Proximate and ultimate analysis of coals
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5195",leadTitle:null,fullTitle:"Magnetic Materials",title:"Magnetic Materials",subtitle:null,reviewType:"peer-reviewed",abstract:"This book reports on the recent progresses in theory, application, and characterization of magnetic materials. It covers a broad spectrum of topics on magnetic materials with different shapes and morphologies such as transition metals, cylindrical and 2D ferromagnetic nanowires, core-shell nanowires, monoatomic-layered nanostructures, and nanocrystals. This book addresses diverse groups of readers with general background in physics and material science and also covers topics for the specialists in the field of magnetism. It is believed that this book will be interesting for the readers and will provide a solid foundation about the topic for the students, scientists, and engineers working in the field of material science and condensed matter physics.",isbn:"978-953-51-2428-3",printIsbn:"978-953-51-2427-6",pdfIsbn:"978-953-51-6670-2",doi:"10.5772/61497",price:119,priceEur:129,priceUsd:155,slug:"magnetic-materials",numberOfPages:278,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"4f04cfbb54e455378de5fc7725e36a0c",bookSignature:"Khan Maaz",publishedDate:"August 24th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5195.jpg",numberOfDownloads:17941,numberOfWosCitations:9,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:5,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:16,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 14th 2015",dateEndSecondStepPublish:"November 4th 2015",dateEndThirdStepPublish:"February 8th 2016",dateEndFourthStepPublish:"May 8th 2016",dateEndFifthStepPublish:"June 7th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"107765",title:"Dr.",name:"Maaz",middleName:null,surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan",profilePictureURL:"https://mts.intechopen.com/storage/users/107765/images/system/107765.png",biography:"Dr. Maaz Khan is working as Deputy Chief Scientist (Professor) at PINSTECH, Pakistan. He has done Ph.D. and post doctorate in the field of Material Science (Nanoscience). His research interests include fabrication of nanomaterials and their structural, optical, magnetic, and electrical characterizations. He has authored more than 100 research articles and published 10 books. Presently, he is the Editor-in-Chief of ‘Journal of Materials, Processing and Design\\' and \\'The Nucleus\\'. He is also the Executive Editor of \\'International Journal of Nano Studies and Technology\\'. Dr. Maaz also serves as the editorial board member of several journals of Material Science.",institutionString:"Pakistan Institute of Nuclear Science and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"9",institution:{name:"Pakistan Institute of Nuclear Science and Technology",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"946",title:"Nanotechnology",slug:"metals-and-nonmetals-nanotechnology"}],chapters:[{id:"51314",title:"Scaling in Magnetic Materials",doi:"10.5772/63285",slug:"scaling-in-magnetic-materials",totalDownloads:1772,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The chapter presents applications of the scaling in several problems of magnetic materials. Soft magnetic materials (SMMs) and soft magnetic composites (SMCs) are considered. Application of scaling in investigations of problems, such as power losses, losses separation, data collapse of the losses characteristics and modelling of the magnetic hysteresis, is presented. The symmetry group generated by scaling and gauge transformations enables us to introduce the classification of the hysteresis loops with respect to the equivalence classes. SMC materials require special treatment in the production process. Therefore, algorithms for optimization of the power losses are created. The algorithm for optimization processes is based on the scaling and the notion of the pseudo-equation of state. The scaling makes modelling and calculations easy; however, the data must obey the scaling. Checking procedure of statistical data to this respect is presented.",signatures:"Krzysztof Z. Sokalski, Barbara Ślusarek and Jan Szczygłowski",downloadPdfUrl:"/chapter/pdf-download/51314",previewPdfUrl:"/chapter/pdf-preview/51314",authors:[{id:"179335",title:"Prof.",name:"Krzysztof",surname:"Sokalski",slug:"krzysztof-sokalski",fullName:"Krzysztof Sokalski"},{id:"181153",title:"Prof.",name:"Barbara",surname:"Slusarek",slug:"barbara-slusarek",fullName:"Barbara Slusarek"},{id:"181154",title:"Prof.",name:"Jan",surname:"Szczyglowski",slug:"jan-szczyglowski",fullName:"Jan Szczyglowski"}],corrections:null},{id:"51443",title:"How to Characterize Cylindrical Magnetic Nanowires",doi:"10.5772/63482",slug:"how-to-characterize-cylindrical-magnetic-nanowires",totalDownloads:1692,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Cylindrical magnetic nanowires made through the help of nanoporous alumina templates are being fabricated and characterized since the beginning of 2000. They are still actively investigated nowadays, mainly due to their various promising applications, ranging from high-density magnetic recording to high-frequency devices, passing by sensors, and biomedical applications. They also represent suitable systems in order to study the dimensionality effects on a given material. With time, the development in fabrication techniques allowed to increase the obtained nanowire complexity (controlled crystallinity, modulated composition and/or geometry, range of materials, etc.), while the improvements in nanomanipulation permitted to fabricate system based either on arrays or on single nanowires. On the other side, their increased complexity requires specific physical characterization methods, due to their particular features such as high anisotropy, small magnetic volume, dipolar interaction field between them, and interesting electronic properties. The aim of this chapter was to offer an ample overview of the magnetic, electric, and physical characterization techniques that are suitable for cylindrical magnetic nanowire investigation, of what is the specific care that one needs to take into account and which information will be extracted, with typical and varied examples.",signatures:"Fanny Béron, Marcos V. Puydinger dos Santos, Peterson G. de\nCarvalho, Karoline O. Moura, Luis C.C. Arzuza and Kleber R. Pirota",downloadPdfUrl:"/chapter/pdf-download/51443",previewPdfUrl:"/chapter/pdf-preview/51443",authors:[{id:"180153",title:"Prof.",name:"Fanny",surname:"Béron",slug:"fanny-beron",fullName:"Fanny Béron"},{id:"180848",title:"MSc.",name:"Peterson",surname:"Grandini De Carvalho",slug:"peterson-grandini-de-carvalho",fullName:"Peterson Grandini De Carvalho"},{id:"180849",title:"MSc.",name:"Luis Carlos",surname:"Costa Arzuza",slug:"luis-carlos-costa-arzuza",fullName:"Luis Carlos Costa Arzuza"},{id:"180850",title:"MSc.",name:"Karoline",surname:"Moura",slug:"karoline-moura",fullName:"Karoline Moura"},{id:"180851",title:"Dr.",name:"Marcos",surname:"Puydinger Dos Santos",slug:"marcos-puydinger-dos-santos",fullName:"Marcos Puydinger Dos Santos"},{id:"180853",title:"Prof.",name:"Kleber Roberto",surname:"Pirota",slug:"kleber-roberto-pirota",fullName:"Kleber Roberto Pirota"}],corrections:null},{id:"51213",title:"Magnetization Dynamics–Induced Charge and Spin Transport on the Surface of a Topological Insulator Subjected to Magnetism",doi:"10.5772/62531",slug:"magnetization-dynamics-induced-charge-and-spin-transport-on-the-surface-of-a-topological-insulator-s",totalDownloads:1349,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"We theoretically show spin and charge transport on the disordered surface of a three‐dimensional topological insulator with a magnetic insulator when localized spin of the magnetic insulator depends on time and space. To ascertain the transports, we use a low‐energy effective Hamiltonian on the surface of a topological insulator using the exchange interaction and calculate analytically using Green's function techniques within the linear response to the exchange interaction. As a result, the time‐dependent localized spin induces the charge and spin current. These currents are detected from change in the half‐width value of the ferromagnetic resonance of the localized spin when the magnetic resonance of the localized spin is realized in the attached magnetic insulator. We also show spin and charge current generation in a three‐dimensional Weyl–Dirac semimetal, which has massless Dirac fermions with helicity degrees of freedoms. The time‐dependent localized spin drives the charge and spin current in the system. The charge current as well as the spin current in the Weyl–Dirac system are slightly different from those on the surface of the topological insulator.",signatures:"Katsuhisa Taguchi",downloadPdfUrl:"/chapter/pdf-download/51213",previewPdfUrl:"/chapter/pdf-preview/51213",authors:[{id:"181168",title:"Dr.",name:"Katsuhisa",surname:"Taguchi",slug:"katsuhisa-taguchi",fullName:"Katsuhisa Taguchi"}],corrections:null},{id:"51474",title:"Metamaterial Properties of 2D Ferromagnetic Nanostructures: From Continuous Ferromagnetic Films to Magnonic Crystals",doi:"10.5772/64070",slug:"metamaterial-properties-of-2d-ferromagnetic-nanostructures-from-continuous-ferromagnetic-films-to-ma",totalDownloads:1506,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In recent years the study of low-dimensional magnetic systems has become topical not only for its several technological applications but also for achieving a deep understanding of the underlying physics of magnetic nanostructures. These efforts have considerably advanced the field of magnetism both theoretically and from an experimental point of view. Very recently, for their challenging features, great attention has been given to the investigation of the static and dynamical properties of magnetic nanostructures with special regard to magnonic crystals, a class of periodic magnetic systems. As shown by micromagnetic and analytical methods, the ferromagnetic materials composing magnonic crystals can be regarded as metamaterials since they exhibit effective properties directly linked, for instance, to the definition of an effective magnetization, an effective permeability, and an effective wavelength. Hence, the aim of this chapter is to give an overview of the recent results obtained on the study of metamaterial properties of two-dimensional ferromagnetic nanostructures ranging from those of thin films to the ones of two-dimensional magnonic crystals. Some possible applications based on the effective properties for tailoring new magnetic devices are suggested.",signatures:"Roberto Zivieri",downloadPdfUrl:"/chapter/pdf-download/51474",previewPdfUrl:"/chapter/pdf-preview/51474",authors:[{id:"181334",title:"Prof.",name:"Roberto",surname:"Zivieri",slug:"roberto-zivieri",fullName:"Roberto Zivieri"}],corrections:null},{id:"51707",title:"Molecular Magnetism Modeling with Applications in Spin Crossover Compounds",doi:"10.5772/64281",slug:"molecular-magnetism-modeling-with-applications-in-spin-crossover-compounds",totalDownloads:2101,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Molecular magnetic materials have become flourishing fields for research and technological developments due to their novel behavior compared to classical magnetic materials. Molecular magnetism modeling has reached a certain degree of maturity, although several experimental findings are still open problems. This chapter is aimed at providing a general introduction to physical modeling in molecular materials with a special emphasis placed on spin crossover compounds. This presentation includes Ising-type models and their generalizations, such as Wajnflasz and Pick, Bousseksou et al., Zimmermann and König, Sorai and Seki, and Nasser et al., along with their applications to the characterization of phase transition, hysteresis behavior, and thermal relaxations in spin crossover compounds. Recent experimental findings are explained in this context and the relevance of theoretical results for technological applications is also discussed.",signatures:"Mihai Dimian and Aurelian Rotaru",downloadPdfUrl:"/chapter/pdf-download/51707",previewPdfUrl:"/chapter/pdf-preview/51707",authors:[{id:"179954",title:"Dr.",name:"Mihai",surname:"Dimian",slug:"mihai-dimian",fullName:"Mihai Dimian"},{id:"181093",title:"Dr.",name:"Aurelian",surname:"Rotaru",slug:"aurelian-rotaru",fullName:"Aurelian Rotaru"}],corrections:null},{id:"50157",title:"Proteresis of Core-Shell Nanocrystals: Investigation through Theoretical Simulation and Experimental Analysis",doi:"10.5772/62398",slug:"proteresis-of-core-shell-nanocrystals-investigation-through-theoretical-simulation-and-experimental-",totalDownloads:1589,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"A study of proteresis (inverted hysteresis) in core-shell nanocrystals is presented. A core-shell anisotropic energy (CSAE) model is established to describe the observed proteretic behavior in Ni/NiO core-shell nanocrystals. The magnetic compositions of core-shell nanocrystals can be selected for ferromagnetic, antiferromagnetic, or paramagnetic materials where the exchange intercoupling between them results in both a large effective anisotropic energy and intercoupling energy. Simulation of the magnetization of core-shell nanocrystals reveals the existence of an exchange in the intercoupling energy between the interface of the core and shell moments that, surprisingly, is tuneable in both hysteresis and proteresis. Observations have shown a distinct proteresis, which is related to the spin-flip and exchange intercoupling energy between Ni and NiO. Our approach shows that the processing-dependent technology plays an important role when the grain size decreases to the order of nanometers and when the magnets are reduced from the single domain to core-shell domain. Integrated studies of process-dependent, theoretical modeling and core-shell nanocrystal fabrication technology will lead to more encouraging development in the overunity industry.",signatures:"Jhong-Yi Ji and Sheng Yun Wu",downloadPdfUrl:"/chapter/pdf-download/50157",previewPdfUrl:"/chapter/pdf-preview/50157",authors:[{id:"7156",title:"Prof.",name:"Sheng Yun",surname:"Wu",slug:"sheng-yun-wu",fullName:"Sheng Yun Wu"},{id:"184417",title:"Dr.",name:"Jhong-Yi",surname:"Ji",slug:"jhong-yi-ji",fullName:"Jhong-Yi Ji"}],corrections:null},{id:"50909",title:"Radiation and Propagation of Waves in Magnetic Materials with Helicoidal Magnetic Structure",doi:"10.5772/64014",slug:"radiation-and-propagation-of-waves-in-magnetic-materials-with-helicoidal-magnetic-structure",totalDownloads:1618,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter, we are shortly reviewing some problems of electromagnetic and acoustic wave propagation and radiation in the magnets with helicoidal spin structure. We show the band structure of the coupled wave spectrum in the materials. The band gap width depends on the spiral angle (or, equivalently, on