C v values for some mono and diatomic gases at 1 atm and 25°C.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5393",leadTitle:null,fullTitle:"Biomass Volume Estimation and Valorization for Energy",title:"Biomass Volume Estimation and Valorization for Energy",subtitle:null,reviewType:"peer-reviewed",abstract:"This book is the outcome of contributions by many experts in the field from different disciplines, various backgrounds, and diverse expertise. This book provides information on biomass volume calculation methods and biomass valorization for energy production. The chapters presented in this book include original research and review articles. I hope the research presented in this book will help to advance the use of biomass for bioenergy production and valorization. \nThe key features of the book are:\nProviding information on biomass volume estimation using direct, nondestructive and remote sensing methods\nBiomass valorization for energy using thermochemical (gasification and pyrolysis) and biochemical (fermentation) conversion processes.",isbn:"978-953-51-2938-7",printIsbn:"978-953-51-2937-0",pdfIsbn:"978-953-51-4109-9",doi:"10.5772/62678",price:159,priceEur:175,priceUsd:205,slug:"biomass-volume-estimation-and-valorization-for-energy",numberOfPages:516,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"f2bd967a72387889d0000243d139cdba",bookSignature:"Jaya Shankar Tumuluru",publishedDate:"February 22nd 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5393.jpg",numberOfDownloads:41793,numberOfWosCitations:129,numberOfCrossrefCitations:100,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:199,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:428,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 23rd 2016",dateEndSecondStepPublish:"April 13th 2016",dateEndThirdStepPublish:"July 18th 2016",dateEndFourthStepPublish:"October 16th 2016",dateEndFifthStepPublish:"November 15th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8,9",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"95803",title:"Dr.",name:"Jaya Shankar",middleName:null,surname:"Tumuluru",slug:"jaya-shankar-tumuluru",fullName:"Jaya Shankar Tumuluru",profilePictureURL:"https://mts.intechopen.com/storage/users/95803/images/system/95803.png",biography:"Dr. Tumuluru is Distinguished Staff Engineer at Idaho National Laboratory. He is PI for the US Department of Energy Funded Projects at INL. His research is focused on biomass preprocessing and pretreatments. In food processing, he has researched extrusion processing and storage. He has published over 100 papers in modeling, predicting, and optimizing food and bioprocessing. He has edited books on biomass preprocessing and valorization and has published over 15 book chapters. He has received Asian American Engineer of the year award for 2018, R & D 100 award Finalist for 2018 and 2020, Outstanding Achievement in Scientific and Technical Publication award 2014, Outstanding Reviewer Award from the American Society of Agricultural and Biological Engineers, Biomass, and Bioenergy Journal, and Institute of Chemical Engineers, UK. He has a Ph.D. in Agricultural and Food Engineering from, Indian Institute of Technology, Kharagpur, India.",institutionString:"United States Department of Agriculture",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"United States Department of Agriculture",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"763",title:"Bioresource Engineering",slug:"bioresource-engineering"}],chapters:[{id:"52993",title:"Developing Tree Biomass Models for Eight Major Tree Species in China",doi:"10.5772/65664",slug:"developing-tree-biomass-models-for-eight-major-tree-species-in-china",totalDownloads:1424,totalCrossrefCites:3,totalDimensionsCites:6,hasAltmetrics:0,abstract:"In the context of climate change, estimating forest biomass for large regions is key to national carbon stocks, but few models have been developed at regional level. Based on mensuration data from large samples (4818 and 1626 trees for above- and belowground biomass, respectively) of eight major tree species in China, the author developed one- and two-variable compatible integrated model systems for aboveground and belowground biomass, biomass conversion factor (BCF) and root-to-shoot ratio (RSR), using the error-in-variable simultaneous equations. Furthermore, the differences of aboveground and belowground biomass among various species were analyzed using the dummy variable approach. The results indicated that (1) two-variable models were almost better than one-variable models for aboveground biomass estimation, while the two model systems were not significantly different for belowground biomass estimation; (2) the eight species can be ranked in terms of aboveground biomass from Quercus (largest), Betula, Populus, Pinus massoniana, Picea, Larix, Abies to Cunninghamia lanceolata and in terms of belowground biomass from Quercus (largest), Betula, Larix, Picea, Populus, P. massoniana, C. lanceolata to Abies; (3) mean prediction errors (MPEs) of aboveground biomass models for the species were less than 5%, whereas MPEs of belowground biomass equations were less than 10%, except for Abies.",signatures:"WeiSheng Zeng",downloadPdfUrl:"/chapter/pdf-download/52993",previewPdfUrl:"/chapter/pdf-preview/52993",authors:[{id:"187097",title:"Prof.",name:"WeiSheng",surname:"Zeng",slug:"weisheng-zeng",fullName:"WeiSheng Zeng"}],corrections:null},{id:"52687",title:"Methods of Estimating Forest Biomass: A Review",doi:"10.5772/65733",slug:"methods-of-estimating-forest-biomass-a-review",totalDownloads:3483,totalCrossrefCites:9,totalDimensionsCites:16,hasAltmetrics:0,abstract:"Forest plays a special role in carbon sequestration and thus mitigating climate change. However, the large uncertainty in biomass estimation is unable to meet the requirement of the accurate carbon accounting. The use of a suitable and rigor method to accurately estimate forest biomass is significant. Moreover, the world is increasingly facing the conflicting pressures of economic growth and environmental protection. Improving energy structure and vigorously developing biomass energy has become the development trend of energy utilization in the future. As energy plant is characterized by a large net accumulation of biomass. Therefore, the scientific evaluation of the size and potential of energy from plant also requires a suitable method for estimating biomass. Here, we reviewed the estimate methods, including allometric equation, mean biomass density, biomass expansion factor, geostatistics, etc. For each method, we will present background, rational, applicability, as well as estimation procedure by exemplifying a case. In this chapter, we argued that the new developed technique such as geo-statistics and remote sensing technique (e.g. LIDAR) would be the key tools to improve forest biomass estimation accuracy. However, prior to this, spatial variation of forest biomass at various levels should be explored using multi-source data and multi-approaches.",signatures:"Lei Shi and Shirong Liu",downloadPdfUrl:"/chapter/pdf-download/52687",previewPdfUrl:"/chapter/pdf-preview/52687",authors:[{id:"187616",title:"Associate Prof.",name:"Lei",surname:"Shi",slug:"lei-shi",fullName:"Lei Shi"},{id:"194544",title:"Prof.",name:"Shirong",surname:"Liu",slug:"shirong-liu",fullName:"Shirong Liu"}],corrections:null},{id:"52664",title:"Above‐Ground Biomass Estimation with High Spatial Resolution Satellite Images",doi:"10.5772/65665",slug:"above-ground-biomass-estimation-with-high-spatial-resolution-satellite-images",totalDownloads:1915,totalCrossrefCites:5,totalDimensionsCites:7,hasAltmetrics:0,abstract:"Assessment and monitoring of forest biomass are frequently done with allometric functions per species for inventory plots. The estimation per area unit is carried out with an extrapolation method. In this chapter, a review of the recent methods to estimate forest above‐ground biomass (AGB) using remote sensing data is presented. A case study is given with an innovative methodology to estimate above‐ground biomass based on crown horizontal projection obtained with high spatial resolution satellite images for two evergreen oak species. The linear functions fitted for pure, mixed and both compositions showed a good performance. Also, the functions with dummy variables to distinguish species and compositions adjusted had the best performance. An error threshold of 5% corresponds to stand areas of 8.7 and 5.5 ha for the functions of all species and compositions without and with dummy variables. This method enables the overall area evaluation, and it is easily implemented in a geographic information system environment.",signatures:"Adélia M. O. Sousa, Ana Cristina Gonçalves and José R. Marques da\nSilva",downloadPdfUrl:"/chapter/pdf-download/52664",previewPdfUrl:"/chapter/pdf-preview/52664",authors:[{id:"187880",title:"Prof.",name:"Adélia",surname:"Sousa",slug:"adelia-sousa",fullName:"Adélia Sousa"},{id:"194484",title:"Prof.",name:"Ana Cristina",surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"},{id:"194485",title:"Prof.",name:"José",surname:"Marques Da Silva",slug:"jose-marques-da-silva",fullName:"José Marques Da Silva"}],corrections:null},{id:"53831",title:"Fatal Accidents During Marine Transport of Wood Pellets Due to Off-Gassing: Experiences from Denmark",doi:"10.5772/66334",slug:"fatal-accidents-during-marine-transport-of-wood-pellets-due-to-off-gassing-experiences-from-denmark",totalDownloads:1772,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:1,abstract:"The atmosphere in unventilated wood pellet storage confinements, such as the cargo hold of marine vessels transporting pellets in solid bulk, can be severely oxygen deficient and contain deadly concentrations of harmful gasses, of which the most feared is the poisonous and odour-less carbon monoxide. The hazard has been known for over a decade and has been responsible for many accidents. We examine three fatal accidents on marine vessels in or near Danish waters and argue that they share strikingly similar aetiologies, if not repetitive patterns. It is generally recognized that accidents should be thoroughly investigated and lessons learned shared widely in order to minimize the number of times the same lessons have to be learned. The three Danish cases suggest that this learning process is deeply troubled for the solid biomass segment. The International Maritime Organization IMO/SOLAS has recently revised its guidance on entering enclosed spaces aboard ships in response to the ongoing problem of confined space incidents. We argue that the interpretation of the concept of an “enclosed space” is of utmost importance because accidents take place in rooms that are not considered enclosed by the crew.",signatures:"Frank Huess Hedlund and Øssur Jarleivson Hilduberg",downloadPdfUrl:"/chapter/pdf-download/53831",previewPdfUrl:"/chapter/pdf-preview/53831",authors:[{id:"189194",title:"Dr.",name:"Frank",surname:"Hedlund",slug:"frank-hedlund",fullName:"Frank Hedlund"},{id:"189196",title:"MSc.",name:"Øssur J",surname:"Hilduberg",slug:"ossur-j-hilduberg",fullName:"Øssur J Hilduberg"}],corrections:null},{id:"53155",title:"Biomass Valorization: Agricultural Waste in Environmental Protection, Phytomedicine and Biofuel Production",doi:"10.5772/66102",slug:"biomass-valorization-agricultural-waste-in-environmental-protection-phytomedicine-and-biofuel-produc",totalDownloads:2262,totalCrossrefCites:4,totalDimensionsCites:13,hasAltmetrics:0,abstract:"Industrialization is a major promoter of any nation’s economy; it is not without detrimental effects on our immediate environment. Human exposure to various pollutants discharged into the environment may lead to serious health challenges. In the same vein, discharge from the combustion of fossil fuel contributes a great deal to the environmental pollution. The resulting quest for a clean and sustainable environment has spurred myriads of research into advantageous utilization of waste biomass in industrial wastewater treatment and environmentally friendly/alternative energy. Similarly, diverse waste materials have been adopted as sources of important phytochemicals with different medicinal applications. This chapter focuses on the application of waste biomass in environmental remediation, curative medicine, and clean/alternative energy.",signatures:"Inyinbor Adejumoke Abosede, Oluyori Abimbola Peter and\nAdelani-Akande Tabitha Adunola",downloadPdfUrl:"/chapter/pdf-download/53155",previewPdfUrl:"/chapter/pdf-preview/53155",authors:[{id:"187738",title:"Dr.",name:"Adejumoke",surname:"Inyinbor",slug:"adejumoke-inyinbor",fullName:"Adejumoke Inyinbor"},{id:"188818",title:"Dr.",name:"Abimbola",surname:"Oluyori",slug:"abimbola-oluyori",fullName:"Abimbola Oluyori"},{id:"188819",title:"Mrs.",name:"Tabitha",surname:"Adelani-Akande",slug:"tabitha-adelani-akande",fullName:"Tabitha Adelani-Akande"}],corrections:null},{id:"52693",title:"Modeling Biomass Substrates for Syngas Generation by Using CFD Approaches",doi:"10.5772/65857",slug:"modeling-biomass-substrates-for-syngas-generation-by-using-cfd-approaches",totalDownloads:1838,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Recent reports from top universities state that in spite of having great national importance, there are dozens of fields of study that are suffering due to a lack of funding. Perhaps the greatest tool available to assist researchers with this regard is numerical simulation. This tool allows cutting costs, decreasing the necessary design cycle and allows an enormous amount of physical insight on the process itself). Numerical model’s ability to correctly predict a complex system was tested in this chapter by drawing from a previously developed computational fluid dynamics model for biomass gasification. Numerical results were compared with both experimental results (pilot scale plant) and available literature. Results from common Portuguese biomass substrates were found to be within a satisfactory margin of error of 20%. Influence of all major operational conditions was then investigated and the model was once again able to predict all the expected trends. All the relevant process products were also analyzed. Finally, the numerical model was coupled with an optimization model. Maximum efficiency value was found at 900°C with a SBR of 1.5 for MSW and 1 for forest residues. Results showed that numerical models could have a preponderant impact on biomass gasification field.",signatures:"Nuno Couto and Valter Silva",downloadPdfUrl:"/chapter/pdf-download/52693",previewPdfUrl:"/chapter/pdf-preview/52693",authors:[{id:"187136",title:"Dr.",name:"Valter",surname:"Silva",slug:"valter-silva",fullName:"Valter Silva"},{id:"194412",title:"Dr.",name:"Nuno",surname:"Couto",slug:"nuno-couto",fullName:"Nuno Couto"}],corrections:null},{id:"52711",title:"Sustainability of the Biowaste Utilization for Energy Production",doi:"10.5772/65825",slug:"sustainability-of-the-biowaste-utilization-for-energy-production",totalDownloads:1399,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:"This article presents strategies for the development and practical modelling of biogas processes under economy market conditions. Herewith, anaerobic digestion results out of practical tests in different scales (lab to pilot) and different substrate mixtures were taken into account. Two lab-scale reactors on the one hand and pilot-scale examinations of chosen substrate mixtures on the other hand led to workable conclusions such as mixture suitability for biogas production, gas amounts and technical demands for full-scale implementation under market economy conditions. A comparison of both laboratory and pilot system performance with a full-scale biogas system has been done; herewith, the suitability of the corresponding practical process upscaling simulation has been proven. On the basis of the results, calculations regarding the necessary full-scale fermenter sizes and the required substrate amounts as well as the disposable (reusable) fermentation residues were made. The conclusion of outputs on biogas technology particularly with regard to the demand-driven production of electricity (500 + 250 kW flexible) as a special request for energy from renewable sources is given. As a further result, a general outlook and estimation for the economical implementation on a common Baltic Sea region country basis have been developed.",signatures:"Thorsten Ahrens, Silvia Drescher-Hartung and Olga Anne",downloadPdfUrl:"/chapter/pdf-download/52711",previewPdfUrl:"/chapter/pdf-preview/52711",authors:[{id:"187907",title:"Dr.",name:"Olga",surname:"Anne",slug:"olga-anne",fullName:"Olga Anne"},{id:"187918",title:"Prof.",name:"Thorsten",surname:"Ahrens",slug:"thorsten-ahrens",fullName:"Thorsten Ahrens"},{id:"187919",title:"MSc.",name:"Silvia",surname:"Drescher-Hartung",slug:"silvia-drescher-hartung",fullName:"Silvia Drescher-Hartung"}],corrections:null},{id:"53786",title:"Effects of Fertilizers on Biomass, Sugar Content and Ethanol Production of Sweet Sorghum",doi:"10.5772/66814",slug:"effects-of-fertilizers-on-biomass-sugar-content-and-ethanol-production-of-sweet-sorghum",totalDownloads:1328,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Sweet sorghum (Sorghum bicolor) is a promising alternative crop for bioethanol production in developing countries. However, to extend the cultivative area of this crop, it needs to develop an appropriate growing protocol for farmers. This chapter describes the examination of different doses of fertilizers combined with manure and micronutrients, in various applied times, on biomass, sugar content and ethanol production of sweet sorghum. It was