar"}]},{id:"75110",title:"Compression of High-Resolution Satellite Images Using Optical Image Processing",slug:"compression-of-high-resolution-satellite-images-using-optical-image-processing",totalDownloads:512,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter presents a novel method for compressing satellite imagery using phase grating to facilitate the optimization of storage space and bandwidth in satellite communication. In this research work, each Satellite image is first modulated with high grating frequency in a fixed orientation. Due to this modulation, three spots (spectrum) have been generated. From these three spots, by applying Inverse Fourier Transform in any one band, we can recover the image. Out of these three spots, one is center spectrum spot and other spots represent two sidebands. Care should be taken during the spot selection is to avoid aliasing effect. At the receiving end, to recover image we use only one spectrum. We have proved that size of the extracted image is less than the original image. In this way, compression of satellite image has been performed. To measure quality of the output images, PSNR value has been calculated and compared this value with previous techniques. As high-resolution satellite image contains a lot of information, therefore to get detail information from extracted image, compression ratio should be as minimum as possible.",book:{id:"7030",slug:"satellite-systems-design-modeling-simulation-and-analysis",title:"Satellite Systems",fullTitle:"Satellite Systems - Design, Modeling, Simulation and Analysis"},signatures:"Anirban Patra, Arijit Saha, Debasish Chakraborty and Kallol Bhattacharya",authors:[{id:"307075",title:"Dr.",name:"Debasish",middleName:null,surname:"Chakraborty",slug:"debasish-chakraborty",fullName:"Debasish Chakraborty"},{id:"319415",title:"Mr.",name:"Anirban",middleName:null,surname:"Patra",slug:"anirban-patra",fullName:"Anirban Patra"},{id:"320110",title:"Dr.",name:"Arijit",middleName:null,surname:"Saha",slug:"arijit-saha",fullName:"Arijit Saha"},{id:"320111",title:"Dr.",name:"Kallol",middleName:null,surname:"Bhattacharya",slug:"kallol-bhattacharya",fullName:"Kallol Bhattacharya"}]}],onlineFirstChaptersFilter:{topicId:"285",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:10,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:617,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNVJQA4/Profile_Picture_2022-03-07T13:23:04.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. degree from Integral University. Currently, he’s working as an Assistant Professor of Pharmaceutics in the Faculty of Pharmacy, Integral University. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than 32 original articles published in reputed journals, 3 edited books, 5 book chapters, and a number of scientific articles published in ‘Ingredients South Asia Magazine’ and ‘QualPharma Magazine’. He is a member of the American Association for Cancer Research, International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs that aim to provide practical solutions to current healthcare problems.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}},{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",biography:"Dr. Margarete Dulce Bagatini is an associate professor at the Federal University of Fronteira Sul/Brazil. She has a degree in Pharmacy and a PhD in Biological Sciences: Toxicological Biochemistry. She is a member of the UFFS Research Advisory Committee\nand a member of the Biovitta Research Institute. She is currently:\nthe leader of the research group: Biological and Clinical Studies\nin Human Pathologies, professor of postgraduate program in\nBiochemistry at UFSC and postgraduate program in Science and Food Technology at\nUFFS. She has experience in the area of pharmacy and clinical analysis, acting mainly\non the following topics: oxidative stress, the purinergic system and human pathologies, being a reviewer of several international journals and books.",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",country:{name:"Brazil"}}},{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",biography:"Metin Budak, MSc, PhD is an Assistant Professor at Trakya University, Faculty of Medicine. He has been Head of the Molecular Research Lab at Prof. Mirko Tos Ear and Hearing Research Center since 2018. His specializations are biophysics, epigenetics, genetics, and methylation mechanisms. He has published around 25 peer-reviewed papers, 2 book chapters, and 28 abstracts. He is a member of the Clinical Research Ethics Committee and Quantification and Consideration Committee of Medicine Faculty. His research area is the role of methylation during gene transcription, chromatin packages DNA within the cell and DNA repair, replication, recombination, and gene transcription. His research focuses on how the cell overcomes chromatin structure and methylation to allow access to the underlying DNA and enable normal cellular function.",institutionString:"Trakya University",institution:{name:"Trakya University",country:{name:"Turkey"}}},{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",biography:"Anca Pantea Stoian is a specialist in diabetes, nutrition, and metabolic diseases as well as health food hygiene. She also has competency in general ultrasonography.\n\nShe is an associate professor in the Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. She has been chief of the Hygiene Department, Faculty of Dentistry, at the same university since 2019. Her interests include micro and macrovascular complications in diabetes and new therapies. Her research activities focus on nutritional intervention in chronic pathology, as well as cardio-renal-metabolic risk assessment, and diabetes in cancer. She is currently engaged in developing new therapies and technological tools for screening, prevention, and patient education in diabetes. \n\nShe is a member of the European Association for the Study of Diabetes, Cardiometabolic Academy, CEDA, Romanian Society of Diabetes, Nutrition and Metabolic Diseases, Romanian Diabetes Federation, and Association for Renal Metabolic and Nutrition studies. She has authored or co-authored 160 papers in national and international peer-reviewed journals.",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",country:{name:"Romania"}}},{id:"279792",title:"Dr.",name:"João",middleName:null,surname:"Cotas",slug:"joao-cotas",fullName:"João Cotas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279792/images/system/279792.jpg",biography:"Graduate and master in Biology from the University of Coimbra.