Properties of products of aniline oxidation (0.2 mol∙L-1) with ammonium persulfate (0.25 mol∙L-1) at various pH values.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"303",leadTitle:null,fullTitle:"Expanding Issues in Desalination",title:"Expanding Issues in Desalination",subtitle:null,reviewType:"peer-reviewed",abstract:'For this book, the term "desalination" is used in the broadest sense of the removal of dissolved, suspended, visible and invisible impurities in seawater, brackish water and wastewater, to make them drinkable, or pure enough for industrial applications like in the processes for the production of steam, power, pharmaceuticals and microelectronics, or simply for discharge back into the environment.\nThis book is a companion volume to "Desalination, Trends and Technologies", INTECH, 2011, expanding on the extension of seawater desalination to brackish and wastewater desalination applications, and associated technical issues. For students and workers in the field of desalination, this book provides a summary of key concepts and keywords with which detailed information may be gathered through internet search engines. Papers and reviews collected in this volume covers the spectrum of topics on the desalination of water, too broad to delve into in depth. The literature citations in these papers serve to fill in gaps in the coverage of this book. Contributions to the knowledge-base of desalination is expected to continue to grow exponentially in the coming years.',isbn:null,printIsbn:"978-953-307-624-9",pdfIsbn:"978-953-51-6059-5",doi:"10.5772/826",price:139,priceEur:155,priceUsd:179,slug:"expanding-issues-in-desalination",numberOfPages:426,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"59baacd82853e81f2c0bb98ba737c5f3",bookSignature:"Robert Y. Ning",publishedDate:"September 22nd 2011",coverURL:"https://cdn.intechopen.com/books/images_new/303.jpg",numberOfDownloads:120117,numberOfWosCitations:111,numberOfCrossrefCitations:42,numberOfCrossrefCitationsByBook:6,numberOfDimensionsCitations:120,numberOfDimensionsCitationsByBook:13,hasAltmetrics:1,numberOfTotalCitations:273,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 4th 2010",dateEndSecondStepPublish:"December 2nd 2010",dateEndThirdStepPublish:"April 8th 2011",dateEndFourthStepPublish:"May 8th 2011",dateEndFifthStepPublish:"July 7th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"37139",title:"Prof.",name:"Robert Y.",middleName:null,surname:"Ning",slug:"robert-y.-ning",fullName:"Robert Y. Ning",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. Robert Y. Ning is Vice President, Science and Business Development of King Lee Technologies based in San Diego, CA, USA. This company was founded in 1977, and is specialized in chemistry and chemicals used in reverse osmosis (RO) membrane plants. Since 1995, Bob is responsible for science and product development, as well as establishment of a network of process design engineers and service providers around the world to design and service RO plant processes.\nBob has a B.S. degree in Chemistry from Rochester Instutitute of Technology, Ph.D. in Organic Chemistry from University of Illinois, MBA from Fairleigh Dickinson University, and was a post-doctoral fellow at California Institute of Technology. He has 25 years of process chemistry experience in the pharmaceutical and biotech industries, prior to his current specialization in water and wastewater treatments.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"779",title:"Ecohydrology",slug:"engineering-environmental-engineering-ecohydrology"}],chapters:[{id:"20341",title:"A Large Review of the Pre Treatment",doi:"10.5772/19680",slug:"a-large-review-of-the-pre-treatment",totalDownloads:14174,totalCrossrefCites:4,totalDimensionsCites:8,hasAltmetrics:1,abstract:null,signatures:"Kader Gaid",downloadPdfUrl:"/chapter/pdf-download/20341",previewPdfUrl:"/chapter/pdf-preview/20341",authors:[{id:"35839",title:"Dr.",name:"Abdelkader",surname:"Gaid",slug:"abdelkader-gaid",fullName:"Abdelkader Gaid"}],corrections:null},{id:"20342",title:"Pretreatment for Reverse Osmosis Systems",doi:"10.5772/20009",slug:"pretreatment-for-reverse-osmosis-systems",totalDownloads:8212,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Robert Y. Ning",downloadPdfUrl:"/chapter/pdf-download/20342",previewPdfUrl:"/chapter/pdf-preview/20342",authors:[{id:"37139",title:"Prof.",name:"Robert Y.",surname:"Ning",slug:"robert-y.-ning",fullName:"Robert Y. Ning"}],corrections:null},{id:"20343",title:"Membrane Cleaning",doi:"10.5772/19760",slug:"membrane-cleaning",totalDownloads:17683,totalCrossrefCites:3,totalDimensionsCites:28,hasAltmetrics:0,abstract:null,signatures:"José Miguel Arnal, Beatriz García-Fayos and María Sancho",downloadPdfUrl:"/chapter/pdf-download/20343",previewPdfUrl:"/chapter/pdf-preview/20343",authors:[{id:"36105",title:"Dr.",name:"Jose Miguel",surname:"Arnal",slug:"jose-miguel-arnal",fullName:"Jose Miguel Arnal"},{id:"55969",title:"Dr.",name:"Beatriz",surname:"Garcia Fayos",slug:"beatriz-garcia-fayos",fullName:"Beatriz Garcia Fayos"},{id:"55970",title:"Dr.",name:"Maria",surname:"Sancho Fernandez",slug:"maria-sancho-fernandez",fullName:"Maria Sancho Fernandez"}],corrections:null},{id:"20344",title:"Reject Brines from Desalination as Possible Sources for Environmental Technologies",doi:"10.5772/20302",slug:"reject-brines-from-desalination-as-possible-sources-for-environmental-technologies",totalDownloads:6292,totalCrossrefCites:3,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"Caterina De Vito, Silvano Mignardi, Vincenzo Ferrini and Robert F. Martin",downloadPdfUrl:"/chapter/pdf-download/20344",previewPdfUrl:"/chapter/pdf-preview/20344",authors:[{id:"38323",title:"Dr.",name:"Silvano",surname:"Mignardi",slug:"silvano-mignardi",fullName:"Silvano Mignardi"},{id:"54162",title:"Dr.",name:"Caterina",surname:"De Vito",slug:"caterina-de-vito",fullName:"Caterina De Vito"},{id:"54163",title:"Prof.",name:"Vincenzo",surname:"Ferrini",slug:"vincenzo-ferrini",fullName:"Vincenzo Ferrini"},{id:"54164",title:"Prof.",name:"Robert F.",surname:"Martin",slug:"robert-f.-martin",fullName:"Robert F. Martin"}],corrections:null},{id:"20345",title:"Rotary Pressure Exchanger for SWRO",doi:"10.5772/21391",slug:"rotary-pressure-exchanger-for-swro",totalDownloads:4429,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Zhou Yihui, Bi Mingshu and Liu Yu",downloadPdfUrl:"/chapter/pdf-download/20345",previewPdfUrl:"/chapter/pdf-preview/20345",authors:[{id:"42923",title:"Dr.",name:"Yihui",surname:"Zhou",slug:"yihui-zhou",fullName:"Yihui Zhou"},{id:"136811",title:"Dr.",name:"Bi",surname:"Mingshu",slug:"bi-mingshu",fullName:"Bi Mingshu"},{id:"136813",title:"Dr.",name:"Liu",surname:"Yu",slug:"liu-yu",fullName:"Liu Yu"}],corrections:null},{id:"20346",title:"Flexibility Study for a MSF by Monte Carlo Simulation",doi:"10.5772/24689",slug:"flexibility-study-for-a-msf-by-monte-carlo-simulation",totalDownloads:1592,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Enrique Tarifa, Samuel Franco Domínguez, Carlos Vera and Sergio Mussati",downloadPdfUrl:"/chapter/pdf-download/20346",previewPdfUrl:"/chapter/pdf-preview/20346",authors:[{id:"58925",title:"Dr.",name:"Enrique",surname:"Tarifa",slug:"enrique-tarifa",fullName:"Enrique Tarifa"},{id:"58940",title:"Prof.",name:"Samuel",surname:"Franco Domínguez",slug:"samuel-franco-dominguez",fullName:"Samuel Franco Domínguez"},{id:"58941",title:"Dr.",name:"Carlos",surname:"Vera",slug:"carlos-vera",fullName:"Carlos Vera"},{id:"58942",title:"Dr.",name:"Sergio",surname:"Mussati",slug:"sergio-mussati",fullName:"Sergio Mussati"}],corrections:null},{id:"20347",title:"A Computational Model Study of Brine Discharges from Seawater Desalination Plants at Barka, Oman",doi:"10.5772/21509",slug:"a-computational-model-study-of-brine-discharges-from-seawater-desalination-plants-at-barka-oman",totalDownloads:3933,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"H.H. Al-Barwani and Anton Purnama",downloadPdfUrl:"/chapter/pdf-download/20347",previewPdfUrl:"/chapter/pdf-preview/20347",authors:[{id:"43411",title:"Dr.",name:"H.H.",surname:"Al-Barwani",slug:"h.h.-al-barwani",fullName:"H.H. Al-Barwani"},{id:"54718",title:"Dr.",name:"Anton",surname:"Purnama",slug:"anton-purnama",fullName:"Anton Purnama"}],corrections:null},{id:"20348",title:"Brine Outfalls: State of the Art",doi:"10.5772/22722",slug:"brine-outfalls-state-of-the-art",totalDownloads:4300,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Daniela Malcangio and Antonio F. Petrillo",downloadPdfUrl:"/chapter/pdf-download/20348",previewPdfUrl:"/chapter/pdf-preview/20348",authors:[{id:"48938",title:"Dr.",name:"Daniela",surname:"Malcangio",slug:"daniela-malcangio",fullName:"Daniela Malcangio"},{id:"55591",title:"Prof.",name:"Antonio F.",surname:"Petrillo",slug:"antonio-f.-petrillo",fullName:"Antonio F. Petrillo"}],corrections:null},{id:"20349",title:"The Influence of Electrochemical Properties of Membranes and Dispersions on Microfiltration",doi:"10.5772/22137",slug:"the-influence-of-electrochemical-properties-of-membranes-and-dispersions-on-microfiltration",totalDownloads:2837,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Petr Mikulášek and Pavlína Velikovska",downloadPdfUrl:"/chapter/pdf-download/20349",previewPdfUrl:"/chapter/pdf-preview/20349",authors:[{id:"38270",title:"Prof.",name:"Petr",surname:"Mikulášek",slug:"petr-mikulasek",fullName:"Petr Mikulášek"},{id:"46452",title:"Dr.",name:"Pavlína",surname:"Velikovská",slug:"pavlina-velikovska",fullName:"Pavlína Velikovská"}],corrections:null},{id:"20350",title:"Nanofiltration and Low Energy Reverse Osmosis for Advanced Wastewaters Treatment",doi:"10.5772/22914",slug:"nanofiltration-and-low-energy-reverse-osmosis-for-advanced-wastewaters-treatment",totalDownloads:2313,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Gamal Khedr",downloadPdfUrl:"/chapter/pdf-download/20350",previewPdfUrl:"/chapter/pdf-preview/20350",authors:[{id:"49778",title:"Prof.",name:"Gamal",surname:"Khedr",slug:"gamal-khedr",fullName:"Gamal Khedr"}],corrections:null},{id:"20351",title:"Assessment of UV Pre-Treatment to Reduce Fouling of NF Membranes",doi:"10.5772/22462",slug:"assessment-of-uv-pre-treatment-to-reduce-fouling-of-nf-membranes",totalDownloads:2712,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Di Martino Patrick, Houari Ahmed, Heim Véronique and Marconnet Cyril",downloadPdfUrl:"/chapter/pdf-download/20351",previewPdfUrl:"/chapter/pdf-preview/20351",authors:[{id:"47813",title:"Dr.",name:"Patrick",surname:"Di Martino",slug:"patrick-di-martino",fullName:"Patrick Di Martino"},{id:"136748",title:"Dr.",name:"Ahmed",surname:"Houari",slug:"ahmed-houari",fullName:"Ahmed Houari"},{id:"136749",title:"Dr.",name:"Véronique",surname:"Heim",slug:"veronique-heim",fullName:"Véronique Heim"},{id:"136750",title:"Dr.",name:"Cyril",surname:"Marconnet",slug:"cyril-marconnet",fullName:"Cyril Marconnet"}],corrections:null},{id:"20352",title:"PAC/UF for Removing Cyanobacterial Cells and Toxins from Drinking Water",doi:"10.5772/22980",slug:"pac-uf-for-removing-cyanobacterial-cells-and-toxins-from-drinking-water",totalDownloads:2770,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Margarida Campinas and Maria João Rosa",downloadPdfUrl:"/chapter/pdf-download/20352",previewPdfUrl:"/chapter/pdf-preview/20352",authors:[{id:"50054",title:"Dr.",name:"Margarida",surname:"Campinas",slug:"margarida-campinas",fullName:"Margarida Campinas"},{id:"55667",title:"Dr.",name:"Maria João",surname:"Rosa",slug:"maria-joao-rosa",fullName:"Maria João Rosa"}],corrections:null},{id:"20353",title:"Fabrication of Tubular Membrane Supports from Low Price Raw Materials, Using Both Centrifugal Casting and/or Extrusion Methods",doi:"10.5772/23383",slug:"fabrication-of-tubular-membrane-supports-from-low-price-raw-materials-using-both-centrifugal-casting",totalDownloads:4264,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Abdelhamid Harabi and Ferhat Bouzerara",downloadPdfUrl:"/chapter/pdf-download/20353",previewPdfUrl:"/chapter/pdf-preview/20353",authors:[{id:"51856",title:"Prof.",name:"Abdelhamid",surname:"Harabi",slug:"abdelhamid-harabi",fullName:"Abdelhamid Harabi"},{id:"56038",title:"Dr.",name:"Ferhat",surname:"Bouzerara",slug:"ferhat-bouzerara",fullName:"Ferhat Bouzerara"}],corrections:null},{id:"20354",title:"Determination of Optimal Conditions for Separation of Metal Ions Through Membrane Dialysis/Electrodialysis Using Statistical Experimental Methods",doi:"10.5772/19679",slug:"determination-of-optimal-conditions-for-separation-of-metal-ions-through-membrane-dialysis-electrodi",totalDownloads:2866,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jau-Kai Wang, Jir-Ming Char and Ting-Chia Huang",downloadPdfUrl:"/chapter/pdf-download/20354",previewPdfUrl:"/chapter/pdf-preview/20354",authors:[{id:"35836",title:"Prof.",name:"Jau-Kai",surname:"Wang",slug:"jau-kai-wang",fullName:"Jau-Kai Wang"},{id:"90721",title:"Prof.",name:"Char",surname:"Jir-Ming",slug:"char-jir-ming",fullName:"Char Jir-Ming"},{id:"90723",title:"Prof.",name:"Huang",surname:"Ting-Chia",slug:"huang-ting-chia",fullName:"Huang Ting-Chia"}],corrections:null},{id:"20355",title:"Developing Nano-Structured Carbon Electrodes for Capacitive Brackish Water Desalination",doi:"10.5772/19852",slug:"developing-nano-structured-carbon-electrodes-for-capacitive-brackish-water-desalination",totalDownloads:4183,totalCrossrefCites:4,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Linda Zou",downloadPdfUrl:"/chapter/pdf-download/20355",previewPdfUrl:"/chapter/pdf-preview/20355",authors:[{id:"36498",title:"Dr.",name:"Linda",surname:"Zou",slug:"linda-zou",fullName:"Linda Zou"}],corrections:null},{id:"20356",title:"Copper Ions Biosorption Properties of Biomass Derived from Algerian Sahara Plants",doi:"10.5772/21176",slug:"copper-ions-biosorption-properties-of-biomass-derived-from-algerian-sahara-plants",totalDownloads:4710,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Abdelkrim Cheriti, Mohamed Fouzi Talhi, Nasser Belboukhari and Safia Taleb",downloadPdfUrl:"/chapter/pdf-download/20356",previewPdfUrl:"/chapter/pdf-preview/20356",authors:[{id:"42101",title:"Prof.",name:"Abdelkrim",surname:"Cheriti",slug:"abdelkrim-cheriti",fullName:"Abdelkrim Cheriti"},{id:"52575",title:"Dr.",name:"Mohamed F.",surname:"Talhi",slug:"mohamed-f.-talhi",fullName:"Mohamed F. Talhi"},{id:"52576",title:"Dr.",name:"Nasser",surname:"Belboukhari",slug:"nasser-belboukhari",fullName:"Nasser Belboukhari"},{id:"52577",title:"Prof.",name:"Safia",surname:"Taleb",slug:"safia-taleb",fullName:"Safia Taleb"}],corrections:null},{id:"20357",title:"Chelating Agents of a New Generation as an Alternative to Conventional Chelators for Heavy Metal Ions Removal from Different Waste Waters",doi:"10.5772/21180",slug:"chelating-agents-of-a-new-generation-as-an-alternative-to-conventional-chelators-for-heavy-metal-ion",totalDownloads:23397,totalCrossrefCites:23,totalDimensionsCites:48,hasAltmetrics:1,abstract:null,signatures:"Dorota Kołodyńska",downloadPdfUrl:"/chapter/pdf-download/20357",previewPdfUrl:"/chapter/pdf-preview/20357",authors:[{id:"42116",title:"Dr.",name:"Dorota",surname:"Kołodyńska",slug:"dorota-kolodynska",fullName:"Dorota Kołodyńska"}],corrections:null},{id:"20358",title:"Operating Experience of Desalination Unit Coupled to Primary Coolant System of Cirus",doi:"10.5772/21313",slug:"operating-experience-of-desalination-unit-coupled-to-primary-coolant-system-of-cirus",totalDownloads:2432,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"R.C. Sharma and Rakesh Ranjan",downloadPdfUrl:"/chapter/pdf-download/20358",previewPdfUrl:"/chapter/pdf-preview/20358",authors:[{id:"42664",title:"Dr.",name:"R.C.",surname:"Sharma",slug:"r.c.-sharma",fullName:"R.C. Sharma"},{id:"72738",title:"Mr.",name:"Rakesh",surname:"Ranjan",slug:"rakesh-ranjan",fullName:"Rakesh Ranjan"}],corrections:null},{id:"20359",title:"Nanofiltration Used for Desalination and Concentration in the Manufacture of Liquid Dyes Production",doi:"10.5772/20290",slug:"nanofiltration-used-for-desalination-and-concentration-in-the-manufacture-of-liquid-dyes-production",totalDownloads:3853,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Petr Mikulášek and Jiří Cuhorka",downloadPdfUrl:"/chapter/pdf-download/20359",previewPdfUrl:"/chapter/pdf-preview/20359",authors:[{id:"38270",title:"Prof.",name:"Petr",surname:"Mikulášek",slug:"petr-mikulasek",fullName:"Petr Mikulášek"},{id:"46407",title:"MSc.",name:"Jiří",surname:"Cuhorka",slug:"jiri-cuhorka",fullName:"Jiří Cuhorka"}],corrections:null},{id:"20360",title:"New Type Filtration, Ion-Exchange, Sorption Small Multi Process Water Conditioning Device Used as a Multi Cell Water Deionizer",doi:"10.5772/23158",slug:"new-type-filtration-ion-exchange-sorption-small-multi-process-water-conditioning-device-used-as-a-mu",totalDownloads:3169,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Angel Zvezdov and Dilyana Zvezdova",downloadPdfUrl:"/chapter/pdf-download/20360",previewPdfUrl:"/chapter/pdf-preview/20360",authors:[{id:"50849",title:"Dr.",name:"Angel",surname:"Zvezdov",slug:"angel-zvezdov",fullName:"Angel Zvezdov"},{id:"136739",title:"Dr.",name:"Dilyana",surname:"Zvezdova",slug:"dilyana-zvezdova",fullName:"Dilyana Zvezdova"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"4613",title:"Desalination Updates",subtitle:null,isOpenForSubmission:!1,hash:"b3f820d8df1968a3c6e9708c6bb2abb7",slug:"desalination-updates",bookSignature:"Robert Y. Ning",coverURL:"https://cdn.intechopen.com/books/images_new/4613.jpg",editedByType:"Edited by",editors:[{id:"37139",title:"Prof.",name:"Robert Y.",surname:"Ning",slug:"robert-y.-ning",fullName:"Robert Y. Ning"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3067",title:"Advancing Desalination",subtitle:null,isOpenForSubmission:!1,hash:"53a3d7019fcb66ef28c737b38a8dad72",slug:"advancing-desalination",bookSignature:"Robert Y. Ning",coverURL:"https://cdn.intechopen.com/books/images_new/3067.jpg",editedByType:"Edited by",editors:[{id:"37139",title:"Prof.",name:"Robert Y.",surname:"Ning",slug:"robert-y.-ning",fullName:"Robert Y. Ning"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2503",title:"Water Treatment",subtitle:null,isOpenForSubmission:!1,hash:"296eb93cd4d7425db9a1f7c0d57032fe",slug:"water-treatment",bookSignature:"Walid Elshorbagy and Rezaul Kabir Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/2503.jpg",editedByType:"Edited by",editors:[{id:"137631",title:"Dr.",name:"Walid",surname:"Elshorbagy",slug:"walid-elshorbagy",fullName:"Walid Elshorbagy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1585",title:"Waste Water",subtitle:"Evaluation and Management",isOpenForSubmission:!1,hash:"467dcd6dcbdac559fa8858bb902dba78",slug:"waste-water-evaluation-and-management",bookSignature:"Fernando Sebastián García Einschlag",coverURL:"https://cdn.intechopen.com/books/images_new/1585.jpg",editedByType:"Edited by",editors:[{id:"22950",title:"Prof.",name:"Fernando Sebastián",surname:"García Einschlag",slug:"fernando-sebastian-garcia-einschlag",fullName:"Fernando Sebastián García Einschlag"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"132",title:"Waste Water",subtitle:"Treatment and Reutilization",isOpenForSubmission:!1,hash:"fbe15d67abed7838100c7c0fd9c0793e",slug:"waste-water-treatment-and-reutilization",bookSignature:"Fernando Sebastián García Einschlag",coverURL:"https://cdn.intechopen.com/books/images_new/132.jpg",editedByType:"Edited by",editors:[{id:"22950",title:"Prof.",name:"Fernando Sebastián",surname:"García Einschlag",slug:"fernando-sebastian-garcia-einschlag",fullName:"Fernando Sebastián García Einschlag"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1868",title:"Industrial Waste",subtitle:null,isOpenForSubmission:!1,hash:"ecbdc3462929480899609f52f7b1f18b",slug:"industrial-waste",bookSignature:"Kuan-Yeow Show and Xinxin Guo",coverURL:"https://cdn.intechopen.com/books/images_new/1868.jpg",editedByType:"Edited by",editors:[{id:"119827",title:"Prof.",name:"Kuan-Yeow",surname:"Show",slug:"kuan-yeow-show",fullName:"Kuan-Yeow Show"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2127",title:"Ecological Water Quality",subtitle:"Water Treatment and Reuse",isOpenForSubmission:!1,hash:"40748049366b4bdc2c8eb7e479754ad5",slug:"ecological-water-quality-water-treatment-and-reuse",bookSignature:"Kostas Voudouris",coverURL:"https://cdn.intechopen.com/books/images_new/2127.jpg",editedByType:"Edited by",editors:[{id:"36891",title:"Prof.",name:"Konstantinos (Kostas)",surname:"Voudouris",slug:"konstantinos-(kostas)-voudouris",fullName:"Konstantinos (Kostas) Voudouris"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3144",title:"Waste Water",subtitle:"Treatment Technologies and Recent Analytical Developments",isOpenForSubmission:!1,hash:"d4b548103c99c24725d6a3ad7434da46",slug:"waste-water-treatment-technologies-and-recent-analytical-developments",bookSignature:"Fernando Sebastian García Einschlag and Luciano Carlos",coverURL:"https://cdn.intechopen.com/books/images_new/3144.jpg",editedByType:"Edited by",editors:[{id:"22950",title:"Prof.",name:"Fernando Sebastián",surname:"García Einschlag",slug:"fernando-sebastian-garcia-einschlag",fullName:"Fernando Sebastián García Einschlag"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6050",title:"Physico-Chemical Wastewater Treatment and Resource Recovery",subtitle:null,isOpenForSubmission:!1,hash:"1daf0114048a6f0982414ec4f14d7f5b",slug:"physico-chemical-wastewater-treatment-and-resource-recovery",bookSignature:"Robina Farooq and Zaki Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/6050.jpg",editedByType:"Edited by",editors:[{id:"173800",title:"Prof.",name:"Robina",surname:"Farooq",slug:"robina-farooq",fullName:"Robina Farooq"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4602",title:"Advances in Bioremediation of Wastewater and Polluted Soil",subtitle:null,isOpenForSubmission:!1,hash:"8b879725924ff3e5b59fb2f8cc12c562",slug:"advances-in-bioremediation-of-wastewater-and-polluted-soil",bookSignature:"Naofumi Shiomi",coverURL:"https://cdn.intechopen.com/books/images_new/4602.jpg",editedByType:"Edited by",editors:[{id:"163777",title:"Dr.",name:"Naofumi",surname:"Shiomi",slug:"naofumi-shiomi",fullName:"Naofumi Shiomi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"78823",slug:"erratum-covid-19-transmission-in-children-implications-for",title:"Erratum: COVID-19 Transmission in Children: Implications for Schools",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/78823.pdf",downloadPdfUrl:"/chapter/pdf-download/78823",previewPdfUrl:"/chapter/pdf-preview/78823",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/78823",risUrl:"/chapter/ris/78823",chapter:{id:"77986",slug:"covid-19-transmission-in-children-implications-for-schools",signatures:"Evelyn Mendoza-Torres, Franklin Torres, Wendy Rosales-Rada, Liliana Encinales, Lil Avendaño, María Fernanda Pérez, Ivana Terán, David Vergara, Estefanie Osorio-Llanes, Paige Fierbaugh, Wendy Villamizar, Aileen Y. Chang and Jairo Castellar-Lopez",dateSubmitted:"June 15th 2021",dateReviewed:"July 12th 2021",datePrePublished:"September 13th 2021",datePublished:"March 16th 2022",book:{id:"10707",title:"Primary Health Care",subtitle:null,fullTitle:"Primary Health Care",slug:"primary-health-care",publishedDate:"March 16th 2022",bookSignature:"Ayşe Emel Önal",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25840",title:"Prof.",name:"Ayse Emel",middleName:null,surname:"Onal",slug:"ayse-emel-onal",fullName:"Ayse Emel Onal"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"342716",title:"Assistant Prof.",name:"Aileen",middleName:null,surname:"Y. Chang",fullName:"Aileen Y. Chang",slug:"aileen-y.-chang",email:"chang@email.gwu.edu",position:null,institution:null},{id:"342718",title:"Dr.",name:"Evelyn",middleName:null,surname:"Mendoza-Torres",fullName:"Evelyn Mendoza-Torres",slug:"evelyn-mendoza-torres",email:"evelyn.mendozat@unilibre.edu.co",position:null,institution:null},{id:"427633",title:"Dr.",name:"Franklin",middleName:null,surname:"Torres",fullName:"Franklin Torres",slug:"franklin-torres",email:"dummy+427633@intechopen.com",position:null,institution:null},{id:"427634",title:"Dr.",name:"Wendy",middleName:null,surname:"Rosales-Rada",fullName:"Wendy Rosales-Rada",slug:"wendy-rosales-rada",email:"dummy+427634@intechopen.com",position:null,institution:null},{id:"427635",title:"Dr.",name:"Liliana",middleName:null,surname:"Encinales",fullName:"Liliana Encinales",slug:"liliana-encinales",email:"dummy+427635@intechopen.com",position:null,institution:null},{id:"427636",title:"Dr.",name:"Lil",middleName:null,surname:"Avendaño",fullName:"Lil Avendaño",slug:"lil-avendano",email:"dummy+427636@intechopen.com",position:null,institution:null},{id:"427637",title:"Dr.",name:"María Fernanda",middleName:null,surname:"Pérez",fullName:"María Fernanda Pérez",slug:"maria-fernanda-perez",email:"dummy+427637@intechopen.com",position:null,institution:null},{id:"427638",title:"Dr.",name:"Ivana",middleName:null,surname:"Terán",fullName:"Ivana Terán",slug:"ivana-teran",email:"dummy+427638@intechopen.com",position:null,institution:null},{id:"427639",title:"Dr.",name:"David",middleName:null,surname:"Vergara",fullName:"David Vergara",slug:"david-vergara",email:"dummy+427639@intechopen.com",position:null,institution:null},{id:"427640",title:"Dr.",name:"Estefanie",middleName:null,surname:"Osorio-Llanes",fullName:"Estefanie Osorio-Llanes",slug:"estefanie-osorio-llanes",email:"dummy+427640@intechopen.com",position:null,institution:null},{id:"427641",title:"Dr.",name:"Paige",middleName:null,surname:"Fierbaugh",fullName:"Paige Fierbaugh",slug:"paige-fierbaugh",email:"dummy+427641@intechopen.com",position:null,institution:null},{id:"427642",title:"Dr.",name:"Wendy",middleName:null,surname:"Villamizar",fullName:"Wendy Villamizar",slug:"wendy-villamizar",email:"dummy+427642@intechopen.com",position:null,institution:null},{id:"457495",title:"Dr.",name:"Jairo",middleName:null,surname:"Castellar-Lopez",fullName:"Jairo Castellar-Lopez",slug:"jairo-castellar-lopez",email:"dummy+427643@intechopen.com",position:null,institution:null}]}},chapter:{id:"77986",slug:"covid-19-transmission-in-children-implications-for-schools",signatures:"Evelyn Mendoza-Torres, Franklin Torres, Wendy Rosales-Rada, Liliana Encinales, Lil Avendaño, María Fernanda Pérez, Ivana Terán, David Vergara, Estefanie Osorio-Llanes, Paige Fierbaugh, Wendy Villamizar, Aileen Y. Chang and Jairo Castellar-Lopez",dateSubmitted:"June 15th 2021",dateReviewed:"July 12th 2021",datePrePublished:"September 13th 2021",datePublished:"March 16th 2022",book:{id:"10707",title:"Primary Health Care",subtitle:null,fullTitle:"Primary Health Care",slug:"primary-health-care",publishedDate:"March 16th 2022",bookSignature:"Ayşe Emel Önal",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25840",title:"Prof.",name:"Ayse Emel",middleName:null,surname:"Onal",slug:"ayse-emel-onal",fullName:"Ayse Emel Onal"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"342716",title:"Assistant Prof.",name:"Aileen",middleName:null,surname:"Y. Chang",fullName:"Aileen Y. Chang",slug:"aileen-y.-chang",email:"chang@email.gwu.edu",position:null,institution:null},{id:"342718",title:"Dr.",name:"Evelyn",middleName:null,surname:"Mendoza-Torres",fullName:"Evelyn Mendoza-Torres",slug:"evelyn-mendoza-torres",email:"evelyn.mendozat@unilibre.edu.co",position:null,institution:null},{id:"427633",title:"Dr.",name:"Franklin",middleName:null,surname:"Torres",fullName:"Franklin Torres",slug:"franklin-torres",email:"dummy+427633@intechopen.com",position:null,institution:null},{id:"427634",title:"Dr.",name:"Wendy",middleName:null,surname:"Rosales-Rada",fullName:"Wendy Rosales-Rada",slug:"wendy-rosales-rada",email:"dummy+427634@intechopen.com",position:null,institution:null},{id:"427635",title:"Dr.",name:"Liliana",middleName:null,surname:"Encinales",fullName:"Liliana Encinales",slug:"liliana-encinales",email:"dummy+427635@intechopen.com",position:null,institution:null},{id:"427636",title:"Dr.",name:"Lil",middleName:null,surname:"Avendaño",fullName:"Lil Avendaño",slug:"lil-avendano",email:"dummy+427636@intechopen.com",position:null,institution:null},{id:"427637",title:"Dr.",name:"María Fernanda",middleName:null,surname:"Pérez",fullName:"María Fernanda Pérez",slug:"maria-fernanda-perez",email:"dummy+427637@intechopen.com",position:null,institution:null},{id:"427638",title:"Dr.",name:"Ivana",middleName:null,surname:"Terán",fullName:"Ivana Terán",slug:"ivana-teran",email:"dummy+427638@intechopen.com",position:null,institution:null},{id:"427639",title:"Dr.",name:"David",middleName:null,surname:"Vergara",fullName:"David Vergara",slug:"david-vergara",email:"dummy+427639@intechopen.com",position:null,institution:null},{id:"427640",title:"Dr.",name:"Estefanie",middleName:null,surname:"Osorio-Llanes",fullName:"Estefanie Osorio-Llanes",slug:"estefanie-osorio-llanes",email:"dummy+427640@intechopen.com",position:null,institution:null},{id:"427641",title:"Dr.",name:"Paige",middleName:null,surname:"Fierbaugh",fullName:"Paige Fierbaugh",slug:"paige-fierbaugh",email:"dummy+427641@intechopen.com",position:null,institution:null},{id:"427642",title:"Dr.",name:"Wendy",middleName:null,surname:"Villamizar",fullName:"Wendy Villamizar",slug:"wendy-villamizar",email:"dummy+427642@intechopen.com",position:null,institution:null},{id:"457495",title:"Dr.",name:"Jairo",middleName:null,surname:"Castellar-Lopez",fullName:"Jairo Castellar-Lopez",slug:"jairo-castellar-lopez",email:"dummy+427643@intechopen.com",position:null,institution:null}]},book:{id:"10707",title:"Primary Health Care",subtitle:null,fullTitle:"Primary Health Care",slug:"primary-health-care",publishedDate:"March 16th 2022",bookSignature:"Ayşe Emel Önal",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25840",title:"Prof.",name:"Ayse Emel",middleName:null,surname:"Onal",slug:"ayse-emel-onal",fullName:"Ayse Emel Onal"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12075",leadTitle:null,title:"Arsenic",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"a1156f4143737baa68f568837f9edc94",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12075.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 2nd 2022",dateEndSecondStepPublish:"March 23rd 2022",dateEndThirdStepPublish:"May 22nd 2022",dateEndFourthStepPublish:"August 10th 2022",dateEndFifthStepPublish:"October 9th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"38965",title:"Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures",doi:"10.5772/48758",slug:"oxidative-polymerization-of-aniline-molecular-synthesis-of-polyaniline-and-the-formation-of-supramol",body:'