observed that the application of 90 N + 90 P2O5 + 60 K2O provided maximum stem yield and optimum contents of sugar and ethanol yield, however nontreatment of any among P, P2O5 and K2O caused significant reduction of biomass and ethanol production. Higher fertilization >90 N may provide greater productivity of this crop but it may cause lodging and economic deficit for farmers in developing countries. It was also found that the applied times of fertilization should be at 3–4 to 7–8 leaf stage. In contrast, when the fertilization was as close to the flowering stage caused remarkable reduction of stem yield and ethanol production. The supplementation of (NH4)2MO7O2.4H2O at 5 kg/ha provided an increase of 10–12 tons/ha of stem yield and a remarkable enrichment of ethanol production. Findings of this study are useful for farmers and agricultural extensionists to promote biomass and ethanol productivity of this crop for bioethanol production. This research also highlights a greater possibility of exploiting sweet sorghum cultivation in infertile and hilly, abandoned areas for ethanol production.",signatures:"Tran Dang Xuan, Nguyen Thi Phuong and Tran Dang Khanh",downloadPdfUrl:"/chapter/pdf-download/53786",previewPdfUrl:"/chapter/pdf-preview/53786",authors:[{id:"162491",title:"Prof.",name:"Tran Dang",surname:"Xuan",slug:"tran-dang-xuan",fullName:"Tran Dang Xuan"}],corrections:null},{id:"52415",title:"Biomass as Raw Material for Production of High‐Value Products",doi:"10.5772/65507",slug:"biomass-as-raw-material-for-production-of-high-value-products",totalDownloads:2642,totalCrossrefCites:17,totalDimensionsCites:31,hasAltmetrics:0,abstract:"Industrial production of a wide range of value‐added products heavily relies on fossil resources. Lignocellulosic biomass materials are receiving increased attention as a renewable, economical, and abundant alternative to fossil resources for the production of various value‐added products. Biomass feedstocks utilized for these productions include energy crops, agricultural biomass residues, forest biomass, and food‐based biomass wastes. Various conversion technologies are used for production value‐added products from biomass. Efficiencies of conversion technologies highly depend on the types of biomass used as raw materials that differ in contents and compositions of cellulose, hemicellulose, and lignin structures in biomass. In some conversion technologies, such as chemical, biochemical, and hydrothermal conversion techniques, biomass materials must be first broken down into smaller molecular weight components (e.g., oligosaccharides and monosaccharides) in order to be efficiently converted into target products. In this matter, pretreatment and hydrolysis play critical roles on the yield of the product(s). The chapter describes lignocellulosic materials that are used for production of top value‐added products and conversion technologies to produce products in high yields. Future developments in the conversion of lignocellulosic biomass into value‐added products are directly correlated to improvements of conversion technologies and selection the right types of biomass in the process.",signatures:"Sibel Irmak",downloadPdfUrl:"/chapter/pdf-download/52415",previewPdfUrl:"/chapter/pdf-preview/52415",authors:[{id:"187113",title:"Associate Prof.",name:"Sibel",surname:"Irmak",slug:"sibel-irmak",fullName:"Sibel Irmak"}],corrections:null},{id:"52732",title:"Catalytic Biomass Valorization",doi:"10.5772/65826",slug:"catalytic-biomass-valorization",totalDownloads:2393,totalCrossrefCites:3,totalDimensionsCites:6,hasAltmetrics:0,abstract:"Biomass is a significant non-conventional energy reserve, which has been considered as a promising alternative over other renewable sources such as solar, wind or hydroelectric storage due to its comparatively ample availability. A variety of biomass types can be converted into useful products via bioenergy technologies. The deep understanding and knowledge of these processes are necessary for optimization and advancement in a cost-effective way. A comprehensive comparison and discussion is conducted with respect to biochemical and thermochemical conversion technology such as microbic digestion and fermentation, pyrolysis, liquefaction and gasification. Pyrolysis is the process of converting biomass into bio oil, charcoal and gaseous factions by heating anaerobically to above 500°C. Liquefaction is a low temperature (LT) and high-pressure thermochemical process to produce marketable liquid over suitable catalysts under hydrogen or reductive environment. Gasification is the conversion of biomass into preferred combustible gas mixture (syngas) via the partial oxidation at high temperature, typically in the range of 800–900°C. The product gas is more versatile and can be burned in gas turbine for electricity production or synthesis of high-value chemicals. The parametric impact, mechanism, development status and future direction have been summarized for each of these technologies with the aim to pave the way for optimization of future investigation.",signatures:"Aiguo G. Wang, Danielle Austin and Hua Song",downloadPdfUrl:"/chapter/pdf-download/52732",previewPdfUrl:"/chapter/pdf-preview/52732",authors:[{id:"178239",title:"Dr.",name:"Hua",surname:"Song",slug:"hua-song",fullName:"Hua Song"},{id:"194355",title:"MSc.",name:"Aiguo",surname:"Wang",slug:"aiguo-wang",fullName:"Aiguo Wang"},{id:"194356",title:"BSc.",name:"Danielle",surname:"Austin",slug:"danielle-austin",fullName:"Danielle Austin"}],corrections:null},{id:"52751",title:"Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals",doi:"10.5772/65777",slug:"biomass-compositional-analysis-for-conversion-to-renewable-fuels-and-chemicals",totalDownloads:2942,totalCrossrefCites:16,totalDimensionsCites:32,hasAltmetrics:0,abstract:"As the world continues to deplete its nonrenewable resources, there has begun a shift toward using renewable materials for the production of fuels and chemicals. Terrestrial biomass, as well as municipal solid wastes, provides renewable feedstocks for fuel and chemical production. However, one of the major challenges to using biomass as a feedstock for fuel and chemical production is the great amount of innate variability between different biomass types and within individual biomass species. This inconsistency arises from varied growth and harvesting conditions and presents challenges for conversion processes, which frequently require physically and chemically uniform materials. This chapter will examine intrinsic biomass compositional characteristics including cellulose, hemicellulose, lignin, extractives/volatiles, and ash for a wide array of biomass types. Additionally, extrinsic properties, such as moisture content and particle grind size, will be examined for their effect on biomass conversion to fuels using four major conversion processes: direct combustion, pyrolysis, hydrothermal liquefaction, and fermentation. A brief discussion on recent research for the production of building block chemicals from biomass will also be presented.",signatures:"C. Luke Williams, Rachel M. Emerson and Jaya Shankar Tumuluru",downloadPdfUrl:"/chapter/pdf-download/52751",previewPdfUrl:"/chapter/pdf-preview/52751",authors:[{id:"95803",title:"Dr.",name:"Jaya Shankar",surname:"Tumuluru",slug:"jaya-shankar-tumuluru",fullName:"Jaya Shankar Tumuluru"},{id:"187715",title:"Dr.",name:"C. Luke",surname:"Williams",slug:"c.-luke-williams",fullName:"C. Luke Williams"},{id:"194456",title:"MSc.",name:"Rachel M.",surname:"Emerson",slug:"rachel-m.-emerson",fullName:"Rachel M. Emerson"}],corrections:null},{id:"52434",title:"Modeling the Calorific Value of Biomass from Fruit Trees Using Elemental Analysis Data",doi:"10.5772/65276",slug:"modeling-the-calorific-value-of-biomass-from-fruit-trees-using-elemental-analysis-data",totalDownloads:1747,totalCrossrefCites:4,totalDimensionsCites:8,hasAltmetrics:0,abstract:"Pruning of fruit trees produces a great quantity of biomass each year that can be used for energy production. For this purpose, it is necessary to carry out an energy characterization of these pruned wastes, where the determination of heating value is significant. This value is usually measured by an adiabatic or isoperibolic calorimeter, which causes high economic costs and wastes time. The present study is focused on the development of indirect models for heating value prediction of biomass from orange trees Citrus × sinensis Osbeck, almond trees Prunus dulcis (Mill) D.A. Webb, and olive trees Olea europaea L. from an elemental analysis in order to reduce the time of determination as well as the economic costs. Residual biomass was classified and characterized according to CEN regulations such as received, without drying. Also, moisture content wet basis, bark ratio, density, heating value, and elemental composition (carbon, hydrogen, nitrogen, and sulfur) were measured. The influence of these variables on the heating value was analyzed. Finally, mathematical models were developed to predict this value for this studied species. These models showed coefficients of determination between 0.83 and 0.97, being suitable for industrial use.",signatures:"Borja Velázquez-Martí, Isabel López-Cortés, Domingo Salazar-\nHernández and Ángel Jesús Callejón-Ferre",downloadPdfUrl:"/chapter/pdf-download/52434",previewPdfUrl:"/chapter/pdf-preview/52434",authors:[{id:"25356",title:"Dr.",name:"Borja",surname:"Velazquez-Marti",slug:"borja-velazquez-marti",fullName:"Borja Velazquez-Marti"},{id:"183124",title:"Dr.",name:"Isabel",surname:"López Cortés",slug:"isabel-lopez-cortes",fullName:"Isabel López Cortés"},{id:"183371",title:"Prof.",name:"Domingo M.",surname:"Salazar Hernández",slug:"domingo-m.-salazar-hernandez",fullName:"Domingo M. Salazar Hernández"},{id:"187111",title:"Prof.",name:"Ángel-Jesús",surname:"Callejón-Ferre",slug:"angel-jesus-callejon-ferre",fullName:"Ángel-Jesús Callejón-Ferre"}],corrections:null},{id:"53415",title:"Microalgal Biomass: A Biorefinery Approach",doi:"10.5772/65827",slug:"microalgal-biomass-a-biorefinery-approach",totalDownloads:2478,totalCrossrefCites:2,totalDimensionsCites:10,hasAltmetrics:0,abstract:"The biorefinery concept has been identified as the most promising way to create a biomass-based industry, which can be defined as the sustainable biomass processing to obtain energy biofuels and high-value products through processes and equipment for biomass. Microalgae can be used as an efficient and economically viable biorefinery feedstock; microalgae could be used in different areas such as human and animal nutrition, nutraceutical and therapeutic products, fertilizers, plastics, isoprenes and biofuels and also in the treatment of wastewaters and CO2 capture. Microalgae biomass can be used for biofuel production, such as bioelectricity, methane, biohydrogen, bioethanol and biodiesel. In this chapter, an overview of the factors that affect the production of the microalgal biomass yield and value-added by-products production is presented. Likewise, we present the results of the microalgal culture of Scenedesmus sp. SCX2 performed in semicontinuous culture (SCC), in 2000 raceway ponds employing Bold’s Basal Medium (BBM), under greenhouse conditions. Over the SCC, we monitored biomass concentration, lipid, protein, pigments and sugar production, light irradiance, culture and greenhouse temperature and nitrate concentration in the medium.",signatures:"Luis C. Fernández Linares, Kevin Á. González Falfán and Citlally\nRamírez-López",downloadPdfUrl:"/chapter/pdf-download/53415",previewPdfUrl:"/chapter/pdf-preview/53415",authors:[{id:"187840",title:"Ph.D.",name:"Luis",surname:"Fernandez Linares",slug:"luis-fernandez-linares",fullName:"Luis Fernandez Linares"}],corrections:null},{id:"52883",title:"Biomass Production on Reclaimed Areas Tailing Ponds",doi:"10.5772/65829",slug:"biomass-production-on-reclaimed-areas-tailing-ponds",totalDownloads:1455,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter presents the results of a multiannual systematic research and development of essentially new environmental safety technology of overlapping tailing pond modelled in terms of Vojany thermal power plant (EVO), Slovakia. Re‐cultivated tailing area can be used to produce biomass (Swedish willow) and this biomass is used again for subsequent incineration with coal. Laboratory and small plot experiments conducted directly in the tailing pond area resulted in the development of another new dimension of environmental technology of decontamination of tailing ponds. This technology connects technical, safety, economical and environmental effects for biomass production.",signatures:"Martin Bosák",downloadPdfUrl:"/chapter/pdf-download/52883",previewPdfUrl:"/chapter/pdf-preview/52883",authors:[{id:"188328",title:"Prof.",name:"Martin",surname:"Bosak",slug:"martin-bosak",fullName:"Martin Bosak"}],corrections:null},{id:"53833",title:"Biomass Blending and Densification: Impacts on Feedstock Supply and Biochemical Conversion Performance",doi:"10.5772/67207",slug:"biomass-blending-and-densification-impacts-on-feedstock-supply-and-biochemical-conversion-performanc",totalDownloads:1789,totalCrossrefCites:18,totalDimensionsCites:27,hasAltmetrics:1,abstract:"The success of lignocellulosic biofuels and biochemical industries depends on an economic and reliable supply of high‐quality biomass. However, research and development efforts have been historically focused on the utilization of agriculturally derived cellulosic feedstocks, without considerations of their low energy density, high variations in compositions and potential supply risks in terms of availability and affordability. This chapter demonstrated a strategy of feedstock blending and densification to address the supply chain challenges. Blending takes advantage of low‐cost feedstock to avoid the prohibitive costs incurred through reliance on a single feedstock resource, while densification produces feedstocks with increased bulk density and desirable feed handling properties, as well as reduced transportation cost. We also review recent research on the blending and densification dealing with various types of feedstocks with a focus on the impacts of these preprocessing steps on biochemical conversion, that is, various thermochemical pretreatment chemistries and enzymatic hydrolysis, into fermentable sugars for biofuel production.",signatures:"Allison E. Ray, Chenlin Li, Vicki S. Thompson, Dayna L. Daubaras,\nNicholas J. Nagle and Damon S. Hartley",downloadPdfUrl:"/chapter/pdf-download/53833",previewPdfUrl:"/chapter/pdf-preview/53833",authors:[{id:"188436",title:"Dr.",name:"Allison",surname:"Ray",slug:"allison-ray",fullName:"Allison Ray"},{id:"188963",title:"Dr.",name:"Chenlin",surname:"Li",slug:"chenlin-li",fullName:"Chenlin Li"},{id:"188964",title:"Dr.",name:"Vicki",surname:"Thompson",slug:"vicki-thompson",fullName:"Vicki Thompson"},{id:"188965",title:"Dr.",name:"Dayna",surname:"Daubaras",slug:"dayna-daubaras",fullName:"Dayna Daubaras"},{id:"188966",title:"MSc.",name:"Nick",surname:"Nagle",slug:"nick-nagle",fullName:"Nick Nagle"}],corrections:null},{id:"52703",title:"Metal Removal by Seaweed Biomass",doi:"10.5772/65682",slug:"metal-removal-by-seaweed-biomass",totalDownloads:1837,totalCrossrefCites:6,totalDimensionsCites:11,hasAltmetrics:1,abstract:"Environmental metal pollution is a serious public problem, and it has become an issue leading to research in the effluent remediation area. Techniques involving biosorption processes have been found to be promising due to the low cost of nonliving biomaterials, which have the potential to adsorb metal ions from wastewaters. One of the most promising types of biomasses to be used as biosorbents is the seaweed biomass, particularly from brown algae. The biosorption capability of the seaweed biomass relies on their cell wall chemical composition, mainly composed of alginates and fucoidans, molecules with a high presence of functional groups that interact with metal ions. This book chapter focuses on the use of seaweed biomass for metal biosorption and the chemical basis underlying the process. The current state of the commercial status of biosorption technology based on seaweed biomass is presented. Examples of complementary uses of the algae biomass other than industrial wastewater cleaning processes are presented, and the potential reuse of the biomass after the biosorption focused on biofuel production is discussed.",signatures:"Claudia Ortiz-Calderon, Héctor Cid Silva and Daniel Barros Vásquez",downloadPdfUrl:"/chapter/pdf-download/52703",previewPdfUrl:"/chapter/pdf-preview/52703",authors:[{id:"188518",title:"Dr.",name:"Claudia",surname:"Ortiz",slug:"claudia-ortiz",fullName:"Claudia Ortiz"},{id:"188522",title:"BSc.",name:"Hector",surname:"Cid",slug:"hector-cid",fullName:"Hector Cid"},{id:"188523",title:"BSc.",name:"Daniel",surname:"Barros",slug:"daniel-barros",fullName:"Daniel Barros"}],corrections:null},{id:"52835",title:"Valorisation of Lignocellulosic Biomass Wastes for the Removal of Metal Ions from Aqueous Streams: A Review",doi:"10.5772/65958",slug:"valorisation-of-lignocellulosic-biomass-wastes-for-the-removal-of-metal-ions-from-aqueous-streams-a-",totalDownloads:1788,totalCrossrefCites:6,totalDimensionsCites:16,hasAltmetrics:0,abstract:"Heavy metal pollution derived from anthropogenic activities is a relevant environmental threat nowadays due to their toxic nature, persistence and accumulation potential in the food chain. A wide variety of lignocellulosic-based biomaterials have been thoroughly assessed by the scientific community as sorbents for the removal of metals from aqueous streams. This kind of biomaterials, mainly constituted by