\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"1854",leadTitle:null,fullTitle:"Time Management",title:"Time Management",subtitle:null,reviewType:"peer-reviewed",abstract:"The time management is worthy goal of many human activities. It concerns variety problems related to goals definition, assessment of available resources, control of management policies, scheduling of decisions. This book is an attempt to illustrate the decision making process in time management for different success stories, which can be used as reference models by the interested audience.",isbn:null,printIsbn:"978-953-51-0335-6",pdfIsbn:"978-953-51-5122-7",doi:"10.5772/2280",price:119,priceEur:129,priceUsd:155,slug:"time-management",numberOfPages:116,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"5a1635f5b500ab9fc005d3ed088b0c5a",bookSignature:"Todor Stoilov",publishedDate:"March 23rd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1854.jpg",numberOfDownloads:53297,numberOfWosCitations:15,numberOfCrossrefCitations:5,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:17,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:37,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 10th 2011",dateEndSecondStepPublish:"June 7th 2011",dateEndThirdStepPublish:"October 12th 2011",dateEndFourthStepPublish:"November 11th 2011",dateEndFifthStepPublish:"March 10th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"51706",title:"Prof.",name:"Todor",middleName:null,surname:"Stoilov",slug:"todor-stoilov",fullName:"Todor Stoilov",profilePictureURL:"https://mts.intechopen.com/storage/users/51706/images/system/51706.jfif",biography:"Prof. Todor Stoilov is a researcher at the Institute of Information and Communication Technologies, affiliated to the Bulgarian Academy of Sciences. He graduated in 'Control engineering” in Technical University of Sofia. Prof. Todor Stoilov obtained his PhD in 1979; and in 1999 he obtained the highest scientific title - 'Doctor of Science”. Since 2000, he is a full professor in Bulgarian Academy of Sciences. He has published six monographs and more than 300 scientific papers and articles. His current research interests address domains like optimization, resource allocation, hierarchical control, management of information, transport, financial systems.",institutionString:"Bulgarian Academy of Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Bulgarian Academy of Sciences",institutionURL:null,country:{name:"Bulgaria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"433",title:"Decision Making",slug:"decision-making"}],chapters:[{id:"33747",title:"What Do We Know About Time Management? A Review of the Literature and a Psychometric Critique of Instruments Assessing Time Management",doi:"10.5772/37248",slug:"what-do-we-know-about-time-management-a-review-of-the-literature-and-a-psychometric-critique-of-inst",totalDownloads:35363,totalCrossrefCites:0,totalDimensionsCites:5,hasAltmetrics:1,abstract:null,signatures:"Laurie-Ann M. Hellsten",downloadPdfUrl:"/chapter/pdf-download/33747",previewPdfUrl:"/chapter/pdf-preview/33747",authors:[{id:"111970",title:"Dr.",name:"Laurie-Ann",surname:"Hellsten",slug:"laurie-ann-hellsten",fullName:"Laurie-Ann Hellsten"}],corrections:null},{id:"33748",title:"Hierarchical Optimization for Fast Resource Allocation",doi:"10.5772/36693",slug:"hierarchical-optimization-for-fast-resource-allocation",totalDownloads:2354,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Krasimira Stoilova and Todor Stoilov",downloadPdfUrl:"/chapter/pdf-download/33748",previewPdfUrl:"/chapter/pdf-preview/33748",authors:[{id:"51706",title:"Prof.",name:"Todor",surname:"Stoilov",slug:"todor-stoilov",fullName:"Todor Stoilov"}],corrections:null},{id:"33749",title:"A Practical Application of Time Management",doi:"10.5772/38364",slug:"a-practical-application-of-time-management",totalDownloads:4018,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Darren George",downloadPdfUrl:"/chapter/pdf-download/33749",previewPdfUrl:"/chapter/pdf-preview/33749",authors:[{id:"116858",title:"Dr.",name:"Darren",surname:"George",slug:"darren-george",fullName:"Darren George"}],corrections:null},{id:"33750",title:"Personal Time-Management and Quality of Life in the Network Society",doi:"10.5772/37320",slug:"personal-time-management-and-quality-of-life-in-the-network-society",totalDownloads:2343,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Mercè Boixadós Anglès, Eulàlia Hernández-Encuentra and Modesta Pousada Fernández",downloadPdfUrl:"/chapter/pdf-download/33750",previewPdfUrl:"/chapter/pdf-preview/33750",authors:[{id:"112239",title:"Dr.",name:"Merce",surname:"Boixados",slug:"merce-boixados",fullName:"Merce Boixados"},{id:"113728",title:"Dr.",name:"Eulàlia",surname:"Hernández",slug:"eulalia-hernandez",fullName:"Eulàlia Hernández"},{id:"113777",title:"Dr.",name:"Modesta",surname:"Pousada Fernández",slug:"modesta-pousada-fernandez",fullName:"Modesta Pousada Fernández"}],corrections:null},{id:"33751",title:"Distance Learners’ Time Management and Learning Effectiveness",doi:"10.5772/37122",slug:"distance-learners-time-management-and-learning-effectiveness",totalDownloads:4608,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Adams O.U. Onuka",downloadPdfUrl:"/chapter/pdf-download/33751",previewPdfUrl:"/chapter/pdf-preview/33751",authors:[{id:"111366",title:"Dr.",name:"Adams",surname:"Onuka",slug:"adams-onuka",fullName:"Adams Onuka"}],corrections:null},{id:"33752",title:"Academic Advising, Time Management and the African American Male Scholar-Athlete",doi:"10.5772/35957",slug:"time-management-academic-advising-and-the-african-american-male-student-athlete",totalDownloads:4613,totalCrossrefCites:1,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"C. Keith Harrison and Brandon Martin",downloadPdfUrl:"/chapter/pdf-download/33752",previewPdfUrl:"/chapter/pdf-preview/33752",authors:[{id:"106505",title:"Dr.",name:"C. Keith",surname:"Harrison",slug:"c.-keith-harrison",fullName:"C. Keith Harrison"},{id:"106509",title:"Dr.",name:"Brandon",surname:"Martin",slug:"brandon-martin",fullName:"Brandon Martin"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5142",title:"Applications and Theory of Analytic Hierarchy Process",subtitle:"Decision Making for Strategic Decisions",isOpenForSubmission:!1,hash:"7696be005ef87456c3b444052af3a857",slug:"applications-and-theory-of-analytic-hierarchy-process-decision-making-for-strategic-decisions",bookSignature:"Fabio De Felice, Thomas L. Saaty and Antonella Petrillo",coverURL:"https://cdn.intechopen.com/books/images_new/5142.jpg",editedByType:"Edited by",editors:[{id:"161682",title:"Prof.",name:"Fabio",surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9332",title:"Application of Decision Science in Business and Management",subtitle:null,isOpenForSubmission:!1,hash:"72ccbc5aab28621bad2e810c4bd5bd53",slug:"application-of-decision-science-in-business-and-management",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/9332.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-eating-disorders-as-new-forms-of-addiction",title:"Corrigendum to: Eating Disorders as New Forms of Addiction",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66065.pdf",downloadPdfUrl:"/chapter/pdf-download/66065",previewPdfUrl:"/chapter/pdf-preview/66065",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66065",risUrl:"/chapter/ris/66065",chapter:{id:"52200",slug:"eating-disorders-as-new-forms-of-addiction",signatures:"Francisco J. Vaz-Leal, María I. Ramos-Fuentes, Laura Rodríguez-\nSantos and M. Cristina Álvarez-Mateos",dateSubmitted:"June 28th 2016",dateReviewed:"August 12th 2016",datePrePublished:null,datePublished:"February 1st 2017",book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"323887",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"188555",title:"Prof.",name:"Francisco J.",middleName:null,surname:"Vaz-Leal",fullName:"Francisco J. Vaz-Leal",slug:"francisco-j.-vaz-leal",email:"fjvazleal@gmail.com",position:null,institution:null},{id:"188719",title:"Dr.",name:"María Cristina",middleName:null,surname:"Álvarez Mateos",fullName:"María Cristina Álvarez Mateos",slug:"maria-cristina-alvarez-mateos",email:"cristinaalvarezmateos@gmail.com",position:null,institution:null},{id:"195142",title:"Dr.",name:"Laura",middleName:null,surname:"Rodríguez Santos",fullName:"Laura Rodríguez Santos",slug:"laura-rodriguez-santos",email:"laura@unex.es",position:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}},{id:"195143",title:"Dr.",name:"María I",middleName:null,surname:"Ramos Fuentes",fullName:"María I Ramos Fuentes",slug:"maria-i-ramos-fuentes",email:"miramos@unex.es",position:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]}},chapter:{id:"52200",slug:"eating-disorders-as-new-forms-of-addiction",signatures:"Francisco J. Vaz-Leal, María I. Ramos-Fuentes, Laura Rodríguez-\nSantos and M. Cristina Álvarez-Mateos",dateSubmitted:"June 28th 2016",dateReviewed:"August 12th 2016",datePrePublished:null,datePublished:"February 1st 2017",book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"323887",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"188555",title:"Prof.",name:"Francisco J.",middleName:null,surname:"Vaz-Leal",fullName:"Francisco J. Vaz-Leal",slug:"francisco-j.-vaz-leal",email:"fjvazleal@gmail.com",position:null,institution:null},{id:"188719",title:"Dr.",name:"María Cristina",middleName:null,surname:"Álvarez Mateos",fullName:"María Cristina Álvarez Mateos",slug:"maria-cristina-alvarez-mateos",email:"cristinaalvarezmateos@gmail.com",position:null,institution:null},{id:"195142",title:"Dr.",name:"Laura",middleName:null,surname:"Rodríguez Santos",fullName:"Laura Rodríguez Santos",slug:"laura-rodriguez-santos",email:"laura@unex.es",position:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}},{id:"195143",title:"Dr.",name:"María I",middleName:null,surname:"Ramos Fuentes",fullName:"María I Ramos Fuentes",slug:"maria-i-ramos-fuentes",email:"miramos@unex.es",position:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"323887",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11675",leadTitle:null,title:"Advances in Skeletal Muscle Health and Disease",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tSkeletal muscle is the most abundant tissue in the body comprising 30 to 40% of your total mass. Their main function is to enable the human body to produce the force needed to move and function. A large series of pathological conditions can affect skeletal muscle, from mild injuries to serious or even life-threatening myopathies. These latter include skeletal muscle dystrophies which encompass a heterogeneous group of more than 30 distinct pathologies causing progressive and irreversible degeneration of skeletal muscle fibers. The causes are genetic; hence, a family with a history of muscular dystrophy increases the chance of having a child affected by the disorder. Diagnosis of inherited myopathies is frequently challenging due to broad genetic and phenotypic heterogeneity. As if that weren't enough, the prognosis is often, if not always, poor for the majority of these conditions since there are no treatments available. Currently available treatments can only help manage and reduce the severity of symptoms. However, the recent technologies led to the identification of responsible genes causing these conditions thus leading to an improvement in the diagnosis and the clinical course of patients. Therefore, a better understanding of the pathogenesis of the disease is pivotal for the development of individual therapies. In this book, thanks to the contribution of all the authors, we aim at gathering information about the latest discoveries and novel research trends concerning technologies and methods underpinning diagnostic and therapeutic advancements in genetic rare orphan diseases.