The growing interest in nanostructured conducting polymers is caused by expanding area of their practical application. Conducting polymers can be used in new electronic devices (transistors, displays, sensors, energy-storage and memory cells), materials for shielding electromagnetic irradiation, polymer nanolithography, inhibition of corrosion, membrane constructing, catalysis and medicine. Miniaturization of devices, increasing their efficiency and lowering cost prices require development of new materials. The studies of polyaniline (PANI) and other conducting polymers (polyacetylene, polythiophene, polypyrrole, poly-
Due to its high stability and unique complex of properties, PANI was the first among conducting polymers to be used in practice as an antistatic coating, electrode material for batteries and condensers, as a corrosion inhibitor and detecting material for sensors. Polyaniline possesses controlled conductivity within the 10-10 – 101 S∙cm-1 range combined with ionic and proton conductivity, redox activity, electro- and solvatochromism, non-linear optical properties and paramagnetism. In addition, the polymer is nontoxic, stable in aggressive chemical environments, has high thermal stability and low manufacturing cost. PANI properties are determined by the regular structure of polymer chains. The polymer consists almost entirely of
A great number of publications are devoted to the synthesis and study of nanostructured PANI forms (Zhang & Wang, 2006; Stejskal et al. 2010; Wan, 2009; Tran et al. 2009). As a rule, nanostructured materials possess high homogeneity, unique surface properties and high charge carrier mobility. Due to the development of nanotechnology, organized supramolecular structures are considered, first of all, as materials for molecular electronics. Nanostructured forms of PANI show a striking diversity. The polymer chains can form one-dimensional structures (nanofibers, nanorods and nanotubes), planar two-dimensional objects (e.g., the so-called, ribbons, nanobelts and nanoplates) and three-dimensional particles (microspheres, nanospheres and granules). These main architectural elements may serve as a base for more complicated hierarchical formations such as flowers, urchins, branches, corals, “micromats”, complex geometric figures.
Polyaniline is synthesized by oxidative polymerization of aniline (Higashimura & Kobayashi, 2004). All the above-listed supramolecular structures are also formed in the process of oxidative polymerization. PANI synthesis includes two interrelated processes. In the course of polymerization, monomer undergoes a chain reaction with the formation of regular macromolecules, and growing chains are simultaneously organized into complex supramolecular structures. As a result, conducting polymer containing stable supramolecular structures with various morphologies is formed. Most of these structures cannot be dissolved or melted without destruction of polymer chains and changing properties of the polymer. Therefore, synthesis is the only unique instrument allowing us to control structure of polymer chains and obtain nanostructured forms of the conducting polymer and its composites with other materials. In this connection, it is very important to develop methods of controlled synthesis of PANI giving polymers with predetermined properties and supramolecular structure. Experimentalists should have the capability of making deliberate choice of aniline polymerization parameters based on understanding the molecular mechanism of chain assembly and self-organization.
The present publication is devoted to developing concepts of mechanism of PANI synthesis and ways of formation of supramolecular structures. The authors attempt to answer the following fundamental questions:
What is responsible for regular assembly of PANI chains during oxidative polymerization of aniline?
Which synthesis parameters and why have the most pronounced influence on properties and morphology of polymerization products?
In which manner is the assembly of all the types of PANI supramolecular structures realized and how does this process correlate with molecular stages of the synthesis?
What are the experimental conditions for obtaining the main types of supramolecular structures: one-, two- and three-dimensional ones?
How are supramolecular PANI particles organized and in which manner is the macroscopic structure of conducting polymer (possessing the properties of disorganized metal) formed?
First we should give a brief description of conducting PANI, structure of polymer chains, forms and properties of the polymer.
The chains of conducting PANI have ordered structure; they contain regularly alternating phenyl rings and nitrogen-containing groups. This structure provides for polyconjugation: polymer chain forms a zigzag lying in one plane, and π-electron clouds overlap above and below this plane. The lone electron pair of nitrogen performs the same function as π-electrons and assures polyconjugation. Polyconjugated system is a transport path providing charge carrier mobility. It is formed as a result of strictly regular assembly of monomer units. The chain of conducting PANI contains more than 95% of
Charge carriers are formed in polymer during its oxidation. Nitrogen atoms of PANI serve as oxidation centers. During oxidation, i.e., removal of electron, positive polaron is generated in the chain; it deforms chain structure considerably. Content of oxidized nitrogen atoms in the polymer can change from zero (in its reduced form, leucoemeraldine) to nearly one (in the fully oxidized state, pernigraniline), see Scheme 1. The most stable form of PANI is emeraldine, in which every second nitrogen atom is oxidized, and polymer chain contains equal number of oxidized and reduced units. In the absence of external potential, the fully reduced and fully oxidized forms of the polymer simultaneously transform into this oxidation state. In the case of leucoemeraldine, the transformation into emeraldine takes place at the expense of slow oxidation of amino groups by air oxygen. This reaction is reversible. Pernigraniline also tends to lower its oxidation state and turn into emeraldine. When the degree of oxidation of PANI exceeds 0.7, the polymer becomes unstable, and irreversible transformations of macromolecules begin. Crosslinking and intrachain oxidative cyclization are the most common processes. Destruction of chains and formation of quinones accelerated in the presence of electron donor agents are also possible.
In all the conducting polymers, charge carriers are formed under the action of oxidizing or reducing agent. Charge carriers are located in the main chain and compensated by counterions. Removal of counterion results in changes in the oxidation state of polymer and disappearance of polaron. PANI demonstrates a special feature: removal of counterion does not necessary changes oxidation state of polymer chain. After withdrawal of counterion, the benzene ring adjacent to nitrogen atom “accepts” a fraction of positive charge. With that, benzoid structure is transformed into quinoid one, the ring leaves polyconjugation plane, and, therefore, conductivity of the chain is disturbed. Although the oxidation state remains unchanged, PANI loses its conductivity due to decrease in polyconjugation chain length.
Polyaniline forms
The best charge stabilizing agents for PANI are strong acids. Acids are sometimes called “doping agents”, because they “introduce” charge carriers into polymer chain and impart conductivity to the polymer. However, this term is not correct, since acid molecule does not create positive polaron, and only stabilizes the polaron generated during oxidation. Another term, “protonation”, does not adequately describe interaction between PANI and acid either. It was introduced from ammonia and amine chemistry. Protonation of amines by acids means binding a non-oxidized nitrogen atom with proton, with the formed ammonium cation being stabilized by acid anion. The interaction between acid and oxidized nitrogen atom differs from that between acid and neutral nitrogen. As was shown, PANI polarons are stabilized rather by acid anion than by proton. At the same time, proton remains relatively free (Colomban & Tomkinson, 1997), thus providing high proton conductivity of PANI (which is absent in ammonia salts and protonated amines). However, in this paper we will use the common term “protonation” to describe interaction between acids and nitrogen-containing polymer structures.
Among conducting polymers, PANI possesses the greatest number of revealed and characterized forms with different properties (Skotheim & Reynolds, 2007). Due to interaction with acids, each of three protonated states has a corresponding deprotonated form with low conductivity. Thus, polymer can exist in a minimum of six forms differing in both degree of oxidation and protonation state (Scheme 1). PANI is a unique polymer, since its conducting forms (emeraldine and pernigraniline) can be transformed into non-conducting states in two different ways. The first approach consists in introducing electrons into PANI and reduction of nitrogen atoms; the second method is removal of polaron-stabilizing acid which leads to transformation of polymer chain structure and disappearance of polyconjugation. In other words, we can destroy charge carriers or their “paths”. In both cases, polymer conductivity decreases by eight or ten orders of magnitude.
Conductivity, optical, magnetic and other properties of PANI may change depending on its oxidation state and degree of protonation. The reduced polymer which does not contain charge carriers possesses a conductivity of 10-8 – 10-10 S∙cm-1; it is weakly colored and diamagnetic. As oxidation of protonated PANI proceeds within the potential window of 0 to +1 V (
Deprotonation of PANI is performed by neutralization of acid with the aid of base. Acid molecules are bound with PANI main chain at the expense of reversible ionic interactions. While protonation-deprotonation cycles continue, the acid is alternately absorbed and expelled from the polymer matrix until the new equilibrium between changed medium and modified polymer is established. Deprotonation may lower emeraldine conductivity by 10 orders of magnitude. Polymer becomes dielectric, its paramagnetism and density decrease, polaron absorption band becomes less intense and shifts to the short-wavelength region. Since these changes are reversible, reprotonation (i.e., PANI-acid interaction following deprotonation) leads to recovery of conductivity and attendant properties of the polymer (Skotheim & Reynolds, 2007).
In a vast majority of cases, PANI is synthesized by oxidative polymerization of aniline. Other methods, e.g., polycondensation of aniline derivatives with reactive functional groups (Y-Аn-Х = (-Аn-)n + ХY), are used very seldom. Oxidative polymerization is used for the synthesis of polymeric (oligomeric) products from various classes of monomers (aromatic amines, phenols, thiophenols, aromatic hydrocarbons and heterocycles (Higashimura & Kobayashi, 2004). The monomers used in oxidative polymerization are characterized by pronounced electron donor properties and high oxidation tendency. These properties, in particular, are inherent to aromatic amines, phenols and thiophenols or sulphur- and nitrogen-containing heterocycles due to the presence of electron donor substituent in benzene or heterocyclic ring. Oxidation of monomer takes place under the action of inorganic (or organic) oxidizing agent or the applied potential. During this process, cation or cation radical sites are generated in monomer (polymer) molecule, thus initiating polymer growth.
Technically, oxidative polymerization may be considered as formation of covalent bond between monomer molecules at the expense of abstracting two protons. There are many types of linkage between monomer units. For example, in the case of aniline, “head-to-head”, “tail-to-tail” and “head-to-tail” configurations are possible. In addition, in the last two cases chain assembly may occur due to substitution in phenyl ring with the formation of
Oxidative polymerization is often considered as a kind of polycondensation, since chain growth is accompanied by the formation of low-molecular products. However, it is not always true. The formation of chain may proceed in two ways. The first one is recombination of cation radical oxidation sites. In this case, polymer growth process is classed as polycondensation, since fragments of any length may recombine. The second way of chain growth belongs to electrophilic substitution; in the case of aniline, oxidized nitrogen-containing structure attacks phenyl ring of another aniline molecule and substitutes one proton of the ring.
Electrophilic substitution reaction
Both the ring and nitrogen-containing structure lose one proton; after that, monomer units bind with each other, and the chain becomes longer.
In the case of electrophilic substitution, both variants (polycondensation and chain-growth processes) are possible. To determine the type of addition, we should measure molecular mass of the polymer throughout the reaction. In the course of polycondensation, fragments with any molecular mass can react with each other; therefore, average molecular mass of the product increases slowly, monomer is rapidly transformed into low molecular weight oligomers coexisting with the high molecular weight fraction up to high conversion. Different molecular weight distribution is observed during chain-growth processes. In the course of chain-growth polymerization, monomer units are sequentially added to the polymer chain bearing active end group. Here, during oxidation monomer coexists with high molecular weight fraction of the product, and the content of low molecular weight oligomers is minimal. Oxidative polymerization of several monomers containing heteroatoms (including aniline) was found to proceed according to the chain-growth mechanism.
Y.Wei (Wei, 2001) singled out the polymerization of aniline into a special type of reactivation chain process. The chain growth involves repeated acts of activation/deactivation of the polymeric structure:
The dormant polymer chain (Anm) is activated by an oxidant (to form Anm*), then it adds aniline molecule to yield a new dormant chain of higher molecular mass (Anm+1). In contrast with other types of chain-growth polymerization (e.g., radical process, where oxidant takes part only in the formation of initial radical), oxidative polymerization requires large amounts of oxidizing agent. Here, oxidant is spent in every step of monomer addition, and molar concentration of oxidant should be comparable with monomer concentration. Oxidant “works” throughout the polymerization and takes part in redox interactions until the last monomer molecule is added to polymer chain.
The process occurring during the formation of polyconjugated PANI chains belongs to electrophilic substitution reactions, since the attacking species is oxidized and acts as an electrophilic agent. Let us consider the most probable structure of monomer unit during electrophilic substitution process. Due to the presence of electron donor (heteroatom) in the monomer, this heteroatom will most likely be oxidized, and monomer units will be linked in the “head-to-tail” fashion. However, even when this type of linkage is repeated, PANI structure may be heterogeneous. Monomer units with
Thus, from general theoretical considerations, the formation of regular PANI structure containing only
The question of the nature of the terminal active group (active site) responsible for the polymerization of aniline was disputed for a long time (Percec V and Hill, 1996). This was assumed to be nitrenium cation or radical cation. Studies on the aniline oxidation in the presence of “traps” for both types of structures showed that alkyl-substituted phenols (2,6-di-
The activated terminal group of the chain is generated by an oxidant. In the initial step, it is the monomer that is oxidized; however, upon formation of oligomers, these are terminal amino groups of the oligomer (polymer) that are oxidized because they have lower oxidation potential. In the course of polymerization, the polymer chain performs the function of a mediator in the oxidation of monomer. It oscillates between the highest and intermediate oxidation states, i.e., pernigraniline and emeraldine. The active site formed at the end of the chain attacks the monomer molecule. This attack is directed at a hydrogen atom in the aromatic ring and results in replacing hydrogen by a polymeric fragment. The chain propagates due to the addition of new monomer units.
Polymerization of aniline and synthesis of its conducting polymer may be performed by electrochemical or chemical methods. During electrochemical synthesis of PANI, electrode potential is increased (if only once) so that it exceeds +1.05 V (RHE) (Yang et al. 2007). A wide range of oxidants is used in the chemical synthesis of PANI. As a rule, compounds with high oxidation potentials exceeding +1.0 V (persulfates, dichromates, cerium (IV) salts, aurates etc.) are employed. This is associated with the fact that the onset of the propagation of the polymer chains in acidic media requires overcoming energy barrier corresponding to an oxidation potential of +1.05 V. Once the propagation starts, the oxidation potential of the reaction decreases. In the chemical synthesis of polyaniline, persulfates (having an oxidation potential of +2.01 V) are used most widely. However, experiments showed that aniline is also oxidized under the action of weak oxidants with a potential close to +1 V or even lower (Sapurina & Stejskal, 2012). Such agents can oxidize aniline not only in basic and neutral media, but also, strange as it may seem, in acidic media where potential barrier of oxidation is high. However, the use of weak oxidants causes some problems because it does not necessary lead to the formation of conducting products.
Studies of aniline polymerization in acidic aqueous media (where conducting PANI is formed) have shown that the oxidation of monomer proceeds non-monotonically. It starts with a slow process (“induction period”); during this period, aniline oligomers are formed. The induction period is followed by the rapid exothermic step of polymer chain propagation. The following kinetic dependences were suggested for description of this two-step process (Tzou & Gregory, 1992):
-d[An]/dt = k1[An][Ox] + k2 σ[An] P
where
[An] is the molar concentration of aniline;
[Ox] is the molar concentration of the oxidant;
P is the surface of the reaction medium interface;
σ is the surface factor;
k1 is the rate constant for the initial step (induction period) of polymerization;
k2 is the rate constant for the polymer chain propagation.
Both the first and, presumably, the second steps are first-order reactions with respect to monomer. For the initial step, the reaction order with respect to the oxidant is also the first one. In the propagation step, monomer is oxidized with pernigraniline form of PANI rather than with the original oxidant. Polyaniline is insoluble, and the reaction is heterogeneous; hence, the P parameter and the σ factor are introduced into the equation in order to characterize the interface on which the reaction proceeds. The rate constant for the chain propagation (k2) is three orders of magnitude higher than the rate constant for the initial step of polymerization (k1). In other words, the formation of the polymer leads to impressive acceleration of oxidative polymerization. Similar acceleration was also observed upon the introduction of PANI “seeds” into the reaction medium. This process is called “autoacceleration” (Tzou & Gregory, 1992).
Polymerization rate is sensitive to the presence of different inert and insoluble materials in the reaction medium, for example, alumina oxide, silica gel, carbon, cellulose, synthetic polymers, etc. (Stejskal & Sapurina, 2005). This effect is stronger for materials with greater surface areas (P). The strong effect of the medium acidity exerted on the polymerization rate was revealed. This dependence is complex in nature and varies with the pH range. Under conditions of high acidity (for pH<1), direct proportionality between molar concentration of the strong acid and k2 was observed. At the same time, the increased acidity has a little effect on the rate constant of the initial step; however, the induction period shortens substantially with decreasing pH.
Presently, electrochemical and chemical synthesis of conducting PANI by oxidative polymerization is usually described by the following scheme (Scheme 3) (Wei at al., 1989). It involves: 1) oxidation of nitrogen atom of monomer followed by oxidation of end nitrogen atom of oligomer and polymer; 2) addition of monomer in the “nitrogen-carbon” fashion as a result of chain reaction (electrophilic substitution of proton in aromatic ring of monomer by oxidized polymer fragment).
Aniline oxidative polymerization
Presumably, in the induction period, aniline radical cations are formed; this process is followed by their recombination (according to the electrophilic substitution mechanism) to afford a dimer, namely, N-phenylphenylene-1,4-diamine (
The presented scheme of PANI synthesis is practically similar to the general mechanism of oxidative polymerization suggested in the 1950s for phenol polymerization and, subsequently, for a vast majority of monomers (Higashimura & Kobayashi, 2004). However, PANI synthesis seems anomalous compared with reactions of synthesis of dielectric polymers. Polyphenyleneoxides obtained by oxidation of phenols in aqueous basic or organic media are comparatively low molecular weight products with molecular masses of 20 000 - 30 000. The structure of polyphenyleneoxide monomer units is heterogeneous. The polymer contains units linked in a “tail-to-tail”, “head-to-head”, “head-to-tail” fashion; both
By contrast, oxidative polymerization of aniline in acidic medium yields polymers with strictly regular structure. The studies of molecular structure of PANI chains by Raman, ESR, electron and X-ray photoelectron spectroscopy, chromatography and chemical analysis have shown that the polymer contains 95-98% of
However, within the framework of the existing concepts of oxidative polymerization of aniline (Scheme 3), we cannot explain several important features of PANI synthesis.
It is unclear why oxidative polymerization of aniline is highly selective, and only
No explanation is given for the non-monotonic course of oxidation and the great difference between rate constants of the first and second steps, although the scheme represents them as reactions of the same type leading to the formation of similar structures.
The scheme fails to explain the following changes in the oxidation potential in the course of polymerization: its increase up to +1.05 V followed by its drop down to +0.7 V - 0.8 V in the chain propagation step.
The pH of reaction medium having a great influence on polymerization is not taken into account.
The scheme does not explain “autoacceleration”, i.e., heterogeneous process of chain growth, and influence of different types of surfaces on polymerization kinetics.
As a rule, in discussion of oxidative polymerization of aniline, it is stated that the existing concepts are controversial, and molecular mechanism of the process is still unclear. In what follows the authors will attempt to explain anomalies of aniline polymerization and, in the first place, the reasons for high selectivity of this process in acidic medium.
