Compressive strength (f) versus duration of heat curing for OSMs/40 and OSMs/50 at 60 ºC
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"7286",leadTitle:null,fullTitle:"Adenoviruses",title:"Adenoviruses",subtitle:null,reviewType:"peer-reviewed",abstract:"Adenoviruses are among the most studied and at the same time most mysterious of viruses. In this book, the authors highlight the achievements in the study of animal and human adenoviruses, chemotherapy of adenovirus infections, and the development in adenoviral vector-based vaccines and gene therapy. I believe that this book will be useful not only for researchers but also in solving specific medical problems.",isbn:"978-1-78984-991-2",printIsbn:"978-1-78984-990-5",pdfIsbn:"978-1-83962-052-2",doi:"10.5772/intechopen.74757",price:119,priceEur:129,priceUsd:155,slug:"adenoviruses",numberOfPages:102,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"57e9a1725ee7decca18bc9485deb8cc7",bookSignature:"Yulia Desheva",publishedDate:"March 13th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7286.jpg",numberOfDownloads:8104,numberOfWosCitations:5,numberOfCrossrefCitations:15,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:31,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:51,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 14th 2018",dateEndSecondStepPublish:"April 4th 2018",dateEndThirdStepPublish:"June 3rd 2018",dateEndFourthStepPublish:"August 22nd 2018",dateEndFifthStepPublish:"October 21st 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"427",title:"Virology",slug:"biochemistry-genetics-and-molecular-biology-microbiology-virology"}],chapters:[{id:"64829",title:"Introductory Chapter: Human Adenoviruses",doi:"10.5772/intechopen.82554",slug:"introductory-chapter-human-adenoviruses",totalDownloads:1142,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Yulia Desheva",downloadPdfUrl:"/chapter/pdf-download/64829",previewPdfUrl:"/chapter/pdf-preview/64829",authors:[{id:"233433",title:"Dr.",name:"Yulia",surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva"}],corrections:null},{id:"62315",title:"Chemotherapy of Adenovirus Infections",doi:"10.5772/intechopen.79160",slug:"chemotherapy-of-adenovirus-infections",totalDownloads:871,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Adenoviruses occupy a substantial place as causative agents of seasonal respiratory infections, the most characteristic and severe being epidemic keratoconjunctivitis (EKC). Moreover, adenovirus infections are very characteristic with their severe course in persons with impaired immune system. The absence of specific anti-adenovirals is the major problem, and the development of compounds effective against adenoviruses is a principal task. This chapter embraces the results of studies on search for antivirals with anti-adenovirus activity, nucleoside/nucleotide analogues and nonnucleoside compounds. Ganciclovir and cidofovir demonstrated effects against adenovirus serotypes in vitro and in animal ocular infection models. Cidofovir applied alone or in combination with cyclosporine manifested therapeutic effects on patients with EKC in a controlled clinical study. We characterized abitylguanide as anti-adenovirus agent in broad-scale investigations, including cell culture experiments, and in two double-blind trials with very beneficial results.",signatures:"Angel S. Galabov",downloadPdfUrl:"/chapter/pdf-download/62315",previewPdfUrl:"/chapter/pdf-preview/62315",authors:[{id:"245054",title:"Prof.",name:"Angel S",surname:"Galabov",slug:"angel-s-galabov",fullName:"Angel S Galabov"}],corrections:null},{id:"62891",title:"Adenovirus as Tools in Animal Health",doi:"10.5772/intechopen.79132",slug:"adenovirus-as-tools-in-animal-health",totalDownloads:1160,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Adenoviruses have long been identified as good candidates for use as viral vectors in gene therapy and as vaccines. These viruses can infect multiple cell types, while in division or in quiescence, and are relatively easy to manipulate so that parts of their genome can be replaced with exogenous genes. Progressive safety improvements in replication-deficient adenoviral vectors have been achieved with the second and third generation, and ending with the gutless adenoviral vectors. Adenoviral vectors are immunogenic and can act as adjuvants. Nonetheless, the potency of human recombinant adenoviral vaccines was below expectations in clinical trials mainly because of the pre-existing adenoviral immunity found in the general population. This drawback can however become advantageous in animal health, as no previous immunity to human adenoviral vectors exists in animals. Other viral vectors viruses are used as vaccine, but adenoviruses remain the most employed and promising recombinant vector in veterinary medicine. In this chapter, we review the generation of adenoviral vectors, the immune response they trigger, and their advantages and disadvantages for veterinary use in terms of safety and efficacy. This chapter also describes how recombinant adenoviral vectors can be integrated as tools for vaccination and immunomodulation in veterinary medicine.",signatures:"José M. Rojas, Noemí Sevilla and Verónica Martín",downloadPdfUrl:"/chapter/pdf-download/62891",previewPdfUrl:"/chapter/pdf-preview/62891",authors:[null],corrections:null},{id:"62883",title:"Adenoviral Vector-Based Vaccines and Gene Therapies: Current Status and Future Prospects",doi:"10.5772/intechopen.79697",slug:"adenoviral-vector-based-vaccines-and-gene-therapies-current-status-and-future-prospects",totalDownloads:4932,totalCrossrefCites:15,totalDimensionsCites:29,hasAltmetrics:1,abstract:"Adenoviruses are one of the most genetically diverse DNA viruses and cause non-life-threatening infections in the ocular, respiratory, or gastrointestinal epithelium of a diverse range of hosts. Adenoviruses are excellent vectors for delivering genes or vaccine antigens to the target host tissues and are being tested in several vaccine and gene therapy studies. Adenovirus-based vectors offer several advantages over other viral vectors such as broad range of tissue tropism, well-characterized genome, ease of genetic manipulation including acceptance of large transgene DNA insertions, inherent adjuvant properties, ability to induce robust transgene-specific T cell and antibody responses, non-replicative nature in host, and ease of production at large scale. However, several studies have highlighted major drawbacks to using adenovirus as vaccine and gene therapy vectors. These include pre-existing immunity in humans, inflammatory responses, sequestering of the vector to liver and spleen, and immunodominance of the vector genes over transgenes. In the same vein, recently discovered protein sequence homology and heterologous immunity between adenoviruses and hepatitis C virus have significant implications in the use of adenoviral vectors for vaccine development, especially for hepatitis C virus. This chapter focuses on the current scope and challenges in using adenoviral vector-based vaccines and gene therapies.",signatures:"Shakti Singh, Rakesh Kumar and Babita Agrawal",downloadPdfUrl:"/chapter/pdf-download/62883",previewPdfUrl:"/chapter/pdf-preview/62883",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3505",title:"Current Issues in Molecular Virology",subtitle:"Viral Genetics and Biotechnological Applications",isOpenForSubmission:!1,hash:"039c53aa204f5131f1f67d2c24e160d0",slug:"current-issues-in-molecular-virology-viral-genetics-and-biotechnological-applications",bookSignature:"Victor Romanowski",coverURL:"https://cdn.intechopen.com/books/images_new/3505.jpg",editedByType:"Edited by",editors:[{id:"90590",title:"Prof.",name:"Victor",surname:"Romanowski",slug:"victor-romanowski",fullName:"Victor Romanowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1775",title:"Molecular Virology",subtitle:null,isOpenForSubmission:!1,hash:"2e80abf77926d0ba82ba2bfd729031b0",slug:"molecular-virology",bookSignature:"Moses P. Adoga",coverURL:"https://cdn.intechopen.com/books/images_new/1775.jpg",editedByType:"Edited by",editors:[{id:"90529",title:"Mr.",name:"Moses",surname:"Adoga",slug:"moses-adoga",fullName:"Moses Adoga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5716",title:"Current Topics in Zika",subtitle:null,isOpenForSubmission:!1,hash:"b8d20b16a485f3fd2f89e45ee050bba4",slug:"current-topics-in-zika",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/5716.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5078",title:"Advances in Molecular Retrovirology",subtitle:null,isOpenForSubmission:!1,hash:"1c523c89d0884b6e909a6d49d8c3a9dd",slug:"advances-in-molecular-retrovirology",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/5078.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6910",title:"Bacteriophages",subtitle:"Perspectives and Future",isOpenForSubmission:!1,hash:"7f28b4e1886882252219cac01e75b69c",slug:"bacteriophages-perspectives-and-future",bookSignature:"Renos Savva",coverURL:"https://cdn.intechopen.com/books/images_new/6910.jpg",editedByType:"Edited by",editors:[{id:"252160",title:"Dr.",name:"Renos",surname:"Savva",slug:"renos-savva",fullName:"Renos Savva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10221",title:"Bacteriophages in Therapeutics",subtitle:null,isOpenForSubmission:!1,hash:"96b799aada07c6e98864f2d8e5780bac",slug:"bacteriophages-in-therapeutics",bookSignature:"Sonia Bhonchal Bhardwaj",coverURL:"https://cdn.intechopen.com/books/images_new/10221.jpg",editedByType:"Edited by",editors:[{id:"178566",title:"Dr.",name:"Sonia Bhonchal",surname:"Bhardwaj",slug:"sonia-bhonchal-bhardwaj",fullName:"Sonia Bhonchal Bhardwaj"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8990",title:"Current Concepts in Zika Research",subtitle:null,isOpenForSubmission:!1,hash:"f410c024dd429d6eb0e6abc8973ecc14",slug:"current-concepts-in-zika-research",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/8990.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7011",title:"Viruses and Viral Infections in Developing Countries",subtitle:null,isOpenForSubmission:!1,hash:"e62364f82e1b5737c8cd1b90a88c5f53",slug:"viruses-and-viral-infections-in-developing-countries",bookSignature:"Snežana Jovanović-Ćupić, Muhammad Abubakar, Ayşe Emel Önal, Muhammad Kashif Saleemi, Ana Božović and Milena Krajnovic",coverURL:"https://cdn.intechopen.com/books/images_new/7011.jpg",editedByType:"Edited by",editors:[{id:"288767",title:"Dr.",name:"Snežana",surname:"Jovanović-Ćupić",slug:"snezana-jovanovic-cupic",fullName:"Snežana Jovanović-Ćupić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6294",title:"Advances in Ebola Control",subtitle:null,isOpenForSubmission:!1,hash:"7b99780e19093622c55844a782f2b468",slug:"advances-in-ebola-control",bookSignature:"Samuel Ikwaras Okware",coverURL:"https://cdn.intechopen.com/books/images_new/6294.jpg",editedByType:"Edited by",editors:[{id:"178641",title:"Dr.",name:"Samuel Ikwaras",surname:"Okware",slug:"samuel-ikwaras-okware",fullName:"Samuel Ikwaras Okware"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79790",slug:"corrigendum-graves-disea-3",title:"Corrigendum: Graves’ Disease",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79790.pdf",downloadPdfUrl:"/chapter/pdf-download/79790",previewPdfUrl:"/chapter/pdf-preview/79790",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79790",risUrl:"/chapter/ris/79790",chapter:{id:"78650",slug:"graves-disease-a-review",signatures:"Sanjay Saran",dateSubmitted:"April 17th 2021",dateReviewed:"June 2nd 2021",datePrePublished:null,datePublished:"December 1st 2021",book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"242737",title:"Dr.",name:"Sanjay",middleName:null,surname:"Saran",fullName:"Sanjay Saran",slug:"sanjay-saran",email:"drsanjaysaran@gmail.com",position:null,institution:null}]}},chapter:{id:"78650",slug:"graves-disease-a-review",signatures:"Sanjay Saran",dateSubmitted:"April 17th 2021",dateReviewed:"June 2nd 2021",datePrePublished:null,datePublished:"December 1st 2021",book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"242737",title:"Dr.",name:"Sanjay",middleName:null,surname:"Saran",fullName:"Sanjay Saran",slug:"sanjay-saran",email:"drsanjaysaran@gmail.com",position:null,institution:null}]},book:{id:"10312",title:"Graves' Disease",subtitle:null,fullTitle:"Graves' Disease",slug:"graves-disease",publishedDate:"December 1st 2021",bookSignature:"Robert Gensure",coverURL:"https://cdn.intechopen.com/books/images_new/10312.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8490",leadTitle:null,title:"Selected Topics in Plasma Physics",subtitle:null,reviewType:"peer-reviewed",abstract:"This book is planned to introduce the advances topics of plasma physics for research scholars and postgraduate students. This book deals with basic concepts in plasma physics, non-equilibrium plasma modeling, space plasma applications, and plasma diagnostics. It also provides an overview of the linear and nonlinear aspects of plasma physics. Chapters cover such topics as plasma application in space propulsion, microwave–plasma interaction, plasma antennas, solitary waves, and plasma diagnostic techniques.",isbn:"978-1-83962-679-1",printIsbn:"978-1-83962-678-4",pdfIsbn:"978-1-83962-680-7",doi:"10.5772/intechopen.78866",price:119,priceEur:129,priceUsd:155,slug:"selected-topics-in-plasma-physics",numberOfPages:144,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"0fe936bfad77ae70ad96c46de8b7730d",bookSignature:"Sukhmander Singh",publishedDate:"November 19th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8490.jpg",keywords:null,numberOfDownloads:3493,numberOfWosCitations:1,numberOfCrossrefCitations:5,numberOfDimensionsCitations:6,numberOfTotalCitations:12,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 14th 2019",dateEndSecondStepPublish:"March 18th 2020",dateEndThirdStepPublish:"May 17th 2020",dateEndFourthStepPublish:"August 5th 2020",dateEndFifthStepPublish:"October 4th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"282807",title:"Dr.",name:"Sukhmander",middleName:null,surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/282807/images/system/282807.jpg",biography:"Dr. Sukhmander Singh is currently an assistant professor in the Department of Physics at Central University of Rajasthan, Ajmer, India. He obtained his MSc (Physics) from Jawaharlal Nehru University New Delhi and PhD (Plasma Physics) from IIT Delhi, New Delhi, India. Previously, he was assistant professor at Motilal Nehru College, University of Delhi. \nHe has published numerous research papers and conference proceedings in journals of international repute as well as contributed many book chapters. He is an active reviewer for many international journals. His areas of interest include theory and simulation of plasma waves and instabilities.",institutionString:"Central University of Rajasthan",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Central University of Rajasthan",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"229",title:"Plasma Physics",slug:"plasma-physics"}],chapters:[{id:"71311",title:"Introduction: Plasma Parameters and Simplest Models",slug:"introduction-plasma-parameters-and-simplest-models",totalDownloads:449,totalCrossrefCites:0,authors:[{id:"235189",title:"Prof.",name:"Eduard V.",surname:"Rostomyan",slug:"eduard-v.