WiMAX Modulation Schemes.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"4475",leadTitle:null,fullTitle:"Topics in Public Health",title:"Topics in Public Health",subtitle:null,reviewType:"peer-reviewed",abstract:"Public health has been defined as the efforts of a community that allow a population to remain healthy. This definition is very inclusive, so elements of clinical care, health promotion and many other fields contribute to the larger discipline of public health. The profession has evolved in recent years, with the emphasis in the developed world changing from the hygiene method for control of infectious diseases to a more complex approach to address chronic disease. However, the focus in public health continues to be the population. This book provides a sample of fields that contribute to the public health profession. Its broad approach provides examples of the core fields of public health, including environmental health, epidemiology, biostatistics, health administration, and health behavior.",isbn:null,printIsbn:"978-953-51-2132-9",pdfIsbn:"978-953-51-4221-8",doi:"10.5772/58484",price:139,priceEur:155,priceUsd:179,slug:"topics-in-public-health",numberOfPages:308,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"9d60e400498e29ac23d4e94d68301024",bookSignature:"David Claborn",publishedDate:"June 17th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4475.jpg",numberOfDownloads:24496,numberOfWosCitations:17,numberOfCrossrefCitations:15,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:26,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:58,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 1st 2014",dateEndSecondStepPublish:"April 22nd 2014",dateEndThirdStepPublish:"July 27th 2014",dateEndFourthStepPublish:"October 25th 2014",dateEndFifthStepPublish:"November 24th 2014",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"169536",title:"Dr.",name:"David",middleName:null,surname:"Claborn",slug:"david-claborn",fullName:"David Claborn",profilePictureURL:"https://mts.intechopen.com/storage/users/169536/images/system/169536.jpeg",biography:"David Claborn is a Professor of Public Health at Missouri State University (MSU), USA, where he teaches courses in environmental health, infectious disease, and international health. He obtained a DrPH from the Uniformed Services University of the Health Sciences, Bethesda, Maryland, with his dissertation on the re-emergence of malaria in South Korea. He has been the director of the Master of Public Health program at MSU since 2013. Prior to his academic career, Dr. Claborn served in the US Navy for 20 years, retiring at the rank of Commander in 2008. His work as a medical entomologist has taken him to several international settings including Japan, Australia, South Korea, Italy, and, during Operation Desert Storm, Saudi Arabia.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Missouri State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1128",title:"Environmental Health",slug:"medicine-public-health-environmental-health"}],chapters:[{id:"47701",title:"An Overview of The Public Health Global Perspective on the Grand Challenges of Non-Communicable and Chronic Diseases Within the Framework for Developing new Drugs",doi:"10.5772/59070",slug:"an-overview-of-the-public-health-global-perspective-on-the-grand-challenges-of-non-communicable-and-",totalDownloads:1724,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Estella Tembe-Fokunang, Charles Fokunang, Zacharia Sando,\nBarbara Atogho Tiedeu, Frederick Kechia, Valentine Ndikum,\nMarceline Ngounoue Djuidje, Jerome Ateudjieu, Raymond Langsi,\nJohn Fomnboh Dobgima, Joseph Fokam, Luc Gwum, Obama\nAbena, Tazoacha Asonganyii, Jeanne Ngongang, Vincent K. Titanji\nand Lazare Kaptue",downloadPdfUrl:"/chapter/pdf-download/47701",previewPdfUrl:"/chapter/pdf-preview/47701",authors:[{id:"37803",title:"Prof.",name:"Charles",surname:"Fokunang",slug:"charles-fokunang",fullName:"Charles Fokunang"}],corrections:null},{id:"47535",title:"Mental Health — An Issue Neglected by European Public Health Systems?",doi:"10.5772/59138",slug:"mental-health-an-issue-neglected-by-european-public-health-systems-",totalDownloads:1403,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Denise Zak",downloadPdfUrl:"/chapter/pdf-download/47535",previewPdfUrl:"/chapter/pdf-preview/47535",authors:[{id:"82209",title:"MSc.",name:"Denise",surname:"Zak",slug:"denise-zak",fullName:"Denise Zak"}],corrections:null},{id:"47515",title:"Alcohol Consumption Among Adolescents — Implications for Public Health",doi:"10.5772/58930",slug:"alcohol-consumption-among-adolescents-implications-for-public-health",totalDownloads:2763,totalCrossrefCites:6,totalDimensionsCites:8,hasAltmetrics:0,abstract:null,signatures:"Francisca Carvajal and Jose Manuel Lerma-Cabrera",downloadPdfUrl:"/chapter/pdf-download/47515",previewPdfUrl:"/chapter/pdf-preview/47515",authors:[{id:"85717",title:"Dr.",name:"Francisca",surname:"Carvajal",slug:"francisca-carvajal",fullName:"Francisca Carvajal"},{id:"170984",title:"Dr.",name:"Jose Manuel",surname:"Lerma-Cabrera",slug:"jose-manuel-lerma-cabrera",fullName:"Jose Manuel Lerma-Cabrera"}],corrections:null},{id:"48331",title:"Variables that May Affect the Transmission of Dengue – A Case Study for Health Management in Asia",doi:"10.5772/59983",slug:"variables-that-may-affect-the-transmission-of-dengue-a-case-study-for-health-management-in-asia",totalDownloads:3165,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Muhiuddin Haider and Jamie Turner",downloadPdfUrl:"/chapter/pdf-download/48331",previewPdfUrl:"/chapter/pdf-preview/48331",authors:[{id:"38977",title:"Prof.",name:"Muhiuddin",surname:"Haider",slug:"muhiuddin-haider",fullName:"Muhiuddin Haider"}],corrections:null},{id:"47829",title:"Microbial Health Risks of Regulated Drinking Waters in the United States — A Comparative Microbial Safety Assessment of Public Water Supplies and Bottled Water",doi:"10.5772/58879",slug:"microbial-health-risks-of-regulated-drinking-waters-in-the-united-states-a-comparative-microbial-saf",totalDownloads:1664,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Stephen C. Edberg",downloadPdfUrl:"/chapter/pdf-download/47829",previewPdfUrl:"/chapter/pdf-preview/47829",authors:[{id:"171242",title:"Dr.",name:"Stephen",surname:"Edberg",slug:"stephen-edberg",fullName:"Stephen Edberg"}],corrections:null},{id:"47594",title:"Accelerated Detection of Microbes Utilizing an Organic Particle Catalyst in the Total Coliforms and Escherichia coli MMO-MUG (Colilert®) test",doi:"10.5772/59128",slug:"accelerated-detection-of-microbes-utilizing-an-organic-particle-catalyst-in-the-total-coliforms-and-",totalDownloads:1541,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Stephen C. Edberg",downloadPdfUrl:"/chapter/pdf-download/47594",previewPdfUrl:"/chapter/pdf-preview/47594",authors:[{id:"171242",title:"Dr.",name:"Stephen",surname:"Edberg",slug:"stephen-edberg",fullName:"Stephen Edberg"}],corrections:null},{id:"47739",title:"A New Direct Detection System for Antibiotic Resistant Bacteria",doi:"10.5772/59345",slug:"a-new-direct-detection-system-for-antibiotic-resistant-bacteria",totalDownloads:1536,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Stephen C. Edberg and J. Michael Miller",downloadPdfUrl:"/chapter/pdf-download/47739",previewPdfUrl:"/chapter/pdf-preview/47739",authors:[{id:"171242",title:"Dr.",name:"Stephen",surname:"Edberg",slug:"stephen-edberg",fullName:"Stephen Edberg"}],corrections:null},{id:"47492",title:"Review of Iron Supplementation and Fortification",doi:"10.5772/58987",slug:"review-of-iron-supplementation-and-fortification",totalDownloads:1935,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Lauren C. Ramsay and Christopher V. Charles",downloadPdfUrl:"/chapter/pdf-download/47492",previewPdfUrl:"/chapter/pdf-preview/47492",authors:[{id:"171167",title:"M.Sc.",name:"Lauren",surname:"Ramsay",slug:"lauren-ramsay",fullName:"Lauren Ramsay"},{id:"172971",title:"Dr.",name:"Christopher",surname:"Charles",slug:"christopher-charles",fullName:"Christopher Charles"}],corrections:null},{id:"48017",title:"A Review on the Assessment of the Potential Adverse Health Impacts of Carbamate Pesticides",doi:"10.5772/59613",slug:"a-review-on-the-assessment-of-the-potential-adverse-health-impacts-of-carbamate-pesticides",totalDownloads:2095,totalCrossrefCites:5,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Elsa Dias, Fernando Garcia e Costa, Simone Morais and Maria de\nLourdes Pereira",downloadPdfUrl:"/chapter/pdf-download/48017",previewPdfUrl:"/chapter/pdf-preview/48017",authors:[{id:"13875",title:"Prof.",name:"Simone",surname:"Morais",slug:"simone-morais",fullName:"Simone Morais"},{id:"79715",title:"Prof.",name:"Maria De Lourdes",surname:"Pereira",slug:"maria-de-lourdes-pereira",fullName:"Maria De Lourdes Pereira"},{id:"87294",title:"Prof.",name:"Fernando",surname:"Garcia E Costa",slug:"fernando-garcia-e-costa",fullName:"Fernando Garcia E Costa"},{id:"171182",title:"Dr.",name:"Elsa",surname:"Dias",slug:"elsa-dias",fullName:"Elsa Dias"}],corrections:null},{id:"47542",title:"Use of Natural Latex as a Biomaterial for the Treatment of Diabetic Foot — A New Approach to Treating Symptoms of Diabetes Mellitus",doi:"10.5772/59135",slug:"use-of-natural-latex-as-a-biomaterial-for-the-treatment-of-diabetic-foot-a-new-approach-to-treating-",totalDownloads:2041,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Suélia de Siqueira Rodrigues Fleury Rosa, Maria do Carmo Reis,\nMário Fabricio Fleury Rosa, Diego Cólon, Célia Aparecida dos Reis\nand José Manoel Balthazar",downloadPdfUrl:"/chapter/pdf-download/47542",previewPdfUrl:"/chapter/pdf-preview/47542",authors:[{id:"108139",title:"Dr.",name:"Suélia",surname:"Rodrigues Fleury Rosa",slug:"suelia-rodrigues-fleury-rosa",fullName:"Suélia Rodrigues Fleury Rosa"},{id:"170973",title:"MSc.",name:"Mário Fabrício",surname:"Fleury Rosa",slug:"mario-fabricio-fleury-rosa",fullName:"Mário Fabrício Fleury Rosa"},{id:"171065",title:"Dr.",name:"Diego",surname:"Colón",slug:"diego-colon",fullName:"Diego Colón"},{id:"171066",title:"Dr.",name:"Célia A.",surname:"Reis",slug:"celia-a.-reis",fullName:"Célia A. Reis"},{id:"171067",title:"Dr.",name:"José Manoel",surname:"Balthazar",slug:"jose-manoel-balthazar",fullName:"José Manoel Balthazar"},{id:"173107",title:"Dr.",name:"Maria",surname:"Do Carmo Reis",slug:"maria-do-carmo-reis",fullName:"Maria Do Carmo Reis"}],corrections:null},{id:"47702",title:"The Public Health perspective on Migratory Health – Displaced Populations in Global Disease Epidemics",doi:"10.5772/59069",slug:"the-public-health-perspective-on-migratory-health-displaced-populations-in-global-disease-epidemics",totalDownloads:1569,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Charles Fokunang, Estella Tembe-Fokunang, Zacharia Sando,\nMarceline Ngounoue Djuidje, Barbara Atogho Tiedeu, Frederick\nKechia, Jerome Ateudjieu, Valentin Ndikum, Raymond Langsi,\nDobgima Fomnboh, Joseph Fokam, Luc Gwum, Obama Abena,\nTazoacha Asongani, Vincent Pryde Titanji and Lazare Kaptue",downloadPdfUrl:"/chapter/pdf-download/47702",previewPdfUrl:"/chapter/pdf-preview/47702",authors:[{id:"37803",title:"Prof.",name:"Charles",surname:"Fokunang",slug:"charles-fokunang",fullName:"Charles Fokunang"}],corrections:null},{id:"47548",title:"Disasters and Public Heath — An Updated Review of the Role of Infectious Disease in the Post-Disaster Environment",doi:"10.5772/59123",slug:"disasters-and-public-heath-an-updated-review-of-the-role-of-infectious-disease-in-the-post-disaster-",totalDownloads:1645,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"David M. Claborn and Christie Oestreich",downloadPdfUrl:"/chapter/pdf-download/47548",previewPdfUrl:"/chapter/pdf-preview/47548",authors:[{id:"169536",title:"Dr.",name:"David",surname:"Claborn",slug:"david-claborn",fullName:"David Claborn"},{id:"173124",title:"Dr.",name:"Christie",surname:"Oestreich",slug:"christie-oestreich",fullName:"Christie Oestreich"}],corrections:null},{id:"47612",title:"Health Risk Management and Mass Media — Newspaper Reports on BSE in South Korea",doi:"10.5772/59080",slug:"health-risk-management-and-mass-media-newspaper-reports-on-bse-in-south-korea",totalDownloads:1423,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Satomi Noguchi and Hajime Sato",downloadPdfUrl:"/chapter/pdf-download/47612",previewPdfUrl:"/chapter/pdf-preview/47612",authors:[{id:"171218",title:"Prof.",name:"Hajime",surname:"Sato",slug:"hajime-sato",fullName:"Hajime Sato"},{id:"171220",title:"Dr.",name:"Satomi",surname:"Noguchi",slug:"satomi-noguchi",fullName:"Satomi Noguchi"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3842",title:"Leishmaniasis",subtitle:"Trends in Epidemiology, Diagnosis and Treatment",isOpenForSubmission:!1,hash:"861f3ca84eede677ba6cd863093d62f8",slug:"leishmaniasis-trends-in-epidemiology-diagnosis-and-treatment",bookSignature:"David M. Claborn",coverURL:"https://cdn.intechopen.com/books/images_new/3842.jpg",editedByType:"Edited