Gas Composition in the plasma and the corresponding properties of the as- deposited films. Pressure 1 Torr, substrate temperature 450°C, thickness 80nm.
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5924",leadTitle:null,fullTitle:"Epistemology and Transformation of Knowledge in Global Age",title:"Epistemology and Transformation of Knowledge in Global Age",subtitle:null,reviewType:"peer-reviewed",abstract:"This book consists of seven chapters containing multiple questions of the global socially epistemological situation in science and higher education. Despite the progress of techno-sciences, we are facing blind flaws in leading systems of knowledge and perception. The global era, in a paradox way, connects the new knowledge of economics, postpolitics, postdemocracy, and biopolitical regulation of live and unpresentable forms of the global geo-located violence. Techno-optimism and techno-dictatorship in the twenty-first century coincide with the ideology of market, biopolitics of mandatory satisfaction, religious revivalism, and collapse of higher education. In order for sciences to recover, it is necessary to make a globally epistemological and moral turn toward the truth. The book shows that, when joint desires of the new economics of knowledge and technology erase epistemology (in a way to assign definitions of knowledge and rules and practices of the public usage of the mind), then the time for epistemology is on its way.",isbn:"978-953-51-3388-9",printIsbn:"978-953-51-3387-2",pdfIsbn:"978-953-51-4727-5",doi:"10.5772/66020",price:119,priceEur:129,priceUsd:155,slug:"epistemology-and-transformation-of-knowledge-in-global-age",numberOfPages:148,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"382d6a083d347e3753d199fa79c15fde",bookSignature:"Zlatan Delić",publishedDate:"July 26th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5924.jpg",numberOfDownloads:9595,numberOfWosCitations:6,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:4,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:10,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 27th 2016",dateEndSecondStepPublish:"November 17th 2016",dateEndThirdStepPublish:"February 13th 2017",dateEndFourthStepPublish:"May 14th 2017",dateEndFifthStepPublish:"July 13th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"31746",title:"Dr.",name:"Zlatan",middleName:null,surname:"Delic",slug:"zlatan-delic",fullName:"Zlatan Delic",profilePictureURL:"https://mts.intechopen.com/storage/users/31746/images/1245_n.jpg",biography:"Zlatan Delić was born in 1965 in Sarajevo, Republic of Bosnia and Herzegovina. He has received his master’s degree at the Faculty of Philosophy in Sarajevo. He has received his PhD degree at the Faculty of Political Science in Sarajevo. He has written over 20 scientific papers and many chapters in various books. His scientific interests in the past several years include sociology of knowledge, discursive foundations of ideology, social epistemology, postwar violence, victimology, and methodology. In the past couple of years, he has been in institutional analysis of discursive practices of public denial of the genocide that occurred during the Great War against Bosnia in the past decade of the twentieth century. He teaches courses from the field of sociology at the integrated University of Tuzla.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Tuzla",institutionURL:null,country:{name:"Bosnia and Herzegovina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1332",title:"Epistemology",slug:"epistemology"}],chapters:[{id:"56390",title:"Introductory Chapter: Sociology of Knowledge and Epistemological Paradox of Globalization",doi:"10.5772/intechopen.70097",slug:"introductory-chapter-sociology-of-knowledge-and-epistemological-paradox-of-globalization",totalDownloads:1826,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:null,signatures:"Zlatan Delić",downloadPdfUrl:"/chapter/pdf-download/56390",previewPdfUrl:"/chapter/pdf-preview/56390",authors:[{id:"31746",title:"Dr.",name:"Zlatan",surname:"Delic",slug:"zlatan-delic",fullName:"Zlatan Delic"}],corrections:null},{id:"55786",title:"Theoretical-Epistemological Perspectives of Knowledge in the Global Era: A Conceptual Proposal",doi:"10.5772/intechopen.69322",slug:"theoretical-epistemological-perspectives-of-knowledge-in-the-global-era-a-conceptual-proposal",totalDownloads:1318,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"It deals with the perspectives of knowledge in the global era. It indicates as a starting point in the following question: how is it possible to represent knowledge in a theoretical-conceptual character in the global era considering the construction of knowledge in networked society, as well as the relations between knowledge of knowledge and other terminologies? It aims to investigate the main fundamentals and characteristics of knowledge in the global era, representing the multiple conceptual relations in the social, valuing, procedural, technical, and psychic context, aiming at the reflection and construction of an integrated concept on knowledge. It concludes that each typology of knowledge presents a concept, and the junction of concepts institutes a general concept about knowledge.",signatures:"Jonathas Luiz Carvalho Silva, Maria Cleide Rodrigues Bernardino\nand Henriette Ferreira Gomes",downloadPdfUrl:"/chapter/pdf-download/55786",previewPdfUrl:"/chapter/pdf-preview/55786",authors:[{id:"201171",title:"Dr.",name:"Jonathas Carvalho",surname:"Silva",slug:"jonathas-carvalho-silva",fullName:"Jonathas Carvalho Silva"}],corrections:null},{id:"55680",title:"The Post‐Modern Transcendental of Language in Science and Philosophy",doi:"10.5772/intechopen.68613",slug:"the-post-modern-transcendental-of-language-in-science-and-philosophy",totalDownloads:1598,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In this chapter I discuss the deep mutations occurring today in our society and in our culture, the natural and mathematical sciences included, from the standpoint of the “transcendental of language”, and of the primacy of language over knowledge. That is, from the standpoint of the “completion of the linguistic turn” in the foundations of logic and mathematics using Peirce’s algebra of relations. This evolved during the last century till the development of the Category Theory as universal language for mathematics, in many senses wider than set theory. Therefore, starting from the fundamental M. Stone’s representation theorem for Boolean algebras, computer scientists developed a coalgebraic first-order semantics defined on Stone’s spaces, for Boolean algebras, till arriving to the definition of a non-Turing paradigm of coalgebraic universality in computation. Independently, theoretical physicists developed a coalgebraic modelling of dissipative quantum systems in quantum field theory, interpreted as a thermo-field dynamics. The deep connection between these two coalgebraic constructions is the fact that the topologies of Stone spaces in computer science are the same of the C*-algebras of quantum physics. This allows the development of a new class of quantum computers based on coalgebras. This suggests also an intriguing explanation of why one of the most successful experimental applications of this coalgebraic modelling of dissipative quantum systems is just in cognitive neuroscience.",signatures:"Gianfranco Basti",downloadPdfUrl:"/chapter/pdf-download/55680",previewPdfUrl:"/chapter/pdf-preview/55680",authors:[{id:"200456",title:"Prof.",name:"Gianfranco",surname:"Basti",slug:"gianfranco-basti",fullName:"Gianfranco Basti"}],corrections:null},{id:"55179",title:"What is ‘Fashion’ Really? The Promise of an Ecumenical Analytic for Fashion Studies and Beyond in a Globalized World",doi:"10.5772/intechopen.68614",slug:"what-is-fashion-really-the-promise-of-an-ecumenical-analytic-for-fashion-studies-and-beyond-in-a-glo",totalDownloads:1260,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:"This chapter addresses the increasingly complex question of the nature of fashion in a globalized world. While it is strikingly obvious that fashion is a global and globalized phenomenon, its specific character, and indeed geographical locations and origins, remain contested. Drawing inspiration from the Greek historian Polybius, and his ideas of an ecumenical analytical approach, to studying world-wide phenomena we discuss the current state of fashion studies in what we consider an ecumenical moment, holding many opportunities for the field. In order to lay out the roots of current debates, on such matters we review the history of fashion studies from the mid‐19th century through to today, drawing attention to both the ontological assumptions and the epistemological and methodological dilemmas that have shaped the field, and that in some ways continue to do so today. We finish with some suggestions as to what the future may hold for the field if the ecumenical promise of global fashion research is truly realized.",signatures:"Anna-Mari Almila and David Inglis",downloadPdfUrl:"/chapter/pdf-download/55179",previewPdfUrl:"/chapter/pdf-preview/55179",authors:[{id:"202010",title:"Prof.",name:"David",surname:"Inglis",slug:"david-inglis",fullName:"David Inglis"},{id:"202118",title:"Dr.",name:"Anna-Mari",surname:"Almila",slug:"anna-mari-almila",fullName:"Anna-Mari Almila"}],corrections:null},{id:"55806",title:"Epistemology and the Transformation of Knowledge in the Global Age: God and the Epistemology of Mathematics",doi:"10.5772/intechopen.69129",slug:"epistemology-and-the-transformation-of-knowledge-in-the-global-age-god-and-the-epistemology-of-mathe",totalDownloads:1156,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Mathematics, as a scientific discipline, developed from the rather humble beginnings of practical counting and measurements. The Pythagoreans shifted this discipline to the ideal, intelligible world—the “Pythagorean paradise”—where it remains to this day. However, there have been doubts as to whether some of the more peculiar mathematical concepts (irrational numbers, zero, negative numbers, infinity…) also belong to this “Paradise”. Within Theo-Platonism of the fourth century, the Christian God legitimised the concept of infinity. God then acted as guarantor for the existence of infinity even in the nineteenth and twentieth centuries. Later, however, God was played down with explicit references to Him having been eliminated. He remained hidden, as it were, in the “supernatural axioms” of set theory. Attempts to “excommunicate” Him consistently from the foundation of mathematics had only a negligible impact on the mathematics itself. Was it due to the fact that those formal foundations of mathematics (the set theory) are not the true foundations, with the actual basis being in mathematical practice?",signatures:"Peter Zamarovský",downloadPdfUrl:"/chapter/pdf-download/55806",previewPdfUrl:"/chapter/pdf-preview/55806",authors:[{id:"199806",title:"Dr.",name:"Peter",surname:"Zamarovský",slug:"peter-zamarovsky",fullName:"Peter Zamarovský"}],corrections:null},{id:"54802",title:"Revisiting John Locke for Thinking About the Global Age: Knowledge, Politics, Religion, and Education",doi:"10.5772/intechopen.68243",slug:"revisiting-john-locke-for-thinking-about-the-global-age-knowledge-politics-religion-and-education",totalDownloads:1163,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Theme of this text: importance of John Locke´s thought, British empiricist philosopher, concerning knowledge, politics, religion and education in global age. Question one searches for answering: nowadays, in global age, why is a thinker like John Locke still so important in order to support reflections about epistemological, political, religious and educational questions? Kind of research reported is a theoretical approach. Discourse development has followed these steps: first, considerations about his theory of knowledge; second, approaches concerning his political theory; third, reflections under his ideas on religion; fourth, discussions concerning his thoughts over education. Results of this inquiry: he is one of the most eminent theorists of experience and it is essential to build knowledge; therefore, his thought must not be neglected; he is also very important to reflect about natural rights of mankind, which must be granted by Commonwealth; his ideas over toleration, which reinforce distinction between Church and Commonwealth, are still useful to think about how to deal with several religious beliefs and political opinions; his educational thought outlines that education is a psychophysical process that must equally treat both body and soul. Then, he must be recommended and also revisited in order to think about present global age.",signatures:"Gustavo Araújo Batista",downloadPdfUrl:"/chapter/pdf-download/54802",previewPdfUrl:"/chapter/pdf-preview/54802",authors:[{id:"200338",title:"Ph.D.",name:"Gustavo",surname:"Batista",slug:"gustavo-batista",fullName:"Gustavo Batista"}],corrections:null},{id:"55176",title:"Post-industrial Virtue Epistemology on Globalized Games and Robotics",doi:"10.5772/intechopen.68624",slug:"post-industrial-virtue-epistemology-on-globalized-games-and-robotics",totalDownloads:1274,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"With the development of personalized and globalized technologies, a discussion regarding how and why virtue epistemology should be an essential part of post-industrial ethical analysis on augmented technologies and use of robotics in the global age becomes crucial. These globalized technologies in the form of either game apps (i.e., Pokémon Go) or robotics like drones become through the Internet multimedia a structural part of planetary digitalization. While this development takes place, traditional virtue epistemology responds insufficiently to the devitalization of knowledge regarding manners (savoir vivre) and ways (savoir faire) of practicing and the need to respond to the sudden expansion of augmented games and drone use with personal and social intellect, responsibility, and consequently safety. The chapter intends to discuss this analysis in order to argue that a postindustrial epistemic reconfiguration of digital ethics is necessary, since augmented reality games and robotics are taking the form of massive trends for adults and nonadults, while for the first time, digital gaming and robot entertainment exceed the limits of the personal space and the virtual mode of the screen, moving out into the public realm, where reality is mixed with virtuality and human environment with unmanned robots.",signatures:"Theodore Kabouridis",downloadPdfUrl:"/chapter/pdf-download/55176",previewPdfUrl:"/chapter/pdf-preview/55176",authors:[{id:"200390",title:"Dr.",name:"Theodore",surname:"Kabouridis",slug:"theodore-kabouridis",fullName:"Theodore Kabouridis"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2205",title:"Globalization and Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"46d98262d7d3b53c695cd7bc87f00040",slug:"globalization-and-responsibility",bookSignature:"Zlatan Delic",coverURL:"https://cdn.intechopen.com/books/images_new/2205.jpg",editedByType:"Edited by",editors:[{id:"31746",title:"Dr.",name:"Zlatan",surname:"Delic",slug:"zlatan-delic",fullName:"Zlatan Delic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{},chapter:{},book:{}},ofsBook:{item:{type:"book",id:"11605",leadTitle:null,title:"Bamboo - Recent Development and Application",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tBamboo is now seen as a potential alternative material for the future. The strong appeal of bamboo as a sustainable and abundant material, and its unique intrinsic properties, have received worldwide attention. As a renewable resource, bamboo is a potential substitute for less renewable resources, where it can generate a vast range of sustainable products, livelihood options, and ecosystem services. In order to harness the potential of bamboo, this book is intended to build capacity on a wide variety of recent development related to the bamboo industry. This book presents fundamental, technical, processing, and latest research developments in many aspects of bamboo production and value addition. On top of addressing the growing interest in the use of bamboo, it is hoped that this book will assist in the effort of supplying adequate and useful references for researchers, agricultural practitioners, and organizations involved in the bamboo-based industry to combat opportunities for new economic and natural resources challenges.