-rostomyan",fullName:"Eduard V. Rostomyan"}]},{id:"71291",title:"Hall Thruster: An Electric Propulsion through Plasmas",slug:"hall-thruster-an-electric-propulsion-through-plasmas",totalDownloads:632,totalCrossrefCites:3,authors:[{id:"282807",title:"Dr.",name:"Sukhmander",surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}]},{id:"72491",title:"Evolution of Microwave Electric Field on Power Coupling to Plasma during Ignition Phase",slug:"evolution-of-microwave-electric-field-on-power-coupling-to-plasma-during-ignition-phase",totalDownloads:690,totalCrossrefCites:1,authors:[null]},{id:"71638",title:"Plasma Antennas",slug:"plasma-antennas",totalDownloads:727,totalCrossrefCites:1,authors:[null]},{id:"72335",title:"Plasma Diagnostic Methods: Test Charge Response in Lorentzian Dusty Plasmas",slug:"plasma-diagnostic-methods-test-charge-response-in-lorentzian-dusty-plasmas",totalDownloads:561,totalCrossrefCites:0,authors:[null]},{id:"72882",title:"Approximate Analytical Solution of Nonlinear Evolution Equations",slug:"approximate-analytical-solution-of-nonlinear-evolution-equations",totalDownloads:437,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6861",title:"Plasmonics",subtitle:null,isOpenForSubmission:!1,hash:"e33a5b5eaffb8edd2de62ce2a21486ea",slug:"plasmonics",bookSignature:"Tatjana Gric",coverURL:"https://cdn.intechopen.com/books/images_new/6861.jpg",editedByType:"Edited by",editors:[{id:"212653",title:"Prof.",name:"Tatjana",surname:"Gric",slug:"tatjana-gric",fullName:"Tatjana Gric"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7393",title:"Atmospheric Pressure Plasma",subtitle:"from Diagnostics to Applications",isOpenForSubmission:!1,hash:"1e06b02c1a2008b06370a0ed2f36521c",slug:"atmospheric-pressure-plasma-from-diagnostics-to-applications",bookSignature:"Anton Nikiforov and Zhiqiang Chen",coverURL:"https://cdn.intechopen.com/books/images_new/7393.jpg",editedByType:"Edited by",editors:[{id:"176861",title:"Dr.",name:"Anton",surname:"Nikiforov",slug:"anton-nikiforov",fullName:"Anton Nikiforov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6735",title:"Plasma Science and Technology",subtitle:"Basic Fundamentals and Modern Applications",isOpenForSubmission:!1,hash:"6438c65002222003fa8943fe40ebdb7b",slug:"plasma-science-and-technology-basic-fundamentals-and-modern-applications",bookSignature:"Haikel Jelassi and Djamel Benredjem",coverURL:"https://cdn.intechopen.com/books/images_new/6735.jpg",editedByType:"Edited by",editors:[{id:"233397",title:"Dr.",name:"Haikel",surname:"Jelassi",slug:"haikel-jelassi",fullName:"Haikel Jelassi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8856",title:"Electrostatic Discharge",subtitle:"From Electrical breakdown in Micro-gaps to Nano-generators",isOpenForSubmission:!1,hash:"bc66d347ac7bb73c1ae552a0dcbc976c",slug:"electrostatic-discharge-from-electrical-breakdown-in-micro-gaps-to-nano-generators",bookSignature:"Steven H. Voldman",coverURL:"https://cdn.intechopen.com/books/images_new/8856.jpg",editedByType:"Edited by",editors:[{id:"207997",title:"Dr.",name:"Steven",surname:"Voldman",slug:"steven-voldman",fullName:"Steven Voldman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:"plasma-science-and-technology",bookSignature:"Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7199",title:"Charged Particles",subtitle:null,isOpenForSubmission:!1,hash:"c456f670b68b3512e9e9866f9837fd98",slug:"charged-particles",bookSignature:"Malek Maaza and Mahmoud Izerrouken",coverURL:"https://cdn.intechopen.com/books/images_new/7199.jpg",editedByType:"Edited by",editors:[{id:"192286",title:"Prof.",name:"Malek",surname:"Maaza",slug:"malek-maaza",fullName:"Malek Maaza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39395",title:'Using "Heat Treatment" Method for Activation of OPC-Slag Mortars',doi:"10.5772/51084",slug:"using-heat-treatment-method-for-activation-of-opc-slag-mortars",body:'It is well known that a lot of ground granulated blast furnace slag (ggbfs) is produced in the steel-iron industry every year throughout the world. By utilizing this by-product it would help reduce the environmental problems and also provide significant economic benefits. The results of several researches have also shown that the use of replacement materials in mortars and concretes improves durability, which is crucial for structures built in aggressive environments, e.g. in marine structures and structures such as large tunnels and bridges with long life spans. For every ton of Portland cement manufactured, approximately one ton of CO2, in addition to greenhouse gases, is released into the atmosphere. Therefore, if the part of the Portland cement can be replaced by waste materials, e.g., slag, then the amount of cement needed and hence, the amount of CO2 released into the atmosphere can be reduced (Lodeiro, Macphee, et al., 2009). Consequently, ggbfs is being widely used as a cement replacement in Portland cement mortar and concrete for improving mechanical and durability properties.
The use of ggbfs has certain advantages because of its excellent cementitious properties over OPC and it is sometimes used due to the technological, economic and environmental benefits. However, the use of slag has been limited because of the disadvantage of its low early strength (Bougara, Lynsdale, et al., 2009). The major factors affecting the early age strength development of mortars and concrete are as follows:
Mortar mixture proportions including water-binder and sand-binder ratios and the use of supplementary cementing materials such as ggbfs,
Kind of formwork and size of structural elements, and
Environmental conditions (Barnett, Soutsos, et al., 2006).
Concretes made with ggbfs have many advantages including improved durability, workability and economic benefits.
Mortar is a workable paste used to bind construction blocks together and fill the gaps between them. The blocks may be stone, brick, cinder blocks, etc. Modern mortars are typically made from a mixture of sand, a binder such as cement or lime, and water. Based on (ACI, 2006) there are four different types of mortars commonly used in building projects namely Type N, Type M, Type S, and Type O. Type N mortar is a medium strength mortar, which means that it is suitable for use both on indoor projects and on outdoor projects that are above grade. Type M mortar is a high strength mortar. Due to the strength of Type M it is usually used in heavy load bearing walls, although it is also sometimes used in other heavy duty applications like masonry that is below grade or that comes in contact with the earth such as retaining walls or foundations. Type S mortar is also a relatively high strength mortar which is suitable for below grade projects and heavier outdoor projects. Type O mortar is the lowest strength mortar and is suitable only for indoor, lightweight applications. The most commonly used mortars for most home improvement projects are Type N and Type S. Type N is chosen for lighter weight or indoor projects, and Type S for projects that require a heavier duty mortar. All of the different types of mortar are made with the same ingredients. The only difference is the proportions of each ingredient in the mix whether for availability considerations or for minimizing the number of different mortar types on the job site. The OPC-slag mortars can be classified into three groups as OPC mortars (OMs), slag mortars (SMs), and OPC-slag mortars (OSMs).
Based on the related literature review there is not much research work regarding activation of OPC-slag mortars, and this is the main purpose of this investigation. In this study, the thermal activation method was used. The compressive strength loss was studied in this research at early and later ages. Strength development of OPC-slag mortars without and with use of activation method was also studied for duration up to 90 days and some regression relationships was suggested. Using the suggested relationships a criterion to forecast the strength behavior of OPC-slag mortars at later ages is established.
The objectives of this research are as follows:
To determine the optimum replacement level of slag and the control ordinary Portland cement-slag mortar mix.
To investigate the effects of thermal activation method on both the early and ultimate compressive strengths and also strength loss of the control ordinary Portland cement-slag mortar.
The objective of this study is to use higher percentage of replacement slag as possible without any reduction in mechanical properties of mortar such as compressive strength. Different amounts of slag as replacement for cement were used and the optimum level of replacement was determined. In this investigation only one source of slag was used and the optimum level of replacement was used throughout the study. The optimum level was based on high early strength and lowest strength loss for the mortar mixes.
The focus of this project is to activate OPC-slag mortars using heat treatment (thermal activation method). In this activation method different temperatures within the range of 40 °C to 90 °C were used for activation. The mortars were heated for duration of 2 to 26 hours. The mechanical properties studied in this research are compressive strength at the both early and later ages, strength loss and strength development at later ages of OPC-slag mortars in duration of up to 90 days. The compressive strengths throughout the study were tested for the specimens at 1, 3, 7, 28, 56, and 90 days.
Before discussing the activation method, the determination of the optimum level of replacement of slag in OPC-slag mortars is discussed.
This section reports on the testing of fourteen OPC-slag mortars (OSMs) and two control OPC mortars (OMs) and slag mortars (SMs). The main aim is to determine the level of cement replacement with slag to achieve higher early strength with reasonable flow. The variable is the level of ggbfs in the binder. Graded silica sand was used in all mixes. It was determined that the optimum level of replacement slag is within the range of 40% to 50% of OPC (Ahmed, Ohama, et al., 1999). The optimum level is defined as the replacement level of slag with the highest compressive strength, when used in the mortar while strength loss is the lowest.
It is intended to find the optimum cement at replacement level with slag that gives the highest early strength at 7 days and especially 3 days without the use of any activation method. From Figure 1 it is clear that whenever the level of replacement is more than 40% the early strength at 3 days will be reduced. It can also be seen that although for replacement levels 10%, 20%, and 30% the early strength at 3 days is approximately the same, but, generally with an increase in the slag level from 10% to 40% the early strength increases. However, the early strength at the 40% level is the highest, i.e. 42.4 MPa. Based on the results obtained it can be seen that by increasing the replacement level to more than 40%, the early strengths decreased significantly. This shows that the optimum level of replacement is 40% at 3 days. The same variations for 7-day strengths were observed albeit with slight changes. At 40% optimum level of replacement slag, the strength at 7 days is 55.8 MPa, which is 20% higher than that of OPC mortar. Furthermore, this will continue to gain strength with age.
Variations of compressive strength for different slag contents (%)
The use of different amounts of slag in OPC-slag mortars results in different compressive strengths. Before applying the proposed activation method it is required that several mortars are made with the use of different levels of slag to obtain indication of strengths. Based on this, it was decided to cast samples with 0, 10, 20, 30, 35, 40, 45, 50, 60, 70, 80, 90, and 100% replacement with slag to ascertain the optimum level. The specimens were prepared and hardened samples were tested at 3, 7, 28, and 56 days for compressive strength. Finally, it was revealed that the highest compressive strengths were obtained for samples having replacement level in the range of 40% and 50%. The results showed that there was some strength loss at 56 days compared to 28 days when 40% replacement level was used. In this case, the strength at 28 days was 64.9 MPa, which reduced to 57.9 MPa at 56 days giving a 10.8% loss in strength. In contrast no strength loss was observed at later ages when 50% replacement level was used. A comparison of the results obtained for both percentage levels of slag showed that 50% is the optimum. The strengths for both levels of replacement were very close but, the 50% replacement with slag did not show any subsequent loss in strength. Consequently, in the continuation of the research work this level was taken as the optimum and used for the preparation of mortar samples.
In this section it was attempted to determine the best replacement level for slag. Different levels of replacement slag were used to make mixes, i.e. 10, 20, 30, 40, 50, 60, 70, 80, and 90%. Finally, with comparison of the results obtained for compressive strengths the best level of replacement was determined at 50%. In determination of the best level two factors are considered i.e. early strength at 3 and 7 days and also strength loss that should be minimized. In following parts of the research the best level i.e. 50% was used as the optimum level.
The objective of this research is to produce a data inventory of the early age mechanical properties, namely the compressive strength of mortars cured at different temperature, as well as the relationship between compressive strength with temperature and the relationship between the compressive strength of specimens cured in air and water at room temperature for 3 and 7 days, for 40% and 50% levels of cement replacement with slag. Thirty-seven mixes of OPC-slag mortars and two OPC mortars were prepared as control. For each mix, two factors are important for consideration. First, using a higher percentage of slag is desirable as it has some economic and environmental advantages and in addition, it helps to improve the durability of the mortars. Secondly, for early strength, it is clear that increasing the level of replacement slag causes early strength to be reduced, as the ggbfs has lower initial heat of hydration than that of OPC. In addition, for early strength the use of a low level of replacement slag is neither economic nor durable. Thus it is desirable to ascertain the optimum temperature and its duration that will give the highest early strength at 3 and 7 days. All the mix proportions made for water-binder and sand-binder ratios of 0.33 and 2.25, respectively, for 40% and 50% replacement level with slag.
In this investigation the effects of different temperatures i.e. 50 ºC, 60 ºC, and 70 ºC were studied on the early strengths at 3 and 7 days of OPC-slag mortars by using 50% replacement with slag. The results are shown in Figure 2. It is clear that 60 ºC provided the most enhancements on early age strength therefore; it is selected as the optimum temperature.
The results obtained in the study for compressive strength based on duration of heat curing are given in Table 1. Based on this, it can be seen that the specimens have higher strengths at 3 and 7 days without use of heat curing and with use of heat curing for duration of 2 hours when they are cured in water compared to curing in air under room temperature.
This has been proven for both OPC-slag mortars with 50% OPC replacement with slag and OPC-slag mortars with 40% OPC replacement with slag. However, as soon as the duration of heat curing is increased to 4 hours and above, the aforesaid statement is reversed. The strength of specimens cured in the air under room temperature is improved compared to those cured in the water. It seems that this is due to the air temperature and high relative humidity of the room’s air. As it will be seen in following study, it can be said that both combined effects of temperature and relative humidity are more efficient in strength improvement. Hence, it seems that probably the effect of temperature for duration of at least 4 hours beside the high relative humidity of room’s air results in the higher strength for the specimens cured in the air under room temperature after heat curing. This fact is shown in Figure 3 (a) and (b).