by",editors:[{id:"169536",title:"Dr.",name:"David",surname:"Claborn",slug:"david-claborn",fullName:"David Claborn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5378",title:"The Epidemiology and Ecology of Leishmaniasis",subtitle:null,isOpenForSubmission:!1,hash:"862e269e0512a4763bba54d355c3c44f",slug:"the-epidemiology-and-ecology-of-leishmaniasis",bookSignature:"David Claborn",coverURL:"https://cdn.intechopen.com/books/images_new/5378.jpg",editedByType:"Edited by",editors:[{id:"169536",title:"Dr.",name:"David",surname:"Claborn",slug:"david-claborn",fullName:"David Claborn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7090",title:"Current Issues in Global Health",subtitle:null,isOpenForSubmission:!1,hash:"7e4c3c0c459e7615e74cdc125d5b500c",slug:"current-issues-in-global-health",bookSignature:"David Claborn",coverURL:"https://cdn.intechopen.com/books/images_new/7090.jpg",editedByType:"Edited by",editors:[{id:"169536",title:"Dr.",name:"David",surname:"Claborn",slug:"david-claborn",fullName:"David Claborn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10470",title:"Current Perspectives on Viral Disease Outbreaks",subtitle:"Epidemiology, Detection and Control",isOpenForSubmission:!1,hash:"c14777459bf484d53004a121bf8c761e",slug:"current-perspectives-on-viral-disease-outbreaks-epidemiology-detection-and-control",bookSignature:"David Claborn",coverURL:"https://cdn.intechopen.com/books/images_new/10470.jpg",editedByType:"Edited by",editors:[{id:"169536",title:"Dr.",name:"David",surname:"Claborn",slug:"david-claborn",fullName:"David Claborn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9114",title:"Vector-Borne Diseases",subtitle:"Recent Developments in Epidemiology and Control",isOpenForSubmission:!1,hash:"97b62d395de991b4cd74bd3148aeb535",slug:"vector-borne-diseases-recent-developments-in-epidemiology-and-control",bookSignature:"David Claborn, Sujit Bhattacharya and Syamal Roy",coverURL:"https://cdn.intechopen.com/books/images_new/9114.jpg",editedByType:"Edited by",editors:[{id:"169536",title:"Dr.",name:"David",surname:"Claborn",slug:"david-claborn",fullName:"David Claborn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1012",title:"Environmental Health",subtitle:"Emerging Issues and Practice",isOpenForSubmission:!1,hash:"fffc563f4aaa5e329ef6229fd0458d60",slug:"environmental-health-emerging-issues-and-practice",bookSignature:"Jacques Oosthuizen",coverURL:"https://cdn.intechopen.com/books/images_new/1012.jpg",editedByType:"Edited by",editors:[{id:"77725",title:"Prof.",name:"Jacques",surname:"Oosthuizen",slug:"jacques-oosthuizen",fullName:"Jacques Oosthuizen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"486",title:"Advanced Topics in Environmental Health and Air Pollution Case Studies",subtitle:null,isOpenForSubmission:!1,hash:"21e1d07942f85e000e68a41bae84f9ee",slug:"advanced-topics-in-environmental-health-and-air-pollution-case-studies",bookSignature:"Anca Maria Moldoveanu",coverURL:"https://cdn.intechopen.com/books/images_new/486.jpg",editedByType:"Edited by",editors:[{id:"25924",title:"Prof.",name:"Anca",surname:"Moldoveanu",slug:"anca-moldoveanu",fullName:"Anca Moldoveanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6877",title:"Environmental Health",subtitle:"Management and Prevention Practices",isOpenForSubmission:!1,hash:"94bdbe3ffbda57de2952961bb286dba5",slug:"environmental-health-management-and-prevention-practices",bookSignature:"Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/6877.jpg",editedByType:"Edited by",editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9105",title:"Heavy Metal Toxicity in Public Health",subtitle:null,isOpenForSubmission:!1,hash:"a2e4f3c444775950ab18bce58a754777",slug:"heavy-metal-toxicity-in-public-health",bookSignature:"John Kanayochukwu Nduka and Mohamed Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/9105.jpg",editedByType:"Edited by",editors:[{id:"107866",title:"Dr.",name:"John Kanayochukwu",surname:"Nduka",slug:"john-kanayochukwu-nduka",fullName:"John Kanayochukwu Nduka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8831",title:"Environmental Factors Affecting Human Health",subtitle:null,isOpenForSubmission:!1,hash:"88c049685e3808385ac61471dd7f4fbf",slug:"environmental-factors-affecting-human-health",bookSignature:"Ivan Uher",coverURL:"https://cdn.intechopen.com/books/images_new/8831.jpg",editedByType:"Edited by",editors:[{id:"227237",title:"Associate Prof.",name:"Ivan",surname:"Uher",slug:"ivan-uher",fullName:"Ivan Uher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66304",slug:"corrigendum-to-pulsating-flow-effects-on-hydrodynamics-in-a-desalination-membrane-filled-with-spacer",title:"Corrigendum to: Pulsating Flow Effects on Hydrodynamics in a Desalination Membrane Filled with Spacers",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66304.pdf",downloadPdfUrl:"/chapter/pdf-download/66304",previewPdfUrl:"/chapter/pdf-preview/66304",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66304",risUrl:"/chapter/ris/66304",chapter:{id:"55536",slug:"pulsating-flow-effects-on-hydrodynamics-in-a-desalination-membrane-filled-with-spacers",signatures:"Armando A. Soares, João Silva, Eliseu Monteiro and Abel Rouboa",dateSubmitted:"September 25th 2016",dateReviewed:"March 27th 2017",datePrePublished:null,datePublished:"August 30th 2017",book:{id:"5768",title:"Desalination",subtitle:null,fullTitle:"Desalination",slug:"desalination",publishedDate:"August 30th 2017",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/5768.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"32956",title:"Dr.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"59885",title:"PhD.",name:"Abel",middleName:null,surname:"Rouboa",fullName:"Abel Rouboa",slug:"abel-rouboa",email:"rouboa@utad.pt",position:null,institution:null}]}},chapter:{id:"55536",slug:"pulsating-flow-effects-on-hydrodynamics-in-a-desalination-membrane-filled-with-spacers",signatures:"Armando A. Soares, João Silva, Eliseu Monteiro and Abel Rouboa",dateSubmitted:"September 25th 2016",dateReviewed:"March 27th 2017",datePrePublished:null,datePublished:"August 30th 2017",book:{id:"5768",title:"Desalination",subtitle:null,fullTitle:"Desalination",slug:"desalination",publishedDate:"August 30th 2017",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/5768.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"32956",title:"Dr.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"59885",title:"PhD.",name:"Abel",middleName:null,surname:"Rouboa",fullName:"Abel Rouboa",slug:"abel-rouboa",email:"rouboa@utad.pt",position:null,institution:null}]},book:{id:"5768",title:"Desalination",subtitle:null,fullTitle:"Desalination",slug:"desalination",publishedDate:"August 30th 2017",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/5768.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"32956",title:"Dr.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9075",leadTitle:null,title:"Candidiasis",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tCandidiasis is an infection caused by Candida spp., mostly Candida albicans. Although, Candida, a yeast, normally exists in human body; on the skin and in the mouth, throat, gut and vagina, it does not normally cause infection. However, sometimes, yeast proliferation occurs, and Candida spp. cause several infections, such as oral infection affecting the mouth and throat, called oropharyngeal candidiasis (thrush), as well as vulvovaginal, oesophageal, intestinal and invasive candidiasis. Oesophageal candidiasis is a common infection in HIV/AIDS patients. Besides this, the pathogenesis of candidiasis in humans is not completely understood. Infection caused by Candida spp. presents a serious problem because of its drug resistance. Investigation of new and effective active substances against pathogenic Candida spp. and a better understanding of the role of molecular mechanisms involved in the formation of antifungal resistance will help prevent Candida infection among individuals with immunological deficiency and will make the antifungal therapy much more effective and improved. This book is intended to provide a comprehensive overview of the latest information on Candida spp. and Candidiasis.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"d745506200537aa5fd638238c1b01347",bookSignature:"Prof. Tulin Askun and Dr. Juliana Simoni Moraes Tondolo",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9075.jpg",keywords:"Pathogenicity, Diversity, Genetic Structure, Drug Resistance, Diagnosis, Targeted Therapy, Risk Factors, Antifungal Drug Discovery",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:1,numberOfTotalCitations:1,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 25th 2019",dateEndSecondStepPublish:"February 14th 2020",dateEndThirdStepPublish:"April 14th 2020",dateEndFourthStepPublish:"July 3rd 2020",dateEndFifthStepPublish:"September 1st 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"89795",title:"Dr.",name:"Tulin",middleName:null,surname:"Askun",slug:"tulin-askun",fullName:"Tulin Askun",profilePictureURL:"https://mts.intechopen.com/storage/users/89795/images/system/89795.png",biography:"Prof. Dr. Tulin Askun is working at the Balikesir University (Turkey), Faculty of Sciences and Arts, Department of Biology, as the Head of Molecular Biology Department. She received both her master's degree in 1996 and her PhD in 2002 from the Balikesir University. In 2012, she received a Project Incentive Award in Basic Sciences from the same institution. She is responsible for the implementation of educational programs and scientific researches, providing projects, and establishing and maintaining relationships with group members and projects partners.",institutionString:null,position:null,outsideEditionCount:null,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Balıkesir University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"256869",title:"Dr.",name:"Juliana",middleName:null,surname:"Simoni Moraes Tondolo",slug:"juliana-simoni-moraes-tondolo",fullName:"Juliana Simoni Moraes Tondolo",profilePictureURL:"https://mts.intechopen.com/storage/users/256869/images/system/256869.jfif",biography:"Dr. Juliana Simoni Moraes Tondolo attended Pharmacy and Biochemistry at UFSM, Brazil, from 1993 till 1996. Her specialization is in \r\nHomeopathy, FACIS - Faculty of Health Sciences of São Paulo, Brazil (2000 to 2002) and Clinical laboratory, UFSM, Brazil (2002 to 2004).\r\nDr. Simoni Moraes Tondolo received her Master’s degree in Homeopathy, FACIS, Brazil (2005 to 2007) and Pharmacology, UFSM - Brazil (2009 to 2011). She received her Doctor degree in Pharmacology, UFSM, Brazil (from 2012 to 2016) and started her Post-doctorate in Pharmacology, UFSM, Brazil in 2018. Her professional titles include: Professor, SOBRESP - Faculty of Health Sciences, Brazil, 2015 to present; First Lieutenant Biochemist of the General Hospital of Santa Maria, Brazilian Army, Brazil, 2006 to 2009; Professor, Franciscan University - Brazil, 2006 to 2007; Professor, FACIS, Brazil, 2005 to 2006; Head pharmaceutical, Via Exata - Manipulation Pharmacy, Brazil, 1999 to 2006.",institutionString:"SOBRESP - Faculdade de Ciências da Saúde",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6329",title:"Fusarium",subtitle:"Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers",isOpenForSubmission:!1,hash:"549fa517876fb9e6cbbdfdc820b2109c",slug:"fusarium-plant-diseases-pathogen-diversity-genetic-diversity-resistance-and-molecular-markers",bookSignature:"Tulin Askun",coverURL:"https://cdn.intechopen.com/books/images_new/6329.jpg",editedByType:"Edited by",editors:[{id:"89795",title:"Dr.",name:"Tulin",surname:"Askun",slug:"tulin-askun",fullName:"Tulin Askun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39704",title:"UWB Coexistence with 3G and 4G Cellular Systems",doi:"10.5772/48642",slug:"uwb-coexistence-with-3g-and-4g-cellular-systems",body:'The Federal Communications Commission (FCC) agreed in February 2002 to allocate 7.5 GHz of spectrum, in the 3.1 GHz to 10.6 GHz frequency band, for unlicensed use of ultra wide band (UWB) devices for communication applications. The move represented a victory in a long hard-fought battle that dated back decades. With its origins in the 1960s, when it was called time-domain electromagnetics, UWB came to be denoting the operation of sending and receiving extremely short bursts of RF energy. With its outstanding ability for applications that require precision distance or positioning measurements, as well as high-speed wireless connectivity, the largest spectrum allocation ever granted by the FCC is unique because it overlaps other services in the same frequency of operation. Previous spectrum allocations for unlicensed use have opened up bandwidth dedicated to unlicensed devices based on the assumption that operation is subject to the following two conditions:
The device will not cause harmful interference to other systems. Thus, the UWB interferences should not seriously degrade, obstruct, or repeatedly interrupt other radio communication systems.