",isbn:"978-1-83768-415-1",printIsbn:"978-1-83768-414-4",pdfIsbn:"978-1-83768-416-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"7d78700ff7e6b6f86ed00e7d6fc9b308",bookSignature:"Dr. Mustapha Asniza",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",keywords:"Reinforcement Material, Bamboo-Based Composites, Bamboo-Based Panel, Engineered Bamboo, Consumer Demand, Bamboo Industry Future, Bamboo Application, Bamboo Manufacturing, Bamboo Preservation, Coatings and Finishing, Mechanical Properties, Physical Properties",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 15th 2022",dateEndSecondStepPublish:"July 13th 2022",dateEndThirdStepPublish:"September 11th 2022",dateEndFourthStepPublish:"November 30th 2022",dateEndFifthStepPublish:"January 29th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"6 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Asniza Mustapha obtained her Ph.D. degree from Universiti Sains Malaysia. She is a pioneering researcher in lignocellulosic, wood, and non-wood forest products in Forest Research Institute Malaysia (FRIM), a member of the Malaysia Board of Technologies (MBOT), and the Malaysian Bamboo Society (MBS). Her research interests include studies on biocomposite technology, natural fiber reinforced polymer composite technology, and nanocellulose. She generated about 35 scientific articles in a related field.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"249239",title:"Dr.",name:"Mustapha",middleName:null,surname:"Asniza",slug:"mustapha-asniza",fullName:"Mustapha Asniza",profilePictureURL:"https://mts.intechopen.com/storage/users/249239/images/system/249239.jpg",biography:"Dr. Asniza Mustapha, born in 1986, studied bioresources, paper and coatings technology (2008) and MSc. in polymer chemistry and resin technology (2011). She obtained her PhD degree from Universiti Sains Malaysia, Malaysia, in 2017 and ongoing research in the School of Industrial Technology, Universiti Sains Malaysia as a postdoctoral researcher. During her research period (2009 to 2018) she was working in the field of bioresources, being involved in fundamental research as well as in applied research, material science and application development which focused on biomass and lignocellulosic materials. She is currently a research officer in Bamboo, Rattan and Palms Unit, Forest Products Division in Forest Research Institute Malaysia (FRIM), Selangor, Malaysia (2019 to present). Her research interests include studies on the biocomposite technology, natural fiber reinforced polymer composite technology, nanocellulose, nano-based composites, production and development of value-added products from wood and non-wood materials. She is a member of Malaysia Board of Technologies (MBOT) and Malaysian Bamboo Society (MBS). To date, as a junior researcher, she has generated about 19 scientific articles in Scopus with H-Index of 9 and 1009 citations. She also published 11 chapter in books and 6 general publication including conference proceeding, short article for magazine and technical report.",institutionString:"Forest Research Institute Malaysia (FRIM)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universiti Putra Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39149",title:"Fabrication of Crystalline Silicon Solar Cell with Emitter Diffusion, SiNx Surface Passivation and Screen Printing of Electrode",doi:"10.5772/51065",slug:"fabrication-of-crystalline-silicon-solar-cell-with-emitter-diffusion-sinx-surface-passivation-and-sc",body:'\n\t\tThe amount of solar energy incident on the earth surface every second (1650 TW) is higher than the combined power consumption by using oil, fossil fuel, and other sources of energy by the entire world community (< 20 TW) in 2005. The solar photovoltaic power generation are ever increasing in capacity, yet at a lower scale. Thus there is a scope of further use of solar energy to produce more electricity. For this purpose a demand for a large scale commercial production of solar cells have emerged. There is a large variety of solar cell structures proposed with various types of materials, of which p-type c-Si solar cell has been one of the most popular and widely used in commercial production with screen printing technique.
\n\t\t\tLooking back to the history of solar cell, one can find that, in 1839 Becquerel observed a light dependant voltage between two electrodes, that were immersed in an electrolyte. In 1941, first silicon based solar cell was demonstrated and 1954 is the beginning of modern solar cell research. Since then there has been several proposals for solar cell design, that can lead to various photovoltaic (PV) conversion efficiencies (η) of the solar cells. A conventional Si solar cell gives 14.7% PV efficiency[1], whereas other designs, for example, back surface field (BSF) 15.5% [2], rear local contact (RLC) solar cell efficiency ~20%, as reported by NREL. However these values are not the theoretical or experimental limit, and there is a continuous effort in improving the efficiency.
\n\t\t\tThe c-Si solar cells fabricated on the high quality silicon wafers, having selective emitter on the front and local contact on the rear surface [3] shows higher η, but the required additional measures to be taken for the production of such solar cells may substantially increase the production cost.
\n\t\t\tPresently the cost of the silicon wafer alone covers >20% of the total cost of solar cell production, so there may be a technology available in future, by which a large scale production of silicon solar cells from a thin wafer ( < 200μm) will be possible
\n\t\tThe fabrication of our c-Si solar cell starts with a 300μm thick, (100) oriented Czochralski Si (or Cz-Si) wafer. The wafers generally have micrometer sized surface damages, that needs to be removed. After the damage removal, the wafer surface shows high optical reflectivity, for which an anti-reflection coating (ARC) is necessary. Furthermore, the top surface was textured by chemical etching before an ARC was deposited.
\n\t\t\tFor a p-type c-Si substrate, an n-type top layer while for an n-type c-Si substrate a p-type top layer acts as emitter. A thermal diffusion is commonly used for emitter diffusion [4]. After the emitter diffusion, the edge isolation was carried out, as otherwise the top and the bottom surfaces of the wafers remain electrically shorted.
\n\t\t\tA suitable thin dielectric coating at the front and back of the wafers were given to passivate surface defects. As the wafer becomes covered with a dielectric layer, an electrical connection to the cell becomes necessary. Ag and Al metal electrodes were formed by using screen printing of Al pastes and co-firing at a suitable temperature.
\n\t\t\tIn order to remove the organic contaminants from the c-Si wafer surfaces, we used 12% NaOCl solution and cleaned the wafers ultrasonically at room temperature (RT) for five minutes. This cleans the wafer surface with an approximate Si etching rate of 500nm/min [5]. The surface damages to the wafers were removed through isotropic etching with a concentrated solution of NaOH in de-ionized water (DI-W). DI-W helps the NaOH to break in Na+ and OH- ions in the solution. An 8% NaOH solution, at 80°C temperature for about 7 minutes of etching removes the surface damages. This saw damage removal step, etches out about 5 micro meter Si from wafer surface. After that the wafers were rinsed in HCl(10%) for 1 min, DI-W for 1 min, HF(10%) for 1 min, DI-W for 1 min.
\n\t\t\tAnisotropic chemical etching of Si (100) oriented wafers give rise to textured surface. The characteristics of the etching depends upon, time of etching, etching rate, temperature, components of the solution and its concentration. With a dilute NaOH solution containing iso-propyl alcohol (IPA) and DI-W, the Si(100) oriented smooth wafers can grow pyramidal surface texture at 80°C temperature [6]. The surface texturing was performed by asymmetric etching of front surface of the wafers, in a dilute alkaline solution, as against the concentrated solution used for saw damage removal. The loss in mass of each wafer were estimated from the mass of the wafer measured with a microbalance before and after texturing, which subsequently led to the estimation of the etched thickness of the wafer and hence etch rate. Optical microscopic observations, SEM images, and laser scanning were the tools that were used for the characterization of the textured surface morphology. Ultraviolet visible (UV-Vis) spectrophotometry was used to estimate the retro-reflectivity of the textured surface.
\n\t\t\t\tThe etching depends mainly on two processes. One is the rate of the reaction at the surface, and the other is the rate at which reactants diffuse into the surface. These two processes control the overall rate of the micro structural growth during the etching. The anisotropic etchants is expected to etch (110) plane at a faster rate than the (100) plane while the (111) plane etches at a slowest rate [7]. However if chemical composition of the etchant is such that some insoluble residue is formed during etching process (like oxides etc.) then diffusion of etchant into the Si will be hindered and hence etching will not happen as expected.
\n\t\t\t\tIPA enhances surface diffusion, so a rapid etching can take place in presence of IPA in the solution [8]. The NaOH etches silicon crystal planes differently, mostly because of different atomic concentration in different crystallographic planes. So, at a lower NaOH concentration the selective etching process helps to create textured surface of the wafer. The chemical reaction that takes place is as follows,
\n\t\t\t\tThe sodium silicate (Na2SiO3) is soluble in water and thus Si surface remains devoid of any deposition. At 80oC temperature, (100) planes etch about two orders of magnitude faster than (111) planes [9]. For a (100) silicon wafer, a solution of NaOH, IPA, DI-W creates square based four sided pyramids consisting of sections of (111) planes which form internal angles of 54.7° with the (100) surface.
\n\t\t\t\tThe degree of isotropy is sensitive to the concentration of the solution. While a 8% NaOH solution at 80°C temperature etches silicon isotropically to achieve a polished wafer surface, a 2% NaOH, 8% IPA solution at 80°C temperature etches anisotropically to a square based pyramidal surface texture.
\n\t\t\tThe thermal diffusion of phosphorus is necessary to create an n-type emitter to the p-type wafer. The diffusion depends on various factors, of which temperature and gaseous environment is most important [10]. In oxygen environment and at 850°C temperature, the diffusion coefficient (D) can be approximated as D~0.0013μm2/hr. The phosphorus diffusion leads to formation of n+ type emitter at the top surface of the wafer. The diffusion was carried out in two stages, pre-deposition and drive-in [11-13]. At the pre-deposition stage, liquid POCl3 was evaporated by bubbling N2 gas into the liquid. The POCl3 evaporates and gets deposited at the surface of the wafers. In presence of oxygen, phosphosilicate glass (PSG) is formed at the 850°C temperature. Phosphosilicate glass or PSG is phosphorus doped silicon dioxide, a hard material formed at the top surface of Si wafer. PSG formation rate is about 15nm in 30 minutes.
\n\t\t\t\tAfter that, in the drive-in stage, the wafers were heated at 850°C temperature for 7 mins, 0.3Torr pressure in presence of oxygen, when the P atoms from the n+-type top layer diffuses deeper into the wafer, forming a deeper junction. Details of the reaction is given below
\n\t\t\t\tFor gaseous diffusion with POCl3, the p-type silicon wafers were loaded into a quartz boat, which was slowly moved into the middle of a fused quartz tube in a heated horizontal furnace. The boat, which can hold tens of wafers, was moved slowly into the tube so that the wafers do not suffer large temperature gradients and warping. Furnace temperature for the diffusion was held at about 800°C, with a variation across the length of the boat of not more than 2°C.
\n\t\t\t\tWhen the PSG was deposited in the pre-deposition stage, the dopant profile leads to a shallow junction depth and a high surface concentration. In the drive-in stage, a deeper junction was formed as phosphorus atoms diffuse deeper, thus thicker emitter and a lower surface concentration of dopant was achieved. The junction depth is defined as the depth where the phosphorus and boron concentrations are equal (as boron already existed in p-Si wafers).
\n\t\t\t\t\n\t\t\t\t\tTable 1 shows details of P-diffusion process. A shorter pre-deposition of only 7 minutes at 850°C and a drive-in of about 20 min at 850°C temperature, shows good result. It is to be noted that, a relatively deeper junction and the dead layer near the top wafer surface degrade blue response of solar cells. The PSG was removed by washing the wafer in a 10% HF solution for one minute.
\n\t\t\t\tThe heated quartz tube, used for pre-deposition and drive-in, were periodically cleaned with HCl vapor in an N2 stream.
\n\t\t\t\tA typical condition for phosphorus diffusion used in this study, using POCl3 vapor as a source gas, here ‘lpm’ stands for liter per minutes.
The edge isolation was carried out after screep printing of acid barrier paste as a mask, by the reactive ion etching [14-15]. However, it can also be performed by wet etching [16-17] with HF, HNO3 and CH3COOH acidic solution in the 1:3:1 volume ratio. Then the wafers were dipped into the acid solution for 1.5 – 2 minutes, after which the stack was rinsed in DI-W. Then the wafers were thoroughly rinsed with DI-W for five minutes and later spin dried to make it ready for silicon nitride film deposition.
\n\t\t\tLight reflection as well as electronic defects at the front surface are undesirable, that needs to be minimized. The hydrogenated SiNx layer also acts as a high quality silicon surface passivator [18]. It has been observed that, more than 35% of the incident light gets reflected back from a bare silicon surface, and a significant amount of incident light reflects from the silicon surface even after surface texturing. For a single layer ARC, the wavelength (λ0) at which the anti-reflection is most effective at normal incidence, can be expressed as: λ0 = 4μl dl, where μl and dl are refractive index, and thickness of the ARC respectively. The reflectance R of the top surface of a solar cell is given by : R = [(μl\n\t\t\t\t\t2 –μoμ2 ) / (μ1\n\t\t\t\t\t2 + μ0μ2)] 2, where μo and μ2 are the refractive indices of the medium above the ARC and that of the substrate below the ARC, respectively. For zero reflectance, i.e. R = 0, it gives: μl = (μoμ2) ½. At λ = 550 nm, the desired thickness of silicon nitride film with μ1 = 1.96 would be 700 Å, taking air (μ = 1) as ambient above the cells [19]. The thicknesses and refractive indices of the SiNx films prepared by PECVD under different gas flow ratios were characterized by Spectroscopic Ellipsometry.
\n\t\t\t\tThe parameters for the SiNx depositions were: chamber pressure 0.6 Torr, deposition temperature 300°C, RF power density 0.08 W cm-2 at a 13.56 MHz frequency, silane (SiH4) and ammonia (NH3) source gases, deposition time 4 minutes, with deposition rate of 3 Å/s. The Si atom of SiNx mostly comes from silane source gas in RF PECVD process, following the reaction, 3 SiH4 + 4NH3 → Si3N4 + 12H2.