Oxidative polymerization of aniline can occur within a very wide interval of acidity (from 1M base solution to 2M sulfuric acid solution), i.e. in the pH range 14 to -1. However, it is known from the experiment that oxidation products formed in different pH intervals possess radically different properties. Polymerization in basic, neutral and weakly acidic media gives brown powder with low conductivity. The synthesis in highly acidic medium yields highly conductive PANI, since only under these conditions conducting dark-green emeraldine can be obtained. Depending on pH of reaction media, the conductivity of protonated products of aniline oxidation may vary from 10-10 to 102 S∙cm-1. Cyclic voltammograms may contain from one to four pairs of waves; optical and magnetic properties of material may also vary. Oxidation products either dissolve in different organic solvents or are insoluble at all. However, all these materials obtained by aniline oxidation and demonstrating various properties are called “polyaniline”. This general name creates considerable difficulties during comparison of experimental results, particularly, in discussion of PANI applications (Stejskal et al. 2010).
The composition and structure of non-conducting materials obtained at high pH are little studied. However, they have many potential applications in development of membranes for gas separation and pervaporation, as antioxidants, in catalysis, sensor devices and treatment of heavy metal-contaminated runoff water. In addition, some products synthesized in neutral and weakly acidic media demonstrate very complex and interesting supramolecular structure, and are of great scientific interest (Stejskal & Trchova 2012).
Let us consider the effect of pH on aniline polymerization, properties of products and their supramolecular structure.
Aniline, its oligomers and polymers are organic bases taking part in acid-base equilibria, and their properties depend on pH. They include different types of nitrogen-containing structures which are protonated at different pH values. Aniline is the strongest base. At low ionic strength, i.e., at low concentrations of aniline in distilled water, the protonation constant of aniline takes on a value of ~ 4.6 (Lide & Frederikse, 1995). Increasing ionic strength in the presence of electrolytes leads to equilibrium shifts towards lower pK values. Thus, in solutions of salts with concentrations of 0.1 - 0.9 mol∙L-1, protonation constant of aniline takes on a value of ~ 3.5. According to these data, at pH>3.5 aniline exists mainly as a neutral molecule, and at pH<3.5 it is protonated and acquires positive charge.
Polymeric (oligomeric) PANI chains include two types of nitrogen-containing structures: disubstituted amino groups (where nitrogen atom is not oxidized) and imino groups with oxidized nitrogen. Disubstituted amino groups can be protonated only at very low pH which are not used in the synthesis. As a rule, leucoemeraldine consisting of amino groups is not protonated. PANI in higher oxidation states contains imino groups which are protonated at higher pH values. However, protonation constant of imino group depends on the content of these groups in polymer. With increasing concentration of ionogenic groups, polymer basicity decreases. While imino groups of emeraldine can be protonated by acids of medium strength, during oxidation and increasing number of imino groups, multiple interactions between positive charges within the chain arise, and the protonation ability of imino groups decreases. In contrast with emeraldine (pK=3÷4), pernigraniline is protonated at pH<2.5 (Trivedi, 1997). In the course of protonation of imino groups, PANI is transferred into protonated emeraldine or protonated pernigraniline form. As a result, the whole polymer chain becomes covered with a net of positive charges and turns into polycation.
Protonation of aniline a) and polyaniline chain b)
It should be taken into account that oxidation potentials and, therefore, reactivity of neutral and protonated molecules differ considerably. Deprotonated nitrogen-containing structures have low oxidation potential and oxidize readily. Neutral, uncharged aniline molecule easily gives away electron and can be oxidized even at +0.3 V. Protonation results in the appearance of excess positive charge on nitrogen atom that hinders oxidation. Consequently, oxidation potential of nitrogen-containing structure increases up to more than +1.0 V (Li et al., 2002).
It should be also kept in mind that in the course of oxidation protons are released, and pH is being constantly lowered. The rate of pH change depends on many factors: the presence of alkali, acids or buffering agents in the reaction medium, intensity of oxidation processes, conversion degree etc. For example, in water for the initial aniline and persulfate concentrations of 0.4 and 0.8 mol∙L-1, respectively, and upon the complete monomer-to-polymer conversion, pH of reaction medium varies from 9 to 1, i.e., the reaction that has started in an alkaline medium ends under the conditions of acid-promoted polymerization (Stejskal et al. 2010).
Thus, the oxidative polymerization of aniline is a complex dynamic process accompanied by permanent changes in synthesis conditions. What is important is the pH value at which the process begins, and the nitrogen-containing groups (either protonated or non-protonated) that are involved. However, of no less importance is how quickly the pH drifts and at which pH values the polymerization comes to an end. The reaction often covers the pH ranges where nitrogen-containing fragments in different degrees of protonation dominate. As will be shown later, the transition from one pH region to another can be accompanied by some changes in kinetic parameters of the process. This can result in changing molecular structure of chains and, hence, varying properties of products, and also lead to transformations in PANI supramolecular structure. Now we will illustrate these points by aniline polymerization processes occurring in media with different pH (Konyushenko et al. 2010; Sapurina & Stejskal, 2010)
In this section, two series of experiments are discussed demonstrating kinetics of aniline oxidation within various pH intervals. Acidity of reaction medium and temperature of polymerization mixture were monitored in the course of the synthesis. Every elementary reaction of monomer unit addition in the process of electrophilic substitution is accompanied by release of two protons; therefore, change of pH throughout the synthesis can serve as an objective characteristic of the process. Oxidation of aniline is an exothermic process and can easily be followed by temperature changes. The temperature dependence provides information on the intensity of oxidation processes in individual steps of the synthesis, thus supplementing the results of pH measurements. The interpretation of results involved the use of additional data obtained in the
Experiments were carried out in order to elucidate the kinetics of oxidation of aniline in different pH regions. We used a strong oxidant (ammonium persulfate), which has an oxidation potential of 2.01 V and is capable of oxidizing all intermediates of PANI synthesis. The reaction shown by Scheme 5 proceeded under ambient conditions. It was initiated by instantaneous mixing of reactant solutions and proceeded without stirring. The kinetic data were supplemented by information on the properties and the morphology of the reaction products. These were isolated by filtration, dried in air at room temperature and then analyzed by conductometry, spectroscopy, gel permeation chromatography and electron microscopy.
Oxidation of aniline with ammonium persulfate.
In the first series of experiments, oxidative polymerization of aniline (0.2 mol∙L-1) was carried out using the stoichiometric amount of ammonium persulfate (0.25 mol∙L-1), which provided the complete monomer-to-polymer conversion. Polymerization was started in the media of different acidity, namely, 1) in 0.2 M ammonia solution (pH=10); 2) in water (pH=6); 3) in 0.4 M acetic acid (pH=4.5), 4) in 0.2 M sulfuric acid (pH=2). The results of monitoring of temperature and pH are shown in Fig. 1 a,b.
Changes in the temperature (a) and pH (b) of the medium in the course of aniline (0.2 mol∙L-1) oxidation initiated by ammonium persulfate (0.25 mol∙L-1) at different initial acidities; (1) in 0.2 M NH3∙H2O; (2) in water; (3) in 0.4 M acetic acid; (4) in 0.1 M H2SO4.
It is evident that both parameters change synchronously. The decrease in pH corresponds to the exothermic steps: the sharper increase in temperature corresponds to the more pronounced decrease in pH. This also suggests that thermal effects are due to the processes of oxidation and proton liberation
The general features of aniline oxidation processes can be formulated as follows.
The initial rate of aniline oxidation increases with increase in the initial pH of the medium. It can be seen from slopes of temperature and pH dependences in the initial stage. With increasing acidity, initial oxidation rate decreases. In sulfuric acid (pH=2), it is close to zero (the so-called “oxidation induction period”).
The oxidation processes in which the pH dependence does not pass through pH~2.5 are characterized by a single temperature wave of oxidation. These processes include the oxidation in ammonia, which begins at pH=10 and ends at pH>3, and the reaction in sulfuric acid, which proceeds at pH<2.2.
The oxidation processes that occur in the pH region including pH~2.5 have two temperature waves. These processes include the reactions in water and acetic acid, which start at pH=6 and pH=4.5, respectively, and end at pH=1.
The first oxidation wave falls in the range with pH>3 and resembles the monotonic process of oxidation of aniline in ammonia. The range 2.5<pH<3.5 is characterized by the abrupt deceleration of the oxidation processes. However, with the attainment of pH 2.5, the exothermic reaction regains its vigor, and oxidative polymerization is concluded by the second temperature wave. The character of pH variations in the second wave is identical to that typical of polymerization in sulfuric acid.
The pH decrease in water proceeds much faster than in acetic acid because this weak acid serves as a buffer and binds protons released in the course of polymerization.
In the second series of experiments, oxidation of aniline (0.2 mol∙L-1) was carried out in 0.4 M acetic acid at different [Ox] : [An] molar ratios. The ammonium persulfate concentration was varied from 0.25 (stoichiometric amount) to 0.025 mol∙L-1 (Fig.2). At low concentrations of oxidant, monomer is not completely oxidized. In all the experiments, polymerization started at pH=4.5 and continued up to the complete consumption of the oxidant. Figure 2 shows the temperature and pH dependences obtained in this series of experiments. It is evident that the higher the oxidant concentration, the lower the final pH; this fact is associated with the more complete monomer-to-polymer conversion and, correspondingly, the presence of a larger amount of liberated protons.
The second experimental series produced the relationships similar to those of the first series. For the oxidation at low [Ox] : [An] ratios (0.025, 0.5, 0.25), no acidity drift below pH=3 was observed. In this pH region, as well as in the case of oxidation of aniline in ammonia, the reaction proceeds monotonically and the single temperature wave is observed. For high [Ox] : [An] ratios (0.75, 1.0, 1.25), the final pH of the medium is less than 2.5. Moreover, the processes demonstrate two temperature oxidation waves. As well as in the first series, in the range 2.5<pH<3, the reaction proceeds extremely slowly. The second exothermic wave begins once the reaction medium pH reaches 2.5.
As follows from the data presented, irrespective of which reaction parameter was varied (initial pH of the medium or the [Ox] : [An] ratio), the processes have similar character if proceed in the same pH region. Judging from the sharp change in the oxidation character in a point with pH=2.5, different molecular mechanisms of the synthesis are realized in the pH ranges above and below this point.
In the first experimental series, the synthesis proceeded up to the 100% conversion of the monomer to the polymer (Table 1). For polymerization in ammonia (3<pH<10), the oxidation products are aniline oligomers with a weight-average molecular mass (Mw) of 4000 and polydispersity (Mw/Mn) of 1.3. Conductivity of the material in the completely protonated state does not exceed 10-10 S∙cm-1. The electronic spectrum of oligomers (Fig. 3) contains no polaron charge transfer band typical of the emeraldine polymer form with a continuous conjugation system. Studies on the morphology of the oxidation products showed that the microsphere structure dominated, i.e., the oligomers formed spherical particles with diameters ranging from 500 nm to 2 μm (Fig. 4a).
Changes in the temperature (a) and pH (b) of the medium in the course of aniline (0.2 mol∙L-1) polymerization in 0.4 M acetic acid under the action of different amounts of ammonium persulfate. The ratios of molar concentrations of oxidant and aniline are denoted by numbers. [Ox] : [An]=1.25 (1), 1.0 (2), 0.75 (3), 0.5 (4), 0.25 (5), 0.1 (6).
Electronic absorption spectra of the products of aniline (0.2 mol∙L-1) oxidation initiated by ammonium persulfate (0.25 mol∙L-1) taken in media with different acidities; (1) in 0.2 M NH3∙H2O; (2) in 0.4 M acetic acid; (3) in 0.1 M H2SO4. Oxidation products are deprotonated and dissolved in N-methylpyrrolidone. Wavelengths of absorption peaks are given in nanometers.
NH3∙H2O (0.2 M) | Acetic acid (0.4 M) | |||
Initial pH | 9.5 | 5.7 | 4.5 | 2.4 |
End pH | 3.0 | 1.1 | 1.1 | 1.0 |
Conductivity of protonated form (S∙cm-1) | <10-10 | 0.055 | 0.036 | 3.7 |
Conductivity of deprotonated form (S∙cm-1) | — | 6.0×10-8 | 7.9 ×10-9 | 1.1×10-9 |
Density of protonated form (g∙cm-3) | — | 1.35 | 1.338 | 1.402 |
Molecular mass Mw | 4.090 | - | 32200 | 39400 |
Polydispersity, Mw/Mn | 1.3 | - | 19.0 | 13.1 |
Morphology | Microspheres | Plates, nanotubes | Nanotubes | Granules |
Properties of products of aniline oxidation (0.2 mol∙L-1) with ammonium persulfate (0.25 mol∙L-1) at various pH values.
The aniline oxidation product synthesized in the presence of sulfuric acid (1<pH<2.2) is the polymer with Mw ~ 40 000 and Mw/Mn=13.1. The material demonstrates an absorption band at 618 nm typical of deprotonated emeraldine (Fig. 3) and the conductivity of the protonated emeraldine form (3.7 S∙cm-1). The polymer has a globular structure typical of PANI with globules measuring from 100 to 200 nm (Fig. 4d).
The oxidation products obtained in acetic acid and water exhibited characteristics intermediate between those of aniline oligomers and high molecular weight PANI. As compared with PANI synthesized in sulfuric acid, molecular masses of the products were lower and their polydispersities were higher; their conductivities were two orders of magnitude lower and the band corresponding to polaron charge transfer was less intense and shifted to the short-wavelength range. These characteristics, as well as broadening of MWD of polymerization products suggested that PANI synthesized in the intermediate pH range (1<pH<6) is a mixture of oligomers and polymer.
In the second series of experiments (polymerization of aniline in acetic acid at various [Ox] : [An] ratios, Table 2), the relationships typical of the first series are reproduced. If the polymerization is completed at pH>2.5 ([Ox] : [An]=0.025, 0.5, 0.25), it produces non-conducting aniline oligomers without continuous conjugation systems. At the same time, if the synthesis is completed at pH<2.5, the products, in addition to oligomers, contain high molecular weight PANI. The extent of conjugation and, hence, the conductivity are higher.
Scanning electron microscopy. Products of aniline (0.2 mol∙L-1) oxidation with ammonium persulfate in different experimental conditions: a) in aqueous ammonia (microspheres); b) in water (two-dimensional structures – “plates”); c) in 0.4 M acetic acid (nanotubes); d) in sulfuric acid (globular PANI morphology. e) Amorphous agglomerates of aniline oligomers synthesized upon oxidation of aniline (0.2 mol∙L-1) under deficiency of ammonium persulfate (0.05 mol∙L-1) at pH>3.5. f) Products of aniline oxidation (0.2 mol L-1) in 0.4 M acetic acid with ammonium persulfate (0.25 mol∙L-1) isolated in the intermediate step of polymerization at pH ~ 2.5-3.
The morphology of PANI synthesized in the intermediate pH range (1<pH<4.5) that includes two temperature waves is characterized by transition from amorphous to organized morphologies (Fig 4e and 4f) and the presence of one-dimensional structures, namely, nanotubes and nanofibers. The one-dimensional structures begin to appear in products at pH~2.5. The appearance of nanofibers and nanotubes accompanies the transition from oligomeric products to polymeric ones. As the pH drifts to acidic values, the length of tubular fragments increases together with the fraction of one-dimensional structures. For PANI synthesized in acetic acid in the pH range 1<pH<4.5, the one-dimensional structures prevail (Fig.4c). However, further decrease in pH increases the granular precipitate fraction. Polyaniline synthesized in water also contains fibers and tubes with an outer diameter of 150 ± 200 nm; in addition to tubes, PANI precipitate contains the so-called “plates” (Fig.4b)and the granules measuring up to several hundred nanometers.
End pH | 4.0 | 3.3 | 2.5 | 1.2 | 1.1 |
Conductivity of protonated form (S∙cm-1) | <10-10 | 2.4×10-10 | - | 0.036 | 0.095 |
Density of protonated form (g∙cm-3) | _ | 1.307 | _ | 1,338 | 1.465 |
Molecular mass Mw | 3600 | 2100 | 23600 | 17600 | 44600 |
Polydispersity, Mw/Mn | 3.8 | 16.4 | 11.1 | 9.4 | 10.6 |
Morphology | Amorphous | Two-dimensional | Inclusions of nanotubes | Nanotubes |
Properties of products of aniline oxidation (0.2 mol∙L-1) with different amounts of ammonium persulfate in 0.4 M acetic acid. The initial pH is 4.5.
Transition from one pH range into another leads to changes in molecular structures of chains and properties of products accompanied by transformation of supramolecular structure of PANI. During oxidation at pH<2.5, high molecular weight polyaniline with developed polyconjugation system and high conductivity is formed. By contrast, at higher pH, PANI oligomers are obtained. Oligomers have low conductivity and, judging by spectral characteristics, there is no polyconjugation. If the reaction proceeds within both pH ranges, the mixture of oligomeric and polymeric products is obtained. In various pH intervals morphology of products also varies. However, there is no direct correlation between conductivity, molecular mass and type of supramolecular structure. Depending on synthesis conditions, oligomers may exist in the form of microspheres or two-dimensional formations, and high molecular weight PANI may have one-dimensional (nanofibers or nanotubes) or three-dimensional structure (granules).
The literature contains a vast amount of information concerning influence of various parameters of synthesis on properties and morphology of products obtained in aniline oxidation. There are many publications (Wan, 2009; Liu & Zhang, 2009; Venancio et al.,2006) demonstrating that changes in concentrations of monomer, oxidizing agent and their ratio, nature and concentration of acids which protonate PANI, or other additives have a significant effect on polymerization process, properties and morphology of products. However, authors do not take into account that this effect is not always obvious; usually it is indirect and carried out via changes in pH of the reaction medium. There are many examples of indirect influence of pH masked by other synthesis parameters. Thus, aniline and its polymers, being organic bases, increase pH. The increase in monomer concentration is equivalent to alkalization of the solution. Addition of acids and acidic salts decreases pH. The [monomer] : [acid] ratio and the nature of the acid used (its strength and buffering properties) are also important parameters. Weak acids exhibit the buffer effect suppressing the pH change during the synthesis.
The pattern of pH changes occurring during the reaction may be altered by certain factors one would think independent of pH. Thus, changes in [oxidant] : [monomer] ratio have an effect on pH, determine conversion degree and a number of released protons. The dilution of reaction medium also influences this pattern, because the range of pH changes in concentrated solutions is much wider than in diluted ones, and, as a result, the reaction may pass to another pH interval. The presence of organic phase immiscible with aqueous medium is also a striking example of such factor. This is the so-called aniline polymerization at the interface between two immiscible media; monomer is dissolved in organic phase, and oxidizing agent is present in water. The mechanism of “interface” polymerization and the factors leading to the formation of one-dimensional structures in this system are actively discussed in the literature. It was shown (Li et al., 2011) that characteristics of aniline oxidation, as well as properties and morphology of products, depend on pH and correspond to the profile of change of water phase pH.
Frequently, effects of various factors in oxidative polymerization of aniline mask the one factor which has a critical influence on the mechanism of synthesis. In polymerization with strong oxidant, it is the pH factor that is masked by a large number of various parameters of the reaction (Konyushenko et al. 2006a; Stejskal et al. 2006; Sapurina & Stejskal, 2010). Considerable changes in polymerization process, properties and morphology of products occur when the acidity falls within pH intervals coinciding with protonation constants of reactants (monomer and growing polymer chain). At the same time, if the experiment is carried out within the same acidity interval, changes in these parameters (concentrations of reactants and/or nature of additives) do not lead to dramatic changes in properties of products. Thus, at pH ≤ 2.5, polymerization always yields emeraldine with characteristic electronic spectrum (absorption band at wavelengths higher than 800 nm) and high conductivity (≥ 10-1 S∙cm-1). By contrast, products of aniline oxidation at pH>2.5 definitely have low conductivity which can be raised neither by protonation nor by redox reactions. All these facts indicate that products obtained at pH<2.5 and pH>2.5 have fundamentally different molecular structure.
Oxidation potential of nitrogen-containing structures, including aniline, increases with increasing acidity of the medium, due to protonation of nitrogen atom. The potential increases non-monotonically. In the pH range corresponding to protonation constant, oxidation potential changes discontinuously, in accordance with the pattern of change in concentration of protonated and deprotonated forms of reactants. Deprotonated form of aniline existing in alkaline and neutral media is oxidized at low potential (+0.3 V). In acidic media, start of polymer chain propagation requires overcoming the energy barrier corresponding to an oxidation potential of +1.05 V (Li et al 2002). Therefore, oxidants with potentials lower than 1.05 V capable of oxidizing aniline in alkaline and neutral media should not initiate polymerization at low pH. However, experiments have shown that oxidation of aniline in acidic media can be performed and leads to the formation of polyconjugated PANI. Such oxidants as FeCl3 (+0.77 V), V2O5, (+0.98 V), AgNO3 (+0.8 V), MnO2 (+1.2 V), KIO3 (+1.1 V), Pd+2 (+0.89 V), Au+3 (+1V) (Sapurina & Stejskal, 2012), possessing potential close to 1 or even lower, may oxidize aniline not only in alkaline or neutral media, but, strange as it may seem, in acidic media with high potential barrier of oxidation.
In this section, we will discuss oxidation of aniline under the action of a weak oxidizing agent – silver nitrate AgNO3 with a potential of +0.80 V (which is much lower than potential barrier of aniline oxidation in acidic media) (Sapurina & Stejskal, 2012). Oxidation was carried out at different pH values; the initial pH values of reaction medium were 11, 6 and 2.5. Thus, oxidation proceeded within three pH ranges where both the monomer and growing chains are deprotonated and have low oxidation potential or are present in protonated state with high oxidation potential. То aid the visualization, oxidation of aniline with AgNO3 is compared with oxidation under the action of persulfate under similar conditions. In the course of oxidation, silver cation is reduced to give metallic silver. Silver forms composites with polymeric products; this composite was analyzed by electron microscopy, spectroscopy, conductometry, gel-permeating chromatography and thermogravimetry. The content of reduced silver in products was determined by thermogravimetry; this allowed us to control the participation of AgNO3 in the reaction of aniline oxidation.
At pH>3.5 both monomer and polymer chain are deprotonated. Only deprotonated nitrogen-containing structures with low oxidation potential take part in the reaction. As well as in the case of persulfate and AgNO3, oxidation starts at once and proceeds monotonically with high rate. Fig. 5a shows aniline oxidation profiles for both oxidants in 0.5 M ammonia solution. At an initial aniline concentration of 0.2 mol∙L-1 and [Ох]e/[Аn] = 2.5, reactions are completed within several minutes. Silver mirror is formed on the walls of the reaction vessel in the course of oxidation of aniline with AgNO3. In the case of persulfate, the initial pH of 10.0 lowers down to 8.9 by the end of the reaction. When AgNO3 was used, the interval of pH change was 10.8 – 9.3. This fact indicates that both monomer and polymer chain remain deprotonated throughout the process.
a) Change of pH in the course of aniline oxidation under the action of ammonium persulfate and silver nitrate in 0.5 M aqueous ammonia. (b) Electronic spectra of products is lost of aniline oxidation with ammonium persulfate and silver nitrate; samples are dissolved in N-methylpyrrolidone.
Yields of oxidation products and their properties are given in Tables 1,3,4. In the spectra of products obtained during oxidation of aniline with both oxidants, absorption bands lie in the wavelength region below 600 nm (Fig. 5b); this fact indicates the absence of polyconjugation in these samples. Conductivity of the products synthesized using persulfate does not exceed 10-10 S∙cm-1. The material obtained in the reaction with AgNO3 is a composite containing 75 wt% of metallic silver. Its density is almost four times higher than that of PANI. Electric conductivity of this composite is 3300 – 5030 S∙cm-1 (Table 4). Oxidation of aniline with both persulfate and AgNO3 yields mainly amorphous products (Fig.6 a, b). Silver is present as particles with dimensions ranging 50-200 nm.
Products of aniline (0.2 mol∙L-1) oxidation by AgNO3 in 0.5 M aqueous ammonia. Scanning electron microscopy
Oxidation of aniline at higher pH was studied in solutions of carboxylic acids. For example, in the solution of acetic acid (0.4 M) containing 0.2 mol∙L-1 of aniline and 0.25 mol∙L-1 of persulfate (or 0.5 mol∙L-1 of silver nitrate), the initial pH values are 4.5 and 5.7, respectively. The considerable part of aniline is protonated, but imino groups of the chain are still in deprotonated state. Fig. 7a shows pH profiles of oxidation of aniline with both oxidizing agents. It can be seen that within the 3.5 > рН >2.5 region, oxidation is dramatically decelerated. This pH range lies between two stages of more intense oxidation with more sharp decrease in pH.
When persulfate is used, the stage of slow oxidation drift within the 3.5 > рН >2.5 range is completed after 30 min and culminates in vigorous exothermic reaction accompanied by intensive release of protons and decrease in pH. In the case of AgNO3, at the same initial concentrations of reactants, oxidation drags on for hundreds of hours. In fourteen days, conversion of aniline oxidation in acetic acid reaches 30%, and pH decreases down to 3.5 (due to abstraction of protons). Then oxidation continues and somewhat accelerates.
The yield of aniline oxidation in the 2.5-3.5 pH range is very low. As was previously shown, in the case of persulfate, the products are non-conducting oligomers with low molecular masses (Table 2). In the case of AgNO3, homogeneous dark brown powder was isolated; its density is 3.28 g∙cm-3, and conductivity is 4350-7160 S∙cm-1 (Table 3, 4). As well as after oxidation in 0.5 M ammonia solution, the obtained product contains metallic silver. The electronic spectrum of organic fraction of the product extracted with N-methylpyrrolidone is similar to the spectrum shown in Fig. 5 b. This fact evidences that oxidation of aniline with AgNO3 to 30% conversion gives products with low degree of polyconjugation.
Supramolecular structure of products of aniline oxidation in the pH range 2.5 to 3.5 differs from the structure of products obtained in alkaline medium. In the case of oxidation with persulfate, these are planar formations with dimensions of the order of microns and thickness of up to 100 nm and “sticks” with a diameter of up to 200 nm (Fig. 4f). In the case of oxidation of aniline with silver nitrate, two-dimensional morphology also prevails. The significant part of the material consists of planar disks with a diameter of several microns; sticks and thread-like formations are also observed. Transmission microscopy allows us to reveal localization of metallic silver. Silver in the form of dark stripes covers planar and one-dimensional objects or forms spherical nanoparticles with a diameter of the order of 10 nm which then turn into larger agglomerates (Fig. 8).
a) Change of pH in the course of oxidation of aniline with ammonium persulfate and silver nitrate in 0.4 M acetic acid. (b) Electronic spectra of products of aniline oxidation with ammonium persulfate (100% conversion) and silver nitrate (70% conversion, pH < 2.5); samples are dissolved in N-methylpyrrolidone.
Two types of supramolecular structures of products of oxidation of aniline (0.2 mol∙L-1) with AgNO3 (0.5 mol∙L-1) within the 2.5 - 4.5 pH range (TEM images).