\r\n\t
Use of Fiber Reinforced Plastics (FRPs) is rapidly expanding in all fields such as medical equipment, engineering plants, packaging, transportation, aviation, space technology, building construction, heavy vehicles, and defense forces. Application of FRPs in marine construction industry is also not new and ever increasing with rapid advancements in exotic fibers, nanoparticles, and special polymers. For engineering application, principal requirements are inherent strength and a defined temperature limit up to which the strength is sustained to the desired level. The secondary requirements are high toughness, resistance to cyclic fatigue, low creep, low relaxation, environmental stability, and ease of joining and maintainability. The third most important factor is investment cost and processing cost. So far as mechanical strength is concerned, the Elastic Modulus in all modes and ultimate strengths are important. However, too stiff composites lack toughness, which often cause premature brittle failure. It has to be a tread-off between ultimate property and elastic modulus for restricting strain on the one hand and sustain low/high cycle fatigue on the other hand. The toughness imparted by flexible long-chain resin matrix results in high creep and relaxation, which are undesirable for engineering structures but improve the fatigue life. Inclusion of rubbery moieties in a stiff matrix may result in phase separation and stress concentration at the interface and may cause premature failure. Toughening by nanoparticles, such as functionalized carbon nanotubes and reduced graphene oxide and derivatives, are being actively researched at present with apparently encouraging results. Detailed study of creep and stress relaxation of CNT-polymer or graphene-polymer composites is not done yet in a comprehensive manner, but with a general understanding, it is expected to be even better than the pristine polymer.
Thermal properties are more extensive, since the thermal agitation of polymers undergoes very drastic rise beyond a characteristic temperature called glass transition, where the stiff polymer transforms into a rubbery soft material. For polymers with partial crystallinity, flow takes place at further enhancement of temperature, and finally, a polymer starts to decompose at even higher temperature. A design of structural element then has to depend on the limit of temperature at which the modulus starts decreasing. Ideally it should be glass transition temperature. However, in practice, dynamic mechanical analysis shows that the modulus decreases even about 10–15°C below the glass transition. The extreme hazards of heat for an organic polymer (and FRP) are the fire propagation and evolution of toxic gases. The fire-retardant additives both as physical addition and chemical modification of resins are widely used and are also currently being researched in the light of possible benefits of nanoparticle reinforcements.
Marine application both for static off-shore structures and sea-going vessels needs robust and durable FRP composites, which can compete well with metals in terms of specific strength, durability, and cost-effectiveness. The replacement of a metal requires some special properties in FRPs apart from strength and degradation. One of the most difficult solutions is joining the Thermoset FRP elements since the joint should be almost similar in mechanical strength and toughness. Identical thermoset as the FRP element is best preferred, with a short fiber dough molding system that must be cured at ambient, yet provide acceptable joint strength. There can be special drilling technique for joining through riveting using the dough as rivets. Thermoplastics can be “welded” by melt joining as metals, most suitable for particulate reinforced composites and short fiber composites. The second and very important property of an FRP to qualify marine standard is effect of sea water aging considering all the chemical and biological adversaries of the sea. This single factor mostly decides the design and service life of a marine-grade FRP structure.
Although marine corrosion of FRP is not so severe as for steel, the FRP structures and underwater hulls need to be protected from bio-fouling. With the advancement of anti-fouling coatings, it is possible to protect a hull for minimum 3 years without any maintenance painting. Modern low surface energy foul release coatings based on silicones and fluoro-silicones are environment-friendly as they do not release toxins in the sea. These are non-depleting coatings and hence can have higher service life. However, These types of coatings are more effective for high-speed boats.
The different elements of a ship can be defined as primary, such as superstructure, hull, SONAR Dome, bulkhead, decks, propeller shafts, masts, doors, hatches, machinery foundations, support frames, etc. Secondary items are rudder, pipes, valves, ladder, stanchions, guard rails, etc.
In naval vessels, three important advantages of using FRP composite are (1) ability to damp vibration, thereby reducing the radiated noise in the sea. In addition, FRPs are acoustically transparent, hence reduce the acoustic reflection (2) FRPs without carbon or conducting material inclusions are radar transparent. These two features enhance the stealthy character of a battle ship and submarine and importantly (3) most common reason is no corrosion of FRP in sea water and saline atmosphere.
The most used application areas for FRP in ships are superstructure and bulkhead, where thick FRP panels are used with flap joint overlapping at the corner to flush the sides. Riveting with composite rivets can be done along with interface adhesion using a hand layup of fabric with resin so that the joint is sufficiently strong.
Vibration and fatigue are other important aspects. Machinery and propeller movement cause vibration of the hull and hull-mounted SONAR dome, which adversely affect SONAR performance and also results in fatigue. Normally, the fundamental frequency of machinery and propeller is up to 34 Hz, and prominent modes are up to about 200 Hz. Also, slow cycle fatigue results from sea waves, which is approximately 0.8 Hz. It is well known that slow cycle fatigue is quite important to decide the service life for steel hulls and is expected to have similar effect on FRP hull. Till now, there is no such detailed study on fatigue at various frequency envelops for marine FRPs, which are actually exposed in sea water with vibrations.
Hull construction using FRP is very common for speed boats, small to medium size (8–80 m) patrolling boats, research ships for acoustic and underwater mapping studies, coastal ships, corvettes, etc. [1, 2, 3, 4]. A very comprehensive list of literature is given by Galanis [3] in his M.S. thesis. One very interesting naval ship is mine countermeasure vessel (MCMV) which is about 60 m long [1]. MCMV uses passive magnetic sensors to detect underwater mines, which use a magnetic sensor to trigger the mine. Therefore, the ship as such should not have any magnetic signature. Conventional hull material of MCMV is nonmagnetic steel. However, FRP is preferred because of lightweight and corrosion-free nature in addition to nonmagnetic character. Miller [4] reported one such MCMV of Royal Navy (U.K.) made of GFRP way back in 1973 and a bigger one (60 m long) in 1980s. FRP is being used since World War II by the United States in noncritical areas and small boats [2]. Till now, large commercial or Naval ships such as Frigates, etc., are not made with FRP. The FRP hull of ships of 60–80-m size is a sandwich construction with thick FRP skin and a foam core. Thickness of the FRP skin on both sides of the foam core can be 8–10 mm each, and the foam core can be 50–80 mm thick. Previously PVC foam core was very common. However, with the large variety of polyurethane foam available today, even fire-retardant type including polyisocyanurate-modified polyurethane [5], the scope and ease of foam filling in between two hull panels have facilitated production system, and also large seamless foam core is easily made by foam spray machine.
Generally, unsaturated polyester made with isophthalic acid and neopentyl glycol and epoxy-based vinyl ester resins is widely used for marine boats and ship hull. Both of these resins are cross-linked by styrene monomer to form a thermosetting polymer.
FRP hull of boats of maximum 8 meters contains six types of fiber and fabric layers arranged in a sequence and requires minimum 25 layers of reinforcing mats and fabrics. The different fiber-based layers are random chopped strand mat, 300–450 GSM, woven roving mat 400–600 GSM, fabric of different thicknesses (approximately 0.25 mm), core mat of 1 mm and 3 mm thickness, and a 1 mm skin layer of the resin with particulate fillers (titanium dioxide, aerosil, barytes, etc.). Aerosil (fumed silica) is used with the resin to make it more impermeable to water. However, aerosil makes the resin somewhat thixotropic. Due to large size, and to make seamless hull, wooden mold is first made, and hand lay-up technique is used for fabrication. In an elaborate arrangement, vacuum bagging or vacuum-assisted resin infusion can be used for at least small boats. Vacuum-assisted molding can make composite with about 70% fiber and 30% resin, which is obviously advantageous for strength.