lignin and cellulose, bear functional groups such as alcohol, ketone and carboxylates that provide active sorption points for the effective removal of heavy metals. The role of lignin in the sorption process is especially relevant, since this substance provides polyhydroxy and polyphenol functional groups—especially effective in the coordination of metals—and that provide ion exchange functionality to the material. Depending on their nature, these materials can be used either in their raw form or chemically modified form so as to enhance their sorption capacity and/or to achieve improved mechanical and mass transfer properties.",signatures:"Carlos Escudero-Oñate, Núria Fiol, Jordi Poch and Isabel Villaescusa",downloadPdfUrl:"/chapter/pdf-download/52835",previewPdfUrl:"/chapter/pdf-preview/52835",authors:[{id:"188725",title:"Dr.",name:"Carlos",surname:"Escudero-Oñate",slug:"carlos-escudero-onate",fullName:"Carlos Escudero-Oñate"},{id:"188731",title:"Prof.",name:"Isabel",surname:"Villaescusa",slug:"isabel-villaescusa",fullName:"Isabel Villaescusa"},{id:"188755",title:"Prof.",name:"Jordi",surname:"Poch",slug:"jordi-poch",fullName:"Jordi Poch"},{id:"188757",title:"Prof.",name:"Nuria",surname:"Fiol",slug:"nuria-fiol",fullName:"Nuria Fiol"}],corrections:null},{id:"52502",title:"Progress Towards Engineering Microbial Surfaces to Degrade Biomass",doi:"10.5772/65509",slug:"progress-towards-engineering-microbial-surfaces-to-degrade-biomass",totalDownloads:1406,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Lignocellulosic biomass is a promising feedstock to sustainably produce useful biocommodities. However, its recalcitrance to hydrolysis limits its commercial utility. One attractive strategy to overcome this problem is to use consolidated bioprocessing (CBP) microbes to directly convert biomass into chemicals and biofuels. Several industrially useful microbes possess desirable consolidated bioprocessing characteristics, yet they lack the ability to degrade biomass. Engineering these microbes’ surfaces to display cellulases and cellulosome‐like structures could endow them with potent cellulolytic activity, enabling them to be used in CBP. In this chapter, we discuss recent progress in engineering the surfaces of Saccharomyces cerevisiae, Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, and lactic acid bacteria. We discuss the techniques used to display cellulases on their surfaces, their recombinantly achieved cellulolytic activities, and current obstacles that limit their utility.",signatures:"Grace L. Huang and Robert T. Clubb",downloadPdfUrl:"/chapter/pdf-download/52502",previewPdfUrl:"/chapter/pdf-preview/52502",authors:[{id:"188956",title:"Prof.",name:"Robert",surname:"Clubb",slug:"robert-clubb",fullName:"Robert Clubb"},{id:"189156",title:"Ms.",name:"Grace",surname:"Huang",slug:"grace-huang",fullName:"Grace Huang"}],corrections:null},{id:"52753",title:"Determination of the Biomass Content of End-of-Life Tyres",doi:"10.5772/65830",slug:"determination-of-the-biomass-content-of-end-of-life-tyres",totalDownloads:1564,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"Studies have been conducted in France and Spain for (1) the validation of sampling methods to achieve representative samples of end‐of‐life tyre (ELT) materials and (2) the comparison and validation of test methods to quantify their biomass content. Both studies conclude that the 14C techniques are the most reliable techniques for determining the biomass content of end‐of‐life tyres. Indeed, thermogravimetry and pyrolysis‐GC/MS do not lead to results consistent with the theoretical content of biogenic materials present in tyres, and results in both cases differ considerably from the known natural rubber content of the reference samples studied using thermogravimetric analysis. Furthermore, in the two last techniques, natural isoprene cannot be distinguished from synthetic isoprene. Results obtained with radiocarbon analysis based on 14C contents could be used as reference values of the biomass content of the ELTs: in the ranges of 18–22% for passenger car tyres and 29–34% for truck tyres, in line with actual natural rubber and other components content. Additionally, the presence of textile fibres and stearic acid, which are known sources of biomass in the tyre, cannot be evaluated by thermogravimetry and pyrolysis‐GC/MS techniques.",signatures:"Leticia Saiz Rodríguez, José M. Bermejo Muñoz, Adrien Zambon and\nJean P. Faure",downloadPdfUrl:"/chapter/pdf-download/52753",previewPdfUrl:"/chapter/pdf-preview/52753",authors:[{id:"189512",title:"M.Sc.",name:"Leticia",surname:"Saiz-Rodriguez",slug:"leticia-saiz-rodriguez",fullName:"Leticia Saiz-Rodriguez"},{id:"190373",title:"Mr.",name:"José María",surname:"Bermejo",slug:"jose-maria-bermejo",fullName:"José María Bermejo"},{id:"190374",title:"Dr.",name:"Jean-Philippe",surname:"Faure",slug:"jean-philippe-faure",fullName:"Jean-Philippe Faure"},{id:"194669",title:"Mr.",name:"Adrien",surname:"Zambon",slug:"adrien-zambon",fullName:"Adrien Zambon"}],corrections:null},{id:"52609",title:"Reaction Behaviors of Bagasse Modified with Phthalic Anhydride in 1‐Allyl‐3‐Methylimidazolium Chloride with Catalyst 4‐Dimethylaminopyridine",doi:"10.5772/65508",slug:"reaction-behaviors-of-bagasse-modified-with-phthalic-anhydride-in-1-allyl-3-methylimidazolium-chlori",totalDownloads:1293,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The modification of lignocellulose with cyclic anhydrides could confer stronger hydrophilic properties to lignocellulose, which could be used in many industrial fields. To elucidate the modification mechanism of lignocellulose, bagasse was phthalated comparatively with its three main components in 1‐allyl‐3‐methylimidazolium chloride (AmimCl) using 4‐dimethylaminopyridine as catalyst and phthalic anhydride as acylation reagent in the present study. From FT‐IR and 2D HSQC analyses, the skeleton of bagasse and the fractions were not significantly changed during phthalation in AmimCl. 2D HSQC results suggested that the reactive hydroxyls in bagasse were partially phthalated, and the reactivity of the hydroxyls in anhydroglucose units followed the order C‐6 > C‐2 > C‐3. Similarly, the reactivity order of hydroxyls in anhydroxylose units was C‐2 > C‐3. For lignin, the predominant diesterification occurred during the homogeneous modification, and both aliphatic and aromatic hydroxyls were phthalated. The reactivity order of phenolic hydroxyls was S‐OH > G‐OH > H‐OH, which was distinct from that without catalyst. In addition, it was found that the thermal stability of phthalated bagasse was affected by the disruption of cellulose crystallinity and the degradation of components. The thermal stability of the phthalated bagasse decreased upon chemical modification and regeneration.",signatures:"Hui‐Hui Wang, Xue‐Qin Zhang, Yi Wei and Chuan‐Fu Liu",downloadPdfUrl:"/chapter/pdf-download/52609",previewPdfUrl:"/chapter/pdf-preview/52609",authors:[{id:"19012",title:"Dr.",name:"Chuan-Fu",surname:"Liu",slug:"chuan-fu-liu",fullName:"Chuan-Fu Liu"},{id:"194363",title:"Ms.",name:"Xue-Qin",surname:"Zhang",slug:"xue-qin-zhang",fullName:"Xue-Qin Zhang"},{id:"194364",title:"Mr.",name:"Yi",surname:"Wei",slug:"yi-wei",fullName:"Yi Wei"},{id:"194365",title:"Ms.",name:"Hui-Hui",surname:"Wang",slug:"hui-hui-wang",fullName:"Hui-Hui Wang"}],corrections:null},{id:"53271",title:"Review of Biomass Thermal Gasification",doi:"10.5772/66362",slug:"review-of-biomass-thermal-gasification",totalDownloads:3043,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Gasification of biomass is one of the most attractive methods for producing hydrogen rich gas. Syngas production from biomass is an attractive solution for energy crisis. The production of energy from biomass reduces the dependence of developing countries on fossil fuels, as ample biomass is available in the developing countries and is renewable. Downdraft gasifiers are fixed bed gasifiers where the gasifying agent and biomass are flowing downwards, developed for high-volatile fuels such as wood or biomass gasification. Cocurrent flow regime throughout the oxidation and reduction zones reduces the tars and particulates in syngas, which will reduce the necessity of complicated cleaning methods compared to updraft gasifiers especially if the gas is used as a burnable gas in a small community. It is important to ensure homogenous distribution of gasifying agent at the downdraft gasifier throat. This chapter presents latest trends in gasification of biomass using downdraft gasification.",signatures:"Mohammed Abed Fattah Hamad, Aly Moustafa Radwan and Ashraf\nAmin",downloadPdfUrl:"/chapter/pdf-download/53271",previewPdfUrl:"/chapter/pdf-preview/53271",authors:[{id:"192359",title:"Dr.",name:"Mohammed Abed Fattah",surname:"Hamad",slug:"mohammed-abed-fattah-hamad",fullName:"Mohammed Abed Fattah Hamad"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"448",title:"Biofuel Production",subtitle:"Recent Developments and Prospects",isOpenForSubmission:!1,hash:"c74ec286656d475a34445a835eee296d",slug:"biofuel-production-recent-developments-and-prospects",bookSignature:"Marco Aurelio dos Santos Bernardes",coverURL:"https://cdn.intechopen.com/books/images_new/448.jpg",editedByType:"Edited by",editors:[{id:"6625",title:"Dr.",name:"Marco Aurelio",surname:"Dos Santos Bernardes",slug:"marco-aurelio-dos-santos-bernardes",fullName:"Marco Aurelio Dos Santos Bernardes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"582",title:"Biodiesel",subtitle:"Feedstocks and Processing Technologies",isOpenForSubmission:!1,hash:"6515b40c0b7f5abd126e0325263a581c",slug:"biodiesel-feedstocks-and-processing-technologies",bookSignature:"Margarita Stoytcheva and Gisela Montero",coverURL:"https://cdn.intechopen.com/books/images_new/582.jpg",editedByType:"Edited by",editors:[{id:"6375",title:"Prof.",name:"Margarita",surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"450",title:"Biofuel's Engineering Process Technology",subtitle:null,isOpenForSubmission:!1,hash:"ff9814e64849f2167e29403f356e018e",slug:"biofuel-s-engineering-process-technology",bookSignature:"Marco Aurélio dos Santos Bernardes",coverURL:"https://cdn.intechopen.com/books/images_new/450.jpg",editedByType:"Edited by",editors:[{id:"6625",title:"Dr.",name:"Marco Aurelio",surname:"Dos Santos Bernardes",slug:"marco-aurelio-dos-santos-bernardes",fullName:"Marco Aurelio Dos Santos Bernardes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2965",title:"Sustainable Degradation of Lignocellulosic Biomass",subtitle:"Techniques, Applications and Commercialization",isOpenForSubmission:!1,hash:"79f3af7841253f5e3e67f53245c121d6",slug:"sustainable-degradation-of-lignocellulosic-biomass-techniques-applications-and-commercialization",bookSignature:"Anuj K. Chandel and Silvio Silvério da Silva",coverURL:"https://cdn.intechopen.com/books/images_new/2965.jpg",editedByType:"Edited by",editors:[{id:"76898",title:"Dr.",name:"Anuj",surname:"Chandel",slug:"anuj-chandel",fullName:"Anuj Chandel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1323",title:"Biogas",subtitle:null,isOpenForSubmission:!1,hash:"3bd0527b475ee7658e14add4834a8937",slug:"biogas",bookSignature:"Sunil Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/1323.jpg",editedByType:"Edited by",editors:[{id:"86581",title:"Dr.",name:"Sunil",surname:"Kumar",slug:"sunil-kumar",fullName:"Sunil Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"460",title:"Progress in Biomass and Bioenergy Production",subtitle:null,isOpenForSubmission:!1,hash:"bd3ca64524ad4e5ab8280bb2e8e71d64",slug:"progress-in-biomass-and-bioenergy-production",bookSignature:"Syed Shahid Shaukat",coverURL:"https://cdn.intechopen.com/books/images_new/460.jpg",editedByType:"Edited by",editors:[{id:"58930",title:"Dr.",name:"Shahid",surname:"Shaukat",slug:"shahid-shaukat",fullName:"Shahid Shaukat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3526",title:"Liquid, Gaseous and Solid Biofuels",subtitle:"Conversion Techniques",isOpenForSubmission:!1,hash:"27e5fc2ee32eebf66804d16b48e3545f",slug:"liquid-gaseous-and-solid-biofuels-conversion-techniques",bookSignature:"Zhen Fang",coverURL:"https://cdn.intechopen.com/books/images_new/3526.jpg",editedByType:"Edited by",editors:[{id:"63891",title:"Prof.",name:"Zhen",surname:"Fang",slug:"zhen-fang",fullName:"Zhen Fang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3662",title:"Biomass",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"biomass",bookSignature:"Maggy Ndombo Benteke Momba",coverURL:"https://cdn.intechopen.com/books/images_new/3662.jpg",editedByType:"Edited by",editors:[{id:"125307",title:"Prof.",name:"Maggy Ndombo",surname:"Benteke Momba",slug:"maggy-ndombo-benteke-momba",fullName:"Maggy Ndombo Benteke Momba"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1858",title:"Biodiesel",subtitle:"Quality, Emissions and By-Products",isOpenForSubmission:!1,hash:"ee4fbba87cc2259cc2e726be4cd58bfd",slug:"biodiesel-quality-emissions-and-by-products",bookSignature:"Gisela Montero and Margarita Stoytcheva",coverURL:"https://cdn.intechopen.com/books/images_new/1858.jpg",editedByType:"Edited by",editors:[{id:"69000",title:"Dr.",name:"Gisela",surname:"Montero",slug:"gisela-montero",fullName:"Gisela Montero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3525",title:"Biofuels",subtitle:"Economy, Environment and Sustainability",isOpenForSubmission:!1,hash:"c96c437f720c3cd5fec55f29198625c9",slug:"biofuels-economy-environment-and-sustainability",bookSignature:"Zhen Fang",coverURL:"https://cdn.intechopen.com/books/images_new/3525.jpg",editedByType:"Edited by",editors:[{id:"63891",title:"Prof.",name:"Zhen",surname:"Fang",slug:"zhen-fang",fullName:"Zhen Fang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"erratum-metallothioneins-saccharomyces-cerevisiae-and-heavy-metals-a-biotechnology-triad-",title:"Erratum - Metallothioneins, Saccharomyces cerevisiae, and Heavy Metals: A Biotechnology Triad?",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/60025.pdf",downloadPdfUrl:"/chapter/pdf-download/60025",previewPdfUrl:"/chapter/pdf-preview/60025",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/60025",risUrl:"/chapter/ris/60025",chapter:{id:"56597",slug:"metallothioneins-saccharomyces-cerevisiae-and-heavy-metals-a-biotechnology-triad-",signatures:"Ileana Cornelia Farcasanu and Lavinia Liliana Ruta",dateSubmitted:"December 11th 2016",dateReviewed:"July 7th 2017",datePrePublished:null,datePublished:"December 13th 2017",book:{id:"6007",title:"Old Yeasts",subtitle:"New Questions",fullTitle:"Old Yeasts - New Questions",slug:"old-yeasts-new-questions",publishedDate:"December 13th 2017",bookSignature:"Candida Lucas and Celia Pais",coverURL:"https://cdn.intechopen.com/books/images_new/6007.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"95655",title:"Prof.",name:"Cândida",middleName:null,surname:"Lucas",slug:"candida-lucas",fullName:"Cândida Lucas"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203734",title:"Dr.",name:"Ileana",middleName:"Cornelia",surname:"Farcasanu",fullName:"Ileana Farcasanu",slug:"ileana-farcasanu",email:"ileana.farcasanu@chimie.unibuc.ro",position:null,institution:{name:"University of Bucharest",institutionURL:null,country:{name:"Romania"}}},{id:"203865",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ruta",fullName:"Lavinia Ruta",slug:"lavinia-ruta",email:"lavinia.ruta@chimie.unibuc.ro",position:null,institution:{name:"University of Bucharest",institutionURL:null,country:{name:"Romania"}}}]}},chapter:{id:"56597",slug:"metallothioneins-saccharomyces-cerevisiae-and-heavy-metals-a-biotechnology-triad-",signatures:"Ileana Cornelia Farcasanu and Lavinia Liliana Ruta",dateSubmitted:"December 11th 2016",dateReviewed:"July 7th 2017",datePrePublished:null,datePublished:"December 13th 2017",book:{id:"6007",title:"Old Yeasts",subtitle:"New Questions",fullTitle:"Old Yeasts - New Questions",slug:"old-yeasts-new-questions",publishedDate:"December 13th 2017",bookSignature:"Candida Lucas and Celia Pais",coverURL:"https://cdn.intechopen.com/books/images_new/6007.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"95655",title:"Prof.",name:"Cândida",middleName:null,surname:"Lucas",slug:"candida-lucas",fullName:"Cândida Lucas"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203734",title:"Dr.",name:"Ileana",middleName:"Cornelia",surname:"Farcasanu",fullName:"Ileana Farcasanu",slug:"ileana-farcasanu",email:"ileana.farcasanu@chimie.unibuc.ro",position:null,institution:{name:"University of Bucharest",institutionURL:null,country:{name:"Romania"}}},{id:"203865",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ruta",fullName:"Lavinia Ruta",slug:"lavinia-ruta",email:"lavinia.ruta@chimie.unibuc.ro",position:null,institution:{name:"University of Bucharest",institutionURL:null,country:{name:"Romania"}}}]},book:{id:"6007",title:"Old Yeasts",subtitle:"New Questions",fullTitle:"Old Yeasts - New Questions",slug:"old-yeasts-new-questions",publishedDate:"December 13th 2017",bookSignature:"Candida Lucas and Celia Pais",coverURL:"https://cdn.intechopen.com/books/images_new/6007.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"95655",title:"Prof.",name:"Cândida",middleName:null,surname:"Lucas",slug:"candida-lucas",fullName:"Cândida Lucas"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11865",leadTitle:null,title:"Operator Theory - Recent Advances, New Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra. The description of operator algebras is part of operator theory. Single operator theory deals with the properties and classification of operators, considered one at a time. For example, the classification of normal operators in terms of their spectra falls into this category.
