\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5743",leadTitle:null,fullTitle:"Updates and Advances in Nephrolithiasis - Pathophysiology, Genetics, and Treatment Modalities",title:"Updates and Advances in Nephrolithiasis",subtitle:"Pathophysiology, Genetics, and Treatment Modalities",reviewType:"peer-reviewed",abstract:"In recent decades, we have enhanced our understanding of the pathophysiology and genetics of rare and common causes of kidney stones. With our evolving understanding of the epidemiology, biology, and genetics of nephrolithiasis and the advances in therapeutic technologies, we have made significant progress in patient care. Furthermore, advances in the medical management and surgical technologies have allowed us to embellish the optimal outcomes in the management of complex kidney stone disease.",isbn:"978-953-51-3460-2",printIsbn:"978-953-51-3459-6",pdfIsbn:"978-953-51-4704-6",doi:"10.5772/65175",price:119,priceEur:129,priceUsd:155,slug:"updates-and-advances-in-nephrolithiasis-pathophysiology-genetics-and-treatment-modalities",numberOfPages:130,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"4a3920d0edc2616806749635f615366f",bookSignature:"Layron Long",publishedDate:"August 23rd 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5743.jpg",numberOfDownloads:7810,numberOfWosCitations:4,numberOfCrossrefCitations:8,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:11,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:23,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 13th 2016",dateEndSecondStepPublish:"November 8th 2016",dateEndThirdStepPublish:"July 15th 2017",dateEndFourthStepPublish:"August 15th 2017",dateEndFifthStepPublish:"October 15th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"71483",title:"Dr.",name:"Layron",middleName:null,surname:"Long",slug:"layron-long",fullName:"Layron Long",profilePictureURL:"https://mts.intechopen.com/storage/users/71483/images/5977_n.jpg",biography:"Dr. Long is a board certified urologist who earned a doctorate of medicine from Meharry Medical College in Nashville, TN. He then completed general surgery internship at Vanderbilt University Medical Center in Nashville, TN, and a fellowship in Molecular Genetics at the Howard University/Johns Hopkins University in the Washington DC and Baltimore Maryland.\nDr. Long trained in urological surgery at TUFTS New England Medical Center in Boston, MA, and completed his senior and chief resident years of training at the University of Washington Medical Center in Seattle, WA.\nAfter completing his residency training, Dr. Long completed an Endourological Society Fellowship in robotics, laparoscopy, and endo-urology at the University of Washington. He is a member of the American Urological Association, American Board of Urology, American Association of Clinical Urologist, Society of Endourology, and Society of laparoscopic Surgeons. \nHe is currently the director of urological robotic surgery and the chief of the robotics section at Good Samaritan Regional Medical Center. Dr. Long served as a robotic surgery proctor for Intuitive Surgical, and an assistant clinical professor of Surgery.",institutionString:null,position:"Director of Robotic /Surgeon",outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1163",title:"Nephrology",slug:"nephrology"}],chapters:[{id:"56350",title:"Understanding the Pathophysiology of Nephrocalcinosis",doi:"10.5772/intechopen.69895",slug:"understanding-the-pathophysiology-of-nephrocalcinosis",totalDownloads:2426,totalCrossrefCites:6,totalDimensionsCites:8,hasAltmetrics:1,abstract:"Many in vitro and in vivo studies on the mechanisms underlying calcium nephrolithiasis have provided evidence of a frequently associated condition, i.e., a microscopic renal crystal deposition that can occur within the tubular lumen (intratubular nephrocalcinosis) or in the interstitium (interstitial nephrocalcinosis). Medullary nephrocalcinosis is the typical pattern seen in 98% of cases of human nephrocalcinosis, with calcification clustering around each renal pyramid. It is common in patients with metabolic conditions that predispose them to renal calcium stones. Cortical nephrocalcinosis is rare and usually results from severe destructive disease of the cortex. It has been described in chronic glomerulonephritis, but often in association with another factor, such as an increased calcium ingestion, acute cortical necrosis, chronic pyelonephritis or trauma. The most accredited hypothesis to explain the onset of interstitial nephrocalcinosis is purely physicochemical, relating to spontaneous Ca2PO4 crystallization in the interstitium due to oversaturation of Ca2PO4salts in this milieu. The theory that nephrocalcinosis is a process driven by osteogenic cells was first proposed by our group. We review nephrocalcinosis in terms of its definition, genetic associations, and putative mechanisms, pointing out how much evidence in the literature suggests that it may have some features in common with, and pathogenic links to vascular calcification.",signatures:"Giovanna Priante, Monica Ceol, Liliana Terrin, Lisa Gianesello,\nFederica Quaggio, Dorella Del Prete and Franca Anglani",downloadPdfUrl:"/chapter/pdf-download/56350",previewPdfUrl:"/chapter/pdf-preview/56350",authors:[{id:"196705",title:"Dr.",name:"Franca",surname:"Anglani",slug:"franca-anglani",fullName:"Franca Anglani"},{id:"196902",title:"Dr.",name:"Giovanna",surname:"Priante",slug:"giovanna-priante",fullName:"Giovanna Priante"},{id:"196903",title:"Dr.",name:"Federica",surname:"Quaggio",slug:"federica-quaggio",fullName:"Federica Quaggio"},{id:"196905",title:"Dr.",name:"Liliana",surname:"Terrin",slug:"liliana-terrin",fullName:"Liliana Terrin"},{id:"208980",title:"Dr.",name:"Monica",surname:"Ceol",slug:"monica-ceol",fullName:"Monica Ceol"},{id:"208981",title:"Dr.",name:"Lisa",surname:"Gianesello",slug:"lisa-gianesello",fullName:"Lisa Gianesello"},{id:"208982",title:"Dr.",name:"Dorella",surname:"Del Prete",slug:"dorella-del-prete",fullName:"Dorella Del Prete"}],corrections:null},{id:"56240",title:"Metaphylaxis in Pediatric Urinary Stone Disease",doi:"10.5772/intechopen.69982",slug:"metaphylaxis-in-pediatric-urinary-stone-disease",totalDownloads:1239,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The high rate of recurrence of urinary stones after initial treatment makes metaphylaxis essential in children. Thorough assessment and planning prior to metaphylaxis enable accurate and effective treatment. Expected benefits and possible adverse conditions must be considered when deciding on dietary restrictions in growing children, as their bone development is ongoing. A diet that includes abundant hydration and avoids salt produces the optimal cost‐benefit ratio. When dietary modification is not sufficient, medical treatment must be added.",signatures:"Onur Kaygısız",downloadPdfUrl:"/chapter/pdf-download/56240",previewPdfUrl:"/chapter/pdf-preview/56240",authors:[{id:"197193",title:"Dr.",name:"Onur",surname:"Kaygısız",slug:"onur-kaygisiz",fullName:"Onur Kaygısız"}],corrections:null},{id:"56253",title:"Cystinuria: A Review of Inheritance Patterns, Diagnosis, Medical Treatment and Prevention of Stones",doi:"10.5772/intechopen.69984",slug:"cystinuria-a-review-of-inheritance-patterns-diagnosis-medical-treatment-and-prevention-of-stones",totalDownloads:1066,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Cystinuria is a rare inherited renal stone disease. Mutations in two genes SLC3A1 and SLC7A9 underlie this condition, encoding proteins that facilitate dibasic amino acid exchange which are expressed in the gut and the proximal tubule of the kidney. Genetic studies now allow precise genotyping of patients who may have both autosomal dominant and autosomal recessive patterns of disease. The disorder is characterised by the urinary loss of cystine, lysine, ornithine, and arginine, and the insolubility of cystine gives rise to crystalluria and cysteine-containing renal stones. Although an inherited condition, it may present at any age. Clinical management combines lifestyle advice and preventative medical therapy. However, many patients require surgical interventions to remove problematic stones from the urinary tract. Preventative therapies include increased fluid intake, alkalinization of the urine, and the use of cystine-binding drugs, including penicillamine and tiopronin, which form soluble heterodimers with cystine.",signatures:"John A. Sayer and Fay Hill",downloadPdfUrl:"/chapter/pdf-download/56253",previewPdfUrl:"/chapter/pdf-preview/56253",authors:[{id:"181499",title:"Prof.",name:"John",surname:"Sayer",slug:"john-sayer",fullName:"John Sayer"},{id:"212849",title:"Dr.",name:"Fay",surname:"Hill",slug:"fay-hill",fullName:"Fay Hill"}],corrections:null},{id:"56495",title:"Investigation of Laser Pulse‐induced Calculus Damage Mechanism by a High‐speed Camera",doi:"10.5772/intechopen.69981",slug:"investigation-of-laser-pulse-induced-calculus-damage-mechanism-by-a-high-speed-camera",totalDownloads:1747,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Even though laser lithotripsy has become the most popular treatment choice for kidney stone disease, the mechanism calculus disintegration by laser pulse remains unclear. This is due to the multiple physical/chemical processes involved in laser pulse‐caused calculus damage and their sub‐microsecond timescales. A high‐speed camera with a frame rate up to 1 million frames per second (fps) was employed in this study. The results revealed the cavitation bubble dynamics (oscillation and center of bubble movement) by Ho‐ and Tm‐laser pulses at a different energy level and pulse width. Besides, fiber‐tip degradation, damage, or burn‐back is a common problem during the ureteroscopic laser lithotripsy procedure to treat urolithiasis. The results suggested that using a high‐speed camera and the Schlieren method to visualize the shock wave provided valuable information about time‐dependent acoustic energy propagation and its interaction with cavitation, the fiber tip, and calculus. And lastly, calculus migration is a common problem during ureteroscopic laser lithotripsy procedure to treat urolithiasis. In this investigation, calculus retropulsion was studied using a suspended pendulum in water to get rid of the friction. The results suggested that using the pendulum model to eliminate the friction improved sensitivity and repeatability of the experiment.",signatures:"Jian J. Zhang, Rongwei J. Xuan and Thomas Hasenberg",downloadPdfUrl:"/chapter/pdf-download/56495",previewPdfUrl:"/chapter/pdf-preview/56495",authors:[{id:"196464",title:"Dr.",name:"Jian",surname:"Zhang",slug:"jian-zhang",fullName:"Jian Zhang"},{id:"205944",title:"M.Sc.",name:"Rongwei",surname:"Xuan",slug:"rongwei-xuan",fullName:"Rongwei Xuan"},{id:"205949",title:"Dr.",name:"Thomas",surname:"Hasenberg",slug:"thomas-hasenberg",fullName:"Thomas Hasenberg"}],corrections:null},{id:"55900",title:"Extracorporeal Shock Wave Therapy: Non‐Urological Indications and Recent Trends",doi:"10.5772/intechopen.69482",slug:"extracorporeal-shock-wave-therapy-non-urological-indications-and-recent-trends",totalDownloads:1332,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Extracorporeal shockwave lithotripsy (ESWL) was introduced in 1980 as the preferred tool by the urologist for the treatment of renal stones and or upper ureteral stones. ESWL is minimally invasive procedures, exposes patients to fewer anesthesias, and has equivalent stone‐free rates comparable to open surgery and endourology interventions for the treatment of renal stones. Urolithiasis is not the only application for extracorporeal shock waves but there are also other applications for it. Extracorporeal shock wave is used for the treatment of gall bladder stones, common bile duct stone clearance, pancreatic calculi, salivary stones, erectile dysfunction, and refractory angina pectoris chronic wound healing. This chapter gives full review about ESWL as minimally invasive procedures in the following items: (i) ESWL l in treatment of gall stones; (ii) ESWL for common bile duct (CBD) stones; (iii) ESWL for pancreatic stones associated with pancreatic pseudo cysts and chronic pancreatitis; (iv) ESWL in the treatment of salivary stones; (v) ESWL in the treatment of erectile dysfunction (ED); (vi) Cardiac shock wave therapy (ESWL) in treatment of refractory angina (RA); (vii) ESWL and chronic wound healing; (viii) Recent trends in extracorporeal shockwave lithotripsy (ESWL); (ix) Post ESWL complementary therapy; and (x) The future of ESWL in the year 2038.",signatures:"Noha Maraie, Omar Mohammed Osman and Hosni Khairy Salem",downloadPdfUrl:"/chapter/pdf-download/55900",previewPdfUrl:"/chapter/pdf-preview/55900",authors:[{id:"96052",title:"Prof.",name:"Hosni",surname:"Salem",slug:"hosni-salem",fullName:"Hosni Salem"},{id:"209784",title:"Dr.",name:"Noha",surname:"Maraie",slug:"noha-maraie",fullName:"Noha Maraie"},{id:"209785",title:"Dr.",name:"Omar Mohammed",surname:"Osman",slug:"omar-mohammed-osman",fullName:"Omar Mohammed Osman"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"791",title:"Renal Transplantation",subtitle:"Updates and Advances",isOpenForSubmission:!1,hash:"aa0a1bbb31a92e4db637dc76f7dbd9dc",slug:"renal-transplantation-updates-and-advances",bookSignature:"Layron Long",coverURL:"https://cdn.intechopen.com/books/images_new/791.jpg",editedByType:"Edited by",editors:[{id:"71483",title:"Dr.",name:"Layron",surname:"Long",slug:"layron-long",fullName:"Layron Long"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"353",title:"Progress in Hemodialysis",subtitle:"From Emergent Biotechnology to Clinical Practice",isOpenForSubmission:!1,hash:"9b545b95a5c70a6881b0ee0821429a92",slug:"progress-in-hemodialysis-from-emergent-biotechnology-to-clinical-practice",bookSignature:"Angelo Carpi, Carlo Donadio and Gianfranco Tramonti",coverURL:"https://cdn.intechopen.com/books/images_new/353.jpg",editedByType:"Edited by",editors:[{id:"58620",title:"Prof.",name:"Angelo",surname:"Carpi",slug:"angelo-carpi",fullName:"Angelo Carpi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3267",title:"Hemodialysis",subtitle:null,isOpenForSubmission:!1,hash:"960f1c2998be5bdb86d0b9412f13fb0b",slug:"hemodialysis",bookSignature:"Hiromichi Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/3267.jpg",editedByType:"Edited by",editors:[{id:"156403",title:"Prof.",name:"Hiromichi",surname:"Suzuki",slug:"hiromichi-suzuki",fullName:"Hiromichi Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"646",title:"Chronic Kidney Disease",subtitle:null,isOpenForSubmission:!1,hash:"49fc40a7d5b44ec81ee90ab94907dcfa",slug:"chronic-kidney-disease",bookSignature:"Monika Göoz",coverURL:"https://cdn.intechopen.com/books/images_new/646.jpg",editedByType:"Edited by",editors:[{id:"65789",title:"Prof.",name:"Monika",surname:"Göőz",slug:"monika-gooz",fullName:"Monika Göőz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"790",title:"Basic Nephrology and Acute Kidney Injury",subtitle:null,isOpenForSubmission:!1,hash:"c12b7e407cfc0727e34f51e0cb5cdbb4",slug:"basic-nephrology-and-acute-kidney-injury",bookSignature:"Manisha Sahay",coverURL:"https://cdn.intechopen.com/books/images_new/790.jpg",editedByType:"Edited by",editors:[{id:"65130",title:"Prof.",name:"Manisha",surname:"Sahay",slug:"manisha-sahay",fullName:"Manisha Sahay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3257",title:"Current Issues and Future Direction in Kidney Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"32aaeaf9eae59e0b53029c221285c846",slug:"current-issues-and-future-direction-in-kidney-transplantation",bookSignature:"Thomas Rath",coverURL:"https://cdn.intechopen.com/books/images_new/3257.jpg",editedByType:"Edited by",editors:[{id:"67436",title:"Dr.",name:"Thomas",surname:"Rath",slug:"thomas-rath",fullName:"Thomas Rath"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1377",title:"Technical Problems in Patients on Hemodialysis",subtitle:null,isOpenForSubmission:!1,hash:"af6137ecadd693ee44dd2077bf997c05",slug:"technical-problems-in-patients-on-hemodialysis",bookSignature:"Maria Goretti Penido",coverURL:"https://cdn.intechopen.com/books/images_new/1377.jpg",editedByType:"Edited by",editors:[{id:"75822",title:"Prof.",name:"Maria Goretti",surname:"Penido",slug:"maria-goretti-penido",fullName:"Maria