The effects of different temperatures on early age strength of OSMs/50
Duration (hours) | For OSMs/40 | For OSMs/50 | |||||||||||
3 days | 7 days | 3 days | 7 days | ||||||||||
ac | wc | ac | wc | ac | wc | ac | wc | ||||||
0 | 33.2 | 34.5 | 40.3 | 47.4 | 33.6 | 35.6 | 37.0 | 49.6 | |||||
2 | 36.6 | 38.4 | 44.8 | 49.8 | 36.4 | 37.6 | 42.5 | 50.0 | |||||
4 | 39.7 | 35.4 | 46.2 | 43.2 | 42.6 | 37.7 | 47.5 | 47.3 | |||||
6 | 45.0 | 41.2 | 47.2 | 44.0 | 45.5 | 40.9 | 51.5 | 49.8 | |||||
8 | 49.6 | 41.6 | 52.3 | 44.8 | 46.4 | 43.4 | 53.1 | 49.0 | |||||
10 | 47.3 | 40.4 | 55.6 | 50.9 | 50.4 | 44.0 | 55.0 | 48.4 | |||||
12 | 49.0 | 42.5 | 50.9 | 46.4 | 52.6 | 41.8 | 57.6 | 48.3 | |||||
14 | 52.6 | 47.0 | 56.4 | 48.5 | 48.3 | 41.2 | 60.0 | 52.5 | |||||
16 | 51.7 | 45.9 | 59.0 | 54.8 | 51.2 | 48.4 | 61.2 | 53.4 | |||||
18 | 55.2 | 46.1 | 59.7 | 50.2 | 53.5 | 48.4 | 59.9 | 52.4 | |||||
20 | 53.1 | 49.0 | 61.1 | 51.2 | 55.3 | 49.9 | 61.6 | 55.3 | |||||
22 | 50.7 | 43.7 | 58.8 | 56.0 | 50.5 | 48.4 | 61.0 | 56.0 | |||||
24 | 54.6 | 50.1 | 60.4 | 56.8 | 51.5 | 48.5 | 62.3 | 55.6 | |||||
26 | 52.5 | 49.0 | 57.1 | 53.7 | 53.0 | 46.6 | 61.2 | 54.8 | |||||
For optimum OSM/50 at six ages- air cured under room temperature | |||||||||||||
f1= 15.5 | f3= 55.1 | f7= 61.4 | f28= 71.2 | f56= 69.6 | f90= 73.6 | ||||||||
ac= air curing under room temperature; wc= water curing; all strengths are in MPa. |
Compressive strength (f) versus duration of heat curing for OSMs/40 and OSMs/50 at 60 ºC
Compressive strength versus duration of heat curing of OSMs/50 and OSMs/40 cured in water and air under room temperature.
Based on the results given in Table 1, it can be seen that heat curing at 60 °C for 20 hours, the maximum early strength of 61.6 MPa is attributed to OPC-slag mortar with 50% replacement with slag. It can be seen that the increment percentage is by about 0.62% when compared to a heating time of 16 hours. This shows that if the duration of heat curing is increased over 20 hours, the increase at 7 days strength is not appreciable. Hence, it can be deduced from Figures 3 and 4 that heat curing at 60 °C for 20 hours is the optimum heat curing for the materials used in the study.
From the H- 3 sets mix as shown in Table 2 the effects of ambient temperatures and relative humidity were considered on the strength improvement of the specimens. The specimens were first made and demoulded 24 hours after casting, and then heated at 60 °C for 20 hours and finally, cured in three curing regimes, i.e. at room temperature, in water at 25 ºС - 26 ºС, and in water at 32 ºС. After 3 and 7 days the strength of specimens was determined. The results are given in Table 2.
Based on the given data in Table 2, it is clear that for curing regimes with different temperature and the same relative humidity, higher strengths are attributed to higher temperature regimes. For curing regimes with different relative humidity and the same temperature, higher strengths are attributed to lower relative humidity regimes. From the comparison of the three curing regimes it is seen that the strengths of specimens cured in water at 32 ºС are less than those cured at room temperature. This shows that the increase of early age strength is a function of both temperature and relative humidity effects. In fact, it can be deduced that neither relative humidity nor temperature has the highest strength improvement alone, but rather a combination of both effects are effective on strength development. From the results it is clear that the trend of strength development at 7 days is similar to that at 3 days. It is seen that the strength of specimens at 7 days cured at room temperature and in water at 32 ºС are the same, which shows that the effect of relative humidity over duration of 3 to 7 days is more than that of temperature. It is seen that the highest strengths at 3 and 7 days are attributed to curing at room temperature.
The percentages of strength growth (i) for duration of 3 to 7 days can be obtained as follows: For air cured specimens under room temperature i= 0.97, for water at 25 – 26 ºС i= 0.90, and for water cured at 32 ºС i= 0.89; where i= ratio f3/f7. These results show that whenever the specimens are cured at room temperature, about 97% of the strength is achieved at 3 days. This is a major advantage in the precast concrete industry when the specimens are cured at room temperature. For the specimens cured at room temperature, the maximum relative humidity attainable was 85%, while for the specimens cured in water it was 100%.
Based on the results obtained it is evident that the effect of temperature on the strength improvement at 3 and 7 days is higher than that of relative humidity. This is because the strengths of the specimens cured at room temperature and in water at 32 ºС are higher than those in water at 25 ºС at 3 and 7 days by about 14% and 10%, respectively.
It can be seen that with the use of heat curing at 60 ºС for 20 hours the strength at 3 days is, on average, about 97% of the strength at 7 days for specimens cured at room temperature, while, on average, this ratio is about 90% for curing in water at 25 ºС and 32 ºС. This shows that curing at room temperature after heat curing improves the early strength at 3 days extensively, which is very cost effective and applicable in the precast concrete industry. This result also shows that the heat treatment is a useful and efficient method for the activation of ordinary Portland cement-slag mortars and concretes which requires only slat duration and without the use of water to cure the specimens. An elevated curing temperature accelerates the chemical reaction of hydration and increases the early age strength. However, during the initial period of hydration an open and unfilled pore structure of cement paste forms which has a negative effect on the properties of hardened concrete, especially at later ages (Fu, Y., 1996; Neville, A.M., 2008). Hardened mortars and concretes can reach their maximum strength within several hours through elevated temperature curing. However, the ultimate strength of hardened mortars and concretes has been shown to decrease with curing temperature (Carino, 1984). It was found that by increasing the curing temperature from 20 ºC to 60 ºC and the duration of heat curing to 48 hours causes a continuous increase in compressive strength (Brooks & Al-kaisi, 1990). Studies by (Hanson, 1963; Pfeifer & Marusin, 1991; Shi, 1996) have shown that there is a threshold maximum heat curing temperature value in the range of 60 ºC to 70 ºC, beyond which heat treatment is of little or no benefit to the engineering properties of concrete.
Based on the given data in Table 1 it can be seen that the highest strengths at 3 and 7 days of OPC-slag mortars for 40% replacement with slag and OPC-slag mortars for 50% replacement with slag is attributed to the specimens cured in air under room temperature as:
Curing regime | air curing under room temperature | Water 32 ºC | Water 25 -26 ºC |
f3 | 58.2 | 53.3 | 48.9 |
f7 | 59.9 | 59.9 | 54.5 |
f3/f7 | 0.97 | 0.89 | 0.90 |
fi are strength in MPa. |
Compressive strengths (f) at 3 and 7 days for three curing regimes of H- 3 sets mix
OPC-slag mortars for 40% OPC replacement with slag:f3= 55.2 at 18 hours and f7= 61.1 MPa at 20 hours; OPC-slag mortars for 50% replacement with slag:f3= 55.3 and f7= 61.6 MPa, the both for 20 hours. The 3 and 7 days strengths of OPC mortars’ specimens cured at room temperature and in water are f3= 45.4, and f7= 51.4 MPa, and f3= 43.8, and f7= 47.8 MPa, respectively. It is noted that the maximum 3 and 7 days strengths of OPC-slag mortars for 40% replacement with slag and OPC-slag mortars for 50% replacement with slag specimens are 21.7% and 19.0% which are 21.8% and 20.0% more than those of OPC mortars’ specimens cured at room temperature at the same age, respectively. It is seen that there is strength loss at 56 days compared to 28 days by about 2.2%. This has been previously reported by other researchers (Kosmatka, Panarese, et al., 1991). The main objective of elevated temperature curing is to achieve early strength development. However, it is generally acknowledged that there is also strength loss as a result of heat curing (Bougara, Lynsdale, et al., 2009). Another mix proportion of OPC-slag mortars for 50% replacement with slag was made by using the optimum heat curing at 60 ºC for 20 hours and specimens were tested at ages of 1, 3, 7, 28, 56, and 90 days. To determine the trend of strength development for the mentioned mortar cured at room temperature, the regression technique was used. The equations obtained for this mortar and also OPC mortar cured in water are as below:
For OPC-slag mortar cured in air under room temperature, made using optimum heat curing at 60 ºC for 20 hours, and
For OPC mortar cured in water; where f is compressive strength in MPa, ac and wc denote air and water curing under room temperature, respectively and t is the age of the specimen in days. The best fit curves are shown in Figure 4.
No | Age (d) | Binomial relationships | Linear relationships | CR |
For OPC-slag mortars for 40% replacement with slag, i.e. OSMs/40 | ||||
1 | 3 | f= -0.0455X2+ 1.865X+ 32.921; R2= 0.9261 | f= 0.6825 X + 38.651 R2= 0.7545 | air |
2 | 3 | f=-0.0131X2+ 0.8806 X + 34.825; R2= 0.8502 | f= 0.5391 X + 36.191 R2= 0.8252 | water |
3 | 7 | f= -0.0347 X2 1.5959 X + 40.621; R2= 0.9107 | f= 0.6927 X + 44.234 R2= 0.8068 | air |
4 | 7 | f= 0.0163 X2- 0.0222 X + 46.327; R2= 0.6305 | f= 0.4011 X + 44.634 R2= 0.5815 | water |
For OPC-slag mortars for 50% replacement with slag, i.e. OSMs/50 | ||||
5 | 3 | f= -0.0487 X2+ 1.9196 X + 34.298; R2= 0.9271 | f= 0.6526 X + 39.366 R2= 0.7212 | air |
6 | 3 | f= -0.0184 X2+ 0.9857 X + 35.234; R2= 0.8492 | f= 0.5066 X + 37.154 R2= 0.7954 | water |
7 | 7 | f= -0.0479 X2+0.1079 X + 38.56; R2= 0.9598 | f= 0.8628 X + 43.54 R2= 0.8291 | air |
8 | 7 | f= 0.0115 X2+ 0.0108 X + 48.789; R2= 0.7742 | f= 0.3089 X + 47.597 R2= 0.7232 | water |
X= heat duration in hours, f is compressive strength in MPa, R2 is coefficient of determination, CR= curing regime, d= days |
Relationship between compressive strength (f) versus heat duration
The relationships between compressive strength and duration of heat curing at room temperature and in water for OPC-slag mortars at 40% OPC replacement with slag and OPC-slag mortars at 50% OPC replacement with slag is shown in Table 3. It can be seen that the best equations are binomial and attributed to the specimens cured at room temperature. It is also seen that the best fit curve at 3 and 7 days strengths are power equations. According to the results obtained in the study, it can be said that thermal activation is one of the best techniques for the activation of OPC-slag mortars.
No | Age (days) | Power regression relationship | Curing |
1 | 3 | f OSM/50 = 1.3991* x 0.9147 ; R2= 0.8857 | air |
2 | 7 | f OSM/50 = 0.4548* x 1.2047; R2= 0.9334 | air |
3 | 3 | f OSM/50 = 2.098* x 0.8064; R2= 0.7349 | water |
4 | 7 | f OSM/50 = 5.9897* x 0.5511; R2= 0.6897 | water |
x= compressive strength of OSM/40 in MPa, R2= coefficient of determination. |
Relationships between compressive strengths (f) of OSMs/50 and OSMs/40
Strength development for OPC mortar and OPC-slag mortar made by using the optimum heat curing
Based on the results presented in Table 4, it can be seen that there is an acceptable power relationship at 3 and 7 days strengths between OPC-slag mortars for 50% OPC replacement with slag and OPC-slag mortars for 40% OPC replacement with slag for the specimens cured at room temperature.
The given relationships in Table 4 were determined by using the regression technique. Based on the relationships it is seen that the coefficient of determination R2 of regression for relationships between the strengths at 3 and 7 days of water cured OPC-slag mortars for 50% OPC replacement with slag and OPC-slag mortars for 40% OPC replacement with slag is small. This shows that there is no acceptable relationship between the strengths of water cured specimens. However, there is a proper relationship for those cured at room temperature.
This appears to be due to the behaviour of specimens cured in water, which are still not clear and that is specific for the duration of 7 days. This means that the effect of water on the strength of water cured specimens is different for the durations of 3 and 3 to 7 days.
In this study four extra sets of specimens were tested for SEM images and EDX analyses of H- 4 sets mix given in Table 5 after curing for 7 days. SEM images and EDX analyses were tested on four specimens of the four sets. Each specimen was analyzed to determine if ettringite was present. If ettringite was detected its morphology was noted. It is impossible to quantify ettringite because of the scaling factor and depth of uncertainties of the electron microscope. However, it is significant to note that very small samples measuring approximately 5 mm in diameter yielded large quantities of ettringite. Ettringite was identified visually and from the EDX analysis. The morphologies of the observed ettringite are summarized in Table 5. Samples typically produced ettringite with similar morphologies including lamellar and needles. Ettringite was found in cavities and in the cement matrix.