external magnetic field value). Interaction of spin and electromagnetic waves leads to opening the gap in spin-electromagnetic dispersion. This gap leads to opacity window in reflection spectrum of spiral magnet plate. The opacity window closes at phase transition into collinear ferromagnetic state and reaches a maximum at simple spiral state. At the frequencies near band gap boundaries, the rotation of polarization plane of propagating electromagnetic wave is observed. Account of interaction of spin and electromagnetic waves with acoustic subsystem leads to opening the gap in spin-acoustic spectrum. This gap leads to some features in electromagnetic reflectance spectrum and to rotation of acoustic wave polarization plane, i.e. to acoustic Faraday effect. We also show the possibility of acoustic and electromagnetic wave radiation by helicoidal magnets at phase transition into collinear ferromagnetic state. Some features of electromagnetic waves generation by spiral magnets placed in homogeneous magnetic field with harmonical time-dependence are also discussed.",signatures:"Igor V. Bychkov, Dmitry A. Kuzmin and Vladimir G. Shavrov",downloadPdfUrl:"/chapter/pdf-download/50909",previewPdfUrl:"/chapter/pdf-preview/50909",authors:[{id:"178503",title:"Prof.",name:"Igor",surname:"Bychkov",slug:"igor-bychkov",fullName:"Igor Bychkov"},{id:"179168",title:"Dr.",name:"Dmitry",surname:"Kuzmin",slug:"dmitry-kuzmin",fullName:"Dmitry Kuzmin"},{id:"179169",title:"Prof.",name:"Vladimir",surname:"Shavrov",slug:"vladimir-shavrov",fullName:"Vladimir Shavrov"}],corrections:null},{id:"50527",title:"Giant Magnetoimpedance Effect and AC Magnetic Susceptibility in Amorphous Alloys System of FeCoNbBSiCu",doi:"10.5772/63024",slug:"giant-magnetoimpedance-effect-and-ac-magnetic-susceptibility-in-amorphous-alloys-system-of-feconbbsi",totalDownloads:1457,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The study of Giant Magnetoimpedance (GMI) effect of the amorphous alloys system of Fe72-xCoxNb6B10Si11Cu1 (for x = 35 and x = 40 at. percent Co) and AC magnetic susceptibility for the amorphous alloy of Fe37Co35Nb6B11Si10Cu1 composition are presented in this chapter. The importance of GMI effect for the improvement of technological applications in sensor devices in amorphous magnetic Fe- and Co-based alloys is introduced; then it is described as the experimental procedure of magnetoimpedance and AC magnetic susceptibility measurements. The obtained results are discussed and finally the conclusions are presented.",signatures:"Zulia Isabel Caamaño De Ávila, Amilkar José Orozco Galán and\nAndrés Rosales-Rivera",downloadPdfUrl:"/chapter/pdf-download/50527",previewPdfUrl:"/chapter/pdf-preview/50527",authors:[{id:"181146",title:"Dr.",name:"Zulia",surname:"Caamaño",slug:"zulia-caamano",fullName:"Zulia Caamaño"}],corrections:null},{id:"51160",title:"Magnetization Statics and Ultrafast Photoinduced Dynamics in Co/garnet Heterostructures",doi:"10.5772/62542",slug:"magnetization-statics-and-ultrafast-photoinduced-dynamics-in-co-garnet-heterostructures",totalDownloads:1513,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"We demonstrate experimental studies of the magnetization behavior from statics to ultrafast photoinduced dynamics with high temporal resolution in ultrathin Co/garnet heterostructures with a sub-nanometer roughness at the interface. We report on modulation of spin precession in Co/garnet heterostructures with distinct frequencies and show that the excitation efficiency of these precessions strongly depends on the amplitude and the direction of external magnetic field. Furthermore, it is shown that the magnetization precession in the garnet film can be manipulated by the strong magnetostatic coupling between Co and garnet layers. These findings could provide new possibilities in all-optical excitation and local spin manipulation by polarized femtosecond pulses for the application in nanodevices with high-speed switching.",signatures:"Andrzej Stupakiewicz",downloadPdfUrl:"/chapter/pdf-download/51160",previewPdfUrl:"/chapter/pdf-preview/51160",authors:[{id:"41112",title:"Dr.",name:"Andrzej",surname:"Stupakiewicz",slug:"andrzej-stupakiewicz",fullName:"Andrzej Stupakiewicz"}],corrections:null},{id:"51644",title:"Magnetic Micro-Origami",doi:"10.5772/64293",slug:"magnetic-micro-origami",totalDownloads:1670,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Microscopic origami figures can be created from thin film patterns using surface tension of liquids or residual stresses in thin films. The curvature of the structures, direction of bending, twisting, and folding of the patterns can be controlled by their shape, thickness, and elastic properties and by the strength of the residual stresses. Magnetic materials used for micro- and nano-origami structures play an essential role in many applications. Magnetic force due to applied magnetic field can be used for remote actuation of microrobots. It can also be used in targeted drug delivery to direct cages loaded with drugs or microswimmers to transport drugs to specific organs. Magnetoelastic properties of free-standing micro-origami patterns can serve for stress or magnetic field sensing. Also, the stress-induced anisotropy and magnetic shape anisotropy provide a convenient method of tuning magnetic properties by designing a shape of the micro-origami figures instead of varying the composition of the films. Micro-origami figures can also serve as building blocks for two- and three-dimensional meta-materials with unique properties such as negative index of refraction. Micro-origami techniques provide a powerful method of self-assembly of magnetic circuits and integrating them with microelectro-mechanical systems or other functional devices.",signatures:"Leszek Malkinski and Rahmatollah Eskandari",downloadPdfUrl:"/chapter/pdf-download/51644",previewPdfUrl:"/chapter/pdf-preview/51644",authors:[{id:"115596",title:"Dr.",name:"Leszek",surname:"Malkinski",slug:"leszek-malkinski",fullName:"Leszek Malkinski"},{id:"187129",title:"MSc.",name:"Rahmatollah",surname:"Eskandari",slug:"rahmatollah-eskandari",fullName:"Rahmatollah Eskandari"}],corrections:null},{id:"51165",title:"Magnetic Properties of Gadolinium-Doped ZnO Films and Nanostructures",doi:"10.5772/63320",slug:"magnetic-properties-of-gadolinium-doped-zno-films-and-nanostructures",totalDownloads:1674,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The magnetic properties of Gd-doped ZnO films and nanostructures are important to the development of next-generation spintronic devices. Here, we elucidate the significant role played by Gd-oxygen-deficiency defects in mediating/inducing ferromagnetic coupling in in situ Gd-doped ZnO thin films deposited at low oxygen pressure by pulsed laser deposition (PLD). Samples deposited at higher oxygen pressures exhibited diamagnetic responses. Vacuum annealing was used on these diamagnetic samples (grown at a relatively high oxygen pressures) to create oxygen-deficiency defects with the aim of demonstrating reproducibility of room-temperature ferromagnetism (RTFM). Samples annealed at oxygen environment exhibited superparamagnetism and blocking-temperature effects. The samples possessed secondary phases; Gd segregation led to superparamagnetism. Theoretical studies showed a shift of the 4f level of Gd to the conduction band minimum (CBM) in Gd-doped ZnO nanowires, which led to an overlap with the Fermi level, resulting in strong exchange coupling and consequently RTFM.",signatures:"Iman S. Roqan, S. Assa Aravindh and Singaravelu Venkatesh",downloadPdfUrl:"/chapter/pdf-download/51165",previewPdfUrl:"/chapter/pdf-preview/51165",authors:[{id:"181087",title:"Dr.",name:"Iman",surname:"Roqan",slug:"iman-roqan",fullName:"Iman Roqan"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6552",title:"Silver Nanoparticles",subtitle:"Fabrication, Characterization and Applications",isOpenForSubmission:!1,hash:"fa35924b88365602189440c335634a77",slug:"silver-nanoparticles-fabrication-characterization-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/6552.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5404",title:"Raman Spectroscopy and Applications",subtitle:null,isOpenForSubmission:!1,hash:"7d447d2811c5d3fc696761bb12fe3166",slug:"raman-spectroscopy-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/5404.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4644",title:"The Transmission Electron Microscope",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"6ef878a14961b97ec0bc5c1762a46aa0",slug:"the-transmission-electron-microscope-theory-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/4644.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1508",title:"The Transmission Electron Microscope",subtitle:null,isOpenForSubmission:!1,hash:"40719eadb88b36d3aab9d67fbef67fe3",slug:"the-transmission-electron-microscope",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/1508.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5747",title:"Nanowires",subtitle:"New Insights",isOpenForSubmission:!1,hash:"dde280ae9a6cf4036de089d63738a409",slug:"nanowires-new-insights",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/5747.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6133",title:"Cobalt",subtitle:null,isOpenForSubmission:!1,hash:"96be0c35234ae3c889e6ce68b218fe04",slug:"cobalt",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/6133.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7674",title:"Modern Spectroscopic Techniques and Applications",subtitle:null,isOpenForSubmission:!1,hash:"da3cb0d978d197ed95c07e8090e06136",slug:"modern-spectroscopic-techniques-and-applications",bookSignature:"Maaz Khan, Gustavo Morari do Nascimento and Marwa El-Azazy",coverURL:"https://cdn.intechopen.com/books/images_new/7674.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10941",title:"Ferrites",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"f6a323bfa4565d7c676bc3733b4983b0",slug:"ferrites-synthesis-and-applications",bookSignature:"Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10941.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5293",title:"Recent Advances in Graphene Research",subtitle:null,isOpenForSubmission:!1,hash:"207ed784d98fcb1189a3ac9147f1dc81",slug:"recent-advances-in-graphene-research",bookSignature:"Pramoda Kumar Nayak",coverURL:"https://cdn.intechopen.com/books/images_new/5293.jpg",editedByType:"Edited by",editors:[{id:"38997",title:"Dr.",name:"Pramoda Kumar",surname:"Nayak",slug:"pramoda-kumar-nayak",fullName:"Pramoda Kumar Nayak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1790",title:"Materials Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0b85a7bbf89f16101f9195f9588ee66d",slug:"materials-science-and-technology",bookSignature:"Sabar D. Hutagalung",coverURL:"https://cdn.intechopen.com/books/images_new/1790.jpg",editedByType:"Edited by",editors:[{id:"106047",title:"Dr.",name:"Sabar",surname:"Hutagalung",slug:"sabar-hutagalung",fullName:"Sabar Hutagalung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74251",slug:"corrigendum-to-enhancing-soil-properties-and-maize-yield-through-organic-and-inorganic-nitrogen-and",title:"Corrigendum to: Enhancing Soil Properties and Maize Yield through Organic and Inorganic Nitrogen and Diazotrophic Bacteria",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74251.pdf",downloadPdfUrl:"/chapter/pdf-download/74251",previewPdfUrl:"/chapter/pdf-preview/74251",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74251",risUrl:"/chapter/ris/74251",chapter:{id:"71840",slug:"enhancing-soil-properties-and-maize-yield-through-organic-and-inorganic-nitrogen-and-diazotrophic-ba",signatures:"Arshad Jalal, Kamran Azeem, Marcelo Carvalho Minhoto Teixeira Filho and Aeysha Khan",dateSubmitted:"May 29th 2019",dateReviewed:"March 6th 2020",datePrePublished:"April 20th 2020",datePublished:"June 17th 2020",book:{id:"9345",title:"Sustainable Crop Production",subtitle:null,fullTitle:"Sustainable Crop Production",slug:"sustainable-crop-production",publishedDate:"June 17th 2020",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"190597",title:"Dr.",name:"Marcelo Carvalho Minhoto",middleName:null,surname:"Teixeira Filho",fullName:"Marcelo Carvalho Minhoto Teixeira Filho",slug:"marcelo-carvalho-minhoto-teixeira-filho",email:"mcm.teixeira-filho@unesp.br",position:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"322298",title:"Dr.",name:"Aeysha",middleName:null,surname:"Khan",fullName:"Aeysha Khan",slug:"aeysha-khan",email:"fhw9uhfig@gmail.com",position:null,institution:null},{id:"322299",title:"Dr.",name:"Kamran",middleName:null,surname:"Azeem",fullName:"Kamran Azeem",slug:"kamran-azeem",email:"gisfgiog34sg@gmail.com",position:null,institution:null},{id:"322301",title:"Dr.",name:"Arshad",middleName:null,surname:"Jalal",fullName:"Arshad Jalal",slug:"arshad-jalal",email:"gisfgiog3465sg@gmail.com",position:null,institution:null}]}},chapter:{id:"71840",slug:"enhancing-soil-properties-and-maize-yield-through-organic-and-inorganic-nitrogen-and-diazotrophic-ba",signatures:"Arshad Jalal, Kamran Azeem, Marcelo Carvalho Minhoto Teixeira Filho and Aeysha Khan",dateSubmitted:"May 29th 2019",dateReviewed:"March 6th 2020",datePrePublished:"April 20th 2020",datePublished:"June 17th 2020",book:{id:"9345",title:"Sustainable Crop Production",subtitle:null,fullTitle:"Sustainable Crop Production",slug:"sustainable-crop-production",publishedDate:"June 17th 2020",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"190597",title:"Dr.",name:"Marcelo Carvalho Minhoto",middleName:null,surname:"Teixeira Filho",fullName:"Marcelo Carvalho Minhoto Teixeira Filho",slug:"marcelo-carvalho-minhoto-teixeira-filho",email:"mcm.teixeira-filho@unesp.br",position:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"322298",title:"Dr.",name:"Aeysha",middleName:null,surname:"Khan",fullName:"Aeysha Khan",slug:"aeysha-khan",email:"fhw9uhfig@gmail.com",position:null,institution:null},{id:"322299",title:"Dr.",name:"Kamran",middleName:null,surname:"Azeem",fullName:"Kamran Azeem",slug:"kamran-azeem",email:"gisfgiog34sg@gmail.com",position:null,institution:null},{id:"322301",title:"Dr.",name:"Arshad",middleName:null,surname:"Jalal",fullName:"Arshad Jalal",slug:"arshad-jalal",email:"gisfgiog3465sg@gmail.com",position:null,institution:null}]},book:{id:"9345",title:"Sustainable Crop Production",subtitle:null,fullTitle:"Sustainable Crop Production",slug:"sustainable-crop-production",publishedDate:"June 17th 2020",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11678",leadTitle:null,title:"Cytotoxicity",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tMedical devices and pharmaceutical agents must undergo rigorous testing to determine their biocompatibility when they have contact with the body, regardless of their mechanical, physical, and chemical properties. All new drugs and medical devices must undergo biocompatibility tests of cytotoxicity, sensitization, intradermal irritation, acute systemic toxicity, and a series of tests before entering a clinical environment to ensure safe and effective use for humans.