Goretti Penido"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1746",title:"Renal Failure",subtitle:"The Facts",isOpenForSubmission:!1,hash:"b4908da0542e95ea4a4b229a52b424fd",slug:"renal-failure-the-facts",bookSignature:"Momir Polenakovic",coverURL:"https://cdn.intechopen.com/books/images_new/1746.jpg",editedByType:"Edited by",editors:[{id:"137853",title:"Dr.",name:"Momir",surname:"Polenakovic",slug:"momir-polenakovic",fullName:"Momir Polenakovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"441",title:"Understanding the Complexities of Kidney Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"46a4e22d63f105619b4bbf4b5631655c",slug:"understanding-the-complexities-of-kidney-transplantation",bookSignature:"Jorge Ortiz and Jason Andre",coverURL:"https://cdn.intechopen.com/books/images_new/441.jpg",editedByType:"Edited by",editors:[{id:"33534",title:"Prof.",name:"Jorge",surname:"Ortiz",slug:"jorge-ortiz",fullName:"Jorge Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1429",title:"Diabetic Nephropathy",subtitle:null,isOpenForSubmission:!1,hash:"bcd3049e20a39337e8dd204725a05f8c",slug:"diabetic-nephropathy",bookSignature:"John S. D. Chan",coverURL:"https://cdn.intechopen.com/books/images_new/1429.jpg",editedByType:"Edited by",editors:[{id:"101924",title:"Dr.",name:"John",surname:"Chan",slug:"john-chan",fullName:"John Chan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64890",slug:"erratum-emergency-operations-of-sudden-water-pollution-accidents",title:"Erratum - Emergency Operations of Sudden Water Pollution Accidents",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64890.pdf",downloadPdfUrl:"/chapter/pdf-download/64890",previewPdfUrl:"/chapter/pdf-preview/64890",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64890",risUrl:"/chapter/ris/64890",chapter:{id:"64626",slug:"emergency-operations-of-sudden-water-pollution-accidents",signatures:"Jin Quan, Lingzhong Kong, Xiaohui Lei and Mingna Wang",dateSubmitted:null,dateReviewed:"October 15th 2018",datePrePublished:null,datePublished:"December 19th 2018",book:{id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",publishedDate:"December 19th 2018",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",title:"Compact",chapterContentType:"chapter",authoredCaption:"Authored by"}},authors:[{id:"280923",title:"Dr.",name:"Lingzhong",middleName:null,surname:"Kong",fullName:"Lingzhong Kong",slug:"lingzhong-kong",email:"lzkong@126.com",position:null,institution:null}]}},chapter:{id:"64626",slug:"emergency-operations-of-sudden-water-pollution-accidents",signatures:"Jin Quan, Lingzhong Kong, Xiaohui Lei and Mingna Wang",dateSubmitted:null,dateReviewed:"October 15th 2018",datePrePublished:null,datePublished:"December 19th 2018",book:{id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",publishedDate:"December 19th 2018",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",title:"Compact",chapterContentType:"chapter",authoredCaption:"Authored by"}},authors:[{id:"280923",title:"Dr.",name:"Lingzhong",middleName:null,surname:"Kong",fullName:"Lingzhong Kong",slug:"lingzhong-kong",email:"lzkong@126.com",position:null,institution:null}]},book:{id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",publishedDate:"December 19th 2018",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",title:"Compact",chapterContentType:"chapter",authoredCaption:"Authored by"}}},ofsBook:{item:{type:"book",id:"10845",leadTitle:null,title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tMarine Ecosystems are very productive and include the open ocean, the deep-sea ocean, and coastal marine ecosystems, each of which has different physical and biological characteristics. The biodiversity of some of these ecosystems is very rich and abundant offering unique opportunities for high-yield production of proteinaceous material, being a source of high-quality foods. Biodiversity is fundamental to sustaining marine ecosystem services, such as food, maintenance of water quality, and recovery from perturbations, being threatened worldwide. The main threats to marine biodiversity are habitat loss, eutrophication, overexploitation, pollution by hazardous substances, the introduction of non-native species, and other human activities. Efforts to reduce these pressures are essential for coastal water quality, recovery of ecosystem services, global food security, and ecosystem stability. Bioindicators to assess the presence of stressors are important tools to be used as early warning signals to early detect their presence, monitor and management of these ecosystems, and thus promote ecosystem health.
\r\n\r\n\t
\r\n\tThe protection of biodiversity is a major target of the European Union Marine Strategy Framework Directive, requiring an assessment of the status of biodiversity on the level of species, habitats, and ecosystems including genetic diversity and the role of biodiversity in food web structure and functioning. The restoration of marine ecosystems can support the productivity and reliability of goods and services that the ocean provides to humankind, to maintain ecosystem integrity and stability. Some of the goods produced by the marine ecosystem services are fish harvests, wild plant and animal resources, water, some of the services provided recreation, tourism, breeding and nursery habitats, water transport, carbon sequestration, erosion control, and habitat provision.
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
The mitochondria are equipped with double membranes, crating the intermembrane space between the outer and inner membranes as well as the inner matrix compartment, where most of the metabolic processes take place. The inner membrane is highly folded, forming so-called cristate, to accommodate its large surface area. Embedded in the inner mitochondria membrane are the five complexes that make up the respiratory chain where oxidative phosphorylation takes place. In this process, a proton gradient across the inner membrane is coupled to ATP synthesis at complex V (2). In addition to producing ATP essential for cell survival, the mitochondria are a source for free radical or reactive oxygen species (ROS), production. ROS are small, highly reactive molecules that can be generated by mitochondrial respiration and in active skeletal muscle.
Mitochondria are unique organelles in that they contain their own DNA, which consists of a circular DNA molecule of about 16.6 kb in humans and 16.3 in mice. It encodes 13 of the around 90 proteins that make up the respiratory chain. In addition, mtDNA also encodes 2 ribosomal RNAs (rRNA) and 22 transfer RNAs (tRNA) (3). The presence of mtDNA is explained by the evolutionary origin of mitochondrion as a free-living prokaryotic organism. During the course of time, genes have been transferred to the nuclear genome, and mitochondrial function is highly depended on close coordination between the nuclear and mitochondrial genomes. In mammals, mtDNA is maternally inherited, the paternal mtDNA being destroyed during the first embryonic cell divisions. The individual stands of mtDNA are termed heavy (H) and light (L) stand. Introns are lacking, but there is a long non-coding region, the D loop, which contains control elements for transcription and replication of mtDNA.
The mitochondria are often referred to as the powerhouses of the cell. In turn, It is well stabilised that mitochondria are the site of oxidative energy production in eukaryotic cells and provide the majority of the total ATP required to maintain normal cellular function and homeostasis. Within skeletal muscle, ATP is primarily required for the energy-dependent cross-bridge cycling between actin and myosin, as well as for Ca2+ cycling. Within the mitochondrial matrix, enzymes oxidize fatty acids and carbohydrates producing the reducing equivalents, NADH and FADH2. These reducing equivalents are then used to produce a proton gradient across the inner mitochondrial membrane. Dissipation of this gradient through the F0F1-ATPase results in the resynthesis of the ATP that drives every energy-dependent process in the cell. Studies showed Changes in metabolic demand can directly alter the concentration of mitochondria within the cell. Proliferation of mitochondria occurs in muscle in response to endurance exercise training, chronic electrical stimulation and thyroid hormone, while loss of mitochondria is associated with inactivity and aging.
Skeletal muscle is a highly malleable tissue, capable of considerable metabolic and morphological adaptations in response to repeated bouts of contractile activity (i.e. exercise). It is well established that chronic contractile activity, in the form of repeated bouts of endurance exercise, usually interspersed with recovery periods, results in the altered expression of a wide variety of gene products, leading to an altered muscle phenotype with improved fatigue resistance. This improved endurance is highly correlated with the increase in muscle mitochondrial density and enzyme activity, referred to as ‘mitochondrial biogenesis’. Mitochondrial biogenesis within muscle consists of two possible mutually inclusive alterations: [1] an increase in mitochondrial content per gram of tissue and/or [2] a change in mitochondrial composition, with an alteration in mitochondrial protein-to-lipid ratio (4). Although this phenomenon resulting from exercise has long been established, many of the detailed molecular mechanisms remain to be identified. This has particular relevance for our understanding of the pathophysiology of mitochondrially based diseases, and may improve our understanding of mitochondrial pathways involved in programmed cell death. Additionally, it has been suggested that an age-related accumulation of dysfunctional mitochondria may result in progressive reactive oxygen species-induced damage, producing a further impairment of oxidative capacity in aged muscle. Moreover, dysfunctional mitochondria have also been implicated in the age-related loss of muscle mass known as sarcopenia. Thus, mitochondrial biogenesis induced by chronic exercise is now recognized to have implications for a broader range of health issues than just the enhancement of endurance performance.
Therefore, the present chapter will highlight important molecular mechanisms that involved in mitochondrial biogenesis and then we will investigate the exercise effects on theses mechanisms. In the second Section of theses chapter, we examine the effects of aging on mitochondrial content and function and potential role of exercise in attenuation of age-related mitochondrial dysfunction.
One of the most fascinating aspects of mitochondrial synthesis is that it requires the cooperation of the nuclear and mitochondrial genomes (Figure-1). Mitochondria are unique in the fact that they house multiple copies of a small circular DNA molecule (mtDNA) comprising 16,659 nucleotides. As noted above, this mtDNA is minuscule compared with the 3 billion nucleotides found in the nuclear genome, it nonetheless contributes 13 mRNA, 22 tRNA, and 2 rRNA molecules that are essential for mitochondrial function. The thirteen mRNA molecules all encode protein components of the respiratory chain, responsible for electron transport and ATP synthesis.
Where does the cooperation between the genomes come in? First, these thirteen components comprise only a small fraction of the total respiratory chain proteins. Some act as single protein subunits, but many are combined nuclear-encoded proteins to form multisubunit holoenzymes, like COX or NADH dehydrogenase (Figure-1). The function of these holoenzymes is clearly impaired if contributions from either genome is absent (5). Second, it is known that mtDNA transcription and replication require the import of nuclear gene products, which act as polymerases or transcription factors. Given the diverse promoter regions of nuclear genes encoding mitochondrial proteins, as well as the sequences of the mtDNA promoters, it is not surprising that this coordination can be disrupted. Evidence for this has been presented in cases of thyroid hormone treatment, suggesting that a coordination of gene expression responses leading to strict stoichiometric relationships is not absolutely necessary for the formation of a functional organelle (6).
A longstanding question has been related to how the two genomes are regulated, or coordinated, in response to a stimulus leading to mitochondrial biogenesis. Williams et al. (7-8) were the first to show that chronic contractile activity led to increases in mRNA levels encoding both nuclear and mitochondrial gene products. Subsequently, this was demonstrated for subunit mRNAs belonging to the same COX holoenzyme. Because COX contains 10 nuclear encoded and 3 mitochondrial-encoded subunits, this enzyme is a useful model for studying the interactions of the two genomes. The mRNA expression of these subunits is also coordinated across a variety of tissues possessing a wide range of mitochondrial contents. In addition, some evidence for a coordinated regulation of the two genomes was found during the mitochondrial biogenesis induced by cardiac hypertrophy, as well as in human muscle when trained and untrained individuals were compared.
Overall synopsis of mitochondrial biogenesis in a muscle cell. Signals originating at the neuromuscular junction (NMJ) include propagated action potentials and the release of trophic substances, which interact with the postsynaptic membrane. Electrical activity in the sarcolemma is coupled to the release of calcium from the sarcoplasmic reticulum (SR). Calcium acts as a second messenger to activate phosphatases and/or kinases, which are ultimately translocated to the nucleus to affect the activation of transcription factors and which influence the expression of nuclear genes encoding mitochondrial proteins. mRNA produced by transcription is translated into protein in the cytosol, which can either be translocated back to the nucleus (transcription factor) or chaperoned to the protein import machinery and taken up by the organelle. Within mitochondria it may act as a single protein subunit or be combined with other subunits to form a multisubunit holoenzyme (e.g., cytochrome c oxidase). Some subunits of the holoenzyme may be derived from the mitochondrial genome (mtDNA), which also undergoes transcription and translation to synthesize a limited number (13) of proteins that are essential components of the electron transport chain.
The expansion of the mitochondrial reticulum in skeletal muscle is a highly regulated and complex process that appears to require the co-ordinated expression of a large number of genes. Thus, an important aspect of mitochondrial biogenesis is the import machinery regulating the transport of nuclear encoded precursor proteins into the organelle. The vast majority of mitochondrial proteins (>90%) are encoded by nuclear genes and synthesized in the cytosol as preproteins containing a mitochondria import sequence.
Notwithstanding the importance of the mitochondrial genome in contributing proteins to the mitochondrial respiratory chain, it is nevertheless true that most mitochondrial proteins are derived from nuclear DNA. Therefore, a mechanism must exist for targeting these proteins to specific mitochondrial compartments once they have been synthesized in the cytosol. Most proteins are fabricated as “precursor” proteins with a signal sequence, often either located at the NH2 terminus or as an internal sequence (Figure-2).
Although pathways of protein targeting to the outer membrane, inner membrane, matrix, or intermembrane space differ somewhat from each other (9), the most widely studied path is that of proteins destined for the matrix. In this case, the positively charged NH2-terminal signal sequence interacts with a cytosolic molecular chapter that unfolds the precursor and directs it to the outer membrane import receptor complex, termed the translocase of the outer membrane (Tom complex). Cytosolic chaperones include 70-kDa heat shock protein (HSP70) and mitochondrial import stimulating factor (MSF). Precursor proteins can be directed to one of two subcomplexes within the Tom machinery. One of these, consisting of the Tom20 and Tom22 receptors, is the preferential route for HSP70 chaperone precursors.