A special application of naval ships, submarines and fishing vessels is SONAR dome, which houses the arrays of acoustic transmitting and receiving transducers for detection of underwater objects. Conventionally titanium is used to make sonar domes due to its fair acoustic transparency, high strength-to-weight ratio, and good resistance to sea water corrosion and bio-fouling. However, acoustic impedance of titanium is not as close to that of sea water compared with glass-fiber based FRPs. Therefore, titanium domes are less efficient in underwater acoustic transmission and have underwater acoustic reflectivity more than FRP. For naval vessels such as submarines and battleships, FRP SONAR domes are being used in some countries, for example, the United Kingdom France, Sweden, Australia, Holland [1, 2, 3]. Such SONAR domes are very critical with respect to high drag force, compressive stresses at high depth in sea for submarines, and requirement of high acoustic transmission characteristics. The thickness of the dome is decided by the strength and modulus of the FRP, but higher thickness results in loss in acoustic transmission power. Therefore, the design and fabrication of an FRP dome are very critical and are done using Finite Element Method (FEM) so that the dimensional features, strain levels at different sections, and maximum stress can be somewhat accurately determined for both static and dynamic conditions. A prediction of acoustic transmission can also be done using general acoustic attenuation theories. Fabrication method can be very important, so that the dome would have nearly same theoretical strength and dimensional accuracy with acceptable tolerances. Among many possibilities, resin film infusion technique or vacuum-assisted resin infusion can be adopted to make the domes with precise dimensions, strength, and flawless integrity. The thickness of such domes can vary from 20 mm to 80 mm depending on the size. The vacuum process has two advantages, (1) the high fiber content resulting in high strength and (2) nearly zero air gap/flaw in the composite. The air gap is undesirable in sonar dome since any such air bubble would increase acoustic reflection, thus reducing the acoustic transmission across the dome thickness. The aspect of sea water diffusion and corresponding loss of strength, lowering of glass transition, and deterioration of acoustic transparency are main consideration of its long usability and depend on both material and fabrication process. Commonly used fabric is E-glass and S-glass while the resin can be a hybrid of vinyl ester and epoxy resin. For the purpose of enhancement of strength, carbon fibers are preferred over glass fiber, since a carbon fabric-epoxy FRP would have Young’s modulus of nearly 70 GPa compared with GFRP of about 30 GPa.
Recently aligned carbon nanotube containing GFRP domes are being considered for mid-frequency acoustic application to reduce the thickness of the dome and to impart better structural vibration damping.
Of the superstructural components, carbon fiber-epoxy combination is best, provided there is no necessity of radar stealth features. However, carbon fiber-epoxy composites are used in cabinets and covers of power electronics in ships and submarines for EMI shielding purpose.
Composite pipe can be made using a combination of prepreg lay-up on a mandrel followed by filament winding technique. This fabrication method can give sufficient Hoop Stress. A best possible fiber alignment in subsequent layers on the mandrel is determined by a stress-strain analysis by FEM method. Resin pick-up by the fiber strands in automatic winding method is minimized by two doctor’s blades fixed on the fiber running line as one of the guide systems for the strands before winding onto the mandrel. Autoclave curing at high pressure and temperature can be adopted for such pipes.
Composite valves are made by dough molding compounds because of intricate dimensional requirement to make them leak-proof. Pipes and valves are special among all items because the fluid pressure (Pascal’s pressure) in most commercial ships is designed for 12 bar, and for Naval standard, it should be 20 bar with continuous use and should withstand maximum 30 bar pressure for 24 h. This stringent requirement makes the fabrication method very critical, for example, the surface of the pipe must not “sweat” at high hydrostatic pressure and circularity and movement of the ball in a Ball valve must be very precise to avoid leakage of liquid, besides resistance to the “sweating.” The processing and fabrication with dough molding compounds are best done by application of high pressure of 1–3 MPa to eliminate excess resin and to ensure compactness with precise dimensional tolerance and without layer gaps or air entrapment. Vacuum application is not beneficial since the dough, containing 20% short fiber, would have very poor flow property. Instead, kneader mixing can produce dough without air entrapped in the green dough. The molds are made with die steel for high-pressure molding.
The elements that are used on board such as ladder, stanchion, and guard rails are critical due to shape and require high-impact energy to resist crack or breakage on impact. Hence, a method of flexibilizing or nanoparticle reinforcement must be attempted to improve impact energy of common reins. As an example, a common epoxy thermoset Glass FRP has an impact energy of 750–850 J/m (Charpy impact), while a modified epoxy-Glass FRP would have 1300–1500 J/m, which may qualify the impact requirement. The strength must not be compromised too much. A maximum 10% reduction for the FRP could be accepted by a designer to prefer a flexibilized resin matrix. For such small and shaped components, hand lay-up of fabric and resin or prepreg lay-up in metallic mold can be adopted. High compression would be beneficial to eliminate any flaw, air gap, and better compactness. In these on-board components, carbon fabric prepregs cannot be used in naval vessels since carbon-based composites increase radar signature.
Off-shore marine structures such as oil rigs and columns of bridges, underwater pipe line supports, etc., are conventionally made using reinforced cement concrete having steel rods as reinforcements inside the concrete. In some other cases, steel pipes, pillars, and column supports are used.
The underwater static steel structures are protected from corrosion and fouling by electrochemical protection system and paints. A new method of protecting the steel structure is to provide a wrap of composite as an outer lining, which is far more durable than painting and more maintenance-free. Steel pipes are used as a mandrel for a filament winding technique to provide a composite lining. Steel structures require underwater welding, etc., for repair and maintenance, which is very complicated and costly. The FRP lining provides a very convenient solution to reduce such maintenance cost and frequency of repair.
The concrete with diffused sea water generates more alkali, and the pH of this alkaline seawater increases from normal range of 8–8.3 to about 12–13 and accelerates the corrosion of the steel reinforcement in the RCC structure. Therefore, FRP reinforcements are modern way of construction for higher durability and lesser maintenance. However, in a higher alkaline sea water environment, the FRP degradation is expected to be faster than in normal sea water.
For off-shore and maritime civil engineering structures, carbon fiber composites (CFRP) are preferred over glass fiber (GFRP) because of higher mechanical strength of CFRP. In addition, sea water uptake and degradation of GFRP in sea water are higher those in than CFRP. There are very few applications of GFRP in marine structures despite the fact that GFRP is cheaper compared with CFRP.
The durability is also dependent on the resin type and its interface bonding with the fiber. Generally, thermosetting polymers such as epoxy, polyurethane, phenolic resin, vinyl ester, and unsaturated polyester resins are used for composites. These resins and corresponding composites are to be evaluated for long period of sea water exposure in an RCC construction for durability. As accelerated studies might give some extrapolated figures of service life, but such studies cannot determine the effect of microorganisms on degradation of a composite. A very common example is sulfate-reducing bacteria (SRB) in the sea water. These organisms use sulfates dissolved in the sea (for example, MgSO4) for metabolism and produce hydrogen sulfide, which is highly corrosive to metals and may also increase the degradation of composites after settling onto the surface. The effect of such organisms is much more important for static structures rather than moving objects. Fouling by other micro and macro-organisms and subsequently the effect on the composite is another aspect of static structures. The protection from bio-fouling by application of anti-fouling coating is another subject of study. However, this type of coatings work either on toxin release mechanism or by providing a low surface energy coating. In case of toxin release coating, the toxin release depends on the hydrolysis and dissolution of the toxin in water, which is more effective in moving condition than stagnant water. Because of toxin depletion, the coating requires renewal after a certain time, mostly 3 years. In case of low surface energy coating, the effectiveness is far less for static structures, as this type of coating is quite good for moving objects, that too at certain minimum speed. However, the advantage is that the settlement of bio-fouling species on these low surface energy coating is very weak and can be removed by a soft cleaning mop. The second most important aspect of static structures is stress. Most supports and beams are under stress, small or large. The pre-stressed composite structure may have lesser service life compared with no-stress elements. The third consideration is fatigue. A bridge column, pipeline carrying liquids under the sea are subjected to vibrations. Hence, the composite elements are to be evaluated by fatigue for a predetermined frequency and number of cycles. This should be done in a repeated experiment and at a regular immersion period. The effect of pre-stress and vibration parameters may reveal some results, which could be different from normal static experiments.
A general understanding of large-scale application of FRP is that there can be three main alternatives for a techno-commercially viable thermoset selection, e.g., (1) unsaturated polyester resin (USP) cross-linked with styrene, (2) vinyl ester resin (VE) cross-linked with styrene, and (3) epoxy resin cross-linked with amine. Whereas, there can be two common fibers such as glass and carbon.
Service life of a structural element for marine vessels has to be minimum 25 years for reducing the investment for replacement and should be maintenance-free for at least 8 years to reduce the cost of refits in drydocks. For off-shore structures, where FRPs are used to make barrier for underwater cement concrete structures, the maintainability is even more difficult, requiring high service life without maintenance activity. Apart from the general physical and mechanical properties, an FRP for marine application must have additional characteristics of low moisture/sea water ingress, minimum hydrolysis, good bond strength between fiber and polymer, minimum physical damage of fiber and polymer due to water ingress and retention of mechanical properties even after prolonged sea water immersion. However, all the properties are primarily dependent on the matrix polymer and fiber and their interaction, secondary parameter being processing technique and fabrication methods to make flawless FRP components with fairly accurate dimensions, such as for a marine ball valve or pipe joint. Processing assumes larger importance since partially cured samples are prone to poorer physico-mechanical properties and higher degradation in water.