\n\t\t\t\tSiNx can also be deposited on Si surface through forming gas annealing at a higher temperature. Forming gas is a mixture of hydrogen (H2) and nitrogen (N2), that were obtained by dissociating ammonia (NH3) at high temperature. In this case the Si atom of SiNx come from the surface atoms of Si wafer. However, due to higher process temperature, this method was avoided, as a higher process temperature may alter distribution of phosphorus atoms and hence the junction depth.
\n\t\t\t\tThe recombination rate (Us) at the surface, with surface recombination velocity (S), is related to excess concentration of minority carriers (∆ns) at the surface. Us ≡ S ∆ ns. Therefore, the recombination can be minimized by a reduction of minority carrier type at the surface. Using high-low junction n+pp+ structure the minority carriers at the surface can be reduced [20]. This technology, known as back surface field (BSF), is widely used at the rear surface of solar cells. Another method is the field effect passivation. The fixed charges in a passivation layer repel the minority carriers or the extremely large fixed charges bend the energy band, resulting in an inverting layer at the surface.
\n\t\t\t\tThe effective lifetime of charge carrier can reflect total effect of bulk and surface recombination. For the p-type silicon wafer of thickness W and diffusion coefficient of electron Dn, having front and back surfaces equally passivated, the effective lifetime ( τeff) can be expressed as
\n\t\t\t\tand
\n\t\t\t\twhere τb is minority carrier lifetime at the back surface. By combining the two cases, the effective lifetime can be calculated by using above equations with about 5 % deviation from the exact solution [21]
\n\t\t\t\tIf the parameters, such as bulk lifetime of silicon (Π), wafer thickness, and diffusion co-efficient of electron are considered to be constant, the measure of effective lifetime gives the direct measure of S. As the S is an indicator of surface passivation, the measured τeff can also be used as an indicator of the quality of surface passivation in silicon substrate.
\n\t\t\tIn order to reduce the production cost of the photovoltaic solar cell, metallization was realized by screen-printing of metal paste on the SiNx coating, followed by a co-firing. Another competing technology for solar cell production is buried-contact technology, that involves laser grooving and metal plating, which is a bit complex procedure, time consuming and may result in a significantly high number of faulty solar cells, because of small imperfection in metallizations, a kind of imperfection that does not make screen printed solar cells faulty.
\n\t\t\t\tScreen-printing (SP) is cost effective, robust, simple, inexpensive, and fast method of metallization of the solar cells [22-23]. It can also be easily automated with a high throughput (exceeding about 1,000 wafers per hour). This technique has been widely used for solar cell fabrication since the early 1970s.
\n\t\t\t\tFor selective emitter formation at the back, etchant material was screen printed before screen printing the metal paste. During the co-firing process the necessary electronic connection of the cell layers with the electrodes were formed. We used the Ferro- 53-102 aluminum paste and Ferro-33-462 as Ag paste.
\n\t\t\t\tBaking of the screen printed wafers were carried out immediately after each printing step in a separate conveyor belt furnace at 150°C. A burn-out process removes the organic binders from the paste and it was carried out between 350 ~ 510°C.
\n\t\t\t\tThe thickness of the Al over the entire back surface of the cell was maintained almost uniform with a variation of ± 2 μm. Wafer bowing is a problem with full Al printing at the back of the wafer, that was minimized to a level below 0.5 mm due to the use the low bow, lead free paste and a thicker wafer (300μm). Bowing happens mainly due to difference in the thermal expansion coefficients of Si and Al pastes (αSi = 7.6 K-1, αAl = 23.8 K-1) and can be avoided by the local back contact (LBC) approach. For the application of this LBC technique in industrial production, an addition step of Ag / Al printing in a pattern of two wide bus bars on the back surface was introduced in order to make back metal contact solderable during the module making process. Despite the simplicity and technical advantages of this process for making fully covered back metal contact and surface passivation through back surface field (BSF) in a single shot, the emerging trend of using thinner wafers to meet the challenges posed by depleting silicon feedstock may put this process at stake.
\n\t\t\t\tA problem of Aluminum ball formation was observed during the co-firing process, that was mostly eliminated by flowing sufficient oxygen during the co-firing and also by applying a rapid cooling approach at the end of co-firing.
\n\t\t\t\tMetallization is a very important step for device fabrication because it strongly affects performance of the solar cell on its short circuit current density (Jsc), open circuit voltage (Voc), series resistance (Rs), shunt resistance (Rsh), and fill factor (FF). At the front surface the metallization creates electrical connection to thin n+ layer that is covered with SiNx. At the back surface it provides an electrical connection and at the same time it creates a p+ layer. A glass frit present in the Ag paste makes a superior metallization through SiNx film. However, optimization of the co-firing process is critical in obtaining desired metal contact. The peak temperature and ramp-up rate during the co-firing process are crucial along with the belt speed that determines residual time of the wafers to various temperature zones. A cylindrical process zone has different local temperature setting and the belt carries the Si wafers at a certain speed. The grid pattern of the front electrode has a significant influence on Rs and FF, that demands optimization of co-firing process. With an increase in the sheet resistance (Rsheet) of the emitters, Voc decreases, however Jsc increases, which may be because of the improvement of blue-response, more light entering the solar cell active region and the reduction of recombination in the front surface. At a faster co-firing condition BSF layers and Ohmic front contacts can preferably be established, because the Rsheet of emitters may remain nearly unchanged. We observed a Voc of around 622mV and FF of 80.6% by Suns-Voc measurement.
\n\t\t\t\tSuns-Voc measurement is a method of estimating open circuit voltage from decay characteristics of photo generated charge carriers. This method is generally adopted when physical dimension of solar cell is different from its standard cell structure. Using the result, we obtain an optimized co-firing process.
\n\t\t\t\t\n\t\t\t\t\tFig 1 shows important components of screen printing. The screen is made up of an interwoven mesh kept at a high tension, with an organic emulsion layer defining the printing pattern. Fig. 1(a) shows a microscopic image of the screen. Printing pattern of the front metal contact with optimized dimensions (finger width, finger spacing, busbar width, maximum defined finger length) was developed in the form of a computer- aided – design (CAD) as shown in Fig. 1(b). The screen printer is equipped with optical vision system for proper alignment. The co-firing was carried out in a conveyor belt furnace (Sierratherm).
\n\t\t\t\ta) Microscopic image of the screen used in SP. (b) Design of the front metal printing pattern for the single c-Si wafer of size 125mm × 125mm (pseudo square).
Rear surface of solar cells were screen printed with Aluminum paste (Ferro- 53-102). The thickness of the printed metal was maintained 20μm, with a variation of ±2μm. The average gain in mass of the wafer after back printing and drying was ~ 6 mg /cm2.
\n\t\t\t\tCo-firing of printed metal paste was followed in three major steps, baking, burn- out, and sintering. Baking refers to the process of evaporating solvents of the pastes to avoid the gas bubbling and cracks formation during the high temperature treatment. The baking is carried out immediately after each metal printing step in a separate conveyor belt furnace at 150oC. Burn- out process removes the organic binders from the paste and it was carried out at 350-510oC.
\n\t\t\t\t\tThe temperature profile for the co-firing cycle can be decided on the basis of the studies of Kim et. al [24]. With improper temperature and the belt speed settings of the co-firing, the metal electrodes can penetrate across the p-n junction, as schematically shown in Fig. 2, thus making the cell unusable.
\n\t\t\t\t\tThe belt furnace used in this system was equipped with the facility to observe and adjust the actual front and back surface temperatures of the wafer by real time measurement, with two different thermocouples. As suggested in ref [24], we tested the co-firing with different temperatures of front and back surface. However, such a temperature difference may lead to bending of the wafer. So we prefer keeping the temperature of both the surfaces as equal. Proper Ohmic contact formation on the front and Al-Si alloying at back surface for proper BSF generation are the two significant accomplishments of this single shot method.
\n\t\t\t\t\tP-N junction of a typical solar cell with Ag metallization on front surface showing the possible cases of shunting through the p-n junction during co-firing as well as good sintering.
The co-firing was carried out in the condition of sufficient dry and filtered air flow into the furnace. It is one of the most sensitive steps of the solar cell fabrication. Any non-uniformity in surface cleaning, texturing, doping, or even ARC can have detrimental effect on the performance of the fabricated cells as well, especially in industrial process. If co-firing is done at a temperature below optimum temperature profile, it results in high series resistance and hence low FF due to poor Ohmic front contact and poor BSF, whereas over – co-firing at a higher temperature profile may result in junction shunting and degradation in surface and bulk passivation. Thus, finding an optimum co-firing temperature profile should be always the first priority in the industrial process.
\n\t\t\t\t\tAn advantage of an LBSF compared to the standard full Al-BSF is the lower consumption of expensive printing pastes. In order to accomplish the local back contact in solar cells, many techniques have already been employed. It has been shown that the hybrid buried contact solar cell with photo lithographically defined rear contacts achieves an increase in Voc by 30mV [25] as compared with a standard buried contact cell with conventional aluminum alloyed BSF, which may result in a high rear surface recombination velocity. Koschier et al. [26] also demonstrated a 30 to 40mV increase in open circuit voltage relative to conventional buried contact solar cells using the thyristor structure device on the rear which incorporates a grown p+ layer in localized regions of the passivating oxide. However, both these rear contact schemes require the use of photolithography to remove regions of the oxide to expose the underlying surface for contact, which may not be suitable for large-scale commercial solar cell fabrication processes. Other techniques of creating small area contacts such as laser firing have been demonstrated to be feasible [27].
\n\t\t\t\tRecombination of charge carriers at the rear surface in a solar cell can be suppressed by deposition of a silicon dioxide (SiO2) layer at the back surface, grown in a high-temperature (≥900°C) oxidation process [28-29]. Additionally, the SiO2/Al stack at the rear should act as a reflector for the near band gap photons, that leads to improved light trapping properties and hence the Jsc of the solar cell may improve as well. Thermally grown SiO2 layers are manufactured using a time and energy intensive high temperature process, they may not be a good choice for mass production, although they possibly provide a good thermally stable passivation [30]. Hence, an alternative low temperature surface passivation became necessary for future industrial production of high efficiency Si solar cells, which should have properties comparable to the SiO2 passivated solar cells.
\n\t\t\t\t\tOne way of achieving this is deposition of SiNx layer by PECVD technique. It has been observed that this gives comparably low surface recombination velocity (SRVs) as compared to that with a thermal SiO2 on low resistivity p-type silicon [31-32]. However, conventional studies have mentioned certain limitations of a SiNx layer on p-type substrates [33]. When it was applied to the rear of a PERC (Passivated Emitter and Rear Cell) solar cell, the short circuit current density (Jsc) reduced as compared to a SiO2 passivated cell [34]. This effect has been attributed to the large density of the fixed positive charges in the SiNx layer, inducing an inversion layer in the c-Si near the SiNx layer. A capacitance-voltage (C-V) measurement of SiNx layer having variation of refractive index may demonstrate a part of improvement with Si-rich SiNx thin film. This may be because of field created by positive charges fixed at its surface. It is clear that a positive fixed charge is suitable for the n-type substrate, while a negative fixed charge is suitable for the p-type c-Si wafer substrate.
\n\t\t\t\t\tIn this respect formation of local back contact is a promising technique, where a highly doped p-type local back contact can reduce the potential barrier that charge carriers may face before reaching the metal electrode.
\n\t\t\t\t\tProtection of the back surface of the Si-wafer may be achieved in two possible different ways, one is a complete coverage with Al back contact, and the other is with SiNx anti reflection coating. The problem with full metal coverage with thinner Si wafers is the cracks and lattice defects formed during high temperature co-firing when there is high possibility of wafer bending. Thus partial coverage of the back surface with metal electrode and the rest covered by SiNx ARC surface passivator is a better alternative.
\n\t\t\t\t\tComparison of SEM micrograph of the (a) saw damaged wafer surface, unclean and (b) saw damage removed clean surface of Cz-Si wafer.
The scanning electron microscopic (SEM) surface image of one of the cleaned and surface damage removed wafers is shown in Fig. 3. It shows image of untreated as well as wet chemical etched wafer surface where saw damages have been removed.
\n\t\t\tSince the concentration limit for anisotropic etching of surface texturing is 1.6 to 4 wt.%, the concentration of NaOH (wt. %) in the etchant solution was chosen as 2 wt.%. At a different etching time the resulting surface texture and specular reflection were different. For an etching/texturing time of 25, 30, 35, 40 mins, the average specular reflectivities were 17.2, 17.0, 16.1, 15.1%.
\n\t\t\t\t\n\t\t\t\t\tFig. 4 (a ), (b ), ( c ) and ( d ) shows textured wafers with the four different texturing times and depict the increase in pyramid size with increase in etching time. The average heights of the pyramids on the surface textured for 25, 30, 35, and 40 min were estimated to be ~ 3, 5, 7, and 10 µm, respectively.
\n\t\t\t\tSEM micrographs of the silicon surface textured for (a) 25 min, (b) 30 min, ( c ) 35 min, and (d ) 40 min in and solution containing NaOH ( 2 wt. %) in DI-W water and IPA ( 6 wt. %) at 82°C.
After the texturing, the emitter diffusion and PSG removal were carried out. Then the wafers were rinsed in DI-W and spin dryed. A secondary ion mass spectrometric (SIMS) depth profiling was carried out to measure the emitter junction depth. Fig. 5 shows depth profiling of P atoms observed by (SIMS) into the c-Si wafer. 5×1015 cm-3 seems to be the boron concentration of the p-type wafer, with junction depth of about 300 nm from the top surface.
\n\t\t\t\tVariation of phosphorus (P) concentration with the distance from the emitter surface into the wafer, As observed by SIMS depth profiling.
The diffusion profile can be expressed as a complimentary error function.
\n\t\t\tThere is a trade off between good antireflective property and surface passivation. From high frequency capacitance-voltage (C–V) measurements with metal-insulator-semiconductor (MIS) structure as Al/SiN
60 60 60 60 60 60 | \n\t\t\t\t\t\t\t18 30 45 60 66 75 | \n\t\t\t\t\t\t\t1.8 1.9 2.0 2.1 2.2 2.3 | \n\t\t\t\t\t\t\t2.33 2.86 4.10 4.26 4.05 4.00 | \n\t\t\t\t\t\t
Gas Composition in the plasma and the corresponding properties of the as- deposited films. Pressure 1 Torr, substrate temperature 450°C, thickness 80nm.