\r\n\tCell viability is defined as the number of healthy cells in a sample and proliferation of cells is a vital indicator for understanding the mechanisms inaction of certain genes, proteins, and pathways involved in cell survival or death after exposure to toxic agents. The methods used to determine viability are also common for the detection of cell proliferation. A cell viability assay is performed based on the ratio of live and dead cells. This assay is based on an analysis of cell viability in cell culture for evaluating in vitro drug effects in cell-mediated cytotoxicity assays for monitoring cell proliferation. Various methods are involved in performing a cell viability assay, including the dilution method, surface viable count, roll tube technique, nalidixic acid method, fluorogenic dye assay, and the Trypan Blue Cell Viability Assay. The cell viability assays can determine the effect of drug candidates on cells and be used to optimize the cell culture conditions. The parameters that define cell viability can be as diverse as the redox potential of the cell population, the integrity of cell membranes, or the activity of cellular enzymes.
\r\n\tCytotoxicity is the degree to which a substance can cause damage to a cell. Cytotoxicity assays measure the ability of cytotoxic compounds to cause cell damage or cell death. Cytotoxicity assays are widely used in fundamental research and drug discovery to screen libraries for toxic compounds. The cell cytotoxicity and proliferation assays are mainly used for drug screening to detect whether the test molecules have effects on cell proliferation or display direct cytotoxic effects. In a cell-based assay, it is important to know how many viable cells are remaining at the end of the experiment. There are a variety of assay methods based on various cell functions such as enzyme activity, cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. These methods could be classified in to different categories: (I) dye exclusion methods such as trypan blue dye exclusion assay, (II) methods based on metabolic activity, (III) ATP assay, (IV) sulforhodamine B assay, (V) protease viability marker assay, (VI) clonogenic cell survival assay, (VII) DNA synthesis cell proliferation assays and (V) Raman micro-spectroscopy.
\r\n\tMedical devices have been widely used in various clinical disciplines and these devices have direct contact with the tissues and cells of the body, they should have good physical and chemical properties as well as good biocompatibility. Biocompatibility testing assesses the compatibility of medical devices with a biological system. It studies the interaction between the device and the various types of living tissues and cells exposed to the device when it comes into contact with patients.
\r\n\t
\r\n\tThe book will cover original studies, reviews, all aspects of Cell Viability and Cytotoxicity assays, methods, Biocompatibility of studies of biomedical devices, and related topics.
Metallurgical coke is made from coal that is an organic compound, but is inorganic material composed of graphite. Metallurgical coke is porous media that contains pore of 50% in porosity. The size of metallurgical coke lump is from 25 mm to 50 mm (Fig. 1). In modern iron making process, coke has very important roles in iron making process because coke is, at the same time, used as reducing agent of ore, heat source of blast furnace, carburizing source of pig iron and spacer of gas and liquid transport through blast furnace. Metallurgical coke is charged from the top of blast furnace at first and moves to the bottom part. Reducing agents derived from coke are generated by following two reactions: (i) coke reacts with oxygen at the bottom part of blast furnace, and one carbon monoxide molecule is generated, (ii) coke reacts with carbon dioxide at middle part of blast furnace, and two carbon monoxide molecules is generated. Former reaction is
Blast furnace operation consumes huge amount of carbon that finally becomes carbon dioxide. In recent years, worldwide, iron making materials (i.e. coal) are draining and soaring. So, improvement of carbon use efficiency to curtail carbon consumption is increasingly important issue from the viewpoint of material, energy resource and cost.
Combustion of coke takes the role of primary carbon monoxide generation. So, this gasification reaction is carbon consumption reaction. Carbon solution-loss reaction, also, consumes carbon, but is, on the other hand, gasified carbon recycle reaction (from carbon dioxide to carbon monoxide). Reactivity of these gasification reactions directly affects carbon use efficiency of iron making process. Gasified carbon produced by combustion reaction is finally emitted as carbon dioxide due to oxidization reaction of ore. Thus, control of coke solution-loss reactivity is important in order to improve of the carbon use efficiency. Both practical approaches and fundamental investigation are desired to this.
Photographs of (a) coke lump and (b) cross-sectional image of coke microstructure
As above, promoting and controlling solution-reactivity of metallurgical coke is very important in order to improve the carbon use efficiency. To realize the blast furnace operation in high carbon use efficiency, making of the coke which is satisfying four roles described in
The practical purpose of the chapter is to propose the design guide of solution-loss reactivity-promoted (so-called “
Situation in blast furnace and role of coke gasification can be discussed from two viewpoints. One is
In blast furnace, carbon atom of coke reacts with oxygen molecule from tuyere
where
As a result, following reaction occurs near the bottom part of blast furnace
Reaction of Eq. (3) is called
Reducing reaction of iron ore (oxide) in blast furnace is classified into two kind of reaction. One is
This successive reaction is a desirable reaction from the viewpoint of the thermal balance in blast furnace because the reaction is an exothermic except reducing reaction from magnetite to wustite. Direct reducing reaction, on the other hand, is written as follows:
Reaction of Eq. (5) progresses at the bottom part of blast furnace where combustion of coke occurs and is endothermic. It negatively affects the amount of energy consumption that reaction of Eq. (5) mainly occurs. To improve carbon use efficiency (thermal efficiency), it is important to enhance indirect reducing reaction because reducing ratio of iron ore by indirect reducing reaction should be lifted rather than that of direct reducing reaction.
Reaction of Eq. (2) can be also expressed as equilibrium reaction.
where
Figure 2 shows conceptual diagram of temperature distribution along the height direction in blast furnace. TRZ (Thermal Reserve Zone) is where temperature slightly changes over the cohesive zone. In TRZ, indirect reducing reaction actively progress rather than direct one. The degree of progress of indirect reducing is affected by TRZ temperature because the temperature governs state of C-O-Fe equilibrium system in TRZ. Coke solution-loss reaction, also, occurs in TRZ and its reactivity strongly affects TRZ temperature. TRZ temperature decreases when solution-loss reactivity of charged coke is enhanced due to endothermic reaction. Therefore, coke with high solution-loss reactivity is used in blast furnace, and TRZ temperature decreases and the equilibrium point moves. However, Final conversion of coke gasification (ratio of weight loss based on carbon) is constantly 20 mass% regardless of gasification reactivity.
A conceptual diagram of temperature distribution along height direction of blast furnace
Rist et al
An example of Rist diagram with the operation line
Reaction gas of coke solution-loss reaction (carbon dioxide) adsorbs and/or chemisorbs on the site of graphite structure. It is expected to be able to enhance the reactivity by a change of the site state. It is, however, difficult to change the site state by a change of only coke making process. Another idea is addition of metallic catalyst. This section will discuss about the element that indicates the catalyst activity, the effect of element and state of catalyst on solution-loss reactivity, and additional method.
The catalyst activity in each element have been organized and is shown in Fig. 4 (Lahaye & Ehrburger, 1991). Many kinds of alkali metal (Lahaye & Ehrburger, 1991; Tomita et al., 1983; Walker, 1968; Miura et al, 1989; Takarada et al., 1992; Jaran & Rao, 1978), alkaline earth metal (Tomita et al., 1983; Miura et al, 1989; Sears et al., 1980; Carzorla-Amoros et al., 1992; Yamada & Homma, 1979) and transition metal (Ohtsuka et al., 1986; Kashiwaya et al., 1991; Tomita et al., 1983; Kamishita et al., 1980) shows good catalyst activity. Many kinds of inexpensive metal show the activity such as potassium, calcium and iron, respectively.
In metallurgical coke, on the other hand, there is mineral that is derived from coal ash and has catalyst activity. In addition, coke-matrix is not perfect graphite structure and amorphous structure coexists with crystalline structure. Therefore, it is necessary to consider the effect of the catalyst on solution-loss reactivity of
The catalyst activities in each element (
The relationship between the addition ratio of the alkaline earth metal and the JIS coke reactivity index (
Conceptual diagrams of two methods of catalyst addition (
As above, it seems that iron is the most useful source of catalyst because of cost, catalyst activity and source of pig-iron. Useful source of catalyst second to iron seems calcium, also, is very economical material but melt in by-product as slag.
Catalyst addition method can be classified into pre- and post-addition (Nomura et al., 2005). Pre- or post- mean before or after coke making. Figure 6 (Nomura et al., 2005) shows conceptual diagrams of both methods of catalyst addition. Post-addition is easier to enhance solution-loss reactivity (Kitaguchi et al., 2007) and to control the type of reaction and reaction surface than pre-addition (Nomura et al., 2007). On the other hand, process of pre-addition is simpler than that of post-addition, and is employed in extensive examination (Nomura et al., 2005; Nomura et al., 2006; Nomura et al., 2007; Nomura et al., 2009; Fujimoto & Sato, 2010; Yamamoto et al., 2011; Yamazaki et al., 2010; Yamazaki et al., 2011). Particularly, if Fe addition is used, iron ore as iron/steel making material is useful as the source of catalyst (Nomura et al., 2009; Fujimoto & Sato, 2010; Yamazaki et al., 2010). Iron ore in briquetted material before carbonization (mixed-coal/ore = 70/30) is almost reduced during carbonization (reducing ratio is ca. 95%, Fujimoto & Sato, 2010).
For the improvement of the carbon use efficiency, the important factors of highly reactive coke are not only the gasification reactivity of metallurgical coke but also the strength of one because metallurgical coke supports gas and liquid permeability in blast furnace. The issues on the strength of highly reactive coke are principally caused by catalyst addition. The issues can be divided into two main classes.
As the first one, at the time of
As another one,
There are few fundamental (i.e. phenomenon analysing based) studies of
The spatial distribution of local porosity of coke lump is as a result of (1) reaction gas diffusion into coke lump, (2) reaction gas diffusion in coke lump, and (3) gasification reaction of carbon(coke)-matrix. In other words, the resistance of (1), (2), and (3) dominate the spatial distribution. Resistance of (2) and (3) govern
However, metallurgical coke is porous media that contains pore of 50% in porosity. The size of metallurgical coke lump is from 25 mm to 50 mm. Hence, the important factors that dominate the spatial distribution are not only the
As a result of these phenomena, coke-matrix state, after gasification reaction, changes of coke microstructure in mm-scale have been observed as follows: (i) Coke-matrix (solid) is visually vanished (Watakabe & Takeda, 2001; Hayashizaki et al., 2009) and is as change of local porosity, and (ii) Elastic modulus of coke-matrix decreases (Hayashizaki et al., 2009). In former phenomenon (i), carbon dioxide diffuses into coke-matrix insufficiently, and coke-matrix on the surface reacts. In latter phenomenon (ii), a decrease of elastic modulus of coke-matrix is, on the other hand, correlated with nm-order micro pore volume. Hayashizaki et al reported the relationship between a decrease in the elastic modulus and an increase in nm-order pore volume during chemical reaction-controlling condition in which gasification rate of coke lump is not affected by reaction gas diffusion around the coke lump (Fig. 7, Hayashizaki et al., 2009). It has been known that volume of nm-order micro pore inside coke-matrix increases with progress of gasification (Kawakami et al., 2004) because carbon dioxide diffuses well into carbon-matrix.
Change in micro pore size distribution of metallurgical coke with conversion correlated with elastic modulus by gas adsorption (
If highly reactive coke reaction-promoted by catalyst is gasified, resistance of (3) decreases when both reaction temperature of highly reactive coke and ordinary coke is the same; hence the spatial distribution should become “unreacted-core”. Actually, reaction temperature (i.e. TRZ temperature), however, decreases with use of highly reactive coke described as section
For this, as fundamental study, we have investigated the reaction mechanism and phenomena of coke before and after the gasification reaction. In section
Then, we propose a proper method to make highly reactive coke catalyzed by metals.