\r\n\r\n\tThe theory of operator algebras brings algebras of operators such as C*-algebras to the fore. Many operators that are studied are operators on Hilbert spaces of holomorphic functions, and the study of the operator is intimately linked to questions in function theory. For example, Beurling's theorem describes the invariant subspaces of the unilateral shift in terms of inner functions, which are bounded holomorphic functions on the unit disk with unimodular boundary values almost everywhere on the circle. Beurling interpreted the unilateral shift as multiplication by the independent variable on the Hardy space. The success in studying multiplication operators, and more generally Toeplitz operators (which are multiplication, followed by projection onto the Hardy space) has inspired the study of similar questions in other spaces, such as the Bergman space. Hence, operator theory has a connection with complex analysis. Additionally, this book will be intended to be an illustration of the use of operator theory when applied to solve specific problems in pure and applied mathematics, engineering, physics, or science in general.
\r\n\t
According to the
Some examples showing the existence of the conservation of energy law
It is thought that the summation of the introduction as a detailed concept map related with the conservation of energy would be better. This map in Fig.2 presents a concise view for many concepts of thermodynamics and their relations.
A concept map for the conservation of energy law
The macroscopic part of universe under study in thermodynamics is called the system. The parts of the universe that can interact with the system are called the surroundings [5]. In order to describe the thermodynamic behavior of a physical system, the interaction between the system and its surroundings must be understood. Thermodynamic systems are thus classified into three main types according to the way they interact with the surroundings (Fig.3);
The system may be homogeneous or heterogeneous. An exact definition is difficult, but it is convenient to define a
Systems and their surroundings; (a) open system (b) closed system and (c) isolated system.
Heating is a process in which the temperature of system, separated with diathermic border from its surrounding, is increased. This process leads to passing system from a state of lower energy to higher one. Heating process based on the energy difference between system and its surrounding provides identify of an important property which indicates the flow direction of energy. This property is called
If two thermodynamic systems, A
This observation has also been schematically shown in Fig.4
A schematic presentation of the zeroth law of thermodynamics.
Based on preceding observations, some of the physical properties of the system B
The zeroth law allows us to assert the existence of temperature as a state function. Having defined temperature, how do we measure it? Of course, you are familiar with the process of putting a liquid-mercury thermometer in contact with a system, waiting until the volume change of the mercury has ceased, indicating that thermal equilibrium between the thermometer and the system has been reached [5].
It is necessary to know four common different temperature scales, namely Fahrenheit (0F), Celsius (0C), Kelvin (K) and Rankine (0R). To convert these scales one another can be used the following equations [9,10].
In thermodynamics, the total energy of a system is called its internal energy, U. The internal energy is the total kinetic and potential energies of the particles in the system. It is denoted by ΔU the change in internal energy when a system changes from an initial state i with internal energy Ui to a final state of internal energy Uf :
The internal energy is a state function
A particle has a certain number of motional degrees of freedom, such as the ability to translate (the motion of its centre of mass through space), rotate around its centre of mass, or vibrate (as its bond lengths and angles change, leaving its centre of mass unmoved). Many physical and chemical properties depend on the energy associated with each of these modes of motion. For example, a chemical bond might break if a lot of energy becomes concentrated in it, for instance as vigorous vibration. According to it, the average energy of each quadratic contribution to the energy is 1/2
where
When the gas consists of molecules, we need to take into account the effect of rotation and vibration. A linear molecule, such as N2 and CO2, can rotate around two axes perpendicular to the line of the atoms, so it has two rotational modes of motion, each contributing a term 1/2
A nonlinear molecule, such as CH4 or H2O, can rotate around three axes and, again, each mode of motion contributes a term 1/2
The internal energy now increases twice as rapidly with temperature compared with the monatomic gas. Another way: for a gas consisting of 1 mol of nonlinear molecules to undergo the same rise in temperature as 1 mol of monatomic gas, twice as more energy must be supplied. Molecules do not vibrate significantly at room temperature and, as a first approximation; the contribution of molecular vibrations to the internal energy is negligible except for very large molecules such as polymers and biological macromolecules. None of the expressions we have been derived depends on the volume occupied by the molecules: there are no intermolecular interactions in a perfect gas, so the distance between the molecules has no effect on the energy. That is, the internal energy of a perfect gas is independent of the volume it occupies. The internal energy of interacting molecules in condensed phases also has a contribution from the potential energy of their interaction. However, no simple expressions can be written down in general. Nevertheless, the crucial molecular point is that, as the temperature of a system is raised, the internal energy increases as the various modes of motion become more highly excited [12].
By considering how the internal energy varies with temperature when the pressure of the system is kept constant; many useful results and also some unfamiliar quantities can be obtained. If it is divided both sides of eqn
It is usually sensible in thermodynamics to inspect the output of a manipulation like this to see if it contains any recognizable physical quantity. The differential coefficient on the right in this expression is the slope of the plot of volume against temperature (at constant pressure). This property is normally identified as thermal expansion coefficient, α, of a substance, which is defined as
When it is introduced the definition of α into the equation for (∂U/∂T)p = απT V + Cv,this equation is entirely general (provided the system is closed and its composition is constant). It expresses the dependence of the internal energy on the temperature at constant pressure in terms of Cv, which can be measured in one experiment, in terms of α, which can be measured in another, and in terms of the quantity πT, for a perfect gas, πT = 0, so
That is, the constant-volume heat capacity of a perfect gas is equal to the slope of a plot of internal energy against temperature at constant pressure as well as (by definition) to the slope at constant volume. It can also be predicted that the change of internal energy with temperature at constant pressure means a total energy change raised from increase in both energy of kinetics and potential energy of particles in higher temperature. The translational motion of particles against constant external pressure will lead to expansion, but thermal expansion characteristics of substance control its magnitude. Thus, we can see that heating in constant volume only changes internal energy as qv (ΔU = qv), whereas its change in constant pressure additionally includes changing of potential energy of particles due to translation motion. That is, changes in constant pressure require a different definition of the transferred energy [12].
It has been found experimentally that the internal energy of a system may be changed either by doing work on the system or by heating it. Whereas we may know how the energy transfer has occurred (because we can see if a weight has been raised or lowered in the surroundings, indicating transfer of energy by doing work, or if ice has melted in the surroundings, indicating transfer of energy as heat), the system is blind to the mode employed. Heat and work are equivalent ways of changing a system’s internal energy. It is also found experimentally that, if a system is isolated from its surroundings, then no change in internal energy takes place. This summary of observations is now known as the
The internal energy of an isolated system is constant.
A system cannot be used to do work, leave it isolated, and then come back expecting to find it restored to its original state with the same capacity for doing work. The experimental evidence for this observation is that no ‘perpetual motion machine’, a machine that does work without consuming fuel or using some other source of energy, has ever been built. These remarks may be summarized as follows. If we write
Equation summarizes the equivalence of heat and work and the fact that the internal energy is constant in an isolated system (for which
Heat flows by virtue of a temperature difference. Heat will flow until temperature gradients disappear [8]. When a heater is immersed in a beaker of water (the system), the capacity of the system to do work increases because hot water can be used to do more work than cold water [1].
An
Energy is the essence of our existence as individuals and as a society. Just as energy is important to our society on a macroscopic scale, it is critically important to each living organism on a microscopic scale. The living cell is a miniature chemical factory powered by energy from chemical reactions. The process of cellular respiration extracts the energy stored in sugars and other nutrients to drive the various tasks of the cell. Although the extraction process is more complex and more subtle, the energy obtained from “fuel” molecules by the cell is the same as would be obtained from burning the fuel to power an internal combustion engine [3].
The fundamental physical property in thermodynamics is work is done when an object is moved against an opposing force. Doing work is equivalent into raising a weight somewhere in the surrounding. An example of doing work is the expansion of a gas that pushes out a piston and raises a weight. A chemical reaction that derives an electric current through a resistance also does work, because the same current could be driven through a motor and used to raise a weight [1].
Work is the transferred energy by virtue of a difference in mechanical properties from a boundary between the system and the surroundings. There are many types of work; such as mechanical work, electrical work, magnetic work, and surface tension [8].
The SI unit of both heat and work (kg m2/s2) is given the name joule (J), after the English physicist James Prescott Joule (1818-1889) [6].
1 J = 1 kg m2/s2\n\t\t\t
In addition to the SI unit joule, some chemist’s still use the unit calorie (cal). Originally defined as the amount of energy necessary to raise the temperature of 1 g of water by 1oC (specially, from 14.5 oC to 15.5 oC), one calorie is now defined as exactly 4,184 J [6].
In mechanics, the work–energy theorem demonstrates that the total work done on a system is transformed into kinetic energy. This is represented in a very simple and meaningful equation as follows:
in which,
Now, if the external work is separated into two terms, namely the work done by the external conservative forces (
Similarly, the work developed by the internal forces within the system can be also expressed as the sum of a conservative work term plus the non-conservative internal work. Thus;
Where, Δ Ep,in is the internal potential energy of the system.
As for the kinetic energy of a system, mechanics shows that it can be considered as consisting of two terms, as follows:
M being the total mass of the system,vCM the velocity of its center of mass, and
Then, the substitution of equations 14, 15, 16 and 18 into equation 13 allows us to order terms as follows:
Equation 19 is a general developed expression of the work–energy theorem derived from mechanics. It should be noticed that, though it does not describe the details of the energetic terms, each of them is explicitly stated, which will be of great help both to define and to understand the contribution of thermodynamics when establishing the first law [17].
A reversible change
To achieve reversible expansion we set
(Equations valid only for reversible processes are labeled with a subscript rev.) Although the pressure inside the system appears in this expression for the work, it does so only because
The integral can be evaluated once it is known how the pressure of the confined gas depends on its volume [12].
At the isothermal, reversible expansion of a perfect gas, the work made by keeping the system in thermal contact with its surroundings can be stated as follows;
When the final volume is greater than the initial volume, as in an expansion, the logarithm in Eqn. 22 is positive and hence
The work done by a perfect gas when it expands reversibly and isothermally is equal to the area under the isotherm p = nRT/V. The work done during the irreversible expansion against the same final pressure is equal to the rectangular area shown slightly darker. It can be seen that the reversible work is greater than the irreversible work [
We are now equipped to deal with the changes that occur when a perfect gas expands adiabatically. A decrease in temperature should be expected: because work is done but no heat enters the system, the internal energy decrease, and therefore the temperature of the working gas also decrease. In molecular terms, the kinetic energy of the particles decrease as work is done, so their average speed decreases, and hence the temperature decrease. This means that in the case of perfect gas, change in the distance between particles cannot be responsible for the changing of internal energy but
In the first step, only the volume changes and the temperature is held constant at its initial value. However, because the internal energy of a perfect gas is independent of the volume the molecules occupy, the overall change in internal energy arises solely from the second step, the change in temperature at constant volume. Provided the heat capacity is independent of temperature, this change is
Because the expansion is adiabatic, we know that
To achieve a change of state from one temperature and volume to another temperature and volume, we may consider the overall change as composed of two steps. In the first step, the system expands at constant temperature; there is no change in internal energy if the system consists of a perfect gas. In the second step, the temperature of the system is reduced at constant volume. The overall change in internal energy is the sum of the changes for the two steps [
That is, the work done during an adiabatic expansion of a perfect gas is proportional to the temperature difference between the initial and final states. That is exactly what it can be expected on molecular grounds and according to
where
This result is often summarized in the form
The process of heat moving from one object into another is called heat transfer. The difference in temperature defines the direction in which the heat flows when two objects come into contact; heat always flows from a hotter object at a higher temperature into a colder object at a lower temperature. Heat transfer which can mainly occur in three ways, namely conduction, convection and radiation changes the temperature of matter; it can also cause changes in phase or state [7].
When energy is added to a substance and no work is done, the temperature of the substance usually rises i.e. substance is heated; exception to the case in which a substance undergoes a change of state-also called a phase transition, such as vaporization/condensation, melting/freezing
12.5 | 20.18 | ||
12.5 | 20.2 | ||
12.5 | 19.9 | ||
12.5 | 24.1 | ||
12.5 | 28.2 |
C v values for some mono and diatomic gases at 1 atm and 25°C.