300 | \n\t\t\t\t\t\t\t600 | \n\t\t\t\t\t\t\t70.5 | \n\t\t\t\t\t\t\t65.5 | \n\t\t\t\t\t\t
400 | \n\t\t\t\t\t\t\t800 | \n\t\t\t\t\t\t\t69 | \n\t\t\t\t\t\t\t64.5 | \n\t\t\t\t\t\t
500 | \n\t\t\t\t\t\t\t100 | \n\t\t\t\t\t\t\t68.7 | \n\t\t\t\t\t\t\t63.0 | \n\t\t\t\t\t\t
600 | \n\t\t\t\t\t\t\t1200 | \n\t\t\t\t\t\t\t65.5 | \n\t\t\t\t\t\t\t62 | \n\t\t\t\t\t\t
Comparison of emitter sheet resistance before and after the drive in step for the various different gas flow rates, where [O] is O2 flow rate and [POCl3] is POCl3 flow rate in sccm, Rsb is sheet resistance before passivation, Rsa is sheet resistance after passivation.
Carrier lifetime measurement can provide valuable information. We used a μ-PCD system of Semilab (WT-1000) in order to measure the carrier lifetime of the silicon wafers at various stages, with a measurement precision of ± 0.01 μs. A 940 nm wavelength laser pulse was used for generation of the photo carriers, and all the measurements were carried out in automatic parameter setting mode. The minority carrier effective lifetime of the bare wafers were measured first, thereafter (prior to metallization) the measurements of effective lifetime of silicon wafer were carried out.
\n\t\t\t\tDifferent passivating layers such as silicon nitride (SiNx), silicon oxide (SiOx), amorphous silicon (a-Si), microcrystalline silicon (μc-Si), oxidized aluminum nitride (AlON), and oxidized porous silicon (PS) were deposited on the surfaces of the wafers. Minority carrier lifetime was measured at least three different places of each wafer and mean of the results were taken. The results were then compared with the minority carrier effective lifetime of the bare wafer for further analysis.
\n\t\t\t\t\tWe observed that the effective lifetime of each of the wafers increases by ~ 2 μs after cleaning and texturing. This improvement is attributed to the removal of contaminants and structural defects from the silicon surface after cleaning and saw damage removal. A significant improvement in lifetime, from ~ 6 μs to more than 10 μs, was observed after the phosphorus diffusion. This improvement reflects the increase in bulk as well as surface recombination lifetime during phosphorus diffusion. The thermal oxide passivation step after phosphorus diffusion causes further improvement in lifetime of about ~ 3 μs. This improvement can be attributed to the decrease of surface recombination velocity due to the passivation of surface by the thermally grown SiO2 layer. The subsequent process of edge isolation by SF6 plasma causes degradation in the lifetime by ~ 1 μs. Such a degradation is basically due to plasma induced damages, especially near the edges of the wafers that indicates the formation of recombination centers on the surface during the process. A sharp rise in lifetime by ~ 3 μs was observed after deposition of non-stoichiometric TiOx films [39-40]. It is likely that fixed positive charges in these films bend the semiconductor energy bands near the surface of the wafer, which improves the effective surface passivation [41]. A good surface passivation can be achieved by growing a thin thermal SiO2 passivation layer over TiO2 [39,42,43]. The variation in the minority carrier lifetime during the solar cell fabrication, indicates that the surface conditions play a vital role than the bulk of the Cz-Si wafers. During the solar cell fabrication and before metallization there might have been the improvement in the lifetime due to gettering of the impurities from the bulk during phosphorus doping. The SiNx films had a refractive index between 1.90 and 2.13 and a thickness of 65 nm after annealing in the 673-1173 K temperature range. The effective lifetime of the samples became maximum for the samples annealed at 773 K, while the lifetime of almost all samples, covered with as-grown film, showed a minimum value.
\n\t\t\t\t\tThe out-diffusion of hydrogen from the Si-SiNx interface might cause degradation of lifetime of the samples if annealed above 773 K in vacuum. The maximum recorded effective lifetime for the sample passivated with SiNx with a refractive index of 1.94, annealed at 773 K was 55.21 μs whereas a minimum lifetime of 6.3 μs was found for the sample with as-deposited SiNx film with refractive index 1.9.
\n\t\t\t\t\tThe minority carrier lifetime with different passivating films as AlON, Bare Si, Poly Si, μc-Si, SiOx, a-Si, SiNx were 9.6, 10.1, 21.5, 23.6, 43.4, 51.0, 55.2 μs respectively, where all the samples were annealed at 773 K in vacuum.
\n\t\t\t\t\tThe comparison of surface passivation of the electronic grade Cz-Si wafers with the different passivating layers indicates that the SiNx film is superior to other films. In order to identify the appropriate properties and annealing condition of the SiNx films for solar cell application, the effective lifetimes of samples, coated with PECVD grown SiNx film, were measured after annealing at a pressure of ~ 105Pa for ~ 90sec and at temperatures, varying from 500 to 900°C in air ambience of a belt furnace. The minority carrier effective lifetime of the silicon wafers, after the surface passivation with SiNx films and annealed at 500, 600, 700, 800, 900°C results in the lifetime of 42, 43, 85, 115, 64μs respectively. The annealing temperature for optimized carrier lifetime was found to be the same (760°C) as the set temperature of the belt furnace at which c-Si solar cell was earlier optimized for co-firing to ensure good Ohmic contact on the front and back surfaces in conjunction with the proper back surface field ( BSF) generation. Minority-carrier lifetime is a critical parameter for all solar cell designs. If the silicon wafers to be used for the fabrication of solar cell has a low minority carrier lifetime, therefore a short diffusion length, most of the minority carriers cannot be collected, and the solar cell will suffer from low conversion efficiency.
\n\t\t\t\t\tThe results of this study indicate that the proper surface as well as bulk passivation in conjunction with gettering of defects during phosphorus diffusion can lead to a substantial gain in minority carrier effective lifetime of silicon wafers, provided the degradation of wafer surface condition during edge isolation is prevented.
\n\t\t\t\tIn order to optimize the co-firing we defined four different temperature zones in the furnace. We investigated each zone, changed stay time of the wafers in each zone, by varying the belt speed and the temperature of the zones. Emitters were formed with the sheet resistance in the range of 30 to 60Ω/sq. A uniform 80nm thick SiNx layer deposited on the front side served as an anti-reflection coating. Back and front contacts were screen printed on the wafers and baked. The back contacts were screen printed first, using Al paste, and then the wafers were dried at 150°C for 4min in a belt dryer. Then the front contacts were printed with Ag paste and the same post-printing treatment was carried out. Then the wafers were co-fired in a conventional belt-type furnace with four different temperature zones. For the maximization of the Suns-Voc we varied the temperatures T1, T2, T3, and T4 of the four thermal zones. When an optimum temperature distribution was found, we investigated different belt speeds keeping the temperature unchanged. By measuring Suns-Voc, we determine the effect of peak temperature change on the FF and Voc. We measured the co-firing temperatures on the wafers directly in the belt-type furnace with a Datapaq 9000 system, which has a thin, sensitive thermo couple tip and a thermally insulated measuring system pack for recording the firing conditions of a wafer with a thermo couple tip on it. In the first set of experiment, without a front electrode, we varied the temperatures T1, T2, T3, and T4 in the four thermal zones and measured the Suns-Voc.
\n\t\t\t\t\tIn the second set of experiments, we examined the effect of varying only the belt speed 170, 140, 165 and 160 inch per minute (IPM) on the Voc for the same sheet resistance. In this step, we used wafers of 2–4 μm texture, sheet resistance of 35 to 40 Ω/sq. and 80μm width of finger with 2.4mm spacing metallization.
\n\t\t\t\t\tIn the third set of experiments, we investigated the variation in the Voc with the changes in the sheet resistance, as obtained in different drive-in operations. In this step, we used wafers that have 2–4μm texture, sheet resistance of 30, 40, 50, and 60Ohm/sq and 80μm as width of finger with 2.2mm spacing of the metallization. The peak temperature was 759.5°C, the melting duration was 4.5s, and the belt speed was 170 IPM.
\n\t\t\t\t\tIn the fourth set of experiment, we investigated firing conditions that determines sheet resistance, by varying belt speed, and temperature. We found a co-firing process window that resulted in a fill factor greater than 77%. For the metallization of the front side, we used Ferro 33-501 Ag paste with a peak temperature 700°C and a firing time <1–3s.
\n\t\t\t\t\tIn the fifth set of experiment, we examined the relationship between the number of grid lines to the series resistance, fill factor, and shading loss in a single-crystal, 5-inch (125mm X 125mm, 154.83cm2) Czochralski-type solar cell. The grid model, as in ref [44], was used to optimize the grid line design in terms of resistance and shading loss.
\n\t\t\t\t\tIn order to obtain higher Voc by BSF layer, we observed that it is necessary to have the ramp-up rate higher than 70°C/s, that resulted in an average Voc higher than 620mV [45], as shown in Table 4. At a higher ramp-up rate and proper belt speed setting made it possible to get a higher Voc by reducing the deterioration caused by the effects of the thermal stress on the wafer. For further improvement in Voc, a densely packed Al layer or uniformly formed BSF layer created by a high ramp-up rate would also be helpful.
\n\t\t\t\t\tHowever, as the heat increases, micro-cracks in a wafer or bowing of the wafer may occur, leading to an increase in leakage current. Large defects or poor features of a wafer increase the surface recombination and leakage current.
\n\t\t\t\t\tFor sheet resistance of 40, 50, 60Ω/sq, the carrier lifetimes were 14, 14.9, 17.2μs and surface recombination velocities were 660, 480, 425cm/sec respectively. We observed that, as the emitter sheet resistance increases, the carrier lifetime increases with the decrease in surface recombination velocity. To a certain degree, the variation in sheet resistance is dependant upon the surface doping density, which is related to electron mobility and its lifetime in a silicon bulk [46].
\n\t\t\t\t\tBelt Speed (IPM) | \n\t\t\t\t\t\t\t\t170 | \n\t\t\t\t\t\t\t\t140 | \n\t\t\t\t\t\t\t\t165 | \n\t\t\t\t\t\t\t\t160 | \n\t\t\t\t\t\t\t
Temp. Slope (oC/s) | \n\t\t\t\t\t\t\t\t70.82 | \n\t\t\t\t\t\t\t\t64.13 | \n\t\t\t\t\t\t\t\t69.15 | \n\t\t\t\t\t\t\t\t72.8 | \n\t\t\t\t\t\t\t
Peak Temp. (oC) | \n\t\t\t\t\t\t\t\t756.5 | \n\t\t\t\t\t\t\t\t759.5 | \n\t\t\t\t\t\t\t\t765.0 | \n\t\t\t\t\t\t\t\t753.0 | \n\t\t\t\t\t\t\t
Average Voc (mV) | \n\t\t\t\t\t\t\t\t620.3 | \n\t\t\t\t\t\t\t\t617.7 | \n\t\t\t\t\t\t\t\t619.0 | \n\t\t\t\t\t\t\t\t621.7 | \n\t\t\t\t\t\t\t
FF (%) | \n\t\t\t\t\t\t\t\t79.2 | \n\t\t\t\t\t\t\t\t78.9 | \n\t\t\t\t\t\t\t\t78.1 | \n\t\t\t\t\t\t\t\t80.6 | \n\t\t\t\t\t\t\t
High temperature firing specifications.
To investigate the effects of different drive-in operations, we examine the variation in Voc and the Jsc according to the sheet resistance changes. As different drive-in operations for dopant diffusion can lead to changes in sheet resistance. In this step, we used wafers of 24-μm texture, sheet resistance of 30, 40, 50, or 60Ω/sq. and 80 μm width of finger with 2.2 mm spacing shows the Voc as 621, 622, 623, 627mV and Jsc as 34.6, 34.9, 35.0, 35.3mA/cm2 respectively. The peak temperature was 759.5°C, the melting duration was 4.5s, and the belt speed was 170 IPM.
\n\t\t\t\t\tAs the emitter layer becomes thinner the sheet resistance increases, it becomes difficult to fire the electrode to a moderate depths (i.e., near the pn junction). So the higher sheet resistance means thinner emitter and it is more likely to lead to a short circuit of electrodes that penetrate through the emitter. With low sheet resistance (i.e., a heavy doping) by the over-fired sites such a situation is less likely. Fig. 6 shows a safe operating zone for the range of belt speed (Fig. 6(a)) and firing temperature (Fig. 6(b)), it gets narrower as the sheet resistance increases. While the duration of firing was investigated, we found that the shorter the firing time, the more was the minority carriers lifetime. Thus shorter firing time results in increased number of minority carriers and as a result increased Voc. It is known that mobility is dependent on the effective minority carrier lifetime. We also investigated the relationship between the number of fingers and the series resistance, fill factor, and shading loss in a single-crystal, 5inch (125mm×125mm, 154.83cm2) Czochralski-type solar cell. We used two different finger spacings 1.8mm and 2.4mm.
\n\t\t\t\t\tFiring process window from the firing conditions according to the variations of the sheet resistances, the (a) belt speeds and (b) the firing temperatures. Hatched area indicates the range (min.–max.) that has larger than 77% of the fill factor by the combination of variations of the sheet resistances (drive-in operations), the belt speeds and the firing temperatures.