The device must accept any interference received from any licensed system, including interference that may cause undesired operation. This means that devices using unlicensed spectrum must be designed to coexist in an uncontrolled environment.
Devices using UWB spectrum operate according to similar rules, but they are subject to more stringent requirements because UWB spectrum underlays other existing licensed and unlicensed spectrum allocations. In order to optimize spectrum use and reduce interference to existing services, the FCC’s regulations are very conservative and require very low emitted power.
The UWB spectrum consists of three different parts as given below:
The main spectrum extending from 3.1 GHz up to 10.6 GHz.
The lower residual spectrum extending from 0 Hz up to 3.1 GHz.
The upper residual spectrum extending from 10.6 GHz upwards.
The main objective of this chapter is to study the UWB coexistence with the 3G and 4G Cellular Systems. UMTS in the 2 GHz and in the 450 MHz are two examples of the 3G cellular systems while the WiMAX system is one of 4G cellular systems.
WiMAX (Worldwide Interoperability for Microwave Access) is a 4G wideband cellular communication system that can provide up to 70 Mbps in 20 MHz bandwidth. The spectrum of WiMAX at 3.5 GHz lies between 3300 to 3800 MHz. Thus, WiMAX receivers are affected by UWB interference from the UWB main part spectrum. For WiMAX at 2.5 GHz, the spectrum lies between 2300 to 2700 MHz. In this case, WiMAX receivers are affected by the interference from the lower residual part of the UWB spectrum. Table 1 shows the WiMAX modulation schemes and the necessary Signal to Interference and Noise Ratio (SINR) required to support them.
The UMTS (Universal Mobile Telecommunications System) is a 3G cellular system that can support voice, data and video services. The downlink frequency used by the UMTS systems lies between 2110 to 2170 MHz.
Deployment of UWB systems creates a “forbidden zone” around the UWB transmitter in which the receivers of WiMAX or UMTS systems can be drastically affected. In practice, the radius of the forbidden zone should be the minimum possible. In our work we will consider a forbidden zone within 1 to 2 m radius (other values such as 0.5 m can be considered) assuming that the maximum accepted downlink range reduction of the WiMAX systems at any moment is 1%. The maximum accepted reduction of the capacity of UMTS systems is assumed to be also 1%.
Order | Modulation | Required SINR (dB) |
1 | BPSK 1/2 | 6.4 |
2 | QPSK 1/2 | 9.4 |
3 | QPSK 3/4 | 11.2 |
4 | 16 QAM 1/2 | 16.4 |
5 | 16 QAM 3/4 | 18.2 |
6 | 64QAM 1/2 | 22.7 |
7 | 64QAM 3/4 | 24.4 |
WiMAX Modulation Schemes.
In (Hamalainen et al., 2002) the coexistence of the UWB system with GSM900, UMTS/WCDMA, and GPS has been investigated. They have evaluated the level of the interference caused by different UWB signals to the three above mentioned systems. Also they have evaluated the performance degradation of UWB systems in the presence of narrow bandwidth interference and pulsed jamming. They gave the bit error rate (BER) of the above mentioned systems for different pulse length.
In (Hamalainen et al., 2004) the coexistence of the UWB system with IEEE802.11a and UMTS in Modified Saleh-Valenzuela Channel has been studied as well as the UWB system performance in the presence of multiband interference. The interference sources considered were WiFi and UMTS operating simultaneously with their maximum system bandwidths. The UWB system under consideration was single band and single user operating at a data rate of 100 Mbps without error correction coding. They gave the bit error rate (BER) of the UWB system for different types of modulation (Direct Sequence and Time Hopping).
The interference between the UMTS and the UWB systems has been studied in (Giuliano et al, 2003). The free space propagation model was used to calculate the UWB signal propagation loss. It has been concluded that the minimum allowable central frequency value for UWB device, transmitting at 100 Mbps, has to be 3.5 GHz in order to avoid harmful interference with UMTS. In (Hamalainen et al., 2001a), the effect of the in band interference caused by different types of UWB signal to the UMTS/WCDMA uplink and downlink was investigated. UWB frequency spectra have been produced by using several types of narrow pulse waveforms. They have concluded that one can reduce interfering UWB power by using different waveforms and pulse widths avoiding the UMTS frequencies without any additional filtering. In (Hamalainen et al., 2001 b) the effect of the in band interference power caused by three different types of UWB signals to GPS L1 and GSM-900 uplink band was studied. UWB frequency spectra were generated again using several types of narrow pulse waveforms based on Gaussian pulse. In band interference power has been calculated over the IF bandwidth of the two victim receivers as a function of the UWB pulse width. Also the signal attenuation with distance was presented.
In (Ahmed et al., 2004) the effect of the UWB on the DCS-1800 and GSM-900 macrocell downlink absolute range, using the Line of Sight propagation model between the UWB transmitter and the mobile receiver, was studied (without taking into account the shadowing factor within the propagation loss model).
The effect of the UWB emission on the UMTS and CDMA-450 macrocell downlink performance (range and capacity) has been given in (Ahmed et al., 2008). The effect of the UWB emission on the WiMAX macrocell downlink range has been studied by (Ahmed et al., 2010). In (Chiani et. al., 2009) an overview about the coexistence between UWB and narrow-band wireless communication systems has been presented. In (Chóliz et. al., 2011) the coexistence between UMTS and UWB has been evaluated and cooperative mitigation techniques have been proposed and implemented. In (Das et. al., 2010) an interference cancellation schemes in UWB systems used in wireless personal area network based on wavelet based pulse spectral shaping have been presented.
The effect of the UWB on fixed service system (point to point and Fixed Wireless Access (FWA) systems in bands from 1 to 6 GHz) has been investigated in (ITU, 2003). It was concluded that, when the UWB transmitter is in LOS with the two systems antennas, the effect is very high when the UWB power density is higher than -41.3 dBm/MHz.
For each WiMAX downlink channel, the UWB interfering signal is due to only a given part of the total UWB spectrum. To account for UWB interference, an extra source of interference is added to the WiMAX noise. Here we consider the UWB interference as a Gaussian signal. The WiMAX technology is based on Orthogonal Frequency Division Multiplex (OFDM) technique. Thus we will calculate the Signal to interference plus noise (SINR) on a single subcarrier, not in the overall bandwidth.
The interference power is calculated by assuming an UWB interfering source at different distances from the WiMAX receiver. Therefore, the interference power generated by a UWB device, IUWB, is given (in dBm) by:
where:
PUWB is the UWB Effective Isotropic Radiation Power (EIRP) in dBm in the WiMAX bandwidth.
LUWB(d) is the path-loss between the UWB device and the WiMAX receiver which varies with the separation distance d in m.
GRX_WiMAX is the antenna gain of the WiMAX system in the receiving end.
Taking into account that UWB devices are short range, the quasi free space path-loss model with shadowing is often most appropriate, especially when the distance between the UWB transmitter and the mobile receiver is lower than 8 m. Thus, in the WiMAX downlink frequency band, the UWB signal propagation loss LUWB(d), measured in dB at a distance d in meters from the UWB transmitter, is calculated as:
Where is the operating wavelength at the WiMAX frequency, n is the indoor propagation exponent (1.8 to 2.0) and N(0, σ) is a Gaussian variable of zero mean and a standard deviation of σ, representing the deviation from the path loss mean value (shadowing). Practical values of σ are in the range 1.8 to 3 dB in the line of sight LOS environment. Here we assume that the Gaussian variable N(0, σ) is truncated at 4. In our case is assumed to be 2 dB.
In the calculation of the propagation loss of the WiMAX signal we use the two-slope propagation loss model. Thus, for a distance higher than 100 m, the WiMAX signal propagation loss in dB is given as:
Where:
A is the free space propagation loss at a distance of 100 m.
d is the distance between the WiMAX transmitter and the WiMAX receiver.
is the propagation exponent with a typical value of 3.9 to 4.7.
s is the shadowing margin assumed to be 10 dB.
Lglass is the wall insertion loss assumed to be 5 dB.
f is the operating frequency of the WiMAX system given in MHz.
hRX is the WiMAX antenna height in the receiving end.
The thermal noise of the WiMAX receiver Nrec_sc per subcarrier is given by:
where:
Bc is the WiMAX band width of a single carrier.
NF is the WiMAX receiver noise figure in dB assumed to be constant within the WiMAX bandwidth of 20 MHz.
The WiMAX received power per subcarrier SWiMAX_sc is given as:
where:
PWiMAX_sc is the WiMAX transmitted power per subcarrier.
GTX_WiMAX is the antenna gain of the WiMAX in the transmitting end assumed to be 18 dB (antenna for a macrocell with 3 sectors).
The WiMAX cochannel interference due to the macrocells using the same frequency band that exists within the three nearest clusters of 4 macrocells is given by:
where R is the radius of the WiMAX macrocell.
For the UWB system the propagation loss with 99.995% confidence is given by:
For the WiMAX receiver, the signal to interference plus noise ratio SINR per subcarrier is given by:
where Icc-WiMAX is the WiMAX cochannel interference, Nrec is the receiver thermal noise, and IUWB is the UWB interference all given in real numbers.
To account for the UWB interference, an extra source of interference is added linearly to the UMTS and the CDMA-450 intra-system interference. The interference power is calculated by assuming the UWB source to be at different distances from the UMTS receiver (the mobile station). Therefore, the interference power generated by a UWB device, IUWB, is given by (in dBm):
Where:
PUWB is the mean UWB EIRP in dBm in the UMTS band.
LUWB(d) is the path-loss between the UWB device and the UMTS receiver which varies with the separation distance, d in m, and
GUMTS is the UMTS antenna gain.
As the UWB devices are typically low power and short range devices the line-of-sight path-loss model is often most appropriate. Then the UWB signal propagation loss in dB is calculated as:
The effect of the UWB interference is to reduce the UMTS macrocell range or/and the macrocell capacity.
The normalized range is given as (Ahmed et. al., 2008):
The normalized capacity Cn is given as (Ahmed et. al., 2008):
The interference power generated by a UWB device that affects the CDMA-450 receiver, IUWB, is given by (in dBm):
where:
PUWB is the UWB EIRP in dBm in the CDMA-450 band.
LUWB(d) is the path-loss between the UWB device and the CDMA-450 receiver which varies with the separation distance, d in m, and
GCDMA is the CDMA-450 antenna gain.
In the frequency band used by CDMA-450, the UWB signal propagation loss in dB is calculated as:
The normalized range is now given by (Ahmed et. al., 2008):
where:
RCDMA,o is the CDMA-450 macrocell initial range without the UWB interference.
RCDMA is the CDMA-450 macrocell range with the existence of the UWB interference.
The normalized capacity of the CDMA-450 system Cn is given by (Ahmed et. al., 2008):
Fig. 1 represents the scenario of the studied WiMAX system. It shall be mentioned that the receiver is an indoor portable WiMAX. The UWB transmitter is also indoor within a distance of 0.5 to 5 m from the WiMAX receiver.
WiMAX studied scenario.
Let us study the case of 3.5 GHz WiMAX assuming that the WiMAX transmission power is 40 dBm/sector. Fig. 2 shows the WiMAX downlink modulation modes, as a function of distance between the WiMAX transmitter and receiver, for three different UWB power densities. It can be noticed that, without UWB interference, the WiMAX will have a range of 1481 m for the second modulation scheme. With a UWB power density of -88.5 dBm/MHz the range will be reduced by 2% and with a UWB power density of -41.3 dBm/MHz (recommended by FCC), the range will be only 213 m. Such a reduction drastically degrades the WiMAX performance.
3.5 GHz WiMAX modulation modes for different UWB power densities with a 1 m distance between the UWB transmitter and the WiMAX receiver assuming a WiMAX transmitted power of 40 dBm/sector.
Let us consider now the case when the WiMAX signal and also the interference are received through an open window. Fig. 3 shows the WiMAX downlink modulation modes, again as a function of distance between the WiMAX transmitter and receiver, for three different UWB power densities. As can be seen, without UWB interference, the WiMAX will have a range of 1930 m for the second modulation scheme. With a UWB power density of -88.5 dBm/MHz the range will be reduced by 2%. And for a UWB power density of -41.3 dBm/MHz (recommended by FCC), the range will be 310 m. Again the WiMAX range performance is drastically degraded.
Let us now study the case presented in Fig. 2 but assuming this time that the maximum allowed WiMAX reduction range is 1%. Fig. 4 shows the WiMAX downlink modulation modes as a function of distance between the WiMAX transmitter and receiver for three different UWB power densities. It is clearly seen that, without UWB interference, the WiMAX will have a range of 1481 m for the second modulation scheme. The range will be reduced by 1% when the interfering UWB power density is -91.5 dBm/MHz.
Let us consider now the case when the WiMAX system operates in the 2.5 GHz band. Fig. 5 shows the WiMAX downlink modulation modes as a function of distance between the WiMAX transmitter and receiver for three different UWB power densities. Notice that, without UWB interference, the WiMAX will have a range of 1817 m for the second modulation scheme. With a UWB power density of -94.7 dBm/MHz the range will be reduced by 1%. For a UWB power density of -51.3 dBm/MHz (recommended by FCC), the range will be 378 m and such a reduction represents a drastic degradation of the WiMAX performance. In this case an UWB with a power density of -91.5 dBm/MHz will reduce the WiMAX range by 2%.