Set No. | Curing regime | Ettringite formation |
Set 1 | With heat curing, air cured | Thick and long needles |
Set 2 | With heat curing, water cured | Needles with lamellar |
Set 3 | Without heat curing, air cured | Needles with lamellar |
Set 4 | Without heat curing, water cured | Needles with dense lamellar |
Heat treatment was done after demoulding at 60 °C in duration of 20 hours. |
Summary of scanning electron microscopy morphology for H- 4 sets mixafter 7 days curing
The mechanism of DEF expansion is a highly debated issue. Ettringite Crystal Growth Theory and Uniform Paste Expansion Theory are the two predominant theories. (Shoaib, Balaha, et al., 2000) and (Wang, Pu, et al., 1995) suggested the Ettringite Crystal Growth Theory, which attributes the expansion to pressure exerted by the growing ettringite crystals in the micro cracks between the cement paste and the aggregate.
(Wang, Scrivener, et al., 1994) proposed the Uniform Paste Expansion Theory, which suggests that the concrete expands and then the ettringite forms in the newly created gaps. (Yang, R., Lawrence, et al., 1996) found no evidence to support the Uniform Paste Theory concluding that the ettringite present in the mortar produced the expansion. (Lewis, M. C. & Scrivener, 1996) suggests that both mechanisms are possible and depending on the environmental condition one may be more prevalent. Although other mechanisms have been suggested, expansion most probably results from crystal growth pressure. There are differences of opinion as to whether expansion in mortars or concretes is driven by growth of ettringite crystals at aggregate interfaces or by processes occurring in the paste. If the later expands, gaps will be formed around aggregate particles (Wang, Scrivener, et al., 1994), and ettringite or other phases may recrystallize in them, simultaneously or subsequently. Based on the paste expansion theory the widths of peripheral cracks are proportional to aggregate size; cracks at the interfaces are initially empty. Assuming that expansion occurs through crystal growth pressure, significant growth pressures could not be obtained in relatively large cracks and pastes expand, albeit slowly. Three factors influencing expansion will be considered namely chemistry, paste microstructure, and mortar or concrete microstructure. Proportionality between crack width and aggregate size, which can only be explained by paste expansion, was first reported by (Johansen, Thaulow, et al., 1993). For the H- 4 sets mix 24 hours after casting, the first two sets of the specimens were demoulded and without heat curing but were cured in water and air under room temperature for 7 days, respectively. Another two sets were heated at 60 ºC temperature for 14 hours and then cured the same as the former sets. Ettringite was observed in all of the sets of specimens i.e. with and without heat curing, but with different amounts of crystal size. The results are shown in Figure 5.
The morphology and crystal size of ettringite varies under the different curing conditions the specimens were subjected to. Most of the SEM observation shows that ettringite is normally a slender, needle-like crystal with a prismatic hexagonal cross-section. Its size depends on w/c ratio, that is, the effective space that ettringite is able to occupy (Barnett, Soutsos, et al., 2006). It can grow up to
Comparison between Figure 5 (a), (b), (c) and (d) show that for each test and in all curing regimes ettringite crystals were detected. For the four sets of tests, the ettringite crystals formed under room temperature curing, i.e. Figure 5 (a), and were more and bigger than those under water curing. Probably, this is the reason for the higher strength improvement of the specimens cured in air under room temperature compared to curing in water. It can be observed that the thickest and the longest ettringite crystals are attributed to the specimens that were cured in the heating process at 60 ºC for 14 hours after casting, and then cured at room temperature for 7 days as shown in Figure 5 part (a). The strength obtained at 7 days for the specimens was about 64 MPa. With the comparison of SEM images and the strengths obtained from the four sets of specimens, it can be deduced that heat curing at 60 ºC for 14 hours increases the rate of ettringite formation and thus the early strength. Whenever there is a greater quantity of ettringite formed it contributes to the higher strength. The details obtained for the compressive strengths at 7 and 28 days, of H- 4 sets mixes are given in Table 6.
SEM images and EDX analyses for H-4 set mix specimens
Curing & Strength (MPa) | Type of curing regime | |||
Without use of heat curing | Heat curing at 60 ºC for 14 hours | |||
Water cured (25 ºC - 26 ºC ) | Room temp. Cured (32 ºC) | Water cured (25 ºC - 26 ºC ) | Room temp. Cured (32 ºC) | |
f7 | 53.7 | 38.7 | 57.6 | 64.0 |
f28 | 61.6 | 44.5 | 63.2 | 64.2 |
f7/f28 | 0.87 | 0.87 | 0.91 | 1.00 |
f28/f7 | 1.15 | 1.15 | 1.10 | 1.00 |
SEM images | Figure 5, (d) | Figure 5, (c) | Figure 5, (b) | Figure 5, (a) |
Compressive strength (f) at 7 and 28 days for H- 4 sets mix
Based on the given data in Table 6 it is evident that the highest strength is obtained from air curing at room temperature after heat curing at 60 ºС for 14 hours. Generally speaking, the results obtained can be discussed according to the different curing regimes.
The strength of specimens cured in air at room temperature after subjected to heat curing is the highest. This is followed by the specimens cured in water after heat curing and specimens cured under the same conditions but without heat curing. The lowest strength was obtained for the specimens cured in air at room temperature without heat curing. It was also observed that the thickest and the longest ettringite crystals were formed in the specimens with the highest strength as shown in Figure 5.
Similar to the strength at 7 days, it is seen that among the four curing regimes the strength of specimens at 28 days is the highest for those cured at room temperature after heat curing at 60 °C for 14 hours. From Table 6 it can be seen that the strength growth (i) at 28 to 7 days indifferent curing regimes is as follows: for without heat and curing in air at room temperature i= 1.15 and for curing in water i= 1.15. Use of heat curing at 60 ºС for 14 hours followed by curing in air at room temperature i= 1.00 and for curing in water; i= 1.10.
From the results observed it is clear that in the cases without use of heat curing, the strength growth of 28 to 7 days is noticeable for both curing at room temperature and in water. The relative strength growth is on average about 1.15. This shows that there is a continuous hydration process progression for duration of 7 to 28 days. It seems that the latent potential of the specimens is gradually released, whilst whenever the specimens are heated, the whole latent potential is suddenly released during the initial days (in duration of the first days) due to the temperature effect. In the case with heat treatment, it is seen that the strength gain is completely different for the specimens cured at room temperature and in water. It is observed that there is no significant strength growth at 28 days compared to 7 days. In fact, it can be said that when the specimens are cured at room temperature after heat curing, the highest strengths are achieved during the first 7 days. This is a major advantage to the precast concrete industry. However, when the specimens are cured in water after heat curing more time is needed to achieve maximum strength. This shows that curing in water is not the best way to cure the specimens after heat treatment from the standpoint of strength gain at early ages. Hence, the comparison of curing regimes at room temperature and in water shows that the best curing regime after heat curing is air curing under room temperature, especially for the precast concrete industry. It is also seen that in the case without heat curing, on average, the strength at 7 days is 87% of the strength at 28 days for both curing at room temperature and in water, and with heat curing this ratio is increased on average to 95%. This means that heat curing improves the strength at 7 days by an average of about 9%.
The compressive strength loss of mortars and concretes containing supplementary cementitious materials is quite common. In the process of this research, strength loss has been observed several times for some of the mortars prepared. This is because for a variety of reasons; some of the observed reasons in the study are as follows:
Several researchers reported that a high temperature improves strength at early ages (ACI, 2001; Al-Gahtani, 2010; Shariq, Prasad, et al., 2010). At later ages, the important number of formed hydrates had no time to arrange suitably and this caused a loss of ultimate strength. This behaviour has been called the crossover effect (Powers, T.C., 1947). For OPC it appears that the ultimate strength decreases nearly linearly, with curing temperature (Ramezanianpour & Malhotra, 1995).
Generally, the reason for the loss of strength can be due to internal or external factors. The internal factors are those linked to the chemical composition of the reacted products. The most efficient external factors are due to the variability of specimens and testing procedures. Another factor having high importance is the effect of temperature. The initial curing temperature has a significant effect and can reduce or increase strength at later ages. It seems that the main reason for strength loss at later ages is due to lack of inside water in specimens to complete the hydration and pozzolanic process progression. Usually for the duration of 1 to 28 days, the inside water due to the mixing water is available and adequate for the hydration process; however, beyond 28 days it is reduced and then insufficient for the process of hydration and pozzolanic reaction to progress; hence, strength loss occurs.
Customarily, whenever it is wanted to understand the behaviour of a phenomenon, it is accepted to model its behaviour by the use of a diagram or mathematical relationship. Using the relationships can approximately be forecasted the behaviour of the phenomenon at the later ages. In this research based on the results obtained for the OPC-slag mortars with 50% OPC replacement with slag under thermal activation method have been determined to forecast the variations of compressive strengths versus age of curing.
Comparison of all the relationships shows that the most appropriate form of equation to describe the variations of strength versus age of curing is a logarithmic function in the form of
The best fitted curves strength developments are shown in Figure 6.
Strength development curve fitting for the optimum OPC-slag mortar activated using thermal activation method and OPC mortars
For different duration several temperatures such as 50 °C, 60 °C, and 70 °C were used. Based on the results obtained it can be deduced that heat curing at 60 °C for 20 hours is the optimum. It should be noted that 40% and 50% levels of replacement of OPC with slag were used and the results were compared. In addition to temperature, the effects of relative humidity were also studied. Finally, the results of compressive strength at 3 and 7 days versus heat curing were determined for 40% and 50% levels of replacement. It was recognized that the formation of long and thick crystals of ettringite was the main reason for significant strength improvement at early ages when the specimens were heated and then cured in air under room temperature. The flowchart of thermal activation method is shown in Figure 7.
Thermal activation work phase
In this study 50% level of slag as the optimum was used as replacement for OPC. The thermal activation method (T) was used to activate ordinary Portland cement-slag mortars (OSMs).
For the slag used in this investigation, the optimum cement replacement level from viewpoint of high early strength was proven within the range of 40% - 50%. By using the optimum level of replacement slag, i.e. 50%, noticeable strength levels of OPC-slag mortars are achievable without the use of any activation method. In contrary to OPC-slag mortar for 40% replacement with slag, the other mortars made with different levels of replacement slag have shown higher 56-day strength compared to strength at 28-day, but the OPC-slag mortar for 40% OPC replacement with slag gives less 56-day strength compared to strength at 28-day by about 10.8%; namely compressive strength loss about 10.8%. Thus this strength loss phenomenon needs to be further investigated.
The highest growth of 56-day strength compared to 28-day are attributed to slag mortars and OPC-slag mortars for 10% replacement with slag (OSM/10) as 31.5% and 21.7%, respectively. This shows that the strength of mortar including the highest level of replacement slag will be improved at later ages more than others. However, it is well known that the ultimate strength of slag mortars is not significant compared to the strength of the others at the same ages. Therefore, it can be deduced that the slag mortars are the best only from viewpoint of durability.
It has been shown that the strengths of specimens cured in water at 3 and 7 days for OPC-slag mortar with 40% and 50% OPC replacement of slag, without and with use of heating for duration of 2 hours, are more than those cured in air under room temperature. However, as soon as the heating duration is increased to 4 hours and more, this effect is reversed. This is a new finding with a major advantage in precast concrete industry and also has many advantages in arid regions for curing of concrete structures.
Based on the experimental results obtained in the study, it can be concluded that there is an optimum temperature for each specific material to obtain high early strength. It was determined that 60 °C is the optimum. Heating duration is also very important for obtaining high early strength. For the slag used in the study, duration of 20 hours is optimum. Usually, as heating time increases towards the optimum, the compressive strength will be increased.
The maximum strengths obtained at 3 and 7 days for OPC-slag mortar with 50% OPC replacement of slag cured in air under room temperature are 55.3 and 61.6 MPa, respectively. It can be seen that these are 21.8% and 20.0% more than those of OPC mortar specimens cured in air under room temperature, and 26.1% and 29.0% more than those of OPC mortar specimens cured in water, respectively.
It was proven that whenever the mortar is heated larger than the optimum duration, it could be seen that this will not lead to an increase in early strength. According to the results of the study and other researches, it can be deduced that the thermal activation is one of the most efficient and applicable techniques for activation of OPC-slag mortars. This is well known specially in precast concrete industry.
The results obtained show that the best relationship of compressive strengths versus heating duration of the specimens cured in air under room temperature and water for OPC-slag mortars at 40% and 50% OPC replacement with slag are power equations. A relationship exists between the compressive strength of the specimens cured in air under room temperature and water for OPC-slag mortar at 40% and 50% OPC replacement with slag at 3 days, but not at 7 days. Generally, comparison of OPC mortars heated in water bath or oven showed that water bath heat treatment gave better results than those of oven heated. It was also observed that the specimens gave higher strengths in air under room temperature compared to water curing after heating in the water bath at 60 ºC for a duration of 20 hours. This is a significant finding with a major advantage in construction and is also economic since water bath heating can be practically implemented. However, oven heated pre-curing, results in higher strengths whenever the specimens are cured in water after heating.
Among the mixes prepared by using different levels of OPC replacement with slag, mixtures with 50% ggbfs and 50% OPC show the highest strength in the absence of any activation method.
Based on the extra work done in this research by use of “mining sand” instead of “silica sand”, it was revealed that using mining sand is preferable to silica sands for activation of slag mortars, thus it is suggested to conduct a new study using mining sand.
In this study a single source of ggbfs was used throughout. It is recognized that other sources may have somewhat different chemical compositions. Thus other sources of the material need to be evaluated in order to determine the influence of the activation methods used in this study to be generalized.