The screen printed and metalized front side shading loss is relatively large, in the range of 8–10% [47]. A grid model suggested in [44] can be used to optimize the grid line design, considering resistance and shading loss. The finger width was as usual 80 μm in the case of the fired Ferro 33-501 Ag paste grid lines. Consequently, the number of grid lines compared to the original grid line design increased by 17. With the new grid line design, the finger spacing decreased from 2.4 to 1.8 mm. This led to a decrease in the total series resistance and an improvement in the fill factor. The design of the metal grid line was essentially a matter of finding the separation between the fingers that resulted in the best compromise between shading losses and resistive ones [48]. The contribution to the series resistance from the diffused sheet was 0.192Ω.cm2 for 2.4mm spacing and 0.108Ω.cm2 for 1.8mm spacing, so that emitter resistance (Re) improved by 0.084Ω.cm2. Each 1Ω.cm2 in series resistance caused a decrease of about 0.041 in the fill factor (assuming a moderately high shunt resistance) [48], the total calculated improvement in fill factor due to the increase in emitter sheet resistance was 0.0078Ω. We also investigated the relation between the variations of Rsheet and spacing for the available range of more than 77% of the fill factor. As shown in Fig. 7, the narrower the spacing, the wider range of Rsheet can give a better solar cell. By shortening the spacing between the grid lines, the series resistance decreased and the FF increased, but the addition of extra fingers caused a 1% increase in shading loss as well as lowering the short circuit current. As a result of these drops, cell efficiency reduced from 17.18% to 16.92%.
\n\t\t\t\t\tThe relation between the sheet resistance with finger spacing for the available range of more than 77% of the fill factor.
\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t||
As-deposited | \n\t\t\t\t\t\t\t\t100 | \n\t\t\t\t\t\t\t\tAs-deposited | \n\t\t\t\t\t\t\t\t110 | \n\t\t\t\t\t\t\t
FGA | \n\t\t\t\t\t\t\t\t125 | \n\t\t\t\t\t\t\t\tFGA | \n\t\t\t\t\t\t\t\t70 | \n\t\t\t\t\t\t\t
Co-firing | \n\t\t\t\t\t\t\t\t180 | \n\t\t\t\t\t\t\t\tCo-firing | \n\t\t\t\t\t\t\t\t165 | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t||
As-deposited | \n\t\t\t\t\t\t\t\t205 | \n\t\t\t\t\t\t\t\tAs-deposited | \n\t\t\t\t\t\t\t\t120 | \n\t\t\t\t\t\t\t
FGA | \n\t\t\t\t\t\t\t\t320 | \n\t\t\t\t\t\t\t\tFGA | \n\t\t\t\t\t\t\t\t225 | \n\t\t\t\t\t\t\t
Co-firing | \n\t\t\t\t\t\t\t\t11 | \n\t\t\t\t\t\t\t\tCo-firing | \n\t\t\t\t\t\t\t\t20 | \n\t\t\t\t\t\t\t
Temperature dependence of different passivating films. FGA – forming gas annealing, ONO – silicon -oxide -nitride -oxide.
For the fabrication of local back contact structure with little modification on conventional cell process, adaptation of rear passivating film on c-Si solar cell should address two issues which are
\n\t\t\t\t\ttemperature dependence as shown in Table 5,
grid pattern on rear metallization.
In order to carry out a comparative investigation about the effectiveness of Al-BSF and dielectric passivation on rear surface, solar cells were fabricated with and without dielectric passivation in conjunction with screen printed Al grid pattern with different rear metal covered area. Comparative analysis show that the role of the rear surface passivation with SiNx film becomes dominant when the metal coverage area is below 45% of total surface area. But, as the metal coverage area goes above 45%, the quality of passivation degrades first then starts improving due to the dominating effect of Al BSF over the passivation with SiNx. As the metal coverage area on the rear surface reaches as high as 85%, an improvement in infrared response with net improvement in Isc by ~ 0.16 A has been observed. This indicates that there is dominance of Al-BSF passivation in comparison to the dielectric passivation on the cells fabricated with screen printed local back contact, especially when the rear metal coverage reaches 45% or more but when the metal coverage comes below 45%, the effect of the dielectric passivation becomes dominant.
\n\t\t\t\t\tAll the results suggest that the passivation with dielectric film on the rear surface is a must for local back contact formation by screen printing of Al paste whereas the role of such dielectric passivation becomes significant for Al printed local back contact only if the metal covered area on the rear surface goes below 45%. These results indicate a suitable rear metal covered area for high efficiency thin c-Si solar cells with local back contact in conjunction with dielectric passivation with dielectric film of SiNx and were found to be in accordance with the results obtained by simulation in ref [28].
\n\t\t\t\t\tComparison of the illuminated current-voltage (LIV) characteristics of the cells fabricated with local back contact through the opening in SiNx film on rear surface by varying the peak temperature of the co-firing profile, as indicated with the traces.
825 | \n\t\t\t\t\t\t\t\t12 | \n\t\t\t\t\t\t\t\t67 | \n\t\t\t\t\t\t\t\t11.5 | \n\t\t\t\t\t\t\t\t576.2 | \n\t\t\t\t\t\t\t\t4.40 | \n\t\t\t\t\t\t\t
850 | \n\t\t\t\t\t\t\t\t11 | \n\t\t\t\t\t\t\t\t71 | \n\t\t\t\t\t\t\t\t12.4 | \n\t\t\t\t\t\t\t\t575.6 | \n\t\t\t\t\t\t\t\t4.45 | \n\t\t\t\t\t\t\t
875 | \n\t\t\t\t\t\t\t\t8 | \n\t\t\t\t\t\t\t\t75 | \n\t\t\t\t\t\t\t\t13.0 | \n\t\t\t\t\t\t\t\t576.8 | \n\t\t\t\t\t\t\t\t4.38 | \n\t\t\t\t\t\t\t
890 | \n\t\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t\t\t60 | \n\t\t\t\t\t\t\t\t10.1 | \n\t\t\t\t\t\t\t\t574.0 | \n\t\t\t\t\t\t\t\t4.35 | \n\t\t\t\t\t\t\t
912 | \n\t\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\t\t67 | \n\t\t\t\t\t\t\t\t8.4 | \n\t\t\t\t\t\t\t\t564.5 | \n\t\t\t\t\t\t\t\t3.77 | \n\t\t\t\t\t\t\t
Comparison of the performance parameters of the cells fabricated with local back contact through the opening window on SiNx film on rear surface by varying the peak temperature of the co-firing profile, where Tp is peak firing temperature.
When the cells were co-fired keeping peak temperature below 875°C, the problem of Al bead formation was found to have reduced but the cells were found to have under-fired due to which the series resistance of the cells increased appreciably. The comparison of LIV characteristics of the cells with local back contact through the opening in SiNx film, fabricated by varying the peak co-firing temperature is shown in Fig. 8 and the comparative analysis of the performance parameters of the cells is shown in Table 6. The co-firing profile with peak temperature of 875°C was found to be the best for SiNx passivation layer in terms of performance parameters despite the formation of the Al beads on the rear surface when the cell was co-fired at this temperature.
\n\t\t\t\t\tThe minimum Rs of 8 mΩ and maximum FF of 75% among the cells compared are the evidences of the improved front metal contact without over-heating of Ag finger lines in the case of the cell co-fired with a peak temperature 875°C. The bead formation could be minimized with the increased belt speed keeping peak temperature fixed at 875°C but that test could not be carried out in our system because of the limitation to increase the belt speed beyond 180 IPM.
\n\t\t\t\tProcess sequence of wafer cleaning, saw damage removal and surface texturing of c-Si wafer.
Wafer cleaning for saw damage removal is a fundamental step for c-Si solar cell fabrication. Texturing the top surface of the wafer reduces reflection loss of incident light, as well as increased effective surface area of the wafer for light trapping, light absorption, carrier collection inside the wafer. Surface passivation with silicon nitride layer increases carrier lifetime and further reduces reflectivity of the top surface as it also works as an anti-reflection coating. It also gives protection of the sensitive and thin top n+ layer from environmental degradation. Co-firing at two different temperatures for the top and the bottom surface of the wafer may be necessary as top surface needs lowed co-firing temperature than the bottom one. Because of the thin n+ layer at the top of the cell and thin silicon nitride layer, the Ag top contact may make electrical shorting through the n+/p interface, if co-firing is done at higher temperature. The Al/Ag paste that is used for back contact works for electrical contact as well as p+ doping of Si at the back surface. Al is a group III element in the periodic table so it works as a p-type dopant for Si. After the high temperature co-firing, the Si-Al alloy that is formed at the back of the cell acts as a p+ layer and creates strong back surface field so the photo generated holes are efficiently collected during light illumination.
\n\t\t\t\tProcess flow for doping or emitter diffusion of cleaned and textured wafer. The PSG removal can be carried out after the pre-deposition (as shown above), or it it can be done after the drive in operation. In the latter case the drive-in can be the third step (the PSG removal will be the fourth step), and all other steps remain in order. The emitter diffusion for this latter case has been depicted in
SiNx, ARC deposition on the wafer by RF PECVD.
Out of several approaches to improve the Voc and FF, increasing the ramp-up rate of temperature and setting the belt speed along the heating furnace properly, makes it possible to get a higher Voc. This increase in Voc may be because of reduction in the deterioration due to the effect of thermal stress on the wafer. In presence of excess thermal stress small cracks in the wafer may develop, resulting in a high sheet resistance and low open circuit voltage. Thus optimizing the drive-in condition for low sheet resistance is necessary. The faster belt speed in the co-firing stage, results in higher ramp-up rate for temperature, that greatly enhances Voc. By studying the results of our five sets of experiments, we determined certain approaches for improving the open circuit voltage and fill factor:
\n\t\t\t\tAs the temperature ramp-up rate went higher, we could obtain better uniformity of the BSF layer.
A higher belt speed tends to reduce the overall leakage current of a wafer.
As the emitter sheet resistance increases, the open circuit voltage decreases with the decrease in dopant concentration in the emitter, although the short circuit current is increased, that is attributed to the improvement of the short wavelength response, more light entering the cell active region and to a reduction of recombination in the front surface.
The peak temperature of the wafer was optimized for the shorter the firing time. It results in increased minority carrier density, which in turn increases the open circuit voltage. We investigated the optimal firing conditions for different sheet resistance, temperature, and belt speed, and within the profile window of the firing process, we obtained a high Voc (>620 mV) and fill factor (>77%) for a range of different sheet resistance emitters.
By narrowing the spacing between gridlines, the series resistance and the fill factor of the cell got enhanced.
However, the short circuit current falls because of shadow effect of the metal electrodes. In the case of low series resistance, we can expect to improve the fill factor, while the short circuit current decreased because of the shading loss.
\n\t\t\t\tProcess steps for metallization of the solar cell by screen printing (SP). In our system, the peak temperature was 759.5°C.
Thin silicon wafer is more economical because it consumes less Si material, and results in more efficient solar cell because of higher built in field. Cost of silicon is one of the major expenses in c-Si solar cell production and thus with less consumption of semiconductor mass in the form of thinner wafer, the cost of production can be significantly reduced.
\n\t\t\t\tOne problem that thin wafer may face is bowing during the co-firing process, and hence creation of additional structural defects. Due to unequal thermal expansion of Si and Al back electrode these defects may be created in the wafer. The LBC approach may be more suitable for such cells.
\n\t\t\t\tResistance of screen printed front electrode provides additional element to the series resistance. Each electrode creates a shadow to the cell that reduces total number of electron-hole pair generation under constant illumination. Thus, although decreasing the spacing among the electrodes help reducing series resistance, yet shadow effect leads to reduced total number of electron-hole pair generation. For this, a finger with good conducting material and a high aspect ratio is preferable. Usually glass frit Ag/Al paste is used in the electrode design. If Ag/Al particles in the frit is bigger in size and less dense, and firing temperature profile is not best suited then an insulating layer between Si and Ag/Al electrode may form. This may be avoided by using Ag/Al nano-particles in the paste, with a higher number density of the particles.
\n\t\t\t\tAnother method that has partly been adopted in commercial production is selective emitter design. In this method a local doping pattern is designed before phosphorus doping through diffusion chamber treatment. Ag electrodes at the front surface are fabricated over this so that a highly doped local semiconductor region is formed around the Ag-electrode after high temperature co-firing. In this way a barrier potential at metal semiconductor junction can be reduced. This electrode structure may bring the screen printed solar cell technology close to buried contact solar cell with one additional process step.
\n\t\t\tThe EEG is a neuroimaging device that reflects the electrophysiological activity of the cerebrum that is generated by the synchronistic firing of nerve cells [1, 2]. Because the EEG reflects dynamic neurocognitive processes according to millisecond variations, the statistical properties of neural activation and processes fluctuate according to time, depth, and orientation of the neural generators. Measurement of the electrical activity reflected by the EEG is best conceptualized as a nonlinear stochastic process that is inherently spatio-temporally dependent [1, 2].
Extracellular currents are derived from excitatory and inhibitory postsynaptic potentials allow for dipole moment per unit volume approximations [1, 3]. The dipole moment per unit volume approximations allow for the derivation of weighted estimations of current source density according to neural generators across and between local tissues and the orthogonal orientation of nerve cells within the neocortical layers [1].
While measurements of extracellular currents can be measured using divergent mathematical algorithms (i.e., phase shift, phase lock, coherence, and lagged coherence), the interaction between neurons that generate excitatory and inhibitory postsynaptic potentials must be evaluated according to time, frequency, and the location of the neural generators [4, 5]. Utilization of the Fast Fourier Transformation (FFT) allows for the derivation of EEG frequency bands from the raw signal according to time. FFT analyses elucidate phase angle and phase differences from the EEG frequency domains. When the phase angle is stable or constant, this indicates that coherence = 1.0 whereas coherence = 0 when there are phase differences due to moment to moment variations in the phase angle. Thus, coherence elucidates communication between distal and contiguous neuroanatomical regions and therefore, across and between functional networks via coupled neural oscillators [4, 5].
Mathematical modeling of current sources can be reflected as
Applications of Maxwell’s equations to the EEG incorporate fundamental principles related to thermodynamics as derived by Faraday’s law of electromagnetic induction and Gauss’ law of electromagnetism [11, 12, 13, 14]. Maxwell’s equations establish that the electrical displacement of neural generators and the field produced by these neurophysiological generators inherently influence accurate estimations of current source density [14].
There are four algorithms that comprise Maxwell’s equations [15, 16, 17]. Eq. (1) defines 𝛁 as a nabla operator [14]. The nabla must act upon the other variables denoted within the equation in order to derive estimations of current source density.