3.5 GHz WiMAX modulation modes for different UWB power densities with a 1 m distance between the UWB transmitter and the WiMAX receiver assuming a WiMAX transmitted power of 40 dBm/sector and that the WiMAX signal and interference are received through an open window.
3.5 GHz WiMAX modulation modes for different UWB power densities with a 1 m distance between the UWB transmitter and the WiMAX receiver assuming a WiMAX transmitted power of 40 dBm/sector.
2.5 GHz WiMAX modulation modes for different UWB power densities with a 1 m distance between the UWB transmitter and the WiMAX receiver assuming a WiMAX transmitted power of 40 dBm/sector.
We will consider now the case of multi-UWB transmitters, assuming the case that 4 UWB are located at a distance of 1m from the WiMAX receiver. Fig. 6 shows the WiMAX downlink modulation modes as a function of the distance between the WiMAX transmitter and receiver (WiMAX link length) for three different UWB power densities. It can be noticed that, without UWB interference, the WiMAX will have a range of 1481 m for the second modulation scheme. The range will be reduced by 1% when the UWB power density is higher than -97.5 dBm/MHz. In this case, an UWB power density of -94 dBm/MHz will reduce the WiMAX range by 2%.
3.5 GHz WiMAX downlink modulation modes versus distance between the WiMAX transmitter and receiver, for different UWB power densities from 4 UWB transmitters at 1 m distance to the WiMAX receiver and assuming a WiMAX transmitted power of 40 dBm/sector.
A band rejection up to 56 dB is needed for the DS-CDMA UWB system, while for the MB-OFDM UWB system a 51 dB band rejection is needed and can be obtained by nulling 16 subcarriers with a 40 dB notch filter.
We study now the same scenario but for the 2.5 GHz WiMAX. Fig. 7 shows the WiMAX downlink modulation modes as a function of the distance between the WiMAX transmitter and receiver for three different UWB power densities. It can be noticed that for the second modulation scheme without UWB interference, the WiMAX will have a range of 1817 m. At a UWB power density of -100.7 dBm/MHz, WiMAX range will be reduced by 1%.
In summary, from the results presented in Figures 2, 3, 4 and 5 it can be concluded that the power density of -41.3 dBm/MHz recommended by FCC, implies a very high range reduction, unless Detect and Avoid (DAA) techniques are implemented.
Fig. 8 represents the DAA requirement for Multiband OFDM UWB (MB-OFDM UWB) system and the Direct Sequence CDMA system (DS-CDMA UWB), with activity factors (fraction of the time they work at the 3.5 GHz band) of 32% and 100% respectively.
2.5 GHz WiMAX modulation modes for different UWB power densities with a 1 m distance between the 4 UWB transmitters and the WiMAX receiver assuming a WiMAX transmitted power of 40 dBm/sector.
DAA requirements within the 3.5 GHz band.
Let us now study the coexistence of UWB systems with the UMTS (working at the 2 GHz band) and CDMA-450 systems. In the analysis we assume that the UWB data rate is higher than the UMTS or CDMA-450 chip rate. In this case, the UWB interference can be considered as a Gaussian noise. We address here the effect that the UWB system produces on the downlink of the UMTS and CDMA-450 systems. In Fig. 9, the UWB interference power on the UMTS downlink (i.e. interference as seen at the mobile) is plotted assuming a UWB power density (PUWB) of -51.3 dBm/MHz within the UMTS bandwidth.
UWB interference as a function of the separation between the UWB transmitter and the UMTS mobile (PUWB = -51.3 dBm/MHz).
Lets us study now the case of voice service [Gp = 256 and (Eb/No)req = 6 dB] assuming an UMTS interference of -88 dBm (14 dB Rise-Over-Thermal ROT). Fig. 10 shows the downlink macrocell normalized range as a function of the separation between the UMTS mobile and the UWB transmitter for three different values of the propagation exponent . It can be noticed that the UWB signal creates a high interference (which reflects a macrocell normalized range reduction of 35.6%) when the separation is 1 m. For larger separation, the interference is lower and thus the range reduction is also lower.
Fig. 11 shows the downlink macrocell normalized capacity as a function of the separation between the UMTS mobile and the UWB transmitter. It can be noticed that the UWB signal creates a high interference (which reflects a macrocell normalized capacity reduction of 78.6%) when the separation is 1 m. For larger separation, the interference is lower and thus the normalized capacity reduction is also lower.
Effect of the UWB interference on the macrocell range as a function of the separation between the UWB transmitter and the UMTS mobile (PUWB = -51.3dBm/MHz).
Effect of the UWB interference on the macrocell normalized capacity as a function of the separation between the UWB transmitter and the UMTS mobile (PUWB = -60 dBm/MHz).
Next let us study the data service case [Gp = 32 dB and (Eb/No)req = 5 dB] assuming an UMTS total interference of -92.5 dBm (9.5 dB Rise-Over-Thermal ROT), representing a highly loaded macrocell. Fig. 12 shows the downlink macrocell normalized range as a function of the separation between the UMTS mobile and the UWB transmitter for three different values of the propagation exponent s. It can be noticed that the UWB signal creates a high interference (which reflects a high macrocell normalized range reduction of 50.5%) when the separation is 1m. For larger separation, the interference is lower and thus the range reduction is also lower.
Effect of the UWB interference on the macrocell normalized range as a function of the separation between the UWB transmitter and the UMTS mobile (PUWB = -51.3 dBm/MHz).
Fig. 13 shows the downlink macrocell normalized capacity as a function of the separation between the UMTS mobile and the UWB transmitter. It can be noticed that the UWB signal creates a high interference (which reflects a high macrocell normalized capacity reduction of 91%) when the separation is 1 m. For larger separation, the interference is lower and thus the normalized capacity reduction is also lower.
It is obvious that such reductions (in range and capacity) are unacceptable. Thus the EIRP power density should be reduced to get an acceptable range and capacity reduction.
Let us consider now the data service case assuming a PUWB of -81.4 dBm/MHz. Fig. 14 shows the downlink macrocell normalized range as a function of the separation between the UMTS mobile and the UWB transmitter. It can be noticed that the UWB signal creates a high interference (which reflects a high macrocell normalized range reduction) when the separation is lower than 0.25 m. For larger separation, the interference is lower and at a distance higher than 1m, the effect of the interference is quasi null.
Effect of the UWB interference on the macrocell normalized capacity as a function of the separation between the UWB transmitter and the UMTS mobile (PUWB = -51.3 dBm/MHz).
Effect of the UWB interference on the macrocell range as a function of the separation between the UWB transmitter and the UMTS mobile (PUWB = -81.4 dBm/MHz).
Fig. 15 shows the downlink macrocell capacity as a function of the separation between the UMTS mobile and the UWB transmitter. It can be noticed that the UWB signal creates a high interference (which reflects a high macrocell capacity reduction) when the separation is less than 0.4 m. For larger separation, the interference is lower and at a distance higher than 1.0 m, the effect of the interference is to reduce the cell capacity by 1%.
Next we study the case of data service (Gp = 32 dB and (Eb/No)req = 5 dB) of the CDMA-450 3X assuming that the CDMA-450 total interference of -92.5 dBm (9.5 dB Rise-Over-Thermal ROT) and UWB power density of -95 dBm/MHz. The frequency of operation is assumed to be 450 MHz.
Fig. 16 shows the CDMA-450 downlink macrocell normalized range as a function of the separation between the CDMA mobile and the UWB transmitter. It can be noticed that the UWB signal creates a low interference when the separation is 1m which reflects a normalized range reduction of less than 0.3%.
Fig. 17 shows the CDMA-450 downlink macrocell normalized capacity as a function of the separation between the CDMA-450 mobile and the UWB transmitter. It can be noticed that the UWB signal creates a low interference when the separation is 1m which reflects a normalized capacity reduction of 1%.
Effect of the UWB interference on the macrocell normalized capacity as a function of the separation between the UWB transmitter and the UMTS mobile (PUWB = -81.4 dBm/MHz).
Effect of the UWB interference on the macrocell normalized range as a function of the separation between the UWB transmitter and the CDMA450 mobile (PUWB = -95 dBm/MHz).
Effect of the UWB interference on the macrocell normalized capacity as a function of the separation between the UWB transmitter and the CDMA450 mobile (PUWB = -95 dBm/MHz).
Then we study the case of multiple UWB transmitters with four UWB transmitters at a distance of 1m around the UMTS receiver. Fig. 18 shows the downlink macrocell normalized range as a function of the EIRP power density in dBm/MHz. It can be noticed that the cell range reduction is always lower than 1%.
Range reduction as a function of the EIRP in (dBm/MHz) for multi UWB transmitters.
Fig. 19 shows the downlink macrocell normalized capacity as a function of the EIRP power density in dBm/MHz. It can be noticed that, for a capacity reduction of only 1%, EIRP should be -87.4 dBm/MHz. this represents a 6 dB reduction equal to [10log10(4)], where 4 is the number of the UWB sources. The conclusion is that, for the case of single UWB transmitter, the UMTS can easily tolerate the UWB interference when the UWB EIRP is lower than -81.4 dBm/MHz for 1m distance between the UWB transmitter and the UMTS mobile. For the multi UWB transmitter case, the UMTS can easily tolerate the UWB interference when the UWB EIRP is -87.4 dBm/MHz. When using a CDMA-450 system the maximum allowed EIRP reduces to -101 dBm/MHz.
Table 2 presents the maximum allowed EIRP for different frequency bands, for UWB activity factor of 100% and multi UWB transmitter scenario, for two different cases, (case A with 99.995% confidence and case B with 99% confidence respectively). Table 3 represents the maximum allowed EIRP for different frequency bands for UWB activity factor of 10% and multi UWB transmitter scenario for the two previous cases A and B.
It shall be mentioned that if the critical distance is reduced from the 1m already considered down to 0.5m, the maximum accepted UWB power densities should be decreased by 6 dB from the values given before.
Capacity reduction as a function of the EIRP in (dBm/MHz) for multi UWB transmitters.
Frequency band in GHz | Maximum allowed UWB EIRP in (dBm/MHz) Case A Case B |
3.3-3.8 | -98.0 (with DAA) -94.7 |
2.5-2.7 | -100.7 -97.4 |
2.1-2.2 | -87.4 -84.1 |
0.43-0.47 | -101.0 -97.7 |
Maximum allowed EIRP for different frequency bands with UWB activity factor of 100%.
Frequency band in GHz | Maximum allowed UWB EIRP in (dBm/MHz) Case A Case B |
3.3-3.8 | -88.0 (with DAA) -84.7 |
2.5-2.7 | -90.7 -87.4 |
2.1-2.2 | -77.4 -74.1 |
0.43-0.47 | -91.0 -87.7 |
Maximum allowed EIRP for different frequency bands with UWB activity factor of 10%.
The coexistence of UWB with 3G and 4G Cellular Systems has been studied in this chapter. In particular UMTS in the 2 GHz and in the 450 MHz (CDMA-450) frequency bands have been selected as examples of 3G cellular systems and the WiMAX system as example of 4G.
The methodology used to account for the impact of UWB interference on the coverage range and capacity of the interfered systems has been explained in detail. Finally it has been applied in a set of study cases in scenarios involving the 3G and 4G selected systems.
From the above given results we can conclude that the spectrum mask proposed by the FCC for indoor application (-51 dBm/MHz in the UMTS band and -41 dBm/MHz for the CDMA-450 band) is very high and cannot be tolerated by the mobile systems. From the results obtained we conclude that another spectrum mask with lower UWB power density has to be used.
Cryopreservation is one the most essential techniques that has been widely used for preserving stem cells in scientific research and cellular therapies [1]. The principle of cryopreservation is to use the super low temperature to reduce the biological and chemical reactions in living stem cells. The expansion in clinical tests for biomedical applications revealed the limitations of the current preservation technologies, i.e., only the small volumes of stem cells can be successfully cryopreserved. In the case of large samples such as bulk volume of cells, tissues, or organs, cryopreservation often fails because of the damage caused by ice crystal growth and thermal stress within the bio-samples [2, 3].
\nIn 1960s, Mazur proposed “two-factor hypothesis” of freezing injury based on the study of Chinese hamster tissue [4]. During the cooling process, two distinct types of cryoinjuries determine the life or death of the cells, which are affected by the cooling rate. Neither too high nor too low the cooling rate is favored for the cryopreservation (Figure 1).
\nSchematic drawing of physical events in cells during freezing.
When cells are cooled down to subzero temperatures under a normal pressure, ice crystals emerge and grow in the suspensions outside the cell membrane in the beginning [5]. The external ice growth into cells is blocked by the plasma membrane. The cytoplasmic region remains unfrozen and in the supercooled state [6]. However, the increase of osmolality and chemical potential difference across cell membranes due to the external ice formation will serve as a driving force for mass transfer between the intracellular components and extracellular environment, pulling water out of cells. If the cooling is too rapid, there is insufficient time for the water to flow out of the cells. As the temperature goes down rapidly, the unfrozen and supercooled state is disturbed and the intracellular ice formation (IIF) happens [7]. The lethal IIF can rupture the cell membranes and lead to the cell death. On the other hand, if the cooling rate is too slow, intracellular ice may be reduced or avoided. The plenty of time permits water transport out of the membrane under the influence of the osmolality difference. Cells then suffer from high concentration of intracellular solute/electrolytes (so called “solution effects”) and severe dehydration. The slower cooling process may expose the cells to “solution effects” for a longer time, which is unacceptable for the cells. Therefore, the cooling rate may not be too high or too low based on the “two-factor hypothesis”.