No | Mix name | OPC (g) | Slag (g) | Flow (mm) | SP (g) | Water (g) |
1 | OM-wc | 1200 | 0 | 225 | 40 | 421.11 |
2 | OSM/10-wc | 1080 | 120 | 225 | 68 | 421.11 |
3 | OSM/20-wc | 960 | 240 | 220 | 65 | 421.11 |
4 | OSM/30-wc | 840 | 360 | 220 | 60 | 421.11 |
5 | OSM/35-wc | 780 | 420 | 230 | 40 | 421.11 |
6 | OSM/40-wc | 720 | 480 | 210 | 48 | 421.11 |
7 | OSM/45-wc | 660 | 540 | 235 | 40 | 421.11 |
8 | OSM/50-wc | 600 | 600 | 235 | 40 | 421.11 |
9 | OSM/60-wc | 480 | 720 | 220 | 35 | 421.11 |
10 | OSM/70-wc | 360 | 840 | 230 | 35 | 421.11 |
11 | OSM/80-wc | 240 | 960 | 225 | 33 | 421.11 |
12 | OSM/90-wc | 120 | 1080 | 220 | 27 | 421.11 |
13 | SM-wc | 0 | 1200 | 220 | 30 | 421.11 |
Mix proportions for determination of optimum level of replacement slag
No | Mix name | OPC (g) | Slag (g) | Water (g) | SP (g) | Flow (mm) | |||||
For OPC mortars, room temperature and water cured | |||||||||||
1 | OM- ac | 1800 | ----- | 631.7 | 28 | 230 | |||||
2 | OM- wc | 1800 | ----- | 631.7 | 30 | 230 | |||||
For OPC-slag mortars for 40% replacement with slag , cured in water and air under room temperature | |||||||||||
3 | H0/0 | 720 | 480 | 421.11 | 28 | 225 | |||||
4 | H60/2 | 1440 | 960 | 842.22 | 82 | 230 | |||||
5 | H60/4,6 | 1440 | 960 | 842.22 | 90 | 230 | |||||
6 | H60/8,10 | 1440 | 960 | 842.22 | 79 | 230 | |||||
7 | H60/12,14 | 1440 | 960 | 842.22 | 79 | 230 | |||||
8 | H60/16 | 1440 | 960 | 842.22 | 82 | 230 | |||||
9 | H60/18,20 | 1440 | 960 | 842.22 | 73 | 230 | |||||
10 | H60/22,24,26 | 2160 | 1440 | 1263.33 | 70 | 220 | |||||
For OPC-slag mortars for 50% replacement with slag, cured in water and air under room temperature | |||||||||||
11 | H0/0 | 600 | 600 | 421.11 | 35 | 230 | |||||
12 | H60/2 | 1200 | 1200 | 842.22 | 76 | 235 | |||||
13 | H60/4,6 | 1200 | 1200 | 842.22 | 91 | 225 | |||||
14 | H60/8,10 | 1200 | 1200 | 842.22 | 90 | 235 | |||||
15 | H60/12,14 | 1200 | 1200 | 842.22 | 73 | 235 | |||||
16 | H60/16 | 1200 | 1200 | 842.22 | 76 | 235 | |||||
17 | H60/18,20 | 1200 | 1200 | 842.22 | 62 | 225 | |||||
18 | H60/22,24,26 | 1800 | 1800 | 1263.33 | 60 | 220 | |||||
OSMs/50 test for three sets of specimens in cured room temperature and in water 25 ºC and 32 ºC after heat treatment 60 ºC for duration 20 hours | |||||||||||
19 | H- 3 sets mix | 900 | 900 | 631.7 | 35 | 225 | |||||
OSMs/50 test for four sets of specimens cured in room temperature and in water after with and without use of heat treatment 60 ºC for duration 14 hours | |||||||||||
20 | H- 4 sets mix | 1200 | 1200 | 842.22 | 50 | 225 | |||||
For optimum OSM/50 at six ages, only room temperature cured | |||||||||||
21 | H60/20 | 900 | 900 | 631.7 | 43 | 230 | |||||
H60/i,j,k means 60 ºC temperature with duration i, j, and k hours |
Mix proportions of OPC-slag mortars for thermal activation method
OPC | ordinary Portland cement |
ggbfs | ground granulated blast furnace slag |
OM | ordinary Portland cement mortar |
OSM | ordinary Portland cement-slag mortar |
SM | slag mortar |
OSM/i | OPC-slag mortar for i% replacement with slag |
OSM/50-wc | control mix/ mortar |
fi | compressive strength at i days in MPa |
i | relative strength or strength ratio |
T | thermal activation method |
Wc | water curing |
Ac | curing in air under room temperature |
SD | standard deviation |
R2 | coefficient of determination |
XRD | X-ray diffraction |
SEM | scanning electron microscopy |
EDX | energy dispersive X-ray analysis |
XRF | X-ray fluorescence |
ASTM | American Society for Testing and Materials |
ACI | American Concrete Institute |
BSI | British Standards Institute |
SCA | Slag Concrete Association |
MIA | Mortar Industry Association |
CSA | Canadian Standards Association |
GSD | grain size distribution |
FM | fineness modulus |
SSA | specific surface area |
SAI | slag activity index |
SP | super plasticizer |
s/b | sand-binder ratio |
w/c | water-cement ratio |
w/b | water-binder ratio |
DEF | delayed ettringite formation |
EEF | early ettringite formation |
SEF | secondary ettringite formation |
ASR | alkali silica reaction |
C-S-H | calcium silicate hydrates |
CH | hydroxide calcium |
LOI | loss on ignition |
RH | relative humidity |
AFm (C3A.CaSO4.12H2O) | aluminate-ferrite-monosubstituted or |
AFt (C3A.3CaSO4.32H2O) | aluminate-ferrite-trisubstituted or ettringite |
CaCO3 | calcite |
C3A.3CaSO4.32H2O | ettringite |
C3A.CaSO4.13H2O | imonosulphate |
C2ASH8 | gehlenite hydrate |
M6.Al2CO3 (OH)16. 4H2O | hydrotalcite |
Ca2SiO4.H2O | α- C2SH |
H-3 sets mix is a control mix, which the specimens were first made and demoulded 24 hours after casting, and then heated at 60 °С for 20 hours and finally, cured in three curing regimes, i.e. at room temperature, in water at 25 - 26 °С, and in water at 32 °С. H-4 sets mix is a control mix, which the specimens were first made and demoulded 24 hours after casting, and then pre-cured without and with the use of heat at 60 °С for 14 hours and finally, each set of specimens was cured in both curing regimes, i.e. at room temperature and in water at 25 - 26 °С. |
Perfluorocarbons (PFCs) consists of a large group of man-made chemicals available worldwide in many different fields since the 1940’s [1]. The numerous applications of PFCs in different areas relies on their distinctive physical and chemical characteristics (water and oil repellence, thermal and chemical stability, surfactant behaviour, low polarity, weak intermolecular interactions, and reduced surface tension), [1, 2, 3] highly fomented by the fluor-carbon moiety [1, 2, 3]. These compounds are widespread in consumers life through plastics, fire retardants, dyes, surfactants, polymers, and pharmaceuticals, among others [1, 2, 3, 4, 5, 6]. Benign PFCs have been used in the development of biomedical applications, such as emulsions, [7, 8] imaging agents, [9, 10] biocompatible lubricants, [11] oxygen therapeutics, [12] pulmonary delivery agents, [13] and theranostic agents [14]. On the other hand, perfluoroalkyl acids (PFAs) and fluorinated greenhouse gases (F-gases) belong to a class of persistent chemicals, widely used in industrial and commercial products [1, 2, 5, 6]. Due to their high global warming potential (GWP), long atmospheric lifetime, persistency, and mobility, these compounds have been found in several contaminated sites, [2, 15] including water, soils, biota and food [16, 17, 18]. Major concerns about their toxicity and bioaccumulation limit their use and encourages their replacement [1, 2, 5].
In the last decades ionic liquids (ILs) have emerged as new engineering solvents. The application of these compounds has aroused in many different subjects, including catalysis, electrochemistry, extraction and separation processes, pharmaceutical and biomedical applications [19, 20, 21, 22, 23, 24, 25]. This massive use of ILs is supported by their unique thermophysical properties and limitlessness combinations between anions and cations [19, 26, 27]. Their title of “green solvents” is corroborated by an almost negligible vapour pressure at room temperature and reduced flammability [19, 26]. Additionally, the increased research about the cytotoxicity and environmental toxicity of these compounds reinforces that their possible harmful behaviour is dependent on the cation-anion tested combination [28]. Due to their complexity and variety, ILs have been categorized in several families according either to their properties or to their applications [29].
This chapter is focused on the use of a less explored ILs family, the fluorinated ionic liquids (FILs), defined as ILs with fluorine tags equal or longer than four carbon atoms [30, 31, 32, 33]. The fluorinated tags can create one nanosegregated domain distinct from polar and apolar (hydrogenated) [32, 33]. FILs combine the exceptional properties of conventional ILs (high thermal stability, negligible vapour pressure, reduced flammability, and greener potential) with the greatest properties of traditional PFCs (chemical and biological inertness, reduced surface tension and increased surfactant behaviour). In contrast to the low solubility and toxicity intrinsic to many highly fluorinated compounds, some novel FILs have been designed with completely water miscibility [34, 35] and negligible toxicity, [30, 36, 37] furthering its use in more green engineering processes and biomedical applications. In spite of these outstanding properties, scarce information is available in literature and research is mainly focused on their synthesis and characterization, [38] electrochemical properties, [39] gas solubilities [40] and application as reaction media [38, 41].
This chapter covers the main assets of these FILs, namely their thermophysical and structural properties, aggregation and surfactant behaviour, cytotoxicity, acute ecotoxicity and biodegradation. Additionally, a more detailed approach throughout the application of FILs as task-specific materials in several areas comprise the analysis of a series of works. It is evidenced the progress of FILs either in biomedical applications, or in engineering separation processes.
The characterization of FILs properties and the influence of the different cation/anion combinations on these properties is still critical to head these specific materials to the potential applications. FILs have enhanced properties due to the nanosegregated structuring into three different domains, one polar and two apolar (hydrogenated and fluorinated), making them an alternative solvent with new improved mechanisms of solubilization of different compounds (see Figure 1) [31, 32, 33]. The manipulation of the nanosegregation behaviour and intra- and inter- molecular interactions of FILs allows the control of thermal and thermophysical properties, toxicity, solubility capacity or hydrophobicity of FILs.
Formation of three nanosegregated domains of [C2C1Im][CF3SO3], [C2C1Im][C4F9SO3] and [C6C1Im][C4F9SO3] FILs. The red and blue sticks represent negative and positive charges, indicating the segregated polar network in the three ILs. The green space-filled areas represent the fluorinated domains. The grey space-filled areas indicate the hydrogenated moieties segregated. Adapted from [
In this section, it is emphasized how the formation of the new fluorinated domain and the structural features influence the properties of FILs. The properties of FILs, such as melting point, thermal stability, density, viscosity, refractive index, ionic conductivity and surface tension [30, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50] are discussed along with the FILs self-aggregation behaviour in aqueous solutions [34, 35, 50, 51, 52]. A close sight on the biocompatibility of FILs by examining their toxicological and biodegradability properties is also included for discussion [30, 36, 37].
The phase behaviour of pure FILs is determined by the melting, solid–solid and glass transitions while the thermal stability is defined by the decomposition temperature. These properties are determinant to define the liquid range of application, allowing a wisely choice of a fluid to a specific task. Several works include the thermal characterization of the FILs depicted in Table 1 [30, 33, 42, 43, 44, 45, 46, 47, 50]. In the case of FILs where the formation of three domains occurs, due to long enough hydrogenated (up to 6 carbons) and fluorinated (up to 4 carbons) chains (Figure 1), a rich phase behaviour is found, with a high number of solid–solid transitions. This indicates the ability of FILs domains to rearrange into different structures until the complete melting, proving the high influence of the nanosegregation [33, 46].
Structure and nomenclature of the ions constituting the FILs and of the F-gases studied for absorption in FILs and in deep eutectic solvents, prepared with the illustrated perfluorinated acids.
The different structural features of FILs can impact the melting and decomposition temperatures, and much work has been done to find trends to design FILs with tuned thermal properties [30, 42, 45, 47, 50]. The melting and decomposition temperatures of several FILs can be found in the Table 2. In the case of [CnC1Im][C4F9SO3] FILs family, it was found that the increment of the cationic hydrogenated chain increases the melting temperature and decreases the decomposition temperature [42, 47]. The increase of the anionic fluorinated chain also rises the melting point. However, the thermal stability is maintained constant at a considerable high temperature [42, 47]. Moreover, FILs based on [CnF2n + 1SO3]− anions have a much higher thermal stability than ILs conjugated with [CnF2n + 1CO2]− anions [42, 45, 50]. The type of cation and its functionalization also has a great influence in both thermal properties, and a carefully analysis must be performed when choosing a FIL for a specific ending [30, 33, 42, 45, 46, 50].
K | K | g·cm−3 | m·Pas−1 | mN·m−1 | |
---|---|---|---|---|---|
[CnC1Im][C4F9SO3] | |||||
n = 2 | 293 [42] | 627 [42] | 1.547 [42] | 163.0 [42] | 25.14 [43]* |
n = 4 | 286 [47] | 638 [47] | 1.460 [47] | 307.3 [47] | 22.83 [43]* |
n = 6 | 297 [30] | 627 [30] | 1.392 [30] | 401.7 [30] | 21.36 [43]* |
n = 8 | 308 [30] | 621 [30] | 1.338 [30] | 374.6 [30] | 20.57 [43]* |
n = 10 | 307 [47] | 627 [47] | 1.310 [47] | 597.1 [47] | 22.05 [43]* |
n = 12 | 311 [42]* | 617 [42]* | 1.247 [42]* | 280.9 [42]* | 23.42 [43]* |
[C4F9SO3]− | |||||
[C2C1py]+ | 278 [30] | 629 [30] | 1.515 [30] | 201.8 [30] | 26.35 [45] |
[N4444]+ | 327 [30] | 587 [30] | 1.234 [30] | 15319 [30] | 22.77 [45]** |
[C4C1pyr]+ | 364 [46] | 632 [46] | |||
[N1112(OH)]+ | 436 [45] | 609 [45] | |||
[C2(OH)C1Im]+ | 251 [50] | 559 [50] | 1.620 [50] | 831.6 [50] | |
[C4F9CO2]− | |||||
[C2C1Im]+ | 278 [42] | 392 [42] | 1.487 [42] | 107.5 [42] | |
[C8C1Im]+ | 297 [42] | 399 [42] | 1.292 [42] | 307.9 [42] | |
[C2(OH)C1Im]+ | 295 [50] | 433 [50] | 1.541 [50] | 712.8 [50] | |
[C2C1py]+ | 275 [45] | 392 [45] | 1.454 [45] | 147.1 [45] | 26.83 [45] |
[C8F17SO3]− | |||||
[N4444]+ | 255 [30] | 385 [30] | 1.317 [30] | 6690 [30] | 21.98 [45] |
[C2C1Im]+ | 368 [42] | 616 [42] | |||
[N(C4F9SO2)2]− | |||||
[C2C1pyr]+ | 428 [45] | 619 [45] | |||
[C4C1pyr]+ | 371 [45] | 639 [45] | |||
[N1112(OH)]+ | 303 [45]* | 622 [45]* | 1.674 [45]* | 947.1 [45]* | 25.04 [45]* |
Thermophysical and thermodynamic properties of fluorinated ionic liquids at 298.15 K and atmospheric pressure: melting temperature,
Experimental data obtained * at 313.15 K and ** at 333.15 K.