Position of the study in section 4 and whole picture of causal correlation between "coke gasification reaction" and "strength after gasification" with condition, phenomena and mechanism
Coke lumps with and without iron-particles were made. Both cokes are called
Brand | Ash [db. %] | VM [db. %] | Fixed C [db. %] | Ultimate analysis [daf. %] | ||||
C | H | N | S | O | ||||
Slightly-caking coal | 8.4 | 36.1 | 55.5 | 82.3 | 5.8 | 1.9 | 0.88 | 9.1 |
Non-caking coal | 8.6 | 11.2 | 80.2 | 80.4 | 3.5 | 1.5 | 0.40 | 2.8 |
Proximate and ultimate analysis of coals
T-Fe | FeO | SiO2 | CaO | Al2O3 | MgO | P |
67.5 | 0.21 | 1.31 | 0.01 | 0.73 | 0.01 | 0.033 |
S | Na | K | TiO2 | Mn | Zn | |
0.010 | 0.01 | 0.01 | 0.07 | 0.11 | 0.003 |
Major component of iron ore [mass %]
Experimental conditions of CO2 gasification reaction
There are two purposes of Fe addition to metallurgical coke in iron/steel making process. First one is to decrease the amount of iron ore which must be reduced in blast furnace. Iron ore in briquetted material before carbonization (mixed-coal/ore = 70/30) is almost reduced during carbonization (reducing ratio is ca. 95%, Fujimoto & Sato, 2010). This fact shows that the required reducing gas that corresponds to carbon consumption to reduce iron ore can be decreased with the higher blending ratio of iron ore. Second one is to improve carbon use efficiency as described in section 2.2. Figure 9 shows that the initiation temperature of the gasification reaction decreases with an increase in the blending ratio of iron ore. The initiation temperature strongly correlates with TRZ temperature described in section 2.2. The initiation temperature saturated at 30 mass% in the blending ratio. From these viewpoints, the higher blending ratio of iron ore is better. In fact, TRZ temperature satisfactorily decreases by using ferrous coke that includes 30 mass% in the blending ratio shown in Fig. 10 (No. 1 and No. 6 shows traditional metallurgical coke and ferrous coke, respectively, Nomura et al., 2009).
The effect of blending ratio of iron ore on the initiation temperature of the gasification reaction (
Temperature and reduction degree as a function of BIS descent distance (in the figure, No. 1 and No. 6 represent coke made by conventional coke and ferrous coke, respectively) (
From the viewpoint of coke strength, the blending ratio of iron ore should be, on the other hand, limited. Figure 11 shows the relationship between the blending ratio of iron ore and tensile strength. Figure 12, also, shows relationship between the blending ratio of iron ore and agglomerated coal strength (the I-shaped drum index) that indicates pulverization resistance in blast furnace. By 30 mass% in the blending ratio, tensile strength and I-shaped drum index (ID600/10) are reserved, respectively. Both results suggest the same conclusion that the blending ratio of iron ore should be limited by 30 mass%. In Fig. 9, the effect of iron ore addition on TRZ temperature is satisfied at 30 mass% in the blending ratio. From the both viewpoint of the carbon use improvement and the strength (Figs. 11 and 12), 30 mass% in the blending ratio is proper in practical use.
Adding 30 mass% of iron ore is, hence, proper in practical use.
Relationship between tensile strength and blending ratio of iron ore (
The effect of blending ratio of iron ore on agglomerated coal strength (I-shaped drum index, ID600/10) (
Ferrous coke lump and formed coke lump were gasified by carbon dioxide – carbon monoxide mixture gas. Schematic diagram of experimental apparatus is shown in Fig. 14. A coke sample was hanged from the weighing scale to alumina reaction tube filled with alumina ball for heat transfer to gas. Reaction tube was heated by electric furnace. Reaction gases were led into the reaction tube from the bottom. The gases after gasification were cooled by water-cooling tube, and were then ejected outside. Weight loss with the gasification reaction was measured by weighing scale. Experimental conditions are shown in Table 3. Reaction temperature was set at 1173 K. Reaction gas compositions were set at 100/0 (Yamazaki et al., 2010) and 50/50 (Yamazaki et al., 2011) in ratio of CO2/CO. Final conversion (ratio of weight loss based on carbon)
A photograph of a sample after carbonization (in appearance, there is no difference for formed and ferrous coke) (
Schematic diagram of experimental apparatus (
Main component of the actual gas at TRZ is N2 besides CO and CO2. The actual gas composition N2/CO/CO2 is ca. 60/20/20. N2 is from air origin and is, however, inactive for the gasification reaction. In case of gasification reaction by the mixture CO/CO2, the reaction rate is governed by
In the gasification reaction of solid-carbon by the mixture CO/CO2, the reactions in series are analogous to the resistance in series. The reaction rate is controlled by the reaction step which exerts most of the resistance to the overall reaction. There are two rate-controlling mechanisms during the gasification reaction in series: (1) dissociation of CO2 on the surface of carbon, and (2) formation of CO on the surface of carbon. Carbon monoxide has a two-fold poisoning effect: (a) covering of the surface site due to strong adsorption, and (b) increasing the activity coefficient of the activated complex for the dissociation of CO2; hence CO changes the rate-controlling mechanism. In the gasification of carbon material (e.g. charcoal, graphite and metallurgical coke), at CO contents above 10%, restance of (1) >> resistance of (2), and at low CO contents, resistance of (2) >> resistance of (1) (Turkdogan and Vinters, 1970).
In CO/CO2 = 50/50, resistance (1) overcomes resistance (2). In this situation, the gasification rate is proportional to the difference of the partial pressure of actual gas CO2 and the one governed by 2CO = C + CO2 equilibrium. The equilibrium is determined as
In CO/CO2 = 0/100, the gas composition is not actual. However, we investigate the behavior and phenomena as the model case in pure CO2 condition due to gasification agent.
Cross-sectional digital images were taken by optical microscope (LV-100-POL, Nikon). Spatial distribution of porosity after gasification reaction was measured by image analysis (Winroof 5.01, Mitani Corporation). Conceptual diagram of the taking procedure of digital image is shown in Fig. 15. Coke samples were buried into resin, cut and polished. From end to end of coke samples, digital images were three times taken in each sample. Taking area of digital images (3.14 mm x 2.35 mm, 2.45 μm/pixel) was slid aside in half length of image size.
A conceptual diagram of the taking procedure of digital image (
In case of CO2/CO = 100/0, unreacted-core model was used to estimate the gasification reaction mechanism of coke lump. Using time change of conversion
Diffusion in boundary film:
Diffusion in product layer:
Reaction on or in the lump surface:
Relationship between
In case of CO2/CO = 50/50, homogeneous reaction model was used. Time change of weight loss can be represented by this model when chemical reaction progress uniformly in whole lump. Mass balance is expressed as equation connected with chemical reaction rate and time derivative of mass. If reaction gas concentration is constant while reaction of lump progresses, chemical reaction rate is proportional to ratio of residual solid. Mass balance is written as
Integrated with initial conditions
If initial conditions
Elastic modulus of coke-matrix was measured by nano-indentation method. Load cycle indentation using sub-micron (or nano) indentation instruments is now a means of determining the deformation properties such as hardness and elastic modulus. A diamond tipped indenter with a precise geometry is pressed into a specimen with an increasing load up to a predetermined limit, and is then removed. The deformation properties can be determined using the load and displacement data obtained during the loading-unloading sequence. In this study, calculating method of elastic modulus was based on the method proposed by Oliver et al. When Berkovich triangular indenter which has 115-degree in angle is used, elastic modulus
Resin-mounted specimens which are the same as ones mentioned
Indenter | Berkovich triangular pyramid | |
Loading/unloading velocity | [mN/s] | 3 |
Maximum load | [mN] | 100 |
Holding time in maximum load | [s] | 2 |
The number of measurements | 50 |
Measurement condition of nano-indentation method
Figure 16 shows spatial distributions of porosity before and after gasification. Plots are denoted as average value. In formed coke, porosity was distributed uniformly along the radial direction. In ferrous coke, in outer region, porosity was significantly large. Relationships between porosity of each part and conversion based on carbon mass of ferrous coke lump are shown in Fig. 17. Plots and error bars are denoted as average value and standard deviation, respectively. In outer region, porosity increased with an increase in progress of gasification. On the other hand, in inner region, porosity hardly changed. Figures 16 (b) and 17(a) show that there is “unreacted-core” in local porosity distribution in ferrous coke after gasification reaction (CO2/CO =100/0). It is suggested that chemical reactivity of gasification is advanced by the presence of iron-particles, and gasification in outer the coke lump is selectively progressed.
Spatial distributions of porosity before and after gasification (CO2/CO = 100/0) of (a) formed coke and (b) ferrous coke (
Relationships between porosity of (a) outer region and (b) inner region and conversion based on carbon mass of coke lump in ferrous coke lump at CO2/CO = 100/0 (
Cross-sectional images of formed coke and ferrous coke at 0.1, 0.2, 0.3, 0.4 and 0.5 in dimensionless radius before and after reaction under CO2/CO = 100/0 gas atmosphere is shown in Fig. 18. In
Cross-sectional images of (a, b) formed coke and (c, d) ferrous coke at 0.1, 0.2, 0.3, 0.4 and 0.5 in dimensionless radius, respectively, before and after reaction under CO2/CO = 100/0 gas atmosphere; Taking area of each picture is 3.14 mm x 2.35 mm.
Reaction-controlling process of ferrous coke lump and formed coke lump are estimated. Figure 19 shows relationship between reaction time and conversion. In formed coke, weight loss behavior is not homogeneous reaction behavior despite uniform porosity distribution. In ferrous coke, at start of gasification, lump weight apparently increased due to oxidation of iron-particles by CO2. Then lump weight decreased. Gasification reaction was terminated at 0.2 minus minimum value of conversion. Reaction time from minimum conversion to termination conversion was similar to reaction time of formed coke. Figure 20 shows results of the reaction controlling process estimation for formed and ferrous coke. Equations (7)-(9) are plotted, respectively. The lines in Fig. 20 are regression line using least squares method. The largest R2 (correlation coefficient) is focused since the dominant mechanism shows linear plot. Both dominant mechanism of ferrous coke and formed coke are
Reaction gas diffuses into inner region of coke lump after passing through the boundary film around coke lump. The fact shown in Fig. 16 suggests that there are different behaviors in the inner region after the reaction gas diffusion through boundary film although the each dominant mechanism is the same. Figures 16 and 17 suggest that the rate-controlling process of whole lump reaction is “diffusion in boundary film around the lump” in both formed and ferrous coke in pure CO2 condition. In the whole gasification process, resistance of “diffusion in boundary film” overcomes resistance of other process; hence the rate of other process can be assumed infinite. In local process after diffusion into the coke lump, on the other hand, the both processes of formed and ferrous coke (i.e. chemical reactivity and its topology) should be compared as the process which has finite rate to tell the difference of not the same spatial distribution of porosity. In ferrous coke, the chemical reactivity is catalyzed by metal iron catalyst. It is supposed that reaction gas gasifies coke-matrix and consumes rapidly soon after diffusing into the lump due to iron catalysis. Hence, gasification in outer region of lump progresses selectively. On the other hand, in formed coke, chemical reactivity is not catalyzed; hence chemical reaction rate (not whole weight loss rate since reaction–controlling process is gas diffusion through the boundary film) should be slower than ferrous coke. In other words, formed coke shows the chemical reaction on or in coke-matrix slower than diffusion in the lump. The gas is, in addition, easier to diffuse into inner coke lump due to 50 vol. % in porosity. As a result, there is no the “unreacted-core” in spatial distribution of porosity.
Relationships between reaction time and conversion of (a)formed coke and (b) ferrous coke lump in CO2/CO = 100/0 (
Results of the reaction controlling process estimation for (a) formed coke and (b) ferrous coke lump in CO2/CO = 100/0 (
Elastic moduli of formed and ferrous coke-matrix before and after gasification are shown in Fig. 21 ( (a) Outer region, formed coke, (b) Inner region, formed coke, (c) Outer region, ferrous coke and (d) Inner region, ferrous coke ).
In inner region, both cokes, elastic moduli were not significantly changed. In formed coke, despite spatial distribution of porosity after gasification reaction was uniform, elastic moduli between before and after reaction is not significantly different. Coke-matrix vanishing occurred at surface between coke-matrix and mm-order pore. Meanwhile, for a decrease in elastic modulus, gas must diffuse into nm-order pore. Therefore, it seems that there is the difference between gasification rate of the vanishing and a decrease in elastic modulus. In ferrous coke, the inner region is unreacted-core.