On the other hand, proteins interacting with MSF are largely directed to the Tom70-Tom37 heterodimer (10). Precursors are then transferred from the Tom receptors to Tom40 and the small Tom proteins 5, 6, and 7, which form an aqueous channel through which the precursor protein passes. Proteins are then sorted to the outer membrane, to the inner membrane, or to the translocase of the inner membrane (Tim), another protein complex that allows movement of precursor proteins to either the matrix or the inner membrane. Those proteins involved in the translocation of the precursor to the matrix are Tim17, Tim23, and Tim44. Tim17 and Tim23 act as integral membrane proteins, spanning the mitochondrial inner membrane and having domains associated with both the matrix and intermembrane space. In a manner similar to the Tom receptor complexes, Tim17 and Tim23 bind the precursor protein, prevent any untimely folding that would inhibit the precursor from translocating into the matrix, and form an aqueous pore through which the precursor can travel. In contrast, Tim44 is a peripheral membrane protein that is secured to the inner face of the inner mitochondrial membrane. Tim44 anchors the matrix chaperone HSP70 (mtHSP70), which acts in a ratchet like manner to pull the precursor into the matrix (Figure-2). Along with these proteins, the inner membrane phospholipid cardiolipin is imperative for protein translocation because it appears to orient the precursor into the correct position for interaction with the Tim44-mtHSP70 complex. The importance of this phospholipid has been shown by studies in which cardiolipin function has been blocked using the drug Adriamycin, resulting in an attenuation of the import of proteins destined for the matrix (11-12).
Left: mitochondrial transcription factor A (Tfam) is a nuclear-encoded transcription factor that is synthesized in the cytosol as a larger, “precursor” protein with a positively charged NH2-terminal presequence (blue). It must interact with the protein import machinery to enter the organelle. Once inside the matrix, mature Tfam will bind within the D-loop region of the circular (not shown) mtDNA on the heavy-strand (HSP) and light-strand promoters (LSP) and stimulate the transcription and replication of mtDNA. Right: enlarged view of the components of the protein import machinery. A typical matrix-destined precursor like Tfam is unfolded and directed to the import machinery by a cytosolic chaperone, either cytosolic 70-kDa heat shock protein (cHSP70) or mitochondrial import stimulating factor (MSF). On interaction with the translocase of the outer membrane (Tom complex), it is correctly oriented by interacting with the inner membrane phospholipid cardiolipin (not shown) before being transferred to the translocase of the inner membrane (Tim complex). The matrix chaperone mtHSP70 pulls in the precursor, and the signal sequence is cleaved by the mitochondrial processing peptidase (MPP). Subsequently, the mature protein is refolded by matrix chaperonins HSP60 and Cpn10. ATP is required at multiple steps during the import process. The number within each import machinery component refers to its size in kDa.
Two other elements are required for correct import of precursor proteins into the matrix. These are 1) the presence of an inner membrane potential (DC, negative inside) across the inner membrane to help pull the positively charged presequence into the matrix and 2) the availability of ATP both in the cytosol and in the matrix. Uncoupling agents that dissipate DC reduce protein import, whereas ATP depletion prevents the unfolding of the precursor in the cytosol and/or the action of mtHSP70 in the matrix. Thus reductions in cellular ATP levels such as that produced by severe contractile activity or defects in ATP production as might be encountered in cells with mtDNA mutations could affect the rate of import into mitochondria.
After its arrival in the matrix, the NH2-terminal signal sequence is cleaved by a mitochondrial processing peptidase (MPP) to form the mature protein. It is then refolded into its active conformation by a mitochondrial chaperonin system consisting in part of 60-kDa heat shock protein (HSP60) and 10-kDa chaperonin (Cpn10). The vast majority of work that defines the components of the protein import machinery, as well as their cellular function, has been done in Saccharomyces cerevisiae and Neurospora crassa. This is now being extended to mammalian cells. For example, the kinetics of matrix precursor protein that import into skeletal muscle SS and IMF mitochondrial fractions, the ATP and cardiolipin dependence of the process, and the relationship to mitochondrial respiration have all been defined (13). IMF mitochondria import precursor proteins more rapidly than SS mitochondria, and there is a direct relationship between the capacity for mitochondrial respiration (and thus ATP production) and the rate of protein import. It has also been shown that a number of protein import machinery components are induced in response to chronic contractile activity. These include the chaperones MSF, cytosolic HSP70 (cHSP70), mtHSP70, HSP60, Cpn10, as well as the import receptor Tom20. Coincident with these increases are contractile activity-induced increases in the rate of import into the matrix but not into the outer membrane. This differential effect on protein targeting to mitochondrial compartments provides an example of how contractile activity can result in an altered mitochondrial protein stoichiometry. The accelerated rate of protein import into the matrix can be reproduced in cardiac mitochondria obtained from animals treated with thyroid hormone. Thus the effect is not a unique response to contractile activity but appears to be common to stimuli that increase mitochondrial biogenesis. To more easily define the role of specific components of the import pathway in determining the kinetics of import, measurement of import in intact cells can be employed. When C2C12 cells were incubated with [35S] methionine and the import of radiolabeled MDH into mitochondria was measured, a greater rate of import was found during the progress of mitochondrial biogenesis occurring coincident with muscle differentiation. As expected, thyroid hormone accelerated the rate of import and induced the expression of Tom20. To evaluate the role of Tom20 alone in mediating the accelerated import rate, forced overexpression of Tom20 in these cells using a mammalian expression construct was used. Parallel increases in the rate of import and the magnitude of overexpression were observed. Conversely, inhibition of Tom20 expression using specific antisense oligonucleotides led to equivalent decreases in MDH import. These data suggest that the import of matrix-destined proteins is controlled, at least in part, by the expression of Tom20. The protein import pathway represents an example of intracellular trafficking that is important for organelle biogenesis, and it may, under some conditions, determine the increase in mitochondrial content as a result of chronic exercise. For this to be the case, it must be shown that it is inducible and that it operates at a rate that limits the overall pathway under some conditions (i.e., chronic exercise). If the import rate was slow enough to limit mitochondrial biogenesis, then a pool of precursor proteins in the cell cytosol would be measurable. In the absence of such a pool, the assumption is that newly synthesized precursor proteins are rapidly taken up by mitochondria, and the kinetics does not limit the synthesis of the organelle as a whole. This has yet to be rigorously tested in a cellular system in which any other fates of the precursor (i.e., cytosolic degradation) are blocked. It is possible that the import of proteins might become limiting under conditions of chronic contractile activity if upstream steps (i.e., transcription, translation) are accelerated such that a saturating abundance of precursor proteins are presented to the import machinery.
In any event, the physiological value of the observed contractile activity-induced increases in mitochondrial protein import is that mitochondria are more sensitive to changes in precursor protein concentration, a situation that would be advantageous for mitochondrial biogenesis at any given upstream production rate of cytosolic precursor proteins. Progress in the area of protein import will advance substantially as additional mammalian homologues of the import machinery are identified. Recently, the first disease that can solely be attributed to a mutation in a protein component of the import machinery has been identified. A mutation in deafness dystonia protein (DPP) results in a neurodegenerative disorder characterized by muscle dystonia, sensorineural deafness, and blindness. DPP has been shown to be a mitochondrial protein that closely resembles Tim8p, a protein of the intermembrane space involved in the import process. In addition, mutations in the import receptor Tom70 have been shown to produce mtDNA rearrangements in the fungus Podospora anserina, presumably because of defective import of a component involved in mtDNA maintenance. The cloning of Tom22, as well as members of the Tim machinery, will be of help in elucidating the functional roles of individual import machinery components in the import process and the relevance of import in mitochondrially based diseases and in organelle biogenesis.
As noted above, exercise has been shown to induce the expression of several protein import machinery components, occurring coincident with an increased rate of translocation into the mitochondria. In turn, activity-induced changes have been observed in Tom20, Hsp60 and mtHSP70 protein and cpn10 mRNA levels, as well as cytosolic concentrations of Hsp70 and MSF (13-15). Coincident with these changes is acceleration in the rate of protein import into the matrix. Thus, the upregulation of protein import machinery components appears to be an important aspect of mitochondrial biogenesis which occurs with contractile activity. This greater capacity for protein import is physiologically relevant because it means that a greater rate of translocation into the organelle will occur at any given concentration of cytosolic protein produced by translation.
Expression of genes promoting mitochondrial biogenesis is predominantly controlled by the global principles of gene regulation, that is, transcription initiation and interaction at the gene promoter. Therefore, transcription factors and transcriptional co-activators represent critical regulators of mitochondrial biogenesis.
Numerous transcription factors have been implicated in mediating the physiological and metabolic adaptations associated with expression of genes involved in mitochondrial biogenesis. While no single transcription factor has been found to be responsible for the co-ordination of mitochondrial gene expression, several candidates appear to be important for mitochondrial biogenesis. These include two nuclear respiratory factors (NRF-1 and NRF-2), two peroxisome proliferator-activated receptors (PPAR-γ and PPAR-α), specificity protein 1 (Sp1), mitochondrial transcription factor A (Tfam), early growth response gene-1 (Egr-1) and the products of the immediate early genes, c-jun and c-fos. This diversity is important given that the characterization of an assortment of upstream promoter regions of genes encoding mitochondrial proteins has revealed considerable variability in their composition.
NRF-1 and NRF-2 are implicated in the transcriptional control of multiple mitochondrial genes including mitochondrial transcription factor A (Tfam) and identified mitochondrial transcription specificity factors TFB1M and TFB2M, while Egr-1 is associated with promoting transcription of the electron transport chain protein cytochrome C oxidase (COX). The peroxisome proliferator receptor gamma co-activator-1 alpha (PGC-1α) has been established as an important regulator of mitochondria content in skeletal muscle due to its apparent co-activation of multiple mitochondrial transcription factors. Indeed, PGC-1α is the founding member of a family of transcriptional co-activators that has been proposed as a potential “master regulator” of mitochondrial biogenesis (16). In support of this contention, Lin and co-workers (2002) over expressed PGC-1α in mice skeletal muscle and observed increased proportions of type I fibers and increased resistance to fatigue (17). In addition, the biogenesis and maintenance of mitochondrial architecture is controlled by altered rates of mitochondrial protein fusion and fission, a role for which mitofusin (Mfn) 1/2 proteins have been strongly implicated (18).
Similarly, PGC-1α also mediates Tfam activation, a key component in mitochondrial DNA replication and transcription. The NRF-1 transcription factor has been shown to activate Tfam which enhances the capacity for assembly of protein complexes within the mitochondria. Therefore, as a co-activator of NRF-1 transcription PGC-1α is involved in regulating Tfam function. Importantly, Tfam activity appears to increase in response to contractile activity and exercise suggesting enhanced mitochondrial protein assembly with endurance training. Most notably, PGC-1α is the co-activator of the peroxisome proliferator activated receptor (PPAR) family (19). The three PPAR sub-types α, γ and δ have distinct functions but all appear to regulate lipid homeostasis via expression of genes involved in mitochondrial fatty acid oxidation. The initial cellular perturbations associated with the onset of muscle activity leading to the activation of these transcription factors are beginning to be defined (Figure-3).
Researchers showed NRF-1, Tfam and PPAR-γ (has emerged as a potential master regulator of mitochondrial biogenesis) mRNA in response to contractile activity in cell cutlers and endurance exercise in vivo is increased. In turn, studies have been shown that PGC-1α mediates a regulatory pathway involving estrogen-related receptor alpha (ERRα) and Mfn1/2, and this pathway has been shown to be up-regulated following a 10-km cycling time trial (20). Also, this suggests that a PGC- 1α activated pathway promotes an increase in mitochondrial content in response to endurance exercise through enhanced mitochondrial protein fusion. This provokes an increase in mtDNA transcription and replication. The result is that PGC-1 overexpression can produce an overall increase in cellular oxygen consumption and subsequently, increases the aerobic capacity in endurance activities. The physiological significance of increased PGC-1α-PPAR activated gene expression with endurance training is an enhanced capacity for fat utilisation during prolonged exercise, and may also be related to fast-to-slow fibre type conversion (21). Indeed, this was highlighted by Wang and colleagues (2004) who generated transgenic mice over expressing PPARδ that resulted in a 2.3-fold increase in mitochondrial DNA content, significant type I fibre transformation and a 90% increase in running performance (22).
Transcription factors and mitochondrial biogenesis
The small numbers of studies investigating PPAR activation following exercise support these findings where both acute (21, 23-24) and chronic (25-27) endurance exercise induces PPAR transcription. The initial cellular perturbations associated with the onset of muscle activity leading to the activation and increment of these transcription factors are beginning to be defined. A considerable amount of evidence implicates alterations of intracellular Ca2+ (28-29) and ATP (30-31) turnover as the initial triggers eliciting the activation of signalling cascades which provoke changes in these gene expressions, as noted above.
Mitochondria are cited regularly as the main site of superoxide generation that contributes to the majority of reactive oxygen species (ROS) to the cell, although other sites of ROS production within the cell are documented. The potential for ROS to induce oxidative damage has significant implications for the cellular integrity of highly metabolic, long-lived and post-mitotic tissues such as brain, heart, and skeletal muscle. In addition, the effect of ROS is exacerbated by its potential to induce mutations in mtDNA, which is located in close proximity to the source of ROS generation. mtDNA has no protective histones and has substantially less repair mechanisms than nuclear DNA. Thus, ROS-induced accumulations in faulty proteins, oxidized fatty acids, and mtDNA mutations would result in a progressive, feed-forward, and irreversible cycle of cellular dysfunction that leads to the onset of phenotypes associated with aging. These observations are the major features of the mitochondrial theory of aging, which was first proposed, and then refined, by Denham Harman (32-33), suggesting that changes to mitochondrial integrity, content, and function could have a determining role on the rate at which we age. The role of mitochondria in promoting sarcopenia was uncovered by studies showing that muscle fibers containing dysfunctional mitochondria were atrophied compared to fibers that did not. As well, these authors and other groups (34-36) have reported that histochemical analyses of skeletal muscle fibers revealed an increase in the number of ragged red fibers, characterized by elevated levels of succinate dehydrogenase and a deficiency in COX activity. An in-depth description on the involvement of ROS in mitochondrial dysfunction associated with aging is provided in a later section.