Considerations of Eq. (1) indicate that the nabla operator denotes a gradient of a scalar field when this operator is utilized to derive estimations of neural generators according to a Cartesian coordinate system [15]. Thus, this equation attempts to utilize statistical weighting to estimate Laplacian operators that are derived from electromagnetic fields at different points within the head volume conduction model. Because the activity reflected in an EEG recording is derived from the activity of orthogonally oriented neurons, estimations of current source density must account for the errors in estimation that are a result of the inability to determine the precise location of the neurobiological generators that produce dipole magnetic fields [15]. It is important to denote that 𝛁 x
Eq. (2) indicates that the cross product between the magnetic field strength,
Eq. (3) indicates that the gradient of a scalar field as a cross product between the electrical displacement,
Applications of Maxwell’s law and Gauss’ law of electromagnetism incorporate the divergence theorem [17]. The divergence theorem states that the properties of a continuous entity, such as electrical flux, within a closed circuit is equal to the spread of that continuous entity over the volume of the closed-circuit system. Thus, because the flow of a continuous entity must be calculated as a 3-dimensional dispersion, the calculation must consider the magnitude, directionality, and the time by which the divergence occurs. This theorem indicates that a geometric interpretation of the dispersion of a waveform that uses a 3-coordinate configuration system is equivalent to the derivation of current source density [17].
Eq. (4) indicates that the sum of the voltages within a closed-circuit loop must inherently sum to zero [15]. This assertion is consistent with Laplacian physics and Kirchhoff’s Circuit Theory [18].
Geometric models and calculus-based physics in EEG source localization include applications of Coulomb’s inverse-square law [19]. Coulomb’s law indicates that the magnitude of the electrical force between two particles is inversely related to the distance between the two charges. Thus, as distance increases, the magnitude of the two charges decrease. This law also indicates that electrical force increases as the charge of two particles increase. Coulomb’s law can be applied to estimations of source localization if the difference in magnitude between divergent neural generators is considered similarly to the difference in charge of two particles. Specifically, as the distance between electrophysiological generators from the scalp increases, there is a decreased probability that this activity will be reflected on the surface. Coulomb’s inverse square law is mathematically defined in Eq. (5) [19].
Because the depth of a signal inherently influences the electrical field within a volume conductor, applications of Ohm’s law to the EEG are also related to source localization [19]. Algorithmic modeling of Ohm’s law can be reflected according to vector computations. Eq. (6) denotes that
Gradient derivations are also employed to evaluate the Laplacian operators [19, 20]. Estimations of Cartesian coordinates to evaluate locations of electrical generators are determined by computations that derive the statistical term weights in vector space models. Eq. (7) indicates that the electrical field is computed as a vector function that fluctuates according to time. The derivation of the estimated coordinates account for the time and direction of the magnetic field which inherently affects the magnitude of power reflected by electrical generators. Eq. (7) defines
Computations of Laplacian operators require considerations of resistivity [1, 10, 21]. Because the resistivity of biologic materials within the EEG are anisotropic, estimations of Laplacian operators according to the head volume conduction model are inherently flawed. The head volume conduction model assumes isotropy or uniform conductivity. Weighted approximations of the resistivity within a biologic medium must account for the time, region, directionality and the type of tissue by which the electrical currents propagate. Because electrical currents indicate a non-uniform distribution, a cross-section within the brain may present divergent resistive properties dependent upon the Laplacian operator being cortical or subcortical in origin [21].
Further applications of Maxwell’s equations include the Maxwell-Rayleigh algorithm [21]. This algorithm is utilized to calculate the resistive properties that occur within a spherical conductive model. Thus, the Maxwell-Rayleigh equation incorporates geometric configurations to estimate of gradations of resistivity that are attributable to a homogenous suspension that exists within a volume conductor. This application is directly related to the estimation of current source density as the brain is surrounded by cerebrospinal fluid. Eq. (8) defines
Considerations of algorithms that attempt to model estimations of current source density according to the EEG must consider physiological constraints and mathematical limitations [1]. Derivations of the cumulative density function according to Eq. (9) does not consider the resistivity of the biological material by which the electrical signals must bypass. The resistivity of these biological materials alters the conductivity of the electrical signals that are reflected on the scalp. Eq. (9) defines
Applications of quantum mechanics indicate that linear models that are utilized to conceptualize EEG data are inherently flawed [22]. Linear models that attempt to model EEG signals according to volume conduction include the linear instantaneous time-invariant mixing algorithm [23]. The linear instantaneous time-invariant mixing model indicates that the generation of electrophysiological signals can be modeled as a linear function. This is attributable to the assertion that the cumulative electrical activity reflected on the scalp is a result of the mixing of underlying sources within the head volume conduction model. Congedo and Sherlin [23] indicate that the mixing coefficients or the individual sources do not vary according to time and are therefore fixed. Eq. (10) defines xi as the voltage,
Eq. (10) negates the inclusion of factors related to the resistivity of the biologic medium by which the electrical signals are derived [23]. Furthermore, this equation is inherently flawed in that the mixing coefficients are deemed as time invariant factors. Considerations of the inverse problem and Coulomb’s law of electrical force indicate that the estimation of the electrical sources is dependent upon the depth, orientation, and number of neurons that generate the EEG rhythms that are reflected on the scalp [1, 7].
Applications of Heinsenberg’s Uncertainty Principle and Schrodinger’s equation further exemplify the error associated with conceptualizing the EEG as a linear function [22, 24]. These principles and algorithms indicate that EEG waveforms can be modeled as a summation of individual waves and quantum particles. Heinsenberg’s Uncertainty Principle indicates that statistical modeling can be utilized in a priori estimations of the location and position of quantum objects as the precise location and momentum of particles cannot be simultaneously determined. Eq. (11) is a representation of the time independent derivative of the Schrodinger equation [22, 24].
Eq. (11) defines
The Schrodinger equation exemplifies the inherent limitations of the head volume conduction model and, therefore, the inverse problem. Albeit Nunez and Srinivasan [21] have derived estimations of resistivity for divergent biological materials such as the skull, cerebrospinal fluid, dura, blood and the cortex, the Schrodinger equation indicates that the precise location of individual quantum particles and waveforms cannot be determined unless invasive procedures are utilized to isolate these particles [21, 22]. Postulates of the Schrodinger equation indicate that probability distributions are utilized to estimate the dispersion of each wave form [24]. This postulate can be applied to the EEG in relation to the derivation of dipole magnetic fields.
Because multiple ‘neurorhythmicities’ are generated at any given time, where each waveform will have its own probabilities and estimated dispersions of the dipole fields related to that wave, there is not a unique solution to the inverse problem. Derivation of the individual statistical weights for each waveform that is cortical or subcortical in origin is mathematically infeasible. These mathematical and physiological challenges that are specific to the head volume conduction model and inverse problem indicate the necessity to incorporate integrals and imaginary components to reduce statistical error in estimations of source localization.
The classification of EEG waveforms as continuous or discrete quantum matter and the output of the EEG as a linear or nonlinear function inherently affects algorithmic modeling for estimations of source localization [23, 24]. While Nunez and Srinivasan [21] have estimated the degree to which specific biologic mediums and materials possess resistive properties, these parametric configurations do not provide a solution to the inverse problem. Applications of quantum mechanics indicate that neurodynamic behavior that originates in thalamo-cortical compared to cortico-cortical regions yield divergent 3-dimensional dispersions of wave forms and quantum energy [21].
The area of tissue by which the oscillatory mechanisms are thought to originate inherently determines the validity and applicability of Ohm’s law to the EEG [1]. Specifically, the amount of tissue by which the neuro-oscillatory generators are thought to be dispersed distorts mathematical estimations of source localization. As the magnitude of space where neural generators are thought to originate increases, Ohm’s law may only be applicable when estimates of current source density are calculated using matrices to account for the macroscopic and anisotropic heterogeneities that permeate calculations of resistivity in subcortical and cortical regions [21].
Applications of the Schrodinger equation and Heisenberg’s Uncertainty Principle indicate that if EEG waveforms are considered as a summation of discrete particles and individual waveforms, the precise cytoarchitectural boundaries and power of the specific quantum particles that comprise these waveforms cannot be derived simultaneously. Estimations of current source density must obey laws of physics related to thermodynamics and electromagnetism. Thus, laws of classical physics and quantum mechanics such as Coulomb’s inverse square law, Gauss’s law of electromagnetism, and Maxwell’s equations can be applied to derive estimations of the Cartesian coordinates that are utilized in 3-dimensional dipole electrical field per unit volumetric estimations of current source density [1, 19].
IntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6674},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2461},{group:"region",caption:"Asia",value:4,count:12719},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17724}],offset:12,limit:12,total:134466},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11168",title:"Sulfur Industry",subtitle:null,isOpenForSubmission:!0,hash:"39d4f4522a9f465bfe15ec2d85ef8861",slug:null,bookSignature:"Dr. Enos Wamalwa Wambu and Dr. Esther Nthiga",coverURL:"https://cdn.intechopen.com/books/images_new/11168.jpg",editedByType:null,editors:[{id:"187655",title:"Dr.",name:"Enos",surname:"Wambu",slug:"enos-wambu",fullName:"Enos Wambu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty - Evolutionary, Social and Cultural Perspectives on Attractiveness",subtitle:null,isOpenForSubmission:!0,hash:"8f2773e5d4ffe767f38dd15712258e8c",slug:null,bookSignature:"Dr. Farid Pazhoohi",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:[{id:"470837",title:"Dr.",name:"Farid",surname:"Pazhoohi",slug:"farid-pazhoohi",fullName:"Farid Pazhoohi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Associate Prof.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:670},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4438},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11042",title:"Complementary Therapies",subtitle:null,isOpenForSubmission:!1,hash:"9eb32ccbef95289a133a76e5808a525b",slug:"complementary-therapies",bookSignature:"Mario Bernardo-Filho, Redha Taiar, Danúbia da Cunha de Sá-Caputo and Adérito Seixas",coverURL:"https://cdn.intechopen.com/books/images_new/11042.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"157376",title:"Prof.",name:"Mario",middleName:null,surname:"Bernardo-Filho",slug:"mario-bernardo-filho",fullName:"Mario Bernardo-Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10037",title:"Thermoelectricity",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ad1d3f637564a29cf1636759f5401994",slug:"thermoelectricity-recent-advances-new-perspectives-and-applications",bookSignature:"Guangzhao Qin",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"188870",title:"Mr.",name:"Guangzhao",middleName:null,surname:"Qin",slug:"guangzhao-qin",fullName:"Guangzhao Qin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11357",title:"Sustainable Crop Production",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"ee41e09e4ad6a336ca9f0e5462da3904",slug:"sustainable-crop-production-recent-advances",bookSignature:"Vijay Singh Meena, Mahipal Choudhary, Ram Prakash Yadav and Sunita Kumari Meena",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"420235",title:"Dr.",name:"Vijay",middleName:null,surname:"Meena",slug:"vijay-meena",fullName:"Vijay Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10863",title:"Cardiac Rhythm Management",subtitle:"Pacing, Ablation, Devices",isOpenForSubmission:!1,hash:"a064ec49b85ebfc60585c9c3690af53a",slug:"cardiac-rhythm-management-pacing-ablation-devices",bookSignature:"Mart Min and Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/10863.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"62780",title:"Prof.",name:"Mart",middleName:null,surname:"Min",slug:"mart-min",fullName:"Mart Min"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10874",title:"Insights on Antimicrobial Peptides",subtitle:null,isOpenForSubmission:!1,hash:"23ca26025e87356a7c2ffac365f73a22",slug:"insights-on-antimicrobial-peptides",bookSignature:"Shymaa Enany, Jorge Masso-Silva and Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11137",title:"Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"e0e4727c9f1f9b34d788f0dc70278f2b",slug:"mineralogy",bookSignature:"Miloš René",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"70c3ce4256324b3c58db970d446ddac4",slug:"smart-drug-delivery",bookSignature:"Usama Ahmad, Md. Faheem Haider and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10885",title:"Snake Venom and Ecology",subtitle:null,isOpenForSubmission:!1,hash:"cc4503ed9e56a7bcd9f2ca82b0c880a8",slug:"snake-venom-and-ecology",bookSignature:"Mohammad Manjur Shah, Umar Sharif, Tijjani Rufai Buhari and Tijjani Sabiu Imam",coverURL:"https://cdn.intechopen.com/books/images_new/10885.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10381",title:"Electrocatalysis and Electrocatalysts for a Cleaner Environment",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"9dbafb0b297cf5cbdb220707e022a228",slug:"electrocatalysis-and-electrocatalysts-for-a-cleaner-environment-fundamentals-and-applications",bookSignature:"Lindiwe Eudora Khotseng",coverURL:"https://cdn.intechopen.com/books/images_new/10381.