A significant improvement in properties of marine composites can be achieved by prepreg method and resin transfer molding (RTM) assisted by vacuum. Good compaction and high fiber volume fraction can be achieved by these processes. The process of prepreg molding is feasible where the resin-hardener reaction does not take place at ambient or storage temperature, and the curing is done at a fixed higher temperature. There are high-temperature reacting systems such as epoxy resin 4,4′methylene dianiline tetraglycidyl ether (TGDDM), to be cured with hardener such as 4,4′-diaminodiphenyl sulfone (DDS), modified polyamines, etc., which are used for making prepregs. The shelf life of such prepregs at storage temperature of −20°C is about 10–12 months, but few weeks at 20°C. The prepregs are cured in compression at above 100°C. However, prepreg system may not be possible for vinyl ester or polyester resins. RTM process requires low viscosity resin and hardener to facilitate good flow in the fabric stacked in the mold for proper wetting at all corners and contours. Trujillo et al. [6] reported the properties of RTM processed composites based on three common resins, i.e., epoxy, vinyl ester, and unsaturated polyester with glass and carbon fabrics. The flexural modulus of the glass composites was about 40GPa and about 110–120 GPa for carbon fabric composites, while the flexural strengths were seen to be in the range of 600–800 for glass composites and 1300–1400 MPa for carbon fabric composites.
Sea water absorption causes changes in the matrix by both plasticization and hydrolysis. Initial effect of water ingress is a plasticizing effect and swelling of the polymer matrix. The results are lowering of glass transition temperature due to plasticization and a possibility of debonding of the polymer-fiber interface due to swelling of the polymer. The initial effect of water ingress also causes hydrolysis of the fiber sizing and generates alkali (Na+ and K+) and the Fiber-polymer interface weakens. All these events result in reduction of ultimate strength and elastic modulus of an FRP.
On prolonged exposure, several chemical reactions may take place, such as hydrolysis of the polymer resulting in small molecules such as glycol, chain breaking, and release of low-molecular-weight polymer (especially polyester), release of the constituents of the resin (typically maleic/fumaric acid), release of styrene (cross-linker for polyester and vinyl ester), and extraction of these species from the FRP to the sea water. Prolonged water immersion of FRP may also cause mechanical damage to the fiber and polymer both, which may not be observed in short period, even in few months of exposure. SEM analysis of all FRPs irrespective of the fiber showed detachment of matrix from the fiber, which is the main reason for such drastic decrease in strength of the composite laminates as reported in literature.
The polymer plays the most important role in the hydrolytic durability of an FRP. As a special case of glass fiber reinforcement, the coated material used as coupling agent chemically degrades and causes weak interface of fiber-polymer. Therefore, a polymer-fiber combination is ultimately the consideration for optimization of hydrolytic properties.
The main reason why GFRP is not used in maritime civil construction applications is because sea water environment degrades the long-term mechanical properties of GFRP composites and interlaminar shear strength (ILSS). The glass fiber-polymer interface is strengthened by a coupling agent coated on the glass fibers and the process is called “Sizing.” The sizing formulations are very complicated, may contain many different chemicals, and are proprietary to the manufacturers [7]. Most common are γ-amino propyl tri ethoxy silane (APTES), γ-glycidoxy propyl trimethoxy silane (GPTMS), γ-methacryloxy propyl trimethoxy silane (MPTMS), and vinyl tri ethoxy silane (VTES) having Si-OH groups on the fiber surface for improving the interface adhesion with the resin. The sea water diffused to the interface of fiber and polymer very quickly degrades the glass to produce alkaline oxides unless protected by sizing. Even then, prolonged immersion of the GRP with fiber with appropriate sizing may cause leaching of alkali oxides (sodium and potassium) from the surface of the fiber and degrade the composite mechanical property [8].
Epoxy resin is a versatile thermoset, widely used in many marine structures for many years. It has good mechanical properties, is highly polar and compatible to most fibers including metals, glass, carbon, Kevlar, and polybenzimidazole. Epoxy nanocomposites are gaining importance due to lightweight and high performance in some functional properties when used with carbon nanotubes, nanofibers, graphene, and also natural nanofibers. The conventional epoxy resin thermosets are somewhat brittle and, in many occasions, modifications are done either by physical mixing or chemical reaction onto the epoxy oligomer or use of high-molecular-weight epoxy and/or the amine curing agent to make optimum tough thermoset. However, flexibilization means increase in free volume in the polymer and subsequent increase in moisture absorption. As such the degradation of conventional epoxy thermoset and composites is very widely studied by many researchers since last 45 years, for example, by Augl and Berger [9] in 1976 on carbon fiber-epoxy composites, McKague et al. [10], DeIasi and Whiteside [11], and Whitney and Browning [12] studied moisture diffusion in epoxy matrix and composite, during 1976–1978, to name a few. Similarly, Loos and Springer [13], Bohlmann and Derby [14], Shirrell [15] studied moisture diffusion and its effect on graphite epoxy composites way back during 1976−1979. Glass fiber-epoxy composites are most widely evaluated for effect of moisture or water or sea water absorption from those periods and are still being the subject of study. A few are listed here as references [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].
The glass transition temperature of cured epoxy matrix and composites is reduced from 120°C to as low as 66°C on a 2-month sea water exposure, but was observed to be almost constant around 85–88°C from 4 months onward till the end of the study period (12 months), as reported by Chakraverty et al. [31]. The authors explained this anomaly by probable osmotic effect of the bulky molecules of dissolved salts in sea water, which might have initially facilitated the creation of more free volume in the cross-linked epoxy matrix, but on prolonged exposure, deposition of these salts could have reduced the water ingress. Murthy et al. [32] have shown that the water uptake by epoxy-glass composite is more (about 0.9%) compared with 0.7% by epoxy-carbon composites after 12 months and remained unchanged. However, their study was limited to 16 months. The ILSS was reduced by 38% for epoxy-carbon and by 31% for 450 days at ambient temperature. SEM analysis revealed that the moisture penetration along the fiber/matrix interfaces caused interfacial debonding and consequently degradation of the interface. Espinel et al. [28] also showed that for an epoxy-glass composite, the saturation level of sea water was 0.4% at 25°C attained after 30 days. The tensile and flexural strength reduced by about 24% and 35% respectively after 90 days sea water immersion at 25°C, but observed that the strength did not decrease much after saturation of sew water. Contrary to these results, Murad et al. [25] showed that the sea water intake in epoxy-glass unidirectional composite was 2.5% after 12 months, but the strength and elastic modulus had no noticeable change compared with fresh sample. However, the fiber volume % was only 52. Wood and Bradley [20] also reported about 2.2% sea water uptake for 5 months at ambient temperature for an epoxy-glass-graphite hybrid composite, each layer fabricated by a similar process as filament winding, and hence the layers were unidirectional. The glass and carbon were in transverse direction to each other. However, the resin used had a 5% flexibilizer (rubber) and fiber volume % was 60. Komorek et al. [29] used fabrics of glass and carbon in epoxy resin. The bending strength was found to be 8% less for the samples immersed for 36 days at 15°C in sea water.
A unique study on fatigue and sea water aging of epoxy-glass and epoxy-Kevlar composite was done by Menali et al. [33]. The authors studied the effect of sea water (artificial) immersion (40 days) after fatigue for 100–50,000 cycles for these composites. There was about 19% reduction in tensile strength for the Glass-epoxy composite samples and about 15% for Kevlar-epoxy samples which had undergone 50,000 cycles of straining and aged in sea water for 40 days. The stiffness of the composite laminates was also degraded by almost similar extent. This result, when compared with that of Komorek [29], clearly shows the additional degradation under cyclic loading.
There is another interesting review report by Li et al. [34] on effect of alkaline sea water (pH at 12–13) for pre-stressed FRP laminate and FRP tendons. The alkaline sea water simulates the property of the sea water sea sand concrete (SWSSC), which is now very much used in civil construction of marine static structures such as off-shore platforms. The authors compiled several results by some researchers. It is seen from the review article that the alkaline SWSSC at pH of 12–13 has a higher degrading effect under such condition.
A comprehensive study was done on the effect of sea water immersion at various temperatures for an epoxy thermoset plaque and its E-glass fabric composite having 55% fiber by volume. The report is not for publication. The composite samples were made by vacuum bagging process followed by compression molding at 120°C. The curing of plaque and composite was done after thorough degassing of the resin-hardener mix. It was observed that after 360 days of immersion, the flexural strength reduced from about 90 MPa to about 65 MPa, and the dynamic flexural modulus was reduced from about 3.20 GPa to about 2.5 GPa at 30°C in natural sea water. The E-glass composites of the same resin were seen to deteriorate in flexural strength and modulus. The strength reduced from 250 MPa to about 180 MPa, and the dynamic modulus reduced from 8 GPa to about 5.5 GPa. The results clearly show the effect of debonding of the fiber from the epoxy matrix interface thereby drastically reducing the loadbearing capability. The water had a plasticizer effect too, as the glass transition temperature changed from 60 to 62°C to about 52–54°C in 12 months, and the SEM micrograph showed separation of the fiber from the matrix at the interface very clearly. However, the effect of the microbes on degradation could not be quantified separately.