From Table 1, it can be seen clearly that the heat capacities of all monoatomic gasses have exactly same values, but they are lower than those of diatomic gasses which include the contributions of translation vibration, and rotation.
The heat capacity is directly proportional to the amount of substance. Heat capacity is an extensive property, meaning it is a physical property that scales with the size of a physical system.That means by doubling the mass of substance, heat capacity can be doubled. The heat required to increase the temperature from T1 to T2 of a substance can be calculated using the following equation.
The unit of heat capacity is JoC-1 or JK-1. For many experimental and theoretical purposes it is more convenient to report heat capacity as an
In thermodynamics, two types of heat capacities are defined; Cp, the heat capacity at constant pressure and C v, heat capacity at constant volume. The total energy of a system in thermodynamics is called internal energy which specifies the total kinetic and potential energy of particles in the system. Internal energy of a system can be changed either by doing work on the system or heating it as a result of the conversation of energy law. The internal energy of a substance increases when its temperature is increased. By considering the total change in internal energy of a substance which is heated at constant pressure, the difference between heat capacities at two different conditions can be meaningfully interpreted. Heat capacity in terms of derivative at constant volume is expressed as follows:
The first law of thermodynamics argues that the internal energy of a system which is heated at constant-pressure differs from that at the constant-volume by the work needed to change the volume of the system to maintain constant pressure. This work arises in two ways: One is the work of driving back the atmosphere (external work); the other is the work of stretching the bonds in the material, including any weak intermolecular interactions (internal work). In the case of a perfect gas, the second makes no contribution.
In order to find out how the internal energy varies with temperature when the pressure rather than the volume of the system is kept constant; it can be divided both sides of (
It is usually sensible in thermodynamics to inspect the output of a manipulation like this to see if it contains any recognizable physical quantity. The partial derivatives on the right in this expression are the slope of the plot of volume against temperature at constant pressure, the slope of the plot of internal energy against volume at constant temperature and the slope of the plot of internal energy against temperature at constant volume, respectively. These properties are normally tabulated as the expansion coefficient, α, of a substance, which is defined as α =1/V (∂
Equation (30) is entirely general for a closed system, which may be in solid, liquid, or gas states, with constant composition. It expresses the changing of internal energy with the temperature at constant pressure depends on two terms on the right in this expression The first term is related to the potential energy of particles and it comprises internal work made against internal pressure due to thermal expansion which can be considered for all substances in solid, liquid, or gas states, but weakness of inter-particles interactions in gas state requires to take account of an additional contribution to identify the real change in internal energy of any system in gas state heated at constant pressure. The fact that for a perfect gas, πT = 0 and so (∂U/∂T)p = Cv,supports to this remark. The second term also is interested in the kinetic energies of particles. That is, the energy at the constant-pressure of any substance must defined by an another thermodynamic property or function and this function must include external work made to external pressure due to volumetric expansion of any system in gas state. This thermodynamic function which takes account of external work is the enthalpy.
The change in internal energy is not equal to the heat supplied when the system is free to change its volume. Under these circumstances some of the energy supplied as heat to the system is returned to the surroundings as expansion work, so ∆U is less than q [1].
To determine ΔE, it must be measured both heat and work which done by expanding of a gas. It can be found the quantity of pV work done by multiplying the external pressure (P) by the change in volume of the gas (ΔV, or Vfinal - Vinitial). In an open flask (or a cylinder with a weightless, frictionless piston), a gas does work by pushing back the atmosphere (Figure 7) [18].
Pressure-volume work. When the volume (V) of a system increases by an amount of ΔV against an external pressure (p), the system pushes back, and thus does pV work on the surroundings (w = -p ΔV) [
For changes at constant pressure, a thermodynamic variable called the enthalpy, H, is mathematically defined as follows [1],
where U is the internal energy of the system, p is the pressure of the system, and V is the volume of the system [3].
Since internal energy, pressure, and volume are all state functions, enthalpy is also a state function. But what exactly is enthalpy? To help answer this question, consider a process carried out at constant pressure and where the only work allowed is pressure-volume work (
becomes
or
where qp, ΔU and pΔV are the transferred energy as heat to the system heated at constant pressure, change in internal energy and change in pV, respectively. Since p is constant; the change in pV is due only to a change in volume. Thus
Heat capacity in terms of derivative at constant pressure, i.e. changes in the energy of a system heated at constant pressure is also expressed as follows:
The slope of a plot of internal energy against temperature at constant volume, for a perfect gas
Then, if
This means that in the case of a perfect gas, R, universal gas constant may be considered as the work done to push back the atmosphere per unit increase in temperature. However, the general relation between the two heat capacities for any pure substance is demonstrated as follows;
This formula is a thermodynamic expression, which means that it applies to any substance (that is, it is universally true). It reduces to previous equation for a perfect gas when it was set as α = 1/T and
Because thermal expansion coefficients, α, of liquids and solids are small, it is tempting to deduce from last equation that for them
By considering the variation of
and then, divided this equation though by dT;
The manipulation of this expression provides more involved equation which can be applied to any substance. Because all the quantities that appear in it can be measured in suitable experiments.
where the isothermal compressibility,
and the Joule – Thomson coefficient,
This expression derived for the changing of the enthalpy with temperature at constant volume suggests that change in H with increased temperature at constant V is lower than that at constant p and the difference between them depend on some characteristic properties of particles, such as
An enthalpy change can be measured calorimetrically by monitoring the temperature change that accompanies a physical or chemical change occurring at constant pressure. A calorimeter for studying processes at constant pressure is called an isobaric calorimeter. A simple example is a thermally insulated vessel open to the atmosphere: the heat released in the reaction is monitored by measuring the change in temperature of the contents. For a combustion reaction an adiabatic flame calorimeter may be used to measure ΔT when a given amount of substance burns in a supply of oxygen. Another route to ΔH is to measure the internal energy change using a bomb calorimeter, and then to convert ΔU to ΔH. Because solids and liquids have small molar volumes, for them both pVm, external work and internal work is so small that the molar enthalpy and molar internal energy are almost identical (
The heat that is given out or taken in, when a chemical reaction occurs can be measured using a calorimeter. A simple, constant-pressure calorimeter (Coffee-cup calorimeter) for measuring heat for reactions in solution is shown in Fig. 8. This figure also shows a bomb calorimeter. The container is an expanded polystyrene cup with a lid. This material provides insulation which ensures that heat loss to, or gains from the surroundings is minimized; the outer cup in Fig. 8 provides additional insulation. As the reaction takes place, the thermometer records any change in temperature.
Calorimeter types; (a) Coffee-cup calorimeter [
The relationship between the temperature change and the energy is given as follows;
where C is the specific heat capacity of the solution. Since the reaction is carried out at constant pressure, the energy is equal to the enthalpy change. For dilute aqueous solutions, it is usually sufficient to assume that the specific heat capacity of the solution is the same as for water: Cwater 4.18 J/gK. It is assumed that no heat is used to change the temperature of the calorimeter itself. Where a calorimeter is made from expanded polystyrene cups, this is a reasonable assumption because the specific heat capacity of the calorimeter material is so small. However, the approximation is not valid for many types of calorimeter and such pieces of apparatus must be calibrated before use. Measurements made in the crude apparatus shown together with in Figure 8 are not accurate, and more specialized calorimeters, such as
In a case in which the products of a reaction have a greater enthalpy than the reactants, Δ
The standard enthalpy change of a reaction refers to the enthalpy change when all the reactants and products are in their
Energy diagrams for exothermic (a) and endothermic reactions (b) [
The standard enthalpy of formation
A degree symbol on a thermodynamic function, for example, ΔH, indicates that the corresponding process has been carried out under standard conditions. The standard state for a substance is a precisely defined reference state. Because thermodynamic functions often depend on the concentrations (or pressures) of the substances involved, it must be used a common reference state to properly compare the thermodynamic properties of two substances. This is especially important because, for most thermodynamic properties, it can be measured only changes in the property
Enthalpy is a state function, so it can be chosen any convenient pathway from reactants to products and then sums the enthalpy changes along the chosen pathway. A convenient pathway, shown in Fig. 10, involves taking the reactants apart to the respective elements in their reference states in reactions (a) and (b) and then forming the products from these elements in reactions (c) and (d). This general pathway will work for any reaction, since atoms are conserved in a chemical reaction [3].
From Fig. 10, it can be seen that reaction (a), where methane is taken apart into its elements,
is just the reverse of the formation reaction for methane:
Since reversing a reaction means changing the sign of Δ
It can be secondarily considered reaction (b). Here oxygen is already an element in its reference state, so no change is needed. Thus Δ
In this pathway for the combustion of methane, the reactants are first taken apart in reactions (a) and (b) to form the constituent elements in their reference states, which are then used to assemble the products in reactions (c) and (d) [
The next steps, reactions (c) and (d), use the elements formed in reactions (a) and (b) to form the products. That is, reaction (c) is simply the formation reaction for carbon dioxide:
and
Reaction (d) is the formation reaction for water:
However, since 2 moles of water are required in the balanced equation, it must be formed 2 moles of water from the elements:
Thus
It has now been completed the pathway from the reactants to the products. The change in enthalpy for the reaction is the sum of the Δ
This process is diagramed in Fig. 11. It can be seen that the reactants are taken apart and converted to elements [not necessary for O2 (g)] that are then used to form products. It can be seen that this is a very exothermic reaction because very little energy is required to convert the reactants to the respective elements but a great deal of energy is released when these elements form the products. This is why this reaction is so useful for producing heat to warm homes and offices. If it is examined carefully the pathway used in this example, it can be understood that first, the reactants were broken down into the elements in their reference states and then the products were then constructed from these elements. This involved formation reactions and thus enthalpies of formation. The entire process can be summarized as follows:
where, ν is stoichiometric coefficients for both reactants and products. The enthalpy change for a given reaction can be calculated by subtracting the enthalpies of formation of the reactants from the enthalpies of formation of the products.
A schematic diagram of the energy changes for the reaction
Another way to calculate values of ΔH for reactions involves manipulating equations for other reactions with known ΔH values. When chemical equations are added to yield a different chemical equation, the corresponding ΔH values are added to get the ΔH for the desired equation. This principle is called
Desired
Given
Adding the two chemical equations given:
Eliminating CO from both sides results in the desired equation:
Therefore, adding these two ΔH values will give the ΔH desired:
It must be noticed that enthalpies of formation have not been used explicitly in this process [9].
The Hess’s law is shown schematically in Fig 12 [3].
A schematic diagram of Hess’s law. The same change in enthalpy occurs when nitrogen and oxygen react to form nitrogen dioxide, regardless of whether the reaction occurs in one (red) or two (blue) steps [
The overall reaction can be written in one step, where the enthalpy change is represented by Δ
This reaction also can be carried out in two distinct steps, with enthalpy changes designated by Δ
Net reaction:
The sum of the two steps gives the net, or overall, reaction and that
The standard enthalpies of many important reactions have been measured at different temperatures. However, in the absence of this information, standard reaction enthalpies at different temperatures may be calculated from heat capacities and the reaction enthalpy at some other temperature (Fig. 13). In many cases heat capacity data are more accurate than reaction enthalpies. It follows from eqn
H (T1) to
(It has been assumed that no phase transition takes place in the temperature range of interest.) Because this equation applies to each substance in the reaction, the Standard reaction enthalpy changes from Δ
where
Equation 71 is known as
Congenital malformations involving the gastrointestinal tract (GIT) can be broadly divided into upper and lower gut abnormalities (Table 1). Upper pathology involves the foregut tubes, which are proximal to the ligament of Treitz: the esophagus, stomach, duodenum, pancreas and hepatobiliary tract. Lower GIT anomalies include the mid and hindgut structures: the jejunum and ileum, which constitute the small bowel, the colon and anorectal malformations. Congenital anomalies can further be classified based on whether the defect is structural or functional. Structural anomalies result from either defective embryogenesis or intrauterine complications, such as ischemia. Functional defects have normal anatomy but disrupted flow of GIT contents. In most cases, structural defects adversely impact functional capability. This chapter reviews the clinical presentation, diagnostic work up and surgical management of upper and lower GIT congenital anomalies.
Anatomic relation | Embryonic source | Blood supply | Viscera | |
---|---|---|---|---|
Upper gastrointestinal tract | Proximal to ligament of Treitz | Foregut | Celiac axis | Esophagus Stomach Duodenum Biliary ducts Liver Pancreas |
Lower gastrointestinal tract | Distal to ligament of Treitz | Midgut | SMA | Jejunum Ileum Cecum Ascending colon Proximal 2/3 transverse colon |
Hindgut | IMA | Distal 1/3 transverse colon Descending colon Sigmoid colon Rectum Anal canal |
Embryologic derivates of the gastrointestinal tract.
SMA: superior mesenteric artery; IMA: inferior mesenteric artery.
During the fourth week of gestation, the embryonic ventral foregut differentiates into the esophagus and trachea. Muscular and neurovascular development of the esophagus is complete by the end of ninth week of gestation. It is likely that esophageal malformations result from errors during this developmental time period.
EA/TEF is categorized into five types and clinical presentation varies depending on the type of pathology (Figure 1). Type A is the most common (90% cases) and consists of proximal EA with a distal TEF. Type B consists solely of proximal EA (no fistula) whereas type C only has a TEF (no atresia). Type D has both a proximal and distal TEF in the setting of atresia. Type E consists of proximal EA with TEF and a distal esophageal pouch. Types D and E are exceedingly rare.
Types of tracheoesophageal fistulae depicted as figures A-E.
The infant will exhibit drooling and attempts at feeding will result in coughing, choking and regurgitation. Since types B and E have a proximal obstruction without distal fistulization, the infant will have a scaphoid abdomen and gas will not be seen in the bowel distally on radiograph. Type C may present with recurrent aspiration pneumonia and may not be diagnosed until later in life.
Prenatal ultrasound will demonstrate polyhydramnios and the blind end of the esophageal pouch may be visualized. After birth, unsuccessful attempt at passage of an oro- or nasogastric tube is diagnostic. The tip of the tube will be seen in the esophageal pouch on radiography.
Because of the VACTERL phenomenon (vertebral, anal, cardiac, tracheoesophageal, renal and limb deformities), renal and cardiac ultrasounds as well as plains films of the spine and limbs must be obtained to determine the presence of any other anomalies. An echocardiogram is particularly essential to ensure that the aortic arch is in its normal left-sided anatomic location because this impacts operative planning. Ventricular septal defect is the most common anomaly associated with EA/TEF.
Ideally, EA/TEF is corrected in a single procedure. Staged procedure, beginning with decompressive gastrostomy and fistula takedown, followed by esophageal reconstruction at a later date, is reserved for those too unstable to tolerate general anesthesia due to respiratory or cardiac defects. Infants with long gap atresia also undergo delayed repair to allow elongation of the proximal and distal esophageal ends.
In current practice, the minimally invasive approach using video assisted thoracoscopy is preferred to open thoracotomy. If the open approach is employed, a right posterolateral thoracotomy incision is made at the fourth intercostal space, sparing the serratus anterior and latissimus dorsi muscles. Extrapleural dissection is carried until the azygous vein is encountered, which is then divided. In the case of type A, the lower esophageal pouch and its associated fistula are identified. The fistula is resected. The proximal esophageal pouch is then mobilized to establish tension free continuity between the two ends. If a proximal fistula is present, this is ligated prior to mobilization. The esophagus is reconstructed via a single layer end-to-end anastomosis. A chest tube is placed and remains until post-operative esophogram confirms patency of the anastomosis. Anastomotic leaks tend to heal without intervention and are managed by continuation of chest tube and antibiotics.