\nLater in 1984, Mazur reported the rapid rewarming can ‘rescue’ the rapidly frozen cells [6]. Though the fast cooling process produces intracellular ice, the crystals tend to be small. Due to the unstable thermal properties, during rewarming, small crystals formed at lower temperature aggregate to become larger crystals. The process referred to as recrystallization. It has been proved that the cells cooled at rate far beyond the optimal one will survive if warmed at very rapid rate, but cells do not survive if warmed slowly [8, 9]. Besides the rapid rewarming rate, uniformity of temperature distribution also plays an important role to the survival of the samples [10]. Thermal stress caused by the temperature gradients will lead to the crack of the brittle material, especially the larger systems [11]. Thus, both of fast and homogeneity are essential in the thawing. A rapid-uniform rewarming technology is needed to successful cryopreservation of stem cells with large volume.
\nA typical cryopreservation procedure is composed of five steps:
addition of appropriate cryoprotective agents (CPAs),
cooling at an optimal rate,
storage at the low temperature (e.g. -80°C freezer or − 196°C liquid nitrogen tank),
rearming to physiological temperature, and
removal of the CPAs.
Over the past decades, scientists made significant progress in the methods and protocols of addition/removal of CPAs, approaches of cooling to the target temperature, and strategies to preserve biomaterials at sub-zero temperature environment. However, in the scientific and clinical applications, convective rewarming of the cryopreserved samples, typically thawing in a 37°C water bath, remains the gold standard for small samples [12].
\nWarming in the water bath is a convective rewarming approach in which heat is transferred from the outer boundaries to the inner portion of the cryopreserved biological samples. Because of the high specific heat of biological materials, it requires a great amount of heat to rewarm them. Another obstacle for the rewarming process is the low thermal conductivity of biomaterials. Heat cannot be quickly transmitted into the core area of large samples. For a small volume of cell suspensions, the problem caused by the lower thermal conductivity may possibly be solved by the design of sample holder (e.g. maximize the sample holder’s ratio of surface area to volume) [13]. However, for larger system with much smaller ratio of the surface area to the volume, they cannot be sliced or pressed into a thin film to increase the heat transfer area for convective warming in water bath. In this case, a large temperature difference will occur and lead to thermal stresses that can result in fracture of the samples during rewarming. Therefore, the traditional method of convective rewarming at the sample surface is not appropriate for the cryopreservation of large volume of biomaterials. A uniform and rapid rewarming method is needed to meet the urgent needs in tissue engineering and cellular therapy, which may be achieved by a volumetric rewarming technique, e.g., electromagnetic heating.
\nThe electromagnetic field is a combination of the electric field and the magnetic field generated by electrically charged objects. The electric field and magnetic field are coupled with each other. A time varying electric field (contrary to static field) induces magnetic field changing over time, and vice versa. The distribution and propagation of electromagnetic fields are governed by Maxwell’s equations. An electromagnetic wave is the propagation of the electromagnetic field through media such as air, water, etc., or in vacuum. This propagation also refers to radiation transmitting the electromagnetic energy, momentum and angular momentum through space. As one of the basic forces in nature, the propagating electromagnetic fields interact with other materials and generate different effects depending on the frequency and power. Based on the mechanisms behind these interactions between electromagnetic waves and other materials, electromagnetic waves have been applied in numerous aspects including: telecommunications such as mobile phone calling, the short wave broadcast, TV signal transmission and connection between the spaceship and the base on earth, remote sensing for the weather forecasting, land mapping, infrared radiation detecting, X-rays and computer tomography (CT) or the disease diagnoses, and radiotherapy which employs higher energy radiation to kill cancer cells. These various applications are closely related to the spectrum of electromagnetic waves. The most commonly used frequency band is at radio frequency (RF) electromagnetic wave and microwave.
\nThe thermal effects of electromagnetic waves benefit the organism on earth even long before the prehistory. The thermal energy transmitted by the electromagnetic waves emitted from the sun allows the survival of plants, animals. This electromagnetic wave emitted from the sun, or sunlight, is distributed across almost the entire spectrum but with major intensity on infrared, visible, and ultraviolet frequency ranges. These major components visible light has a frequency range in several hundreds of THz. Higher frequency electromagnetic waves such as X-rays carry much higher energy and are used for radiation therapy killing the tumor cells by ionizing the molecules. In the lower frequency range, electromagnetic waves (radio frequency electromagnetic waves, microwave) with less energy can hardly excite ionization, but can result in thermal effects with materials.
\nThe investigation of the heating phenomenon by microwave occurred in the 1940s. A candy bar under an active microwave generating devices melted and the engineer used this observation to develop equipment for preparing and heating food utilizing the thermal effects of microwave radiation. Since then, not only has the commercialization of the microwave oven become widespread, scientists also began to study the potential benefits for industry and medicine. Most of food is a dielectric material that can interact with the electromagnetic fields in the microwave oven due to a large portion of water in the contents. The water molecules are dipole molecules comprising an electrical positive charged end and an electrical negative charged end. Under the influence of electric fields, these dipole molecules will align themselves with the applied electric fields. When the directions of external electric fields are changing as in the oscillating electromagnetic waves, the dipole molecules will rotate to follow up with the changing fields. The interactions between the rapid changing electromagnetic fields and water dipole molecules will cause mechanical friction forces among the water molecules. The frictions between these micro molecules generate heat volumetrically. Similarly, to the food in the microwave oven for heating, the biological materials in cryopreservation are organisms that are primarily composed of water. Therefore, microwave can also be used for the heating of cryopreserved biological systems.
\nWhen using microwave as the rewarming approach in the cryopreservation, the biomaterials interact with the applied electromagnetic field. Since most biomaterials are nonmagnetic, the forced movement of molecules is mainly due to the electric field component of the electromagnetic field. As shown in Figure 2, a distinct advantage of microwave rewarming compared with the traditional water bath rewarming is that the heat is generated over the entire region of the material which can lead to volumetric and uniform heating.
\nIllustration of heat generation under the influence of electromagnetic waves.
The electrical parameter that characterizes the interaction between the material and electric field component is the relative complex permittivity, or dielectric property, expressed in Eq. (1):
\nThe real part of complex permittivity, \n
where \n
The development of electromagnetic rewarming systems is limited by the cost and inadequate theoretical guidance. The establishment of an electromagnetic resonance rewarming system involves the selection of frequency source and power, manufacturing of the resonance chamber, optimization of the electromagnetic energy feeding approach to the cryopreserved materials. Setting up a specific resonance rewarming system can take a few months to years and requires substantial funding support. When the system is going to be scaled up to materials of a larger dimension, various parameters of the system should be replaced which will extend the time required for the optimization. The first experimental investigation of using electromagnetic energy in cryopreservation began in the 1970s. In Kettrer’s experiment [14], 20 kidneys rewarmed by a microwave generation device with power control were considered partial success. By using a commercial 1.35 kW Toshiba microwave oven which generated by 2.45 GHz magnetron, Guttman [15] reported the electromagnetic rewarming of 16 cryopreserved canine kidneys. Half of the dogs receiving transplantation of these kidneys survived months.
\nHowever, in Pegg’s attempt [16] to repeat the rewarming of dog kidneys with commercial microwave oven, none of the post-thawing dog kidneys function properly.
\nAnother device designed by Burdette [17] generated an electromagnetic field with an open electromagnetic illumination system. The frequency can be adjusted to several distinct values. The rewarming results of rabbit and canine kidneys were published without the following viability analysis.
\nThese preceding explorations opened a new avenue for cryobiologists, most specialized in biomechanical and biochemical physics, to implement new technologies from electrical engineering in the application of cryopreservation. A major problem for these early investigations of electromagnetic rewarming is that the frequency of the commercial microwave oven is too high to penetrate into the inner part of the cryopreserved biomaterials. A good uniformity should be achieved with lower frequency electromagnetic waves. In addition, electromagnetic rewarming can result in a ‘thermal runaway’ problem because the dielectric loss of biomaterials generally increases with temperature during rewarming process, which leads to an increasing temperature difference across the sample volume.
\nThermal runaway phenomenon is depicted in Figure 3. Due to the complex interactions between the material and the applied electromagnetic wave, and nonuniformity of material properties, the temperature distribution may not be that uniform initially. The slightly warmer area of the biological samples has a higher ability to absorb energy from electromagnetic waves and convert into heat than colder area. The temperature difference between these components will be magnified. When the difference in governing properties is significant and favors the ultrafast thawing of the hot area, the nonuniform temperature gradient is even intensified.
\nIntroduction of the ‘thermal runaway’ phenomena: The appearing of large temperature gradient by electromagnetic rewarming.
To avoid the localized warming associated with ‘thermal runaway’ and limited penetration depth for the 2.45 GHz high frequency electromagnetic waves, more delicate controlled electromagnetic rewarming systems operating in lower frequencies are required for cryopreservation. Thereafter, a rewarming system using helical coil to generate tens of MHz electromagnetic waves was used to rewarm CPA solutions as a preliminary trial [18]. But the rewarming rate was moderate achieved by this open system. Later on, a few scientists reconsidered the electromagnetic rewarming in closed systems to confine electromagnetic energies [19, 20]. Unlike the commercial microwave oven in which the generated signal shifted around ±50 MHz, the electromagnetic wave was synthesized by voltage-controlled oscillators. The stability of frequency was improved so that the design of chamber could fit with the electromagnetic source and establish resonant state to concentrate the electromagnetic energy.
\nA major problem for these resonant systems may come from an intention to reduce the non-uniformity by adopting multimode resonant cavities. In Rachman’s electromagnetic resonance cavity rewarming system [19], two resonant states of the cavity were excited (TE111 and TM010). Another multimode cavity rewarming system designed by Robinson [20] excited three different modes. The results of the warming test for CPA solutions were improved while the spatial temperature difference was not greatly reduced, which means thermal runaway could not be eliminated. The reason behind this is due to the interaction between the cryopreserved CPAs and the properties of the resonant cavity. Multimode cavities resonating at different frequencies bring more difficulties in the control of signal frequency at each port to feed electromagnetic energy into the cavity. Hence, a single mode resonant cavity which excites only at a specific frequency may be superior in the control of field distribution in the rewarming process.
\nOur goal is to achieve effective cryopreservation protocol for bulk volume of stem cells. In this chapter, the target is to improve electromagnetic rewarming systems for the rapid-uniform rewarming, laying down the foundation for the cryopreservation of biomaterials with large volume.
\nThe dielectric properties of the biomaterials characterize the interaction between applied electromagnetic field and the biomaterials, and thereby determine the absorption of electromagnetic energy by the biomaterials [21, 22]. The dielectric properties are temperature dependent. If the warmer part of the biomaterial absorbs more heat, the temperature at that warmer part would be further increased, increasing temperature gradients, and therefore inducing thermal stresses. A large thermal stress can destroy the viability of cryopreserved materials and can be even more threatening to bulky systems [23, 24]. Since the dielectric properties play a key role in the absorption of electromagnetic energy, it is a priority to discover the dielectric properties of the biomaterials. In cryopreservation, particularly in vitrification using a high concentration cryoprotective agent, the CPA/vitrification solutions dominate the properties of the cell suspensions or tissues. Hence, the dielectric properties of the CPA/vitrification solutions should be determined so that electromagnetic rewarming can be optimized.
\nThe measurement of the dielectric properties of biomaterials requires sensing and monitoring tools. In many biomedical applications, various measurement methods including transmission and reflection techniques have been used to determine dielectric properties [25, 26, 27, 28, 29].
\nThe samples measured by transmission and reflection methods usually are fixed without morphologically change. But in the application of electromagnetic rewarming, the measurement of dielectric properties must be carried out in the subzero temperature range which may involves phase change and rules out the possibility using transmission and reflection techniques. The cavity perturbation method has been used for measuring the electric properties of different kinds of materials [30, 31, 32, 33] due to its ability to measure the dielectric properties of low loss dielectric materials [34]. In the subzero temperature range, the dielectric properties of biomaterials and CPA/vitrification solutions can be very small. Therefore, in this work, we adopted a cavity perturbation method to determine the dielectric properties of three different vitrification solutions at low temperatures. Briefly, a resonant cavity was designed and manufactured to measure the dielectric properties of cryopreserved biomaterials at 434 MHz. By inserting samples with different permittivity into the resonant cavity, the resonant frequency and quality factor could be changed. From the variation of the resonant frequency and the quality factor, the dielectric properties can be derived.
\nThrough the change of resonant frequency ∆\n
where ∆\n
\n\n
The experimental system is shown in Figure 4. A rectangular single-mode resonant cavity resonating at around 434 MHz was manufactured. The dimension of the cavity was designed to 680 × 400 × 350 mm. Copper plates were used to manufacture the cavity due to its high conductivity (to prevent electromagnetic leakage).
\nSchematic of the system for measurement of dielectric properties.
Water, methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol and cyclohexane samples with known properties were used for calibration of the cavity to determine \n
Once \n
To determine the temperature-dependent specific heat capacity, Differential Scanning Calorimetry (DSC) was used to take accurate measurement of various sample solutions. Isothermal step scan method is adopted to minimize the experimental error. The latent heat was incorporated into the effective specific heat capacity when the phase transition occurs.