In outer region, significant difference of elastic moduli is shown between formed and ferrous coke. In formed coke, elastic modulus of coke-matrix significantly decreased. It is suggested that the gas sufficiently diffuses into nm-order pore in outer region, and nm-order pore increased. However, in ferrous coke, the elastic modulus did not decrease with gasification reaction. In outer region, also, it is suggested that coke-matrix vanishing is more rapid than the gas diffusion into the nm-scale pores. In other words, it is suggested that weight loss of whole ferrous coke lump is caused not by an increase in nm-order pore but by the coke-matrix vanishing. Microstructures of ferrous coke before and after gasification in outer region are shown in Fig. 22. Before gasification, iron-particles were completely surrounded by coke-matrix. After gasification, coke matrix surrounding iron-particles did not exist. Iron particle contacts with coke-matrix. Therefore, only coke-matrix vanishing may be promoted.
The difference of elastic modulus of coke matrix with gasification reaction. (a) Outer region, formed coke, (b) Inner region, formed coke, (c) Outer region, ferrous coke and (d) Inner region, ferrous coke.
Figure 23 shows spatial distributions of porosity before and after gasification. In both ferrous coke and formed coke, porosity was distributed uniformly along the radial direction. In ferrous coke, also, there was no unreacted-core. Figure 24 shows relationships between reaction time and conversion and results of the reaction controlling process estimation using Eq. (8). In ferrous coke, lump weight apparently increased due to oxidation of iron-particles by CO2 the same as Fig. 19 (b). In order to estimate only the controlling process of gasification reaction, the results after weight increase are plotted. Both ferrous coke and formed coke, weight loss behavior of gasification was similar. In addition, the conversion curves are very closely followed by the estimation results. Lump reaction mechanisms are described by homogeneous reaction model. Solution-loss reaction is inhibited when CO is contained with reaction gas since CO adsorbs competitively with CO2 to active site on coke-matrix. Thus, the chemical reactivity in CO2/CO = 50/50 is smaller than that in CO2/CO = 100/0. So there is no unreacted-core since reaction gas CO2 can diffuse enough into inner region of lump.
Microstructure of ferrous coke (a) before and (b) after gasification in outer region of coke lump in CO2/CO = 100/0 (
Cross-sectional images of formed coke and ferrous coke at 0.1, 0.2, 0.3, 0.4 and 0.5 in dimensionless radius before and after reaction under CO2/CO = 50/50 gas atmosphere is shown in Fig. 25.A
Elastic moduli of formed and ferrous coke-matrix before and after gasification are shown in Fig. 21 ( (a) Outer region, formed coke, (b) Inner region, formed coke, (c) Outer region, ferrous coke and (d) Inner region, ferrous coke ). In both cokes, elastic modulus in outer region decreases with gasification reaction. It is suggested that nm-order pore increases with gasification. However, a decrease in elastic modulus of ferrous coke-matrix (3.8 GPa) is smaller than that of formed coke (6.6 GPa). It seems that nm-order pore increment in volume of ferrous coke is smaller than that of formed coke.
Microstructures of ferrous coke before and after gasification are shown in Fig. 26. After gasification, coke matrix surrounding iron-particles did also not exist. Iron particles promote coke-matrix vanishing, but inhibit a decrease in elastic modulus. Coke-matrix is vanished selectively around iron particles. This phenomenon indicates that gasification reaction part in coke lump can be controlled by addition of iron particle.
Spatial distributions of porosity before and after gasification (CO2/CO = 50/50) of (a) formed coke, (b) ferrous coke (
Results of the reaction controlling process estimation and relationship between reaction time and conversion based on carbon mass, (a) formed coke, (b) ferrous coke (
Cross-sectional images of (a, b) formed coke and (c, d) ferrous coke at 0.1, 0.2, 0.3, 0.4 and 0.5 in dimensionless radius, respectively, before and after reaction under CO2/CO = 50/50 gas atmosphere; Taking area of each picture is 3.14 mm x 2.35 mm.
Microstructure of ferrous coke (a) before and (b) after gasification in outer region of the lump in CO2/CO = 50/50 (
The rate constant of graphite or metallurgical coke in the case of CO2/CO = 50/50 is 10 times smaller than that in the case of CO2/CO = 100/0 (Miyasaka & Kondo, 1968; Turkdogan & Vinters, 1970). The reaction-controlling mechanism of coke lump changes from
In the case of CO2/CO = 100/0, both of formed coke and ferrous coke show similar weight loss curve due to the same reaction-controlling mechanism. The same rate of whole weight loss is, hence, shown by the both cokes (Fig. 19). However, in the case of CO2/CO = 50/50, both formed coke and ferrous coke show much different rate of weight loss each other due to chemical reaction-limited process of coke lump gasification. Ferrous coke shows the gasification rate about five times larger than the rate of formed coke. In comparison between the case of CO2/CO = 50/50 and 100/0, ferrous coke and formed coke show the rate difference of weight loss about three and seven times, respectively. Weight loss rate can be assumed to be similarly equal to chemical reaction rate in this condition. Thus, the difference of weight loss rate should be considered as the difference of chemical reactivity. Due to these differences, there are the changes of the state of coke-matrix in coke lump after gasification reaction.
As shown in Figs. 16(a) and 23(a), local porosity uniformly increases due to gasification reaction in both gas compositions CO2/CO = 50/50 and 100/0. The porosity changes from about 50% to about 60 - 65% and each change shows a similar increase. Although there is the difference of elastic modulus between both gas compositions as shown in Fig. 21(a), the uniform change value of local porosity corresponds to 20% in the amount of weight loss based on the carbon weight before gasification reaction. To summarize above facts, both gas compositions CO2/CO = 50/50 and 100/0 have some gasification behaviors of coke lump in common as follows: (1) After gas diffusion into coke lump, reaction gas diffuses over a range of whole lump through the mm-order (macroscopic) pore, (2) In outer region of coke lump, a decrease in the elastic modulus is observed due to an increase in nm-order pore in coke-matrix; however, amount of a decrease in the elastic modulus slightly affects amount of coke-matrix vanishing, (3) In TRZ temperature during using highly reactive coke, not-catalyzed coke shows
In gas composition
In gas composition
Due to addition of iron catalyst, the unreacted-core is formed in the condition (1173K, CO2/CO = 100/0) in which formed coke forms no unreacted-core. On the other hand, in the condition (1173K, CO2/CO = 50/50), there is no unreacted-core after reaction. However, the behavior is observed that the coke-matrix around the iron particle is preferentially vanished. This fact suggests that it is possible to form arbitrary spatial distribution of local porosity by location of iron particle in coke lump due to the effect of preferential vanishing of coke-matrix.
Both gas compositions CO2/CO = 50/50 and 100/0 show no difference of elastic modulus before and after gasification reaction whether or not formed coke or ferrous coke is gasified. Reaction gas diffusion seems to be difficult to occur into the bulk of coke-matrix because coke-matrix vanishing at surface of the matrix and mm-order pore is easier to occur than the diffusion into the bulk.
A decrease in elastic modulus occurs only in the outer region in both formed coke and ferrous coke. Each coke shows the different behavior of the decrease.
In
In
The results in section
Gasification of metallurgical
A decrease in elastic modulus involved with an increase in volume of nm-order pore in bulk of coke-matrix was hardly observed.
Iron particle in coke lump plays the role of the catalyst of not so much the degradation but the vanishing of coke-matrix
Regardless of the reaction-controlling process difference of coke lump gasification, the chemical reactivity of coke-matrix which includes the effect of iron catalyst affects the spatial distribution of local porosity after gasification reaction. Therefore, controlling of iron particle alignment permits to control spatial distribution of local porosity and to form unreacted-core.
The study in this section shows relationship between gasification condition (temperature, gas composition and so on) and the formed spatial distribution of local porosity that affects the coke strength after gasification reaction. Particularly, the distinctive characteristic of coke-lump gasification which differs from gasification of other carbon material (i.e. electrode graphite and charcoal) is observed. Generally, a phenomenon of carbon material gasification in
In previous study, it is noted that mm-pore structure in coke-lump affects the rate of weight loss of whole lump or pore structure after gasification in
In ferrous coke, the iron particle promotes vanishing of coke-matrix surrounding it rather than a decrease in elastic modulus. As discussed previously, degradation of coke-matrix is only limited, and the part where local porosity does not change seems to be never damaged. These facts suggest that spatial distribution of local porosity (in other words, formation of unreacted-core) can be controlled by alignment of iron particle.
The pre-addition method which is used in this section disperses catalyst iron particle in whole coke lump. Hence, coke-matrix in inner region of coke-lump is catalyzed as well as that in outer region. On the other hand, the post-addition method can disperse the catalyst particle locally. In addition, if catalyst particle is supported only in outer region of the lump, catalyst particle can remain in coke lump after gasification reaction (Yamamoto et al, 2010). To form unreacted-core that is not damaged, catalyst addition to only outer region seems to be useful. For the future, the method to control the spatial distribution of local pore or to form unreacted-core should be investigated as well as pre-addition method.
To realize the blast furnace operation in high carbon use efficiency, making of the coke which is satisfying
There are two iron reducing reactions (
The
The
There are many elements which have catalyst activity of carbon gasification reacted by carbon dioxide (solution-loss reaction).
Although there are the many kinds of catalyst that have good activity, calcium and iron are better element due to cost performance. Particularly, if Fe addition is used, iron ore as iron/steel making material is useful as the source of catalyst. In addition, iron ore in briquetted material before carbonization (mixed-coal/ore = 70/30) is almost reduced during carbonization (reducing ratio is ca. 95%). Hence, iron ore is available to use as catalyst source of highly-reactive coke. Therefore, iron seems the best material for highly-reactive coke in iron making process.
There are two catalyst addition methods (post- and pre-addition).
To maintain the strength after gasification, controlling of spatial distribution of coke lump is required.
Gasification of metallurgical
A decrease in elastic modulus involved with an increase in volume of nm-order pore in bulk of coke-matrix was hardly observed.
Iron particle in coke lump plays the role of the catalyst of not so much the degradation but the vanishing of coke-matrix
Regardless of the reaction-controlling process difference of coke lump gasification, the chemical reactivity of coke-matrix which includes the effect of iron catalyst affects the spatial distribution of local porosity after gasification reaction. Therefore, controlling of iron particle alignment permits to control spatial distribution of local porosity and to form unreacted-core.
To obtain useful knowledge, all we only need to know is the relationship between the quality of practical use and the history during falling to the bottom part of blast furnace or the coke making condition (procedure and material). However, to propose design and making guideline of metallurgical coke considering condition surrounding coke, investing the phenomena of gasification of
Microscopic investigations for metallurgical coke gasification have been performed based on chemical approach (e.g. reaction mechanism analysis (Turkdogan & Vinters, 1970), gaseous adsorption property (Turkdogan et al, 1970; Kashiwaya et al, 2003; Kawakami et al, 2004), crystal structure analysis (Kashiwaya & Ishii, 1990) and so on) since the middle in 20th century. These investigations are fundamental and test specimen finely crushed, but coke is used as lump. The knowledge from the investigations is very important but is indirectly linked to the quality of practical use (e.g. strength before and after gasification and whole lump reactivity). In this chapter, the macroscopic phenomena were discussed.
In the future, it is expected that the model which combines microscopic phenomena and transport phenomena in coke lump during gasification and derives macroscopic phenomena will be developed. This helps to understand the gasification phenomena inclusively. In addition, it will be able to propose the proper guideline of design and making aggressively.
The author gratefully acknowledge the key contributions of principal researchers Takatoshi Miura, Hideyuki Aoki, Yohsuke Matsushita, Masakazu Shoji, Yasuhiro Saito, Seiji Nomura, Takashi Arima and Hidekazu Fujimoto and the valued contributions of numerous student researchers, including Kenta Ueoka, Hideyuki Hayashizaki and Tetsuya Kanai. In addition, Section 4 in this chapter partly includes findings in the study carried as a part of the research activities "Fundamental Studies on Next Innovative Iron Making Process" programmed for the project "Strategic Development of Energy Conservation Technology Project". The financial support from New Energy and Industrial Technology Development Organization (NEDO) is gratefully acknowledged.
The complex nature of neurodegenerative and psychiatric diseases stems from pathological interactions, among which inflammation [1]. Neuroinflammation is a crucial mechanism involved in the pathogenesis of psychiatric [2] and neurodegenerative diseases [3]. Accumulating evidence indicating that targeting neuroinflammation is an appealing strategy since that inflammatory-related diseases comorbid with brain disorders [4, 5, 6, 7]. In preclinical settings, triggering inflammation by administering of endotoxins and other activators are well-acknowledged animal models [8]. Preclinical studies found that attenuating inflammation reduces phenotypic features associated with psychiatric and neurodegenerative disorders. In line with this, clinical studies suggest that treatment with anti-inflammatory medications affects memory, cognition, and mood [9, 10, 11].
Developmental studies have shown that TLRs are essential elements in regulating brain development. Previously, it was reported that both TLR7 and TLR9 are expressed in corticolimbic regions of the developing brain.
All these evidences indicate a functional direct link between inflammation and mental illness. This chapter was undertaken to further highlight the association of TLRs, endotoxins, and brain disorders. We also emphasize the diverse role of multiple TLR family members in both nonregenerative and psychiatric diseases. Lastly, we review the pharmacological modulation of TLRs in the context of brain disorders. Aiming this chapter would stimulate future research in characterizing the nature of endotoxin activation of TLRs in complex brain disorders, filling our knowledge gaps, and finding new treatment strategies.