The FILs based on long fluorinated chains (e. g. [N(C4F9SO2)2]−) have a very high melting temperature, automatically reducing the liquid operating range. Eutectic mixtures of FILs can be the solution to solve this handicap. The evaluation of the solid–liquid phase behaviour of binary mixtures of FILs showed a high decline of the melting temperature to values close or below room temperature [44]. This does not only increase the liquid range of FILs, but also expands the tuneability of neat FILs.
Density, transport, free volume, and surface tension properties have high relevance in the biomedical field as well as in the separation and extraction processes for industrial proposes [30, 53]. The structural features of FILs can determine their density, [30, 42, 45, 47, 50] as can be seen in Table 2. While the increment of the fluorinated chains increases FILs density, [30, 42, 45] the opposite behaviour is found for the increment of hydrogenated side chain [30, 42, 45, 47]. The carboxylate anions show a lower density comparing with the sulfonate anions [30, 45, 50]. The functionalization of imidazolium cation with a hydroxyl group has shown an increment on density [50]. The cation nature widely affects the density, and each family must be analysed case by case to infer on the applicability of each FIL [30, 42, 45].
The characterization of FILs viscosity, and consequently of their fluidity, was studied in several works, [30, 42, 45, 47, 50] and some of the results can be found in Table 2. The results indicate that FILs with longer aliphatic and fluorinated chains increase the viscosity [30, 42, 45, 47]. The FILs composed by [CnF2n + 1SO3]− anions also present high viscosity comparing with the [CnF2n + 1CO2]− anions [30, 42, 45]. The nature of the FIL cation affects tremendously the viscosity. In the case of bulkier cations, a lower fluidity is found [30, 42, 45]. The addition of a hydroxyl group in imidazolium cations increases the cohesive forces resulting in more viscous fluids [50].
The ionic conductivity has great importance, especially when correlating the molar conductivity with the fluidity obtaining the ionicity of FILs [30, 42]. The ionicity is evaluated by the Walden plot where FILs are classified depending on the distance to an ideal electrolyte [54]. From the ionicity can result information on the formation of aggregates between ions due to low mobility [54]. The analysis of the results shows that the increment of the cationic aliphatic and of the anionic fluorinated chains decrease the ionicity, diverging from the ideal behaviour [30, 42, 45, 47].
The free volume has a high relevance to FILs suitability as enhanced solvents of gases or other compounds with low molecular weight [55]. The relation between refractive index and density allows the calculation of molar free volume effects, evaluating the available space for dissolution of gases [30, 42, 45, 47, 50]. Therefore, the increase of both hydrogenated and fluorinated chain and bulkier cations rise the molar free volume values [30, 42, 45, 47, 50].
The surface tension of FILs is the property that most differs from the conventional ILs, in which the cation’s nature has a predominant influence on this property [43, 45, 56]. The values of surface tension for some FILs can be found in Table 2. The surface tension of [CnC1Im][C4F9SO3] family showed the lowest values existing in the overall ILs literature [43]. The increment of the hydrogenated chain decreases the surface tension up to the lowest value, found for the [C8C1Im][C4F9SO3]. The further increase of FILs aliphatic chain resulted in higher values of surface tension, revealing a global behaviour marked by a bowl-shaped trend [43]. The addition of a fluorinated domain in FILs induces a competition with the aliphatic domain to protrude the interface, which dramatically changes the values of surface tension [43]. As long as the hydrogenated chain increases to [C8C1Im]+, a rearrangement in the organization between the non-polar domains happens, allowing both to protrude through the top layer. After [C8C1Im]+, the aliphatic chain is much larger than the fluorinated chain, and occupies more space at the interface, increasing the values of surface tension [43]. In the case of quaternary ammonium-based FILs it was shown that they have lower values of surface tension comparing with pyridinium cation. In FILs based on ammonium, the increment of the fluorinated chain deeply decreases the surface tension [45].
The FILs properties can be tuned by choosing the cation, anion, length of side chains and functionalization of cation, increasing the possibilities of designing the best task-material. The complete determination of these properties is a complex assignment, requiring a lot of costs and time. To ease this task, theoretical models can be applied to predict their characteristics. An effort has been done in this direction obtaining several models that accurately reproduces the FILs properties of the neat FILs and of the mixtures with gases and aqueous solutions [47, 48, 49, 50].
The behaviour of FILs in aqueous solutions is enhanced in comparison with the PFCs and conventional ILs [34, 35, 50, 51, 52]. The selection of nontoxic FILs based on imidazolium, pyridinium (with short aliphatic chains) and cholinium cations conjugated with the [C4F9SO3]− anion were used to study the self-aggregation behaviour. These compounds are completely miscible in water at all range of concentrations studied in the conductivity profile [34]. The same behaviour was later found for imidazolium-FILs functionalised with a hydroxyl group [50] and some examples are represented in Figure 2a. The Liquid + Liquid equilibria of binary systems FIL + water was also analysed to study the solubility of water [35, 52]. The increment of the aliphatic chain in [CnC1Im][C4F9SO3] family increases the solubility of water in the FIL-rich phase [35, 52].
(a) Complete conductivity profile of FILs in water at 298.15 K and (b) the values of critical micellar concentrations of PFCs (grey bars) and hydrogenated (black bar) surfactants [
The water-rich region was selected to determine the critical aggregation concentrations (CACs) of several FILs [34, 35, 50, 52]. [C2C1Im][C4F9SO3] showed three different transitions related to the formation of distinct aggregates. These aggregates were evaluated and associated to different self-assembled structures [34]. These stable self-assembled structures can be the greatest contribution to the full miscibility of FILs in water. Figure 2b represents the values of the first CAC, so-called critical micelle concentration (CMC) of FILs [34, 35, 50, 52] and conventional surfactants [57, 58, 59]. All the FILs show much lower CMC and FILs with only four carbon atoms have greater aggregation power than the conventional surfactants with eight carbon atoms. The increment of the hydrogenated chain in the [CnC1Im][C4F9SO3] family decreases the CMC value, promoting the formation of more, bulkier and better packed structures [35, 52]. The longer fluorinated chains also decrease the CMC values. However, the growth of both nonpolar chains hinders the solubility in water [34, 35, 52]. The pyridinium and tetrabutylammonium cations show slightly lower CMC values comparing with imidazolium, cholinium or pyrrolidinium cations [19, 20, 22].
The FILs behaviour in water was also inferred in the FIL-rich phase by investigating the hydrogen-bonding ability and polarizability through Kamlet-Taft parameters [51]. The results indicate that increasing the fluorinated chain restricts the impact of adding water into ILs, keeping the hydrogen bond acceptance ability constant. This result indicates that the rich aggregation of FILs promotes the aggregation of water in a bulky polar network. The water aggregates expand and drive to the proximity of the polar nanosegregated domains of the FILs due to the higher repulsion of the fluorinated counterparts [51].
Cytotoxicity, partition properties, acute ecotoxicity and biodegradation are key parameters to assess the health and environmental risks of these FILs. Knowledge about structure-toxicity relationships is of great interest for the design of biocompatible and greener FILs. The design of these new compounds aims to surpass the persistency, bioaccumulation, and toxicity drawbacks of PFCs [1, 2, 5, 6].
This section provides a critical review of the cytotoxicity in different human cell lines: human colon carcinoma cells (Caco-2), human hepatocellular carcinoma cells (HepG2), human umbilical vein cell line (EA.hy926), and spontaneously immortalized human keratinocyte cell line (HaCaT), representing the risks associated to different routes of biomedical administration [30, 37]. Cytotoxicity screenings, with 4 h [30] and 24 h [37] exposure, were performed in these cell lines. For short-chain based-FILs, such as [C2C1Im][C4F9SO3] and [C2C1py][C4F9SO3], the overall reduced toxicity can be justified by their high hydrophilicity and surfactant performance [30, 34, 35, 37, 52]. In HaCaT cells, higher EC50 values were obtained for both FILs mentioned before and these results can be associated to the intrinsic properties of this cell line [37]. A higher biocompatibility was attained with the cholinium cation conjugated with the [C4F9SO3]− anion, due to the non-aromaticity and symmetry of this cation, which is also an essential nutrient for cell growth [25, 37, 60]. A similar behaviour was reported for several cholinium alkanoates [61, 62]. The non-aromatic and symmetric [N4444]+ as well as the alicyclic pyrrolidinium cations, conjugated with the [C4F9SO3]− anion, maintain the cellular viability in Caco-2, HepG2 and EA.hy926 cells [30, 37]. The elongation of the imidazolium hydrogenated alkyl chain length from [C2C1Im]+ up to [C12C1Im]+ prompts the decrease of the cellular viability in the Caco-2 cell line, as depicted in Figure 3a [37]. This effect on cellular viability can be due to the presence of delocalized charges or due to the increment of lipophilicity which enhance the disruption of the cell wall [37, 63]. A more pronounced decay on the cellular viability is observed with the increment of the anionic fluorinated side chain length [30, 37]. This effect was noticed for the variation of [C4F9SO3]− to [C8F17SO3]− or [N(C4F9SO2)2]− anions, combined with imidazolium, cholinium and ammonium-based cations [30, 37]. The fluorinated elongation on carboxylate-based anions also engenders a significant reduction of the cellular viability in different cell lines [62]. The increment of the fluorinated domain also enhances the FILs lipophilicity and the charges delocalization, which is traduced in a higher permeation of the cell membranes [37, 64]. Inside the cell compartment, free fluoride ions are formed by hydrolytic cleavage, which can interfere with the cellular mechanisms leading to cell death [37, 64].
(a) Cellular viability for imidazolium-based FILs with the increment of hydrogenated and fluorinated alkyl side chain length; (b) Effect of the hydrogenated and fluorinated alkyl side chain length on the 1-octanol/water partition coefficient (Po/w) of imidazolium based FILs. Adapted from [
The increment of the lipophilicity as result of the elongation of both hydrogenated and fluorinated alkyl side chain was confirmed through the 1-Octanol/water partition coefficients (P
An environmental hazard assessment is also essential in the context of sustainability and green chemistry. An ecotoxicological screening to evaluate the impact of FILs in aquatic environment was performed in marine bacterium
The microbial degradation of some FILs showed that short chain-based imidazolium FILs are highly resistant to biodegradation, even with the incorporation of hydroxyl groups. A certain biodegradability occurred in the short chained pyridinium-based FIL, associated to the oxidation of the alkyl side chain [36, 67, 68]. However, some variability is associated to the biodegradation of these cation that must be associated to the differences in microbial compositions involved in the degradation process [67, 68]. The higher degrees of biodegradation obtained with the cholinium-based FILs is only related to the cation core degradation that retains 75% of the oxidizable carbon [36]. To overcome the highly resistance associated to these compounds, removal or degradation alternative routes must be studied. According to these published results a proper combination between cations and short chained fluorinated anions may result in biocompatible FILs with potential to be biodegradable by alternative routes. These biocompatible FILs can support the fields of FILs as task-specific materials in a broad range of fields, from biomedical to reaction media in industrial processes.
The need of new products to replace the blood transfusions appeared in the beginning of the 21th century as a consequence of cross-infections derived from the human immunodeficiency virus (HIV) [4, 69]. The lack of safety and trust allied with the severe shortages and increased demand of blood supplies have contributed to the search of an ideal artificial gas carrier (AGC) [4, 69]. PFCs-based emulsions are among the substances under clinical trials used to substitute the red blood cells in critical situations such as acute blood loss [4]. However, the PFCs have several handicaps that can restrict their usage as AGCs, such as high vapour pressures and poor solubility in water. With the aim to solve these limitations, FILs appeared as a solution to replace the PFCs fully or partially in AGC emulsions. Different works have been developed to infer on this prospect [34, 35, 49, 50, 70, 71]. The results show the possibility to design FILs with complete water miscibility, which solves one of the greatest handicaps [34, 35, 50]. The study of phase equilibria between FILs and two PFCs, perfluorodecalin and perfluorooctane, indicated that the enthalpic contributions are larger than the entropic contributions, which results in a favourable process of solvation of PFCs by FILs [70]. The high surfactant behaviour of FILs is also a huge advantage because it enables the stabilization of AGC emulsions, which can be favourable to reduce the usage of excipients and to enhance the solubilization of the respiratory gases [34, 35, 50]. The reduced cytotoxicity and ecotoxicity determined for FILs with the characteristics above mentioned strengths the possible use of these compounds in the biomedical field [30, 36, 37]. The greatest aspect that spurs the use of FILs as potential substitutes of PFCs in AGC emulsions is their higher ability to solubilize oxygen, carbon dioxide and nitrogen, compared to the conventional fluorine-containing ILs and with PFCs [49, 71]. However, the formulation of an emulsion with high efficacy and the implementation of tests on the physiological safety and other health studies must be carried out before applying FILs.