The studies done so far indicate a common observation and conclusion that the degradation of epoxy-based composites is significantly high in terms of delamination, loss of mechanical properties and glass transition on exposure in sea water even for a year. The initial moisture ingress has a plasticizing and swelling effect, due to which the glass transition temperature reduces with a drop in mechanical properties. In prolonged exposure, the water molecules chemically react with the resin (hydrolysis) producing small chemical substances, which tend to diffuse out of the resin, causing blisters. Also, various salt components of the sea water may affect the moisture absorption rate compromising some properties of FRP in sea water. It is also known that the effect of sea water on glass fiber reinforced composites differs according to the type of matrix and fiber. The mode of failure of glass/epoxy composite is altered from a brittle matrix and ductile fiber to ductile matrix and brittle fiber. However, in some opinion, the strength stabilizes after the absorbed moisture attains saturation.
In construction of FRP elements of ships, the items that are not in continuous immersed condition such as superstructures, ladders, stanchions, guard rails, etc., are better designed with toughened epoxy resin and carbon/glass fabric composites since the degradation is limited in the atmosphere and the composites can have sufficient strength, reasonable glass transition temperature even after the toughening process of the resin. For naval ships of stealth features, carbon fiber and nanocarbons cannot be used as the radar reflection will be increased. For elements to be used underwater, epoxy resin is not that superior to the vinyl ester class of resins.
Vinyl ester resins are most commonly used for marine composites for two main reasons, the mechanical strength retention on prolonged exposure in sea water and the strength is comparable to epoxy composites and higher than polyester-based composites. The resin has inherent resistance to water diffusion and consequently lesser effect on its glass transition and strength. For large ship structures, vinyl ester resin is a better thermoset due to suitability for processing large items such as hulls, using vacuum infusion due to its low viscosity, apart from its durability in marine environment.
Conventional vinyl esters are having aromatic backbone of epoxy base and the double bond of the unsaturated ester is cured by styrene, exactly the same process as a polyester resin. The presence of the higher content of stiff aromatic epoxy backbone provides the higher mechanical strength compared with phthalic-acid-based polyesters. The higher aromatic content also restricts the diffusion of fluids. Unlike epoxy matrix cured by amines, the vinyl ester matrix is cured by hydrophobic monomer styrene, and hence, the water ingress is lesser than epoxy resin.
VE-CFRP and VE-GRPF have different strength ratios depending on the mode of force application. Wonderly et al. [35] compared these two types of composites in terms of tensile strength and found that CFRP was about 850–950 MPa and was 1.6–1.75 times higher than GFRP, but the open hole tensile strength was comparable at about 250–265 MPa, and compression strength of GFRP was about 330–360 MPa for CFRP and was about 17% lower than GFRP. Transverse tensile strength of CFRP was also about 75% of GFRP. One interesting study was done by the authors on ballistic impact test, which is important for military application. At a comparable areal density, the specific energy (J/kg/m2) required to penetrate the panels for CFRP was higher by about 25% compared with GFRP for identical muzzle velocity.
In general, the glass transition temperature of a vinyl ester matrix is about 115–120°C. The flexural modulus and strength of a vinyl ester plaque are about 3.0–3.5 GPa and 80–120 MPa respectively, almost same as epoxy plaque. GFRP of vinyl ester has flexural modulus of about 10–12 GPa and flexural strength of about 270–300 MPa, ILSS of about 30–35 MPa, depending on the fiber type and fiber volume fraction in the composite. The CFRP of vinyl ester has much higher strength and modulus, about 3–3.5 times higher than GFRP at the identical volume fraction of fiber.
Water diffusion studies show on an average 0.6% water intake at equilibrium for GFRP and about 0.4% for CFRP, which are almost half of corresponding figures for epoxy CFRP. Murthy et al. [32] showed that the sea water saturation levels in both GFRP and CFRP of vinyl ester are about 0.7% and approximately 0.4% respectively, and there was no reduction in the total weight of the samples even after 450 days of immersion. The interlaminar shear strength was reduced by about 35% after 365 days for both CFRP and GFRP of vinyl ester. Similar extent of degradation was observed for flexural strength. The reduction of tensile strength was about 30% for the same period of immersion. However, it is observed that the mechanical properties and the water uptake almost became steady after 365 days. The authors showed that after immersion in artificial sea water for 450 days, the strength reduced by about 35% for both the composites. Similarly, the ILSS also reduced by about same extent. CFRP is marginally better in ILSS on aging in sea water. The maximum water intake for CFRP was about 0.4% compared with about 0.48% for GFRP.
A study by Mungamurugu et al. [36] showed about 1% water absorption at 20°C for vinyl ester GFRP composite for glass fiber volume of 58% compared with about 0.75% for the plaque after 450 day and the reduction in flexural strength (original 250 MPa) by about 25% for the composite after 300 days.
However, most experiments reported in literature are done with artificial sea water, and the effect of the microorganisms and of the evolved materials due to the metabolism of the microbes present in sea water was not possible to observe. Therefore, the drastic decrease in mechanical strength for thermosets resin plaques is due to reaction with water and hence loss of molecular integrity of the cross-linked matrix.
Unsaturated polyesters (USPs) are also widely used in marine construction since it is very cost-effective, easy to process by vacuum-assisted resin transfer process due to low viscosity. Easy to cure, and intricate shapes can be made with a large variety of USP. The oligomer resin is cured conventionally by styrene in presence of catalysts such as methyl ethyl ketone peroxide (MEKP) and in some cases added accelerators such as a cobalt salt or those based on a tertiary amine. The cross-link density and corresponding mechanical properties are controlled by styrene content and the unsaturation in the oligomer. There are new USPs developed where styrene is replaced by acrylic monomers such as tri- or tetraethylene glycol dimethacrylate (TEGDM) [37], which are comparatively less toxic than styrene. The general-purpose and marine-grade USPs are synthesized with different glycols such as isomers of pentyl glycol and isomers of phthalic acid with small amount of an unsaturated acid such as fumaric acid or malic acid. The average flexural strength of USP-based GFRP is about 250 MPa with 58–60% glass fiber by volume.
A study on long-term natural sea water immersion of USP was done by Norwood [38]. The USPs of orthophthalic-acid-based marine resin and isophthalic acid-neopentyl glycol (IST-NGP)-based marine-grade resin were used with about 2.25:1 ratio of CSM: resin by weight in the form of chopped strand mat (CSM) and 1:1 ratio by weight for woven roving (WR): resin. The surface tissue coating of the same resin with 5% filler content and a gel coat was used to reduce water permeation. The study revealed that the IST-NGP-glass composite showed best water resistance in terms of appearance of blisters. The best performance was of high HDT (heat deflection temperature) IST-NGP where the blister formation was seen only after 200 weeks, while orthophthalic-acid-based conventional marine resin (medium HDT) showed blisters in about 52 weeks as the best performance. The conclusion in that study was significant for subsequent research on marine-grade FRPs. It was suggested to use a tissue layer of about 5% (by weight) CSM in the IST-NGP resin (high HDT grade marine resin) over the outer layer of the composite and a top layer of the gel coat (white) to ensure longer life in continuous sea water immersion for at least 4 years. However, the study was restricted to only blister formation, but did not indicate change in mechanical properties on sea water aging.
Mechanical properties for short period were investigated by Espinel et al. [28], which revealed that the tensile strength for USP-glass FRP reduced by 20% after 125 days immersion, and interestingly, while the tensile strength attained a constant value after 30 days of saturation, the transverse strength in flexure continued to decrease till 125 days, indicating that the fiber-polymer delamination is more observed if flexural properties are considered. The reason for difference in behavior in these two modes is that the interface delamination affects the bending load-bearing capacity, while in tension, the maximum load is taken by the fiber as such. Unless the fibers are damaged to very high extent as to break down below a critical length, the longitudinal strength will not decrease significantly. This is perhaps the reason for most researchers to measure flexural properties of composites rather than tensile for sea water aging study.
Kootsookos et al. [39] studied the sea water durability of GFRP and CFRP based on USP containing about 32–35% fiber by volume. The flexural modulus of GFRP was about 50% of that for CFRP. The water uptake trend was similar to many other observations, a peak water uptake of about 0.75% for GFRP and 0.5% for CFRP after 16–20 days. However, the water ingress curve had a negative slope after 20 days for both composites. The corresponding flexural modulus of GFRP showed an initial increase, and then finally after 145 days, there was no significant change. Whereas the modulus for CFRP initially decreased and ultimately the reduction is also negligible. It was opined that the weight reduction after peak water uptake is due to hydrolysis and loss of small molecules, but the modulus did not change much for the period of study (145 days). However, the flexural strength of GFRP was seen to reduce considerably, by about 33% but that for CFRP did not change significantly. The performance of the CFRP in sea water aging was seen to be much superior to the GFRP based on polyester resin.
Loos et al. [40] studied hydrothermal effect on USP-based GFRP using distilled water and saturated NaCl solution at 32°C and 50°C. The authors observed that at 32°C, the weight increase is continued with time till saturation value of 3.5–3.6% on 100 days and remained constant thereafter (till 150 days) when immersed in distilled water. For immersion at 50°C, the weight change was having a negative slope after about 50 days. Similar observations were also made by Fraga et al. [41], who studied hydrothermal aging and its effect on interlaminar shear strength and dynamic mechanical properties of GFRP made from isophthalic-acid-based USP with styrene as cross-linker. After 12 days exposure in water at 80°C, the weight change showed a negative slope indicating release of silane coupling agent (sizing of fiber) and also small organic molecules due to hydrolysis of the resin at the elevated temperature. The shear modulus was reduced by about 50% for the composite at 80°C at the end of the study period (1000 h). The glass transition did not change significantly, and the dynamic modulus increased by about 30% but flexural modulus reduced by about 25% at 80°C after about 400 h but stabilized thereafter till 1000 h of study.