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"236596",title:"Dr.",name:"Lindiwe Eudora",middleName:null,surname:"Khotseng",slug:"lindiwe-eudora-khotseng",fullName:"Lindiwe Eudora Khotseng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10900",title:"Prunus",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"9261926500acb26c4ae5a29eee78f0db",slug:"prunus-recent-advances",bookSignature:"Ayzin B. Küden and Ali Küden",coverURL:"https://cdn.intechopen.com/books/images_new/10900.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"200365",title:"Prof.",name:"Ayzin B.",middleName:"B.",surname:"Küden",slug:"ayzin-b.-kuden",fullName:"Ayzin B. Küden"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:192,numberOfSeries:0,numberOfAuthorsAndEditors:4457,numberOfWosCitations:6299,numberOfCrossrefCitations:3957,numberOfDimensionsCitations:8782,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"10",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10954",title:"Dark Matter",subtitle:"Recent Observations and Theoretical Advances",isOpenForSubmission:!1,hash:"b0fbd6ee0096e4c16e9513bf01273ab3",slug:"dark-matter-recent-observations-and-theoretical-advances",bookSignature:"Michael L. Smith",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg",editedByType:"Edited by",editors:[{id:"59479",title:"Dr.",name:"Michael",middleName:"L.",surname:"Smith",slug:"michael-smith",fullName:"Michael Smith"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11137",title:"Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"e0e4727c9f1f9b34d788f0dc70278f2b",slug:"mineralogy",bookSignature:"Miloš René",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg",editedByType:"Edited by",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10851",title:"Progress in Volcanology",subtitle:null,isOpenForSubmission:!1,hash:"6cfc09f959efecf9ba95654b1bb4b987",slug:"progress-in-volcanology",bookSignature:"Angelo Paone and Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/10851.jpg",editedByType:"Edited by",editors:[{id:"182871",title:"Prof.",name:"Angelo",middleName:null,surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10013",title:"Geothermal Energy",subtitle:null,isOpenForSubmission:!1,hash:"a5f5277a1c0616ce6b35f4b44a4cac7a",slug:"geothermal-energy",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/10013.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel I.",middleName:"I.",surname:"Ismail",slug:"basel-i.-ismail",fullName:"Basel I. Ismail"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10556",title:"Sedimentary Petrology",subtitle:"Implications in Petroleum Industry",isOpenForSubmission:!1,hash:"be71a270b1196a96cdc1162f64f9a966",slug:"sedimentary-petrology-implications-in-petroleum-industry",bookSignature:"Ali Ismail Al-Juboury",coverURL:"https://cdn.intechopen.com/books/images_new/10556.jpg",editedByType:"Edited by",editors:[{id:"58570",title:"Prof.",name:"Ali",middleName:"Ismail",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10006",title:"Remote Sensing",subtitle:null,isOpenForSubmission:!1,hash:"ccf3326511ecfc48a7b5b7a4fa15e6c5",slug:"remote-sensing",bookSignature:"Andrew Hammond and Patrick Keleher",coverURL:"https://cdn.intechopen.com/books/images_new/10006.jpg",editedByType:"Edited by",editors:[{id:"259487",title:"Dr.",name:"Andrew",middleName:null,surname:"Hammond",slug:"andrew-hammond",fullName:"Andrew Hammond"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10590",title:"Humic Substances",subtitle:null,isOpenForSubmission:!1,hash:"85786eb36b3e13979aae664a4e046625",slug:"humic-substances",bookSignature:"Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/10590.jpg",editedByType:"Edited by",editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",middleName:null,surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10210",title:"Solar System Planets and Exoplanets",subtitle:null,isOpenForSubmission:!1,hash:"b7f57c0e93406f0925482b204ad392ec",slug:"solar-system-planets-and-exoplanets",bookSignature:"Joseph Bevelacqua",coverURL:"https://cdn.intechopen.com/books/images_new/10210.jpg",editedByType:"Edited by",editors:[{id:"115462",title:"Dr.",name:"Joseph",middleName:"John",surname:"Bevelacqua",slug:"joseph-bevelacqua",fullName:"Joseph Bevelacqua"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9870",title:"Geodetic Sciences",subtitle:"Theory, Applications and Recent Developments",isOpenForSubmission:!1,hash:"505f1eb75eb5cdddda4ae1b5a779c654",slug:"geodetic-sciences-theory-applications-and-recent-developments",bookSignature:"Bihter Erol and Serdar Erol",coverURL:"https://cdn.intechopen.com/books/images_new/9870.jpg",editedByType:"Edited by",editors:[{id:"75478",title:"Dr.",name:"Bihter",middleName:null,surname:"Erol",slug:"bihter-erol",fullName:"Bihter Erol"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9843",title:"Soil Contamination",subtitle:"Threats and Sustainable Solutions",isOpenForSubmission:!1,hash:"6b175b72cb10952220515885ac49598c",slug:"soil-contamination-threats-and-sustainable-solutions",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9843.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9992",title:"Updates in Volcanology",subtitle:"Transdisciplinary Nature of Volcano Science",isOpenForSubmission:!1,hash:"c9f71037866aa5450cf23c0fb74711d1",slug:"updates-in-volcanology-transdisciplinary-nature-of-volcano-science",bookSignature:"Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/9992.jpg",editedByType:"Edited by",editors:[{id:"51162",title:"Dr.",name:"Károly",middleName:null,surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9993",title:"Earthquakes",subtitle:"From Tectonics to Buildings",isOpenForSubmission:!1,hash:"1f9859a0a16af53d80bf3952fba7a272",slug:"earthquakes-from-tectonics-to-buildings",bookSignature:"Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/9993.jpg",editedByType:"Edited by",editors:[{id:"236461",title:"Dr.",name:"Walter",middleName:null,surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:192,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"31818",doi:"10.5772/28441",title:"Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS)",slug:"comprehensive-monitoring-of-wildfires-in-europe-the-european-forest-fire-information-system-effis-",totalDownloads:4533,totalCrossrefCites:71,totalDimensionsCites:163,abstract:null,book:{id:"600",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",title:"Approaches to Managing Disaster",fullTitle:"Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts"},signatures:"Jesús San-Miguel-Ayanz, Ernst Schulte, Guido Schmuck, Andrea Camia, Peter Strobl, Giorgio Liberta, Cristiano Giovando, Roberto Boca, Fernando Sedano, Pieter Kempeneers, Daniel McInerney, Ceri Withmore, Sandra Santos de Oliveira, Marcos Rodrigues, Tracy Durrant, Paolo Corti, Friderike Oehler, Lara Vilar and Giuseppe Amatulli",authors:[{id:"73894",title:"Dr.",name:"Jesús",middleName:null,surname:"San-Miguel-Ayanz",slug:"jesus-san-miguel-ayanz",fullName:"Jesús San-Miguel-Ayanz"},{id:"126055",title:"MSc.",name:"Ernst",middleName:null,surname:"Schulte",slug:"ernst-schulte",fullName:"Ernst Schulte"},{id:"126056",title:"Dr.",name:"Guido",middleName:null,surname:"Schmuck",slug:"guido-schmuck",fullName:"Guido Schmuck"},{id:"126057",title:"Dr.",name:"Andrea",middleName:null,surname:"Camia",slug:"andrea-camia",fullName:"Andrea Camia"},{id:"126058",title:"Dr.",name:"Peter",middleName:null,surname:"Strobl",slug:"peter-strobl",fullName:"Peter Strobl"},{id:"126059",title:"Mr.",name:"Giorgio",middleName:null,surname:"Liberta",slug:"giorgio-liberta",fullName:"Giorgio Liberta"},{id:"126060",title:"MSc.",name:"Cristiano",middleName:null,surname:"Giovando",slug:"cristiano-giovando",fullName:"Cristiano Giovando"},{id:"126061",title:"BSc.",name:"Roberto",middleName:null,surname:"Boca",slug:"roberto-boca",fullName:"Roberto Boca"},{id:"126062",title:"Dr.",name:"Fernando",middleName:null,surname:"Sedano",slug:"fernando-sedano",fullName:"Fernando Sedano"},{id:"126063",title:"Dr.",name:"Pieter",middleName:null,surname:"Kempeners",slug:"pieter-kempeners",fullName:"Pieter Kempeners"},{id:"126064",title:"Dr.",name:"Daniel",middleName:null,surname:"McInerney",slug:"daniel-mcinerney",fullName:"Daniel McInerney"},{id:"126066",title:"BSc.",name:"Ceri",middleName:null,surname:"Whitmore",slug:"ceri-whitmore",fullName:"Ceri Whitmore"},{id:"126068",title:"MSc.",name:"Sandra",middleName:null,surname:"Santos De Oliveira",slug:"sandra-santos-de-oliveira",fullName:"Sandra Santos De Oliveira"},{id:"126070",title:"MSc.",name:"Marcos",middleName:null,surname:"Rodrigues",slug:"marcos-rodrigues",fullName:"Marcos Rodrigues"},{id:"126072",title:"MSc.",name:"Tracy",middleName:null,surname:"Durrant",slug:"tracy-durrant",fullName:"Tracy Durrant"},{id:"126073",title:"MSc.",name:"Paolo",middleName:null,surname:"Corti",slug:"paolo-corti",fullName:"Paolo Corti"},{id:"126074",title:"MSc.",name:"Friderike",middleName:null,surname:"Oehler",slug:"friderike-oehler",fullName:"Friderike Oehler"},{id:"126075",title:"Dr.",name:"Lara",middleName:null,surname:"Vilar",slug:"lara-vilar",fullName:"Lara Vilar"},{id:"126076",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Amatulli",slug:"giuseppe-amatulli",fullName:"Giuseppe Amatulli"}]},{id:"41478",doi:"10.5772/51387",title:"Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation",slug:"monogenetic-basaltic-volcanoes-genetic-classification-growth-geomorphology-and-degradation",totalDownloads:6153,totalCrossrefCites:72,totalDimensionsCites:141,abstract:null,book:{id:"3088",slug:"updates-in-volcanology-new-advances-in-understanding-volcanic-systems",title:"Updates in Volcanology",fullTitle:"Updates in Volcanology - New Advances in Understanding Volcanic Systems"},signatures:"Gábor Kereszturi and Károly Németh",authors:[{id:"51162",title:"Dr.",name:"Károly",middleName:null,surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"},{id:"62029",title:"Dr.",name:"Gabor",middleName:null,surname:"Kereszturi",slug:"gabor-kereszturi",fullName:"Gabor Kereszturi"}]},{id:"65070",doi:"10.5772/intechopen.82151",title:"Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties",slug:"biochar-a-sustainable-approach-for-improving-plant-growth-and-soil-properties",totalDownloads:6901,totalCrossrefCites:57,totalDimensionsCites:93,abstract:"Soil is the most important source and an abode for many nutrients and microflora. Due to rapid depletion of agricultural areas and soil quality by means of ever-increasing population and an excessive addition of chemical fertilizers, a rehabilitated attention is a need of the hour to maintain sustainable approaches in agricultural crop production. Biochar is the solid, carbon-rich material obtained by pyrolysis using different biomasses. It has been widely documented in previous studies that, the crop growth and yield can be increased by using biochar. This chapter exclusively summarizes the properties of biochar, its interaction with soil microflora, and its role in plant growth promotion when added to the soil.",book:{id:"7305",slug:"biochar-an-imperative-amendment-for-soil-and-the-environment",title:"Biochar",fullTitle:"Biochar - An Imperative Amendment for Soil and the Environment"},signatures:"Jyoti Rawat, Jyoti Saxena and Pankaj Sanwal",authors:null},{id:"46355",doi:"10.5772/57469",title:"Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora",slug:"phytoremediation-of-soils-contaminated-with-metals-and-metalloids-at-mining-areas-potential-of-nativ",totalDownloads:8561,totalCrossrefCites:14,totalDimensionsCites:86,abstract:null,book:{id:"3854",slug:"environmental-risk-assessment-of-soil-contamination",title:"Environmental Risk Assessment of Soil Contamination",fullTitle:"Environmental Risk Assessment of Soil Contamination"},signatures:"Paulo J.C. Favas, João Pratas, Mayank Varun, Rohan D’Souza and\nManoj S. Paul",authors:[{id:"169746",title:"Dr.",name:"Paulo",middleName:null,surname:"Favas",slug:"paulo-favas",fullName:"Paulo Favas"},{id:"169747",title:"Dr.",name:"Manoj",middleName:"Stephen",surname:"Paul",slug:"manoj-paul",fullName:"Manoj Paul"},{id:"169952",title:"Dr.",name:"Joao",middleName:null,surname:"Pratas",slug:"joao-pratas",fullName:"Joao Pratas"},{id:"169953",title:"Dr.",name:"Mayank",middleName:null,surname:"Varun",slug:"mayank-varun",fullName:"Mayank Varun"},{id:"169954",title:"Dr.",name:"Rohan",middleName:null,surname:"D'Souza",slug:"rohan-d'souza",fullName:"Rohan D'Souza"}]},{id:"61845",doi:"10.5772/intechopen.77987",title:"Montmorillonite: An Introduction to Properties and Utilization",slug:"montmorillonite-an-introduction-to-properties-and-utilization",totalDownloads:5473,totalCrossrefCites:44,totalDimensionsCites:76,abstract:"Clay mineral is an important material available in nature. With an increasing understanding of clay structure, montmorillonite is realized viable for an enhanced performance in a variety of materials and products in the areas of catalysis, food additive, antibacterial function, polymer, sorbent, etc. Significant development in the use and application of montmorillonite is seen in recent time. This chapter provides an overview of montmorillonite, structure, and properties and particularly discusses its recent utilization in important materials. Montmorillonite is introduced in terms of its natural sources, chemical structure, physical and chemical properties, and functional utilization. The important physical and chemical properties are summarized as particle and layered structure, molecular structure and cation exchange effect, barrier property, and water sorption. This is followed by the important functional utilizations of montmorillonite based on the effects of its chemical structure. The important functional utilization of montmorillonite includes food additive for health and stamina, for antibacterial activity against tooth and gum decay, as sorbent for nonionic, anionic, and cationic dyes, and the use as catalyst in organic synthesis. The environment concerns, to date, do not indicate the adversity for particles used as additive. Studies will be useful which are clearly based on any montmorillonite structure to describe environmental effects.",book:{id:"6561",slug:"current-topics-in-the-utilization-of-clay-in-industrial-and-medical-applications",title:"Current Topics in the Utilization of Clay in Industrial and Medical Applications",fullTitle:"Current Topics in the Utilization of Clay in Industrial and Medical Applications"},signatures:"Faheem Uddin",authors:[{id:"228107",title:"Prof.",name:"Faheem",middleName:null,surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}]}],mostDownloadedChaptersLast30Days:[{id:"46032",title:"Soil Contamination, Risk Assessment and Remediation",slug:"soil-contamination-risk-assessment-and-remediation",totalDownloads:13896,totalCrossrefCites:22,totalDimensionsCites:60,abstract:null,book:{id:"3854",slug:"environmental-risk-assessment-of-soil-contamination",title:"Environmental Risk Assessment of Soil Contamination",fullTitle:"Environmental Risk Assessment of Soil Contamination"},signatures:"Muhammad Aqeel Ashraf, Mohd. Jamil Maah and Ismail Yusoff",authors:[{id:"25185",title:"Dr.",name:"Muhammad Aqeel",middleName:null,surname:"Ashraf",slug:"muhammad-aqeel-ashraf",fullName:"Muhammad Aqeel Ashraf"},{id:"101988",title:"Dr.",name:"Ismail",middleName:null,surname:"Yusoff",slug:"ismail-yusoff",fullName:"Ismail Yusoff"},{id:"169931",title:"Prof.",name:"Mohd Jamil",middleName:null,surname:"Maah",slug:"mohd-jamil-maah",fullName:"Mohd Jamil Maah"},{id:"169932",title:"Dr.",name:"Ng Tham",middleName:null,surname:"Fatt",slug:"ng-tham-fatt",fullName:"Ng Tham Fatt"}]},{id:"71931",title:"Open Pit