\n\nI am a research fellow at the Macroalgae Laboratory Unit, in the MARE-UC – Marine and Environmental Sciences Centre of the University of Coimbra. My principal function is the collection, extraction and purification of macroalgae compounds, chemical and bioactive characterization of the compounds and algae extracts and development of new methodologies in marine biotechnology area. \nI am associated in two projects: one consists on discovery of natural compounds for oncobiology. The other project is the about the natural compounds/products for agricultural area.\n\nPublications:\nCotas, J.; Figueirinha, A.; Pereira, L.; Batista, T. 2018. An analysis of the effects of salinity on Fucus ceranoides (Ochrophyta, Phaeophyceae), in the Mondego River (Portugal). Journal of Oceanology and Limnology. in press. DOI: 10.1007/s00343-019-8111-3",institutionString:"Faculty of Sciences and Technology of University of Coimbra",institution:null},{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",biography:"Leonel Pereira has an undergraduate degree in Biology, a Ph.D. in Biology (specialty in Cell Biology), and a Habilitation degree in Biosciences (specialization in Biotechnology) from the Faculty of Science and Technology, University of Coimbra, Portugal, where he is currently a professor. In addition to teaching at this university, he is an integrated researcher at the Marine and Environmental Sciences Center (MARE), Portugal. His interests include marine biodiversity (algae), marine biotechnology (algae bioactive compounds), and marine ecology (environmental assessment). Since 2008, he has been the author and editor of the electronic publication MACOI – Portuguese Seaweeds Website (www.seaweeds.uc.pt). He is also a member of the editorial boards of several scientific journals. Dr. Pereira has edited or authored more than 20 books, 100 journal articles, and 45 book chapters. He has given more than 100 lectures and oral communications at various national and international scientific events. He is the coordinator of several national and international research projects. In 1998, he received the Francisco de Holanda Award (Honorable Mention) and, more recently, the Mar Rei D. Carlos award (18th edition). He is also a winner of the 2016 CHOICE Award for an outstanding academic title for his book Edible Seaweeds of the World. In 2020, Dr. Pereira received an Honorable Mention for the Impact of International Publications from the Web of Science",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",country:{name:"Portugal"}}},{id:"61946",title:"Dr.",name:"Carol",middleName:null,surname:"Bernstein",slug:"carol-bernstein",fullName:"Carol Bernstein",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61946/images/system/61946.jpg",biography:"Carol Bernstein received her PhD in Genetics from the University of California (Davis). She was a faculty member at the University of Arizona College of Medicine for 43 years, retiring in 2011. Her research interests focus on DNA damage and its underlying role in sex, aging and in the early steps of initiation and progression to cancer. In her research, she had used organisms including bacteriophage T4, Neurospora crassa, Schizosaccharomyces pombe and mice, as well as human cells and tissues. She authored or co-authored more than 140 scientific publications, including articles in major peer reviewed journals, book chapters, invited reviews and one book.",institutionString:"University of Arizona",institution:{name:"University of Arizona",country:{name:"United States of America"}}},{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/182258/images/system/182258.jpeg",biography:"Dr. Serra studied Agronomy on Universidade Federal de Mato Grosso do Sul (UFMS) (2005). He received master degree in Agronomy, Crop Science (Soil fertility and plant nutrition) (2007) by Universidade Federal da Grande Dourados (UFGD), and PhD in agronomy (Soil fertility and plant nutrition) (2011) from Universidade Federal da Grande Dourados / Escola Superior de Agricultura Luiz de Queiroz (UFGD/ESALQ-USP). Dr. Serra is currently working at Brazilian Agricultural Research Corporation (EMBRAPA). His research focus is on mineral nutrition of plants, crop science and soil science. Dr. Serra\\'s current projects are soil organic matter, soil phosphorus fractions, compositional nutrient diagnosis (CND) and isometric log ratio (ilr) transformation in compositional data analysis.",institutionString:"Brazilian Agricultural Research Corporation",institution:{name:"Brazilian Agricultural Research Corporation",country:{name:"Brazil"}}}]}},subseries:{item:{id:"28",type:"subseries",title:"Animal Reproductive Biology and Technology",keywords:"Animal Reproduction, Artificial Insemination, Embryos, Cryopreservation, Conservation, Breeding, Epigenetics",scope:"The advances of knowledge on animal reproductive biology and technologies revolutionized livestock production. Artificial insemination, for example, was the first technology applied on a large scale, initially in dairy cattle and afterward applied to other species. Nowadays, embryo production and transfer are used commercially along with other technologies to modulate epigenetic regulation. Gene editing is also emerging as an innovative tool. This topic will discuss the potential use of these techniques, novel strategies, and lines of research in progress in the fields mentioned above.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Dr.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:null}]},onlineFirstChapters:{},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/40651",hash:"",query:{},params:{id:"40651"},fullPath:"/chapters/40651",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()