Along with their role in ROS production, mitochondria play a critical role in maintaining cellular integrity through the regulation of programmed cell death, also termed apoptosis. Within mitochondria reside proteins, which upon release from the organelle, can initiate a cascade of proteolytic events that converge onto the nucleus leading to the fragmentation of DNA. This compromises cell viability and ultimately leads to cell death (37). The release of these apoptotic proteins, such as cytochrome C (cytoC), endonuclease G (EndoG) and apoptosisinducing factor (AIF), through either the mitochondrial permeability transition pore (mtPTP) or the homo-oligomeric BAX pores in the outer membrane, occurs in response to cellular stressors such as reactive oxygen species (ROS), chronic elevations in intracellular Ca2+ concentration, or gamma irradiation. Thus, the intimate connection between mitochondrial function and the viability of skeletal muscle suggests that this organelle plays a significant role in the progression of aging. Indeed, it is evident that in skeletal muscle of aged individuals, the induction of apoptosis is greater when compared with younger subjects. The increase in cytoC and EndoG release from the mitochondria of aged individuals is paralleled by an increase in caspase-3 cleavage, and p53 mediated apoptosis. The result of apoptosis is a loss in myonuclear number, resulting in a reduction in myofiber diameter to maintain a constant myonuclear domain size. Alternatively, a consequence of fiber atrophy may be the initial activation of apoptotic events that lead to a decrease in myonuclear number. Irrespective of the mechanism involved, mitochondria appear to have an involvement in the progression of sarcopenia. A discussion of the importance of apoptotic signalling during the development of age-related phenotypes caused by mtDNA mutations follows below.
Electron microscopic (EM) analyses reveal that the volume of mitochondria within skeletal muscle declines by 66% with age when compared with younger counterparts (38). Similar EM findings are documented in a human study, revealing a 25% decrease in the density of mitochondria within the vastus lateralis muscle of males and females aged greater than 60 years (39). Related to mitochondrial content is the level of cardiolipin found within skeletal muscle. Cardiolipin is a fatty acid that is exclusively found within the inner membrane of mitochondria, and it is linked to the optimal function and structure of the multitude of enzymes and respiratory complexes. The proximity of cardiolipin to the sites of ROS production makes it particularly vulnerable to oxidative damage. Numerous studies have investigated whether aging has an effect on cardiolipin content or oxidation in cardiac muscle. Some results have indicated that cardiolipin content is decreased along with an increased degree of peroxidation (40). This is linked to decreased activities of COX, ANT, and carrier complexes. However, other reports have failed to indicate a decline in cardiolipin content or its peroxidation within either SS or IMF mitochondria with age. One study in skeletal muscle has illustrated that cardiolipin content in 36-monthold rats is not decreased when compared with 6-month-old rats in isolated SS and IMF mitochondria (41). However, whether cardiolipin is oxidatively modified with age in skeletal muscle remains to be determined. The morphology of mitochondria may also be altered with age in skeletal muscle, in that a proportion of the organelles are enlarged, depolarized, and non-functional. When compared with the elongated morphology of mitochondria in skeletal muscles of young animals, mitochondria tend to be more rounded in shape within aged skeletal muscle, suggesting that mitochondrial fusion events may be impaired in skeletal muscle. Indeed, decreased OPA1 protein expression has been documented in experimentally-generated, giant mitochondria which may have physiological relevance to the morphology of mitochondria seen in aged individuals (42). Mitochondria have also been shown to undergo significant swelling with age because of the increased retention of calcium. EM has also identified losses in mitochondrial cristae formation, leading to homogenization of the materials found within the mitochondrial Compartments.
Upstream of the synthesis of ATP, the activities of the metabolic enzymes in Krebs’ cycle and those involved in lipid oxidation are altered with age. Citrate synthase activity is significantly decreased with age and the activities of b-hydroxyacyl-CoA dehydrogenase (b-HAD) and succinate dehydrogenase are also reduced with age (43). Oxidation of lipids is also impaired within skeletal muscle of aged individuals. Aged muscle also exhibits characteristics of decreased mitochondrial respiratory capacity and ETC enzyme activities. Functional analyses reveal decreased activities of complex I and IV. In line with these alterations, the activity of COX has been shown to decrease with age and the activities of complexes I, II, III, and IV decrease by 28–43%. Reduced oxidative capacity of approximately 30% has also been reported per mitochondrion (44). As a result of decreased enzyme and complex activities, ATP synthesis and content within aged skeletal muscle is reduced. Thus, there is an increased probability of affecting cellular processes reliant on a constant supply of ATP, such as muscle contractions, protein turnover, and the maintenance of membrane potential.
Skeletal muscle oxidative capacity is a reflection of the ability of working muscle to regenerate ATP through aerobic metabolism. Studies support that whole body maximal oxygen consumption (VO2max) declines with age and there is reduced aerobic capacity per kilogram of muscle in late-middle aged individuals. Oxidative phosphorylation capacity decreased by 50% in 70-year-old human subjects, evaluated using in vivo measurements (39). ATP production rates were decreased by 50% in the gastrocnemius of aged animals (45). Assessments of mitochondrial respiration that was stimulated with a variety of substrates in the presence of ADP revealed that this parameter decreased in aged skeletal muscle. At rest, muscle ATP synthesis was reduced in 30-month, compared with 7-month-old mice (46). In addition, the ATP content in aged gastrocnemius muscle is 50% lower when compared with that found in young animals (45), and a lower ATP/ADP ratio in 30-month-old mice has been illustrated as well (46).
Despite this evidence, numerous studies have also demonstrated that the oxidative capacity of skeletal muscle does not change with age and discrepancies in results can arise for a number of reasons. One is the lack of consistency of the ages used to make comparisons. Studies may pool together subjects in their late teenage years with middle-aged subjects to represent an ‘‘adult’’ group, whereas the ‘‘old’’ group could encompass subjects ranging from 40 to 90 years of age. Another variable between aging studies is the differences in the species used, which can range from rats, mice, monkeys, yeast, flies, worms, and humans. The selection of muscle studied, and the method of preparation are also not standardized, such that measurements have been made using either whole muscle homogenates or isolated mitochondrial populations. Related to this, many studies have ignored the potential biochemical differences between the SS and IMF mitochondria and report their findings on mixed mitochondrial samples. It is very possible that these skeletal muscle mitochondrial populations are affected differentially by the aging process. Finally, many studies fail to control for physical activity levels in their subjects, and there is evidence that the majority of age-related declines in mitochondrial oxidative capacity disappear after accounting for this variable (47). Thus, it is controversial whether mitochondrial dysfunction is due to aging per se, or whether the lack of regular physical activity is the major reason for the divergent age-related phenotypes of skeletal muscle. Then again, a reduced oxidative capacity was observed in aged subjects even after accounting for physical activity and fat-free mass. Thus, more research is needed to fully clarify these important issues.
The impairment in mitochondrial biogenesis may be due to a plethora of causes that lead to the propagation of mitochondrial dysfunction. As discussed below, a change in the content of mitochondria may be due to a decrease in the expression of genes coding for mitochondrial proteins, and/or alterations in the control of protein turnover that occur with aging. In addition, alterations in mitochondrial function may be due to oxidative modifications resulting from an increase of ROS, an elevation of mtDNA mutations, or increased uncoupling of oxidative phosphorylation with age.
Declines in mitochondrial content and function may be related to the altered expression of nuclear genes encoding mitochondrial proteins (NUGEMPS) in skeletal muscle of the elderly. The huge reliance of mitochondria on the nuclear genome suggests that impaired protein synthesis rates could lead to the decline in mitochondrial biogenesis that is observed with old age, especially if the transcription of NUGEMPS is decreased with age. An interesting study by Zahn et al. revealed that expression of mitochondrial ETC transcripts decreased, whereas cytosolic ribosomal transcripts were increased in skeletal muscle with age (48). This increased expression of ribosomal subunits may represent a compensatory response for decreased translational efficiency, particularly because protein synthesis has been illustrated to decrease with age. Deficits in ETC enzyme activities have been observed in number of studies and may be linked to a reduction in the transcription of genes located within mtDNA, or to a reduction in the content of mtDNA with age. However, in response to the decline in mitochondrial respiratory function, compensatory increases in mtDNA content in tissues such as skeletal muscle, kidney, and cardiac muscle have been observed. Conversely, the preponderance of evidence seems to suggest that mitochondrial mRNA content is reduced with age. Mitochondrial DNA copy number and mtDNA transcript levels of COX I and COX III have been shown to decrease in 27-month aged animals versus 6-month young animals (49). Similarly in humans, mtDNA content was significantly decreased in muscle biopsies obtained from 67-year-old subjects (50), whereas Welle et al. revealed that mRNA transcripts of components of the respiratory complexes also decrease in their abundance in aged skeletal muscle (51). It has been illustrated that in skeletal muscle of aged humans the rate of mitochondrial protein synthesis is decreased and this may have contributed to the decrease in COX and CS activities observed.
Mitochondrial function and morphology depend on the balance between protein synthesis and assembly, and the clearance of damaged or improperly assembled proteins. A reduced ability of degradation pathways to remove whole or damaged compartments of mitochondria could lead to impaired organelle bioenergetics. These effects likely manifest as decreased ATP synthesis, increased ROS generation, accumulated mtDNA mutations and cell death, characteristics which are observed in skeletal muscle of aging individuals. The major pathways that contribute to mitochondrial protein quality control include intramitochondrial proteases and autophagy. Studies have illustrated that with increasing age, the activity and expression of the intramitochondrial Lon protease is reduced, reflected by an accumulation of dysfunctional aconitase (52). Decreased activity of the Lon protease is likely due to oxidative modifications by elevated ROS levels within the mitochondrial matrix. In the cytosolic environment, lipofuscin has been implicated in contributing to the progressive decline in mitochondrial protein turnover and the onset of dysfunction that occurs with age. Lipofuscin, referred to as the aging pigment, is a non-degradable protein that is the product of incomplete autophagic degradation followed by the peroxidation of remaining contents within the lysosome by reactive oxygen species. Lipofuscin localizes within vesicles throughout tissues in aged individuals, which may reduce the availability of vesicles to form autophagosomes to remove damaged and dysfunctional mitochondria (53). Thus, it appears that the activities of these housekeeping pathways related to protein quality control are altered with aging, resulting in the accumulation of damaged mitochondria and cellular dysfunction. More research is required in this area with skeletal muscle as a function of age.
Research unequivocally indicates that ROS production increases in aging skeletal muscle (54). Chabi et al. observed that the generation of ROS is elevated in both the SS and IMF mitochondrial pools of fast-twitch muscles isolated from senescent animals (41). One consequence of increased aberrant ROS production is oxidative damage to complex V leading to a decrease in ATP synthesis and content within skeletal muscle. Additionally, increases in oxidative modifications in DNA occur with age, reflected by higher levels of 8-oxodeoxyguanosine, (8-oxoG) and the corresponding repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) in skeletal muscle. Increased levels of protein carbonyls have also been associated with aging skeletal muscle. It is well known that slower respiration rates increase the likelihood of the donation of electrons to oxygen at complexes I or III (55), and this may be a feature of mitochondrial respiration in aged individuals. It has also been hypothesized that during aging, there is increased dysfunction of these two complexes, leading to increased ROS generation.
Antioxidant enzymes have evolved to buffer the deleterious, effects of ROS. Enzymes such as manganese superoxide dismutase (MnSOD), catalase (CAT), and glutathione peroxidise (GPX), can ultimately reduce ROS to hydrogen peroxide (H2O2), and then finally into water. The role of ROS in limiting lifespan was elucidated in an elegant study, in which human CAT was targeted to the mitochondria. This resulted in improved aconitase activity, decreased mtDNA mutations, and increased mean lifespan (56). Conversely, transgenic mice lacking copper/zinc SOD (CuZnSOD) showed rapid aging and muscle atrophy similar to sarcopenia in concert with elevated oxidative modifications in proteins, lipids, and DNA, when compared with wild-type animals (57). However, whether the activity or content of these antioxidant enzymes is truly altered with age remains an equivocal issue. A number of studies have illustrated that there is an increase in antioxidant activities with age, as this would be the intuitive hypothesis in response to the elevated ROS generation that occurs during aging (58-59). However, other studies suggest that CuZnSOD, MnSOD, CAT, and GPX activities decrease with age in skeletal muscle, even though the protein and mRNA content of these enzymes were either unchanged or decreased with age (60-61). To add more complexity to this issue, it remains to be determined whether antioxidant enzyme activities are differentially affected by age in the two mitochondrial subfractions. One study suggests that there is no change in the content of MnSOD in SS and IMF mitochondria from tibialis anterior and extensor digitorum longus muscles of aged, compared with young animals. In cardiac muscle, IMF mitochondria exhibit increased levels of GPX, CAT, and MnSOD with age, whereas SS mitochondria exhibit increased levels of GPX and MnSOD and a decrease in CAT activity (62). Because it is clear that oxidative modifications to mitochondrial macromolecules are indeed occurring in skeletal muscle with age, it is likely that the increased ROS production overwhelms the buffering capacity of the antioxidant enzymes that are available. This suggests that other means to reduce ROS, independent of antioxidant enzyme activities, would be beneficial in reducing cellular oxidative damage.
An important component of the free radical theory of aging is that mitochondrial dysfunction is a result of accumulated oxidative damage to mtDNA, leading to mutations in coding regions for ETC proteins. The last point is especially critical because mtDNA contains no introns or spacer regions (63), thus even point mutations could lead to the expression of faulty proteins. It is accepted that ROS generation by skeletal muscle mitochondria increases with age and is accompanied by an increase in mtDNA mutations, impaired energy production, mitochondrial dysfunction, and a greater susceptibility to undergo apoptotic signalling that results in the downfall of skeletal muscle function. The most common mtDNA mutation associated with aging has a frequency rate of 30–35%, is found within the D-loop region, and is a deletion mutation that affects the expression of seven of the 13 proteins encoded by mtDNA (64-65). In addition, mtDNA deletion mutations appear to be highly localized in small regions of muscle fibers in mosaic patterns, rather than distributed ubiquitously throughout aged skeletal muscle.
Interestingly, research has illustrated that mtDNA mutations may be an important contributor to the aging process. Genetically altered mice lacking DNA polymerase gamma (Polg) activity exhibited an elevated accumulation of random mtDNA point mutations, in conjunction with a severe deficiency in ATP synthesis and the early onset of aging-related phenotypes. However, these occurred in the absence of increased ROS production, protein carbonylation or mtDNA damage (66). Although there was no evidence for increased oxidative stress in this study, apoptotic signalling was significantly elevated in the Polg mice, and it is conceivable that areas of the cell with accumulated oxidative modifications may have been cleared away by cell death and subsequent autophagy processes. In future experiments, it would be interesting to determine whether the enhanced expression of Polg activity could result in extended lifespan in normal animals. A definite role for ROS in producing mutations and mitochondrial dysfunction was illustrated in a mouse model with compromised MnSOD activity and content. Age-related alterations observed included 25% decreases in complex I and V activities, a 50% increase in basal ROS generation and a 45% increase in 8-oxoG content (67). However, both the mean and maximum lifespan were not altered. As a result of this, there is considerable debate regarding the validity of the mitochondrial theory of aging. As Conley et al. reviewed, mitochondrial dysfunction can be observed in skeletal muscle before the detection of mtDNA mutations (68). In addition, the theory postulates that mitochondrial dysfunction is irreversible; however, much evidence exists to contradict this point. Clearly, more research is required, with a focus on when and how mtDNA mutations are involved with aging. Despite this, the associations between dysfunctional mitochondria, mtDNA mutations, and apoptosis remain strong themes in the description of mechanisms that may be causative to the aging process.