Thoracoscopic approach has led to improved outcomes and most infants grow to lead fairly normal lives, given the lack of concurrent anomalies such as cardiac defects. Most commonly, gastroesophageal reflux (GER) and esophageal strictures are lifelong issues endured by the patient. GER may be asymptomatic or lead to persistent cough, respiratory problems or esophageal stricturing. Primary management is medical with anti-reflux medications and prokinetics. Surgical correction of GER with fundoplication is last resort. Esophageal strictures may form many years after repair and are best managed by endoscopic dilation. Recurrent or refractory esophageal strictures require surgical resection and re-anastomosis.
It results due to the failure of duodenal recanalization and most commonly occurs in the second portion of the duodenum distal to ampulla of Vater but any segment can be affected.
Emesis and feeding intolerance occurs in the first 24–48 h of life. The type of emesis—bilious versus non—depends on the location of atresia relative to the major duodenal papilla. If obstruction is distal to it, infant will exhibit bilious emesis. Obstruction proximal to the ampulla causes non-bilious emesis. Abdomen will not be distended due to proximal nature of obstruction. A palpable mass in the epigastrium may be appreciated on physical exam.
The “double bubble” on abdominal x-ray indicates air in stomach and duodenum but not in distal small bowel and colon. An UGI series must be obtained to rule out malrotation, which can also present with bilious emesis early in life and is a surgical emergency. UGI may reveal a duodenal web, which is an intraluminal diverticulum that appears as an elongated, conical silhouette resembling a “windsock”. Echocardiogram and renal ultrasound are performed to rule out any other defects as there is an association with trisomy 21 and its related complications.
“The diamond D”, Diamond Duodenoduodenostomy—A transverse incision is made in the proximal widened duodenum and a longitudinal incision in the distal tapered portion of the duodenum (Figure 2). The anastomosis is created in a diamond shape to facilitate mucosal abutment between the two incongruent duodenal diameters. During repair, evaluation for duodenal web must be performed because they are not always identified on pre-operative UGI and can cause persistent obstruction if not corrected. If present, a longitudinal duodenotomy is performed over the area of the web and it is excised. Careful attention must be paid to its location relative to the major duodenal papilla so as to not disrupt the integrity of the ampulla of Vater. The duodenotomy is closed in a transverse fashion to avoid narrowing of the lumen.
Diamond duodenoduodenostomy for duodenal atresia repair.
There tend to be few, if any, long term complications following correction of duodenal atresia. Persistent obstruction may indicate missed duodenal web and requires re-operation. Delayed gastric emptying may occur in the early postoperative period and does not warrant any intervention; most cases resolve with time and enteral feedings can be advanced in small volumes as tolerated.
The exact etiology is unknown. Exposure to erythromycin has been implicated as a risk factor [1].
It is characterized with feeding intolerance and non-bilious emesis that becomes projectile over time; usually presenting around 2–4 weeks of life, however, may not present up until 6–12 weeks. Emesis is non-bilious because the site of obstruction, the pylorus, is proximal to the ampulla of Vater. It tends to occur in first born Caucasian males.
On physical exam, may be able to palpate an “olive like” firm, mobile mass in the right upper quadrant or epigastrium, however this is often difficult to appreciate on a restless infant. Abdomen is otherwise soft and non-distended. Ultrasound is diagnostic and demonstrates a pyloric channel length ≥ 16 mm, wall ≥4 mm in thickness.
Repeated vomiting of gastric acid (HCl) leads to hypochloremia, alkalosis and dehydration. Hypovolemia stimulates aldosterone secretion with resultant sodium resorption and potassium secretion. Thus, the infant’s laboratory panel will reveal hypochloremic, hypokalemic metabolic alkalosis. Hydrogen is shifted extracellularly in exchange for potassium to correct the acid–base imbalance, exacerbating hypokalemia. Eventually, worsening hypokalemia stimulates the renal hydrogen-potassium pump to resorb potassium and secrete hydrogen, resulting in acidic urine. This is termed “paradoxical aciduria” because bicarbonate secretion should take precedence in an alkalotic state, but the nephrons prioritize correction of potassium at the expense of hydrogen loss instead.
Pyloric stenosis is not a surgical emergency and operative intervention is deferred until electrolytes have normalized, ideally, chloride >95, bicarbonate <30. As the primary metabolic derangements are caused by volume and gastric juice loss, resuscitation should be initiated with 10-20 cc/kg normal saline boluses. Once volume status has been adequately restored and urine output robust, potassium containing fluids (D5 1/2NS + 10 K/L) are administered at maintenance rate.
The Ramstedt pyloromytomy was historically carried out through a right subcostal transverse incision however the laparoscopic approach is becoming preferred in current practice. A longitudinal incision along the anterior surface of the pylorus is carried down through the serosa and hypertrophied muscle until the submucosa protrudes, much like slicing the tough outer skin of a grape until the smooth inner flesh is encountered. The length of the myotomy extends from the antrum of the stomach proximally to the pyloric vein of Mayo distally, which designates the junction of the pylorus and proximal duodenum. Oral feeding may be initiated 6–8 h post-operatively and advanced as tolerated.
Long term results from pyloromyotomy are excellent and few infants, if any, have residual complications. Incomplete myotomy can present with persistent feeding intolerance in the peri-operative period and requires re-operation.
The pathophysiology is unknown. Between 4 and 10 weeks of gestation, the extrahepatic biliary tract develops from the hepatic diverticulum. This occurs normally. In the post-natal period, there appears to be an inflammatory process that causes fibrosis of the extrahepatic biliary ducts [2].
Worsening jaundice unamenable to phototherapy during the first 2 weeks of life, subsequently demonstrating unrelenting direct hyperbilirubinemia are characteristic. Laboratory values are consistent with biliary obstruction and demonstrate direct hyperbilirubinemia and elevated alkaline phosphatase. Signs of cholestasis, dark urine and light or gray colored stools are present.
Hepatobiliary technetium-99 iminodiacetic acid scan (99-Tc IDA) has highest sensitivity and specificity [2]. Normally, the radiotracer is taken up by hepatocytes and readily excreted into the intestines via the biliary ducts. In biliary atresia, technetium will be taken up by the liver normally, but obstruction of the extrahepatic ducts prevents outflow of radiotracer into the duodenum. Abdominal ultrasound may reveal a small or obliterated gallbladder. Magnetic resonance cholangiopancreatography (MRCP) is also be helpful in ruling out intrahepatic atresia or choledocal cysts.
Expeditious operative intervention is imperative as liver damage can be attenuated, even reversed, and chance of survival improved with early biliary decompression. Beyond 3–4 months, irreversible liver damage may preclude successful outcome. The Kasai portoenterostomy is the procedure of choice. First, an intraoperative cholangiogram is performed to delineate the anatomy of the biliary tree and confirm the diagnosis. A liver biopsy is obtained to document degree of liver damage. Next, the fibrotic common bile duct is dissected from the hepatoduodenal ligament up to the level of the porta hepatis and excised. An approximately 20 cm limb of jejunum is brought up in a retrocolic fashion and a Roux-en-Y hepaticojejunostomy is created.
Successful, long term establishment of bile flow correlates with earlier surgical intervention. Infants aged <60 days at time of surgery have best results. Approximately one-third of children undergoing portoenterostomy have a 10-year or greater survival, while the rest will ultimately succumb to liver failure and require transplant. Other indications for liver transplant include presence of intrahepatic atresia, fat soluble vitamin deficiencies causing failure to thrive and variceal bleeding secondary to portal hypertension. 5-year survival following liver transplant ranges from 75 to 95% [2].
Apart from progressive liver failure, cholangitis is another major post-operative complication occurring in as much as 50% of patients who undergo portoenterostomy [2]. Decreased bile flow indicated by elevated total bilirubin in the setting of fever and leukocytosis is essentially diagnostic of cholangitis until proven otherwise. It is managed with IV antibiotics and fluid resuscitation.
Etiology is unknown. Aberrant pancreaticobiliary junction near the duodenal wall has been suggested [3].
Infants present with symptoms of biliary obstruction: progressive jaundice, dark urine, light colored stools. A tender abdominal mass may be palpated in the right upper quadrant. Laboratory values will be consistent with biliary obstruction and demonstrate elevated direct bilirubin and alkaline phosphatase. Patients may also present with cholangitis or pancreatitis.
While abdominal ultrasound and hepatobiliary 99-Tc IDA scan are useful, MRCP best delineates the anatomy of the biliary tree and is the diagnostic test of choice. There are five types (Figure 3). Type 1 is the most common and presents as saccular or fusiform dilation of the common bile duct (CBD; Figure 3A). Intrahepatic ducts are normal. Type 2 is an isolated CBD diverticulum (Figure 3B). Type 3 is a choledochocele, in which there is cystic dilation of the supra-duodenal CBD, prior to its junction with the pancreatic duct (Figure 3C). In type 4 disease, intra- and extra-hepatic bile ducts are dilated whereas in type 5 disease only intra-hepatic ducts are dilated (Figures 3D,E).
Normal anatomy of the hepatobiliary tree and its relationship to the pancreas and duodenum. (A) Choledocal cyst type 1: fusiform dilation of the extrahepatic duct common bile duct. (B) Choledocal cyst type 2: isolated diverticulum off the common bile duct. (C) Choledocal cyst type 3: supraduodenal choledococele. (D) Choledocal cyst type 4: cystic dilation of intra- and extra-hepatic bile ducts. (E) Choledocal cyst type 5, dilation of intra-hepatic ducts only.
Given the risk of cholangiocarcinoma, highest in types I and IV, surgical intervention is indicated at the time of diagnosis of any type of choledochal cyst. The approach depends on type of lesion. For type 1 cysts, primary cyst excision with cholecystectomy and roux-en-Y hepaticojejunostomy reconstruction is procedure of choice. Type 2 disease is managed by simple diverticulectomy. Type 3 is managed by transduodenal cyst excision or marsupialization and sphincteroplasty. Types 4 and 5 may be treated by anatomic hepatic resection based on the extent and location of disease, however, liver transplantation is ultimately required in most cases.
Excision of choledocal cysts result in excellent long-term outcomes with few major complications. Biliary tract malignancy, the most feared complication, may occur with incomplete excision. Cholangitis, stricture formation and choledocolithiasis are lesser significant complications that are managed medically and endoscopically, respectively.
Midgut development begins around the fifth week of gestation. The midgut starts as a vertical tube and has two connections: a ventral connection to the yolk sac via the omphalomesenteric (vitelline) duct and a dorsal attachment to the posterior abdominal wall, the mesentery [4, 5, 6]. The dorsal mesentery is the conduit for the superior mesenteric artery (SMA), which buds from the aorta, and delivers blood to the midgut. The lengthening gut tube outgrows the confines of the abdominal cavity and consequently herniates into the umbilical cord. As it elongates, it rotates 90° in a clockwise direction relative to the embryo (counterclockwise if visualized from the front). The midgut tube continues to grow extra-abdominally during gestational weeks 6–10. Around week 10, it retracts back into the abdominal cavity, rotating another 180° while doing so. Final intra-abdominal growth and fixation ensue, placing the cecum in the right lower quadrant and the duodeno-jejunal junction to the left of the upper midline, inferior to the SMA. The mesentery broadens, fanning out from its root in the posterior abdominal wall, to support the blood vessels and lymphatics that serve the jejunum, ileum, cecum/appendix, ascending colon and proximal 2/3 of the transverse colon. It is believed that ischemic events during this period cause jejunoileal atresia.
Atresia causes a structural obstruction that prevents passage of meconium in the first 24–48 h of life and results in bilious emesis. On physical exam, the abdomen will be distended.
Jejunoileal atresia is classified into four types (Figures 4A–E). Type 1 is an intraluminal web with intact mesentery (Figure 4A). The seromuscular layers of bowel remain in continuity. Type 2 also has an intact mesentery, but the two ends of bowel are disconnected by a fibrous cord (Figure 4B). Type 3a has a small v-shaped mesenteric defect that separates two blind ends of bowel (Figure 4C). In type 3b disease, known as an “apple-peel” or “Christmas-tree” deformity, a large mesenteric defect separates the proximal and distal ends of bowel. The proximal pouch is very dilated, and the distal collapsed bowel is supplied by a small vessel around which it repeatedly winds (Figure 4D). Type 4 consists of numerous blind ended segments of bowel with discontinuous mesentery, appearing as a “string of sausages” (Figure 4E).
(A) Type 1 jejunoileal atresia. (B) Type 2 jejunoileal atresia. (C) Type 3a jejunoileal atresia. (D) Type 3b jejunoileal atresia. (E) Type 4 jejunoileal atresia.
Abdominal x-ray will reveal dilated portions of bowel proximal to the site of obstruction with collapsed loops and paucity of air in the distal bowel. Contrast enema will demonstrate an abrupt transition from the filling to non-filling segments of small bowel and the colon will be appear small, <1 cm diameter, due to lack of use. In all cases of bilious emesis, an UGI series is warranted to rule out malrotation, a surgical emergency. UGI will reveal contrast filling in the stomach and proximal bowel, with abrupt cessation of contrast filling at the point of atresia.
Initial management begins with insertion of an oro- or nasogastric tube for bowel decompression and fluid resuscitation. Resection of atretic segments with end-to-end anastomoses is the procedure of choice; however, this can prove quite difficult in cases where ends of bowel are greatly mismatched in diameter. In such circumstances, the anastomosis is created in a fashion similar to duodenoduodenostomy in which the smaller end of bowel is incised longitudinally along its anti-mesenteric border to fit the end of the larger caliber bowel. Prior to completing the anastomosis, the entire length of the bowel must be inspected to ensure there are no intraluminal webs or fenestrations that may cause persistent obstruction. The goal is to resect all defunct bowel segments while maintaining enough length to ensure adequate resorptive capacity. If the ileocecal valve is spared, enteral nutrition can be tolerated with as little as 15–20 cm of small bowel. Otherwise, a length of approximately 40 cm is required [4]. Mesenteric defects are closed, taking care not to disrupt the feeding blood vessels.
Intestinal dysmotility, even in infants that have adequate remaining bowel length, may occur for many weeks following repair. Infants with short bowel syndrome, those with less than 40 cm, often require long term parenteral nutrition, which itself carries risks of sepsis and liver damage. Nonetheless, overall mortality is low and related to co-morbidities, such as low birth weight and/or cardiac defects.
As described above, normal 270° rotation and fixation of the midgut fails to occur [4, 5, 6, 7]. This lack of rotation positions the duodenum and small bowel to the right of the midline and the large bowel to the left. The cecum remains anterior to the duodenum and is tethered to the abdominal wall by lateral peritoneal attachments. These lateral peritoneal attachments, known as Ladd’s bands, compress the duodenum, thereby causing obstruction and resultant bilious emesis. The root of the mesentery is narrowed and may potentially act as fulcrum around which the bowel can twist (“volvulize”), thereby kinking the SMA and causing ischemia (Figure 5).
Intestinal malrotation showing abnormal position of cecum and Ladd’s bands
Acute malrotation with midgut volvulus presents with feeding intolerance and bilious emesis, usually around the first week of life. Abdominal rigidity, overlying erythema are signs of peritonitis and indicate ischemic bowel. Abdominal distention will not be present given the very proximal nature of pathology. As feeding intolerance and bilious emesis are symptoms of multiple pathologies, a high index of suspicion is required to make this diagnosis.
An abdominal X-ray is typically first obtained, though rarely helpful in establishing the diagnosis. Any concern for malrotation mandates a prompt UGI. A normal study will reveal contrast exiting the pylorus, descending through the second portion of the duodenum and crossing the midline through the third portion of the duodenum into the small bowel. Thus, a normal “C-loop” will be visualized. An abnormal study will demonstrate contrast exiting the pylorus and descending straight down to the right of the midline into the small bowel.