Parameter | 0.5 М NH4OH, 100% conversion | 0.4 M CH3COOH, 30% conversion | 0.4 M CH3COOH, 70% conversion | 0.1 M HNO3, 30% conversion |
Initial рН | 10.8 | 5,7 | 5,7 | 2.5 |
End рН | 9.3 | 3.5 | 2.5 | 1.8 |
Oxidation time, (h ) | 0.24 | 168 | 540 | 540 |
Wavelength of polaron absorption band, (nm) | - | - | 618 | 626 |
Molecular mass Мw | - | - | - | 41400 |
Morphology of organic fraction | Amorphous | Two-dimensional One-dimensional | Fibers Tubes | Fibers Tubes |
Morphology of silver | Spheres | Layer on oligomer | Spheres + sticks | Spheres |
Morphology and properties of composites formed in the course of oxidation of aniline (0.2 mol∙L-1) with silver nitrate (0.5 mol∙L-1) at various pH values.
Oxidation process at pH<2.5 is illustrated by the reaction between 0.2 mol∙L-1 solution of aniline and 0.5 mol∙L-1 solution of AgNO3 in 1.0 M nitric acid (Fig. 9a,b), as well as in acetic and formic acids (0.4 M) at high conversions of aniline; release of protons leads to decrease in pH down to 2.5 (Fig. 7a,b). The reference reaction was interaction between aniline (0.2 mol∙L-1) and ammonia persulfate (0.25 mol∙L-1) in 0.2 M sulfuric acid.
Two-step reaction between aniline and ammonia persulfate was completed in 10 minutes. The yield of emeraldine with a molecular weight of 40 000 and conductivity of 1 S∙cm-1 is close to 100% (Table 1). Polymer consists of granules (which is characteristic of PANI obtained in acidic medium under the action of strong oxidants, Fig. 4d).
Oxidation in the presence of AgNO3 in 1 M nitric acid proceeds very slowly. During the first 100 hours, no visible signs of oxidation appear. The 16% yield is achieved in two weeks. The density of the product is 3.6 g∙cm-3, it has a conductivity of 2200 S∙cm-1 which indicates the presence of a large amount of metallic silver in the composite. In three weeks and a half, the yield is 30%, and conductivity of the product decreases down to 1000 S∙cm-1(Table 3, 4). Electronic spectra of organic fraction of the composite include intensive polaron absorption band with a maximum at 626 nm (Fig. 9b). IR spectra of deprotonated samples are also similar to those of emeraldine (Blinova et al. 2009). Thus, organic fraction of the composite is a polymer with high degree of polyconjugation.
The studies of products of aniline oxidation obtained in organic acids at high conversion (when pH decreases down to 2.5) also showed that the polymer with long conjugation system is formed. For example, organic fraction of composites obtained in acetic acid at a conversion of 75% (Fig. 7b)and in formic acid at a conversion of 80% demonstrates wide absorption bands in the spectra at 618 nm and 600 nm characteristic of emeraldine. However, intensities of polaron absorption bands are much lower than these in the case of reaction in a stronger (nitric) acid, this fact indicating that the content of polymer fraction is low. The densities of samples obtained in acetic and formic acids are 3.42 and 3.66 g∙cm-3, and conductivities are 326 and 0.85 S∙cm-1, respectively (Table 4).
a) Change of pH in the course of aniline oxidation under the action of ammonium persulfate in 0.1 M sulfuric acid and silver nitrate in 1 M nitric acid. (b) Electronic spectra of products of aniline oxidation with ammonium persulfate and silver nitrate; samples are dissolved in N-methylpyrrolidone.
Although at pH < 2.5 both the strong and weak oxidants oxidize aniline to the emeraldine state, supramolecular structures of products are fundamentally different. In the case of AgNO3, instead of spherical particles typical for the products of persulfate oxidation (Fig. 4d), one-dimensional particles prevail. PANI in the form of nanotubes and hierarchical structures consisting of fibers with a diameter of 10 nm includes spherical particles of metallic silver with a diameter of 50 nm (Fig. 10 a, b). At high conversions, in acetic and formic acids silver “sticks” several μm in length and with a diameter of up to 300 nm appear. These sticks are covered with loose layer of polymer which starts to grow from silver surface as fibers (Fig. 10 c, d). In the product obtained in formic acid, this morphology prevails.
a,b) Morphology of products of oxidation of aniline (0.2 mol∙L-1) with AgNO3 (0.5 mol∙L-1) in 1 M nitric acid (SEM image). (c, d) Products of oxidation of aniline (0.2 mol∙L-1) with AgNO3 (0.5 mol∙L-1) in acetic and formic acids at high conversions (pH < 2.5) (TEM image).
Oxidation of one gram of aniline with a stoichiometric amount of AgNO3 theoretically yields 1.31 g of PANI and 2.9 g of metallic silver. Therefore, according to stoichiometry of the reaction (2), the content of reduced silver in metal/polymer composite should be 68.9 wt%.
Oxidation to nonconducting aniline oligomers gives the composite with 74 wt% of silver. Thermogravimetric analysis allows to establish composition of silver-containing products. Mass fraction of metal is determined as a mass of incombustible residue left after heating of sample in air flow up to more than 600°C. According to TGA data, silver content in all the composites corresponds to the stoichiometry of redox process: in alkaline media it is 75 wt%, and in acidic media – about 70 wt% (Table 4). These data prove that it is AgNO3 that acts as the main oxidizing agent.
Reaction medium | рН | Yield of composite, % | Content of Ag, wt% | Conductivity, S∙cm-1 | Density, g∙cm-3 | |
initial | end | |||||
0.5 M NH4OH | 10.8 | 9.3 | 60.5 | 75.0 | 3300-5030 | 4.22 |
0.4 M CH3COOH | 5.7 | 3.5 | 32.7 | 70.8 | 4350-7160 | 3.26-3.28 |
0.4 M CH3COOH | 5.7 | 2.5 | 75.7 | 69.0 | 326 | 3.42 |
0.4 M HCOOH | - | - | 79.8 | 72.6 | 0.85 | 3.66 |
1.0 M HNO3 | 2,5 | 1.8 | 30.0 | 70.7 | 709-1080 | 3.54 |
Composition and properties of products of oxidation of aniline (0.2 mol∙L-1) with AgNO3 (0.5 mol∙L-1) at various pH values.
Comparison of results of oxidation of aniline with strong and weak oxidants shows that both the strong oxidant (persulfate) and weak one (AgNO3) at pH < 2.5 oxidize aniline to give PANI in the emeraldine oxidation state, while at higher pH in both cases aniline oligomers without developed conjugation system are formed. The courses of these two reactions occurring in acidic media are different. While in alkaline medium both persulfate and AgNO3 oxidize aniline in several minutes, and kinetic curves of oxidation are comparable. In going to acidic media, rate of oxidation drops considerably. The reaction proceeds for hundreds of hours; the lower the initial pH, the lower the conversion at any given instant of time. At the same time, the general views of time “profile” of pH for reactions with persulfate and AgNO3 are similar. In the media with pH > 3.5 and pH < 2.5, faster pH change is observed, while in the pH range 2.5 to 3.5, oxidation becomes slower.
Another interesting aspect of using oxidant with low potential is its influence on PANI morphology. At pH ≤ 2.5 and high concentrations of reactants, oxidation by persulfate leads to the formation of a polymer with granular structure. Replacing strong oxidant by a weaker one leads to the formation of fibers, tubes and hierarchical structures. These transformations were observed not only in the case of AgNO3 (Blinova et al. 2009), but also in the reactions with another oxidants having low potential: FeCl3 (Ding et al. 2010), V2O5, (Li et al. 2010;), MnO2 (Pan et al. 2007), KIO3 (Gizdavic-Nikolaidic et al. 2010), CeO2 (Chuang et al 2008). The authors of (Ding et al. 2007) revealed interrelation between the value of oxidation potential of oxidizing agents and diameter of one-dimensional PANI particles: lowering the potential leads to decrease in fiber diameter. Similar regularities are observed during electrochemical oxidation of aniline (Molina et al. 2007). In addition to one-dimensional objects, hierarchical structures (urchins, flowers, corals) are formed. Thus, transformation of supramolecular structure of PANI when employing weak oxidant is of a universal character.
The important feature of process with the use of AgNO3 is the formation of metallic silver. In the course of the reaction, at any initial values of pH silver is reduced in stoichiometric amounts with respect to oxidized aniline. This fact proves that silver cation serves as an oxidizing agent. Depending on synthesis conditions, reduced silver precipitates in the form of various nano-dimensional structures (spheres, sticks or bands covering oligomer particles). The presence of silver provides high conductivity of the obtained materials, and these composites have many possible applications in polymer electronics. It is interesting that depending on synthesis conditions, in spite of equal silver content, conductivity of PANI/Ag composites changes over wide range (from 10-2 to 7 000 S∙cm-1). Morphology and properties of PANI/Ag composites, as well as reasons for this difference in conductivity, are discussed in (Sapurina & Stejskal, 2012).
In this section, we will discuss molecular mechanism of oxidative polymerization of aniline with the key factors responsible for chain formation being pH of reaction medium and oxidation potential of reactants (related to pH) (Sapurina & Stejskal 2008; Stejskal et al. 2010). The concepts of mechanism were formed not only on the basis of the given results. A vast amount of experimental data available in the literature give us additional information.
Fig.11 shows a typical kinetic curve of aniline oxidation (for the case of reaction proceeding in the wide pH interval, 6>pH>1). Temperature and pH profiles change synchronously with time and demonstrate three regions with different oxidation rates. Transitions between these regions are observed at pH values of 3.5 and 2.5. These pH values coincide with protonation constants of aniline (pK = 3.5) and imino groups of polymer chain (pK = 2.5). At pH > 2.5, oligomers without polyconjugation chain are formed; these materials possess low conductivity. At pH < 2.5, high molecular weight PANI can be synthesized; it demonstrates high degree of polyconjugation and high conductivity, its chains contain 95-98% of para-substituted monomer units. Dramatic change in the properties of products takes place at a pH value of 2.5 corresponding to the protonation constant of growing polymer chain. Therefore, at pH 2.5, mechanism of polymer formation changes, and mixed irregular addition gives way to regular polymerization. These general features are in effect for different oxidants and protonating acids over a wide concentration range.
Temperature and pH profiles of oxidation of aniline (0.2 mol∙L-1) with ammonium persulfate (0.25 mol∙L-1) in water solution.
At рH >3.5 both monomer and growing chain are deprotonated, and oxidation of aniline (chain reaction of electrophilic substitution) proceeds in full accordance with concepts of theoretical organic chemistry. The most probable process is oxidation of nitrogen-containing structure of monomer and oligomer and linking monomer units in the “head-to-tail” fashion. However, other substitution paths are also possible, e.g., the process leading to “head-to-head” structures. Due to the presence of amino group (electron donor substituent) in aniline, the attack of oxidized polymer fragment is directed at ortho- and para-positions of monomer phenyl ring. Since phenyl ring contains two vacant ortho-positions, monomer units with ortho-structure should prevail. Chain growth is accompanied by secondary reactions. Monomer units of ortho-structure have low oxidation potential and undergo further oxidation leading to the formation of phenazine rings (Scheme 5). These reactions may be both intramolecular (similar to these in o-phenylenediamine oxidation) and intermolecular (with the participation of monomer). Thus, in addition to linear ortho- and para-monomer units, polymer chains should contain phenazine fragments. Scheme 4 demonstrates the most probable paths of electrophilic substitution leading to the formation of ortho- and para- monomer units; intramolecular oxidative cyclization of ortho-units and their transformation into phenazine rings are also shown.
Formation of monomer units of para- and ortho-structure after attack of aniline cation radical directed at para- and ortho-positions of aniline phenyl ring. Secondary reactions intramolecular oxidative cyclization of ortho-units and their transformation into phenazine rings are shown.
However, the probability of formation of other structures is also more than zero. Besides, hydrolysis and formation of quinones may take place in products in the presence of an oxidant. Thus, at medium and high pH values, oxidation of aniline should give chains with heterogeneous structure and prevailing linear or cyclized ortho-units (the presence of the latter was proved by spectroscopic methods (Stejskal & Trchova, 2012). Oxidation of deprotonated forms of reactants proceeds at low potentials (+0.3 - +0.5 V) and may take place under the action of weak oxidants; reaction rates in the cases of strong and weak oxidants are comparable. Monotonous decrease in open circuit potential taking place in the course of the reaction (Surwade et al 2009) is due to the fact that monomer oxidation gives way to oxidation of end amino group of di- and trimer (which possess lower oxidation potentials). However, in the case of longer oligomers, the difference is smoothed, this fact accounting for low molecular masses of oxidation products. In alkaline media, linear chains prevail, since chain propagation proceeds faster than cyclization processes (Losito et al. 2003). In oligomers with heterogeneous chain structure, no polyconjugation is observed, and we should expect low conductivity (see Tables 1 and 2). The process of aniline oxidation with the participation of deprotonated reactants (monomer and growing polymer chain) which yields aniline oligomers of heterogeneous structure lacking in polyconjugation will be termed “oligomerization”.
At pH values ranging from 2.5 to 3.5, the major portion of aniline is protonated, and its oxidation potential increases. At the same time, under these conditions, imino groups in polymer chains are still not protonated, this resulting in imbalance of redox interaction between monomer and growing chain. The chain possessing low oxidation potential cannot oxidize protonated monomer with increased oxidation potential. Within the pH range 2.5 to 3.5, oxidation is drastically decelerated. Redox process proceeds only at the expense of oxidation of traces of neutral monomer (which has low oxidation potential). Neutral monomer is fed through shift of deprotonation equilibrium AnH+A- = An + H+A- (Baizer & Lund, 1983).
How does pH change affect the structure of polymerization products? Oligomers obtained in alkaline media are mainly linear, and their degree of polymerization does several tens (Tables 1, 2). As oxidation slows down (i.e., pH decreases, and neutral aniline is spent), length and composition of oligomers change. The rate of monomer addition (i.e., chain growth) decreases, and intramolecular cyclization prevails. This change leads to the formation of short cycle-containing molecules. At pH < 3.5, the main product of oxidation is aniline dimer with ortho-structure (Stejskal et al., 2010). Virtually all these dimers undergo intramolecular cyclization to produce phenazine structures, since cyclization rate in acid media is higher than that in alkaline media (Losito et al. 2003).
Aniline dimerization and cyclization of dimers occur at low potentials and may start under the action of weak oxidants. As a result, aromatic phenazine rings with high oxidation potential are formed. This fact is corroborated by the slow increase in open circuit potential taking place in the course of oxidation in the pH range 2.5 to 3.5 (Ding et al. 2009; Ding et al. 2010). It is well-known that phenazines can take part in copolymerization and even homopolymerization, but phenazine starts adding monomer molecules (“germinates”) at high oxidation potential (+1.05 V) (Inzelt & Puskas, 2004; Puskas & Inzelt, 2005). The value of “germination” potential of phenazine is similar to the potential of PANI growth start (Yang et al, 2007), and, consequently, we suppose that phenazine ring serves as a nucleate of future polymer chain. Thus, in the pH range 2.5 to 3.5, according to Scheme 6, slow accumulation of aromatic phenazine rings takes place; these rings have high oxidation potential and are intermediates of polymerization and nucleates of future polymer chains.
Accumulation of aromatic phenazine rings.
The growth of polymer chains with regular structure becomes possible after the next protonation step. At pH < 2.5, the most important pH transition in aniline polymerization takes place. The protonation of monomer amino groups is followed by protonation of imino groups in oligomers, and their oxidation potential increases. This process restores balance of redox interaction between reactants. The chain is once again able to oxidize and add monomer, although in the protonated form which dominates in this pH range. The chain growth taking place at the expense of interaction between protonated chain and protonated monomer and leading to the formation of polyconjugated conducting polymers will be called “polymerization” (Scheme 8).
The “germination” of phenazine nucleate and propagation of PANI chain.
However, in acidic medium (where the majority of monomer molecules are protonated), oxidative polymerization of aniline cannot start with the reaction between cation radical of monomer and protonated aniline molecule, since (according to quantum-chemical calculations) interaction of two small particles bearing excess positive charge is not energy-favored (Ćirić-Marjanović, 2006). To start growth of regular chains, larger polyconjugated fragment is needed; only this fragment is able to lower the energy of interaction between oxidizing site and monomer. These particles are formed in the initial stage of oxidation (“induction period”). We suppose that they are phenazine rings. The role of phenazine as a bulk polyconjugated particle involves delocalization of positive charge of cation radical. At pH < 2.5, this induction period is similar to aniline oxidation in 2.5 – 3.5 pH range and proceeds according to the “oligomerization” mechanism. Aniline cation radical and deprotonated monomer (having low oxidation potential) take part in electrophilic substitution with preferential formation of ortho-dimers and their subsequent cyclization (Scheme 7).
Chain growth begins with addition of monomer unit to phenazine nucleate with cyclic structure and high oxidation potential. This is a limiting step of the whole process; its energy barrier corresponds to a potential of +1.05 V. After addition of monomer unit, the nature of growing end changes. Instead of tertiary nitrogen atom embedded into aromatic ring, new active site (end amino group) is formed; its structure is repeated in the process of polymer growth. Oxidation potential of amino group is lower than that of phenazine, and this fact leads to considerable acceleration of polymerization (Li et al., 2002).
The presented mechanism agrees with the behavior of open circuit potential. The character of variation of this potential in acid medium strongly differs from that observed in alkaline medium (Surwade et al 2009; Geng et al., 1998). In acid medium, the initial stage is accompanied by increase in the oxidation potential, which corresponds to accumulation of phenazine nucleates. As exothermic chain propagation starts, the oxidation potential decreases down to a value of +0.7 to +0.8 V which is characteristic of growing pernigraniline chains. Thus, the oxidation potential of aniline at pH < 2.5 passes through a maximum corresponding to the transformation of phenazine nucleate into active polymerization site. In order to overcome that maximum, a reagent with an oxidation potential higher than +1.05 V is necessary. On the other hand, oxidants with a potential lower than +1 V ensure both initial and final stages of oxidative polymerization.
Ammonium persulfate (having an oxidation potential of +2.01 V readily overcomes the barrier related to “germination” of phenazine nucleates, and oxidative polymerization is completed in several minutes. Weak oxidants, such as silver nitrate, cannot oxidize phenazine structure. Therefore, the induction period in the reaction with AgNO3 takes hundreds of hours. The oxidation stops at the stage of generation and accumulation of phenazine nucleates. Nevertheless, if pH < 2.5, polymerization with the formation of polyconjugated chains does occur and is characterized by a fairly high yield. Obviously, in the absence of other strong oxidants phenazine ring is oxidized with atmospheric oxygen whose oxidation potential is equal to +1.23 V; in addition, oxygen is soluble in water and therefore accessible for the reactants. The formation of traces of polyaniline under the action of oxygen was reported in (Liao & Gu. 2002).
After “germination” of phenazine nucleates, i.e., transformation of these nucleates into active sites of polymerization, the oxidation potential decreases to +0.7 - +0.8 V (Geng et al. 1998) and, therefore, oxidants with low potential are again able to participate in oxidation process. Thus, weak oxidants, including silver nitrate, are capable of keeping both the initial aniline oxidation step (generation of phenazine units) and polymer chain propagation until the reaction is completed. The final stage involves oxidation of most part of monomer, and it consumes an equivalent amount of AgNO3. The presence of a strong oxidant with a potential higher than +1.05 V is necessary only at the stage corresponding to the transformation of phenazine units into active polymerization sites. Therefore, the concentration of a strong oxidant, as well as its contribution to the overall oxidation process, may be insignificant.
We believe that the oxidation of aniline to the emeraldine form in the absence of strong oxidants can held under the influence of a weak oxidant with oxygen. Phenazine units can be converted into active sites of polymerization under the action of atmospheric oxygen, but in this case the reaction is slow. An exception is likely to be a combination of atmospheric oxygen with Fe3+ which is known to catalyze oxidation processes (Davied et al. 1995). There are other examples of fast passing the energy barrier of phenazine “germination” and acceleration of polymerization. Oxidation of aniline can be performed with the use of a mixture of oxidants (Bober et al., 2011). Addition of a small amount of strong oxidant (when its concentration is lower than several percent of the amount required for complete oxidation) initiates the polymerization process. This allows to overcome high energy barrier and obtain a sufficient amount of active sites of polymerization. Weak oxidant then reacts with the main amount of aniline to accomplish chain growth at relatively low oxidation potentials.
Long induction period can also be shortened by change of the chemical structure of the nucleate. It is well-known that catalytic amounts of aromatic para-diamines sharply shorten the induction period and hence the overall time of polymerization (Tran et al. 2008; Bober et al., 2010). We propose the following mechanism of the process. Aromatic diamine is involved in the formation of phenazine nucleate. Its oxidation potential is lower than that of aniline; therefore, oxidation of diamine is preferred. The reaction between diamine and aniline at the dimerization stage yields aminophenazine (Scheme 9).
This aminophenazine nucleate gives rise to regular polyconjugated chain originating from exocyclic amino group, and high energy barrier of oxidative polymerization of aniline is thus reduced in the nucleate “germination” stage. As a result, the polymerization process is strongly accelerated due to acceleration of its slowest step. It should be noted that addition of o-phenylenediamine does not accelerate the process and that addition of m-phenylenediamine, by contrast, sharply decelerates polymerization of aniline via extension of induction period. The latter phenomenon is related to the formation of “defect” initiation site which cannot promote the growth of polyconjugated chain. After complete consumption of m-phenylenediamine for the formation of “defect” oligomers, polymerization of aniline is resumed.
Formation of aminophenazine nucleate giving rise PANI chain grows.
Aniline polymerization, as well as oligomerization, proceeds according to electrophilic substitution mechanism. However, as opposed to oligomerization, the former yields polymers with strictly regular structure. The polymer containing only para-substituted units is formed. The reason for changes in reaction mechanism and transition from mixed ortho- and para-substitution into highly selective formation of para-structures is thus the following. At pH < 2.5 polymer grows in the protonated pernigraniline form where the chain bears excess charge (positive polarons). In this case, para substitution becomes energetically more favorable and is the only possible way of electrophilic substitution, since it reduces the energy of the chain. Only in the case of para-substitution, polyconjugation is formed which ensures delocalization of positive charges in pernigraniline and decreases repulsion energy. Thus, protonation of polymer chain forbids ortho-substitution (the most typical for aniline), as well as all other types of electrophilic substitution ("head-to-head", "tail-to-tail") and leads to the formation of regular polyconjugated para-structure and polymer chains possessing high conductivity.
Polymerization stops after depletion of one or other reactant (monomer or oxidant). The state of PANI after termination depends on the strength of the used oxidant, as well as on molar ratio oxidant/monomer. When strong oxidant is taken in excess, the resulting polymer remains in pernigraniline form. If the reaction is carried out under stoichiometric conditions, or with aniline in excess, pernigraniline is reduced to emeraldine at the end of the reaction.
Pernigraniline is much less stable than emeraldine and takes part in irreversible reactions with electron donor agents. Apparently, during PANI synthesis and after its termination, end imino groups of polymer undergo hydrolysis. This supposition is corroborated by the presence of oxygen in deprotonated PANI samples, as well as by the presence of absorption bands of hydrolyzed structures in IR and NMR spectra of polymers (Kriz et al., 2011; Kellenberger et al., 2011). In the opinion of the authors (Gospodinova et al., 1994), hydrolysis of active sites proceeds continually both during oligomerization and after termination of polymer growth. The hydrolyzed terminal amino group effectively blocks any further growth reactions, because it cannot add monomer; therefore, aniline oxidation cannot be considered as a process proceeding without termination (i.e., “living” polymerization).
As a final matter, it should be noted that chain reaction of aniline oxidation in alkaline, weakly acidic and acidic media proceeds according to different molecular mechanisms, and, as a result, products with different molecular structures, morphologies and properties are formed. This is caused by the existence of monomer and growing chain in protonated and deprotonated forms which possess different oxidation potentials. Oxidation of aniline at pH > 2.5 occurs with the participation of deprotonated monomer and growing chain which have low oxidation potentials; therefore, it may be performed entirely under the action of weak oxidant. The products of this reaction are oligomers with low degree of polyconjugation and low conductivity.
At pH < 2.5, the reaction occurs in a stepwise mode, and variation of the oxidation potential during the process is described by a curve passing through a maximum. In the induction period, the oxidation follows low-energy path at a potential of +0.5 V and yields cyclic dimers having phenazine structure. The limiting stage is “germination” of phenazine rings (nucleates of future polymer chains), when the growth of linear polyconjugated chain starts. Phenazine has an oxidation potential of +1.05 V, and oxidative addition of monomer to this fragment is possible only in the presence of strong oxidants. If the oxidant has a potential lower than +1 V, the process is inhibited at the stage of formation of phenazine units. However, addition of 1 mol % of strong oxidant is sufficient to overcome this barrier. At the chain propagation stage, the oxidation potential again drops down to +0.7 V, and the reaction can proceed further under the action of weak oxidant.
Chain propagation involves protonated monomer and the chain possessing excess charge (positive polarons). Chain protonation constrains the reaction to produce regular polymer chains with para-coupled units. Regular polymer chain possessing extended conjugation system is characterized by the lowest energy due to delocalization of positive polarons over the conjugation system. Growth of other structures is terminated, since they become unfavorable from the viewpoint of energy.
According to protonation constants of nitrogen-containing groups of monomer and chain taking part in polymerization, the process can be divided into three ranges (Scheme 10):
pH > 3.5, where all types of nitrogen-containing groups are deprotonated, and oxidation proceeds according to regularities of synthesis of typical dielectric polymers (e.g., phenols) with the formation of irregular chains having molecular masses of up to 5 000.
3.5 > pH > 2.5, where monomer is protonated, while imino groups of chains are not; imbalance of redox processes is observed, this leading to slow formation of cyclic dimmers with phenazine structure.
pH < 2.5, where imino groups of chains, as well as monomer, are protonated, the balance of electron exchange between chain and monomer is restored, but all growth patterns except para-substitution are forbidden. This leads to the formation of regular polyconjugated chains with high molecular weight.
Thus, regular structure of PANI responsible for its unique properties is formed at pH < 2.5 due to protonation of imino groups in polymer chain.
Oxidation of aniline depending on protonation constant of monomer pKAn and that of chain imino groups pKPANI.
The important feature of PANI synthesis is heterophase nature of polymerization. As a rule, synthesis begins under homogeneous conditions, since both aniline and oxidant are well soluble in acidic aqueous media. However, already in the initial step, the reaction becomes heterophase. This process is called “precipitation polymerization”, because it gives a precipitate (insoluble polymer). However, PANI precipitation cannot be considered as irregular agglomeration. Complex morphology of particles and layers formed by macromolecular chains in the course of polymerization gives evidence that self-organization of macromolecules occurs during synthesis. From theoretical and practical points of view, the mechanism of PANI self-organization and reasons for unusually high selectivity of oxidative polymerization of aniline are the main problems. It is the pattern of assembly of polymer chains in macroscopic sample and molecular structure of these chains that determine properties of material and application areas.