Coupling of the energy generated from electron transfer through the respiratory complexes to the synthesis of ATP is a major function of the mitochondrial network. However, the flow of protons through complex V can be bypassed and redirected through protein channels which serve to uncouple respiration. The result of uncoupling is a decrease in ATP synthesis, despite increased oxygen consumption and respiratory rates (69). There is evidence which suggests that coupling is reduced with age. When compared with young individuals, coupling was lower by 50% in 30-month-old mice, resulting in decreased ATP production per O2 consumed (46). Another study supplemented this finding with the observation that uncoupling occurs in human skeletal muscle of subjects greater than 65 year of age that was accompanied with reduced ATP content (70). In the same study, it was determined that uncoupling affects muscles with a high type II fibre composition, compared with those that are composed of predominately type I fibers (41). Ghabi et al. also observed 21 and 40% decreases in the coupling of the IMF and SS mitochondria, respectively, in 36-month-old animals when compared with their younger counterparts (41). Potential causes for uncoupling of oxidative phosphorylation occurring with age may involve the increased activity and expression of uncoupling protein 3 (UCP3) that can be stimulated by oxidative stress. An increased activity of UCP3 has been proposed to lend protection to the cell, in response to increased oxidative stress that occurs with age. Indeed, mitochondria from UCP3 null mice demonstrated elevated levels of ROS production and oxidative modifications to cellular components. Whether the expression of uncoupling proteins in skeletal muscle is altered with aging is not well established. Some studies have observed a trend for increased UCP3 content (43), whereas others have suggested there is an age-related decrease or no change in this protein content (46, 71). Thus, if UPC3 content is not increased with age, it is likely that a greater proton leak with age could occur through increased permeability of the inner membrane by ROS-induced oxidative modifications of the lipid bilayer.
Although it has long been established that exercise training increases, and muscle disuse decreases, the activity of mitochondrial oxidative enzymes in skeletal muscle, a lack of consideration of this notion in aging studies has led to discrepancies in our overall understanding of the effect of aging on muscle mitochondrial function. Indeed, some of the age-associated alterations found in mitochondrial activity can be the result of a reduction in the level of voluntary physical activity as individuals age (31). In this regard, it is notable that the adaptation to exercise is not limited to young individuals, because older athletes can increase the activity of mitochondrial oxidative enzymes as a result of training (72). This likely happens through increases in expression of the coactivator PGC-1a and the specific transcription factors NRF-1 and Tfam, the main regulators of organelle biogenesis and protein expression. One can assume that if mitochondrial function deteriorates with age, organelle biogenesis induced by exercise may attenuate this age-related decline, and therefore may have a protective role. However, despite the fact that exercise-induced increases in enzyme activities and mitochondrial content have been reported in aging individuals, less is known about the effects of exercise on the expansion of mtDNA mutations, ROS balance, and apoptosis in aged skeletal muscle. For example, in patients suffering from mitochondrial diseases due to mtDNA mutations, the introduction of an exercise program to improve muscle oxidative capacity and mitochondrial function has been approached with caution. In those patients, exercise induced mitochondrial biogenesis but also increased both wild-type and mutant mtDNA, worsening the heteroplasmy ratio in muscle fibers (73). Thus, one might expect that this phenomenon could also occur in older individuals. However, in view of the evidence that chronic exercise can attenuate proapoptotic protein release from mitochondria in young animals, and reduce ROS production in intermyofibrillar mitochondria, it is worth investigating whether exercise can attenuate he enhanced apoptotic susceptibility evident in muscle from aged individuals.
Several lines of evidence support the fact that exercise may be beneficial in attenuating an aging-induced ROS imbalance. Old animals that were submitted to an 8-week treadmill exercise program, or 1 year of swimming, were found to have reduced oxidative damage compared with untrained old rats, notably due to alterations in antioxidant defences (74). At the mitochondrial level, recent work has revealed a 10% decrease in mitochondrial hydrogen peroxide production in animals as a result of lifelong voluntary wheel running (75). This may occur through the exercise-induced increase in mitochondrial content, a better redistribution of electrons through the electron transport chain, and (or) a better coupling between oxygen consumption and ATP synthesis in the exercised muscle of old animals. The precise mechanism for this effect remains to be determined.
Skeletal muscle is a remarkably adaptive tissue that is capable of changing its morphological, physiological, and biochemical properties in response to various perturbations. One of the most profound changes in skeletal muscle is mitochondrial biogenesis. Mitochondrial biogenesis is a very complex cellular process that requires the coordination of several mechanisms involving nuclear-mitochondrial corporation, mitochondrial protein expression and import, mtDNA gene expression, transcription factors activity, assembly of multisubunit enzyme complexes, regulation of mitochondrial fission and fusion as well as mitochondrial turnover. In turn, it seems with recognition of variant component of mitochondria of skeletal muscle; we can understand precisely the function of theses component in mitochondrial biogenesis process and effects of many interventions (e.g. Aging and diseases) on them. Also, we can comprehend the uncountable positive effects of exercise on these components. But, many vast and precise researches are needed to fully clarify these important issues.
“Rapid urbanization and increased consumption have led to economic growth in many parts of the world, but have also created unprecedented amounts of waste” [1]. The linear economy paradigm, the so called “buy-use-dispose” model, as adopted globally in particular in cities, is no longer sustainable, especially because of the growing production of waste, which is becoming unmanageable in many contexts. The UN Agenda 2030 [2], in fact, within Goal 12 of the Sustainable Development Goals, “Ensuring sustainable consumption and growth patterns,” calls for significant waste prevention, reduction, recycling, and reuse by 2030. As the demand for natural resources is constantly increasing along with waste production, circular economy and material resource efficiency represent the only approaches that can help to face the challenge of decoupling growth from resource consumption, tackling the “dual issue of increasing waste and decreasing resources by incentivizing actors throughout the value chain to extract maximum use from both existing products and the elements within them” [1].
Implementing the circular approach means reconfiguring all material flows within the city (building materials, water, solid waste, electronic waste, and even heat and energy), in order to avoid waste. Urban areas, in this perspective, represent an ideal environment to implement circular economy, starting from the resources embodied in the built environment and in particular in the existing building stock. Cities around the world are already moving in this direction, experimenting actions and interventions to promote interactions among different value chains and stakeholders, which can effectively foster circularity, urban mining, and sharing economy. This the case for Montevideo, for instance, where less than 2% of the solid urban waste goes to landfill via the waste collection system and, thanks to the support of ARUP, circular economy is being implemented as a strategic approach to enhance the city’s resilience [3].
Indeed, cities play a central role in the transition toward sustainability and circular economy: urban agglomerations contribute significantly to climate change and the overexploitation of resources, with impacts including land use, soil consumption, pollutants due to mobility, water and energy consumption, air quality, waste. Nevertheless, with their high concentration of resources, people, capital, data, cities offer excellent chances for cross-collaboration between all key actors (individuals, companies, government, civil society, research, etc.) that to take action and “lead to a more sustainable and livable future for the next generation of urban dwellers” [1].
In fact, as stated in 2020 by the European Commission in the updated Circular Economy Action Plan [4], circularity is a prerequisite for climate neutrality, having an important impact on climate change mitigation and adaptation and on greenhouse gas emission reduction, through carbon removal. Actions can be nature-based, including through restoration of ecosystems, forest protection, afforestation, sustainable forest management, and carbon farming sequestration, or based on increased circularity, for instance, through long-term storage in wood construction, reuse, and storage of carbon in products such as mineralization in building materials.
Transitioning to circular cities entails defining a vision. According to the Ellen MacArthur Foundation [5], a circular city embeds the principles of a circular economy across all of its functions, establishing an urban system that is regenerative and restorative by design. In such a city, the idea of waste is eliminated, with assets kept at their highest levels of utility at all times and the use of digital technologies a vital process enabler. A circular city aims to generate prosperity and economic resilience for itself and its citizens, while decoupling value creation from the consumption of finite resources [6]. Amsterdam, one of the leader cities in the application of circular economy concepts to city governance, follows seven principles in its transition toward a circular economy, as elaborated in a report commissioned by the city government [7]:
Closed loop: all materials enter into an infinite cycle (technical or biological).
Reduced emissions: all energy comes from renewable sources.
Value generation: resources are used to generate (financial or other) value.
Modular and flexible design of products and production chains increases adaptability of systems.
Innovative business models: new business models for production, distribution, and consumption enable the shift from possession of goods to (use of) services.
Region-oriented reverse logistics: logistics systems shift to a more region-oriented service with reverse logistics capabilities.
Natural systems upgradation: human activities positively contribute to ecosystems, ecosystem services, and the reconstruction of “natural capital.”
The abovementioned principles can be extended to define a vision and an action roadmap for circularity in cities.
The “circular city” reduces its environmental impacts from many points of view: from construction-related CO2 emissions to energy production. In the construction sector, a circular city would allow a 10-fold reduction in CO2 emissions and a 75% reduction in soil consumption, with a 30–50% saving in construction costs. Circular construction allows the saving of natural resources, considering that the building and infrastructure sector consumes 1/3 of the world’s raw materials, releases 11% of global emissions, and produces 40% of municipal solid waste within demolition processes. It is to be considered that the use of recycled building materials would reduce CO2 emissions by 40–70% [8].
At the global level, the building sector is in fact a crucial one for the implementation of circular strategies, as demonstrated by the survey on the status of the circular economy in 34 cities and regions documented in the Report “The Circular Economy in Cities and Regions” by the OECD [9], where 61% of involved cities and regions declared to have a circular economy initiative including buildings (Figure 1).
Fifteen out of 34 cities and regions have a circular economy initiative, where buildings are included in 61% of cases. Source: OECD [
Planning and design of urban areas and buildings should draw inspiration from the circular processes that occur in nature, by promoting a closed-loop use of resources, and therefore defining flexible, multipurpose spaces, using reused/recycled and recyclable materials, designing for deconstruction, so as to prevent the production of waste. In fact, in order to successfully deal with the problematic disposal of residues, the very concept of waste must be erased from our design and technological point of view [10], a new circular approach to the design, production, and procurement of materials has to be defined, with the involvement of all the stakeholders, including industry and waste operators.
By resorting to these processes, reproduced in an industrial key, and exploiting the synergy between urban and periurban areas (preferably industrial, to be redeveloped), it is possible to reduce the energy and environmental impact of these areas, rebalancing the impacts of cities.
From the point of view of territorial and urban policies, cities and regions are putting into practice a multiplicity of experimentations of systems and technologies for saving, reusing, and recycling. However, these are largely sectoral practices, still far from the adoption of integrated management and programming models for functions. This integration will increasingly have to bring the various phases of production and management of material and energy flows into coherence and coordinate the activities of the various territorial actors: public administrators, territorial management bodies, producers of goods and services, distributors of goods and distributors of services, users, and workers. The process of adopting integrated models of development and circular management therefore can and must be increased and made more effective through coordinated and decisive support by public governance at the level of all sectors of the national production chains, but above all through the organization and the efficient management of the territory as a generator of economy and consumption in a circular sense [8].
Cities and regions are implementing territorial and urban policies oriented toward a multiplicity of experiments with technologies for reduction, reuse, and recycling, but these practices today tend to be sectoral, far from the adoption of integrated management and programming models for functions. Such integration could, in fact, make the various phases of production and management of material and energy flows coherent, by coordinating the activities of the various actors (public administrators, land management bodies, producers of goods and services, distributors of goods and services, users, and workers). The process of adopting integrated models of circular development and management can be increased and made more effective through a coordinated and decisive support of public governance at the level of all sectors of the national production chains, but above all through the efficient organization and management of the territory, as a generator of economy and consumption in a circular sense [8].
What is needed, therefore, is a decisive acceleration in the change of perspective toward circularity: it is necessary to overcome the sectoral, vertical, and fragmented nature that characterizes the circular interventions at the urban scale in the current panorama. Instead, circularity should be considered as central to the eco-systemic and economic functioning of cities and also in their interaction with peripheries, which should be systematically reorganized by putting circularity at the basis of all processes and exchanges of resources that take place at the urban level (food production and consumption, buildings and infrastructure construction, energy production and use, water use and recovery, etc.).
The key areas for the implementation of an “urban policy for transition” are mainly oriented toward the reuse and recycling of materials from the building processes and urban value chains (urban mining), through the creation of materials management and recovery hubs and the adoption of reuse practices for the existing building stock [8].
At the EU level, the impacts related to construction activities are even higher than those cited at the global level: the building and infrastructure sector uses nearly 50% of the materials in EU by weight; buildings consume 40% of the EU energy and are responsible for 35% of EU GHG emissions [11]. Indeed, the level of material resource efficiency in the European building sector needs to be improved, in order to increase the contribution of the built environment to decarbonization and circularity, tackling climate change and resource scarcity. Through the Roadmap to a Resource Efficient Europe, already in 2016, the EU emphasized the severe impact of the consumption of raw materials in the construction industry, which represents 50% of excavated materials each year. In addition, the total amount of Construction and Demolition (C&D) waste produced annually in the EU represents almost half of total waste, with a recovery rate that is quite high for many member states, but much uncertain for many others. The necessity to significantly boost the closing of production cycles in the building sector was stated by the EU Dir. 98/2008 on Waste, which called for the increase of reuse, recycling, and material recovery of C&D waste to a minimum of 70% by weight by 2020. This target, which has been achieved by many Member States, among which are Germany, Netherlands, and the United Kingdom, for some countries it is particularly ambitious. The Italian situation, apparently in line with the EU threshold for C&D waste recovery (78.1% in 2019, not considering small quantities of C&D waste that do are not counted and the fly tipped waste) [12], is hindered by the lack of complete and reliable data—due to a partial traceability system—on which to develop an efficient C&D waste policy, by planning appropriate strategies and infrastructures.