Mining",slug:"open-pit-mining",totalDownloads:1625,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Open pit mining method is one of the surface mining methods that has a traditional cone-shaped excavation and is usually employed to exploit a near-surface, nonselective and low-grade zones deposits. It often results in high productivity and requires large capital investments, low operating costs, and good safety conditions. The main topics that will be discussed in this chapter will include an introduction into the general features of open pit mining, ore body characteristics and configurations, stripping ratios and stripping overburden methods, mine elements and parameters, open pit operation cycle, pit slope angle, stability of mine slopes, types of highwall failures, mine closure and reclamation, and different variants of surface mining methods including opencast mining, mountainous mining, and artisan mining.",book:{id:"8620",slug:"mining-techniques-past-present-and-future",title:"Mining Techniques",fullTitle:"Mining Techniques - Past, Present and Future"},signatures:"Awwad H. Altiti, Rami O. Alrawashdeh and Hani M. Alnawafleh",authors:[{id:"313182",title:"Prof.",name:"Rami",middleName:null,surname:"Alrawashdeh",slug:"rami-alrawashdeh",fullName:"Rami Alrawashdeh"},{id:"313522",title:"Dr.",name:"Awwad",middleName:null,surname:"Altiti",slug:"awwad-altiti",fullName:"Awwad Altiti"},{id:"313523",title:"Prof.",name:"Hani",middleName:null,surname:"Alnawafleh",slug:"hani-alnawafleh",fullName:"Hani Alnawafleh"}]},{id:"64027",title:"Stages of a Integrated Geothermal Project",slug:"stages-of-a-integrated-geothermal-project",totalDownloads:4341,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"A geothermal project constitutes two big stages: the exploration and the exploitation. Each one has a single task whose results allow defining the feasibility of a geothermal project, until achieving the construction and operation stage of the power generation plant. The first stage contains the area recognition, its limitation to the target, and elimination of external factors until defining a geothermal zone with characteristics to be commercially exploited. The main studies and analysis that can be applied during the exploration stage are listed, and the major indicator to continue with the project or suspend is the prefeasibility report. The major risks in the exploration stage are due to studies that are carried out on the surface; at this stage, the costs can be considered low. The main results of the exploration are the selection of sites to drill three or four initial wells. Each well provides a direct overview of the reservoir: depth, production thicknesses, thermodynamic parameters, and production characteristics. The drilling of three to four exploratory wells is recommended, as far as there is certainty of the feasibility of the project, and the development of the field begins with drilling of sufficient wells to feed the plant. In this stage, the cost increases, but the risks decrease.",book:{id:"7504",slug:"renewable-geothermal-energy-explorations",title:"Renewable Geothermal Energy Explorations",fullTitle:"Renewable Geothermal Energy Explorations"},signatures:"Alfonso Aragón-Aguilar, Georgina Izquierdo-Montalvo,\nDaniel Octavio Aragón-Gaspar and Denise N. Barreto-Rivera",authors:[{id:"258358",title:"Dr.",name:"Alfonso",middleName:null,surname:"Aragón-Aguilar",slug:"alfonso-aragon-aguilar",fullName:"Alfonso Aragón-Aguilar"}]},{id:"65070",title:"Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties",slug:"biochar-a-sustainable-approach-for-improving-plant-growth-and-soil-properties",totalDownloads:6893,totalCrossrefCites:55,totalDimensionsCites:92,abstract:"Soil is the most important source and an abode for many nutrients and microflora. Due to rapid depletion of agricultural areas and soil quality by means of ever-increasing population and an excessive addition of chemical fertilizers, a rehabilitated attention is a need of the hour to maintain sustainable approaches in agricultural crop production. Biochar is the solid, carbon-rich material obtained by pyrolysis using different biomasses. It has been widely documented in previous studies that, the crop growth and yield can be increased by using biochar. This chapter exclusively summarizes the properties of biochar, its interaction with soil microflora, and its role in plant growth promotion when added to the soil.",book:{id:"7305",slug:"biochar-an-imperative-amendment-for-soil-and-the-environment",title:"Biochar",fullTitle:"Biochar - An Imperative Amendment for Soil and the Environment"},signatures:"Jyoti Rawat, Jyoti Saxena and Pankaj Sanwal",authors:null},{id:"39170",title:"Study of Impacts of Global Warming on Climate Change: Rise in Sea Level and Disaster Frequency",slug:"study-of-impacts-of-global-warming-on-climate-change-rise-in-sea-level-and-disaster-frequency",totalDownloads:6659,totalCrossrefCites:14,totalDimensionsCites:32,abstract:null,book:{id:"2206",slug:"global-warming-impacts-and-future-perspective",title:"Global Warming",fullTitle:"Global Warming - Impacts and Future Perspective"},signatures:"Bharat Raj Singh and Onkar Singh",authors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"},{id:"118426",title:"Prof.",name:"Onkar",middleName:null,surname:"Singh",slug:"onkar-singh",fullName:"Onkar Singh"}]}],onlineFirstChaptersFilter:{topicId:"10",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81241",title:"Physiological and Molecular Adaptation of Sugarcane under Drought vis-a-vis Root System Traits",slug:"physiological-and-molecular-adaptation-of-sugarcane-under-drought-vis-a-vis-root-system-traits",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.103795",abstract:"Among various abiotic stresses, water is reported as a rare entity in many parts of the world. Decreased frequency of precipitation and global temperature rise will further aggravate the situation in future. Being C4 plant, sugarcane requires generous water for the proper growth. Plant root system primarily supports above-ground growth by anchoring in the soil and facilitates water and nutrients uptake from the soil. The plasticity and dynamic nature of roots endow plants for the uptake of vital nutrients from the soil even under soil moisture conditions. In sugarcane, the major part of root system are generally observed in the upper soil layers, while limited water availability shifts the root growth towards the lower soil layer to sustained water uptake. In addition, root traits are directly related to physiological traits of the shoot to cope up with water limited situations via reduction in stomatal conductance and an upsurge in density and deep root traits, adaptations at biochemical and molecular level which includes osmotic adjustment and ROS detoxification. Under stressed conditions, these complex interactive systems adjust homeo-statically to minimize the adverse impacts of stress and sustain balanced metabolism. Therefore, the present chapter deals with physiological and biochemical traits along with root traits that helps for better productivity of sugarcane under water-limited conditions.",book:{id:"11131",title:"Drought - Impacts and Management",coverURL:"https://cdn.intechopen.com/books/images_new/11131.jpg"},signatures:"Pooja Dhansu, Arun Kumar Raja, Krishnapriya Vengavasi, Ravinder Kumar, Adhini S. Pazhany, Ashwani Kumar, Naresh Kumar, Anita Mann and Shashi Kant Pandey"},{id:"82515",title:"A Review on Elemental and Isotopic Geochemistry",slug:"a-review-on-elemental-and-isotopic-geochemistry",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105496",abstract:"Geochemistry is the study of the development, and distribution of chemical elements on Earth, which are found in rock-forming minerals and their byproducts, as well as in living beings, water, and the environment. The elemental geochemical variation of sediments is used to recognize the mechanisms controlling the estuarine environment and serves as a baseline for assessing the environmental effect in the future. Geochemistry is a unique field that deals with the study of mineral deposits. It also addresses the interconnections between the structures of rock, soil, water, and air, which vary according to different places. Furthermore, groundwater is the solely accessible water supply in many desert basins, particularly in developing nations. Geochemical indicators are proper instruments for addressing a diversity of hydrological issues, particularly in arid and semi-arid settings. Thermodynamically, the fugacity of oxygen (fO2) in solid earth varies by many orders of magnitude. Enstatite chondrites can have high levels of hydrogen abundance, hydrogen, and nitrogen isotope compositions like those of the earth’s mantle. The chapter deals with the basic concept of geochemistry and its types, as well as the development of geochemistry. It also explains elemental and isotopes geochemistry, human health, and medical geochemistry.",book:{id:"11139",title:"Geochemistry and Mineral Resources",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg"},signatures:"Riyam N. Khalef, Amal I. Hassan and Hosam M. Saleh"},{id:"82311",title:"Remediation of Soil Impacted by Heavy Metal Using Farm Yard Manure, Vermicompost, Biochar and Poultry Manure",slug:"remediation-of-soil-impacted-by-heavy-metal-using-farm-yard-manure-vermicompost-biochar-and-poultry-",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105536",abstract:"Soil contamination by organic and inorganic compounds is a universal concern nowadays. One such contamination is heavy metal exposure to the soil from different sources. The discharge of effluents from various factories in Punjab like tanning industries, leather industries, and electroplating industries generate a large volume of industrial effluents. These industrial units discharge their effluents directly or through the sewer into a water tributary (Buddha Nallah) and this water is being used for irrigating the crops. The heavy metals enter into the food chain thus contaminating all resources i.e. air, soil, food, and water. Preventive and remedial measures should be taken to reduce the effects of heavy metals from soil and plants. Organic soil amendments like FYM, Vermicomposting, Biochar, and poultry manure have been used to deactivate heavy metals by changing their forms from highly bioavailable forms to the much less bioavailable forms associated with organic matter (OM), metal oxides, or carbonates. These amendments have significant immobilizing effects on heavy metals because of the presence of humic acids which bind with a wide variety of metal(loid)s including Cd, Cr, Cu, and Pb.",book:{id:"10952",title:"Soil Science - Emerging Technologies, Global Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10952.jpg"},signatures:"Neeraj Rani and Mohkam-Singh"},{id:"82451",title:"An Emerging Global Understanding of Arsenic in Rice (Oryza sativa) and Agronomic Practices Supportive of Reducing Arsenic Accumulation",slug:"an-emerging-global-understanding-of-arsenic-in-rice-oryza-sativa-and-agronomic-practices-supportive-",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.105500",abstract:"Arsenic uptake in rice (Oryza sativa) is recognized as a global health emergency, requiring the development of agronomic protocols to reduce human exposure to rice having elevated arsenic concentrations. Recent rice-arsenic investigations have centered around numerous agronomic approaches, including: (i) rice breeding and cultivar selection, (ii) altering irrigation water applications to reduce arsenic soil availability, (iii) application of soil amendments which either support arsenic adsorption on iron-plaque or provide antagonistic competition for root uptake, and (iv) phytoremediation. Given that rice cultivars vary in their arsenic accumulation capacity, this manuscript review concentrates on the influences of water management, soil amendments, and phytoremediation approaches on arsenic accumulation. Water management, whether alternating wetting and drying or furrow irrigation, provides the greatest potential to alleviate arsenic uptake in rice. Phytoremediation has great promise in the extraction of soil arsenic; however, the likelihood of multiple years of cultivating hyperaccumulating plants and their proper disposal is a serious limitation. Soil amendments have been soil applied to alter the soil chemistry to sequester arsenic or provide competitive antagonism towards arsenic root uptake; however, existing research efforts must be further field-evaluated and documented as producer-friendly protocols. The usage of soil amendments will require the development of agribusiness supply chains and educated extension personnel before farm-gate acceptance.",book:{id:"10952",title:"Soil Science - Emerging Technologies, Global Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10952.jpg"},signatures:"Michael Aide and Indi Braden"},{id:"82332",title:"Introductory Chapter: Access to Space, Access to the Moon: Two Sides of the Same Coin?",slug:"introductory-chapter-access-to-space-access-to-the-moon-two-sides-of-the-same-coin",totalDownloads:9,totalDimensionsCites:0,doi:"10.5772/intechopen.105175",abstract:null,book:{id:"10955",title:"Lunar Science - Habitat and Humans",coverURL:"https://cdn.intechopen.com/books/images_new/10955.jpg"},signatures:"Yann-Henri Chemin"},{id:"82329",title:"Bifacial Photovoltaic Technology: Recent Advancements, Simulation and Performance Measurement",slug:"bifacial-photovoltaic-technology-recent-advancements-simulation-and-performance-measurement",totalDownloads:12,totalDimensionsCites:0,doi:"10.5772/intechopen.105152",abstract:"In this chapter, we introduce the physic principle and applications of bifacial PV technology. We present different bifacial PV cell and module technologies as well as investigate the advantages of using bifacial PV technology in the field. We describe the measurement and modeling of Albedo, which is one of the important factors for the energy yield of bifacial PV technology. For an accurate assessment of the performance ratio of bifacial PV strings, it is necessary to measure the albedo irradiance using an albedometer or the front- and rear-side plane of array (POA) irradiance. We also discuss the advanced techniques for the characterization of bifacial PV modules. By means of simulation, we give insight into what boundary conditions result in new bifacial technology gains and the influence of the mounting position of irradiance sensors. We executed several simulations by varying the sensor positions on the rear side of the PV modules, different places, different albedo numbers, mounting heights, different geographical locations with various tilts, seasons, and weather types. To validate the simulation results, we performed various experiments in the field under different conditions. The results prove that the bifacial gain is highly dependent on the mounting heights of PV modules, tilt angles, weather conditions, latitude, and location.",book:{id:"9862",title:"Solar Radiation - Measurements, Modeling and Forecasting for Photovoltaic Solar Energy Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9862.jpg"},signatures:"Mohammadreza Aghaei, Marc Korevaar, Pavel Babal and Hesan Ziar"}],onlineFirstChaptersTotal:136},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:17,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"25",type:"subseries",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/39149",hash:"",query:{},params:{id:"39149"},fullPath:"/chapters/39149",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()