Recently, numerous types of PANI supramolecular structures have been obtained. Their synthesis and potentialities are discussed in several reviews (Bhadra et al. 2009; Stejskal et al. 2010; Wang et al 2011). The basic structures are one-dimensional (nanofibers, nanotubes and nanorods) (Fig 4c, 8b, 10a, 12a,b); two-dimensional (ribbons, plates) (Fig 4b, 8a), and three-dimensional (granules, microspheres and nanospheres) (Fig 4d, f1, 2c). Their combination and more complicated organization give rise to a vast diversity of structures. Different hierarchical formations are built of fibers coming from the common centre or axis (Fig. 10 b, c, d,). One-dimensional structures can be packed in bundles or form a sort of network, flovers (Fig. 12 e) or dendrites. PANI fibers can also form two-dimensional structures called “micromats”. These are rhomboid particles, “weaved” to produce mats of several layers of fibers coming from the vertex of the rhombus and crossing at right angle (Fig.12 d). Among three-dimensional structures, microspheres and hollow microspheres should be mentioned (Fig 4 a). Their outer diameters fall in the range from a half of micrometer to several micrometers, and the thickness of their walls varies from nano- to submicrometer sizes. The spheres can serve as centers of fiber growth or, conversely, the fibers can grow inside the spheres. Under certain synthesis conditions, one or another structural type dominates, thus virtually determining the morphology of the polymer as a whole.
PANI supramolecular structures may form not only in the volume of reaction medium, but also on the interface between two phases. In the course of aniline polymerization, thin films of polymer are generated on the surfaces contacting with polymerization medium (Malinauskas, 2001). These surfaces are reactor walls, macroscopic support immersed in polymerization medium, or nanoscopic carriers dissolved or dispersed in this medium. When the synthesis is completed, all these surfaces become covered with PANI layer with a thickness ranging from several nanometers to hundreds of nanometers. PANI layers, as a rule, have homogeneous thickness and are strongly attached to the surface. Adsorption onto macroscopic support leads to the formation of films, and combination of PANI with nanoscopic carrier may give colloidal dispersions of polymer (Sapurina & Stejskal, 2008).
Supramolecular structures of PANI and aniline oligomers: a) PANI nanotubes, b) nanofibers, c) PANI granules. d) The structure of two-dimensional oligoaniline, “nanomats”, in the presence of nanospheres and nanoribons. e) Hierarchical nanostructure of PANI flowers.
All the supramolecular structures are formed in the course of the synthesis, and the synthesis conditions exert the decisive effect on this process. Although the morphology is very sensitive to the polymerization conditions, it proved to be reproducible when the experimental conditions are strictly obeyed. Smooth transition from one structural type to another with the changes in the synthesis parameters is described in many publications (Steskal et al 1998; Stejskal et al 2008; Ding et al., 2008; Laslau et al 2009). In a number of publications, the stages of formation of supramolecular structures in the course of the synthesis are traced, the data on increase in globule diameter, lengthening of tubes and fibers are given. All these data evidence the processes of specific self-organization occurring during aniline polymerization and ceasing after its termination.
Recent studies have clearly shown that ability for self-organization of polymer chains is inherent to PANI (Huang & Kaner, 2006). The mechanism of formation of PANI supramolecular structures is common regardless of the results (thin films, stabilized colloids, precipitated particles of one-, two- or three-dimensional structure). Self-organization processes are the logical continuation of molecular reactions of synthesis allowing to explain the formation of a given type of morphology under different experimental conditions.
The suggested mechanism of PANI self-organization is based on the concepts of adsorption and agglomeration of nucleates (phenazine rings) (Sapurina & Stejskal 2008). According to molecular mechanism of synthesis, oxidation in pH range 2.5 – 3.5, as well as the initial step of oxidation at pH < 2.5, yields aniline oligomers having cyclic phenazine structure. It is known that phenazines are planar aromatic rings with high π-electron density. Phenazines are insoluble in aqueous reaction medium and tend to adsorb to surfaces and agglomerate. Phenazine adsorption occurs at the expense of π-electron interaction (one of the most energy-consuming types of physical bonds). Its energy is much higher than that of common van der Waals forces, it is comparable with hydrogen bond energy and estimated to be tens of kcal∙mol-1 (Hoeben et al. 2005). Phenazines are planar aromatic structures belonging to the class of discotics. They are prone to crystallization with the formation of stacks and one-dimensional columns or two-dimensional planar templates. Intermolecular binding leading to the formation of columns occurs due to π-π interaction between aromatic rings. The processes of regular assembly of phenazine heterocycles are the most energetically favorable. However, they are not always realized during the synthesis and may give way to the formation of chaotic spherical agglomerates. We suppose that regular and chaotic types of phenazine ring agglomeration create different types of templates which then give rise to polymer chains. This hypothesis allows to explain the formation of various PANI supramolecular structures and gives insight into a number of important properties of the polymer.
The process of formation of polyaniline supramolecular structures corresponds to the paths of molecular reactions. In common with molecular reactions, it depends on pH of reaction medium and oxidation potential of oxidizing agent. Let us consider general rules of formation of supramolecular structures under different experimental conditions.
7.3.1.1. Oxidation at pH > 2.5
In alkaline media, aniline oxidation leads to the formation of oligomers with heterogeneous molecular structure and molecular masses of 3 000 – 5 000; these chains are little capable of self-organization. Oligomer chains are poorly soluble in alkaline medium, and, therefore, during oxidation, trivial aggregation and precipitation of amorphous structures occur. These heterogeneous oligomers form amorphous precipitate (Fig.4 e; 6), inhomogeneous films possessing low adhesion to the surface and micro- and nanospheres (Fig 4a). The reason for the formation of spheres is a poor solubility of aniline at high pH and the conditions peculiar to emulsion polymerization (Sapurina & Stejskal 2010). In alkaline medium, aniline is present in the non-protonated form and hence poorly soluble. It exists as droplets in the reaction medium. These droplets may be stabilized by anions or surfactants present in the solution; consequently, microemulsions or nanoemulsions with sufficiently narrow particle size distribution appear. The oxidation proceeds mainly on the surfaces of droplets; they are covered with a layer of oligomer, but can contain the non-consumed monomer in their internal areas. In this case, hollow spheres are formed (see Fig.16). After addition of acid to the solution, the majority of products obtained in alkaline medium dissolve (as a result of protonation of nitrogen-containing structures). Most of these products are also soluble in organic solvents, such as chloroform, tetrahydrofuran, alcohols (Laska & Widlarz, 2005). Oligomers do not retain their initial morphology under heating; they melt and form monolith (Stejskal & Trchova 2012).
In going to neutral or weakly acidic media, molecular mass of oligomers decreases, and the content of phenazine rings rises. Oligomers become more homogeneous in composition and are prone to crystallization and self-organization. Products of oxidation in weakly acidic media demonstrate planar two-dimensional or one-dimensional morphology (Fig. 4b, f; 8a). These are particles like plates and bands or rhombic micromats and sticks (Fig 12d). We suppose that they are formed as a result of assembly of phenazine columns, as well as tri- and tetramers containing phenazine rings. Two-dimensional and one-dimensional structures differ in durability. Bands and plates with rather weak bonds between phenazines lying in one plane tend to dissolve at pH < 4 and rearrange to form fibers (Yu et al., 2011). At low pH, two-dimensional morphology is not formed; one-dimensional structures with interactions at the expense of more strong π,π-overlapping of adjacent planes prevail.
In the pH range 2.5 to 3.5, the majority of oligomers are phenazines insoluble in water. Compact phenazine molecules of the same type organize into particles of certain geometry. The materials obtained within this pH range possess the highest degree of crystallinity (Prathap & Srivastava. 2011). Here one-dimensional structures (needle-shaped crystallites with smooth surface or fibers which, as a rule, are assembled into more complex formations) prevail (Fig.8b). They consist of columns made of phenazine nucleates which have not yet started growing polymer chains. The formation of all types of oligomers proceeds at low oxidation potentials (starting from +0.4 V) according to oligomerization pattern, i.e., oxidation of reactive deprotonated form of aniline. Therefore, the reaction may proceed under the action of weak oxidants. Due to the absence of polyconjugation, these materials demonstrate low conductivity (< 10-8 S∙cm-1).
7.3.1.2. Oxidation at pH < 2.5
At pH < 2.5, in the initial stage of the synthesis, as well as in the 2.5 – 3.5 range, phenazine nucleates of the same type are formed. There are no long oligomers of heterogeneous structure in this case. Aggregation of phenazines leads to the formation of template of future polymer particle, its shape being programmed in the first stage of synthesis. When the induction period is completed, nucleates start to grow polymer chains and reproduce shape of the template. In spite of the presence of only one type of nucleation centers, the structure of future PANI may vary. In this case, structure is determined by the conditions of self-organization of phenazine nucleates. At pH < 2.5, type of supramolecular structure depends on the duration of induction period (the stage of formation, accumulation and self-organization of nucleates). The long induction period favors organized assembly of phenazine into columns and is followed by the growth of one-dimensional structures, while short induction period resulting in fast “germination” of nucleates leads to chaotic agglomeration of nucleates and formation of spherical PANI particles (Sapurina & Stejskal 2012).
The use of a strong oxidant (e.g., persulfate) which initiates fast “germination” of nucleates and does not allow them to reach concentrations sufficient for assembly leads to the polymer assembled from granules (Fig.12c). In the presence of weak oxidants, when induction period is long, and phenazine cannot “germinate”, mainly one-dimensional structures are formed (Fig.12a, b). The frames of hierarchical and one-dimensional structures are single phenazine columns or groups of columns assembled into more complex agglomerates. Phenazine agglomerates start growing polyconjugated chains under the action of a strong oxidant with a potential higher than + 1.05 V. In the absence of this oxidant, the transition occurs under the action of oxygen (+1.23 V).
Growth of polyconjugated chains leads to the formation of conducting material possessing properties of organic semiconductor. Supramolecular PANI structures were shown to be very stable; they are not destroyed during polymer carbonization and apparently soluble only in N-methylpyrrolidone. Carbonization of PANI does not lead to melting, as opposed to that of oligomers. The structure of one-dimensional and three-dimensional particles is retained, although their dimensions decrease (Zhang & Manohar 2006). We suppose that high energy of binding of initial phenazine fragments and interchain interactions cause high stability and low processability of PANI.
All supramolecular structures were discovered accidentally when refining the methods of PANI synthesis. The combination of synthesis parameters leading to the prevalence of a certain type of PANI particles is called “method of the synthesis of a supramolecular structure”. In the literature, special consideration is given to obtaining one-dimensional structures in the absence of any structuring template. Methods of synthesis of PANI fibers and tubes were developed by different researchers under different experimental conditions. Let us consider experimental conditions of different methods in terms of the suggested mechanism of formation of one-dimentional supramolecular structures. According to the mechanism, type of PANI supramolecular structure should be determined by the duration of induction period. Long induction period favors organized assembly of phenazines and formation of one-dimensional structures, while short induction period followed by fast “germination” of phenazines leads to chaotic agglomeration and formation of spherical particles. Analysis of synthesis conditions and polymerization process shows that this rule works for the following methods known from the literature.
The dilution method (Zhang et al 2006). Polymerization of aniline is performed under the action of persulfate at pH < 2.5 and at low concentrations of reactants (< 0.001 mol∙L-1). Conducting PANI has the morphology of fibers several tens of nanometers in diameter and several micrometers in length. Here, long induction period (the stage of accumulation of phenazine nucleates) is observed, since at low concentrations of reactants, rate of nucleate “germination” decreases.
The method of soft templates (Ding HJ et al 2008). Polymerization of aniline is performed in the presence of weak organic acids under the action of both strong and weak oxidants; concentrations of reactants are higher than 0.1 mol∙L-1. Nanofibers and nanotubes with external diameters of 50–500 nm and lengths of up to 10 μm are produced. In the presence of weak organic acids, the initial acidity of the reaction mixture is above pH 3. Thus, the reaction conditions enter the pH interval from 2.5 to 3.5, where the rate of aniline oxidation is dramatically reduced, and long induction period is observed. Under these conditions, reactions of chain growth are reduced and only slow accumulation of phenazine nucleates takes place.
The method of decreasing pH (Stejskal et al 2010). Polymerization of aniline (> 0.1 mol∙L-1) proceeds under the action of different oxidants at low concentrations of strong acids or in the absence of any acids. Polymerization yields nanofibers and nanotubes with external diameters of 50-200 nm and lengths of up to micrometers. Equivalent to soft templates method at low concentrations of strong acids or in the absence of any acid oxidation falls within the acidity interval with pH > 2.5 characterized by slow accumulation of nucleates.
The method of polymerization at the interface (Huang & Kaner, 2006). Polymerization proceeds at the interface of organic phase containing aniline (> 0.1 mol∙L-1) and aqueous phase containing an oxidant (persulfate, Fe+3). The reaction is carried out in the presence of acids dissolved in one phase. PANI nanofibers grow at the liquid–liquid interface separating the reactants. There are two reasons for the formation of PANI nanofibers at the interface between immiscible liquids: (1) decrease in medium polarity at the organic solvent/water interface and suppression of protonation of nitrogen-containing structures (which is equivalent to increase in pH and going to the acidity interval pH > 2.5, where slow accumulation of nucleates occurs); (2) decrease in polymerization rate which is limited by diffusion of reactants at the interface (which is equivalent to dilution).
The method of mixed solvents (Zhou et al, 2007). Aniline (> 0.1 mol∙L-1) is oxidized with persulfate in the mixed water/alcohol medium in the presence of acids. The reaction gives PANI fibers. Similarly to polymerization at the interface, dilution of water with organic solvent leads to decrease in medium polarity. This process suppresses protonation of reactants, and the reaction falls within the acidity interval with pH > 2.5 characterized by slow accumulation of nucleates.
Methods based on cycling of electrical potential or on galvanostatic technique (Guo & Wang. 2008; Gao & Zhou 2007; Molina et al, 2010). Polymers are produced during the electro-oxidation of aniline at pH < 2.5 in the galvanostatic regime or during potential cycling when the initial potential of more than +1.05 V is reduced down up to negative values. Nanofibers or a network of nanofibers are formed on an electrode. Decrease in oxidation potential suppresses “germination” of phenazine nucleates and promotes accumulation of these nucleates.
Methods of weak oxidants (Sapurina & Stejskal 2012). The methods are equivalent to electrochemical techniques.
The method of catalytic additives of aromatic diamines with para-structure.(Tran et al., 2008) Polymerization of aniline (> 0.1 mol∙L-1) proceeds under the action of persulfate at pH< 2.5 in the presence of catalytic amounts of para-semidine, para-phenylenediamine etc. Shortening of induction period leads to the presence of higher fraction of one-dimensional structures (fibers) in the products. This method is the only known exception to the general rule. Apparently, introduction of diamines leads to changes in nucleate structure and fast accumulation of high concentrations of nucleation centers (according to the Scheme 9) promoting the formation of one-dimensional templates.
In all cases, decrease in temperature favors processes of self-organization of phenazine rings into columns and decreases fractions of other morphology types, while increase in acidity results in transformation of one-dimensional structures into granules.
At pH<2.5, synthesis of PANI involves two steps: induction period and growth of polymer chains. The process of formation of supramolecular structures also may be divided into two stages; we term these stages “nucleation period” and “period of polymer formation”. These phases fully coincide with the steps of molecular synthesis; let us examine the processes included in these steps.
In acidic media (at pH < 2.5) conducting PANI (emeraldine) can be obtained as an insoluble precipitate or nanolayer on template surface or dispersion of polymer in aqueous (or organic) phase. Polymer particles included in these formations may have various morphologies (granular, one-dimensional or dendroid). How are all these structures formed? The induction period (formation of insoluble cyclic dimers) is at the same time nucleation stage (i.e., adsorption and association of phenazine nucleates and creation of all types of supramolecular structures). Adsorption of nucleates onto support leads to the formation of PANI films and adsorption onto stabilizer carrier to formation of colloidal particles (Stejskal & Sapurina, 2005). Association of phenazine oligomers results in the appearance of templates of presepitate (Scheme 11).
While phenazine aggregation in reaction medium depends only on synthesis conditions, formation of films and colloids is influenced by the nature of support and carrier. Analysis of literature shows that morphology of thin films and colloidal PANI particles is formed in accordance with the concept of selective interaction between phenazine and suface:
PANI films grow more actively on negatively charged “anionic” surfaces than on positively charged “cationic” ones (Onoda et al 2006; Shinkai et al 2005).
The rates of PANI layer growth on hydrophobic templates are higher than those of growth on hydrophilic materials (Onoda et al, 2006; Shinkai et al 2005).
PANI morphology depends on hydrophilicity/hydrophobicity of the template. Films with homogeneous thickness are formed on hydrophobic surfaces, while on hydrophilic templates, island-like films or polymer layers with rough profiles are grown (Scheme 11) (MacDiarmid 1997).
Agregation of phenazine nucleates: (a) chaotic agglomeration b) formation of two-dimentional and c) one-dimentional templates.
Peculiarities of film growth and morphology of these films can be explained by the fact that phenazine nucleate is a hydrophobic organic base. As a base, it interacts strongly with anionic sites and is distributed more uniformly on hydrophobic surfaces. Specific influence of magnetic materials and magnetic field on the growth of PANI film was also revealed. Particularly, some authors observed preferential growth of polymer layer on the boundaries of ferrite domain walls (Fig.13) (Babayan et al. 2012), change of film morphology under the action of magnetic surface, influence of magnetic field on the rate of film formation and its structure (Cai et al. 1997; Ma et al. 2008). The above-listed phenomena may be related to magnetic cation-radical nature of phenazine nucleates showing up under the conditions of synthesis.
The influence of dispersed forms of carrier favoring the formation of PANI colloidal dispersions is also very specific. Depending on the chemical nature of the carrier, it can accelerate aniline polymerization; the more its surface area, the higher the polymerization rate (Stejskal et al. 2003). According to the molecular mechanism, nucleation stage proceeds at low oxidation potential, but culminates in the energy-consuming stage (addition of first monomer unit to phenazine). Certain types of carriers are able to activate phenazine rings and accelerate their “germination”. Activating carriers include ferrites and carbon materials (soot, graphite, carbon nanotubes). In the presence of these additives, induction period can be considerably shortened, and polymerization rate increases many times (Konuychenko et al. 2006b; Babayan et al. 2012). It was also established that on electrodes made of carbon materials, aniline polymerizes at lower potentials than on platinum electrode (Matsushita et al. 2005). Apparently, in the case of carbon electrode, activation takes place due to the influence of π-electron structure of carbon on π-electrons of phenazine rings, and in the case of ferrites, activation is caused by magnetic interactions. After addition of first monomer unit to phenazine, chain growth proceeds with a relatively low oxidation potential. Thus, “germination” is an “energy barrier” between nucleation stage and the stage of polymer formation. After the start of chain growth, nucleation is virtually terminated. Polymer is formed on the basis of the grown nucleation centers.
Thin PANI film with a «honeycomb» structure that repeats the microstructure of ferrite grain boundaries prepared on the surface of MnZn ferrite by in-situ polymerization
The formation of PANI supramolecular particles of 3D and 1D morphology and films on (a) hydrophilic and (b) hydrophobic support.
The existence of “energy barrier” between nucleation and growth stage has an influence on polymer morphology. Rather frequently PANI consists of particles of one type with practically similar dimensions. Fig. 14 shows spherical particles of PANI colloid and polymer nanotubes. In both cases, low size polydispersity is observed. This result is due to the fact that all growth processes proceed under similar conditions and during similar periods of time, i.e., growth starts and ceases simultaneously for all particles. With the start of growth reaction, nucleation is terminated, and new nucleation centers are not supplied any more. Only nucleates which have had sufficient time to start growth can now take part in propagation. Reaction is completed also synchronously after one of reactants is exhausted. All these processes are responsible for the fact that in the absence of secondary aggregation, PANI particles with a very narrow size distribution are formed. Polydispersity of spherical colloidal particles and globules comprising PANI precipitate is 1.05 – 1.1 (Stejskal et al.1996) Nanofiber diameters and nanotube wall thicknesses also have narrow size distributions.
PANI colloidal particles a) and PANI nanotubes b) with low polydispersity of particle size. Scanning electron microscopy.
By the beginning of the growth stage, initial fragments of future polymer chains are already associated or attached to the surface, and the foundations of supramolecular “architecture” of PANI are laid. During exothermic growth reaction, templates (aggregated phenazine nucleates) which have added monomer units proceed to increase polymer mass at a high rate. The growth of PANI and other conducting polymers is dramatically different from the well-known propagation of dielectric polymers. Conducting polymer grows not as an individual chain, but as a conglomerate of chains possessing electronic and ionic conductivity (Blinova et al. 2007). During the growth process, both monomer and oxidant are soluble, i.e. dispersed at the molecular level. At the same time, growing chains are agglomerated; they are already bound at the expense of interactions between phenazine nucleates and/or between phenazine nucleates and the surface and therefore “feel” each other.
Molecular weight of the polymer increases in the following manner (Scheme 13). Oxidant oxidizes one terminal amino group in agglomerate of polymer chains. Positive polaron generated after oxidation is easily delocalized within the whole agglomerate and stabilized by mobile acid anion. Oxidation sites created by oxidant are redistributed within the whole conducting particle and minimize its energy. This redistribution determines the following additions of monomer units. Addition of monomer unit may occur not in the point where interaction with oxidant took place. PANI particle takes part in redox interaction as a single entity (Sapurina & Stejskal, 2008; Stejskal et al. 2010). Conducting polymer propagates as a self-organizing agglomerate of polymer chains; these chains response to oxidation/reduction processes as a single object and control shape of polymer particles. Cooperative interaction between oxidant, polymer particle and monomer increases probability of the process manifold and serves as a factor accelerating polymerization (the so-called “autoacceleration”).
Mechanism of heterophase PANI growth involving electronic and ionic transport processes (see text).
PANI granules, as well as spheres, belong to three-dimensional formations, but their structure and properties differ dramatically. Spherical shape is created by aniline droplet which turns into an agglomerate of non-conducting oligomers after oxidation. The basis of conducting granule is a chaotic cluster of phenazine nucleates which has initiated growth of regularly packed polyconjugated chains.
The formation of granules proceeds according to the diffusion-limited aggregation mechanism. Initial phenazines form a cluster, and this cluster starts growth of polyconjugated chains. Then, the second cycle of cluster-cluster diffusion-limited aggregation may take place, and a particle resembling blackberry is formed. The second cycle is observed in the beginning of the propagation step and inherent to particles which are not bound with surface. Apparently, this process is caused by growth of polymer chains and changes in surface properties of the initial cluster and, therefore, its interactions with medium. “Granule” is a common term for a particle assembled from clusters. In the course of the propagation step, granule grows at the expense of increase in dimensions of individual clusters, while the number of clusters in the particle remains constant. The cluster is a sphere; the granule has a quasi-spherical shape. In the final stage of the synthesis, insoluble granules aggregate to form micrometer-size particles of irregular shape (Spivak et al. 2010).
Hierarhical structure of PANI granules. a) SEM image, b) Atomic Forse microscopy.
Similarly to granules, one-dimensional structures (fibers and tubes) grow in the course of propagation. Individual column of phenazine nucleates may serve as a template for fiber growth. The presence of larger initial template is necessary for tube growth; this template should shape the inner cavity of polymer nanotube. Depending on synthesis conditions, templates may vary. The most frequently observed templates are crystalline oligomers of aniline forming tubular needle-shaped structures (Stejskal et al. 2006). However, PANI tubes with square and rectangular cross-sections were also obtained; these structures arise with the participation of inorganic crystals (Ding et al. 2009). Template should not necessary be one-dimensional and have the length corresponding to tube size. In the propagation step, lengthening of fibers occurs, and, by analogy with fibers, tube length also increases with retaining the initial shape of this tube. We suppose that during growth, central rod of one-dimensional structure lengthens at the expense of build-up of new cyclic oligomers. However, the formation of phenazine rings occurs not in the solution, but directly on the surface of butt end of growing fiber or tube. In essence, this process is analogous to growth of organic single crystal. It is less energy-consuming than formation of new phenazine sites in solution and occurs at lower oxidation potential (Sapurina & Stejskal 2008). Simultaneously, wall thickness also increases. Polymer chains arising in heterogeneous medium are regularly organized and interact with adjacent chains via hydrogen bonds. Apparently, the outer diameter of lengthening one-dimensional structure is controlled by the fact that the wall-forming chains “feel” their environment. The whole system, in common with crystal, controls its dimensions during growth.
Heterophase growth of polymer particles (involving processes of electronic and ionic transport of oxidation sites) allows to reach high level of self-organization. With that, a certain shape of particle (from spheres with clear boundaries to tubes with definite diameters) is formed. One is tempted to compare oxidative polymerization of aniline with the processes of nucleation and growth of crystals. Slow and energy-consuming stage of formation of initial crystallites occurs in solution. The subsequent crystal growth proceeds directly on the surface of a crystallite and develops very fast. Just as crystallite surface catalyzes processes of “assembly” of crystal structure, redox-active conducting polymeric agglomerate catalyzes and organizes assembly of monomer units.
To summarize the section devoted to stages of assembly of PANI supramolecular structures and influence of oxidation potential and pH of reaction medium on PANI morphology, we should note the following points. The formation of uniform phenazine nucleates always leads to high supramolecular order (be it organization of oligomers or polymer chains). In contrast with the case of oligomers of heterogeneous structure, there are no amorphous formations. The assembly proceeds according to reactions of molecular synthesis. Supramolecular architecture of conducting PANI laid down in the induction period (during organization of phenazine rings) is fixed and completed in the propagation step during the formation of hydrogen bonds between regularly packed polymer chains. These types of intermolecular interactions are the basis of a diversity of supramolecular PANI structures.
Comparison between different types of PANI supramolecular structures obtained under similar experimental conditions reveals many common features. Not only particles of one type (e.g., granules) have similar dimensions; linear dimensions of structures of different types also coincide. Thus, in one reaction vessel, PANI films and colloids may be obtained simultaneously (or films and granular precipitate). Radii of colloidal particles are equal to film thicknesses, dimensions of precipitated PANI granules are also in good agreement with the thicknesses of films (Riede at al. 2002; Sapurina et al 2002). Thickness of nanotube walls is always identical to radius of fibers and simultaneously equal to thickness of walls of nanospheres obtained in the same experiment as one-dimensional structures (Fig.16). These facts indicate that all the supramolecular PANI objects have common structure. The correspondence between linear dimensions of supramolecular objects (film thickness, thickness of polymer tube wall, fiber radius) and molecular mass of PANI forming a given structure was also revealed. Moreover, thickness of an object coincides with the length of stretched polymer chain (when calculation of chain length was performed with regard for zigzag structure (Sapurina et al 2002) and with the use of experimentally established number-average molecular weight of polymer).