However, even the virtuous countries must face a new challenge, highlighted by the abovementioned EU Directive, which places reuse above recycling in the waste hierarchy. In fact, in order to close building materials cycles reducing both energy and material consumption, it is necessary to integrate the two strategies, promoting reuse over recycling whenever possible [13]. At present, while high-quality recycling of C&D waste begins to spread, prevention and reuse, notwithstanding their great environmental and energy potential, are still rare. Both reuse and recycling are valid strategies, but their environmental benefits must be considered on a case-by-case basis. While in the future we ought to use only recyclable or biodegradable materials in buildings, so that they can be infinitely regenerated in a closed-loop model [10], as far as existing buildings are concerned, reuse is often the best option in environmental terms [14]. This is particularly true for clay bricks, stone slabs and blocks, steel elements, and other components with high embodied energy and a low performance decay. The Olympic Park in London represents a best practice in this sense [15]. Reuse, despite being well spread in the past, was almost completely abandoned by the construction industry. It only endures in restoration interventions, particularly in countries such as Italy, which often resort to reuse in the preservation of historical buildings. Nevertheless, in the contemporary circular cities’ visions, the closed-loop construction value chain—as envisaged, for instance, in the Amsterdam case (Figure 2)—a crucial role is played by all the processes that are needed to allow reuse: deconstruction, selective demolition, separation and stocking of reusable components, eventual remanufacturing, repurposing within other construction sites. This model interprets the urban built environment in the perspective of a “reusable city,” with buildings meant as “material banks,” a concept deeply investigated in the recent H2020 Research Project BAMB (Buildings As Material Banks) [16].
The vision of a circular construction value chain at the urban/regional scale. Source: Circle Economy, TNO and Fabric [
Moreover, in order to favor a sustainable management of building materials and a higher resource efficiency, there are three crucial factors. Firstly, an accurate quantification of the potential supply and demand of secondary materials on an appropriate area (regional/local scale) is needed. This can help in promoting secondary sources of building materials within the urban planning and in forecasting the withdrawal of resources (such as sand, rocks, and aggregates) from the environment. Secondly, a wide range of tools supporting the operators of the building sector can factually help to implement the eco-effective management of waste materials, such as pre-demolition audits or software for the monitoring of waste production on large construction sites. A third factor, which will pay off in a longer term, is the mapping of secondary sources of materials not coming from building sites but rather from the industry, not necessarily from value chains directly linked to the building sector.
The quantification of supply and demand of inert waste and recycled aggregates at the regional level, experimented in a few studies in literature in the last decade [17, 18], suggested the possibility to investigate, with a similar approach, the
Quantification, at a neighborhood/urban district scale, of the sources for the potential procurement of secondary building materials is a challenging task, to which European countries are starting to approach, in different ways. A good example is Germany, where different valid methodologies are applied, in order to correctly plan the economic and infrastructural development of the recycling industry. Data can derive from statistical analysis on building stock (top-down approach), such as Material Flow Analysis applied to regional level [17]. Data collection can also be carried out by surveying the materials constituting individual buildings (bottom-up approach) and aggregating the data for homogeneous portions of the building stock [18].
Further research experiences on the topic were illustrated within the SBE19 Brussels BAMB-CIRCPATH International Conference, conclusive of the cited H2020 Project BAMB (Buildings As Material Banks) (2019). The most interesting three are illustrated below.
The REBUILD (REgenerative BUILDings and products for a circular economy) Project, coordinated by Exeter University (UK) [19], addressed the possibility of creating value from the remanufacturing of components from buildings that have reached the end of service life (EoSL), creating new construction products destined to buildings to be realized according to the design for deconstruction approach, allowing in the future the potential new reuse of the same components. A key step in this research, in this sense, is the quantification of the stocks of bricks, steel, and concrete in the existing building stock at the district level, as well as the analysis of the related barriers for recovery and reuse. The project focused in particular on the analysis of bricks, with the development of a new technique for the deconstruction of the masonry with the reclamation of the single integral brick in a mechanized way, complemented by a study of the possible transformations of the element itself and of its use in new building components.
Another research, conducted at the Technical University of Munich [20, 21], has instead developed a dynamic GIS/BIM model to evaluate the stocks of materials in urban areas and the relative flows of materials activated by the construction of residential buildings. The research addressed both the classification of materials stocks (land registry of raw materials incorporated in residential buildings) and the identification of future flows of demolition waste, in order to predict potential sources of secondary raw materials, establish recovery strategies and more suitable control mechanisms. The potential supply of reusable/recyclable materials was therefore compared with the demand, in order to identify the degree of self-sufficiency achievable in a given territorial area, reducing the use of primary raw materials and transport. The developed assessment model was validated by applying it to the Munich-Freiham district, one of the main urban developments in Germany, demonstrating that a self-sufficient supply of steel (from 2036) and recycled aggregates for the production of concrete (from 2031) can be achieved for the construction of residential buildings.
Finally, another interesting research, developed in Belgium by the Hasselt University with the real estate company Essencia [22], experimented the use of existing databases as a tool to explore the potential of the building stock as a bank of materials. The research reports an estimate of the quantities of materials present in the residential building stock in the Flanders region, based on the combination of two existing databases: one relating to the energy performance certificates of buildings, belonging to the Flemish Energy Agency (VEA), with the general characteristics of the buildings, such as volume, type, surface, and information on the envelope of over 1 million assets in the Flemish region; the other one, developed by Essencia Marketing, containing general characteristics, geometric data, and materials on nearly 6000 new residential buildings distributed throughout Belgium. The research examined both databases and defined methods for combining data and for assessing the (future) potential of the existing building stock as a bank of materials.
The tools supporting designers and operators (construction and demolition companies) in the estimation, monitoring, and exchange of waste materials in the design and construction phases play a crucial role in optimizing the level of material resource efficiency and circularity in the construction sector.
In the United Kingdom, for example, the share of C&D waste diverted from landfill has significantly grown thanks to, among many regulatory instruments, the mandatory introduction of Site Waste Management Plans in 2008. These Plans, containing an estimate of the waste that will be produced, as well as the accounting of waste actually produced, provide an accurate data collection in real construction/demolition projects, which can effectively integrate statistical surveys. In England, the collection of data is facilitated by the SMARTWaste program by the BRE [23], an online tool supporting operators in the preparation of waste management plans and in the monitoring of waste on site. The SMARTWaste database enables operators to verify and increase their resource efficiency over time, while simultaneously providing valuable information to public authorities for the optimization of this sector. Such instruments could help those countries, such as Italy, still uncertain on the real quantity of C&D produced/recovered.
Another interesting initiative, with a view to the digitalization of the management of building materials’ recovery processes—aimed at optimizing their environmental and economic sustainability—was the publication in Italy of the Reference Practice UNI/PdR 75: 2020 “Selective deconstruction—Methodology for selective deconstruction and waste recovery from a circular economy perspective” (February 2020) [24]. This technical pre-standard aims to define a macroprocess for deconstruction that favors the recovery of C&D waste and is oriented toward the compatibility with the digital management of the process itself and of the material-related information. The envisaged process takes into consideration both existing buildings to be refurbished or demolished and new constructions: for the former, through a pre-demolition audit, a database of materials intended for recycling and reuse is built and used during the intervention; for the latter, it is necessary to compile the database of the materials foreseen by the design project. The deconstruction process is divided into three phases: planning, operational, updating the database/final list of the materials used in the building. The aim of this procedure set by the UNI/PdR is to overcome the difficulties of the current construction waste tracking and management system, which in Italy appears to be a barrier for a concrete practicability of circular strategies. Within the UNI working group, the GEOWEB company offered its contribution on the subject of digital support tools for operators, creating a mock-up that collects instruments and functions covering the following phases: survey; modeling of the three-dimensional geometry of the building; design, planning, and execution of the deconstruction intervention. The SaaS (Software as a Service) platform supports an end-to-end workflow in which all waste management technical and administrative phases are acquired, processed, planned, validated, and certified. Furthermore, the platform integrates an operational network of services (transport, waste treatment, storage, sale of products from secondary materials) offered by local companies, thus providing information and interoperability tools enabling stakeholders to monitor the process on the territory, to enforce policies, to define capacity planning processes, and finally, to promote incentives for the implementation of circular practices.
Another example of a tool to support the actors of the construction process for enhancing the use of secondary materials is the DECORUM platform, developed in Italy by ENEA [25]. The Platform, in support of all the actors of the supply chain in the decision-making phases, aims at ensuring the compliance of construction/renovation works with regulatory and environmental requirements, in particular with the mandatory national Green Public Procurement Minimum Environmental Criteria (GPP MEC) for Buildings (Ministerial Decree 11/10/2017) defining minimum thresholds of recycled content for the different building materials/products. Moreover, the marketplace section of the Platform gives space to the availability and reliability of recycled materials, promoting their wider diffusion in public works contracts.
Finally, the recent French initiative, which saw the development of the Démoclès platform, should also be mentioned: Démoclès is a traceability model for construction waste, whose methodology is being tested in France to be then disseminated abroad. In fact, the feasibility study [26] of the platform established a European benchmark to identify best practices in terms of traceability for—but not only—construction waste, demonstrating that there are two types of possible tracking systems: those similar to certifications and those that physically track streams accompanied by documents and a “third party guarantor.” Furthermore, the study identified the building industry’s needs in traceability and allowed the definition of specifications for a specific system, revealing that only a physical traceability of streams would be able meet stakeholders’ requirements and enabling the construction of the system and of the Démoclès platform.
As mentioned, the most innovative research experiences concerning the design of buildings with a low consumption of raw materials today focus on the reuse of materials and components, not necessarily from the building sector, following an urban mining approach. In particular, some research studies have proposed and experimented the mapping of local sources of reclaimed materials, suitable for architecture but coming from other waste streams, before the designing of the building itself [27], those promoting the valorization of residues
The process set out by Superuse Studios (NL, formerly 2012 Architecten) is a fundamental reference for the circular project, because it involves sourcing all types of waste materials locally and enhancing their potential through a new design and construction process: the demolition of an existing building can represent the first source of materials; then, sources of other types of waste are sought in the proximity of the project area, opening up to the flows of discarded materials at the urban district and the city level. The project experience shows how it is possible to identify different mines of materials, each one characterized by its own dynamics, referring to different types of residues: End of life cycle products/materials (waste), Construction and demolition (waste), Dead stock (new), Production waste (new), Fast-life (short use). All of these potential sources are geo-referenced creating a graphic map with an overview of the residual materials reused/reusable in the project and their original locations. The map is called “Harvest Map” and its use, within the design process, allows many benefits [28].
The scouting process of waste materials [27] suitable for use in architecture (by-products, defective products, dead stock, leftovers processing waste, C&D waste, etc.) and available in the area adjacent to the intervention site, within a limited distance—on average a radius of 25 km—allows the enhancement of local waste by design, with actions of “superuse” rather than simple reuse, where materials acquire a more relevant technical and esthetic value through the design process. Moreover, this process allows to reduce the energy and carbon embodied in the materials used for the intervention, to avoid consumption and emission for the production and transportation of “new” materials, as well as at to activate small-scale circular economy processes. The research experiences described in the next paragraphs investigate the implications of this early mapping of the materials available on the site of the project, both in terms of optimization of resources use and of material characterization of architecture and the potential for transposing this strategy into a highly repeatable technical option [29].
The present contribution reports the results of research activities whose aim is to supplement ongoing studies on environmental benefits of recycling in the building sector, by investigating the potential of reuse to increase the overall eco-effectiveness of construction interventions. The hypothesis to be tested is that for a real reduction of primary materials consumption in the building sector, we need to place side by side the use of secondary materials with two other modalities of supply: the reuse of building components resulting from the partial or total deconstruction of buildings, and the reuse of materials from other waste streams not belonging to the construction sector. Therefore, the reported research activities have tried to understand to what extent the reuse of architectural components and waste materials from other industries can help to increase the resource efficiency at the local scale, reducing the consumption of materials, land, and energy. Final aim of the research is to decline the “circular city” in a specific perspective that of the “reusable city,” where the built environment represents a resource to be reused in closed loops of material flows. In order to understand to what extent reuse might integrate C&D waste recycling (in particular that of inert waste, representing the main fraction) and to define the potential for resource conservation related to reuse itself, it is necessary to analyze real contexts to understand the actual availability of discarded materials and components suitable for architecture. In this sense, the points at issue are: the frequency of partial and complete demolitions in town; the instruments that a designer or a contractor can adopt to search for reusable materials; the tools that can be used to signal the availability of materials; the possibilities of activating new and different flows. Given the variety of types of materials from other sectors, which might be adopted in construction, it is necessary to focus on stable flows, constant in time and space, which in some cases can be even more regular than those coming from demolition activities, typically not constant in time and not completely predictable. Specific industrial activities might instead represent a constant source of by-products for the building industry.
The specific research goal is to investigate how reuse can contribute, at the scale of an urban district—and then scaled up at the city level—to reduce raw materials consumption, waste production, energy, and emission in the production and transportation of building materials and components. The scale of investigation has been chosen in order to minimize the impacts of the transport of building materials. Therefore, the research studies have focused on case studies of urban regeneration at the district level, testing the potential impacts of reuse on the life cycle first of a single building, then of a small group of buildings, and identifying, in the end, the factors that make it possible to scale up the results to the urban level. The chosen building has undergone a complete technological breakdown in order to understand, within the deep retrofit scenario, which technical elements are more suitable to be renovated with reused materials. Using a life cycle thinking approach, the average length of the service life of various technical elements, the average frequency of replacement of components, and the duration of the service life of the building as a whole have been taken into consideration. Then the materials requirements haven been considered in order to identify potential secondary/reusable materials available at the local level, taking into account the embodied carbon indicator in order to identify the best option in environmental terms, by quantifying the reduction of CO2 emission due to the avoided extraction, production, and transportation. This is useful also in order to compare multiple scenarios: the use of primary raw materials, of reclaimed components and recycled materials, of only recycled materials. After evaluating the benefits on the single building, it is necessary to assess the possibility of extending reuse to the building stock at the urban scale, in order to maximize its environmental potential.
Final aim of the research is to develop a procedure (and related verification indicators) supporting the design phase. Thus, the scope in the long term is to facilitate the adoption of reuse as a strategic technical option. These objectives require an interdisciplinary and multiscalar approach, combining different scales of investigation (from the city to the building to the component level) and multiple methods, in order to respond to a new and broader approach to resource efficiency in the building sector.
The research methodology is divided into three main phases carried out with specific methods. In order to test the hypotheses defined above and to reach the mentioned objectives, it is necessary to start the analysis at the urban level. The adopted model works on the multiscalar dimension of urban districts, with the aim of redefining the environmental, energy, and social performance of existing quartiers to be turned—through urban regeneration—into circular districts, characterized by high resource efficiency and closed-loop flows of material and immaterial resources, in line with the objectives of decarbonization and climate neutrality. In this approach, the renovation interventions aim at a high level of material resource efficiency in the optimization of the environmental performance of the existing settlements, in order to limit the consumption of raw materials, favoring the supply of “zero km” and/or locally sourced building materials and products and at the same time minimizing the volume of C&D waste through circular strategies, thus reducing the level of embodied carbon in the materials used (Figure 3). The renovation of existing buildings themselves is a strategic action in order to reduce the need for materials and limit environmental impacts, both in the short and long terms adopting the Design for Deconstruction strategy.
Circular design process implemented in the design of the linear buildings and the outdoor spaces in the Torrevecchia District, Rome (IT). Source: Research Studies, S. Baiani, P. Altamura with M. Battiata, G. Schiavon, A. Sofi (2021).