In comparison to most bacterial activators of inflammatory cytokines, endotoxins are considered one of the most potent. Mostly, endotoxins are referred to as lipopolysaccharide (LPS) [21]. LPS is a composition of the bacterial cell wall; an elevated level of LPS reaches different biological systems during infections. Administration of LPS to healthy participants induces both the initiation and the transition phases of acute inflammation. Besides, this activation level reaches the transcriptomic level along with the functional and physiological levels [22]. The systemic application of LPS is utilized extensively in pharmacological animal models of brain disorders [23], including Alzheimer’s [24], Parkinson’s [25], depression [26], and anxiety [27]. This is mainly regarded as the potency in triggering inflammation.
Previous reports indicated that LPS stimulates the aggregations of both amyloid β and tau, a neuropathological feature of Alzheimer’s [28]. Treating Tg2576 mice with LPS increases the mRNA level of cytokines in the cortex [29]. In a transgenic animal model of Alzheimer’s, the 3xTg-AD mice, administration of LPS trigger pathological changes in microglia populations associated with later on aggregations of hyperphosphorylated tau. Even though the researchers exposed these mice to LPS at early developmental stages, before the detection of pathological features related to Alzheimer’s disease. Additionally, they reported that the aggregation of phosphorylated tau was mediated mechanistically through the activation of the cyclin-dependent kinase 5 (cdk5) [30]. Cdk5 is a member of the cyclin-dependent kinases family. Specifically, they are proline-directed serine–threonine kinases group. Functionally, Cdk5 modulates the cell cycle [31, 32], synaptic wiring, neuronal transmission [33], and neuronal development and survival [34]. In accordance with this, a previous report demonstrated that following the stereotaxic introduction of Aβ in mice, the pharmacological inhibition of Cdk5 using roscovitine resulted in reducing inflammatory and oxidative stress mediators at the mRNA level. Indicating that, Cdk5 is a crucial modulator of neuroinflammation associated with molecular phenotypic features of Alzheimer’s disease [35]. Lipopolysaccharide alters the blood–brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer’s disease [36]. Also, in a transgenic model lacking the NADPH oxidase regulatory gene, the administration of LPS led to molecular and cellular neurodegenerative changes associated with Parkinson’s disease [37]. In line with this, the pre-administration with LPS resulted in accelerated aging and Parkinson -related symptoms in a Parkinson’s animal model [38]. Describes the main mechanisms involved in the LPS animal models Table 1.
Disease model | Phenotypic molecular and behavioral features | Reference |
---|---|---|
Model of Alzheimer’s disease |
| [29] |
Model of Alzheimer’s disease |
| [30] |
LPS administration to a Parkinson’s disease animal model. (NOX2−/−)mice |
| [37] |
Endotoxin-Induced Neuroinflammation Model of Parkinson’s Disease. |
| [38] |
Model of Alzheimer’s disease. |
| [36] |
Main mechanisms involved in the lipopolysaccharide animal models.
Tg2576: Transgenic Tg2576 mice; LPS: lipopolysaccharide; NOX2: NADPH oxidase 2; IL-2: Interleukin 2; IL-6: Interleukin 6; IFN-gamma: Interferon gamma.
In a clinical setting, a previous report indicated that depression and marital distress were significantly associated with an increased LPS, LPS binding protein, and soluble CD14, an LPS co-receptor. Indicating that activation and the translocation of bacterial endotoxin are crucial in mediating mood disorders and stress-related diseases [39]. Functional imaging indicated that individuals exposed to endotoxemia had shown elevated levels of alertness [40], and emotional sensitivity toward visual stimuli [41]. Biochemical changes were observed peripherally, such as elevated stress hormones and inflammation [40, 41], and alterations in the sympathetic nerve’s activity [42]. In another clinical study, the cognitive capacity of healthy participants exposed to endotoxin systemically was examined. The results suggested that the endotoxin-exposed group exhibited a reduction in cognitive function and reduced capability in processing emotional information compared to the placebo group [43]. Suggesting that short-term exposure to systemic endotoxin has a profound impact on higher cognitive tasks. Disrupted sociability [44], and impaired cognitive capacity are hallmarks of psychiatric disorders [45], mainly schizophrenia, and autism [46, 47]. In another report, a battery of socio-behavioral factors was examined and reported to be functionally linked to the systemic administration of LPS. Indicating a mechanistic link between LPS-inflammation and major depressive disorder [48]. In line with this, the administration of a citalopram, a selective serotonin reuptake inhibitor antidepressant agent, leads to a reduction in fatigue and multiple inflammatory cytokines associated with endotoxins activation [49]. In another clinical setting, the level of circulating endotoxins correlates with the severity of neurodegenerative disorders, including Alzheimer’s, sporadic amyotrophic lateral sclerosis (sALS) [50].
Toll-like receptor (TLR) is a family composed of multiple pattern recognition members, and these receptors play a crucial role in mediating and modulating innate immunity [51]. This family has an essential role in modulating and maintaining the microglia and microglia translocation protein activity. Histological studies indicated that multiple members of this family are expressed in the brain [52, 53], gut and blood mononuclear cells [54]. Additionally, these receptors are functionally involved in modulating excitatory [55], and inhibitory neuronal populations [56, 57, 58]. These modulations include orchestrating different signaling pathways [20]. Also, a couple of TLRs (TLR2 and TLR9) regulate the enteric nervous system. A previous report has shown that both receptors were detected using histological studies in multiple markers of the enteric nervous system. Upon activation of innate immunity by administration LPS, both members were upregulated in the enteric nervous system. Indicating selective disease activation mechanism [55]. Correspondingly, LPS activation of TLR4 leads to stimulation of cytokines-related pathological mechanisms such as dysregulation in oligodendrocytes maintenance, microglial toxicity, and alter myelination [59, 60].
Previous reports linked Alzheimer’s disease and polymorphisms in both TLR4 and CD14 genetic codes [61, 62]. Multiple forms of aggregated α-synuclein, a pathological feature of neurodegenerative diseases, can trigger and activate different TLRs. This indicates that TLRs contribute to the pathology of psychiatric and neurodegenerative diseases. Behaviorally they are implicated in regulating impulsivity [63]. A previous study linked TLR4 and the Gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the brain, and the GABAergic inhibitory neurons release it. It was reported that the alpha-2 GABAergic receptor activation of the TLR4 is essential in mediating impulsivity. The co-immunoprecipitation of the alpha-2 GABAergic and TLR4 in the ventral tegmental area leads to Cyclic adenosine monophosphate (cAMP) activation. The cAMP translocation activates the cAMP-response element-binding protein (CREB), subsequently stimulating the tyrosine hydroxylase and the corticotropin-releasing factor. Interestingly, the stereotaxic infusion of alpha-2 GABAergic and TLR4 siRNA in herpes simplex virus vector in the ventral tegmental area prevented alcohol and nicotine seeking. Indicating that TLR4 is involved mechanistically in regulating drug abuse mechanisms [64]. GABAergic synapses are modulated by TLR4 signaling. Stimulation of TLR4 by the administration of Lipopolysaccharide (LPS) alters both pre and postsynaptic function of the GABAergic system. The study indicated that both the synthesis and the reuptake of GABA are altered. Electrophysiological recordings have shown that Lipopolysaccharide’s administration reduces the miniature inhibitory postsynaptic currents in acute slices, and this inhibition is mediated through the microglia [56]. Another study linked the GABAergic system to TLR in their report pharmacological activation of the GABAB receptor (baclofen) reduced TLR3- and TLR4 mediated inflammation in primary glial cell lines. Similar findings were observed in the expression of TLR3 in blood mononuclear cells isolated from multiple sclerosis patients [65]. Indicating the existence of complex interaction between microglia, TLR4, and GABAergic system.
Besides, activation of TLR4 could interfere with addiction and drug abuse through another mechanism. In another report, it was indicated that pharmacological application of opiate antagonists (naloxone and naltrexone) prevented the TLR4 signaling achieved in LPS treated rodents. Both naloxone and naltrexone have been shown to non stereoselectively inhibit TLR4 [66].
On the other hand, studies have linked TLR signaling and neurodevelopmental disorders such as Autism spectrum disorders [67, 68]. An impairment identifies these disorders in sociability, communication, and characteristics of repetitive behaviors [69]. Accumulated evidence has linked Autism to neuroinflammation. The peripheral level of different TLRs, including TLR2–5 and TLR9, was elevated significantly in autistic patients in clinical settings [70]. In a previous report, flow-cytometric analysis of TLR4/TLR5 and neuregulin 1 - ErbB in the monocytes of schizophrenic and healthy subjects revealed that both TLR4 and TLR5 were elevated where the level of ErbB is reduced significantly in drug-naïve schizophrenic patients compared to healthy controls [67]. Neuregulin 1 – ErbB signaling is crucial in modulating brain development [71]. For example, it is involved in axonal growth [72] and maintenance [73], the expression of acetylcholine receptors [74], electrophysiological firing [75], and synaptic wiring [76]. Cytokine-related mechanisms are unified features of schizophrenia and an emerging hypothesis for the pathology of schizophrenia [77].
The link between TLRs and depression has been identified in both preclinical [78] clinical [79], and postmortem studies [80]. It was further reported that both protein, and mRNA level of TLR2–4, TLR6 and TLR10 was significantly reduced in the prefrontal brain region of depressed suicide subjects compared to the controls [52].
Adult neurogenesis is a physiological process essential for cognitive capacity, learning and memory, synaptic plasticity, modulating mood, and other processes [81, 82]. Dysregulation in adult neurogenesis is linked to schizophrenia [83], Alzheimer’s [84], Parkinson’s [85], and autism [86]. In TLR2-mutant mice, adult hippocampal neurogenesis was altered. Proliferative cells that are BrdU/doublecortin positive cells were significantly reduced in TLR2-mutant mice.
The pharmacological targeting of TLR has emerged as an appealing strategy for many reasons. First, they are an essential part of the innate immune system responsible for the initiation of the immune response [88]. Also, studies indicated that TLRs modulate the homeostasis [89], neuronal morphogenesis [90, 91], and neurogenesis [87]. Additionally, it was reported that TLRs are implicated in the pathology of multiple brain disorders such as depression [92], Alzheimer [93], Parkinson [94], and ischemia [95]. Molecularly, it is involved in activating one of the key neuronal signaling pathways [96].
Electrophysiological studies have shown that the administration of immunostimulant results in activation of TLR3 alters the expression of AMPAR, decrease the spontaneous firing, and reduce both the frequency and amplitude of mEPSCs [97]. In line with this, the administration of LPS affect the hippocampal neuronal mEPSC both the frequency and amplitude in hippocampal neurons via modulation of TLR4 [98]. Tlr7 knockout mice showed altered hippocampal LTP, an activity-dependent neurophysiological feature, suggesting defects in memory-related functions [99]. Also, Tlr4 mutant mice exhibited an impairment of long-term depression (LTD) in the nucleus accumbens, another activity-dependent neurophysiological feature, suggesting potential alterations in the reward circuitry [100].
Behaviorally, preclinical studies have shown that TLRs’ pharmacological modulation is linked to significant phenotypic features of neurological and psychiatric disorders [90]. In a maternal immune activation (MIA) animal model, a valid model for neurodevelopmental psychiatric disorders such as autism and schizophrenia [101], also linked to increased risks for neurodegenerative disorders [102], it was found that the offspring exhibited schizophrenic-like behaviors via modulation of TLR [103], Clinical and preclinical studies have shown that altered TLR pathway is associated with schizophrenic and autism-related behaviors [90, 101, 103, 104, 105].
Mice lacking the TLR3 gene exhibited impairment in amygdala-related behaviors and elevated anxiety while performing cued fear-conditioning and elevated plus maze tests [106]. Anatomically, the amygdala is encompassed by a group of subnuclei, more than ten regions [107]. At circuitry level, this brain region receives input from sensory cortical and thalamic areas, which is responsible for the conditioned (CS) and unconditioned stimulus, prefrontal cortex, and hippocampus that mediate the extinction of fear responses and bed nucleus of the stria terminalis (BNST) that coordinate the stress-related responses. Its output is projected to the brainstem, hypothalamic, and cortical areas responsible for emotional responses [108, 109]. The TLR4 mutant mice exhibited altered higher cognitive tasks such as memory retention, acquisition, and contextual fear-learning [110]. The long-term intraventricular infusion with a TLR9 ligand resulted in memory dysfunction and increased risk of neurodegenerative disorders [111].
Prion diseases are a group of progressive neurodegenerative disorders [112], previously it was reported that TLR9 could be involved in the pathology of the progression of prion diseases. A preclinical study has shown that the administration of a TLR 9 ligand, cytosine phosphate guanosine (CpG-ODN) oligodeoxynucleotides, in mice resulted in a significant increase in the survival rate. Suggesting that the activation of TLRs in neurodegenerative diseases could be attributed to neuroprotective mechanisms that involve eliminating of neurotoxic misfolded proteins, which may prove to be a possible therapeutic strategy to the prion diseases [113]. This immunostimulant has been employed and examined in infectious, allergies ad cancer-related studies [114].