Experimental data concerning correlation between linear dimensions of different types of supramolecular structures and dependence between dimensions and molecular mass of polymer can be explained by the hypothesis that PANI structures are organized on the principle of radial arrangement of polymer chains. In spherical particles, polymer chains radiate from the center. Fibers and walls of PANI tubes consist of polymer chains organized perpendicularly to the axis of one-dimensional structure, and PANI films attached to a surface have a structure of polymer brush. This type of organization may be promoted by diphilic nature of growing chain. PANI chain consists of cyclic nucleate and linear “tail”. Under synthesis conditions, phenazine nucleates are deprotonated, and, being deprotonated nitrogen-containing structures, they are hydrophobic. At the same time, growing polymer chains are protonated and hydrophilic. Naturally, hydrophilic chains grow mainly towards aqueous phase, and away from hydrophobic nucleate. Diphilic “nucleate-chain” structure resembles micelle-forming surfactant molecule, with the difference that hydrophobic fragments of PANI chains are strongly attached to each other or a surface.
PANI nanotubes and nanowires together with hollow PANI spheres. (TEM image)
Since the end of the 1980s, mechanism of charge transport in conducting polymers has been studied with the use of four representatives of this class (polyacetylene, polyaniline, polypyrrole and polythiophene) as examples (Skotheim, 2007). All these conducting polymers demonstrate similar features. In the doped conducting form, they possess comparatively low conductivity (less than 102 S∙cm-1 and 104 S∙cm-1 for polyacetylene) characteristic more of semiconductors than metals. Activation character of temperature dependence of conductivity is also typical for a majority of samples. At the same time, the data obtained in the studies of magnetic, optical, dielectrical properties, as well as thermopower, indicate the presence of conduction electrons in doped polymers. Thus, polymers demonstrate dual character and reveal properties of both semiconductors and metals. Low charge carrier mobility (10-1 – 10-4 cm2∙V-1∙s-1 for PANI (Harima et al., 2001) and their high concentration (3∙1020 spin∙g-1) comparable with carrier concentration in metals provide evidence that there are mechanisms of localization of charge carriers in macroscopic samples.
To explain all these experimental data, the model of structurally inhomogeneous conducting polymer was suggested; in this model, the sample is considered as an inhomogeneous metal. The polymer is represented as “a system of conducting islands in dielectric matrix”. According to the model, crystalline “islands” assembled of regularly packed polyconjugated chains exhibit metallic conductivity. Charge carrier mobility and polarizability inside this island are high. However, islands are distributed in a weakly conducting medium which creates a barrier for charge transport. The medium with low conductivity is a set of separate transport paths connecting these conducting islands into one common net. This model presents the best description of properties of conducting polymers, allows to explain localization of charge carriers and one-dimensional transport which is frequently observed and corresponds to the linear dependence σ = f(T1/2) (Epstein et al, 1994; Alechin 2006).
The conductivity of a crystalline island is estimated to be about 106 S∙cm-1, i.e., 4-6 orders of magnitude higher than that of a typical macroscopic sample. It was shown that the island possesses three-dimensional metallic conductivity. Crystalline areas demonstrate rather narrow size distribution and are uniformly dispersed in amorphous matrix. Depending on the used method of synthesis, doping and subsequent treatment, dimensions of crystalline areas may vary from 5 nm to 100 nm (Mazerolles et al., 1999). The level of conductivity of macroscopic sample is determined by degree of overlapping between boundaries of conducting “islands” and may vary over wide limits.
In deprotonated polymers, volume fraction of islands is low, but it increases with increasing degree of doping. Transition from non-doped polymer to doped one demonstrates percolation character. At the doping degree of 20%, percolation transition occurs, and conducting paths between metallic islands start to form; therefore, conductivity increases dramatically. The transport between islands requires activation. With increasing temperature, activation barriers between conducting elements may be more easily overcome, and conductivity grows. Changes in conductivity and inductive capacity depend on temperature and degree of protonation, and this dependence demonstrates fan-like pattern. Increase in the volume of crystalline island during swelling in organic solvent also may promote transition of macroscopic sample into metallic state. The suggested model of “disorganized metal” explains the presence of metallic state in conducting polymers, low level of macroscopic conductivity and activation-requiring transport in macroscopic sample (caused by inhomogeneity in polymer structure).
The model of structurally inhomogeneous PANI was proved directly in the experiment. Inhomogeneous morphology of the polymer, as well as inhomogeneity in the properties of macroscopic samples, was revealed by X-ray structural analysis, luminescence, ellipsometry, electron and atomic force microscopy (Leite et al 2008; Lux et al 2003). Crystalline islands were observed as dense inclusions in amorphous matrix with the aid of high-resolution transmission electron microscopy and atomic force microscopy (Mazerolles et al 1999). (Fig.17). The model of inhomogeneous metal describes properties of conducting polymers well, but it has a drawback: the reasons for appearance of island structure are not understood. While molecular structure of polyconjugated PANI chains demonstrates very high homogeneity, the mechanisms leading to the formation of this considerable inhomogeneity in structure and properties of macroscopic sample are unclear.
High resolution TEM image of PANI particles of granular structure.
From Mazerolles L, Folch S, Colomban P. Study of polyanilines by high-resolution electron microscopy. Macromolecules 1999;32:8504–8.
The mechanism of self-organization of polymer chains during doping process is an attempt to explain the formation of crystalline islands (Zuo et al, 1987; Zuppiroli et al 1994). According to this mechanism, appearance of polarons in solid phase of polymer is accompanied by processes of local self-ordering of chains and self-assembly to crystalline island structures, while disappearance of polarons leads to destruction of polymer islands. The suggested mechanism of self-organization in the course of doping is beneath criticism. Driving forces of this self-organization are unclear. The reasons for very irregular “gathering” of polymer chains in crystalline conglomerate (so that densities of neighbor areas of a sample differ by several times) are not understood either. According to this mechanism, we have to assume that self-organization into island structures occurs due to motions of macromolecules in solid polymer. Therefore, it is difficult to understand how high degree of chain ordering inside island leading to “metallic” transport is achieved. It is also impossible to explain the extremely high rate of self-organization processes. Changes in polymers proceed at the rates corresponding to mobility of low-molecular weight compounds in liquid phase (doping and dedoping of PANI may occur with a frequency of up to 30 Hz).
In our opinion, self-organization of PANI with the formation of “island” structures occurs in the stage of polymer synthesis. The formation of inhomogeneous structure of polymer proceeds according to the mechanism of heterophase growth of PANI as individual particle (Sapurina & stejskal 2008). We suppose that the PANI particles formed during polymerization are the inhomogeneous elements (“island” and its surrounding area).
Let us consider granular structure of PANI. Typical dimensions of spherical PANI clusters are tens of nanometers; these parameters are in agreement with sizes of conducting islands. The central part of a particle demonstrates high degree of organization of polymer chains. Similarly to the “island”, this is a three-dimensional crystal, and it may support three-dimensional metallic conductivity (Joo et al 1994). On the periphery of a particle, organization is disturbed; every crystalline island is surrounded by amorphous mantle. This fact explains why at high degree of polymer crystallinity (60% for PANI) (Stejskal et al 1998) transport mechanism most often remains activation-dependent. Conductivity of macroscopic sample is limited by intervals between crystalline zones; here, transport is carried out via transport paths, this being in agreement with the frequently observed one-dimensional conductivity. Synchronous growth of particles of one type in the course of PANI synthesis guarantees uniform distribution of crystallites of the same size within polymer sample.
Behavior of PANI under external influence and during aging also agrees well with the model “particle – inhomogeneity element” (Travers et al, 1999). Oxidation/reduction, protonation/deprotonation and thermal aging of PANI result in changes on the periphery of a particle. These processes first cause response from the Curie spins present in amorphous zone. As a rule, they do not affect the central area of a particle. Reduction and deprotonation of emeraldine do not lead to complete disappearance of polarons. Non-conducting forms of PANI contain unpaired spins (1016 spin∙g-1), as well as acid which stabilizes positive polaron. It was shown that the content of the Pauli spins (populating crystalline areas) does not decrease after deprotonation. Loss of conductivity does not cause considerable reorganization of supramolecular structure (Pouget et al., 1994). The problem of structural inhomogeneity of PANI is very important, since it is the heterogeneity on supramolecular level that limits conductivity of polymers.
This review attempts to consider synthesis of PANI from a general viewpoint, starting with molecular reactions and assembly of supramolecular structures and ending with comparison between general concept of synthesis and the model of inhomogeneous metal explaining properties of conducting polymers. The information is presented succinctly, and we have no opportunity to give experimental proof of different points, but it can be found in the given references.
Apparently, PANI synthesis is not unique. Similar regularities are observed during synthesis of other conducting polymers by oxidative polymerization. During oxidation, pyrrole, thiophene and their derivatives demonstrate dependence between their properties, pH of reaction medium and oxidation potential; they are self-organized in the course of synthesis and form different types of supramolecular structures. There are reasons to believe that, similarly to PANI, high selectivity of synthesis and formation of polyconjugation in other polymers are related to the presence of excess positive charge on the growing chain. Evidently, the formation of aggregates between growing chains of conducting polymers involves electronic and ionic transport. Processes of molecular synthesis and assembly of supramolecular structures determine properties of conducting polymers. Understanding these processes would allow us to obtain materials with better characteristics.
The book chapter was written with the support of grant of Russian Academy of Sciences and Goskontract N16.516.11.6034. The autors is also thankful to Dr. Jaroslav Stejskal for longstanding collaboration and support
Reinforced concrete is the number one medium of construction, in which reinforcing bar (rebar) is one of the two component elements; the other element being concrete.
\nIt was in the mid-nineteenth century when builders in different countries experimented with concrete, reinforced with steel elements of different types.
\nEasy availability of the component materials, easy formability, rigidity, strength, safety and durability of reinforced concrete construction made more and more people interested in such constructions.
\nPlain round bars of mild steel became the standard rebar.
\nThe time-dependent performance of concrete structures, reinforced with such bars, set the standards of performance in the context of durability.
\nBesides the external elements, e.g., water/moisture, oxygen, carbon dioxide, chlorides, sulphates, alkalis, and other deleterious materials, which can have destabilizing effects on concrete constructions, it cannot be overlooked that the intrinsic properties of the two principal constituent materials, viz., concrete and rebars, have much to do with durability of reinforced concrete; Kar [1].
\nBesides concrete and rebar, “bond” between concrete and rebar, though not a material by itself, and though no one buys it or pays for it like they buy or pay for concrete and rebar, is a property that is no less important than concrete and rebar are in the context of reinforced concrete construction.
\nVery little consideration has been given to what leads to good “bond”, and what can prevent “bond” between concrete and reinforcing elements. Also important can be the selection of an appropriate percent elongation, better still, ductility, of the material of the rebar.
\nIn the context of “bond” and its influence on the performance of reinforced concrete, Kar [2] has suggested three terms, viz., “bond”, “effective bond” and “engagement”. While the last two are synonymous, that cannot be said of “bond”.
\nKar [2] has shown that the quality of “engagement” between rebar and concrete can greatly influence the performance of reinforced concrete elements and structures.
\nBuoyed by the performance of reinforced concrete, with plain round bars as rebars, engineers thought of making reinforced concrete constructions more economical by using rebars of higher strength steel.
\nGradually, many different types of round reinforcing bars were introduced; Abrams [3].
\nForgetful of earlier unsatisfactory experiences in the nineteenth and early twentieth century with bars, having different types of protrusions on the surface, engineers decided that the use of high strength steel would be possible by increasing the bond between rebar and concrete by providing ribs on the surface of such rebars.
\nPlain round bars of mild steel thus gave way to rebars of high strength steel wherein the bars are characterized by the presence of ribs on the surface (\nFigures 1\n and \n2\n). Ribbed bars were introduced in the belief that ribbed surfaces would increase bond between rebars and concrete.
\nTypical cold twisted deformed (CTD) rebar, with lugs and protrusions on the surface and stresses beyond yield on the entire body, which replaced plain round bars starting the decade of the 1960’s.
Typical high strength TMT rebars with surface deformations, which replaced plain round bars starting the decade of the 1960’s.
The provision of ribs on the surface of rebars of high strength steel was facilitated in 1947 by ASTM International [4] publishing ASTM A305, that provided Specifications on rebar deformation patterns.
\nContrary to the beliefs and expectations that (a) the presence of ribs on the surface of rebars of steel would increase the “bond” between rebars and the surrounding concrete, and (b) there would be no detrimental effect of the ribs on the performance of concrete constructions, which may be reinforced with ribbed rebars, the presence of ribs on the surface of rebars may create void spaces, at isolated locations, between rebars and concrete, thereby decreasing “bond”. However, the wedge action of ribs, together with the reduced “bond”, may (or may not) lead to an increase in the “engagement” between rebars and concrete.
\nNo thought was spared as to the likely consequences the use of bars, with surface deformations or ribs, could have on the long term performance, or even on the immediate performance and load-carrying capacities of reinforced concrete constructions; Kar [1, 2, 5].
\nEngineers and manufacturers of rebars blindly followed the lead of ASTM International. The Bureau of Indian Standards (BIS) in India published the Standard IS 1786 on High Strength Deformed Steel bars and Wires for Concrete Reinforcement --- Specification [6].
\nThough plain round bars, as in IS 432 (Part I) [7], and Grade A bars in IS 2062 [8] were available, gradually plain round bars gave way to ribbed bars where the strength of steel in rebars was increased artificially by twisting the bars beyond yield at a cold state, giving rise to CTD bars (\nFigure 1\n).
\nWith time, manufacturers of rebars in India and elsewhere adopted the technique of increasing strength through the centuries-old practice of quenching, couched in diplomatic language as thermomechanical treatment, giving rise to TMT bars (\nFigure 2\n).
\nDuring the last sixty years or so, almost all reinforced concrete constructions worldwide have been with ribbed rebars of high strength steel, whether of the CTD or TMT type or not.
\nThe time-dependent performances of concrete structures (\nFigures 3\n–\n5\n), reinforced with these later day rebars, failed to match the time-dependent performance of concrete structures, which were reinforced with plain round bars of mild steel.
\nDistress in staging of overhead water reservoir due to corrosion in rebars.
Abandoned hospital building a decade after construction in the new township of Salt Lake City, Kolkata.
Typical distress in ground level columns caused by rust in ribbed TMT bars in a 10 year old building in Kolkata.
The relatively poor performance of concrete structures since the introduction of high strength rebars, with surface deformations, has caused worldwide concern.
\nThere had to be reasons, and the reasons were not unknown; Alekseev [9, 10], and Kar [1, 5, 11, 12, 13, 14, 15, 16, 17]. But engineers and manufacturers of rebars paid no heed.
\nThe rebars, with surface deformations, are today covered by the Indian Standard IS 1786 [6] for high strength deformed steel bars. The Standard covers both CTD and TMT bars. ASTM International in the USA published quite a few Specifications on ribbed rebars of high strength steel. The most commonly used rebars are covered in ASTM A615/A615M [18].
\nIn terms of durability, the structures may be adversely affected because of the inability of concrete to stand up to the external elements, e.g., chlorides, sulphastes, etc. or even to water as its presence may permit alkali-silica reaction in concrete in certain cases.
\nMost often, the durability of concrete constructions is adversely affected by corrosion in the steel rebars in the case of reinforced concrete (\nFigures 3\n\n–\n\n6(h)\n and \n(i)\n), and by corrosion in the wires and strands of steel in the case of prestressed concrete.
\nA collection of plain bars free from rust and ribbed CTD and TMT bars with various stages of corrosion.
Though less frequent, corrosion in ribbed rebars (\nFigure 2\n), used as secondary reinforcement in prestressed concrete constructions, can trigger unacceptable conditions of distress in prestressed concrete constructions.
\nThe focus here is on rebars and durability of reinforced concrete constructions, as influenced by rebars.
\nFollowing the use of ribbed bars of high strength steel, the world has seen a significant fall in the long term performance of reinforced concrete constructions. Sights of decay and distress in concrete constructions, reinforced with ribbed rebars of steel, became inescapable (\nFigures 3\n–\n5\n) within years of their construction.
\nA 1999 survey of bridges and buildings of reinforced concrete construction in the public domain in and around Kolkata, India revealed that while none of the structures, built since the 1940s with plain round bars of mild steel, showed any sign of distress, all the structures built with ribbed bars (\nFigure 1\n) in the 1970s and 1980s were showing signs of distress; Kar [11].
\nIn a 1991 article in ACI Materials Journal, American Concrete Institute, Papadakis, Vayenas and Fardis [19] wrote: “The last two decades have seen a disconcerting increase in examples of the unsatisfactory durability of concrete structures, specially reinforced concrete ones.”
\nSixteen years later in 2007, Swamy [20] from UK was more forthright in his expression when he wrote in the Indian Concrete Journal: “The most direct and unquestionable evidence of the last two/three decades on the service life performance of our constructions and the resulting challenge that confronts us is the alarming and unacceptable rate at which our infrastructure systems all over the world are suffering from deterioration when exposed to real environments.”
\nAn analysis of the observations by Papadakis et al. [19], by Swamy [20] and by others leads to the recognition that the relatively poor performance of reinforced concrete constructions followed the start of use of ribbed rebars of high strength steel.
\n\n\nFigure 5\n shows typical conditions of concrete columns, reinforced with ribbed rebars (\nFigure 2\n), ten years after the construction of a building in Kolkata. All the columns at the ground level of the building suffered a similar fate.
\nThe findings of the 1999 survey as well as the structures in \nFigures 3\n–\n5\n show clearly that compared to concrete structures, reinforced with plain round bars of mild steel, concrete structures, reinforced with ribbed bars of medium strength and high strength steel, reach states of distress much earlier.
\nThis excessive corrosion in ribbed rebars of carbon steel suggests that the susceptibility of ribbed rebars to corrosion at accelerated rates is an intrinsic nature of ribbed rebars of carbon steel.
\nHowever, there had been hesitation by engineers in recognizing that today’s ribbed bars were highly susceptible to corrosion at accelerated rates, and this excessive corrosion in today’s rebars is due to.
the damages caused to the ribs at the time of provision of ribs on the surface
the damages caused to the ribs at the time of transportation and handling of rebars
the presence of ribs on the surface of today’s rebars.
The hesitation to recognize ribs as a principal cause of excessive corrosion in rebars led not only to the continued condemnation of all new reinforced concrete constructions to early decay, distress and failure, but also to ASTM International, BIS and such other organizations publishing multiple Specifications/Standards on rebars as imagined solutions to the problem of early distress in reinforced concrete constructions, e.g., ASTM International publishing A775 [21] for epoxy coated ribbed bars, and on its failure to solve the problem, ASTM International A955/A955M for Deformed and Plain Stainless Steel Bars [22], and when that did not work, ASTM International published A1055 [23] for zinc (first coat) and epoxy (2nd coat), which too has serious limitations, as epoxy coating prevents the all-important “bond” with concrete (\nFigures 7\n and \n8\n).
\nConcrete easily separates from epoxy coated rebars under vibratory loading conditions whereas all structures are required to resist vibratory loads due to earthquakes; separation led to failure of buildings.
The bond between epoxy coated rebar and concrete will be negligible, as seen in a column; the ribs on the surface of rebars engage the concrete up to a limit and that too when the loading is monotonous; absence of bond led to lower load-carrying capacity.
The lack of “bond” can have serious consequences: (a) cracks in structures (\nFigure 6(g)\n), (b) lowered load carrying capacities (Kar [2]), and (c) chunks of concrete falling (\nFigure 9\n) or even structures collapsing (\nFigure 7\n).
\nA view of the deck of the Jogeswari flyover in Mumbai seven years after construction; concrete separated from rebars with poor bond qualities.
Like epoxy coated bars, stainless steel bars too fail to solve the problem, as ribbed bars of stainless steel too may corrode under conditions of exposure of concrete structures to chlorides, and additionally such bars may not bond or may not bond well with concrete.
\nFailing to recognize that the problem of early distress in today’s reinforced concrete constructions is due to the use of ribbed rebars of steel as in the Indian Standard IS 1786 [6], BIS published the Indian Standard IS 13620 [24] for Fusion Bonded Epoxy Coated Reinforcing bars.
\nJust as BIS failed to recognize that the problem of early distress in reinforced concrete constructions started with the use of ribbed bars as in IS 1786, BIS also failed to recognize that, as cautioned in SubSection 5.6.1 of its Standard IS 456 [25], epoxy coated bars would not bond with the surrounding concrete, whereas the availability of the required “bond” is an essential requirement for reinforced concrete.
\nSimilarly, as ASTM International published Specifications on epoxy coated bars and stainless steel bars, without a recognition or understanding of the basic cause(s) of early distress in reinforced concrete constructions of recent decades, and the significance of “bond” between rebars and the surrounding concrete, BIS in India followed suit by publishing the Indian Standard IS 16651:2017 on High Strength Deformed Stainless Steel bars and Wires for Concrete Reinforcement Specification [26].
\nThe story is the same in many other countries.
\nIt is recognized here that:
corrosion in rebars is greatly influenced by the intrinsic nature of the particular rebars; e.g., stainless steel bars will not generally corrode whereas mild steel and medium tensile steel bars will corrode, and high tensile strength steel bars with higher carbon contents will corrode more and at faster rates
the surface conditions/features on the rebar influence the rate of corrosion; the provision and the presence of ribs, as in bars conforming to IS 1786 [6] and ASTM A615/A615M [18] lead to acceleration in the rate of corrosion; Alekseev [9, 10], and Kar [1, 5, 12]
the manufacturing process influences the rate of corrosion; by stretching/stressing the bars beyond yield, the CTD process leads to corrosion at accelerated rates; the TMT process too hastens corrosion due to stresses from quenching effort; Alekseev [9, 10], and Kar [1, 5, 11, 12].
It has been recognized earlier that the problem of early distress in reinforced concrete structures started showing up following the start of use of steel reinforcing bars with ribs on the surface.
\n\n\nFigure 6(d)\n shows the start of corrosion at the ribs of TMT bars.
\n\n\nFigure 6(c)\n shows corrosion all over the surface of relatively fresh ribbed TMT bars.
\nThe four bottom bars in \nFigure 6(b)\n show the start of corrosion preferentially at the ribs of untwisted ribbed bars while the four top bars show corrosion all over the surface of the ribbed bars as a consequence of stressing the bars beyond yield.
\nThese show that:
the provision and presence of ribs invite corrosion
high stresses, specially stresses beyond yield, lead to corrosion at accelerated rates.
It cannot be overlooked that the ribs were provided out of a perceived necessity of improved “bond” between rebar and concrete when the rebars were upgraded from low-carbon to medium carbon or high carbon steel for higher strength. The truth is that the presence of ribs on the surface of rebars decreases “bond” between rebars and concrete. But the ribs may provide greater resistance to longitudinal movement of the bars relative to the surrounding concrete. Also, as found in the preceding, the ribs encourage corrosion in rebars; Alekseev [9] and Kar [1, 5].
\nWhether of the CTD or TMT type, or not, the reasons for ribbed bars of carbon steel being intrinsically susceptible to corrosion at accelerated rates are:
residual stresses develop at the bases of ribs during the manufacturing stage
cracks or surface damages, which trigger corrosion, may develop at the ribs at the time of manufacture, during transportation and handling
nominal stresses in ribbed rebars under load are enhanced in keeping with the phenomenon of stress concentration due to the presence of ribs or cracks
additional stresses develop in ribs in a loaded structure due to the wedge action of such ribs against surrounding concrete
the sum-total of stresses and strains in Items 1 to 4 approach or reach yield stress or strain levels
the rate of corrosion increases with increasing stress levels; the rate accelerates as the stress or strain approaches yield levels, and the surface becomes unstable once at or beyond yield, whereupon the bars become incapable of being passivated and consequently the process of corrosion becomes unstoppable; Kar [1].
The CTD and TMT processes are in violation of the inherent nature of steel to be ductile and to protect itself; Kar [1].
\nThese CTD and TMT bars of high strength steel have another shortcoming to contend with: “The effect of stresses on corrosion is reflected more distinctly in the mechanical characteristics of the reinforcement, specially of high-strength steels with low ductility.” [[10], pp. 203–204].
\nOn the basis of extensive work in Russia, Alekseev [10] commented on the above scenario thus: “the durability of reinforcement specimens with a stepped (deformed) profile may be roughly an order less than that of smooth specimens since the former have stress concentrators on the surface at the bases of projections, which represent sites of preferential formation of cracks.” [[10], pp. 221–222].
\nThe preceding explains the reasons behind the intrinsic susceptibility of ribbed bars of steel to corrosion at accelerated rates.
\nIt is the effect of this high susceptibility of ribbed bars to corrosion that led to the observations by Papadakis et al. [19] and Swamy [20], and to the types of early distress in reinforced concrete constructions, as depicted in \nFigures 3\n–\n5\n.
\nIt has been recognized that rebars with surface deformations corrode excessively, leading to concrete constructions with such rebars reaching states of distress early.
\nThe obvious solution to the problem would have been to use plain round bars as in the past. But engineers, having used in design and construction rebars of medium strength and high strength steel over the decades, would not like to go back to the use of rebars of steel having yield strength of 40 to 50 percent of the yield strength of steel in today’s rebars.
\nTwo options are available.
\n\n
In recognition of the fact that the problem of early distress, cited in the preceding, resulted primarily from a combination of two factors:
extra susceptibility (compared to that of plain round bars of mild steel) of ribbed bars, high yield strength deformed bars, and ribbed CTD and TMT bars to corrosion
availability of a moist environment inside concrete
The concept of making concrete structures durable through surface protection in the nature of waterproofing treatment is gradually gaining ground in the USA and in other countries, and BIS, in recognition that concrete constructions with ribbed bars, as in IS 1786 [6], required extra protection against corrosion in the rebars, made waterproofing treatments a requirement for durability. SubSection 8.2.1 of IS 456:2000 [25] partly reads: “The life of the structure can be lengthened by providing extra cover to steel, by chamfering the corners or by using circular cross-section or by using surface coatings which prevent or reduce the ingress of water, carbon dioxide or aggressive chemicals.”
\nIt needs to be noted here that the provision of waterproofing treatments to concrete structures became essential because of the failure of the ribbed CTD and TMT bars, conforming to IS 1786 in India, ASTM A615/A615M [18] in the USA or bars conforming to similar other Standards/Specifications in other countries, to make concrete structures as durable as those used to be when the rebars had plain surfaces, and high strengths in the rebar materials were not achieved through the highly detrimental processes of cold twisting beyond yield as in the case of CTD bars (\nFigure 6(b)\n) or through quenching/thermal hardening/thermomechanical treatment as in the case of TMT bars (\nFigure 6(c)\n and \n(d)\n).