Although an USP made of isophthalic acid and neopentyl glycol meets the requirement as a marine-grade resin, as its water resistance is much better than the other USPs, but on a comparison with epoxy resin and vinyl ester resin, the strength of the USP is quite lower, which necessitates a thicker section of a component, say hull of a boat, and consequently there is a possibility of more defects, enhanced water ingress, and faster damage.
The design of a marine structure is fully dependent on the mechanical properties of the candidate material in various modes. In addition, it must consider the environment in which the object has to perform. Therefore, there is a third consideration of timescale of the service. A very simple example is a static beam under a constant bending load in a building that should carry the load for a long period, for instance, 2–4 decades. Therefore, the design input must be the properties of the material after aging for that service period in the atmospheric environment, especially moisture, carbon dioxide, ultraviolet ray, oxygen, and ozone. While it is not possible to have a data for such a long period for designing an object, it is best to make a prediction of the extent of degradation/aging and degraded properties after a target period of service. This simulation is quite difficult because all environmental and load conditions cannot be simultaneously considered in the mathematical predictive equations. However, a preliminary knowledge or previous study might help in deciding the conditions of fastest degradation due to aging effect. For example, it is known that polypropylene degrades in sunlight due to UV much faster than any other environmental conditions. Therefore, the service life is better decided upon aging under UV of varying intensity.
For marine structures and vessels, the most important considerations to decide the service life are sea water aging, fatigue due to vibration, constant load, and also degradation due to microbial activities. Cyclic sorption-desorption along with a pre-stress was studied by Burla [42], which gave more information on the repeated sorption phenomenon of the cloisite 10A nanocomposites of epoxy, vinyl ester, and unsaturated polyester.
Atmospheric aging due to ozone, UV, etc., is also important for the objects or part of the structures above the water line. In all the factors, sea water aging is most severe because of dissolved salts and alkalinity. The pH of sea water is about 8.3 on an average, and it also contains chlorides, bromides, iodides, sulfates, and carbonates of sodium, magnesium, potassium, calcium, and also traces of heavy metals such as Iron, manganese, cadmium, lead etc. Therefore, diffusion of sea water, and the effect thereof, is the most relevant study for deciding the degradation in mechanical properties of FRP for marine application. It is well known that the extent of sea water uptake and its effect is quite different from potable water or industrial process water.
The diffusion phenomenon in pure thermosets and corresponding FRPs can be generally described by a fundamental theory of diffusion by Fick’s Law:
where
Considering only unidirectional diffusion of sea water in a thin panel, (thickness less than 2% of length and breadth), Eq. (1) can be solved to obtain a fractional mass gain (
where
The diffusivity can be directly calculated from a simple experiment of water uptake by a panel till saturation, using the following equation:
If
Eq. (1) can be approximated as [43]:
If the sample is exposed to the sea water on both sides, then
Rearranging Eq. (4) we can get the time required to attain a certain water content due to unidirectional steady-state diffusion in a thermoset and FRP as:
Eq. (5) is used for predicting the time required to attain any level of water uptake for different thicknesses (
The one-dimensional diffusion equation is valid for thin panels, where the diffusion from edges is not significant. In case of pure thermoset plaques, the edge effect is not very important, but FRP composites are anisotropic materials and hence the edges are to be protected. This is ensured in FRPs by applying the thermoset resin coating on all edges of the panel. However, there can be an edge correction too, to be more precise on unidirectional mass transfer, provided the sample is homogeneous in diffusivity in all directions [43]:
where
Figure 1 shows an example of water diffusion data for an epoxy GFRP composite of dimensions
Typical experimental data and corresponding Fickian model prediction.
In order to determine the time required for water absorption to the extent of 90% of the saturation for a 12 mm thick FRP panel, assuming identical conditions, Eq.(5) is used and the time calculated as:
The life prediction can be done on the basis of the minimum strength required by a designer of the FRP item. Suppose a minimum Flexural strength of 175 MPa is required for the designer to design an underwater vessel hull. The service life of an epoxy-GFRP hull of 12 mm thickness is to be predicted.
Taking the same FRP composition, the laboratory flexural strength data at various times of sea water aging was observed at 35°C for 10,000 h, and Figure 2 shows the combined data of fractional water absorption and flexural strength with time. The flexural strength measured in 3-point bending test of the original, cured GFRP at 20°C was about 238–245 MPa.
Flexural strength and fraction of saturation with immersion time in artificial sea water for an epoxy-GFRP at 35°C.
From the source data of Figure 2, it is known that the fraction of saturation is 95.4% corresponding to the flexural strength of 175 MPa. Therefore, time required for the 12 mm thick panel at 0.954% saturation as calculated using Eq. (5) is:
The above solution of prediction is obviously approximate, as the theoretical curve is not in exact agreement with the experimental data till 7500 h (300 days). However, the theoretical prediction of the diffusion curve in Figure 1 shows better agreement at longer period of exposure. In addition, considering the good fit in Figure 2 for the fractional saturation (
In a different approach, the diffusion-related life estimation can be realized if a time-temperature superposition is done from the data of sea water absorption and a functional property such as strength vs. immersion time at different fixed temperatures of the sea water. In an isothermal analysis with one temperature, the slow relaxation of larger segments of a thermoset polymer (
where
However, the value of the constants
Williams, Landel and Ferry [46] relate the temperature-dependent events such as viscosity, relaxation time, or relaxation frequency with change in fractional free volume of the molecule or segments. The fractional free volume changes linearly with temperature. Accordingly, the relaxation time-temperature relationship is given as the famous WLF equation:
where log(
However, the best process of superposition is to shift the isotherms graphically in a data plot of the property (say strength) vs. time.
A typical
Isotherms of flexural strength vs. time of immersion of a GFRP based on epoxy resin.
Subsequently, the shifted data are plotted as a master curve with a reference temperature of 20°C as shown in Figure 4. The best fit of the shifted data is approximately a second-order polynomial expression here. However, for a long period, the property will vary with the logarithm of time. The shift factors corresponding to the temperatures 30°C, 40°C, and 50°C were used to calculate new time (
Master curve for 20°C reference temperature: epoxy-GFRP aging in sea water.
The process of determination of shift factor from a graphical shifting is described in Ref. [47]. For example, shift factor log(
log(
This means that the strength at 50°C after 8 months of sea water aging corresponds to 16 months aging in sea water at 20°C. The shifted values can be approximately described by a polynomial fit:
where
The polynomial fit can be used for determination of the property at extended period too. Therefore, the strength is calculated with Eq. (11) for longer period than the shifted data. Figure 5 shows the data up to 50 months. The result is obviously an approximation, but gives one the idea of range of the degraded property (strength) for a long exposure time. The validation of the data is not possible unless an experiment is done for the similar period.
Extrapolation of the master curve for longer period.
Similarly, 10 months data on water uptake by an epoxy-GFRP were studied at limited temperature range of 20°C, 30°C, 40°C, and 50°C. The data were plotted as isotherms and graphically shifted to the reference temperature 20°C. The shift factors were determined, and subsequently new time was obtained using the method already described, and a master curve of water uptake predicted at longer time was obtained. The plot is shown as Figure 6 here only from 20 months of aging onward till 90 months.
Long period prediction of water uptake constructed by graphical t-T shift.
A correlation of these two master curves for prediction of long-term properties as water uptake and flexural strength can be made with some approximation, in this case, because of the limitation of data.
Let us take strength and diffusion data at 48 months from Figures 5 and 6 respectively. At 48 months, the Flexural strength is 85.6 MPa (calc.) and Water uptake is 6.61% (calc), at a sea water temperature of 20°C.
The example of evaluation of long-term property and water diffusion shown above does not simulate an actual FRP item. In practice, the thicknesses for underwater structures are much higher due to load requirements. Moreover, multiple types of mats, chopped fibers, fabric with various weaving styles are used in thick composites where FEM analysis is resorted to design the layers.
An approach can be made for life estimation by calculating the diffusion time using Eq. (5) for an FRP of actual size and thickness from the laboratory experiment at different temperature of sea water aging with respect to time. Once a data table is made of Mt% vs. time for the actual size at various isothermal aging temperatures, the data can be used to obtain a graphically constructed master cure following a time-temperature superposition principle for a reference temperature, which is the actual sea water temperature of that geographical region. Since the composites often show dual Fickian behavior or non-Fickian behavior, the data for only long-term study can be taken from the master curve for a good fitting equation. The probability of error is minimized in this process, as graphical shift does not need any assumption such as glass transition temperature, values of activation energy, or the WLF constants, etc. However, a careful experimental determination of the value of diffusivity is required, which is a most critical parameter.
In experiments on diffusion, the panel thickness plays an important part. Although there is an edge correction method available, but it is best to use thin panels of maximum 4.0 mm thickness and edge sealing by a marine-grade vinyl ester resin tissue coat and gel coat of 1.0 mm thickness each. Number of layers of the fabric should be restricted by using fairly thick quality fabric and mats, but not very thick to make the resin infusion difficult. Nevertheless, similar materials such as the resin, curatives, catalysts, and type of mats and fabrics as actual FRP item would be best for a realistic prediction of service life.