The first phase of assessment of the adopted methodology involves the identification of the building components and materials that make up the building, the estimation of their volume and weight, and the calculation of the carbon embodied in the single materials, starting from a relevant reference database. At the same time as defining the design solutions for the rehabilitation of existing buildings, the volume and weight of the materials destined to be removed from the various technical elements and the relative estimate of the embodied carbon are also quantified.
From a methodological point of view, the evaluation of the level of material resource efficiency achieved is identified through consistent quantitative indicators that allow the measurement of the effectiveness of the choices. In particular, it is possible to measure the recycled content of the materials chosen for the intervention (one of the criteria of the GPP Minimum Environmental Criteria for Construction, compulsory at national level since 2016 for the entire public built heritage); the rate of landfill diversion of materials removed from the existing building; the amount of material recovered on-site; the amount of embodied CO2 preserved by avoiding the demolition of existing buildings and that preserved through the recovery of materials intended for disposal, in particular on-site reuse or recycling that avoids energy consumption and emission due to transport.
For individual components and materials, potential circular technical options to avoid landfilling are assessed, with reuse as the preferred scenario over recycling and on-site reuse as the optimal solution. The different technical options are compared considering environmental, technological, and economic costs and benefits (Figure 4).
Torrevecchia District in Rome: Circular building process and its quantitative verification. Research Studies, S. Baiani, P. Altamura, with N.D. Belforte and C. Fabrizio (2021).
The process outlined leads to the integration of three different ways of supplying the materials needed for the deep retrofit intervention: the identification of components that can be recovered from the renovated buildings, during the selective demolition phase (e.g., external and internal fixtures), and that can be subject to remanufacturing and reuse or to recycling and reuse in situ; the identification of sources of waste materials/components/products from buildings or industries in the surrounding area; the selection, to cover the remaining needs, of new renewable and certified materials, which support the objective of reducing environmental impacts and intervention costs, while also ensuring the future reusability and recyclability of materials: “Changing the way products and materials are selected, manufactured and used in the built environment can lower environmental impacts as well as costs. Biological nutrients and sustainable, renewable materials can replace materials that are heavily processed, and hard to reuse and recycle” [30].
It is possible to define the mapping of the sources of waste materials coming from other supply chains (Harvest Map, Figure 5), built through an online survey and direct contact with companies, through the provision of questionnaires and inspections aimed at viewing the stocks of materials (surplus, waste, defective products, processing residues, etc.) potentially recoverable in the redevelopment intervention [31].
Harvest Map around the Torrevecchia District, Rome: Map of the companies identified as sources of waste materials around the regeneration site of the Torrevecchia District, within a radius of 6 km. In red, the companies whose waste materials have been chosen for the project. Source: Research Studies, S. Baiani, P. Altamura with M. Rossi and S. Urbinati (2019).
As part of the experimentation in the urban district of Torrevecchia, in Rome (Italy), online surveys were, as a priority, conducted to identify potential local mines, which were subsequently investigated directly, in collaboration with the respective operators, in order to identify potentially reusable materials. The research led to the definition of a GIS-based map, which identifies potential sources with their inventory of materials, their performance characteristics, and potential uses in relation to the technical elements identified by the project.
The experimentation has identified different typological systems characterizing public housing (ERP) assets (towers and linear buildings) on which the mass flow balance has been developed, considering all the inputs and outputs of materials expected to occur in rehabilitation and maintenance interventions during the whole life cycle.
Through a technological breakdown, with direct surveys and archive research, the technical elements that, on the basis of the project, can be replaced/integrated with recovered components being identified. The evaluation was supported by comparison with projects and experiments that have adopted, with a similar approach, mixed systems containing recovered materials. Through the comparison with case studies, the elements for which the application of reusable components is technically, economically, and environmentally more feasible were selected and analyzed in terms of technical requirements and potential performance (Figure 6).
Technical systems and subsystems of one of the renovated linear buildings in Torrevecchia, Rome: Disassembly of the elements built with reused and recycled materials. Source: Research Studies, S. Baiani, P. Altamura, with N.D. Belforte and C. Fabrizio (2021).
An important step in the experimentation is the possible identification of resources on an urban and local scale, starting from demolition materials, reasoning on other types of waste, working on the production of energy at a local level and the reduction of transport emissions, due to the limited size of the district.
The innovative character of the project lies in the way it verifies the feasibility of reuse in an urban area—and not on an experimental architectural project—to build a dataset that can be used by designers and can be increased by individual users, through shared tools such as the open-source Harvest Map platform. An initial mapping, available to operators in the building industry for the sector, could in the future make it possible to direct the methods of intervention, representing a picture—continuously updated—of the material resources available, with significant spin-offs in terms of innovation, involving all the operators in the process.
The experimentation phase, carried out on real cases, examined the potential sources of reusable materials in the city, starting from large construction, demolition, or redevelopment sites. The screening was carried out in an area with a radius of 10–20 km around the project sites, extending the research to more distant areas only in case of specific project characteristics. In the area of the former industrial site Papareschi in Rome (MI.REUSE Project, 2018) [31], for example, the project—aimed at the recovery of the former Miralanza factory with the use of waste materials sourced on site—applied a process that from the scouting phase led to the creation of a Harvest Map, to the redefinition of functions and spaces and the technological design of reversible building components with reused materials [29].
The results achieved in the different contexts, in terms of circular management of building materials in the intervention phase, denote a potentially very high level of circularity achievable through the management of building materials, deriving from partial demolitions and supplied for rehabilitation interventions. Interesting data, derived from experimentation on an public housing urban district in which for each building about 50% of the existing materials are conserved and the remaining half are destined for selective demolition, demonstrate the possibility, through the integrated action of several technical options for the end of life of materials, to reach a recovery quota of materials destined for demolition of about 90% by weight (higher than the 70% threshold of the EU Dir. 98/2008, which GPP MEC have adopted as a criteria) that guarantees to preserve about 80% of the embodied carbon of the materials intended for demolition, which replace new materials for the sub-bases of the external paving, whose environmental impacts are avoided [32].
The investigation involved gathering knowledge about the site in terms of the changes and transformations that led to its current state. Evaluating the building’s evolving use has highlighted a series of transformations, which have affected the existing structure at different points in its life cycle. These changes are mainly related to past needs to expand overall living space. A building’s life cycle can be analyzed by reading and understanding its construction system. This also makes it possible to understand its peculiarities and limits. In the Torrevecchia District in Rome, in terms of the architectural and construction aspects of the building system, it was made using a heavy and prefabricated system in reinforced concrete (Figure 7). This was completed with panels made off-site, limited interior insulating materials and plaster finishes.
“Ante operam” state of a renovated building in Torrevecchia, Rome, with the quantification of demolished materials in weight, volume and embodied carbon and the identification of circular design strategies and estimate of the recovery rate. Source: Research Studies, S. Baiani, P. Altamura with F. Ianiri, G. Massaroni, N. Taddei (2020).
A comparative assessment was also subsequently conducted to consider the potential effects of resulting demolition waste (in terms of volume/weight). The overall material requirements were also considered under more or less “invasive” intervention scenarios in terms of expanding demolitions/additions. Under these scenarios, various operational choices led to different comparable options based on redefining the housing, introducing/increasing common spaces or living services and identifying components to eliminate or integrate. However, each scenario commonly reflected the guiding technical requirements that interventions be totally reversible, low cost (in terms of environmental, energy, and economic impacts), and material minimizing (in terms of weight and types of materials used).
Estimates were done on materials to be removed from the building in terms of weight and volume, and associated embodied carbon was included in these measurements as well. Estimates were also made in terms of the volume of materials needed to execute each different scenario (these materials were selected based on a set of performance criteria that included maximum decarbonization). This made it possible to come up with a matrix of technical systems, components, and materials, which permitted considering “materials to look for” versus “materials to let go.” The Harvest Map was consulted to this end to identify supply “mines.” Defining technical systems for each of the options identified (addition, integration, grafting, replacement) has made it also possible to evaluate which existing elements could be recovered and reintroduced over the building life cycle. It also affords systematizing processes of disassembly, micro-demolition, and material or component replacement and recovery. It additionally permits calculating the material/component shares (in terms of percentage by weight and volume), which may come from on or off-site sources. This all made it possible to develop technological solutions while applying a “circular” and “reversible” view of the various elements involved. In doing this, particular attention was paid to the building envelope and the “passive” bioclimatic control devices to be introduced. To this end, verification of energy effectiveness took place as well, alongside with the assessment of the embodied carbon indicator (Figure 8).
Design solution for a renovated building in Torrevecchia, Rome, with the quantification of the intervention’s materials in weight, volume, and embodied carbon and the calculation of the recovery rate of demolition materials and of the embodied carbon preserved through reuse. Source: Research Studies, S. Baiani, P. Altamura with F. Ianiri, G. Massaroni, N. Taddei (2020).
By assessing the technical feasibility and environmental potential of adaptive reuse in an urban context, based on the available sources of secondary materials, the experimentation demonstrates the transferability of this strategy in different contexts. This is achieved by proving its significant effectiveness and relevant potential contribution to decarbonization and resources conservation targets. It is possible to identify some specific contributions of the research work, at different levels.
First, the identification of the instrumentation to support the development of a circular design methodology that focuses on the action of recovery and reuse (buildings, components, materials) in order to evaluate how reuse can contribute, at the scale of an urban district—and then scaled up at the city level—to reduce raw materials consumption, waste production, energy, and emission in the production and transportation of building materials and components. In particular, the tools supporting designers and operators (construction and demolition companies) in the estimation, monitoring, and exchange of waste materials in the design and building phases play a crucial role in optimizing the level of material resource efficiency and circularity in the construction sector. Among these: the Site Waste Management Plans (UK) containing an estimate of the waste that will be produced, as well as the accounting of waste actually produced, providing an accurate data collection in real construction/demolition projects, which can effectively integrate statistical surveys; the Reference Practice UNI/PdR 75: 2020 “Selective deconstruction—Methodology for selective deconstruction and waste recovery from a circular economy perspective” (IT) with a view to the digitalization of the management of demolition waste recovery processes, aimed at optimizing their environmental and economic sustainability; the DECORUM platform (IT) supporting the actors of the construction process for enhancing the use of secondary materials; the Démoclès platform (FR), a traceability model for construction waste. Among the tools assessed in the research activities, the Harvest Map was identified as a fundamental reference for the circular project, because it involves sourcing all types of waste materials locally (mines) and enhancing their potential through a new design and construction process.
Second contribution of the research work was the development of a methodological and operational structure, also based on the transfer of international experiences, appropriate to the Italian context, with an experimental approach for the verification of the phases and the evaluation of the results achieved.
Thirdly, through the systematic identification, for each building typology, of elements and technical systems suitable for the realization with reclaimed components, the research validated the compliance of reclaimed elements and materials with specific requirements, with a performance verification procedure.
One potential research perspective opens up, in the definition of an appropriate methodology for the identification and “promotion” of reclaimed components in the urban environment, with a focus on the characterization of virtual and physical spaces (hubs) where materials can be collected and shared with potential users. These local hubs, developed on the basis of the potential demand, which is difficult to correlate with the supply, could constitute an advanced system that could also favor the on-site production of technical components, reducing the considerable impacts caused by transport. The possibility to foresee the potential impact of a greater use of reused materials and components in the building industry favors the reduction of the demand for new materials and opens up new design opportunities in regeneration interventions.
This defines a design vision that focuses on “circularity” in its broadest sense, capable of characterizing the multiple phases of the life cycle of an urban district, through the circular use of materials from regeneration and construction interventions and integrated management of ecological and energy systems, in the broader vision of “reusable cities.”
Our journals are currently in their launching issue. They will be applied to all relevant indexes as soon as they are eligible. These include (but are not limited to): Web of Science, Scopus, PubMed, MEDLINE, Database of Open Access Journals (DOAJ), Google Scholar and Inspec.