\nKar’s [16, 27, 28] art of making reinforced concrete structures durable through the provision of waterproofing treatment on the surface of such structures is an indirect way of solving the problem that was or that is invited with the use of the potentially damaging ribbed rebars of high strength steel, that was encouraged by ASTM International, BIS, ISO and such other organizations, which recommended and permitted the use of ribbed rebars, with or without the added processes of (a) cold twisting, as in CTD bars, or (b) quenching as in TMT bars, in the false belief or hope that concrete structures, reinforced with such bars, would be at least as durable as concrete structures of earlier era, which were reinforced with plain round bars of mild steel.
\nThough surface protection systems have worked pretty well, it does have the following shortcomings:
this additional treatment requires additional project time and expenditure
the materials used, and the specifications followed, may not be appropriate
there can be shortcomings in workmanship
such external treatments may be damaged or may have limited life spans, requiring repeat treatment
it does not solve the problem of excessive corrosion on the surface of rebars prior to concreting (\nFigure 6(c)\n and \n(f)\n), leading to reduction or total loss of bond between rusted rebars and concrete whereas the availability of competent “bond” between rebars and the surrounding concrete is a pre-requisite for successful performance of reinforced concrete construction.
In spite of these shortcomings, it is essential that all concrete structures, reinforced with ribbed rebars of steel, as in IS 1786 [6], ASTM A305 [4] or conforming to other Standards, be provided with surface protection in the nature of waterproofing treatment; Kar [12, 13, 16, 27, 28].
\n\n
A better solution to the problem of early distress in reinforced concrete constructions with conventional rebars of medium strength and high strength steel would be to use plain round bars as it used to be before the 1960s or 1970s.
\nThat would have solved the problem of excessive corrosion in rebars, and that would have made reinforced concrete constructions as durable as such constructions used to be in the past.
\nBut the problem is that the requirement of much longer development/anchor length might not have permitted the use of plain round bars of medium strength and high strength steel.
\nWith the innovative concept of PSWC-BAR, Kar [14] provided a direct solution (at no added effort or cost) to the problem of early distress in concrete constructions with ribbed rebars of high strength carbon steel. PSWC-BAR was initially named as C-bar.
\nKar [5] explained why PSWC-BAR is the most ideal rebar for reinforced concrete constructions.
\nThe use of PSWC-BAR, at no added effort or cost, not only solves the problem of early distress in reinforced concrete constructions through several-fold enhancement of life span of such constructions, it also enhances several fold the ductility and energy-absorbing capacity of reinforced concrete constructions; Kar [2].
\nThe several-fold enhancement of life span, at no added effort or cost, has the effect of lowering the life cycle cost of reinforced concrete construction to a fraction of what it is today.
\nThe use of PSWC-BAR increases load-carrying capacities of reinforced concrete elements, and through the several-fold enhancement of life span, the use of PSWC-BAR minimizes the harmful effects of construction on the environment and the global climate through considerable lowering of the need for the manufacture of cement, steel, etc. Kar [29].
\n\n
PSWC-BAR of steel, characterized by plain surface and gentle wave-type configuration
PSWC-BAR, because of the absence of ribs or any other special surface feature, if made of the same steel, will not corrode more than conventional plain round bars would do.
\nPSWC-BAR, because of its gentle wave-type configuration, enhances “effective bond”, i.e., “engagement” between rebar and concrete; Kar [2]. Tests on beams and columns at different universities have shown that, among all types of rebars, PSWC-BAR, with its wave-type configuration, provides the best “engagement” between rebar and concrete, leading to significant enhancement of the various positive attributes of reinforced concrete; Kar [2, 17, 30, 31] and Varu [32].
\nWhile the test for loose rust and bond, or say, loss of bond, may lead to disqualification of most or all ribbed bars, conforming to IS 1786, and such other Standards, numerous tests on beams and columns have consistently shown that among rebars of steel, the use of PSWC-BAR, free from the ill effects of ribs, and if manufactured as Grade A of Hot Rolled Medium and High Tensile Structural Steel, as in IS 2062 [8], or conforming to appropriate Standards for plain round bars, can lead to the best load-carrying capacities, ductility and energy-absorbing capacity; Kar [2], indicating thereby that the “effective bond” is the best in the case of PSWC-BARs.
\nBesides these big fundamental differences between today’s ribbed bars, as in IS 1786, and PSWC-BARs (\nFigure 10\n) as in IS 2062 [8], there lies the undisputedly stark difference between the very poor time-dependent performances (durability) of concrete structures, reinforced with ribbed bars, as in IS 1786 [6], ASTM A615/A615M [18] and such other Standards/Specifications elsewhere and the time-dependent performances of concrete structures, reinforced with hot rolled plain round bars with wave-type configuration, which are characteristic of PSWC-BARs.
\nThere are various other advantages of using PSWC-BAR as rebars in reinforced concrete construction. A comparison of the load–displacement plots in \nFigure 11(a)\n and \n(b)\n show clearly that:
because of several fold higher ductility and energy-absorbing capacity, the use of PSWC-BARs as rebars has the potential to prevent structural failures and catastrophes during earthquakes
because of several times higher deflection (displacement) of flexural elements, there can be visible warnings before failure, thereby saving lives.
load-carrying capacities of reinforced concrete elements increase when PSWC-BARs are used.
Ductile response of beam reinforced with PSWC
Recommended mechanical properties of PSWC-BAR for durable and earthquake resistant concrete constructions are provided in \nTable 1\n.
\nSl. No. (1) | \nProperty (2) | \nFe 415 (3) | \nFe 500 (4) | \nFe 550 (5) | \n
---|---|---|---|---|
i) | \nyield stress | \n415.0 | \n500.0 | \n550.0 | \n
ii) | \nyield stress | \n500.0 | \n600.0 | \n660.0 | \n
iii) | \nY/Yspecified ratio1\n | \n1.02–1.2 | \n1.02–1.2 | \n1.02–1.2 | \n
iv) | \nTS/ Yspecified ratio2\n | \n≥ 1.15 - ≤ 1.40 | \n≥ 1.15 - ≤ 1.40 | \n≥ 1.15 - ≤ 1.40 | \n
v) | \nElongation, percent, | \n20.0 | \n16.0 | \n12.0 | \n
Mechanical properties of steel in PSWC-BARs.
Note: 1) Y/Y specified ratio refers to ratio of actual yield strength to specified yield stress of the test piece.
\n2) TS/Y specified ratio refers to ratio of tensile strength to specified yield stress of the test piece.
Additional Note: 1) The steel shall be suitable for welding processes.
Kar [5, 14, 15, 16, 17] has written extensively on PSWC-BAR, and, encouraged by the many benefits, which the use of PSWC-BARs can provide, students at different universities have written a number of theses on the relative performances of concrete elements, reinforced with PSWC-BARs and conventional rebars.
\nBond between rebars and their surrounding concrete is of utmost importance in the context of reinforced concrete.
\nThis bond, when adequately developed, permits composite response of reinforced concrete through effective transfer of forces between concrete and rebar. Any reduction in bond, below a certain level, will lead to a reduction, or in extreme cases, a total loss of load-carrying capacities of the constructed structures, as it happened during the Bhuj earthquake on 26 January 2001 when three buildings, reinforced with epoxy coated bars, collapsed 300 kilometers away in Ahmedabad, India (\nFigure 7\n).
\nIn the case of plain rebars of mild steel or carbon steel, when free from the damaging effects of the ribs as well as the CTD and TMT processes, there will be chemical bond between the mortar in concrete and the hard adherent products of very limited corrosion on the steel material, as in the cases of plain round bars of mild steel or, better still, PSWC-BARs, conforming to plain round rods of Grade A of structural steel in the Indian Standard IS 2062 [8], in which case the rods are given the wave-type configuration (\nFigure 10\n) at the end of the rolling mill process; Kar [14].
\nSimilarly, PSWC-BARs can be made to conform to provisions in existing Standards/Specifications for plain round bars in other countries. Alternatively, Standards may be specifically prepared for PSWC-BARs.
\nThe chemical bond between the mortar in concrete and the hard and adherent products of corrosion on the surface of PSWC-BARs develops shear capacity at the interface of concrete and the rebar for the transfer of forces, through shear, from concrete to rebars.
\nIn the context of reinforced concrete, this is the “bond” engineers have been familiar with.
\nThis should suggest that, technically speaking, there can be no “bond” between concrete and a painted surface, like the surface of an epoxy coated bar (\nFigure 8\n), or similarly between concrete and a stainless steel bar.
\nThe same situation can develop if there will be loose rust on the surface of rebars as in the case of ribbed CTD or TMT bars (\nFigure 6(f)\n), as in IS 1786, which are the most widely used rebars in India.
\n\n\nFigure 6(g)\n shows that the loss of bond rendered the reinforcement, that was provided for load-carrying requirements, insufficient even as minor temperature reinforcements, and thereby led to the development of through-the-thickness shrinkage cracks in the shear walls even though it was a well-engineered project, except that, as per conventional practices in India, ribbed bars, as in IS 1786 [6], are used without the required scrutiny for “bond”, that is set in SubSection 5.6.1 of IS 456 [25].
\nThis is what happened in the case of the ribbed TMT bars in \nFigure 6(f)\n even when the bars were manufactured by a leading manufacturer of rebars and other products of steel in India.
\nThere is more to “bond”.
\nIt is recognized that manufacturers/sellers of epoxy coated and stainless steel bars may not agree to the suggestion that there is no “bond” between epoxy coated or stainless steel bars and the surrounding concrete.
\nIn the absence of any reliable test method to measure “bond” or bond strength in the cases of ribbed bars, engineers too tend to agree with manufacturers and sellers of epoxy coated and stainless steel bars, and they might even suggest that their tests have shown that the bond strength of epoxy coated bars is sixty percent or even eighty percent of that of uncoated bars.
\nThe observations by engineers may be right, but their claims on “bond” are wrong. There are various reasons for it.
\nThere is generally no “bond” between concrete and epoxy coated or stainless steel bars (\nFigures 7\n–\n9\n).
\nAny resistance to pull-out forces in the case of epoxy coated ribbed bars or ribbed stainless steel bars is essentially due to the wedge action of ribs embedded in concrete.
\nIn the present context of bond, the epoxy coating on fusion bonded epoxy coated bars, as in IS 13620 [24], ASTM A775 [21], ASTM A934/A934M [33], ASTM A1055 [23] and similar Standards/Specifications on epoxy coated bars in other countries can be thought of as “coats of paints” as noted in SubSection 5.6.1 of IS 456 [25].
\nRecognizing that coats of paints, like loose rust, oil, etc. could destroy or at least reduce “bond”, IS 456, the basic reinforced concrete code of practice in India, has put words of caution in SubSection 5.6.1 of its Section
In construction with fusion bonded epoxy coated rebars in India or elsewhere, no sand blasting or other treatment is provided so as to meet the requirements set in IS 456 or in any other document, and so as to ensure that there would be competent and adequate bond between such bars and the surrounding concrete.
\nIt is possible that in recognition of this reality, IS 456 in its Section
Though IS 456, the basic Indian Standard for reinforced concrete construction, does not approve of the use of epoxy coated bars as in IS 13620 [24] and stainless steel bars as in IS 16651 [26], such bars, which do not bond with concrete, with attended shortcomings in the performance of concrete constructions, do find use in reinforced concrete constructions in India and elsewhere.
\nIn a series of tests by Varu [32] on thirtythree reinforced concrete columns at Nirma University in Ahmedabad, India, nine columns were reinforced with epoxy coated bars; of which three columns were with epoxy coated plain round bars, three columns were with epoxy-coated ribbed TMT bars of the type in IS 1786 [6], and three columns were with epoxy coated PSWC-BARs.
\nThere is no suggestion that PSWC-BARs and conventional plain round bars may ever be given epoxy coating for protection. But in the test program these bars too were given epoxy coating just to have a more comprehensive understanding of the influence of surface coating (see SubSection 5.6.1 of IS 456 [25]) on load-carrying capacities and “bond” or “engagement”.
\nThe full details will be found in the thesis by Varu [32]. The observations can also be found in a few articles; Kar [2], and Kar, Dave and Varu [30].
\nAmong other observations, it was observed:
unlike in the cases of the twentyfour columns with uncoated rebars of different types, there were clear indications at the failure region of all the nine columns with epoxy coated rebars that there was no bond of concrete/concrete mortar with the epoxy coated bars. A typical case is seen in \nFigure 8\n.
the epoxy coated bars led to failure of the columns at loads which were less than the loads at which the other similarly constructed, but with uncoated bars of same/similar manufacture had failed. It appeared that the coated bars did not participate in sharing loads on the columns; Kar et al. [30].
In the absence of any bond, the use of epoxy coated and stainless steel bars will lead to under-performance of reinforced concrete elements; Kar et al. [30] and Kar [2], and the use of such bars can lead to unacceptable consequences during vibratory loads (\nFigure 10\n), specially during earthquake events (\nFigure 8\n), as it happened when several multi-storey buildings in Ahmedabad collapsed on 26 January 2001 during the earthquake at Bhuj 300 km away.
\nThe failures occurred due to separation between epoxy coated rebars and the surrounding concrete (\nFigure 7\n).
\nThese should be proof enough that any claim of 60–80 percent “bond” between epoxy coated bars and concrete is wrong.
\nThis should suggest that all concrete structures which were constructed with fusion bonded epoxy coated rebars, are suspect. In other words,
the margin of safety in structures with epoxy coated ribbed bars is less than what it may be thought to be as per conventional design; Kar [2] suggested modification to current design practices by considering the “effective bond” or “engagement” instead of assuming that there is competent “bond” between epoxy coated rebars and concrete.
all concrete structures, reinforced with epoxy coated bars, remain specially vulnerable against vibratory loads, including earthquakes, as evidenced in the failure of structures in Ahmedabad during the Bhuj earthquake of 26 January 2001.
In the cases of rebars, with ribs on the surface, where a certain amount of resistance to slippage is available, it is partly due to “bond” and partly due to the interlocking of the ribs with the surrounding concrete. From an engineering point of view, this resistance to slippage may preferably be referred to as “effective bond” or “engagement”, instead of “bond”.
\nThus, though in the context of reinforced concrete, engineers have traditionally used only one term, i.e., “bond”, and though in the context of reinforced concrete, where the rebar is a conventional plain bar of mild steel or carbon steel (\nFigure 6(a)\n), the use of the term “bond” may not create any confusion, the terms “effective bond” and “engagement” may be the more appropriate terms in the case of ribbed bars (\nFigures 2\n and \n6(b)\n and \n(c)\n) and PSWC-BARs (\nFigure 10\n), ribbed stainless steel bars, ribbed epoxy coated bars, polymer coated glass fiber reinforced bars, etc.
\nIn the case of a PSWC-BAR, devoid of ribs or any other surface feature, there will be the “bond” on the entire surface, and in addition, the wave pattern along the length of the bar will provide physical resistance to slippage. The sum total of the “bond” and the “physical resistance” in the case of a PSWC-BAR can be termed as “effective bond” or “engagement”.
\nTests on numerous reinforced concrete beams and columns, with reinforcing bars of different types, at different universities have consistently shown that “the effective bond” or “engagement” is the highest in the case of PSWC-BARs, leading to the highest load-carrying capacities as well as several hundred percent higher ductilities and energy-absorbing capacities compared to the cases of conventional bars without the wave-type configuration; Kar [2].
\nIn the context of reinforced concrete, there should thus be a recognition of “effective bond” or “engagement”, and a clear understanding of “bond”.
\nFor similar reasons, the use of the term “engagement” will hopefully avoid a false belief that there is bond between stainless steel bars and the surrounding concrete, and it will hopefully avoid the type of collapses of reinforced concrete bridges and buildings that Ahmedabad was witness to during the earthquake of 26 January 2001, 300 kilometers away at Bhuj (\nFigure 7\n).
\nThere are instances where chunks of concrete fell down from bridge decks which were constructed with ribbed TMT bars as in IS 1786 [6]. \nFigure 9\n shows one such example.
\nIt should help put a stop to the use of not only the conventional epoxy coated bars, as in IS 13620 [24], but also to bars where the top coat is with epoxy as in ASTM A1055 [23], and also to stainless steel bars as in ASTM A955/A955M [22] and IS 16651 [26], as, unlike in the cases of low carbon steel bars, stainless steel bars will not develop a thin layer of strong adherent rust on their surface for bonding with mortar in concrete.
\nAlso, these bars stand in the way of composite response of concrete and the embedded bars, because of which even the capacity to carry static loads would be less than those which would have been arrived at on the basis of conventional design practices; Kar et al. [30] and Kar [2].
\nIn the context of bond, besides the information provided hereinabove, Kar [14] had suggested that in the case of ribbed bars, coarse aggregates could in places rest on/against neighboring ribs (\nFigure 12\n), thereby blocking mortar from bonding with rebars, and also preventing passivation of rebars at such isolated locations. The void spaces aid the cause of corrosion.
\nBarrier effect of ribs, lugs and protrusions on the surface of ribbed rebars of steel preventing cement mortar from coming in contact with rebar.
In their tests, Mohammed, et al. [34] too observed void spaces beneath ribbed bars, resulting in higher rates of corrosion in ribbed bars than in the case of plain bars.
\nWhether in India or abroad, it has been the practice to assume that the use of ribbed bars provides the required bond between such bars and the surrounding concrete.
\nThough the presence of ribs on the surface of bars decreases the “bond”, when compared to the cases of plain bars, the presence of ribs on the surface of bars may in some cases increase the “engagement”.
\n\n\nFigure 6(g)\n presents a case where the absence of “bond” led to a decrease in the “engagement” between rebar and the surrounding concrete.
\nTo start with, ribs were provided on the surface of rebars of high strength steel with an intent to increase bond between such rebars and concrete. This act boomeranged as it led to an acceleration in the rate of decay in reinforced concrete constructions.
\nThe high strength in steel was/is gained in some cases either through the twisting of the bars beyond yield at a cold state or through quenching. The provision and the presence of the ribs, coupled with the twisting beyond yield or the quenching, lead to corrosion at unacceptably accelerated rates on the surface of the rebars; Alekseev [9, 10], and Kar [1, 5, 11, 12, 13, 14, 15, 16, 17] (\nFigure 6(b)\n and \n(f)\n), resulting in reduction or total destruction of the “bond” (\nFigure 6(g)\n). While the immediate effect of the destruction of “bond” is visible in \nFigure 6(g)\n, the long term effects are visible in \nFigures 3\n–\n6(h)\n and \n(i)\n.
\nBesides questionable “bond”, the ribbed CTD and TMT bars, as in IS 1786 [6], meant for use as rebars in reinforced concrete construction, may not be permitted to be used as rebars, as because, such bars, with high susceptibility to corrosion at accelerated rates, will in many or most cases, fail the qualification test for rebars which have been set in SubSection 5.6.1 for reinforcement in IS 456 [25].
\nAn example will be found in \nFigure 6(g)\n where it is seen that in the construction of six 48–52 storeyed buildings at a site, the shear walls, which in the absence of columns, were reasonably reinforced, developed through-the-thickness shrinkage cracks, about a metre apart as excessive loose rust on ribbed TMT bars (\nFigure 6(f)\n), prevented/destroyed “bond” between concrete and the highly rusted fresh rebars.
\nVisits to construction sites revealed that easily visible through-the-thickness shrinkage cracks in new constructions were very common. This lack of “bond” can lower the load-carrying capacities of such constructions.
\nThe bars, conforming to IS 1786, were thus unfit for construction, at least in the light of the requirements in SubSection 5.6.1 of IS 456.
\nIn the face of all the problems of insufficient “bond” in the case of ribbed rebars of high strength steel, epoxy coated ribbed bars, ribbed bars of stainless steel, and unacceptably high rate of corrosion in rebars, conforming to IS 1786, PSWC-BAR of medium tensile and high tensile steel (\nTable 1\n), conforming to IS 2062 [8], or to any other appropriate Standard/Specification for plain round bars of carbon steel of high strength steel, stands out as the only bar of high strength steel that is free from the varied problems of all other bars of high strength steel.
\nPSWC-BAR, endowed with the property of best “engagement”, i. e., “effective bond” with concrete, also stands out as the only bar, the use of which, besides several-fold enhancement of life span, increases, by several hundred percent ductility and energy absorbing capacity of reinforced concrete construction (\nFigure 11\n) and Kar [2].
\nIt is apparent that there has not been a clear understanding of the phenomenon of “bond” between rebar and concrete, what creates this “bond”, what can affect the development of “bond”, and what are its roles in the performance of reinforced concrete.
\nIt is because of this lack of understanding of “bond” and its significance that made manufacturers and sellers of rebars, designers of reinforced concrete structures, construction engineers, and officials of BIS and such other organizations, who put the stamp of approval on ribbed rebars, overlook all these years the reality, the cautions in text books and Standards which read something like: all reinforcement shall be free from loose mill scales, loose rust and coats of paints, oil, mud or any other substance which may destroy or reduce bond.
\nIt is this total failure to recognize the many significances of “bond” in the realm of reinforced concrete that facilitated the unchecked use of ribbed bars in reinforced concrete construction all these years, and in the process caused very significant losses to property owners, and great harm to the national wealth of countries, as well as to the environment and the global climate.
\nThe facts, that (a) ribbed bars, conforming to IS 1786 and to Standards/Specifications on ribbed bars in other countries, are highly prone to the development of loose rust on the surface of such rebars, (\nFigure 6(f)\n), (b) this rust can “destroy or reduce bond” between concrete and rebars (\nFigure 6(g)\n), (c) without competent bond between rebar and concrete there cannot be reinforced concrete in its true sense, and (d) the loose rust will prevent any possible passivation of rebars by the alkaline pore water in concrete, and thus stand in the way of protection of rebars against corrosion unless concrete constructions will be given surface protection in the nature of waterproofing treatment, have not sunk into the minds of all those who should have known, are obvious from the continued poor performance of the structures in \nFigures 3\n–\n6(h)\n and \n(i)\n, and uncounted other structures which have been and are being constructed with ribbed bars.
\nKar [2] has shown that besides success and failure, and besides the issue of durability, the “effective bond” or “engagement” between rebars and the surrounding concrete may influence the load-carrying capacity, ductility and energy-absorbing capacity of reinforced concrete elements.
\nPercent elongation is an important measure of ductility of rebars, that can influence the performance of the rebar and in turn the performance of concrete elements under load as well as under exposure to the environment; Kar [14]. The percent elongation is of course a very important property that may greatly influence the survivality of reinforced concrete constructions during earthquake events.
\nIn recognition of the fact that the changing material compositions and manufacturing processes, as well as the increasing yield strengths of rebar materials during recent decades, are generally associated with decreasing percent elongation, the Specifications of ASTM International and the Standards of BIS allow/permit the use of rebars with smaller percent elongation properties with increasing yield strength of the rebar material.
\nIt is recognized here that there are certain differences between the gage/gauge lengths in the ASTM and BIS test specimens. However, these differences do not substantially affect the following observations on percent elongation.
\nASTM A615/A615M [18] of 12 Jan, 2016 has set the minimum percent elongation of rebars for Grades 75, 80 and 100, i.e., yield strengths of 520 MPa, 550 MPa and 690 MPa, to 7 percent for rebars having diameters up to 25 mm, and an even lower 6 percent for rebars having diameters greater than 25 mm, whereas for Grade 40 (280 MPa) and Grade 60 (420 MPa) bars, ASTM sets the minimum percent elongation at 12 and 9, respectively.
\nSimilarly, IS 1786 [6], through its Amendment No. 03, dated 19-09-2017, has set the minimum percent elongation at 10.0, 10.0 and 10.0 for rebars of yield strengths 600 MPa, 650 MPa and 700 MPa, whereas it has set allowable percent elongations at 14.5 to 18.0 for different varieties of 415 MPa bars, and 12.0 to 16.0 for different types of 500 MPa bars.
\nSeveral questions arise, viz.,
if once it is recognized that the percent elongation of the steel material for rebars is an important and thus an inviolable property, that is to be set for acceptability of rebars, then why smaller percent elongation properties (as 6 in ASTM A615/A615M [18] and 10 in IS 1786 [6]) be considered permissible for higher yield strength materials, but not for smaller yield strength materials?
or, are the percent elongation properties, set in the Specifications/Standards violable, and the set properties merely represent values which certain manufacturers can achieve in the cases of bars they make?
how is it that when the achievable (with reasonable effort) percent elongation gets smaller and smaller with increasing yield strength, ASTM A615/A615M [18] has set the same elongation at 7 percent or 6 percent for steel having yield strengths of 520 MPa, 550 MPa and 690 MPa?
If 6 percent elongation is considered acceptable for 690 MPa steel, then why should such a low percent elongation be not acceptable in the cases of rebars with steel of lower yield strengths?
how is it that, when the achievable (with reasonable effort) percent elongation gets smaller and smaller with increasing yield strength, IS 1786 [6] has set the same figure of 10 percent for rebars having yield strengths of 600 MPa, 650 MPa and 700 MPa?
how is it that when ASTM A615/A615 M [18] finds it difficult to achieve percent elongation greater than 6 for 600 MPa hot rolled bars, IS 1786 finds a 10 percent elongation achievable for 700 MPa TMT bars, when it is known that, compared to hot rolled processes, as in the USA, the TMT process, as in India, leads to hardening and lowering of ductility and percent elongation properties?
There needs to be a clear understanding of the significance of percent elongation and or ductility of rebars in the context of performance of reinforced concrete elements.
\nIt may be desirable to set, irrespective of the yield strength of steel, a single value, below which the percent elongation or ductility will not be acceptable in the cases of rebars of steel.
\nIn view of the fact that virtually all structures in India and in many other countries are required to be earthquake resistant, a reasonably high value may have to be set for the required percent elongation or ductility of rebars.
\nIn this conflicting scenario, with a view to minimizing the rate of corrosion and also to improve ductility and energy absorbing capacity, PSWC-BAR, conforming to IS 2062, and possessing the property of improving “effective bond” over and above the normally available “bond”, with a minimum percent elongation of 16, is recommended as the rebar of choice. The yield stress will be limited to a maximum of 550 MPa, preferably to 500 MPa; Kar [5].
\nGreater details on the development and mechanical properties of PSWC-BAR, together with design aid, so as to take advantage of the power of PSWC-BAR to enhance load-carrying capacity, as well as ductility and energy-absorbing capacities of reinforced concrete elements, are provided in the article: The Search for an Ideal Rebar for Durable Concrete Construction Leads to PSWC-BAR; Kar [5].