After observation of many experimental results on water diffusion process in thermosets and composites, it is certain that the diffusivity is not unique for a case and may vary according to the behavior of the polymer as the process of water ingress progresses. The water diffused in a polymer acts as a plasticizer to change the relaxation process, resulting in swelling, and also initiates some chemical reactions. Karter and Kibler [48] offered a theory that the water absorption is described by a simple diffusion with sources and sinks of diffusing water molecule and that the absorbed water is divided into mobile and strongly bound phases in the polymer. There is a continuous migration from mobile to bound phase and the reverse. There is an equilibrium of this interchange of bound and mobile water. The theory is somewhat similar to Langmuir theory of adsorption-desorption. Considering the probabilities of the interchange of bound and mobile water molecules, the relative mass gain is given by the authors as:
where
The constant
When the exposure time is short, an approximate equation can be used as follows:
Hence,
and for a long exposure period, so that
Eq. (15) can be rearranged, and after taking logarithm, it becomes:
Eq. (16) represents a straight line with −
A GFRP based on USP and chopped glass fiber is exposed to artificial sea water at 45°C for 8400 h. The size of the laminate was 80 mm × 12 mm × 4 mm (
Figure 7 shows the experimental data and the predicted data of absorption for long-term approximation considering a period beyond 2000 h as the long term.
Long-term water uptake data: experimental and
Due to the time-varying process of moisture absorption, it is assumed that instead of one constant diffusivity, two diffusivities can be used to describe the long-term water uptake, provided that there is no loss of small molecules as a product of hydrolysis and subsequent leaching out of the experimental panel. The initial diffusivity
where
A similar expression is a modified Jacob-Jones model [43, 49, 50]:
Here,
Comparing Eqs. (17) and (18), it is more convenient to use the latter, although the equation is an approximate one.
The same water diffusion data of Example 5.1.1, which did not show good fit using the Fickian model with one diffusivity, is tested for the dual Fickian model, taking modified Jacob-Jones expression as in Eq. (18). The diffusivities were calculated as
Dual Fickian model fitted to experimental data of example 6.1.1.
In some models, apart from initial diffusion process of Fickian type, relaxation of the polymer chain segments is also considered, as the water ingress progresses. The water has a plasticizing effect, and hence the relaxational phenomenon, which involves segmental motion of macro-Brownian type, increases with the progress of diffusion. The relaxation process in a polymer is related to the slow rearrangements of the chain segments and therefore, distribution of the free volume in the polymer, considering large number of different sizes of the segments in the network. The diffusion and relaxation were combined in a single model by adding the relaxation terms to a classical Fickian diffusion model. The two diffusion processes were assumed to be independent of each other. The mass uptake at any time interval,
where
The above model is only applicable where the relaxation process is approximately commensurate with the experimental timescale, since a short-term experiment may not result in actual effect of segmental motion and relaxation of a thermoset, which has a very high relaxation time at the experimental temperature.
Nanometric-sized materials are presently used as reinforcing fillers with polymers. The nanoparticles are defined as those that has at least one dimension below 100 nm. Due to the tiny size, the nanoparticles have very high surface area compared with volume, and hence, their force of attraction with a polymer is much higher compared with common fillers. In addition, the shaped nanoparticles such as rods, platelets, stacked layers, fibers, etc., impart good resistance to diffusion of gas and liquids in polymers.
Needless to say that the intermolecular forces between the nanoparticle and the polymer much depend on homogeneity and polarity. The force of attraction may be Van der Waals, hydrogen bond, polar attraction, dipole-dipole, etc. Some fillers also form covalent bonds too. The secondary valence bonds are physical bonds and are reversible, unlike the covalent bond, which is a chemical bond. Most common nanoparticles are carbon nanotubes, nanorods, nanofibers, graphene and graphene oxide, clays such as montmorillonite, layered silica, nano particles of minerals such as nano titanium dioxide, nano ceramics, etc.
Nano carbons are chemically modified, for example, ▬COOH functionalized to improve physical bonding with polymers. The reinforcing effect of single-wall carbon nanotube (SWCNT) is much higher than multiwall tubes (MWCNT) because of higher specific surface area.
Graphene and graphene oxides are a new class of plate-type reinforcing nanoparticles, having layer of single graphitic plates, can be physically bunched as 3–8 layers. Graphene is an allotrope of carbon whose structure is a single planar sheet of sp2 bonded carbon atoms that are densely packed in a honeycomb crystal lattice. The graphene can have a spacing of 0.3–0.5 nm between two platelets. Graphene is purer form of carbon, having no organic impurities or functional groups attached, hence their bond with polymers is less intensive than other allotropes of carbon nanoparticles. However, synthesis of graphene from graphite/carbon leads to graphene oxide, which is more polar and can have better bonding with polar resins, which are used for FRP.
Clays are layered silicates, with complex crystal structures. There are different naturally occurring clays such as bentonite, which is kind of rock, mixture of different minerals, including smectite (2:1 layered clay), montmorillonite (dioctahedral), hectorite, (tri-octahedral). The clays are organically modified, for example, ion exchanged with quaternary alkyl ammonium salts, to allow an oligomer molecule to enter in the clay gallery, thus intercalating or even exfoliating the clay. Cloisite is a class of montmorillonite clay, commercially available in various hydrophobicities, and is in the order: Cloisite 15A > 20A > 25A > 10A > 93A > 30B > Cloisite Na+. Typical clay gallery spacing in montmorillonite (Cloisite) is about 1–1.9 nm depending on their structure, and the spacing is increased upon modification and is further exfoliated or intercalated when a low-molecular-weight polymer enters the clay gallery. Typical surface area of a montmorillonite nanoclay of 75–150 nm transverse size is approximately 750 m2/g.
However, for processing the nanoparticles with an epoxy/unsaturated polyester/vinyl ester oligomer is not easy because of high agglomeration of the nano particles, causing inhomogeneity. In fact, carbon nanotubes cannot be homogeneously mixed with epoxy oligomer beyond 1% without adding any solvent.
Common processing methods are:
Ultrasonication: it is effective in low-viscosity fluids. Generally, 40–50 kHz ultrasound is used in a bath containing the polymer mixed with a solvent. It improves dispersion of the nanoparticle by decreasing aggregates or even separates the nanoparticle. For example, SWCNT is mixed with epoxy using dichloromethane as a solvent.
Introducing surfactant: composites containing as little as 1 wt% surfactant-dispersed MWCNTs have better homogeneity, resulting in improved interaction between nanoparticle and matrix.
Chemically functionalizing the nanoparticle: nanoclays or MWCNTs are organically modified/functionalized leading to an improved dispersion in thermoset forming oligomers such as epoxy, unsaturated polyester, or vinyl ester.
Figure 9 shows a general process flow of polymer-nanocomposite preparation, using ultrasonication. As an example, an epoxy resin with clay is shown here with appropriate processing parameters.
A typical process for polymer-nanocomposite using ultrasonication.
For FRP nanocomposites, it is better to use a pre-bound process rather than mixing the nano material in the resin—which may cause processing difficulties. In this process, the nanoparticle is dispersed in a solvent and sprayed onto the dry fiber mat laid on a steel mesh fitted with a vessel. A vacuum at the bottom of the vessel extracts the gaseous and fluid part and facilitates drying of the mat. Typical parameters for such process for thermoset-MWCNT-based FRP are:
MWCNT: 1% in acetone
Air pressure for spray: 0.3–0.4 MPa
Vacuum: 0.25 atm (absolute)
Drying after spray: 12 h at 120°C
Figure 10 shows a schematic diagram for the pre-bound process of FRP-nanocomposites.
A typical arrangement for pre-bound process.
The barrier property is a function of cross-link density of the thermoset. The free volume for such densely cross-linked network is small, and the chain segments are very stiff. These two factors resist the penetrant transport in the matrix. Since the glass transition temperature is far higher than ambient, the thermoset can be described as an amorphous material trapped as a frozen mass below its glass transition. The dependence of diffusion on cross-linking is reflected in nonlinear behavior and also wide range of diffusivities reported in literature for rigid thermosets and FRPs based on these.
Thermoset nanocomposites were studied by many researchers to observe the effect of inclusion of nanoparticles in highly cross-linked networks, such as epoxy, USP and VE.
Epoxy-amino functionalized carbon nano fiber (CNF) composite was studied by Prolongo et al. [51] and concluded that the CNF effectively controlled the extent of unbound free water, which fills the nano-voids, without swelling (type-I water). However, the final water uptake was not much different than FRP without CNF. Balgis et al. [52] studied MWCNT and milled carbon (spherical graphite and chopped micron scaled carbon fiber) in epoxy resin and found that the dynamic modulus improved by addition of these reinforcements by about 8%. The uptake of water was slow, and the ultimate water was reduced by 12% compared with the neat epoxy resin, and after hydrothermal aging, the dynamic modulus was marginally changed from 2900 MPa to 2700 MPa, but the glass transition temperature changed by about 10–11°C.