\n\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5944},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17700}],offset:12,limit:12,total:133952},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Prof. Jose Marti",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12387",title:"Natural Killer Cells - Lessons and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"5576cda9d50adf4e4256e47427560510",slug:null,bookSignature:"Associate Prof. Leisheng Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/12387.jpg",editedByType:null,editors:[{id:"439674",title:"Associate Prof.",name:"Leisheng",surname:"Zhang",slug:"leisheng-zhang",fullName:"Leisheng Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12072",title:"Finite Element Method and Its Extensions",subtitle:null,isOpenForSubmission:!0,hash:"3b9656ca1f591fcc44f127e12a6ef28f",slug:null,bookSignature:"Prof. Mahboub Baccouch",coverURL:"https://cdn.intechopen.com/books/images_new/12072.jpg",editedByType:null,editors:[{id:"186635",title:"Prof.",name:"Mahboub",surname:"Baccouch",slug:"mahboub-baccouch",fullName:"Mahboub Baccouch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11994",title:"MXenes - Fabrications and Applications",subtitle:null,isOpenForSubmission:!0,hash:"184e1a0c9b5e62ebb3c7ebc53103db9f",slug:null,bookSignature:"Prof. Dhanasekaran Vikraman",coverURL:"https://cdn.intechopen.com/books/images_new/11994.jpg",editedByType:null,editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12143",title:"Herbs and Spices - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"dbbc40b4b09244389b52ca80dcc10768",slug:null,bookSignature:"Dr. Eva Ivanišová",coverURL:"https://cdn.intechopen.com/books/images_new/12143.jpg",editedByType:null,editors:[{id:"352448",title:"Dr.",name:"Eva",surname:"Ivanišová",slug:"eva-ivanisova",fullName:"Eva Ivanišová"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12007",title:"Updates in Volcanology - Linking Active Volcanism and the Geological Record",subtitle:null,isOpenForSubmission:!0,hash:"a55d00d84b7616824cc783586c092525",slug:null,bookSignature:"Dr. Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/12007.jpg",editedByType:null,editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12307",title:"New Insights Into Dystonia",subtitle:null,isOpenForSubmission:!0,hash:"1b011946aab26d18e0f4cfa61eb4249a",slug:null,bookSignature:" Tamer Rizk",coverURL:"https://cdn.intechopen.com/books/images_new/12307.jpg",editedByType:null,editors:[{id:"170531",title:null,name:"Tamer",surname:"Rizk",slug:"tamer-rizk",fullName:"Tamer Rizk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12326",title:"Drug Formulation Design",subtitle:null,isOpenForSubmission:!0,hash:"be61949c97a884e4342d41ec7414e678",slug:null,bookSignature:"Dr. Rahul Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/12326.jpg",editedByType:null,editors:[{id:"319705",title:"Dr.",name:"Rahul",surname:"Shukla",slug:"rahul-shukla",fullName:"Rahul Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11856",title:"Testosterone - Functions, Uses, Deficiencies, and Substitution",subtitle:null,isOpenForSubmission:!0,hash:"8549d2b1fcd1242f85a6a70447b1db10",slug:null,bookSignature:"Associate Prof. Hirokazu Doi",coverURL:"https://cdn.intechopen.com/books/images_new/11856.jpg",editedByType:null,editors:[{id:"473383",title:"Associate Prof.",name:"Hirokazu",surname:"Doi",slug:"hirokazu-doi",fullName:"Hirokazu Doi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:16},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:120},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:424},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4420},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"251",title:"Cognitive Robotics",slug:"cognitive-robotics",parent:{id:"22",title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:11,numberOfWosCitations:316,numberOfCrossrefCitations:298,numberOfDimensionsCitations:490,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"251",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6279",title:"RoCKIn",subtitle:"Benchmarking Through Robot Competitions",isOpenForSubmission:!1,hash:"22b30333fe27df104db631b852e8e99c",slug:"rockin-benchmarking-through-robot-competitions",bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/6279.jpg",editedByType:"Authored by",editors:null,equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"3649",title:"Robot Manipulators",subtitle:"New Achievements",isOpenForSubmission:!1,hash:null,slug:"robot-manipulators-new-achievements",bookSignature:"Aleksandar Lazinica and Hiroyuki Kawai",coverURL:"https://cdn.intechopen.com/books/images_new/3649.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3643",title:"Robot Vision",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"robot-vision",bookSignature:"Ales Ude",coverURL:"https://cdn.intechopen.com/books/images_new/3643.jpg",editedByType:"Edited by",editors:[{id:"7205",title:"Dr.",name:"Ales",middleName:null,surname:"Ude",slug:"ales-ude",fullName:"Ales Ude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3686",title:"Motion Planning",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"motion_planning",bookSignature:"Xing-Jian Jing",coverURL:"https://cdn.intechopen.com/books/images_new/3686.jpg",editedByType:"Edited by",editors:[{id:"146577",title:"Dr.",name:"Xj",middleName:null,surname:"Jing",slug:"xj-jing",fullName:"Xj Jing"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3601",title:"Parallel Manipulators",subtitle:"New Developments",isOpenForSubmission:!1,hash:null,slug:"parallel_manipulators_new_developments",bookSignature:"Jee-Hwan Ryu",coverURL:"https://cdn.intechopen.com/books/images_new/3601.jpg",editedByType:"Edited by",editors:[{id:"5304",title:"prof.",name:"Jee-Hwan",middleName:null,surname:"Ryu",slug:"jee-hwan-ryu",fullName:"Jee-Hwan Ryu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3606",title:"Parallel Manipulators",subtitle:"towards New Applications",isOpenForSubmission:!1,hash:null,slug:"parallel_manipulators_towards_new_applications",bookSignature:"Huapeng Wu",coverURL:"https://cdn.intechopen.com/books/images_new/3606.jpg",editedByType:"Edited by",editors:[{id:"118825",title:"Dr.",name:"Huapeng",middleName:null,surname:"Wu",slug:"huapeng-wu",fullName:"Huapeng Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"763",doi:"10.5772/5365",title:"Wire Robots Part I: Kinematics, Analysis & Design",slug:"wire_robots_part_i__kinematics__analysis___design",totalDownloads:5796,totalCrossrefCites:37,totalDimensionsCites:55,abstract:null,book:{id:"3601",slug:"parallel_manipulators_new_developments",title:"Parallel Manipulators",fullTitle:"Parallel Manipulators, New Developments"},signatures:"Tobias Bruckmann, Lars Mikelsons, Thorsten Brandt, Manfred Hiller and Dieter Schramm",authors:null},{id:"825",doi:"10.5772/5427",title:"Redundant Actuation of Parallel Manipulators",slug:"redundant_actuation_of_parallel_manipulators",totalDownloads:4368,totalCrossrefCites:14,totalDimensionsCites:24,abstract:null,book:{id:"3606",slug:"parallel_manipulators_towards_new_applications",title:"Parallel Manipulators",fullTitle:"Parallel Manipulators, towards New Applications"},signatures:"Andreas Mueller",authors:null},{id:"5350",doi:"10.5772/6022",title:"Local Autonomous Robot Navigation Using Potential Fields",slug:"local_autonomous_robot_navigation_using_potential_fields",totalDownloads:5906,totalCrossrefCites:15,totalDimensionsCites:23,abstract:null,book:{id:"3686",slug:"motion_planning",title:"Motion Planning",fullTitle:"Motion Planning"},signatures:"Miguel A. Padilla Castañeda, Jesús Savage, Adalberto Hernández and\r\nFernando Arámbula Cosío",authors:null},{id:"5368",doi:"10.5772/6003",title:"Occupancy Grid Maps for Localization and Mapping",slug:"occupancy_grid_maps_for_localization_and_mapping",totalDownloads:6340,totalCrossrefCites:16,totalDimensionsCites:20,abstract:null,book:{id:"3686",slug:"motion_planning",title:"Motion Planning",fullTitle:"Motion Planning"},signatures:"Adam Milstein",authors:null},{id:"10654",doi:"10.5772/9344",title:"Higher Dimensional Spatial Expression of Upper Limb Manipulation Ability Based on Human Joint Torque Characteristics",slug:"higher-dimensional-spatial-expression-of-upper-limb-manipulation-ability-based-on-human-joint-torque",totalDownloads:2404,totalCrossrefCites:15,totalDimensionsCites:19,abstract:null,book:{id:"3649",slug:"robot-manipulators-new-achievements",title:"Robot Manipulators",fullTitle:"Robot Manipulators New Achievements"},signatures:"Makoto Sasaki, Takehiro Iwami, Kazuto Miyawaki, Ikuro Sato, Goro Obinata and Ashish Dutta",authors:null}],mostDownloadedChaptersLast30Days:[{id:"10618",title:"Multi-Task Active-Vision in Robotics",slug:"multi-task-active-vision-in-robotics",totalDownloads:2836,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3643",slug:"robot-vision",title:"Robot Vision",fullTitle:"Robot Vision"},signatures:"J. Cabrera, D. Hernandez, A. Dominguez and E. Fernandez",authors:null},{id:"10630",title:"Kinematics, Singularity and Dexterity Analysis of Planar Parallel Manipulators Based on DH Method",slug:"kinematics-singularity-and-dexterity-analysis-of-planar-parallel-manipulators-based-on-dh-method",totalDownloads:4278,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"3649",slug:"robot-manipulators-new-achievements",title:"Robot Manipulators",fullTitle:"Robot Manipulators New Achievements"},signatures:"Serdar Kucuk",authors:null},{id:"5362",title:"Motion Planning of Intelligent Explorer for Asteroid Exploration Mission",slug:"motion_planning_of_intelligent_explorer_for_asteroid_exploration_mission",totalDownloads:2848,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"3686",slug:"motion_planning",title:"Motion Planning",fullTitle:"Motion Planning"},signatures:"Takashi Kubota, Tatsuaki Hashimoto and Jun’ichiro Kawaguchi",authors:null},{id:"56009",title:"RoCKIn@Work: Industrial Robot Challenge",slug:"rockin-work-industrial-robot-challenge",totalDownloads:1585,totalCrossrefCites:1,totalDimensionsCites:0,abstract:"RoCKIn@Work was focused on benchmarks in the domain of industrial robots. Both task and functionality benchmarks were derived from real world applications. All of them were part of a bigger user story painting the picture of a scaled down real world factory scenario. Elements used to build the testbed were chosen from common materials in modern manufacturing environments. Networked devices, machines controllable through a central software component, were also part of the testbed and introduced a dynamic component to the task benchmarks. Strict guidelines on data logging were imposed on participating teams to ensure gathered data could be automatically evaluated. This also had the positive effect that teams were made aware of the importance of data logging, not only during a competition but also during research as useful utility in their own laboratory. Tasks and functionality benchmarks are explained in detail, starting with their use case in industry, further detailing their execution and providing information on scoring and ranking mechanisms for the specific benchmark.",book:{id:"6279",slug:"rockin-benchmarking-through-robot-competitions",title:"RoCKIn",fullTitle:"RoCKIn - Benchmarking Through Robot Competitions"},signatures:"Rainer Bischoff, Tim Friedrich, Gerhard K. Kraetzschmar, Sven\nSchneider and Nico Hochgeschwender",authors:[{id:"213507",title:"Mr.",name:"Tim",middleName:null,surname:"Friedrich",slug:"tim-friedrich",fullName:"Tim Friedrich"}]},{id:"10645",title:"Stiffness Analysis for an Optimal Design of Multibody Robotic Systems",slug:"stiffness-analysis-for-an-optimal-design-of-multibody-robotic-systems",totalDownloads:2885,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3649",slug:"robot-manipulators-new-achievements",title:"Robot Manipulators",fullTitle:"Robot Manipulators New Achievements"},signatures:"Carbone Giuseppe",authors:null}],onlineFirstChaptersFilter:{topicId:"251",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:315,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"86",title:"Business and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/86.jpg",isOpenForSubmission:!0,editor:{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek",profilePictureURL:"https://mts.intechopen.com/storage/users/128342/images/system/128342.jpg",biography:"Dr. Vito Bobek works as an international management professor at the University of Applied Sciences FH Joanneum, Graz, Austria. He has published more than 400 works in his academic career and visited twenty-two universities worldwide as a visiting professor. Dr. Bobek is a member of the editorial boards of six international journals and a member of the Strategic Council of the Minister of Foreign Affairs of the Republic of Slovenia. He has a long history in academia, consulting, and entrepreneurship. His own consulting firm, Palemid, has managed twenty significant projects, such as Cooperation Program Interreg V-A (Slovenia-Austria) and Capacity Building for the Serbian Chamber of Enforcement Agents. He has also participated in many international projects in Italy, Germany, Great Britain, the United States, Spain, Turkey, France, Romania, Croatia, Montenegro, Malaysia, and China. Dr. Bobek is also a co-founder of the Academy of Regional Management in Slovenia.",institutionString:"Universities of Applied Sciences FH Joanneum, Austria",institution:null},editorTwo:{id:"293992",title:"Dr.",name:"Tatjana",middleName:null,surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hXb0hQAC/Profile_Picture_1642419002203",biography:"Tatjana Horvat works as a professor for accountant and auditing at the University of Primorska, Slovenia. She is a Certified State Internal Auditor (licensed by Ministry of Finance RS) and Certified Internal Auditor for Business Sector and Certified accountant (licensed by Slovenian Institute of Auditors). At the Ministry of Justice of Slovenia, she is a member of examination boards for court expert candidates and judicial appraisers in the following areas: economy/finance, valuation of companies, banking, and forensic investigation of economic operations/accounting. At the leading business newspaper Finance in Slovenia (Swedish ownership), she is the editor and head of the area for business, finance, tax-related articles, and educational programs.",institutionString:null,institution:{name:"University of Primorska",institutionURL:null,country:{name:"Slovenia"}}},editorThree:null},{id:"87",title:"Economics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",isOpenForSubmission:!0,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},{id:"88",title:"Marketing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/88.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:8,paginationItems:[{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",doi:"10.5772/intechopen.105528",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:182,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:347,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:179,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:12,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"24",type:"subseries",title:"Computer Vision",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:197,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:196,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"74615",title:"Diet-Epigenome Interactions: Epi-Drugs Modulating the Epigenetic Machinery During Cancer Prevention",doi:"10.5772/intechopen.95374",signatures:"Fadime Eryılmaz Pehlivan",slug:"diet-epigenome-interactions-epi-drugs-modulating-the-epigenetic-machinery-during-cancer-prevention",totalDownloads:377,totalCrossrefCites:0,totalDimensionsCites:1,authors:[{name:"Fadime",surname:"Eryılmaz Pehlivan"}],book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,submissionDeadline:"May 4th 2022",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhRjQAK/Profile_Picture_1636637493542",biography:"Toonika Rinken is an associate professor in environmental chemistry and is leading a biosensor development lab at the Institute of Chemistry in the University of Tartu, Estonia. She received her PhD degree in chemistry in 2000 in the same university for the modeling and calibration studies of biosensors and has passed professional self-improvement in Uppsala (Sweden) and Gröningen (the Netherlands). Dr. Rinken's research activities are focused on the studies and development of biosensing systems for automatic monitoring along with testing and application of biosensor based analytical systems.",institutionString:"University of Tartu",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"University of Tartu",institutionURL:null,country:{name:"Estonia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11665",title:"Recent Advances in Wildlife Management",subtitle:null,isOpenForSubmission:!0,hash:"73da0df494a1a56ab9c4faf2ee811899",slug:null,bookSignature:"Dr. Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",editedByType:null,submissionDeadline:"May 25th 2022",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.jpg",biography:"Dr. Farzana Khan Perveen (FLS; Gold Medalist) obtained her BSc (Hons) and MSc in Entomology from the University of Karachi, Pakistan, and MAS (Monbusho Scholarship) in Agronomy from Nagoya University, Japan, and a Ph.D. in Toxicology from the University of Karachi. She is the founder of the Department of Zoology and former controller of examinations at Shaheed Benazir Bhutto University, Hazara University, and Kohat University of Science and Technology. She is the author of 150 high-impact research papers, 135 abstracts, 40 authored books, 9 chapters, and 9 edited books. She is also a student supervisor. Her fields of interest are entomology, toxicology, forensic entomology.",institutionString:"Classes et Events in Sciences (C.E.S.)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"7",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"12223",title:"Sustainable Management of Natural Resources",subtitle:null,isOpenForSubmission:!0,hash:"1881a08bbd8f5dc1102c5cb7c635bc35",slug:null,bookSignature:"Dr. Mohd Nazip Suratman and Dr. Engku Azlin Rahayu Engku Ariff",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",editedByType:null,submissionDeadline:"July 19th 2022",editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",middleName:null,surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman",profilePictureURL:"https://mts.intechopen.com/storage/users/144417/images/system/144417.jpg",biography:"Mohd Nazip Suratman is a Professor of Forestry at the Faculty of Applied Sciences, and a Principal Fellow at the Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), Malaysia, He earned a B. Sc in Forestry from Universiti Putra Malaysia (UPM) and an M. S from the University of Nebraska-Lincoln (UNL), USA. He was then honored with a prestigious fellowship from the Canadian Commonwealth to pursue a Ph.D. degree at the University of British Columbia (UBC), Canada, where he worked on the application of remote sensing for forest resources management. He has been involved in numerous collaborative international research projects that led to publications in reputable journals. Altogether, he has published a total of 14 books and more than 200 research publications. His research interests cover several aspects of forestry, mainly forest modeling, forest ecology, and biodiversity. He received the UiTM’s Best Researcher and Top Talent Awards in 2015 and 2021, respectively. He served as the Deputy Vice-Chancellor (Research and Innovation) from 2018 to 2021.",institutionString:"Universiti Teknologi MARA",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Universiti Teknologi MARA",institutionURL:null,country:{name:"Malaysia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/38419",hash:"",query:{},params:{id:"38419"},fullPath:"/chapters/38419",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()