Similarly, genetic therapy targeting TLR2 reduces the accumulation of Amyloid β1–42 in the hippocampus of an animal model of Alzheimer’s disease and alters the progression of memory loss [115]. Misfolded α-synuclein is a characteristic feature and a leading cause of neurodegenerative diseases. Employment of immunization has gained a lot of attention as an attractive therapeutic option for neurodegenerative disorders. In a transgenic mice model of Parkinson’s, it was found that the immunization with human α-synuclein associated with a marked reduction in the accumulated α-Synuclein and overall reduced neurodegeneration. Indicating that α-Synuclein vaccination could be efficient in reducing neurodegeneration associated with accumulated α-Synuclein [116].
A recent study has reported that treating Parkinson’s mice model with a natural compound, Juglanin, lead to enhanced memory function, reduced amyloid-beta accumulation, reversed α-synuclein accumulation and overall anti-inflammatory, and antioxidant effects through the modulation of TLR4/nuclear factor (NF)-κB pathway in the hippocampus [117]. In a clinical setting, treatment with vinpocetine, an alkaloid derivative and a phosphodiesterase type 1 inhibitor, compared to traditional treatment with levodopa, resulted in a significant reduction of TLR 2,4 mRNA level along with reduced the level of serum inflammatory mediators. Interestingly these alterations were associated with a marked elevation while performing the Mini-Mental State Examination score [118]. Although this study did not elucidate the link between TLR2,4 and the enhanced cognitive capacity, it was reported previously that in a dementia model, vinpocetine modulates long-term potentiation [119], Additionally, vinpocetine was found learning and memory while performing Morris maze tasks in fetal alcohol spectrum disorders mice model [120]. Although this study did not elucidate the link between TLR2,4 and the enhanced cognitive capacity, it was reported previously that in a dementia model, vinpocetine modulates long-term potentiation [119]. Additionally, vinpocetine was found learning and memory while performing Morris maze tasks in fetal alcohol spectrum disorders mice model [120]. Interestingly, previously it was found that the inhibition of Cyclic Nucleotide Phosphodiesterase is associated with an alteration of TLRs signaling, apoptotic pathway, and in chronic lymphocytic leukemia cells [121].
Transgenic animal studies have demonstrated that genetic manipulation of TLRs is associated with increased aggravated of Aβ [122]. Treatment with an anti-TLR2 antibody has found to be an effective strategy in providing significant protection preclinically against sepsis-associated death [123], stroke [124], Alzheimer’s [123], and its safety, tolerability, along with pharmacokinetic profiling have been conducted clinically in healthy subjects [125]. A 7-month administration of anti-TLR2 antibody to an Alzheimer mice model, APP/PS1 Mice, resulted in an overall reduction in the activation of both microglial and astroglia. This reduction was detected by quantifying immunoreactive MHCII, CD68 (microglial markers), and GFAP (astroglia marker) positive cells. Along with a marked reduction in Ab plaque burden in the hippocampal brain region. Behaviorally, the chronic treatment with TLR2 antibody has improved their performance in water maze test, and the latency was reduced significantly, and the time spent in the platform zone [126].
Studies have linked vitamin D deficiency and increased risk of neurodegenerative diseases [127, 128]. In MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)- Parkinson’s induced mouse model treatment with vitamin D has shown notable attenuated nigrostriatal neurodegeneration. Additionally, it increased the tyrosine hydrolase neuronal cells, altered the expression of Iba1 positive cells (microglial activation marker), and TLR-4 [129]. In another study, the same model has employed and treated with Rosmarinus acid, a phenolic compound with anti-oxidant, anti-apoptotic, and anti-inflammatory effects [130]. In a dose-dependent manner, Rosmarinus acid treatment led to a significant improvement of motor dysfunction, elevated the number of tyrosine hydroxylase-positive cells, and downregulated TLR4 [131].
In a rat model of subarachnoid hemorrhage, pharmacological application of a natural flavonoid (Fisetin) minimizes the brain edema, improved modulate neurological scores, and modulate apoptosis, mainly through the regulation of TLR 4/NF-κB signaling [132]. Taken together, the TLR pathway is an attractive candidate for the development of future neurodegenerative therapies.
TLRs contribute to modulate physiological and pathological processes. Besides, immunomodulation of TLRs seems to be a promising strategy. More studies are needed to decipher the molecular, cellular, and functional mechanisms involved in modulating proper brain function. Understanding such mechanisms would significantly clarify the complex nature of brain disorders. On broader aspects, mechanistic studies would facilitate finding the best therapeutic intervention for neurodegenerative and psychiatric diseases.
The authors extend their appreciation to the Deputyship for Research and Innovation of the Ministry of Education in Saudi Arabia for funding this research work through the project number IFKSURP- 332.
The authors extend their appreciation to the Mentoring Track program.
The authors declare no conflict of interest.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",topicId:"23,21"},books:[{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11443",title:"Empathy - Advanced Research and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4c1042dfe15aa9cea6019524c4cbff38",slug:null,bookSignature:"Ph.D. Sara Ventura",coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",editedByType:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Dr.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11780",title:"Volunteering",subtitle:null,isOpenForSubmission:!0,hash:"008a5fc8005ea6b9228cfe39f9521abe",slug:null,bookSignature:"Ph.D. Diann Kelly",coverURL:"https://cdn.intechopen.com/books/images_new/11780.jpg",editedByType:null,editors:[{id:"325207",title:"Ph.D.",name:"Diann",surname:"Kelly",slug:"diann-kelly",fullName:"Diann Kelly"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11783",title:"Motivation and Success",subtitle:null,isOpenForSubmission:!0,hash:"f660b7cd35b9af94bdfc3564df138161",slug:null,bookSignature:"Dr. Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/11783.jpg",editedByType:null,editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11781",title:"Family Therapy - Recent Advances in Clinical and Crisis Settings",subtitle:null,isOpenForSubmission:!0,hash:"8c5b7d5e4233594de70d2f830209b757",slug:null,bookSignature:"Dr. Oluwatoyin Olatundun Ilesanmi",coverURL:"https://cdn.intechopen.com/books/images_new/11781.jpg",editedByType:null,editors:[{id:"440049",title:"Dr.",name:"Oluwatoyin Olatundun",surname:"Ilesanmi",slug:"oluwatoyin-olatundun-ilesanmi",fullName:"Oluwatoyin Olatundun Ilesanmi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",subtitle:null,isOpenForSubmission:!0,hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",slug:null,bookSignature:"Ph.D. Sage Arbor",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",editedByType:null,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11777",title:"LGBT Communities",subtitle:null,isOpenForSubmission:!0,hash:"e08bb222c250dcebf093b7ab595a14a7",slug:null,bookSignature:"Dr. Deborah Woodman",coverURL:"https://cdn.intechopen.com/books/images_new/11777.jpg",editedByType:null,editors:[{id:"463750",title:"Dr.",name:"Deborah",surname:"Woodman",slug:"deborah-woodman",fullName:"Deborah Woodman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11478",title:"Recent Advances in the Study of Dyslexia",subtitle:null,isOpenForSubmission:!0,hash:"26764a18c6b776698823e0e1c3022d2f",slug:null,bookSignature:"Prof. Jonathan Glazzard",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",editedByType:null,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11779",title:"Non-government Organizations - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c109a472a9e0ea8398ae95e2d21be039",slug:null,bookSignature:"Prof. Vito Bobek and Dr. Tatjana Horvat",coverURL:"https://cdn.intechopen.com/books/images_new/11779.jpg",editedByType:null,editors:[{id:"128342",title:"Prof.",name:"Vito",surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11444",title:"Happiness - Biopsychosocial and Anthropological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fa84e7fc3611e5428e070239dcf5a93f",slug:null,bookSignature:"Dr. Floriana Irtelli and Prof. Fabio Gabrielli",coverURL:"https://cdn.intechopen.com/books/images_new/11444.jpg",editedByType:null,editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11782",title:"Personality Traits - The Role in Psychopathology",subtitle:null,isOpenForSubmission:!0,hash:"d3a491e5194cad4c59b900dd57a11842",slug:null,bookSignature:" Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",editedByType:null,editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:17},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4389},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1083",title:"Medical Oncology",slug:"medical-oncology",parent:{id:"190",title:"Oncology",slug:"medicine-oncology"},numberOfBooks:16,numberOfSeries:0,numberOfAuthorsAndEditors:481,numberOfWosCitations:382,numberOfCrossrefCitations:192,numberOfDimensionsCitations:480,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1083",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10321",title:"Advances in Precision Medicine Oncology",subtitle:null,isOpenForSubmission:!1,hash:"043ad1c1a6bbdcd5604917ccbff003d8",slug:"advances-in-precision-medicine-oncology",bookSignature:"Hilal Arnouk and Bassam Abdul Rasool Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/10321.jpg",editedByType:"Edited by",editors:[{id:"76431",title:"Dr.",name:"Hilal",middleName:null,surname:"Arnouk",slug:"hilal-arnouk",fullName:"Hilal Arnouk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8025",title:"Cancer Immunotherapy and Biological Cancer Treatments",subtitle:null,isOpenForSubmission:!1,hash:"e9953ff7bc3b22ae75810e286dd86b73",slug:"cancer-immunotherapy-and-biological-cancer-treatments",bookSignature:"Hilal Arnouk",coverURL:"https://cdn.intechopen.com/books/images_new/8025.jpg",editedByType:"Edited by",editors:[{id:"76431",title:"Dr.",name:"Hilal",middleName:null,surname:"Arnouk",slug:"hilal-arnouk",fullName:"Hilal Arnouk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6127",title:"Cancer Causing Substances",subtitle:null,isOpenForSubmission:!1,hash:"174eb39b8b0e84934f4a958e6d4de827",slug:"cancer-causing-substances",bookSignature:"Faik Atroshi",coverURL:"https://cdn.intechopen.com/books/images_new/6127.jpg",editedByType:"Edited by",editors:[{id:"65639",title:"Dr.",name:"Faik",middleName:null,surname:"Atroshi",slug:"faik-atroshi",fullName:"Faik Atroshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4756",title:"New Aspects in Molecular and Cellular Mechanisms of Human Carcinogenesis",subtitle:null,isOpenForSubmission:!1,hash:"3d0f53df3dd15a086df1fc78bd2aaed7",slug:"new-aspects-in-molecular-and-cellular-mechanisms-of-human-carcinogenesis",bookSignature:"Dmitry Bulgin",coverURL:"https://cdn.intechopen.com/books/images_new/4756.jpg",editedByType:"Edited by",editors:[{id:"93072",title:"Dr.",name:"Dmitry",middleName:null,surname:"Bulgin",slug:"dmitry-bulgin",fullName:"Dmitry Bulgin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4537",title:"Updates on Cancer Treatment",subtitle:null,isOpenForSubmission:!1,hash:"e4d069af27b0dd4f600d1ae75aee66cd",slug:"updates-on-cancer-treatment",bookSignature:"Leticia B. A. Rangel and Ian Victor Silva",coverURL:"https://cdn.intechopen.com/books/images_new/4537.jpg",editedByType:"Edited by",editors:[{id:"60359",title:"Dr.",name:"Letícia",middleName:null,surname:"Rangel",slug:"leticia-rangel",fullName:"Letícia Rangel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3462",title:"Neoadjuvant Chemotherapy",subtitle:"Increasing Relevance in Cancer Management",isOpenForSubmission:!1,hash:"4f88a3fde61b5535375bde00b9c13d1e",slug:"neoadjuvant-chemotherapy-increasing-relevance-in-cancer-management",bookSignature:"Maurie M. Markman",coverURL:"https://cdn.intechopen.com/books/images_new/3462.jpg",editedByType:"Edited by",editors:[{id:"162295",title:"Dr.",name:"Maurie",middleName:null,surname:"Markman",slug:"maurie-markman",fullName:"Maurie Markman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3273",title:"Cancer Treatment",subtitle:"Conventional and Innovative