Once the diagnosis of acute malrotation is made, the patient is taken emergently to the operating room for detorsion and evaluation of bowel viability. Fluid resuscitation, insertion of oro- or nasogastric tube for decompression and administration of intravenous antibiotics have ideally been implemented prior to surgical intervention. The bowel is eviscerated and detorsed in a counterclockwise direction, fanning out its mesentery. Ladd’s bands are incised to release the obstruction. Any frankly necrotic appearing bowel is resected, while dusky bowel can be re-evaluated and usually salvaged in a second look operation 24–48 h later. Ends of healthy, viable bowel can be anastomosed, otherwise stomas are placed. A prophylactic appendectomy is performed to eliminate the possibility of appendicitis in the future. If a second look operation is required, the abdomen is left open and covered with a temporary sterile dressing; if not, it is closed.
Without significant intestinal necrosis requiring resection, outcomes following correction of malrotation are quite favorable. Infants grow normally and do not have any major adverse sequelae. Rarely, adhesive small bowel obstruction may occur years later, however any operation carries this risk.
This condition occurs as a result of the failure of the omphalomesenteric (vitelline) duct to completely involute between weeks 5–7 of gestation (Figure 6).
Omphalocele (left) and gastroschisis (right). The herniated intestine is covered with a sac with umbilical cord attached to it in omphalocele, while the intestinal loops in gastroschisis herniate through a defect on the right side of umbilicus and are not covered.
Meckel’s diverticulum is the most common congenital GIT malformation and the most common cause of painless lower intestinal bleeding in children. It usually presents by the age of 2 years, but presentation can be delayed into the teenage years. There is a male predominance. The bleeding is typically brisk and bright red. Laboratory values will demonstrate anemia. A fibrous cord connecting the diverticulum to the abdominal wall may be present and can act as a point around which bowel can obstruct, twist or intussuscept. In such cases, the child will present with abdominal pain and distention, inability to pass flatus or move their bowels.
Technetium-99 pertechnate scintigraphy (“Meckel’s scan”) localizes the bleeding ulcer. The diverticulum is typically found within 2 feet proximal to the ileocecal valve, on the anti-mesenteric side of the ileum and contains heterotopic mucosa, usually that of gastric or pancreatic in origin. Ulceration and bleeding occur secondary to acid secretion from the heterotopic mucosa. It is a true diverticulum involving all four layers of the bowel.
If bleeding is the presenting symptom, ileal resection with primary anastomosis is the procedure of choice. Segmental resection is also indicated in cases complicated by diverticulitis, perforation, obstruction, volvulus or if the base of the diverticulum is very wide. Simple diverticulectomy may be performed if the neck of the diverticulum is narrow, or if diverticulitis does not involve the base.
Resection of Meckel’s diverticulum has an excellent prognosis without major long term post-operative complications.
These are congenital defects of the abdominal wall, not of the gastrointestinal tract itself, but are discussed because they are associated with malrotation (Figure 6).
Numerous physical characteristics differentiate omphalocele from gastroschisis. The abdominal wall defect in omphalocele is midline, versus to the right of the umbilicus in gastroschisis. Defects tend to be smaller in gastroschisis, typically ≤3 cm. In comparison, omphaloceles can vary widely in diameter, ranging in size from 2 to 15 cm. Larger defects allow for herniation of more organs, namely the liver and spleen. This rarely, if at all, occurs in gastroschisis. Herniated contents are covered by an amniotic sac in omphalocele but not in gastroschisis. Exposure of the bowel to amniotic fluid during gestation causes the bowel to become thickened and the mesentery fibrotic whereas bowel is normal in omphalocele since it is protected by the overlying sac. Lastly, omphalocele has a higher association with chromosomal abnormalities and other congenital anomalies compared gastroschisis. Intestinal atresia may be seen in gastroschisis.
These defects may be appreciated on pre-natal ultrasound and are therefore expected upon delivery. Chest radiography, echocardiogram and renal ultrasound are performed to rule out associated anomalies in the case of omphalocele, as is karyotyping though this may have been performed prenatally.
Exposure of intestinal contents to the environment can result in significant insensible losses. Initial management aims to maintain adequate volume status and body temperature. The infant is placed under a warmer, fluid resuscitation commenced, and urinary catheter inserted to strictly monitor volume status. Oro- or naso-gastric tube is placed for bowel decompression. Intestinal contents are wrapped in a moist, sterile plastic dressing to prevent evaporative losses. In the case of omphalocele, care must be taken to prevent rupture of the protective sac. The goals of operation are to return the herniated contents into the abdominal cavity and close the defect. If this is unable to be accomplished either because the infant is too unstable to be taken to the operating room or because there is high risk of abdominal compartment syndrome, a silo can be sutured in place over the herniated viscera and contents gradually reduced. Daily manual reduction can be performed bedside, gently as tolerated, with complete reduction usually achieved over 3–7 days. The resultant ventral hernia is repaired once all viscera have been reduced and the infant deemed fit to tolerate general anesthesia.
Given the protective nature of the overlying sac in omphalocele, infants typically have normal bowel function following reduction and abdominal wall repair. Long term complications are related to concomitant congenital defects. In contrast, patients with gastroschisis, especially if they also have intestinal atresia, are subject to dysmotility, malabsorption and are at increased risk of developing necrotizing enterocolitis. These infants often require long term parenteral nutrition following surgical correction.
Aganglionosis of the myenteric plexus due to failure of neural crest cell migration during weeks 6–12 of embryonic development. Most often occurs in the rectum though any portion and, rarely, the entire bowel can be affected. The myenteric plexus lies in between the outer longitudinal and inner circular muscle layers of the colon and is responsible for peristalsis.
Aganglionosis results in a functional obstruction manifesting as failure to pass meconium within first 24 h of life. Abdominal distention may be present. Rectal stimulation causes explosive passage of air and stool. Because disease is distal, infant will likely be able to tolerate oral intake though may have intermittent episodes of bilious emesis. Less severe disease may not manifest until later in childhood, up to 2–3 years of age, with chronic constipation. There is an association with trisomy 21. Therefore, work up includes echocardiogram to rule out concomitant cardiac defects.
Gold standard is suction rectal biopsy, which demonstrates aganglionosis of the myenteric plexus. Biopsy should be obtained 1–1.5 cm proximal from the dentate line to ensure rectal specimen is obtained. Pathology will reveal unmyelinated nerve fibers with hypertrophied endings that stain darkly with acetylcholinesterase. Abdominal X-ray shows dilated proximal bowel with collapsed distal colon. Contrast enema is helpful in distinguishing transition zone between affected and normal colon however, gross anatomic distinction does not always correlate with histopathology [8].
Although various operative methods have been described, the fundamental principle of each procedure is the same: to establish continuity between the normal, ganglionic segments of bowel. In the past, multi-stage operations beginning with decompressive colostomy followed by definitive repair was common. Nowadays, single-stage laparoscopic approach is preferred. Regardless of procedure, however, intra-operative frozen section must be performed to confirm the presence of normal ganglionic colon prior to anastomosis, otherwise dysfunction will continue post-operatively.
The rectum/aganglionic segment is dissected circumferentially, everted through the anus and resected. Normal colon is pulled down and a low end-to-end colorectal anastomosis is created.
The aganglionic portion of bowel is bypassed and a posterior end to side anastomosis is created between the innervated segments of colon and distal rectum. The rectum is stapled at the proximal margin of disease. An incision is made in the distal posterior wall of the rectal stump approximately 1 cm superior to the dentate line. The innervated colon is pulled down through the presacral space and then anastomosed in an end-to-side fashion to the distal posterior rectal wall. The defunct rectal stump is left in place.
Circumferential endorectal dissection of rectal mucosa and submucosa, followed by evagination of these layers through the anus for resection. A rectal muscular channel remains, and innervated colon is intussuscepted through the remaining rectal muscular channel. A colorectal anastomosis is performed at the distal end of the muscular channel [9].
No single procedure has been shown to be superior to other in terms of long-term outcomes, and up to 90% patients will have relatively normal bowel function following repair. Although results tend to be quite favorable, one significant cause of significant morbidity and mortality is Hirschsprung’s enterocolitis. While the exact etiology of this entity is unknown, bacterial overgrowth and translocation appear to be implicated. Patients present with fever, abdominal distention and diarrhea. Management consists of fluid resuscitation, IV antibiotics and rectal irrigation. Refractory cases require surgical decompression with a proximal ostomy. Other complications such as anastomotic leak, stricture, abscess, wound infection and obstruction occur in up to 10% cases [1].
During the 5th week of gestation, the midline urorectal septum descends in a caudal direction toward the cloaca and divides into ventral and dorsal portions. The ventral bud becomes the urogenital sinus, which develops into the urethra and bladder. The dorsal bud becomes the rectum and anal membrane. The anal membrane involutes around week 8, thereby forming the anus. Dysgenesis can occur at any time point, allowing for variability in clinical presentation.
An anatomical distinction based on the pathology’s relation to the levator ani muscle complex was first described by Pena. The levator ani complex supports the pelvic floor and is composed of three striated muscles: the puborectalis, the pubococcygeus and the iliococcygeus. The puborectalis encircles the base of the rectum, helps to form the external anal sphincter and thereby plays an integral role in regulating defecation. Anorectal dysgenesis above the levator ani muscles is considered a “high” lesion. Conversely, lesions inferior to the levator ani complex are termed “low” malformations. Generally speaking, higher malformations tend to cause more severe issues with controlling defecation as the neuromuscular development between the levator ani complex and growing recto-anus is compromised to a greater degree.
Failure to pass meconium in the first 24–48 h of life. Physical exam will reveal abdominal distention and absence of anus. A subtle opening in the perineum through which small amounts of meconium pass may be present and indicates an anoperineal fistula in the setting of a low imperforate anus. This is the most common pathology seen. In females, low lesions may also be associated with a rectovestibular fistula, and meconium may be expressed through the vagina. Elimination of meconium during urination indicates rectourethral or rectovesicular fistula and a high rectal pouch.
Diagnosis is made upon physical examination of the perineum. Historically, an invertogram was performed to evaluate the length of atresia. In this study, a radiopaque marker is placed on the infant’s bottom, where the anus would normally be located, and the infant is placed in a head down position to allow air to ascend at the most inferior point in the rectum. Lateral films of the pelvis are then obtained. The distance between the marker and distal rectum indicate the level of pathology—high vs. low. Now, ultrasound is preferred.
Anorectal malformations are part of the VACTERL syndrome and most commonly associated with concomitant genitourinary defects. In addition to a renal ultrasound, a voiding cystourethrogram should be obtained, especially if a rectourethral/rectovesicular fistula is suspected as this can help delineate the tract. Plains films of the chest, limbs and spine as well as an echocardiogram help identify the presence of other anomalies. Any other life-threatening co-morbidities take precedence, and a temporary diverting ostomy can be placed until definitive repair can be safely performed, usually between 8 and 12 months of age.
Posterior sagittal anorectoplasty (PSARP) is the surgical procedure performed. The infant is placed in a prone jack-knife position. If a perineal fistula is present, an incision is made around the fistula and carried posteriorly toward the coccyx. If no perineal fistula is present, the incision starts inferior to the coccyx and is carried down to the perineum. It is imperative to remain midline. This is ensured by visualizing striated muscle fibers, which run perpendicular to the incision. If fat is encountered during the dissection, this indicates that the operator has deviated from midline and entered the lateral ischioanal/ischiorectal space. The rectum is identified by its overlying glistening fascia and then freed circumferentially, beginning posteriorly and advancing anteriorly until the fistula is encountered. The fistula is resected. After the fistula is taken down, the anterior rectal wall is freed from its surrounding structures. In females, the anterior rectum lies in close proximity to the posterior vaginal wall and in males, the prostate and bladder. The anterior rectal wall is gently dissected off these structures up to the peritoneal reflection. Complete, circumferential dissection of the rectum will allow for tension-free pull down and anastomosis. The rectum is situated in its anatomic position in the muscle complex. The muscle complex is repaired around the properly positioned rectum and the neoanus is created by suturing mucosa to the perineum.
Long terms outcomes are dependent on the level of pathology—high versus low anorectal dysgenesis—and the extent of neuromuscular development of the levator ani complex and rectum. Almost all children will require some degree of lifestyle modifications to manage fecal incontinence or, conversely, chronic constipation. This is achieved by strict bowel regimens with enemas or cathartics. In more severe cases, a cecostomy or appendicostomy may be required to allow for daily antegrade enemas. Worst case scenarios may necessitate a diverting ostomy.