\nA better measure of the mechanical property of a rebar, and that of the performance of a concrete flexural element, reinforced with such a bar, would have been the ductility ratio rather than the arbitrarily selected percent elongation.
\nAssuming that the percent elongation will be at least large enough to ensure that the specified yield strength and the specified ultimate strength of the bar will be achieved, the only other useful information that a percent elongation may provide is a vague understanding that the bar may not break during necessary bending.
\nThat should suggest that vaguely specified percent elongation is an unnecessary specification when separate tests for bending of bars are specified.
\nIn contrast, while tests for yield and ultimate strengths (stresses) will ensure the said strengths (stresses), the information on ductility and the shape of the load-deformation plot of the bar beyond yield will provide important information on an idea about the bendability of a rebar. And in addition, the ductility ratio, coupled with a plot of the load-elongation curve of the bar will provide a great deal of information about the performance of a flexural element beyond the yield stress level of the rebar, provided that the rebar will have the requisite “engagement” with concrete, and it happens best in the case of PSWC-BARs; Kar [2].
\nReinforced concrete is the number one medium of construction. Besides strength, easy formability and availability of the constituent materials, trouble-free long term performance, i.e., durability of concrete structures, constructed with plain round bars of mild steel, having yield stress of around 250 MPa to 280 MPa, had helped reinforced concrete attain this position.
\nIt has been suggested that, in the context of reinforced concrete, besides concrete and rebars, “bond” between such rebars and the surrounding concrete deserves equal consideration.
\nEngineering practice shows that though there is a need for a clear understanding of “bond”, and though the ensurement of adequate “bond” is an essential necessity, these are almost totally neglected.
\nSimilarly, the important property of percent elongation or ductility of the rebar has not been considered with the thoroughness it deserves.
\nWith time, besides significant changes in properties of cement, a constituent component of concrete, the reinforcing bar (rebar) was gradually changed from plain round bars of mild steel to plain round bars of medium tensile steel (yield stress of about 350 MPa) and then on to today’s ribbed rebars of high strength (yield stress 415 MPa to about 700 MPa) steel.
\nThe use of ribbed rebars of high strength steel, susceptible to corrosion at accelerated rates, led to concrete structures reaching states of distress early.
\nIn consideration of durability, ribbed bars, as in IS 1786 in India, and ASTM A615/A615M in the USA and as in such other Standards/Specifications elsewhere, should thus be avoided.
\nThe high susceptibility of ribbed rebars to corrosion may in cases destroy or reduce “bond” between concrete and ribbed rebars of high strength steel.
\nSuch bars may not stand scrutiny for eligibility for use as rebars for reinforced concrete construction. It has been shown that PSWC-BAR, characterized by its plain surface and wave-type configuration, is the most ideal rebar for reinforced concrete construction.
\nWhile the plain surface of PSWC-BARs would ensure that the susceptibility of such bars to corrosion will be several orders of magnitude less than the susceptibility of conventional ribbed bars of high strength steel, the wave-type configuration of PSWC-BARs ensures that the “bond” or “engagement” between such bars and the surrounding concrete is no less than the “bond” between ribbed rebars and concrete.
\nNumerous tests on concrete beams and columns, reinforced with PSWC-BARs, and with ribbed bars, conforming to IS 1786, have consistently revealed that the “effective bond” or “engagement” between PSWC-BARs and the surrounding concrete is greater than the “effective bond” between concrete and ribbed rebars, conforming to IS 1786.
\nIt is this greater “effective bond” that increases the load-carrying capacity, ductility and energy absorbing capacity of concrete elements, reinforced with PSWC-BARs.
\nThe use of PSWC-BAR, characterized by its plain surface and wave-type configuration, at no added effort or cost, can solve the worldwide problem of early distress in reinforced concrete construction.
\nBesides several-fold enhancement of life span, with many added benefits, like greatly reduced life cycle cost, the use of PSWC-BAR increases by several hundred percent the ductility and energy-absorbing capacity of flexural elements of reinforced concrete. It may thus prevent catastrophes during earthquakes.
\nRecommended mechanical properties of PSWC-BARs for durable concrete constructions are provided.
\nIn consideration of requirements for durability and resistance to earthquake forces, the yield stress of steel in PSWC-BAR is recommended to be limited to 550 MPa, and preferably to 500 MPa.
\nThe several-fold enhancement of life span of concrete structures, with the use of PSWC-BARs, instead of conventional ribbed bars, can prevent staggering financial losses to property owners and to national economies of all countries as well as great harm to the environment and to the global climate.
\nAn alternative way to enhance the durability of reinforced concrete construction is to provide, at additional cost, surface protection in the form of waterproofing treatment to concrete structures.
\nCustomer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11566",title:"Periodontology - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"75ef2eae3087ec0c7f2076cc64e2cfc3",slug:null,bookSignature:"Dr. Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",editedByType:null,editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"92c881664d1921c7f2d0fee34b78cd08",slug:null,bookSignature:"Dr. Jaime Bustos-Martínez and Dr. Juan José Valdez-Alarcón",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",editedByType:null,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",subtitle:null,isOpenForSubmission:!0,hash:"069d6142ecb0d46d14920102d48c0e9d",slug:null,bookSignature:"Dr. Mihaela Laura Vica",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",editedByType:null,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11570",title:"Influenza - New Approaches",subtitle:null,isOpenForSubmission:!0,hash:"157b379b9d7a4bf5e2cc7a742f155a44",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11583",title:"Parkinson’s Disease - Animal Models, Current Therapies and Clinical Trials",subtitle:null,isOpenForSubmission:!0,hash:"99788a4a7f9ee0b4de55de293a2ed3d0",slug:null,bookSignature:"Prof. Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/11583.jpg",editedByType:null,editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11584",title:"Recent Advances in Distinctive Migraine Syndromes",subtitle:null,isOpenForSubmission:!0,hash:"44a6090845f971a215ddf013f1dc2027",slug:null,bookSignature:"Dr. Theodoros Mavridis, Dr. Georgios Vavougios and Associate Prof. Dimos-Dimitrios Mitsikostas",coverURL:"https://cdn.intechopen.com/books/images_new/11584.jpg",editedByType:null,editors:[{id:"320230",title:"Dr.",name:"Theodoros",surname:"Mavridis",slug:"theodoros-mavridis",fullName:"Theodoros Mavridis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11587",title:"Updates on ADHD - New Approaches to Assessment and Intervention",subtitle:null,isOpenForSubmission:!0,hash:"e0718a84e5fda7ed4287095c3ef27dae",slug:null,bookSignature:"Dr. Celestino Rodríguez Pérez and Mrs. Debora Areces",coverURL:"https://cdn.intechopen.com/books/images_new/11587.jpg",editedByType:null,editors:[{id:"85114",title:"Dr.",name:"Celestino",surname:"Rodríguez Pérez",slug:"celestino-rodriguez-perez",fullName:"Celestino Rodríguez Pérez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism Spectrum Disorders - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"934f063be3eacb5dd0902ae8bc622392",slug:null,bookSignature:"Associate Prof. Marco Carotenuto",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:[{id:"305627",title:"Associate Prof.",name:"Marco",surname:"Carotenuto",slug:"marco-carotenuto",fullName:"Marco Carotenuto"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11590",title:"Updates in Anorexia and Bulimia Nervosa",subtitle:null,isOpenForSubmission:!0,hash:"c8f5d69fff84a3687e5511bade9cc261",slug:null,bookSignature:"Prof. Ignacio Jáuregui-Lobera and Dr. José V Martínez Quiñones",coverURL:"https://cdn.intechopen.com/books/images_new/11590.jpg",editedByType:null,editors:[{id:"323887",title:"Prof.",name:"Ignacio",surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:199},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"751",title:"Nano Electronics",slug:"nano-electronics",parent:{id:"116",title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:50,numberOfWosCitations:98,numberOfCrossrefCitations:61,numberOfDimensionsCitations:102,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"751",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10073",title:"Recent Advances in Nanophotonics",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"aceca7dfc807140870a89d42c5537d7c",slug:"recent-advances-in-nanophotonics-fundamentals-and-applications",bookSignature:"Mojtaba Kahrizi and Parsoua A. Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:"Edited by",editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8539",title:"Nanogenerators",subtitle:null,isOpenForSubmission:!1,hash:"91a10b2cf3671816d028eb8dceaa236c",slug:"nanogenerators",bookSignature:"Sang Jae Kim, Arunkumar Chandrasekhar and Nagamalleswara Rao Alluri",coverURL:"https://cdn.intechopen.com/books/images_new/8539.jpg",editedByType:"Edited by",editors:[{id:"81419",title:"Prof.",name:"Sang-Jae",middleName:null,surname:"Kim",slug:"sang-jae-kim",fullName:"Sang-Jae Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6124",title:"Micro/Nanolithography",subtitle:"A Heuristic Aspect on the Enduring Technology",isOpenForSubmission:!1,hash:"c94caf617c31b349bd3d9dd054a022a3",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6124.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5746",title:"Quantum-dot Based Light-emitting Diodes",subtitle:null,isOpenForSubmission:!1,hash:"8fb72b46f25ab676b1b1d52b691a80dc",slug:"quantum-dot-based-light-emitting-diodes",bookSignature:"Morteza Sasani Ghamsari",coverURL:"https://cdn.intechopen.com/books/images_new/5746.jpg",editedByType:"Edited by",editors:[{id:"64949",title:"Prof.",name:"Morteza",middleName:null,surname:"Sasani Ghamsari",slug:"morteza-sasani-ghamsari",fullName:"Morteza Sasani Ghamsari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3635",title:"Polymer Thin Films",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"polymer-thin-films",bookSignature:"Abbass A Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/3635.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"58424",doi:"10.5772/intechopen.72860",title:"Large-Area Nanoimprint Lithography and Applications",slug:"large-area-nanoimprint-lithography-and-applications",totalDownloads:2035,totalCrossrefCites:6,totalDimensionsCites:11,abstract:"Large-area nanoimprint lithography (NIL) has been regarded as one of the most promising micro/nano-manufacturing technologies for mass production of large-area micro/nanoscale patterns and complex 3D structures and high aspect ratio features with low cost, high throughput, and high resolution. That opens the door and paves the way for many commercial applications not previously conceptualized or economically feasible. Great progresses in large-area nanoimprint lithography have been achieved in recent years. This chapter mainly presents a comprehensive review of recent advances in large-area NIL processes. Some promising solutions of large-area NIL and emerging methods, which can implement mass production of micro-and nanostructures over large areas on various substrates or surfaces, are described in detail. Moreover, numerous industrial-level applications and innovative products based on large-area NIL are also demonstrated. Finally, prospects, challenges, and future directions for industrial scale large-area NIL are addressed. An infrastructure of large-area nanoimprint lithography is proposed. In addition, some recent progresses and research activities in large-area NIL suitable for high volume manufacturing environments from our Labs are also introduced. This chapter may provide a reference and direction for the further explorations and studies of large-area micro/nanopatterning technologies.",book:{id:"6124",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",title:"Micro/Nanolithography",fullTitle:"Micro/Nanolithography - A Heuristic Aspect on the Enduring Technology"},signatures:"Hongbo Lan",authors:[{id:"6642",title:"Prof.",name:"Hongbo",middleName:null,surname:"Lan",slug:"hongbo-lan",fullName:"Hongbo Lan"}]},{id:"72277",doi:"10.5772/intechopen.92614",title:"Surface-Enhanced Raman Scattering: Introduction and Applications",slug:"surface-enhanced-raman-scattering-introduction-and-applications",totalDownloads:1494,totalCrossrefCites:5,totalDimensionsCites:10,abstract:"Scattering of light by molecules can be elastic, Rayleigh scattering, or inelastic, Raman scattering. In the elastic scattering, the photon’s energy and the state of the molecule after the scattering events are unchanged. Hence, Rayleigh scattered light does not contain much information on the structure of molecular states. In inelastic scattering, the frequency of monochromatic light changes upon interaction with the vibrational states, or modes, of a molecule. With the advancement in the laser sources, better and compact spectrometers, detectors, and optics Raman spectroscopy have developed as a highly sensitive technique to probe structural details of a complex molecular structure. However, the low scattering cross section (10−31) of Raman scattering has limited the applications of the conventional Raman spectroscopy. With the discovery of surface-enhanced Raman scattering (SERS) in 1973 by Martin Fleischmann, the interest of the research community in Raman spectroscopy as an analytical method has been revived. This chapter aims to familiarize the readers with the basics of Raman scattering phenomenon and SERS. This chapter will also discuss the latest developments in the SERS and its applications in various fields.",book:{id:"10073",slug:"recent-advances-in-nanophotonics-fundamentals-and-applications",title:"Recent Advances in Nanophotonics",fullTitle:"Recent Advances in Nanophotonics - Fundamentals and Applications"},signatures:"Samir Kumar, Prabhat Kumar, Anamika Das and Chandra Shakher Pathak",authors:null},{id:"9620",doi:"10.5772/8403",title:"Surface Wetting Characteristics of Rubbed Polyimide Thin Films",slug:"surface-wetting-characteristics-of-rubbed-polyimide-thin-films",totalDownloads:5414,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"3635",slug:"polymer-thin-films",title:"Polymer Thin Films",fullTitle:"Polymer Thin Films"},signatures:"Wenjun Zheng",authors:null},{id:"58220",doi:"10.5772/intechopen.72534",title:"Fabrication and Replication of Periodic Nanopyramid Structures by Laser Interference Lithography and UV Nanoimprint Lithography for Solar Cells Applications",slug:"fabrication-and-replication-of-periodic-nanopyramid-structures-by-laser-interference-lithography-and",totalDownloads:1389,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"In this chapter, the fabrication and replication of periodic nanopyramid structures suitable for antireflection and self-cleaning surfaces are presented. Laser interference lithography (LIL), dry etching, wet etching, and UV nanoimprint lithography (UV-NIL) are employed for the fabrication and replication of periodic nanopyramid structures. Inverted nanopyramid structures were fabricated on Si substrates by LIL and subsequent pattern transfer process using reactive ion etching, followed by potassium hydroxide (KOH) wet etching. The fabricated periodic inverted nanopyramid structures were utilized as a master mold for the nanoimprint process. The upright nanopyramid structures were patterned on the OrmoStamp-coated glass substrate with high fidelity in the first nanoimprint process. In the second nanoimprint process, inverted nanopyramid structures were replicated on the OrmoStamp-coated substrate using the fabricated upright nanopyramid glass substrate as a mold. The replicated inverted nanopyramid structure on resist-coated substrate was faithfully resolved with the high accuracy compared to original Si master mold down to nanometer scale. Both upright and inverted nanopyramid structures can be utilized as surface coatings for light trapping and self-cleaning applications for different types of solar cell and glass surfaces.",book:{id:"6124",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",title:"Micro/Nanolithography",fullTitle:"Micro/Nanolithography - A Heuristic Aspect on the Enduring Technology"},signatures:"Amalraj Peter Amalathas and Maan M. Alkaisi",authors:[{id:"6368",title:"Prof.",name:"Maan",middleName:null,surname:"Alkaisi",slug:"maan-alkaisi",fullName:"Maan Alkaisi"},{id:"207012",title:"Dr.",name:"Amalraj",middleName:null,surname:"Peter Amalathas",slug:"amalraj-peter-amalathas",fullName:"Amalraj Peter Amalathas"}]},{id:"55311",doi:"10.5772/intechopen.69177",title:"Recent Developments in Applications of Quantum-Dot Based Light-Emitting Diodes",slug:"recent-developments-in-applications-of-quantum-dot-based-light-emitting-diodes",totalDownloads:1860,totalCrossrefCites:6,totalDimensionsCites:5,abstract:"Quantum dot-based light-emitting diodes (QD-LEDs) represent a form of light-emitting technology and are regarded like a next generation of display technology after the organic light-emitting diodes (OLEDs) display. QD-LEDs are different from liquid crystal displays (LCDs), OLEDs, and plasma displays due to the fact that QD-LEDs present an ideal blend of high brightness, efficiency with long lifetime, flexibility, and low-processing cost of organic LEDs. So, QD-LEDs show theoretical performance limits which surpass all other display technologies. The goal of this chapter is, firstly, to provide a historical prospective study of QD-LEDs applications in display and lighting technologies, secondly, to present the most recent improvements in this field, and finally, to discuss about some current directions in QD-LEDs research that concentrate on the realization of the next-generation displays and high-quality lighting with superior color gamut, higher efficiency, and high color rendering index.",book:{id:"5746",slug:"quantum-dot-based-light-emitting-diodes",title:"Quantum-dot Based Light-emitting Diodes",fullTitle:"Quantum-dot Based Light-emitting Diodes"},signatures:"Anca Armăşelu",authors:[{id:"189080",title:"Dr.",name:"Anca",middleName:null,surname:"Armăşelu",slug:"anca-armaselu",fullName:"Anca Armăşelu"}]}],mostDownloadedChaptersLast30Days:[{id:"72277",title:"Surface-Enhanced Raman Scattering: Introduction and Applications",slug:"surface-enhanced-raman-scattering-introduction-and-applications",totalDownloads:1494,totalCrossrefCites:5,totalDimensionsCites:10,abstract:"Scattering of light by molecules can be elastic, Rayleigh scattering, or inelastic, Raman scattering. In the elastic scattering, the photon’s energy and the state of the molecule after the scattering events are unchanged. Hence, Rayleigh scattered light does not contain much information on the structure of molecular states. In inelastic scattering, the frequency of monochromatic light changes upon interaction with the vibrational states, or modes, of a molecule. With the advancement in the laser sources, better and compact spectrometers, detectors, and optics Raman spectroscopy have developed as a highly sensitive technique to probe structural details of a complex molecular structure. However, the low scattering cross section (10−31) of Raman scattering has limited the applications of the conventional Raman spectroscopy. With the discovery of surface-enhanced Raman scattering (SERS) in 1973 by Martin Fleischmann, the interest of the research community in Raman spectroscopy as an analytical method has been revived. This chapter aims to familiarize the readers with the basics of Raman scattering phenomenon and SERS. This chapter will also discuss the latest developments in the SERS and its applications in various fields.",book:{id:"10073",slug:"recent-advances-in-nanophotonics-fundamentals-and-applications",title:"Recent Advances in Nanophotonics",fullTitle:"Recent Advances in Nanophotonics - Fundamentals and Applications"},signatures:"Samir Kumar, Prabhat Kumar, Anamika Das and Chandra Shakher Pathak",authors:null},{id:"55768",title:"Quantum Dot-Based Light Emitting Diodes (QDLEDs): New Progress",slug:"quantum-dot-based-light-emitting-diodes-qdleds-new-progress",totalDownloads:2549,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"In recent years, the display industry has progressed rapidly. One of the most important developments is the ability to build flexible, transparent and very thin displays by organic light emitting diode (OLED). Researchers working on this field try to improve this area more and more. It is shown that quantum dot (QD) can be helpful in this approach. In this chapter, writers try to consider all the studies performed in recent years about quantum dot-based light emitting diodes (QDLEDs) and conclude how this nanoparticle can improve performance of QDLEDs. In fact, the existence of quantum dots in QDLEDs can cause an excellent improvement in their efficiency and lifetime resulted from using improved active layer by colloidal nanocrystals. Finally, the recent progresses on the quantum dot-based light emitting diodes are reviewed in this chapter, and an important outlook into challenges ahead is prepared.",book:{id:"5746",slug:"quantum-dot-based-light-emitting-diodes",title:"Quantum-dot Based Light-emitting Diodes",fullTitle:"Quantum-dot Based Light-emitting Diodes"},signatures:"Neda Heydari, Seyed Mohammad Bagher Ghorashi, Wooje Han and\nHyung-Ho Park",authors:[{id:"199095",title:"Prof.",name:"Hyung-Ho",middleName:null,surname:"Park",slug:"hyung-ho-park",fullName:"Hyung-Ho Park"},{id:"202100",title:"Dr.",name:"Neda",middleName:null,surname:"Heydari",slug:"neda-heydari",fullName:"Neda Heydari"},{id:"202684",title:"Dr.",name:"Seyed Mohammad Bagher Ghorashi",middleName:null,surname:"Ghorashi",slug:"seyed-mohammad-bagher-ghorashi-ghorashi",fullName:"Seyed Mohammad Bagher Ghorashi Ghorashi"},{id:"209683",title:"Mr.",name:"Wooje",middleName:null,surname:"Han",slug:"wooje-han",fullName:"Wooje Han"}]},{id:"70813",title:"Triboelectric Nanogenerators: Design, Fabrication, Energy Harvesting, and Portable-Wearable Applications",slug:"triboelectric-nanogenerators-design-fabrication-energy-harvesting-and-portable-wearable-applications",totalDownloads:1547,totalCrossrefCites:5,totalDimensionsCites:5,abstract:"Scavenging energy from our day-to-day activity into useful electrical energy be the best solution to solve the energy crisis. This concept entirely reduces the usage of batteries, which have a complex issue in recycling and disposal. For electrical harvesting energy from vibration energy, there are few energy harvesters available, but the fabrication, implementation, and maintenances are quite complicated. Triboelectric nanogenerators (TENG) having the advantage of accessible design, less fabrication cost, and high energy efficiency can replace the battery in low-power electronic devices. TENGs can operate in various working modes such as contact-separation mode, sliding mode, single-electrode mode, and free-standing mode. The design of TENGs with the respective operating modes employed in generating electric power as well as can be utilized as a portable and wearable power source. The fabrication of triboelectric layers with micro-roughness could enhance the triboelectric charge generation. The objective of this chapter is to deal with the design of triboelectric layers, creating micro structured roughness using the soft-lithographic technique, fabrication of TENGs using different working modes, energy harvesting performance analysis, powering up commercial devices (LEDs, displays, and capacitors), and portable-wearable applications.",book:{id:"8539",slug:"nanogenerators",title:"Nanogenerators",fullTitle:"Nanogenerators"},signatures:"Venkateswaran Vivekananthan, Arunkumar Chandrasekhar, Nagamalleswara Rao Alluri, Yuvasree Purusothaman, Gaurav Khandelwal and Sang-Jae Kim",authors:[{id:"81419",title:"Prof.",name:"Sang-Jae",middleName:null,surname:"Kim",slug:"sang-jae-kim",fullName:"Sang-Jae Kim"},{id:"226214",title:"Dr.",name:"Nagamalleswara Rao",middleName:null,surname:"Alluri",slug:"nagamalleswara-rao-alluri",fullName:"Nagamalleswara Rao Alluri"},{id:"226215",title:"Prof.",name:"Arunkumar",middleName:null,surname:"Chandrasekhar",slug:"arunkumar-chandrasekhar",fullName:"Arunkumar Chandrasekhar"},{id:"313713",title:"Mr.",name:"Venkateswaran",middleName:null,surname:"Vivekananthan",slug:"venkateswaran-vivekananthan",fullName:"Venkateswaran Vivekananthan"},{id:"313714",title:"Dr.",name:"Yuvasree",middleName:null,surname:"Purusothaman",slug:"yuvasree-purusothaman",fullName:"Yuvasree Purusothaman"},{id:"313715",title:"Mr.",name:"Gaurav",middleName:null,surname:"Khandelwal",slug:"gaurav-khandelwal",fullName:"Gaurav Khandelwal"}]},{id:"56681",title:"Valley Polarized Single Photon Source Based on Transition Metal Dichalcogenides Quantum Dots",slug:"valley-polarized-single-photon-source-based-on-transition-metal-dichalcogenides-quantum-dots",totalDownloads:1915,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Photonic quantum computer, quantum communication, quantum metrology, and optical quantum information processing require a development of efficient solid‐state single photon sources. However, it still remains a challenge. We report theoretical framework and experimental development on a novel kind of valley‐polarized single‐photon emitter (SPE) based on two‐dimensional transition metal dichalcogenides (TMDCs) quantum dots. In order to reveal the principle of the SPE, we make a brief review on the electronic structure of the TMDCs and excitonic behavior in photoluminescence (PL) and in magneto‐PL of these materials. We also discuss coupled spin and valley physics, valley‐polarized optical absorption, and magneto‐optical absorption in TMDC quantum dots. We demonstrate that the valley‐polarization is robust against dot size and magnetic field, but optical transition energies show sizable size‐effect. Three versatile models, including density functional theory, tight‐binding and effective k⋅p method, have been adopted in our calculations and the corresponding results have been presented.",book:{id:"5746",slug:"quantum-dot-based-light-emitting-diodes",title:"Quantum-dot Based Light-emitting Diodes",fullTitle:"Quantum-dot Based Light-emitting Diodes"},signatures:"Fanyao Qu, Alexandre Cavalheiro Dias, Antonio Luciano de Almeida\nFonseca, Marco Cezar Barbosa Fernandes and Xiangmu Kong",authors:[{id:"99666",title:"Prof.",name:"Fanyao",middleName:null,surname:"Qu",slug:"fanyao-qu",fullName:"Fanyao Qu"}]},{id:"58480",title:"Optical Proximity Correction (OPC) Under Immersion Lithography",slug:"optical-proximity-correction-opc-under-immersion-lithography",totalDownloads:1533,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"As advanced technology nodes continue scaling down into sub-16 nm regime, optical microlithography becomes more vulnerable to process variations. As a result, overall lithographic yield continuously degrades. Since next-generation lithography (NGL) is still not mature enough, the industry relies heavily on resolution enhancement techniques (RETs), wherein optical proximity correction (OPC) with 193 nm immersion lithography is dominant in the foreseeable future. However, OPC algorithms are getting more aggressive. Consequently, complex mask solutions are outputted. Furthermore, this results in long computation time along with mask data volume explosion. In this chapter, recent state-of-the-art OPC algorithms are discussed. Thereafter, the performance of a recently published fast OPC methodology—to generate highly manufactured mask solutions with acceptable pattern fidelity under process variations—is verified on the public benchmarks.",book:{id:"6124",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",title:"Micro/Nanolithography",fullTitle:"Micro/Nanolithography - A Heuristic Aspect on the Enduring Technology"},signatures:"Ahmed Awad, Atsushi Takahashi and Chikaaki Kodaman",authors:[{id:"220602",title:"Dr.",name:"Ahmed",middleName:"Nassouh",surname:"Awad",slug:"ahmed-awad",fullName:"Ahmed Awad"},{id:"227583",title:"Prof.",name:"Atushi",middleName:null,surname:"Takahashi",slug:"atushi-takahashi",fullName:"Atushi Takahashi"},{id:"227584",title:"Dr.",name:"Chikaaki",middleName:null,surname:"Kodama",slug:"chikaaki-kodama",fullName:"Chikaaki Kodama"}]}],onlineFirstChaptersFilter:{topicId:"751",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"8",type:"subseries",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11404,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",slug:"marcus-vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:397,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/38965",hash:"",query:{},params:{id:"38965"},fullPath:"/chapters/38965",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()