Approaches",isOpenForSubmission:!1,hash:"cdd9872a05001212b3583bff95bae979",slug:"cancer-treatment-conventional-and-innovative-approaches",bookSignature:"Letícia Rangel",coverURL:"https://cdn.intechopen.com/books/images_new/3273.jpg",editedByType:"Edited by",editors:[{id:"60359",title:"Dr.",name:"Letícia",middleName:null,surname:"Rangel",slug:"leticia-rangel",fullName:"Letícia Rangel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3002",title:"Oncogenomics and Cancer Proteomics",subtitle:"Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer",isOpenForSubmission:!1,hash:"bc8990331803d9e6084b367163dcf218",slug:"oncogenomics-and-cancer-proteomics-novel-approaches-in-biomarkers-discovery-and-therapeutic-targets-in-cancer",bookSignature:"César López-Camarillo and Elena Aréchaga-Ocampo",coverURL:"https://cdn.intechopen.com/books/images_new/3002.jpg",editedByType:"Edited by",editors:[{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3291",title:"T-Cell Leukemia",subtitle:"Characteristics, Treatment and Prevention",isOpenForSubmission:!1,hash:"fb2dc976b5929dc5fa310da0c658e55e",slug:"t-cell-leukemia-characteristics-treatment-and-prevention",bookSignature:"Mariko Tomita",coverURL:"https://cdn.intechopen.com/books/images_new/3291.jpg",editedByType:"Edited by",editors:[{id:"49567",title:"Dr.",name:"Mariko",middleName:null,surname:"Tomita",slug:"mariko-tomita",fullName:"Mariko Tomita"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2610",title:"Carcinogenesis",subtitle:null,isOpenForSubmission:!1,hash:"61e4a760de592236762035553ff855e9",slug:"carcinogenesis",bookSignature:"Kathryn Tonissen",coverURL:"https://cdn.intechopen.com/books/images_new/2610.jpg",editedByType:"Edited by",editors:[{id:"145170",title:"Dr.",name:"Kathryn",middleName:null,surname:"Tonissen",slug:"kathryn-tonissen",fullName:"Kathryn Tonissen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1756",title:"Carcinogen",subtitle:null,isOpenForSubmission:!1,hash:"4ec4fd67f39ca00211fc40e7b563d684",slug:"carcinogen",bookSignature:"Margarita Pesheva, Martin Dimitrov and Teodora Stefkova Stoycheva",coverURL:"https://cdn.intechopen.com/books/images_new/1756.jpg",editedByType:"Edited by",editors:[{id:"115544",title:"Dr.",name:"Margarita",middleName:null,surname:"Pesheva",slug:"margarita-pesheva",fullName:"Margarita Pesheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1898",title:"Cancer Management",subtitle:null,isOpenForSubmission:!1,hash:"877784b1af60471e118fade16d5c50d1",slug:"cancer-management",bookSignature:"Doaa Hashad",coverURL:"https://cdn.intechopen.com/books/images_new/1898.jpg",editedByType:"Edited by",editors:[{id:"110869",title:"Dr.",name:"Doaa",middleName:null,surname:"Hashad",slug:"doaa-hashad",fullName:"Doaa Hashad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"44364",doi:"10.5772/55795",title:"Hyperthermia: Cancer Treatment and Beyond",slug:"hyperthermia-cancer-treatment-and-beyond",totalDownloads:4102,totalCrossrefCites:24,totalDimensionsCites:53,abstract:null,book:{id:"3273",slug:"cancer-treatment-conventional-and-innovative-approaches",title:"Cancer Treatment",fullTitle:"Cancer Treatment - Conventional and Innovative Approaches"},signatures:"Ahmed Bettaieb, Paulina K. Wrzal and Diana A. Averill-Bates",authors:[{id:"61148",title:"Prof.",name:"Diana",middleName:null,surname:"Averill-Bates",slug:"diana-averill-bates",fullName:"Diana Averill-Bates"},{id:"62367",title:"Dr.",name:"Ahmed",middleName:null,surname:"Bettaieb",slug:"ahmed-bettaieb",fullName:"Ahmed Bettaieb"},{id:"62368",title:"Dr.",name:"Paulina",middleName:null,surname:"K. Wrzal",slug:"paulina-k.-wrzal",fullName:"Paulina K. Wrzal"}]},{id:"43632",doi:"10.5772/53110",title:"The Importance of Cancer Cell Lines as in vitro Models in Cancer Methylome Analysis and Anticancer Drugs Testing",slug:"the-importance-of-cancer-cell-lines-as-in-vitro-models-in-cancer-methylome-analysis-and-anticancer-d",totalDownloads:5015,totalCrossrefCites:21,totalDimensionsCites:50,abstract:null,book:{id:"3002",slug:"oncogenomics-and-cancer-proteomics-novel-approaches-in-biomarkers-discovery-and-therapeutic-targets-in-cancer",title:"Oncogenomics and Cancer Proteomics",fullTitle:"Oncogenomics and Cancer Proteomics - Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer"},signatures:"Daniela Ferreira, Filomena Adega and Raquel Chaves",authors:[{id:"155129",title:"Prof.",name:"Raquel",middleName:null,surname:"Chaves",slug:"raquel-chaves",fullName:"Raquel Chaves"},{id:"157394",title:"M.Sc.",name:"Daniela",middleName:"Perneta",surname:"Ferreira",slug:"daniela-ferreira",fullName:"Daniela Ferreira"},{id:"157395",title:"Dr.",name:"Filomena",middleName:null,surname:"Adega",slug:"filomena-adega",fullName:"Filomena Adega"}]},{id:"24601",doi:"10.5772/22656",title:"Combination Chemotherapy in Cancer: Principles, Evaluation and Drug Delivery Strategies",slug:"combination-chemotherapy-in-cancer-principles-evaluation-and-drug-delivery-strategies",totalDownloads:4885,totalCrossrefCites:3,totalDimensionsCites:38,abstract:null,book:{id:"374",slug:"current-cancer-treatment-novel-beyond-conventional-approaches",title:"Current Cancer Treatment",fullTitle:"Current Cancer Treatment - Novel Beyond Conventional Approaches"},signatures:"Ana Catarina Pinto, João Nuno Moreira and Sérgio Simões",authors:[{id:"48598",title:"Prof.",name:"Sergio",middleName:null,surname:"Simoes",slug:"sergio-simoes",fullName:"Sergio Simoes"},{id:"54753",title:"Dr.",name:"Ana",middleName:null,surname:"Pinto",slug:"ana-pinto",fullName:"Ana Pinto"},{id:"54754",title:"Prof.",name:"Joăo",middleName:null,surname:"Moreira",slug:"joao-moreira",fullName:"Joăo Moreira"}]},{id:"23935",doi:"10.5772/23710",title:"Radio-Photoluminescence Glass Dosimeter (RPLGD)",slug:"radio-photoluminescence-glass-dosimeter-rplgd-",totalDownloads:6712,totalCrossrefCites:7,totalDimensionsCites:20,abstract:null,book:{id:"1311",slug:"advances-in-cancer-therapy",title:"Advances in Cancer Therapy",fullTitle:"Advances in Cancer Therapy"},signatures:"David Y.C. Huang and Shih-Ming Hsu",authors:[{id:"53301",title:"Dr.",name:"David",middleName:null,surname:"Huang",slug:"david-huang",fullName:"David Huang"}]},{id:"44386",doi:"10.5772/55290",title:"Liposomes as Carriers of Anticancer Drugs",slug:"liposomes-as-carriers-of-anticancer-drugs",totalDownloads:6198,totalCrossrefCites:6,totalDimensionsCites:19,abstract:null,book:{id:"3273",slug:"cancer-treatment-conventional-and-innovative-approaches",title:"Cancer Treatment",fullTitle:"Cancer Treatment - Conventional and Innovative Approaches"},signatures:"Sávia Caldeira de Araújo Lopes, Cristiane dos Santos Giuberti, Talita\nGuieiro Ribeiro Rocha, Diêgo dos Santos Ferreira, Elaine Amaral\nLeite and Mônica Cristina Oliveira",authors:[{id:"60417",title:"Prof.",name:"Mônica",middleName:null,surname:"Oliveira",slug:"monica-oliveira",fullName:"Mônica Oliveira"},{id:"62572",title:"Prof.",name:"Elaine",middleName:null,surname:"Leite",slug:"elaine-leite",fullName:"Elaine Leite"},{id:"62573",title:"MSc.",name:"Sávia",middleName:null,surname:"Lopes",slug:"savia-lopes",fullName:"Sávia Lopes"},{id:"62574",title:"MSc.",name:"Talita",middleName:null,surname:"Rocha",slug:"talita-rocha",fullName:"Talita Rocha"},{id:"62575",title:"Dr.",name:"Cristiane",middleName:"Dos Santos",surname:"Giuberti",slug:"cristiane-giuberti",fullName:"Cristiane Giuberti"},{id:"158062",title:"MSc.",name:"Diego",middleName:null,surname:"Ferreira",slug:"diego-ferreira",fullName:"Diego Ferreira"}]}],mostDownloadedChaptersLast30Days:[{id:"24598",title:"Electrotherapy on Cancer: Experiment and Mathematical Modeling",slug:"electrotherapy-on-cancer-experiment-and-mathematical-modeling",totalDownloads:3789,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"374",slug:"current-cancer-treatment-novel-beyond-conventional-approaches",title:"Current Cancer Treatment",fullTitle:"Current Cancer Treatment - Novel Beyond Conventional Approaches"},signatures:"Ana Elisa Bergues Pupo, Rolando Placeres Jiménez and Luis Enrique Bergues Cabrales",authors:[{id:"64471",title:"Dr.",name:"Luis Enrique",middleName:null,surname:"Bergues Cabrales",slug:"luis-enrique-bergues-cabrales",fullName:"Luis Enrique Bergues Cabrales"}]},{id:"68034",title:"Surgical Treatment of Benign Spinal Cord Tumors",slug:"surgical-treatment-of-benign-spinal-cord-tumors",totalDownloads:1035,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Benign spinal cord tumors (SCTs) are uncommon neoplasms that can arise within or adjacent to the spinal cord. Depending on their anatomical location, benign SCTs can be categorized as intramedullary, intradural-extramedullary, and extradural. The three most common benign SCTs are meningioma, nerve sheath tumors, and ependymoma. Both meningioma and nerve sheath tumors develop in the intradural-extramedullary compartment, while ependymoma occurs in the intramedullary space. Spinal meningiomas derive from arachnoidal cells and most commonly occur within the thoracic segment of the spine. Nerve sheath tumors, including schwannomas and neurofibromas, are closely associated with spinal nerves. Half of the spinal cord ependymomas arise in the lumbosacral segment or the filum terminale. Surgical treatment of large or symptomatic benign SCTs concentrates on total or subtotal resection of the tumors, which should be cautiously individualized based on the tumor location and histopathology. A curable complete resection should be achieved if possible while preserving the nervous function of the spinal cord and minimizing potential complications. Thoracic spinal roots may be sacrificed to acquire a total resection, yet cervical and lumbar nerve roots should be preserved prudently. Due to the vulnerable and complex anatomic nature of the spinal cord, maximal resection of the tumors can be achieved with the aid of appropriate intraoperative neural monitoring and meanwhile preserve nervous function.",book:{id:"8025",slug:"cancer-immunotherapy-and-biological-cancer-treatments",title:"Cancer Immunotherapy and Biological Cancer Treatments",fullTitle:"Cancer Immunotherapy and Biological Cancer Treatments"},signatures:"Xiaoming Qi, Frank Y. Shan, Dongxia Feng, Jason H. Huang and",authors:[{id:"224305",title:"Dr.",name:"Frank Y.",middleName:null,surname:"Shan",slug:"frank-y.-shan",fullName:"Frank Y. Shan"},{id:"302788",title:"Dr.",name:"Xiaoming",middleName:null,surname:"Qi",slug:"xiaoming-qi",fullName:"Xiaoming Qi"},{id:"302789",title:"Dr.",name:"Dongxia",middleName:null,surname:"Feng",slug:"dongxia-feng",fullName:"Dongxia Feng"},{id:"302791",title:"Dr.",name:"Jason",middleName:null,surname:"H. Huang",slug:"jason-h.-huang",fullName:"Jason H. Huang"}]},{id:"42149",title:"Binary System of Grading Epithelial Dysplasia in Oral Leukoplakias",slug:"binary-system-of-grading-epithelial-dysplasia-in-oral-leukoplakias",totalDownloads:5197,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2610",slug:"carcinogenesis",title:"Carcinogenesis",fullTitle:"Carcinogenesis"},signatures:"Maria Auxiliadora Vieira do Carmo and Patrícia Carlos Caldeira",authors:[{id:"148890",title:"Prof.",name:"Maria Auxiliadora",middleName:null,surname:"Vieira Do Carmo",slug:"maria-auxiliadora-vieira-do-carmo",fullName:"Maria Auxiliadora Vieira Do Carmo"},{id:"148895",title:"MSc.",name:"Patrícia",middleName:null,surname:"Carlos Caldeira",slug:"patricia-carlos-caldeira",fullName:"Patrícia Carlos Caldeira"}]},{id:"44364",title:"Hyperthermia: Cancer Treatment and Beyond",slug:"hyperthermia-cancer-treatment-and-beyond",totalDownloads:4094,totalCrossrefCites:24,totalDimensionsCites:53,abstract:null,book:{id:"3273",slug:"cancer-treatment-conventional-and-innovative-approaches",title:"Cancer Treatment",fullTitle:"Cancer Treatment - Conventional and Innovative Approaches"},signatures:"Ahmed Bettaieb, Paulina K. Wrzal and Diana A. Averill-Bates",authors:[{id:"61148",title:"Prof.",name:"Diana",middleName:null,surname:"Averill-Bates",slug:"diana-averill-bates",fullName:"Diana Averill-Bates"},{id:"62367",title:"Dr.",name:"Ahmed",middleName:null,surname:"Bettaieb",slug:"ahmed-bettaieb",fullName:"Ahmed Bettaieb"},{id:"62368",title:"Dr.",name:"Paulina",middleName:null,surname:"K. Wrzal",slug:"paulina-k.-wrzal",fullName:"Paulina K. Wrzal"}]},{id:"41863",title:"Molecular Morphogenesis of T-Cell Acute Leukemia",slug:"molecular-morphogenesis-of-t-cell-acute-leukemia",totalDownloads:2905,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3291",slug:"t-cell-leukemia-characteristics-treatment-and-prevention",title:"T-Cell Leukemia",fullTitle:"T-Cell Leukemia - Characteristics, Treatment and Prevention"},signatures:"Michael Litt, Bhavita Patel, Ying Li, Yi Qiu and Suming Huang",authors:[{id:"158744",title:"Dr.",name:"Suming",middleName:null,surname:"Huang",slug:"suming-huang",fullName:"Suming Huang"}]}],onlineFirstChaptersFilter:{topicId:"1083",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/image