The contribution of Natalia Louise Smith is greatly appreciated for drawing the figures numbered as 1-to-6.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"12"},books:[{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12222",title:"Advances and Challenges in Microplastics",subtitle:null,isOpenForSubmission:!0,hash:"a36734a551e0997d2255f6ce99eff818",slug:null,bookSignature:"Prof. El-Sayed Salama",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",editedByType:null,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12223",title:"Sustainable Management of Natural Resources",subtitle:null,isOpenForSubmission:!0,hash:"1881a08bbd8f5dc1102c5cb7c635bc35",slug:null,bookSignature:"Dr. Mohd Nazip Suratman and Dr. Engku Azlin Rahayu Engku Ariff",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",editedByType:null,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"42",title:"Alimentology",slug:"alimentology",parent:{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:14,numberOfSeries:0,numberOfAuthorsAndEditors:295,numberOfWosCitations:135,numberOfCrossrefCitations:155,numberOfDimensionsCitations:289,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"42",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",slug:"potassium-in-human-health",bookSignature:"Jie Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",editedByType:"Edited by",editors:[{id:"181267",title:"Dr.",name:"Jie",middleName:null,surname:"Tang",slug:"jie-tang",fullName:"Jie Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",isOpenForSubmission:!1,hash:"8b43add5389ba85743e0a9491e4b9943",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:"Edited by",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11021",title:"B-Complex Vitamins",subtitle:"Sources, Intakes and Novel Applications",isOpenForSubmission:!1,hash:"ad50bc292cda8d24f11aef2f5ef88f51",slug:"b-complex-vitamins-sources-intakes-and-novel-applications",bookSignature:"Jean Guy LeBlanc",coverURL:"https://cdn.intechopen.com/books/images_new/11021.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",middleName:null,surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",isOpenForSubmission:!1,hash:"6c3ddcc13626110de289b57f2516ac8f",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10631",title:"Vitamin D",subtitle:null,isOpenForSubmission:!1,hash:"34a58a10957f49842f0b13d78ccacb09",slug:"vitamin-d",bookSignature:"Öner Özdemir",coverURL:"https://cdn.intechopen.com/books/images_new/10631.jpg",editedByType:"Edited by",editors:[{id:"62921",title:"Dr.",name:"Öner",middleName:null,surname:"Özdemir",slug:"oner-ozdemir",fullName:"Öner Özdemir"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7038",title:"Vitamin D Deficiency",subtitle:null,isOpenForSubmission:!1,hash:"ba24f0913341357b0779ff9529c4bbfc",slug:"vitamin-d-deficiency",bookSignature:"Julia Fedotova",coverURL:"https://cdn.intechopen.com/books/images_new/7038.jpg",editedByType:"Edited by",editors:[{id:"269070",title:"Prof.",name:"Julia",middleName:null,surname:"Fedotova",slug:"julia-fedotova",fullName:"Julia Fedotova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8594",title:"Fads and Facts about Vitamin D",subtitle:null,isOpenForSubmission:!1,hash:"1731029867f0d79c633e3408fc03ebd2",slug:"fads-and-facts-about-vitamin-d",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/8594.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,isOpenForSubmission:!1,hash:"dad04a658ab9e3d851d23705980a688b",slug:"vitamin-a",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",editedByType:"Edited by",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7033",title:"Vitamin C",subtitle:"an Update on Current Uses and Functions",isOpenForSubmission:!1,hash:"719a5742e3271393fe43864e13e996cd",slug:"vitamin-c-an-update-on-current-uses-and-functions",bookSignature:"Jean Guy LeBlanc",coverURL:"https://cdn.intechopen.com/books/images_new/7033.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",middleName:null,surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7263",title:"Vitamin E in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"6bd8e547b4f3ad7f1675a36b8dbde8f2",slug:"vitamin-e-in-health-and-disease",bookSignature:"Jose Antonio Morales-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/7263.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",middleName:null,surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6709",title:"B Group Vitamins",subtitle:"Current Uses and Perspectives",isOpenForSubmission:!1,hash:"f34959a0fcc33a2c6fb3d03e9ec544bf",slug:"b-group-vitamins-current-uses-and-perspectives",bookSignature:"Jean Guy LeBlanc and Graciela Savoy de Giori",coverURL:"https://cdn.intechopen.com/books/images_new/6709.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",middleName:null,surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6549",title:"Genotyping",subtitle:null,isOpenForSubmission:!1,hash:"6eb6c927e6cba4965ea3bbf741f82911",slug:"genotyping",bookSignature:"Ibrokhim Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/6549.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:14,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"56013",doi:"10.5772/intechopen.69660",title:"Vitamin C: An Antioxidant Agent",slug:"vitamin-c-an-antioxidant-agent",totalDownloads:7808,totalCrossrefCites:26,totalDimensionsCites:59,abstract:"Vitamin C or ascorbic acid (AsA) is a naturally occurring organic compound with antioxidant properties, found in both animals and plants. It functions as a redox buffer which can reduce, and thereby neutralize, reactive oxygen species. It is a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants; which also regulates cell division and growth, is involved in signal transduction, and has roles in several physiological processes, such as immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption, has also roles in detoxifying the body of heavy metals. Severe deficiency of vitamin C causes scurvy, whereas limited vitamin C intake causes symptoms, such as increased susceptibility to infections, loosening of teeth, dryness of the mouth and eyes, loss of hair, dry itchy skin, fatigue, and insomnia. In contrast, vitamin C can also act as a prooxidant, especially in the presence of transition metals, such as iron and copper, starting different hazardous radical reactions. Vitamin C can both act as a strong, efficient, and cheap antioxidant agent and, at the same time, behave as a radical promoter. Further investigations are needed to illuminate the dual roles of vitamin C",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Fadime Eryılmaz Pehlivan",authors:[{id:"200567",title:"Dr.",name:"Fadime",middleName:null,surname:"Eryılmaz Pehlivan",slug:"fadime-eryilmaz-pehlivan",fullName:"Fadime Eryılmaz Pehlivan"}]},{id:"56440",doi:"10.5772/intechopen.70162",title:"Vitamin C: Sources, Functions, Sensing and Analysis",slug:"vitamin-c-sources-functions-sensing-and-analysis",totalDownloads:6423,totalCrossrefCites:15,totalDimensionsCites:28,abstract:"Vitamin C is a water-soluble compound found in living organisms. It is an essential nutrient for various metabolism in our body and also serves as a reagent for the preparation of many materials in the pharmaceutical and food industry. In this perspective, this chapter can develop interest and curiosity among all practicing scientists and technologists by expounding the details of its sources, chemistry, multifunctional properties and applications.",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Sudha J. Devaki and Reshma Lali Raveendran",authors:[{id:"187911",title:"Associate Prof.",name:"Sudha",middleName:null,surname:"J Devaki",slug:"sudha-j-devaki",fullName:"Sudha J Devaki"},{id:"204937",title:"Mrs.",name:"Reshma",middleName:null,surname:"Laly Ravindran",slug:"reshma-laly-ravindran",fullName:"Reshma Laly Ravindran"}]},{id:"50921",doi:"10.5772/63712",title:"Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet",slug:"menaquinones-bacteria-and-foods-vitamin-k2-in-the-diet",totalDownloads:3315,totalCrossrefCites:10,totalDimensionsCites:21,abstract:"Vitamin K2 is a collection of isoprenologues that mostly originate from bacterial synthesis, also called menaquinones (MKs). Multiple bacterial species used as starter cultures for food fermentation are known to synthesize MK. Therefore, fermented food is the best source of vitamin K2. In the Western diet, dairy products are one of the best known and most commonly consumed group of fermented products.",book:{id:"5169",slug:"vitamin-k2-vital-for-health-and-wellbeing",title:"Vitamin K2",fullTitle:"Vitamin K2 - Vital for Health and Wellbeing"},signatures:"Barbara Walther and Magali Chollet",authors:[{id:"184784",title:"Dr.",name:"Barbara",middleName:null,surname:"Walther",slug:"barbara-walther",fullName:"Barbara Walther"},{id:"188194",title:"Mrs.",name:"Magali",middleName:null,surname:"Chollet",slug:"magali-chollet",fullName:"Magali Chollet"}]},{id:"66098",doi:"10.5772/intechopen.84445",title:"Golden Rice: To Combat Vitamin A Deficiency for Public Health",slug:"golden-rice-to-combat-vitamin-a-deficiency-for-public-health",totalDownloads:3377,totalCrossrefCites:12,totalDimensionsCites:17,abstract:"Vitamin A deficiency (VAD) has been recognised as a significant public health problem continuously for more than 30 years, despite current interventions. The problem is particularly severe in populations where rice is the staple food and diversity of diet is limited, as white rice contains no micronutrients. Golden Rice is a public-sector product designed as an additional intervention for VAD. There will be no charge for the nutritional trait, which has been donated by its inventors for use in public-sector rice varieties to assist the resource poor, and no limitations on what small farmers can do with the crop—saving and replanting seed, selling seed and selling grain are all possible. Because Golden Rice had to be created by introducing two new genes—one from maize and the other from a very commonly ingested soil bacterium—it has taken a long time to get from the laboratory to the field. Now it has been formally registered as safe as food, feed, or in processed form by four industrialised counties, and applications are pending in developing countries. The data are summarised here, and criticisms addressed, for a public health professional audience: is it needed, will it work, is it safe and is it economic? Adoption of Golden Rice, the next step after in-country registration, requires strategic and tactical cooperation across professions, non-governmental organisations (NGOs) and government departments often not used to working together. Public health professionals need to play a prominent role.",book:{id:"7978",slug:"vitamin-a",title:"Vitamin A",fullTitle:"Vitamin A"},signatures:"Adrian Dubock",authors:[{id:"273220",title:"Ph.D.",name:"Adrian",middleName:null,surname:"Dubock",slug:"adrian-dubock",fullName:"Adrian Dubock"}]},{id:"62836",doi:"10.5772/intechopen.79350",title:"The Role of Thiamine in Plants and Current Perspectives in Crop Improvement",slug:"the-role-of-thiamine-in-plants-and-current-perspectives-in-crop-improvement",totalDownloads:1564,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"Current research is focusing on selecting potential genes that can alleviate stress and produce disease-tolerant crop variety. The novel paradigm is to investigate the potential of thiamine as a crop protection molecule in plants. Thiamine or vitamin B1 is important for primary metabolism for all living organisms. The active form, thiamine pyrophosphate (TPP), is a cofactor for the enzymes involved in the synthesis of amino acids, tricarboxylic acid cycle and pentose phosphate pathway. Recently, thiamine is shown to have a role in the processes underlying protection of plants against biotic and abiotic stresses. The aim of this chapter is to review the role of thiamine in plant growth and disease protection and also to highlight that TPP and its intermediates are involved in management of stress. The perspectives on its potential for manipulating the biosynthesis pathway in crop improvement will also be discussed.",book:{id:"6709",slug:"b-group-vitamins-current-uses-and-perspectives",title:"B Group Vitamins",fullTitle:"B Group Vitamins - Current Uses and Perspectives"},signatures:"Atiqah Subki, Aisamuddin Ardi Zainal Abidin and Zetty Norhana\nBalia Yusof",authors:[{id:"240031",title:"Dr.",name:"Zetty-Norhana Balia",middleName:null,surname:"Yusof",slug:"zetty-norhana-balia-yusof",fullName:"Zetty-Norhana Balia Yusof"},{id:"261167",title:"Mr.",name:"Aisamuddin Ardi",middleName:null,surname:"Zainal Abidin",slug:"aisamuddin-ardi-zainal-abidin",fullName:"Aisamuddin Ardi Zainal Abidin"},{id:"261169",title:"Ms.",name:"Atiqah",middleName:null,surname:"Subki",slug:"atiqah-subki",fullName:"Atiqah Subki"}]}],mostDownloadedChaptersLast30Days:[{id:"56440",title:"Vitamin C: Sources, Functions, Sensing and Analysis",slug:"vitamin-c-sources-functions-sensing-and-analysis",totalDownloads:6429,totalCrossrefCites:15,totalDimensionsCites:28,abstract:"Vitamin C is a water-soluble compound found in living organisms. It is an essential nutrient for various metabolism in our body and also serves as a reagent for the preparation of many materials in the pharmaceutical and food industry. In this perspective, this chapter can develop interest and curiosity among all practicing scientists and technologists by expounding the details of its sources, chemistry, multifunctional properties and applications.",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Sudha J. Devaki and Reshma Lali Raveendran",authors:[{id:"187911",title:"Associate Prof.",name:"Sudha",middleName:null,surname:"J Devaki",slug:"sudha-j-devaki",fullName:"Sudha J Devaki"},{id:"204937",title:"Mrs.",name:"Reshma",middleName:null,surname:"Laly Ravindran",slug:"reshma-laly-ravindran",fullName:"Reshma Laly Ravindran"}]},{id:"56013",title:"Vitamin C: An Antioxidant Agent",slug:"vitamin-c-an-antioxidant-agent",totalDownloads:7817,totalCrossrefCites:27,totalDimensionsCites:60,abstract:"Vitamin C or ascorbic acid (AsA) is a naturally occurring organic compound with antioxidant properties, found in both animals and plants. It functions as a redox buffer which can reduce, and thereby neutralize, reactive oxygen species. It is a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants; which also regulates cell division and growth, is involved in signal transduction, and has roles in several physiological processes, such as immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption, has also roles in detoxifying the body of heavy metals. Severe deficiency of vitamin C causes scurvy, whereas limited vitamin C intake causes symptoms, such as increased susceptibility to infections, loosening of teeth, dryness of the mouth and eyes, loss of hair, dry itchy skin, fatigue, and insomnia. In contrast, vitamin C can also act as a prooxidant, especially in the presence of transition metals, such as iron and copper, starting different hazardous radical reactions. Vitamin C can both act as a strong, efficient, and cheap antioxidant agent and, at the same time, behave as a radical promoter. Further investigations are needed to illuminate the dual roles of vitamin C",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Fadime Eryılmaz Pehlivan",authors:[{id:"200567",title:"Dr.",name:"Fadime",middleName:null,surname:"Eryılmaz Pehlivan",slug:"fadime-eryilmaz-pehlivan",fullName:"Fadime Eryılmaz Pehlivan"}]},{id:"69402",title:"Vitamin D Deficiency and Diabetes Mellitus",slug:"vitamin-d-deficiency-and-diabetes-mellitus",totalDownloads:1604,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Vitamin D (VD) is a molecule that can be synthesized directly in the humans’ body or enter the organism with food in the form of inactive precursors. To exert its biological action, VD undergoes two-stage hydroxylation (at the 25th and 1st position) catalyzed by cytochromes P450, the presence of which has already been shown in almost all tissues of the human body. The product of hydroxylation is hormone-active form of vitamin D–1,25(OH)2D. 1,25(OH)2D binds to specific vitamin D receptor (VDR) and regulates the expression of genes involved in bone remodeling (classical function) and genes that control immune response, hormone secretion, cell proliferation, and differentiation (nonclassical functions). VD deficiency is prevalent around the globe and may be one of the key factors for diabetes development. The direct association between vitamin D deficiency and type 1 (T1D) and type 2 (T2D) diabetes has been proven. Detection of VDR in pancreas and adipose tissue, skeletal muscles, and immune cells allowed implying the antidiabetic role of vitamin D by enhancing insulin synthesis and exocytosis, increasing the expression of the insulin receptor, and modulating immune cells’ functions. This chapter summarizes data about relationship between VD insufficiency/deficiency and development of T1D and T2D, and their complications.",book:{id:"7038",slug:"vitamin-d-deficiency",title:"Vitamin D Deficiency",fullTitle:"Vitamin D Deficiency"},signatures:"Ihor Shymanskyi, Olha Lisakovska, Anna Mazanova and Mykola Veliky",authors:null},{id:"76108",title:"Vitamin D Metabolism",slug:"vitamin-d-metabolism",totalDownloads:498,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Vitamin D plays an important role in bone metabolism. Vitamin D is a group of biologically inactive, fat-soluble prohormones that exist in two major forms: ergocalciferol (vitamin D2) produced by plants in response to ultraviolet irradiation and cholecalciferol (vitamin D3) derived from animal tissues or 7-dehydrocholesterol in human skin by the action of ultraviolet rays present in sunlight. Vitamin D, which is biologically inactive, needs two-step hydroxylation for activation. All of these steps are of crucial for Vitamin D to show its effect properly. In this section, we will present vitamin D synthesis and its action steps in detail.",book:{id:"10631",slug:"vitamin-d",title:"Vitamin D",fullTitle:"Vitamin D"},signatures:"Sezer Acar and Behzat Özkan",authors:[{id:"29878",title:"Dr.",name:"Behzat",middleName:null,surname:"Özkan",slug:"behzat-ozkan",fullName:"Behzat Özkan"},{id:"348287",title:"Dr.",name:"Sezer",middleName:null,surname:"Acar",slug:"sezer-acar",fullName:"Sezer Acar"}]},{id:"50754",title:"Medicinal Chemistry of Vitamin K Derivatives and Metabolites",slug:"medicinal-chemistry-of-vitamin-k-derivatives-and-metabolites",totalDownloads:1917,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Vitamin K acts as a cofactor for γ‐glutamyl carboxylase. Recently, various biological activities of vitamin K have been reported. Anti‐proliferative activities of vitamin K, especially in vitamin K3, are well known. In addition, various physiological and pharmacological functions of vitamin K2, such as transcription modulators as nuclear steroid and xenobiotic receptor (SXR) ligands and anti‐inflammatory effects, have been revealed in the past decade. Characterization of vitamin K metabolites is also important for clinical application of vitamin K and its derivatives. In this chapter, recent progress on the medicinal chemistry of vitamin K derivatives and metabolites is discussed.",book:{id:"5169",slug:"vitamin-k2-vital-for-health-and-wellbeing",title:"Vitamin K2",fullTitle:"Vitamin K2 - Vital for Health and Wellbeing"},signatures:"Shinya Fujii and Hiroyuki Kagechika",authors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"},{id:"180529",title:"Dr.",name:"Shinya",middleName:null,surname:"Fujii",slug:"shinya-fujii",fullName:"Shinya Fujii"}]}],onlineFirstChaptersFilter:{topicId:"42",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:0,paginationItems:[]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82797",title:"Anatomical Guide to the Paranasal Sinuses of Domestic Animals",doi:"10.5772/intechopen.106157",signatures:"Mohamed A.M. Alsafy, Samir A.A. El-Gendy and Catrin Sian Rutland",slug:"anatomical-guide-to-the-paranasal-sinuses-of-domestic-animals",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",doi:"10.5772/intechopen.105045",signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:3,group:"subseries"},{caption:"Animal Science",value:19,count:17,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:{name:"Medical University Plovdiv",country:{name:"Bulgaria"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"312999",title:"Dr.",name:"Bernard O.",middleName:null,surname:"Asimeng",slug:"bernard-o.-asimeng",fullName:"Bernard O. Asimeng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}}]}},subseries:{item:{id:"6",type:"subseries",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11402,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",slug:"lynn-zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",slug:"samuel-ikwaras-okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:81,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/39519",hash:"",query:{},params:{id:"39519"},fullPath:"/chapters/39519",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()