\nThermal conductivity of sample solutions was measured using a micro thermal sensor developed by Liang, et al. [38] and manufactured in the lab. The sensor works on the principle of Transient Hot Wire (THW). This miniaturized device utilizes a SiO2/Au/SiO2 sandwiched structure to protect the microfabricated serpentine gold coil, which functions as both the heater and a passive thermometer. The sensor has already been tested and shown to measure thermal conductivity of biomaterials and solutions with high accuracy, repeatability and system reliability.
\nPrevious cryobiologists have developed electromagnetic cavity rewarming for large biomaterials. Evans [39], Robinson [37] and Luo [40] built electromagnetic heating systems that could resonate at around 434 MHz but working at different modes. The sample was placed at the center with a large magnitude of the electric field, which is critical to rapid rewarming. The size of the sample was controlled to reduce temperature gradients resulted from the electromagnetic field attenuated away from the center. For multimode resonant cavity rewarming system, it could be difficult to control the resonant state or field distribution with several EM power inputs. While single mode cavity system is easier to concentrate a strong EM field and control in the rewarming process. Therefore, multimode resonant rewarming systems are excluded for optimization here. According to the warming results, electromagnetic rewarming has already demonstrated more effective than traditional water bath method. However, further improvement of the electromagnetic rewarming system is still needed to optimize the rewarming protocol of bulk volume of cells.
\nMultiple theoretical analysis and numerical simulations had been accomplished [41, 42, 43] on different design possibilities of electromagnetic rewarming systems. Method of moments (MoM) was implemented to calculate and analyze the electric filed intensity and profile [42] and the method of finite-difference time-domain (FDTD) was applied to investigate the post-thawed temperature profile [44]. Another attempt involving the resonance rewarming in the numerical model combined with nanoparticles to improve the warming rate. However, in this study, the model was based on the power consumption at 8000 W [45] that is hard to achieve in the real-world.
\nIn this section, a more efficient and effective model based on finite element method combining electromagnetic wave propagation and heat transfer process was presented. The optimization of the shape of cryopreserved sample was performed numerically. The essential physical properties of several sample solutions including complex permittivity, specific heat, and thermal conductivity characterized experimentally in the previous studies were used in this simulation test.
\nThe electromagnetic resonant system setup showed in Figure 5 consists of a signal generator with voltage control at lower scale, a power oscillator, a resonant cavity, a coaxial transmission wire, and a temperature sensor. An antenna made of high electrical conductivity material was used to excite the electric field and create a standing wave pattern of electromagnetic field inside the rewarming cavity. A sample holder contained cryopreserved stem cells or other biomaterials was place in the center of the cavity, where the strongest electric field was established to achieve the fast rewarming.
\nSchematic description of the experimental setup of the EM rewarming system.
Most of the cryopreserved biomaterials are insensitive to the magnetic field, e.g. the stem cells, with electrical parameters including, ε (absolute permittivity, \n
where E is the electric field intensity (\n
where f (Hz) denotes the frequency of the electromagnetic field. q (\n
where \n
In this numerical modeling analysis, the thermal properties of the cryopreserved material were preset to be temperature-dependent. The specific heat and thermal conductivity at different temperatures were captured once the temperature profile in the Eq. (11) was determined. With the updated thermal and electrical properties over the interested temperature range, the electromagnetic field profile was calculated. Cryopreserved material’s dielectric loss \n
The numerical modeling was setup with COMSOL Multiphysics (COMSOL, Burlington, MA, USA), applying the finite element method. Adopting the analytical process discussed in the theoretical formulation section, the thermal science and combined electromagnetic rewarming system in the resonant chamber as shown in Figure 6. In this numerical investigation, the thermal and electrical parameters of the model were determined follow the methods discussed in the previous section.
\nSchematic description of the simulated resonant EM rewarming cavity.
Nyquist criterion was applied to the meshing grid of the simulation. The maximum size of the element grid was contained smaller than half of the wavelength of the electromagnetic wave. Six grids per wavelength in the finite element analysis was also employed to solve the Maxwell’s equation [47].
\nTetrahedral grids were selected in this study due to smaller grid size comparing to the discretization of the resonant rewarming system. Once the tetrahedron grid applied, the grid size of the resonant chamber was calculated to be less than 10% of the wavelength of electromagnetic wave. In the mesh preparation (shown in Figure 7), different meshing approaches were adopted for different components of the system. Refined meshes were created near the boundaries of surfaces (in total, about 988,000 elements were generated). The area around probe antenna and central part of the sample holder were treated with the enhanced meshing. A smaller grid size (about 163,000 elements) will diminish the difference of the temperature profile less than 0.5% over the entire field.
\nGeometric gridded model of the resonant cavity for simulation.
The prepared simulation model was validated with the analytical results. In the model, the resonant frequency of the chamber was 434.767 MHz, consistent with the frequency from the analytical result. When the chamber was at the resonant state, the normalized electric field intensity profile was plotted for both of the simulated result and analytic result in the resonant cavity was plot in comparison with the analytic solution (Figure 8), which proofed a good alignment between two results. As the position advancing to the central part of the cavity, the intensity of the electric field increased significantly. Hence, the cryopreserved bio-sample was designed to be placed in the central to achieve a fast rewarming process by absorb more electromagnetic power.
\nDistribution of the electrical field magnitude at the central cross-sectional plane in the electromagnetic rewarming chamber. Analytical and simulated results show that electric field energy is focused in the center of the cavity.
The effect of sample holder’s shape to the rewarming was studied to minimize the injury to the biomaterials caused by non-uniform thawing. On the other side, different sample holders might be selected based on the size and structure of the biomaterials. Considering the hardness to accurate calculate the energy conversion between the cavity and the sample through analytical solution, and precise temperature profile monitoring over the entire sample space through experiment, in this simulation, a total of four different sample holder shapes (geometry details shown in Table 1) with the same sample volume of 25 mL were calculated to study the difference over the rewarming process. The heating started at the initial temperature set to −80° C and ended at 0°C. The average rewarming rates of cylindrical, ellipsoidal, spherical, and cubic holders were 72.1, 63.5, 46.1, and 22.8° C/min, respectively. From the fast rewarming perspective, cylindrical and ellipsoidal shapes were the top choices.
\nParameter | \nValue (mm) | \n
---|---|
Radius of sphere | \n18 | \n
Radius of cylinder | \n18 | \n
Height of cylinder | \n20 | \n
a-Semi axis of ellipsoid | \n23 | \n
b-Semi axis of ellipsoid | \n14 | \n
c-Semi axis of ellipsoid | \n18 | \n
Side length of cube | \n29 | \n
Dimensions of sample holder shapes.
Later, the temperature profile at the end of the rewarming was investigated. As shown in Figure 9, the temperature gradients that defined as the temperature difference between the maximum and minimum temperatures in the holder divided by the ferret diameter, for spherical, ellipsoidal, cylindrical, and cubic samples were 0.27, 0.62, 0.95 and 1.24° C/mm, respectively. From the temperature gradient perspective, the spherical and ellipsoidal shapes were the top choices.
\nSimulated post thawing temperature distribution of cryopreserved sample solution in different sample holder shapes. (a) Spherical shape; (b) ellipsoidal shape; (c) cubic shape; (d) cylindrical shape. The spherical and ellipsoidal samples manifested more uniform temperature distribution than cubic and cylindrical samples.
Both rewarming rate and temperature distribution results indicated the cubic shape will not perform well the resonant chamber, which aligned with the prediction that samples with sharp edges or surfaces were inappropriate to be heated by the electromagnetic rewarming method [42].
\nRobinson et al. presumed that ellipsoidal sample shape works well for electromagnetic rewarming technology and performed the experiment with a cone-shape sample to approximate a ellipsoidal holder [21]. The currents from numerical modeling confirmed the fast and uniform rewarming of the ellipsoidal sample. However, it is extremally hard to manufacture a precise ellipsoidal shape holder in the real-world. The same hardness also applied to the spherical holder. Moreover, a cryopreserved material should be stored well in an optimized holder to achieve a better rewarming performance. Thus, the material of the holder was ideally a thin-layer to diminish the absorption of the electromagnetic power. Overall, it is an engineering challenge to manufacture a qualified sample holder with desired material and dimensions in spherical or ellipsoidal geometry. Additionally, an extra supporting structure is required to hold the position of the spherical and ellipsoidal sample in the center of the cavity, which may result as the effect of the electromagnetic profile. Therefore, cylindrical holder was the best option with the fair manufacturing and faster rewarming rate. Though, more improvements should be considered to enhance the uniformity of the temperature profile.
\nConvective warming methods are hindered by the poor abilities to conduct heat into the core part of the materials. While volumetric heating method is needed for bulky material, the previous multimode or commercial microwave systems could not be adopted since they lack a precise control system to maintain the resonant state, leading to either recrystallization or devitrification. Due to the slow heating, most of electromagnetic energy was reflected back from the cavity or causing thermal runaway problems and creating undesired hot spots.
\nThere are two major limitations for electromagnetic resonance system to achieve rapid and uniform heating. Firstly, the system itself should provide sufficient electromagnetic energy to warm up biomaterials. Secondly, the temperature dependent dielectric properties of the biomaterials progressively shift the resonant frequency of the resonant chamber during the rewarming process. Therefore, when using resonant electromagnetic field as the heating source, if the electromagnetic signal parameters remain stagnant according to the frequency change resulted from the temperature change of biomaterials, the electromagnetic energy generated may not be converted into the strong electromagnetic field in the resonant chamber to excite resonance.
\nMoreover, if the electromagnetic system source remains static during the rewarming procedure, severe problems regarding the system safety and efficiency may emerge. A higher portion of reflected electromagnetic power can lead to the damage to the system components as well as potential electromagnetic radiation hazards to the surrounding operators. On the other hand, with smaller electromagnetic energy remaining inside the rewarming chamber, sufficiently strong electromagnetic field inside the resonant cavity could hardly be excited resulting a slow warming. Therefore, it requires delicate control on the set up of the electromagnetic resonant system.
\nThe electromagnetic signal is synthesized by a signal generator (Agilent, Santa Clara, CA, USA). The signal generator can generate continuous electromagnetic waves between 250 kHz and 3 GHz which covers lower frequency band of radiofrequency and microwave. And the power output range is +7 to −120 dBm (i.e. 0.005 to 10–15 W). At this low power output, the electromagnetic field established in the resonant chamber is too weak to rewarm the cryopreserved biomaterials rapid enough avoiding devitrification. In order to intensify the electromagnetic field to achieve higher rewarming rates, a power amplifier (OPHIR RF, Los Angeles, CA, USA) was adopted to increase the electromagnetic power to over 57 dBm (501 W).
\nThe power amplifier has a frequency range between 300 and 500 MHz, which fully covers the working frequency range for this experimental investigation. The reflected power received by this power amplifier would also be detected by the control circuits. The power amplifier will automatically cut off excessive output generation to protect itself. Due to the relatively high electromagnetic power used in the system, two side panel cooling fans were incorporated to avoid internal circuits overheating and system shutdown. The connections between the signal generator and power amplifier, as well as other microwave components are through 50 Ω coaxial cables. These cables would have some attenuation effects. Thus, in order to maintain the high power signal from the amplifier to the rest part of the system, the length should be as short as possible. The measurement was done by the signal generator and a power meter. According to the measurements of six coaxial cables of different lengths, the attenuation for coaxial cables is around 0.1 dB/m.
\nThe most significant difference between the current resonance system and the previous assembled circuits is attributed to the frequency tracking component. During the rewarming process, the resonant frequency of the resonant cavity with biomaterials would change on account of the temperature dependent dielectric properties of the inside biological samples. To prevent the mismatch between the synthesized electromagnetic source frequency and the resonant frequency of the rewarming chamber, the generated frequency source should be dynamically adjusted during the rewarming process.
\nIn order to prevent the frequency mismatch between the signal generation and the resonant frequency which is swiftly altered by the massive cryopreserved materials inside, a dynamic feedback control component was added between the electromagnetic source and the resonant cavity. A directional coupler was introduced to sample the transmitted and reflected power. A spectrum analyzer was connected to the port corresponding to the reduced reflected power. The entire spectrum of the reflected power was evaluated and by looking for the highest power peak, the frequency corresponding to the most significant reflected power was determined. During the rewarming process, the frequency generated from the electromagnetic signal source is dynamically changed corresponding to this spectrum and minimize the reflected power. Otherwise, the large portion of reflected power could lead to a slow warming rate with less power into the cavity. In addition, the reflected power can cause a serious damage to the rest part of the electromagnetic resonance system itself, such as the amplifier, signal synthesizer.
\nIn the numerical simulation model, the probe length was adjusted to be the original probe length and the extended probe length. The electric field intensity excited in the sample inside the cavity was calculated. As shown in Figure 10, the electric field intensity in the cryopreserved material increases almost ten times larger than that using the original probe antenna, which suggests that the impedance matching between the loaded cavity and the electromagnetic source is greatly improved by adopting an extended probe antenna.
\nElectric field intensity comparison.
Since electric field power is proportional to the square of the electric field intensity, we could have much more power to heat the material using the optimized extended probe antenna. This numerical estimation of the electric field gives guidance to the experiment, the reflected power was measured by a network analyzer, and the quality factor of the loaded cavity was determined based on the reflection coefficient. It is found the quality factor of the loaded cavity was improved from 1681 to 5577 after adding the probe extension, which can establish a much stronger electromagnetic field inside the cavity for the rapid rewarming of the cryopreserved biomaterials.