Although there are several studies dealing with ILs for the solubilisation and stabilization of proteins, [23, 72] dissolution of low soluble active pharmaceutical ingredients (APIs), [23, 24] and development of drug formulations and delivery systems, [23, 24, 25, 73] the application of FILs in this field of pharmaceutical development is quite unexplored. Our research group initiated a pioneering research line to use FILs as drug delivery systems (DDSs) [74, 75, 76]. These novel biocompatible carriers can overcome the problems associated to proteins administration (e.g. sensibility to environmental conditions, short-half lives in blood stream, structural conformation and hydrophobic/hydrophilic nature that hamper the
The application of FILs as DDSs and stabilizing agents was firstly evaluated for two different model proteins, lysozyme, and bovine serum albumin (BSA) [74, 75]. Lysozyme is a protein with antiviral, antitumor and immunological properties, [80] whereas BSA is involved in organism homeostasis and in the transport of several components essential for several vertebrates’ body functioning [81]. For these applications, FILs based on imidazolium, pyridinium and cholinium cations, conjugated with [C4F9SO3]− and [C4F9CO2]− anions were selected due to biocompatibility and improved surfactant behaviour [30, 31, 34, 35, 36, 37]. The tested FILs concentrations cover values above and below their CMCs values (Figure 2b) [34, 52]. Concentrations above CMC were chosen due to their ability for self-assembling in micellar structures that can be used to protect, encapsulate, and deliver the therapeutic proteins [34, 52]. The stability of both proteins in the presence of FILs was determined based on the variations observed in the melting temperature of the biomolecules [74, 75]. The stability of lysozyme is not significantly affected by the incorporation of FILs, and only a slight decrease was achieved with [C2C1py][C4F9CO2] with a minor reduction of 2% in the melting temperature of the protein [74]. However, for BSA the melting temperature increases for all tested FILs concentrations, suggesting a stabilization of the protein [75]. These distinct results indicate a specific interaction between FILs and each tested protein [74, 75]. The differences among the interactions of the two biomolecules with FILs were also supported by structural studies. Both circular dichroism (CD) and fourier transformed infrared spectroscopy results suggest no substantial lysozyme structural modifications in the presence of cholinium and [C2C1Im][C4F9SO3] FILs, respectively [74]. For BSA, a slight increment on molar ellipticity and α helical content, followed by a β sheet and random coil reduction, observed in CD results, indicate a stabilization of the secondary structure, and a more compact state of the protein with [N1112(OH)][C4F9SO3] [75, 82]. Furthermore, in the presence of FILs, the biological activity of lysozyme increased, even at concentrations where the encapsulation of the protein inside the micelles occurs [74]. Although there are differences in the interactions between the two different proteins and the FILs, the stability, activity and secondary structure of biomolecules are not negatively impacted by the selected fluorinated compounds [74, 75].
The aggregation behaviour of different FILs was analysed in the protein medium. No significant variations were achieved in the FILs self-aggregation process in aqueous solutions [34, 74, 75]. To prove the encapsulation of lysozyme in the aggregates of FILs, the self-assembled structures were studied through dynamic light scattering (DLS) [74]. As illustrated in Figure 4a, an encapsulation of the protein at a concentration approximately twice the FILs CMC (1.2% v/v) is expected based on the disappearance of the intensity peak of lysozyme ( ̴ 4 nm) [74]. This encapsulation is driven by the fluorinated surfactant core of the FILs since the lysozyme characteristic peak remains present for the non-surfactant ILs [74]. This encapsulation was indorsed spectrophotometrically with the concentration of lysozyme in solution being reduced with the addition of 1.2% v/v [C2C1Im][C4F9SO3] [74]. Moreover, the FIL-protein aggregates became more stable after 24 h and a maximum stabilization was verified after 96 h [74]. The lysozyme encapsulation in [C2C1Im][C4F9SO3] was also evidenced, illustrated in Figure 4b and c [74]. Figure 4b depicts the solution of lysozyme with 1.2% v/v of [C2C1Im][C4F9SO3] analysed by transmission electron microscopy (TEM), where an external darker counter surrounding the aggregates of FILs is associated to the heavier elements present in the anion, in contrast to the lighter grey shades of the lysozyme [74]. Moreover, the micellar sizes obtained by TEM are similar to the hydration diameters measured by DLS. A qualitative analysis through scanning electron microscopy (SEM), Figure 4c, reveals an external surface of the solution containing lysozyme with 1.2% v/v of [C2C1Im][C4F9SO3] similar to the FILs blank solution depicted in [74].
(a) DLS spectra of lysozyme in buffered medium upon the addition of [C2C1Im][C4F9SO3] at several concentrations; (b) TEM image of [C2C1Im][C4F9SO3] 1.2% v/v with lysozyme; (c) SEM image of [C2C1Im][C4F9SO3] 1.2% v/v with lysozyme. Adapted from [
The interaction and the encapsulation between [C2C1Im][C4F9SO3] and BSA was proved through isothermal titration calorimetry (ITC) [75]. BSA interacts with the [C2C1Im][C4F9SO3] monomers causing conformational changes, as well as hydrogen bonding and hydrophobic interactions [75]. The aggregation of [C2C1Im][C4F9SO3] in buffer determined by conductimetry was also supported by the ITC measurements. However, ITC indicates that the interaction between BSA and FIL is stronger than the FIL self-aggregation [75]. A different interaction between BSA and the FIL aggregates, not identified in the conductivity measurements, strongly supports the encapsulation of this protein inside the FILs aggregates [75].
After the first proof of concept dealing with the encapsulation of lysozyme inside the FIL aggregates, the optimal incubation temperature of the protein during 24 h was determined at 4 °C without a significant loss of protein activity [76]. The encapsulation efficiencies of lysozyme in both [C2C1Im][C4F9SO3] and [C2C1py][C4F9SO3] at 1.8% v/v (3 times higher than CMC) range from 69.4 to 83.4%, values similar or higher than the obtained with other traditional platforms [76]. This lysozyme remains encapsulated up to 12 h post-incubation at 4 °C, without significant losses of biological activity [76]. This longer retention of the biomolecule inside the FILs aggregates can be caused by the high stability of the fluorinated counterpart of the IL, as well as by the interaction between FIL and protein [76]. Furthermore, the biomolecule release was accomplished after the application of several external stimuli [76]. With the increment of temperature up to 37 °C, simulating the average body temperature, lysozyme is completely released from the aggregated structures after 6 h [76]. This complete release was also achieved after the exposure to an ultrasound bath with a frequency of 80 kHz during 1 h [76]. This approach can be applied for a site specific and controlled delivery of therapeutic proteins through FILs based DDS. Furthermore, within the same time frame at 42 °C the protein released range from 57% and 39% to [C2C1Im][C4F9SO3] and [C2C1py][C4F9SO3] based DDS, respectively, suggesting that under a pathological condition the protein can be released at some relevant extent after 1 h post administration [76]. The biological activity of the released protein remains above 50% for all the tested scenarios, except for the release after 12 h at 37 °C [76]. Then, biocompatible FILs can be designed to encapsulate different therapeutic proteins with good levels off encapsulation efficiencies promoting a site specific and thermo responsive release under different external stimuli. The differences among the effect of FILs in both lysozyme and BSA support the need to further study the interactions of these fluorinated compounds with other therapeutic biomolecules prior the design of the DDS.
Currently, there is a great interest in the development of technologies to reduce the emissions of greenhouse gases (GHGs) into the atmosphere. F-gases, including hydrofluorocarbons (HFCs), PFCs, and sulphur hexafluoride (SF6), are major contributors to GWP with long atmospheric lifetime. The most predominant F-gases used in refrigeration include 1,1,1,2-tetrafluoroethane (R-134a) and difluoromethane (R-32), alone or in blends with other F-gases, such as pentafluoroethane (R-125). In order to accomplish the international goals to reduce the emissions of GHGs, new refrigerants with lower GWP are being investigated and great research efforts are being made aiming to develop technologies to selective separate value-added F-gases from depleted refrigerants. These technologies lead to a reduction of gas emissions and promote the use of recycled F-gases. However, the separation of F-gases faces a major challenge, particularly in the cases of gas blends with an azeotropic or near-azeotropic behaviour. R-410A is widely used in the refrigeration sector but has a high GWP. Therefore, this refrigerant is one of the focus of the EU HFC phase-down [83]. This blend is a near-azeotropic system of R-32 and R-125 and therefore the separation of its individual components is hampered [83]. Consequently, there is a growing interest in the search for new efficient, low-energy, and sustainable separation processes.
The solubilization of F-gases in FILs is a poorly explored area. Most work has been done with imidazolium-based ILs composed of the [N(CF3SO2)2]−, tetrafluoroborate ([BF4]−) or hexafluorophosphate ([PF6]−) anions for the solubilization of different HFCs [84, 85, 86, 87]. Gas solubility in ILs is an interplay of different phenomena with: (i) the enthalpic contribution of the intermolecular interactions between gas molecules and the absorbent and; (ii) the entropic contribution of the accommodation of gas molecules in the cavities of the absorbent. A positive correlation is found between the degree of fluorination of the ILs and the solubilization of HFCs [87, 88]. Additionally, the fluorination of the cation was shown to play a major role in the solubilization of PFCs [89] and HFCs [90] in 1-alkyl-3-methylimidazolium based ILs. The structures and the fluorination degree of the gases also strongly affect their solubilization into ILs. Solubilities of a variety of F-gases in [C2C1Im][N(CF3SO2)2] have been evaluated experimentally, and by modeling with soft-SAFT equation. These studies demonstrated the importance of the establishment of hydrogen bonds between the gas molecules and the absorbent. Both entropic effects, resulting from higher chain length/volume, and enthalpic effects, resulting from higher dipole moment, are suggested to increase gas solubility [91].
FILs present particular properties that distinguish them from mere fluoro-containing ILs, such as the ones with the [N(CF3SO2)2]−, [BF4]−, and [PF6]− anions. Their ability to form three nanosegregated domains with different behaviours and the existence of countless cation/anion combinations increase the range of possible interactions (van der Waals, coulombic, and hydrogen bonding), making them ideal three-in-one solvent for the separation of F-gases [33].
When evaluating the absorption capacities of traditional ILs and of FILs for the selective capture of R-32 (Table 1), a positive relation between the fluorination degree of the anion and the solubilization of this gas was reported [91]. This behaviour is similar to what is observed when the size of the hydrogenated alkyl chain in the cation of fluoro-containing imidazolium-based ILs increases, [86, 88, 92, 93] and can be explained by the entropic contribution of the accommodation of gas molecules in the cavities of absorbents with higher molar volume. Moreover, when the absorption of R-125 and R-134a in the abovementioned ILs was studied, a higher solubility capacity of FILs in comparison to mere fluoro-containing ILs was observed [83]. This demonstrates the relevance of the FILs nanosegregated domains for gas solubility, either by increasing the free volume for the accommodation of gas molecules or by increasing the number of possible gas-absorbent interactions. Lower solubilities have been obtained in mere fluoro-containing and in FILs to R-125 in comparison to R-134a. This has been explained by the decrease in the number of interactions with the absorbent as a consequence of the reduced number of hydrogen atoms in R-125, [89] or by a decrease in the flexibility of R-125, as consequence of a higher number of fluorine atoms [91]. By playing with the different factors involved in the solubilization of F-gases in ILs, namely the constitution of the cations and anions of the IL, temperature, pressure and others, it is possible to develop processes where the solubilization of one gas is favored in relation to other gas, or gases, present in the same mixture [91]. In this way, while the separation of the binary mixtures R-134a + R-125 and R-32 + R-125 was demonstrated to be improved using fluoro-containing ILs, lacking an alkyl fluorinated chain, the separation of the mixture R-134a + R-32 might be improved by utilizing FILs.
The increased solubility of F-gases in FILs supports the use of these absorbent as an alternative to conventional ILs with longer hydrogenated chains, which present higher toxicity [83]. Other study focused on evaluating the viability and costs of an absorption technology in near-industrial conditions for the capture of R-32 and R-134a (with HFC recoveries above 90%) from a dilute gas stream, using FILs or mere fluoro-containing ILs as absorbents. In this study a COSMO-based/Aspen Plus methodology was applied to evaluate the influence of ILs structure, HFC partial pressure, operating temperature, and FIL/IL mass flow on the recovery of HFCs [94].
The development of separation processes based on ILs may face some obstacles due to the unfavorable properties of some of these compounds, such as the toxicity of those with long fluorinated alkyl side chains, poor biodegradability, high viscosity, high-cost production, and high melting temperature. As aforementioned, the solubility of F-gases is favored when the number of fluorine atoms in ILs is increased, but this is also associated with higher melting temperature and to a decrease in the range of temperatures in which FILs can be operated at the liquid state. In this sense, deep eutectic solvents (DESs) are emerging as a versatile alternative to ILs, with low vapour pressure, nonflammability, high tuneability, and improved properties for application at process level. DESs are systems in which the charge delocalization occurring through hydrogen bonding between a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD) is responsible for decreasing the melting point of the mixture relatively to the individual components. Experimental studies regarding the solubility of refrigerants in DESs are scarce [95, 96, 97, 98]. The solubility of R-134a in DES prepared by combining the IL [C2C1Im][Cl] as hydrogen-bond acceptor (HBA) and 4-carbon perfluoroalkyl acids as hydrogen-bond donors (HBDs), was studied using both experimental solubility data and a theoretical model based on the soft-SAFT equation of state [89]. Additionally, the solubilization of F-gases was studied in DESs prepared by mixing high melting temperature FILs with perfluoropentanoic acid or nonafluoro-1-butanesulfonic acid (Table 1) [99]. The selected FILs were composed of different cations (cholinium, imidazolium, or a tetrabutylammonium cation) and anions with 4-carbon or 8-carbon perfluoroalkyl chains (Table 1). The melting temperatures of the prepared eutectic mixtures were significantly lower than the one of the neat FILs, which allowed to take advantage of the properties of FILs for the selective separation of F-gases, in a wider liquid range for F-gases solubilization [99].
In this chapter, the application of FILs as task-specific materials was fully described to be employed in both biomedical and engineering separation processes. The characteristic fluorinated domain and the different ions structural features prove to have a dominant effect on thermophysical and thermodynamic properties of FILs. Moreover, FILs have great surfactant behaviour and complete miscibility in water systems. The design of biocompatible and eco-friendly FILs without comprimising their surfactant behaviour was demonstrated which ultimate the applicability of FILs as enhanced materials comparing with PFCs and conventional fluorinated ILs.