\nTo experimentally evaluate the heating performance of the electromagnetic resonance system, a rewarming test of the cryopreserved Jurkat cells with large volume (25 mL) was performed. Jurkat cell is an easily accessible cell line and shares similar cryopreservation protocol to the stem cells. The testing results will guide us the future trails of cryopreservation of large system of stem cells.
\nThe CPA cocktail contains 10% (w/v) dimethyl sulfoxide (\n
Human T lymphocyte leukemia cells (Jurkat cells) were used in the rewarming test. The Jurkat cell lines were purchased from American Type Culture Collection (Manassas, VA). Cells were cultured in the incubator that setting at 37°C, 5% carbon dioxide, and proper humidity. T25 flasks were used during the cell culture. A unit of the growth medium was prepared of 450 mL RPMI medium (life technologies), 50 mL fetal bovine serum (FBS), 5 mL Penicillin–streptomycin, and 5 mL L-glutamine.
\nCylindrical sample holder contains Jurkat cell suspension was placed in a Styrofoam box, then the box was transferred to the −80°C freezer and stored there overnight. The average cooling rate was 2–3°C/min.
\nThe temperature measurements were conducted by a fiber optic temperature meter (Neoptix Inc., Ville de Quebec, QC, Canada) during the rewarming process. The major challenge for the temperature measurement lies in the penetration through cavity wall. The cryopreserved sample remains in the center of the resonant chamber where the highest electromagnetic field was formed. However, the penetration through the cavity wall would undermine the quality factor of the resonant cavity, which means lower portion of electromagnetic energy remained inside the chamber for rewarming. Additional waveguide was designed to allow for the fiber optic temperature sensor to get through the chamber wall and maintain the quality factor at the same time. This waveguide was designed to have the cutoff frequency higher than the operating frequency during the rewarming process. Although the side effects associated with the EM waves are still in debate, it is nevertheless safer to keep away from the possible side effects caused by electromagnetic energy leakage.
\nAt the end of the rewarming process, the surface temperature profile was recorded by an infrared temperature sensor (FLIR systems, Wilsonville, Oregon, USA). The temperature data in the central part of the cryopreserved sample recorded by the fiber optic meter and the surface temperature profile are combined to analyze the temperature gradient.
\n\nFigure 11 shows the comparison of rewarming process of Jurkat cells between conventional water bath and electromagnetic resonance system. The average rewarming rate of water bath was 40°C/min, while increased to 90°C/min for the EM system.
\nRewarming process of Jurkat cell.
Membrane integrity was obtained by Trypan Blue (Sigma-Aldrich) staining to determine the recovery rate of Jurkat cells. Figure 12 shows the comparison of recovery rate of Jurkat cells between conventional water bath and our electromagnetic resonance system. Water bath achieved the Jurkat cell’s recovery rate at \n
Recovery rate of the Jurkat cell.
The post-thawed cell suspensions were cultured in a 37°C incubator with 5% carbon dioxide and proper humidity. As shown in Figure 13, after three days incubation, no significant change was noted to the normalized proliferation rate for the electromagnetic rewarming method. This indicates EM system does not affect Jurkat cell’s cellular functionality.
\nProliferation rate of the post-thawed Jurkat cell.
In this chapter, we provide detailed information about using electromagnetic resonance system to achieve rapid-uniform rewarming in cryopreservation of stem cells. The importance of rapidly and uniformly rewarming process to the bulky system of stem cells was explained, principles of electromagnetic warming were described, essential physical properties of CPA solution and resonance cavity were covered. Theoretical analysis and numerical simulation were introduced to improve the heating performance. A dynamic resonance frequency monitoring and control system was developed. Apart from analytical analysis, a rewarming test of Jurkat cell was performed to experimentally evaluate the electromagnetic rewarming technology. A comprehensive section on cryopreservation of large volume of stem cell has been tried to prepare, and it is aimed to provide insights about rapid-uniform rewarming during cryopreservation.
\nThese Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"9"},books:[{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11446",title:"Industry 4.0 - Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"be984f45b90c1003798661ef885d8a34",slug:null,bookSignature:"Dr. Meisam Gordan and Dr. Khaled Ghaedi",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",editedByType:null,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",slug:null,bookSignature:"Dr. Chi Leung Patrick Hui",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",editedByType:null,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11547",title:"Information Security and Privacy in the Digital World - Some Selected Topics",subtitle:null,isOpenForSubmission:!0,hash:"b268e581d5e458cb91b82c518f2717eb",slug:null,bookSignature:"Prof. Jaydip Sen",coverURL:"https://cdn.intechopen.com/books/images_new/11547.jpg",editedByType:null,editors:[{id:"4519",title:"Prof.",name:"Jaydip",surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11549",title:"Data Integrity and Data Governance",subtitle:null,isOpenForSubmission:!0,hash:"97a93f73a55957a70eb2a40de891b344",slug:null,bookSignature:" B. Santhosh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11549.jpg",editedByType:null,editors:[{id:"330426",title:"Dr.",name:"B. Santhosh",surname:"Kumar",slug:"b.-santhosh-kumar",fullName:"B. Santhosh Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11553",title:"Cyberspace - Challenges and Threats in the Disruptive Era",subtitle:null,isOpenForSubmission:!0,hash:"ff86e203474b6696b712f0a11112d6e3",slug:null,bookSignature:"Dr. Arwin Datumaya Wahyudi Datumaya Wahyudi Sumari and Dr. Ulla Delfana Rosiani",coverURL:"https://cdn.intechopen.com/books/images_new/11553.jpg",editedByType:null,editors:[{id:"22530",title:"Dr.",name:"Arwin Datumaya Wahyudi",surname:"Sumari",slug:"arwin-datumaya-wahyudi-sumari",fullName:"Arwin Datumaya Wahyudi Sumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11556",title:"Numerical Simulation",subtitle:null,isOpenForSubmission:!0,hash:"0a68fbeb303684344bda285aa06769af",slug:null,bookSignature:"Dr. Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/11556.jpg",editedByType:null,editors:[{id:"257455",title:"Dr.",name:"Ali",surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11911",title:"Scientometrics",subtitle:null,isOpenForSubmission:!0,hash:"ed74b66a0dc7d009900af198efc6b2e1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11911.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11912",title:"Expert Systems With Recent Applications",subtitle:null,isOpenForSubmission:!0,hash:"514907388f7a2b291f71f9b93b58b795",slug:null,bookSignature:"Prof. Ercan Oztemel",coverURL:"https://cdn.intechopen.com/books/images_new/11912.jpg",editedByType:null,editors:[{id:"306974",title:"Prof.",name:"Ercan",surname:"Oztemel",slug:"ercan-oztemel",fullName:"Ercan Oztemel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11913",title:"Scheduling Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"da42ea7b678d715e23ffcae50ae47078",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:35},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4383},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"160",title:"Surface Science",slug:"surface-science",parent:{id:"14",title:"Materials Science",slug:"materials-science"},numberOfBooks:16,numberOfSeries:0,numberOfAuthorsAndEditors:330,numberOfWosCitations:545,numberOfCrossrefCitations:301,numberOfDimensionsCitations:747,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"160",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10061",title:"21st Century Surface Science",subtitle:"a Handbook",isOpenForSubmission:!1,hash:"69253b3c7ba801a5fcd9c47827345f93",slug:"21st-century-surface-science-a-handbook",bookSignature:"Phuong Pham, Pratibha Goel, Samir Kumar and Kavita Yadav",coverURL:"https://cdn.intechopen.com/books/images_new/10061.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10050",title:"Corrosion",subtitle:null,isOpenForSubmission:!1,hash:"cf66006063d4d72349fb33cc056095c1",slug:"corrosion",bookSignature:"Ambrish Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10050.jpg",editedByType:"Edited by",editors:[{id:"215348",title:"Dr.",name:"Ambrish",middleName:null,surname:"Singh",slug:"ambrish-singh",fullName:"Ambrish Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7343",title:"Superhydrophobic Surfaces",subtitle:"Fabrications to Practical Applications",isOpenForSubmission:!1,hash:"017db4d856b5d454aead24128743ba3e",slug:"superhydrophobic-surfaces-fabrications-to-practical-applications",bookSignature:"Mehdi Khodaei, Xiuyong Chen and Hua Li",coverURL:"https://cdn.intechopen.com/books/images_new/7343.jpg",editedByType:"Edited by",editors:[{id:"19478",title:"Dr.",name:"Mehdi",middleName:null,surname:"Khodaei",slug:"mehdi-khodaei",fullName:"Mehdi Khodaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8242",title:"Applied Surface Science",subtitle:null,isOpenForSubmission:!1,hash:"b2515a9d613325af2ddf6d8ef2b53f4d",slug:"applied-surface-science",bookSignature:"Gurrappa Injeti",coverURL:"https://cdn.intechopen.com/books/images_new/8242.jpg",editedByType:"Edited by",editors:[{id:"12369",title:"Dr.",name:"Gurrappa",middleName:null,surname:"Injeti",slug:"gurrappa-injeti",fullName:"Gurrappa Injeti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7550",title:"Corrosion Inhibitors",subtitle:null,isOpenForSubmission:!1,hash:"4d09bcd91e393d15a578f1b632f118e7",slug:"corrosion-inhibitors",bookSignature:"Ambrish Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7550.jpg",editedByType:"Edited by",editors:[{id:"215348",title:"Dr.",name:"Ambrish",middleName:null,surname:"Singh",slug:"ambrish-singh",fullName:"Ambrish Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6671",title:"Paint and Coatings Industry",subtitle:null,isOpenForSubmission:!1,hash:"1dc37c2c972a253d544da9849049222f",slug:"paint-and-coatings-industry",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,isOpenForSubmission:!1,hash:"98b8dfac28575877f1846a661c9150bc",slug:"coatings-and-thin-film-technologies",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7385",title:"Cavitation",subtitle:"Selected Issues",isOpenForSubmission:!1,hash:"075ee4bb432760777ffcba092d0cffae",slug:"cavitation-selected-issues",bookSignature:"Wojciech Borek, Tomasz Tański and Mariusz Król",coverURL:"https://cdn.intechopen.com/books/images_new/7385.jpg",editedByType:"Edited by",editors:[{id:"186373",title:"Dr.",name:"Wojciech",middleName:null,surname:"Borek",slug:"wojciech-borek",fullName:"Wojciech Borek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7471",title:"Advanced Surface Engineering Research",subtitle:null,isOpenForSubmission:!1,hash:"4c1a23accacc46fd18b49f2e5c6d303e",slug:"advanced-surface-engineering-research",bookSignature:"Mohammad Asaduzzaman Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/7471.jpg",editedByType:"Edited by",editors:[{id:"185329",title:"Prof.",name:"Mohammad Asaduzzaman",middleName:null,surname:"Chowdhury",slug:"mohammad-asaduzzaman-chowdhury",fullName:"Mohammad Asaduzzaman Chowdhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7352",title:"Granularity in Materials Science",subtitle:null,isOpenForSubmission:!1,hash:"a451ff13b9bc3b08989979518577594a",slug:"granularity-in-materials-science",bookSignature:"George Kyzas and Athanasios C. Mitropoulos",coverURL:"https://cdn.intechopen.com/books/images_new/7352.jpg",editedByType:"Edited by",editors:[{id:"152296",title:"Prof.",name:"George",middleName:"Z.",surname:"Kyzas",slug:"george-kyzas",fullName:"George Kyzas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6702",title:"Polymer Rheology",subtitle:null,isOpenForSubmission:!1,hash:"c24234818cd4b2ce3ed569c2b29f714c",slug:"polymer-rheology",bookSignature:"Jose Luis Rivera-Armenta and Beatriz Adriana Salazar Cruz",coverURL:"https://cdn.intechopen.com/books/images_new/6702.jpg",editedByType:"Edited by",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6512",title:"Superfluids and Superconductors",subtitle:null,isOpenForSubmission:!1,hash:"24385ec1d5de9c6597896900c80ee279",slug:"superfluids-and-superconductors",bookSignature:"Roberto Zivieri",coverURL:"https://cdn.intechopen.com/books/images_new/6512.jpg",editedByType:"Edited by",editors:[{id:"181334",title:"Prof.",name:"Roberto",middleName:null,surname:"Zivieri",slug:"roberto-zivieri",fullName:"Roberto Zivieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"30968",doi:"10.5772/36975",title:"Polymer Gel Rheology and Adhesion",slug:"rheology-and-adhesion-of-polymer-gels",totalDownloads:15876,totalCrossrefCites:10,totalDimensionsCites:73,abstract:null,book:{id:"1601",slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Anne M. Grillet, Nicholas B. Wyatt and Lindsey M. Gloe",authors:[{id:"110676",title:"Dr.",name:"Anne",middleName:null,surname:"Grillet",slug:"anne-grillet",fullName:"Anne Grillet"},{id:"138225",title:"Dr.",name:"Nicholas",middleName:null,surname:"Wyatt",slug:"nicholas-wyatt",fullName:"Nicholas Wyatt"},{id:"138226",title:"Ms.",name:"Lindsey",middleName:null,surname:"Gloe",slug:"lindsey-gloe",fullName:"Lindsey Gloe"}]},{id:"48816",doi:"10.5772/60824",title:"Wettability and Other Surface Properties of Modified