The applicability of biocompatible FILs for biomedical applications was demonstrated by their great power to solubilize respiratory gases, supporting their use as artificial gas carriers. Additionally, the interaction and the encapsulation of different proteins in FIL aggregates, without comprimising the biological features of the biomolecules, also represents an advance in the application of FILs to pharmaceutical development. Finally, FILs exhibit great ability to be used individually, or in the development of materials to be further applied on the separation and recovery of F-gases, essentially due to their great free volume and gas-FIL enhanced interactions. To conclude, the discussion offered by this chapter highlights the identification of FILs as a novel and endless tool for the design of materials and processes whereas their fluorinated nanosegregated domain in combination with their ionic nature can provide unique features.
Authors acknowledge financial support from FCT/MCTES (Portugal), through grant SFRH/BD/130965/2017 and project PTDC/EQU-EQU/29737/2017. This work was also supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020).
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"17"},books:[{type:"book",id:"11461",title:"Advances in Nanowires Synthesis and Applications to Sensing Technologies \ufeff",subtitle:null,isOpenForSubmission:!0,hash:"94ce46811974b75b5efded35f161ea18",slug:null,bookSignature:"Dr. Felix Kutsanedzie, Dr. Annavaram Viswadevarayalu, Dr. Akwasi Akomeah Agyekum and Dr. Isaac Asempah",coverURL:"https://cdn.intechopen.com/books/images_new/11461.jpg",editedByType:null,editors:[{id:"443651",title:"Dr.",name:"Felix",surname:"Kutsanedzie",slug:"felix-kutsanedzie",fullName:"Felix Kutsanedzie"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11462",title:"Recent Developments in Nanofibers Research",subtitle:null,isOpenForSubmission:!0,hash:"a255898117275990dffe83c75a9f815d",slug:null,bookSignature:"Dr. Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/11462.jpg",editedByType:null,editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11463",title:"Silver Nanoparticles - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"eadac73f609da20167ba128e077b1669",slug:null,bookSignature:"Dr. Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/11463.jpg",editedByType:null,editors:[{id:"107375",title:"Dr.",name:"Eram",surname:"Sharmin",slug:"eram-sharmin",fullName:"Eram Sharmin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11464",title:"Carbon Nanotubes - Recent Advances, New Perspectives and Potential Applications",subtitle:null,isOpenForSubmission:!0,hash:"ce526ec78ed00c4f5f08ffb4548ff388",slug:null,bookSignature:"Prof. Mohammed Muzibur Rahman, Dr. Abdullah Mohammed Ahmed Asiri and Prof. Mohammad Asaduzzaman Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/11464.jpg",editedByType:null,editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11465",title:"Nanogenerators and Self-Powered Systems",subtitle:null,isOpenForSubmission:!0,hash:"d52edc8b54e3451fe151b38cb4c9aee9",slug:null,bookSignature:"Dr. Bhaskar Dudem and Dr. Vivekananthan Venkateswaran",coverURL:"https://cdn.intechopen.com/books/images_new/11465.jpg",editedByType:null,editors:[{id:"315573",title:"Dr.",name:"Bhaskar",surname:"Dudem",slug:"bhaskar-dudem",fullName:"Bhaskar Dudem"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11754",title:"Nanozymes - Simulation, Design, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"7d040dd70e3021d1c7da668be1263616",slug:null,bookSignature:"D.Sc. Rafael Vargas-Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/11754.jpg",editedByType:null,editors:[{id:"182114",title:"D.Sc.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11755",title:"Nanoclay - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b716126dd284217d47a657db8ae22ef4",slug:null,bookSignature:"Dr. Walid Oueslati",coverURL:"https://cdn.intechopen.com/books/images_new/11755.jpg",editedByType:null,editors:[{id:"176192",title:"Dr.",name:"Walid",surname:"Oueslati",slug:"walid-oueslati",fullName:"Walid Oueslati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11756",title:"Quantum Dots - Recent Advances, New Perspectives and Contemporary Applications",subtitle:null,isOpenForSubmission:!0,hash:"0dd5611c62c91569bd2819e68852002a",slug:null,bookSignature:"Prof. Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/11756.jpg",editedByType:null,editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11757",title:"Nanorods - Synthesis, Properties, Toxicity and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fb27f444442e8f039b560beae93e6873",slug:null,bookSignature:"Prof. Tejendra Kumar Gupta",coverURL:"https://cdn.intechopen.com/books/images_new/11757.jpg",editedByType:null,editors:[{id:"345089",title:"Prof.",name:"Tejendra Kumar",surname:"Gupta",slug:"tejendra-kumar-gupta",fullName:"Tejendra Kumar Gupta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11986",title:"Advances in Nanosheets",subtitle:null,isOpenForSubmission:!0,hash:"dcc5e4b27db4514b2dd77680e0467793",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11986.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"604",title:"Knowledge Engineering",slug:"numerical-analysis-and-scientific-computing-knowledge-engineering",parent:{id:"95",title:"Numerical Analysis and Scientific Computing",slug:"numerical-analysis-and-scientific-computing"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:55,numberOfWosCitations:24,numberOfCrossrefCitations:39,numberOfDimensionsCitations:68,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"604",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3149",title:"Decision Support Systems",subtitle:"Advances in",isOpenForSubmission:!1,hash:"3dc743014498a96b05a695c52609e4b5",slug:"decision-support-systems-advances-in",bookSignature:"Ger Devlin",coverURL:"https://cdn.intechopen.com/books/images_new/3149.jpg",editedByType:"Edited by",editors:[{id:"5660",title:"Dr.",name:"Ger",middleName:null,surname:"Devlin",slug:"ger-devlin",fullName:"Ger Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"10951",doi:"10.5772/39401",title:"Intelligent Techniques for Decision Support System in Human Resource Management",slug:"intelligent-techniques-for-decision-support-system-in-human-resource-management",totalDownloads:12743,totalCrossrefCites:13,totalDimensionsCites:17,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Hamidah Jantan, Abdul Razak Hamdan and Zulaiha Ali Othman",authors:[{id:"16517",title:"Dr.",name:"Hamidah",middleName:null,surname:"Jantan",slug:"hamidah-jantan",fullName:"Hamidah Jantan"},{id:"124295",title:"Prof.",name:"Abdul Razak",middleName:null,surname:"Hamdan",slug:"abdul-razak-hamdan",fullName:"Abdul Razak Hamdan"},{id:"124601",title:"Dr.",name:"Zulaiha Ali",middleName:null,surname:"Othman",slug:"zulaiha-ali-othman",fullName:"Zulaiha Ali Othman"}]},{id:"10960",doi:"10.5772/39391",title:"The Decision Support System BodenseeOnline for Hydrodynamics and Water Quality in Lake Constance",slug:"the-decision-support-system-bodenseeonline-for-hydrodynamics-and-water-quality-in-lake-constance",totalDownloads:1786,totalCrossrefCites:4,totalDimensionsCites:11,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Ulrich Lang, Roland Schick and Gerd Schroder",authors:[{id:"5872",title:"Dr.",name:"Ulrich",middleName:null,surname:"Lang",slug:"ulrich-lang",fullName:"Ulrich Lang"},{id:"125056",title:"Mr.",name:"Roland",middleName:null,surname:"Schick",slug:"roland-schick",fullName:"Roland Schick"},{id:"125058",title:"Mr.",name:"Gerd",middleName:null,surname:"Schrode",slug:"gerd-schrode",fullName:"Gerd Schrode"}]},{id:"10944",doi:"10.5772/39386",title:"A Web-based Decision Support System for Managing Durum Wheat Crops",slug:"a-web-based-decision-support-system-for-managing-durum-wheat-crops",totalDownloads:3310,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Vittorio Rossi, Pierluigi Meriggi, Tito Caffi, Simona Giosue and Tiziano Bettati",authors:[{id:"5765",title:"Prof.",name:"Vittorio",middleName:null,surname:"Rossi",slug:"vittorio-rossi",fullName:"Vittorio Rossi"},{id:"125030",title:"Prof.",name:"Pierluigi",middleName:null,surname:"Meriggi",slug:"pierluigi-meriggi",fullName:"Pierluigi Meriggi"},{id:"125032",title:"Dr.",name:"Tito",middleName:null,surname:"Caffi",slug:"tito-caffi",fullName:"Tito Caffi"},{id:"125033",title:"Prof.",name:"Simona",middleName:null,surname:"Giosue",slug:"simona-giosue",fullName:"Simona Giosue"},{id:"125034",title:"Prof.",name:"Tiziano",middleName:null,surname:"Bettati",slug:"tiziano-bettati",fullName:"Tiziano Bettati"}]},{id:"10956",doi:"10.5772/39394",title:"Clinical Decision Support with Guidelines and Bayesian Networks",slug:"clinical-decision-support-with-guidelines-and-bayesian-networks",totalDownloads:3815,totalCrossrefCites:4,totalDimensionsCites:7,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Oliver Nee and Andreas Hein",authors:[{id:"6484",title:"Prof. Dr.-Ing.",name:"Andreas",middleName:null,surname:"Hein",slug:"andreas-hein",fullName:"Andreas Hein"},{id:"7709",title:"Mr.",name:"Oliver",middleName:null,surname:"Nee",slug:"oliver-nee",fullName:"Oliver Nee"}]},{id:"10948",doi:"10.5772/39400",title:"Decision Support Using Simulation for Customer-Driven Manufacturing System Design and Operations Planning",slug:"decision-support-using-simulation-for-customer-driven-manufacturing-system-design-and-operations-pla",totalDownloads:3800,totalCrossrefCites:6,totalDimensionsCites:6,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Juhani Heilala, Jari Montonen, Paula Jarvinen and Sauli Kivikunnas",authors:[{id:"6261",title:"Mr.",name:"Juhani",middleName:null,surname:"Heilala",slug:"juhani-heilala",fullName:"Juhani Heilala"},{id:"8975",title:"Mr.",name:"Sauli",middleName:null,surname:"Kivikunnas",slug:"sauli-kivikunnas",fullName:"Sauli Kivikunnas"},{id:"125041",title:"Prof.",name:"Jari",middleName:null,surname:"Montonen",slug:"jari-montonen",fullName:"Jari Montonen"},{id:"125042",title:"Prof.",name:"Paula",middleName:null,surname:"Jarvinen",slug:"paula-jarvinen",fullName:"Paula Jarvinen"}]}],mostDownloadedChaptersLast30Days:[{id:"10951",title:"Intelligent Techniques for Decision Support System in Human Resource Management",slug:"intelligent-techniques-for-decision-support-system-in-human-resource-management",totalDownloads:12743,totalCrossrefCites:13,totalDimensionsCites:17,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Hamidah Jantan, Abdul Razak Hamdan and Zulaiha Ali Othman",authors:[{id:"16517",title:"Dr.",name:"Hamidah",middleName:null,surname:"Jantan",slug:"hamidah-jantan",fullName:"Hamidah Jantan"},{id:"124295",title:"Prof.",name:"Abdul Razak",middleName:null,surname:"Hamdan",slug:"abdul-razak-hamdan",fullName:"Abdul Razak Hamdan"},{id:"124601",title:"Dr.",name:"Zulaiha Ali",middleName:null,surname:"Othman",slug:"zulaiha-ali-othman",fullName:"Zulaiha Ali Othman"}]},{id:"10948",title:"Decision Support Using Simulation for Customer-Driven Manufacturing System Design and Operations Planning",slug:"decision-support-using-simulation-for-customer-driven-manufacturing-system-design-and-operations-pla",totalDownloads:3800,totalCrossrefCites:6,totalDimensionsCites:6,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Juhani Heilala, Jari Montonen, Paula Jarvinen and Sauli Kivikunnas",authors:[{id:"6261",title:"Mr.",name:"Juhani",middleName:null,surname:"Heilala",slug:"juhani-heilala",fullName:"Juhani Heilala"},{id:"8975",title:"Mr.",name:"Sauli",middleName:null,surname:"Kivikunnas",slug:"sauli-kivikunnas",fullName:"Sauli Kivikunnas"},{id:"125041",title:"Prof.",name:"Jari",middleName:null,surname:"Montonen",slug:"jari-montonen",fullName:"Jari Montonen"},{id:"125042",title:"Prof.",name:"Paula",middleName:null,surname:"Jarvinen",slug:"paula-jarvinen",fullName:"Paula Jarvinen"}]},{id:"10956",title:"Clinical Decision Support with Guidelines and Bayesian Networks",slug:"clinical-decision-support-with-guidelines-and-bayesian-networks",totalDownloads:3815,totalCrossrefCites:4,totalDimensionsCites:7,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Oliver Nee and Andreas Hein",authors:[{id:"6484",title:"Prof. Dr.-Ing.",name:"Andreas",middleName:null,surname:"Hein",slug:"andreas-hein",fullName:"Andreas Hein"},{id:"7709",title:"Mr.",name:"Oliver",middleName:null,surname:"Nee",slug:"oliver-nee",fullName:"Oliver Nee"}]},{id:"10958",title:"Fuzzy Spatial Data Warehouse: A Multidimensional Model",slug:"fuzzy-spatial-data-warehouse-a-multidimensional-model",totalDownloads:2617,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Perez David, Somodevilla Maria J. and Pineda Ivo H.",authors:[{id:"6119",title:"MD",name:"Maria J.",middleName:null,surname:"Somodevilla",slug:"maria-j.-somodevilla",fullName:"Maria J. Somodevilla"},{id:"125050",title:"Dr.",name:"Ivo",middleName:null,surname:"Pineda",slug:"ivo-pineda",fullName:"Ivo Pineda"}]},{id:"10959",title:"Decision Mining and Modeling in a Virtual Collaborative Decision Environment",slug:"decision-mining-and-modeling-in-a-virtual-collaborative-decision-environment",totalDownloads:1474,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"3149",slug:"decision-support-systems-advances-in",title:"Decision Support Systems",fullTitle:"Decision Support Systems, Advances in"},signatures:"Razvan Petrusel",authors:[{id:"6059",title:"Ph.D.",name:"Razvan",middleName:null,surname:"Petrusel",slug:"razvan-petrusel",fullName:"Razvan Petrusel"}]}],onlineFirstChaptersFilter:{topicId:"604",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:8,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:26,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",hash:"1806716f60b9be14fc05682c4a912b41",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 23rd 2022",isOpenForSubmission:!0,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},subseriesFiltersForOFChapters:[],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volu