Polymers",slug:"wettability-and-other-surface-properties-of-modified-polymers",totalDownloads:3701,totalCrossrefCites:9,totalDimensionsCites:36,abstract:"Surface wettability is one of the crucial characteristics for determining of a material’s use in specific application. Determination of wettability is based on the measurement of the material surface contact angle. Contact angle is the main parameter that characterizes the drop shape on the solid surface and is also one of the directly measurable properties of the phase interface. In this chapter, the wettability and its related properties of pristine and modified polymer foils will be described. The wettability depends on surface roughness and chemical composition. Changes of these parameters can adjust the values of contact angle and, therefore, wettability. In the case of pristine polymer materials, their wettability is unsuitable for a wide range of applications (such as tissue engineering, printing, and coating). Polymer surfaces can easily be modified by, e.g., plasma discharge, whereas the bulk properties remain unchanged. This modification leads to oxidation of the treated layer and creation of new chemical groups that mainly contain oxygen. Immediately after plasma treatment, the values of the contact angles of the modified polymer significantly decrease. In the case of a specific polymer, the strongly hydrophilic surface is created and leads to total spreading of the water drop. Wettability is strongly dependent on time from modification.",book:{id:"5319",slug:"wetting-and-wettability",title:"Wetting and Wettability",fullTitle:"Wetting and Wettability"},signatures:"Nikola Slepickova Kasalkova, Petr Slepicka, Zdenka Kolska and\nVaclav Svorcik",authors:[{id:"144929",title:"Prof.",name:"Vaclav",middleName:null,surname:"Svorcik",slug:"vaclav-svorcik",fullName:"Vaclav Svorcik"},{id:"146297",title:"Dr.",name:"Petr",middleName:null,surname:"Slepicka",slug:"petr-slepicka",fullName:"Petr Slepicka"},{id:"147600",title:"Ph.D.",name:"Nikola",middleName:null,surname:"Slepičková Kasálková",slug:"nikola-slepickova-kasalkova",fullName:"Nikola Slepičková Kasálková"},{id:"153983",title:"Dr.",name:"Zdeňka",middleName:null,surname:"Kolská",slug:"zdenka-kolska",fullName:"Zdeňka Kolská"}]},{id:"30975",doi:"10.5772/36619",title:"Solution Properties of κ-Carrageenan and Its Interaction with Other Polysaccharides in Aqueous Media",slug:"solution-properties-of-k-carrageenan-and-its-interaction-with-other-polysaccharides-in-aqueous-media",totalDownloads:7591,totalCrossrefCites:5,totalDimensionsCites:32,abstract:null,book:{id:"1601",slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Alberto Tecante and María del Carmen Núñez Santiago",authors:[{id:"109087",title:"Prof.",name:"Alberto",middleName:null,surname:"Tecante",slug:"alberto-tecante",fullName:"Alberto Tecante"},{id:"109098",title:"Dr.",name:"Maria Del Carmen",middleName:null,surname:"Nunez-Santiago",slug:"maria-del-carmen-nunez-santiago",fullName:"Maria Del Carmen Nunez-Santiago"}]},{id:"48822",doi:"10.5772/60808",title:"Wettability of Nanostructured Surfaces",slug:"wettability-of-nanostructured-surfaces",totalDownloads:3128,totalCrossrefCites:11,totalDimensionsCites:32,abstract:"There are many studies in literature concerning contact angle measurements on different materials/substrates. It is documented that textiles can be coated with multifunctional materials in form of thin films or nanoparticles to acquire characteristics that can improve the protection and comfort of the wearer. The capacity of oxide nanostructures to inhibit fungal development and neutralize bacteria is a direct consequence of their wetting behavior [1–6]. Moreover, the radical modification of wetting behavior of nanostructures from hydrophilic to hydrophobic when changing the pulsed laser deposition (PLD) ambient will be thoroughly discussed.",book:{id:"5319",slug:"wetting-and-wettability",title:"Wetting and Wettability",fullTitle:"Wetting and Wettability"},signatures:"L. Duta, A.C. Popescu, I. Zgura, N. Preda and I.N. Mihailescu",authors:[{id:"17636",title:"Prof.",name:"Ion N.",middleName:null,surname:"Mihailescu",slug:"ion-n.-mihailescu",fullName:"Ion N. Mihailescu"},{id:"23532",title:"Dr.",name:"Andrei",middleName:null,surname:"Popescu",slug:"andrei-popescu",fullName:"Andrei Popescu"},{id:"174343",title:"Dr.",name:"Liviu",middleName:null,surname:"Duta",slug:"liviu-duta",fullName:"Liviu Duta"},{id:"174344",title:"Dr.",name:"Irina",middleName:null,surname:"Zgura",slug:"irina-zgura",fullName:"Irina Zgura"},{id:"174345",title:"Dr.",name:"Ligia",middleName:null,surname:"Frunza",slug:"ligia-frunza",fullName:"Ligia Frunza"}]},{id:"64392",doi:"10.5772/intechopen.80542",title:"Corrosion Inhibitors",slug:"corrosion-inhibitors",totalDownloads:3328,totalCrossrefCites:20,totalDimensionsCites:28,abstract:"Corrosion is a natural process driven by energy consideration. Inhibition is a preventive measure against corrosive attack on metallic materials. Corrosion inhibitors have been frequently studied, since they offer simple solution for protection of metals against corrosion in aqueous environment. Mineral acids like hydrochloric and sulfuric acids are most widely used in pickling baths to remove the metal oxides formed on the surface. The multidisciplinary aspect of corrosion problems combined with the distributed responsibilities associated with such problems only increase the complexity of the subject. Inhibitors are used in industrial and commercial processes to minimize both the metal loss and acid consumption.",book:{id:"7550",slug:"corrosion-inhibitors",title:"Corrosion Inhibitors",fullTitle:"Corrosion Inhibitors"},signatures:"Geethamani Palanisamy",authors:[{id:"253697",title:"Dr.",name:"Geethamani",middleName:null,surname:"Palanisamy",slug:"geethamani-palanisamy",fullName:"Geethamani Palanisamy"}]}],mostDownloadedChaptersLast30Days:[{id:"48768",title:"TiO2 -Based Surfaces with Special Wettability – From Nature to Biomimetic Application",slug:"tio2-based-surfaces-with-special-wettability-from-nature-to-biomimetic-application",totalDownloads:5010,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Super-wetting/antiwetting surfaces with extremely high contrast of surface energy and liquid adhesion have attracted a lot of interest in both fundamental research and industry. Various types of special wetting surfaces can be constructed by adjusting the topographical structure and chemical composition. In this chapter, recent advance of the super-wetting/antiwetting surfaces with special solid/liquid adhesion has been reviewed, with a focus on the biomimetic fabrication and applications of TiO2-based surfaces. Special super-wettability examples include lotus-leaf-inspired surfaces with low adhesion, rose-petal-inspired surfaces with high adhesion, spider silk bio-inspired surfaces with directional adhesion, fish-scale-inspired underwater superoleophobic surface, and artificial surfaces with controllable or stimuli-responsive liquid adhesion. In addition, we will review some potential applications related to artificial antiwetting surface with controllable adhesion, e.g., self-cleaning, antifogging/anti-icing, micro-droplet manipulation, fog/water collection, water/oil separation, anti-bioadhesion, micro-template for patterning, and friction reduction. Finally, the difficulty and prospects of this renascent and rapidly developing field are also briefly proposed and discussed.",book:{id:"5319",slug:"wetting-and-wettability",title:"Wetting and Wettability",fullTitle:"Wetting and Wettability"},signatures:"Jian-Ying Huang and Yue-Kun Lai",authors:[{id:"175512",title:"Prof.",name:"Yuekun",middleName:null,surname:"Lai",slug:"yuekun-lai",fullName:"Yuekun Lai"}]},{id:"64392",title:"Corrosion Inhibitors",slug:"corrosion-inhibitors",totalDownloads:3318,totalCrossrefCites:18,totalDimensionsCites:28,abstract:"Corrosion is a natural process driven by energy consideration. Inhibition is a preventive measure against corrosive attack on metallic materials. Corrosion inhibitors have been frequently studied, since they offer simple solution for protection of metals against corrosion in aqueous environment. Mineral acids like hydrochloric and sulfuric acids are most widely used in pickling baths to remove the metal oxides formed on the surface. The multidisciplinary aspect of corrosion problems combined with the distributed responsibilities associated with such problems only increase the complexity of the subject. Inhibitors are used in industrial and commercial processes to minimize both the metal loss and acid consumption.",book:{id:"7550",slug:"corrosion-inhibitors",title:"Corrosion Inhibitors",fullTitle:"Corrosion Inhibitors"},signatures:"Geethamani Palanisamy",authors:[{id:"253697",title:"Dr.",name:"Geethamani",middleName:null,surname:"Palanisamy",slug:"geethamani-palanisamy",fullName:"Geethamani Palanisamy"}]},{id:"68236",title:"The Arrhenius Acid and Base Theory",slug:"the-arrhenius-acid-and-base-theory",totalDownloads:1380,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Swedish Svante Arrhenius, in 1884 proposed the concept of acid and base based on the theory of ionization. According to Arrhenius, the acids are the hydrogen-containing compounds which give H+ ions or protons on dissociation in water and bases are the hydroxide compounds which give OH− ions on dissociation in water. This concept is only applicable to those compounds which dissolved in aqueous solution (or you can say where water is the solvent). It covers many common acids, bases and their chemical reactions, but there are also other compounds that have the characteristics of acids and bases but they do not fit into Arrhenius concept.",book:{id:"10050",slug:"corrosion",title:"Corrosion",fullTitle:"Corrosion"},signatures:"Shikha Munjal and Aakash Singh",authors:[{id:"290524",title:"Ms.",name:"Shikha",middleName:null,surname:"Munjal",slug:"shikha-munjal",fullName:"Shikha Munjal"}]},{id:"71924",title:"Technological Background and Properties of Thin Film Semiconductors",slug:"technological-background-and-properties-of-thin-film-semiconductors",totalDownloads:886,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Especially with the development of nanotechnology and polymer science, interest in research and production of both efficient and lower-cost semiconductor thin film materials is increasing day by day. The use of nano-structured thin films for efficient use of solar cells in production of n-type semiconductor materials is one of the most important sources of energy and new-generation energy. Considering the indicated trends and energy requirements, it has been important to transfer this technology in detail regarding the surface technologies related to the semiconductor materials produced with thin film technologies instead of bulk materials. With this aim, this book chapter “Technological Background and Properties of Thin Film Semiconductors” includes a brief story about semiconductors, band gap theory, thin film applications, and besides traditional thin film processing methods finally a new technology called aerosol deposition technique which allows room temperature processing of several materials for semiconductor applications, respectively. It is thought that it will make important contributions to the relevant field and bring a new perspective and direct scientific research in “process-structure–property-performance” relation.",book:{id:"10061",slug:"21st-century-surface-science-a-handbook",title:"21st Century Surface Science",fullTitle:"21st Century Surface Science - a Handbook"},signatures:"Orkut Sancakoglu",authors:[{id:"177188",title:"Dr.",name:"Orkut",middleName:null,surname:"Sancakoğlu",slug:"orkut-sancakoglu",fullName:"Orkut Sancakoğlu"}]},{id:"60426",title:"Applications of Viscoelastic Fluids Involving Hydrodynamic Stability and Heat Transfer",slug:"applications-of-viscoelastic-fluids-involving-hydrodynamic-stability-and-heat-transfer",totalDownloads:1331,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Rayleigh and Marangoni convection and rheology are linked in the thermal convection of viscoelastic fluids to some recent technological applications. Such technology developments as the ones presented here undoubtedly shall be based on interdisciplinary projects involving not only rheology or fluid mechanics but several other disciplines. Three practical applications which use Rayleigh or Marangoni convection in their working principle are presented along with some technical details. This contribution focus mainly on the physical mechanism and the involved hydrodynamics of some lab and industrial applications. Finally, a short discussion on the role play by the convective mechanisms is given in order to provide integration of the exposed ideas.",book:{id:"6702",slug:"polymer-rheology",title:"Polymer Rheology",fullTitle:"Polymer Rheology"},signatures:"Ildebrando Pérez-Reyes, René Osvaldo Vargas-Aguilar, Samuel\nBernardo Pérez-Vega and Alejandro Sebastián Ortiz-Pérez",authors:[{id:"183938",title:"Dr.",name:"Samuel",middleName:null,surname:"Perez-Vega",slug:"samuel-perez-vega",fullName:"Samuel Perez-Vega"},{id:"186659",title:"Prof.",name:"Ildebrando",middleName:null,surname:"Pérez-Reyes",slug:"ildebrando-perez-reyes",fullName:"Ildebrando Pérez-Reyes"},{id:"242858",title:"Prof.",name:"Rene Osvaldo",middleName:null,surname:"Vargas-Aguilar",slug:"rene-osvaldo-vargas-aguilar",fullName:"Rene Osvaldo Vargas-Aguilar"},{id:"242859",title:"Prof.",name:"Alejandro Sebastian",middleName:null,surname:"Ortiz-Perez",slug:"alejandro-sebastian-ortiz-perez",fullName:"Alejandro Sebastian Ortiz-Perez"}]}],onlineFirstChaptersFilter:{topicId:"160",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.