Maheshwari et al. [53] studied the effect of nano silica on sea water diffusion of unsaturated polyester resin nanocomposites at varying temperatures (40–60°C) and salinity (0–25%). The effect of inclusion of 3% nano silica in distilled water reduced the saturation water uptake from 0.65 to 0.52% approximately, at ambient temperature, while for a 4% saline water, which is slightly more saline than sea water, the saturation with 3% nano silica is about 0.46%, compared with neat USP at 0.6%. Their study also showed a gradual decrease in saturation of water in nano silica content. See et al. [54] used a organically modified montmorillonite (OMMT) clay treated with a modification agent known as X-treatment using an organically reactive dispersion agent (commercially restricted) in unsaturated polyester resin to make a gel coat with improved barrier property against water immersion/moisture diffusion. It is seen that the moisture uptake increased upon addition of 1% OMMT from 1.74% for without clay to about 2.17%, and with a X-treated OMMT, the figure is about 1.9%. The study clearly shows that the inclusion of the OMMT nanoclay did not reduce the ultimate water uptake, nor it could improve upon glass transition compared with the neat resin after moisture saturation, but the diffusivity was reduced by about 25–30%, and the saturation time is same as the neat resin coating. The life extension by formation of the clay-nano composite cannot be expected to be significant. Shah [55] used two different types of surface-treated OMMT with vinyl resin and studied water diffusion and its effect on properties of the resin-clay nanocomposite. The study indicated similar result as reduction of diffusivity but not the ultimate water uptake and no significant difference in glass transition.
Burla [42] studied the absorption-desorption cycles of water in Cloisite 10A nanocomposites of epoxy, polyester, and vinyl ester thermosets at various values of relative humidity and immersion in water at 25°C under a tensile stress to the extent of 17% of their ultimate tensile strength. Although the diffusivities were reduced upon in addition of the clay, but the ultimate extent of water uptake did not reduce and the time to reach saturation was not improved.
The nanocomposites in all above cases were seen to be non-Fickian in diffusion and in most cases had slightly higher moisture uptake at saturation. This is possibly due to the bound water molecule at the surface of the clay, which is more hydrophilic due to more ▬OH groups present in the clay compared with that in the resin. A study on fractional free volume and nano hole size distribution was done by Patil et al. [56] with epoxy-Cloisite 10A clay nanocomposites. The authors used Positron Annihilation Lifetime Spectroscopy (PALS) to determine the subnanoscopic free volume in the nanocomposite. The fractional free volume decreased with clay incorporation, but at higher loading, the decrease did not follow a simple linear mixing rule with respect to the volume fraction of the clay, but the reduction was more. This is possibly due to more interaction of the clay with the resin. PALS results showed strong (repulsive) interactions between the clay and the epoxy matrix at lower clay concentrations, which decrease at higher clay concentrations due to the clay-intercalated structure. However, the nanohole size distribution showed an interesting feature. The nanoholes became smaller in size, but the size distribution broadened with respect to nanohole volume beyond the original maximum nanohole volume. There was a net increase in total void volume, although average nanohole volume reduced from 0.075 nm3 to about 0.05 nm3 on incorporation of 7.5% cloisite 10A. The reduction of size and increase in overall hole volume are, of course, a function of the clay-resin interaction, for example, in this case it was repulsive.
A study was done by Rath et al. [57] with USP-Cloisite 15A nanocomposites on the reason for reduction of mechanical properties with increase in clay loading. PALS technique was used to find the free volume change on incorporation of the clay. It was seen that clay loading caused an increase in fractional free volume, suggesting a lower chain packing efficiency in these intercalated USP/clay nanocomposites. This could be a reason for higher or at the most similar water uptake on saturation by the clay nanocomposites.
Microorganisms in sea water can settle on structures, such as on metals, FRPs, and on almost all materials. The microbes form a very thin layer of viscoelastic nature as micro-fouling, quite adherent, and this layer is commonly termed as a slime. The slime formation on a substrate can take place within few days of immersion, as there are enormous amounts and varieties of microbes in the sea.
The slime facilitates the settlement of macro-organisms, which is termed as macro-fouling, and most common fouling macro-organisms are bryozoans, barnacles, mollusks, polychaete and other tube worms, zebra mussels, etc. The size of macro foulants is quite large, could be few centimeters even. The slime formation and macro-fouling are highly undesirable for marine vessels and structures, because of many reasons such as evolution of corrosive gases such as hydrogen sulfide, hydrogen, etc., due to metabolism of the organisms, surface roughness of vessels due to macro-fouling, thereby increasing the drag on movement substantially. FRPs are equally vulnerable to such settlements and degradation due to microbial settlement. There are many microbiological studies on the effect of microbes on various materials immersed in sea water. A brief discussion and most important findings are given here for FRP composites.
Little et al. [58] studied the adhesion of the slime on substrates. Gu et al. [59, 60] reported microbial growth and degradation of glass and carbon fibers upon penetration of fungi into the resin matrix. Organic additives to fibers, such as plasticizers and surfactants, may provide nutrients for microbial growth and ultimate degradation as reported by Upsher [61]. Glass fibers are more vulnerable.
Wagner et al. [62] examined carbon fiber-reinforced epoxy (T-300) and a glass (S-2) and carbon fiber (T-300) vinyl ester exposed to microbial culture for 161 days, to study the possible microbiologically influenced degradation. Composites, resins, and fibers were exposed to various microbes including hydrogen producing and sulfate-reducing bacteria (SRB). All types of bacteria colonized surfaces, preferentially on irregularities such as scratches and fiber disruptions. SRB degraded the organic surfactant on glass fibers. Tensile strength of a CFRP of epoxy was reduced on exposure to SRB. The SRB mixed culture did not degrade neat vinyl ester. Degradation of the organic surfactant on glass fibers due to the microbes was observed. Hydrogen-producing bacteria appear to have disrupted fiber-vinyl ester resin bonding with gas production. The study indicated that it is essential for marine application to screen the FRPs against various microbes of sea water before designing the structure.
Application of fiber reinforced composites based on thermosets is increasing as the cost and availability of fuel increase with time. This is simply because a lighter marine vessel has the fuel efficiency much higher than metallic vessels. For static RCC construction too, a simple outer jacket of a composite can protect a concrete pillar of off-shore structure for quite a longer period than an exposed RCC. The undersea pipelines are the other areas of potential use of carbon-vinyl ester composites. Nano-carbons can effectively improve the toughness of such items.
A large number of studies are already done to examine the efficacy of using FRPs for use in marine environment considering the chemistry of the matrix resins and relevant properties. Similarly, various fibers were also investigated by many researchers. Recent advancement is focused at incorporation of nanofillers of different chemistry and forms such as nanotubes, fibers, rods, spherical, platelets, etc.
The composites studied so far are widely varying in the resin-fiber ratios, forming sequence, and processing methods. Therefore, the results of each study cannot be fully generalized, but a broad conclusion on quantitative figures of merit can be made for each polymer-fiber combination.
A very general conclusion on durability in marine environment is that vinyl ester resin with carbon fiber is the best choice for applications in static structures, high strength ship components, and commercial speed boats where durability and weight reduction are important. However, for naval ships and submarines, for use in superstructures, the CFRP composites have a problem of radar reflections similar to metallic structures. Modern-day stealth ships exclusively use GFRP since it is radar transparent material (RTM). CFRP is only used in radar absorbing structures (RAS). Internal areas of the vessel can be made with CFRP for better strength and hence reduced weight. However, GFRP has slightly more damping capability than CFRP, which is stiffer. The SONAR Dome can be made with glass fiber or carbon fiber, also with hybrid fiber system. CFRPs are electrically more conductive than GFRP, and hence it is better to use GFRP as inside layers to avoid electrical problems for securing the transducer arrays.
Most studies on durability of FRPs reported so far are either using moisture, or distilled water or artificial sea water, but very rarely natural sea water has been used. Artificial sea water does not simulate the natural sea water. The variations in types of microbes across the world are so much that a result of durability study in sea water at Mumbai coast in India is not applicable in a coast of the United States. There are no comprehensive reports on effect of microbial activity and effect of sea water constituents both considered together to decide a service life of an FRP.
To determine service life of an FRP in marine water, it is required to use the panels immersed in actual sea water using a raft and periodically observing the change in water uptake, chemical groups, mechanical strength, dynamic mechanical properties, surface restructuring, glass transition, etc. Mathematical models commonly used may not be directly applicable for considering the influence of all unforeseen parameters of the sea, but a functional property such as bending strength/modulus can be monitored with time. The data can be superimposed with the similar value of the property with that from a simultaneous laboratory experiment at different temperature as is normally done. The time-temperature superposition will be better used in such cases with graphical shift method to avoid any assumptions. Although the microbe activities are not mapped in temperature scale in such method, it is fairly accurate since the microbe activity is constant due to approximately constant sea water temperature and salinity. The study must be done for at least two cycles of breeding of microbes. This means that the experiment may be only for at least 12 months. Vinyl-ester-based GFRP and CFRP are therefore required to be studied to observe the effects of sew water chemistry and microbiological activity to decide the service life.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium difficile",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:41},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:16},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:66},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:489},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"180",title:"Forensic and Legal Medicine",slug:"forensic-and-legal-medicine",parent:{id:"16",title:"Medicine",slug:"medicine"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:131,numberOfWosCitations:119,numberOfCrossrefCitations:79,numberOfDimensionsCitations:162,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"180",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7821",title:"Criminology and Post-Mortem Studies",subtitle:"Analyzing Criminal Behaviour and Making Medical Decisions",isOpenForSubmission:!1,hash:"5077ee1b9a7f2a3030689f307bfb84aa",slug:"criminology-and-post-mortem-studies-analyzing-criminal-behaviour-and-making-medical-decisions",bookSignature:"Sara Palermo and Raluca Dumache",coverURL:"https://cdn.intechopen.com/books/images_new/7821.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10579",title:"Forensic Analysis",subtitle:"Scientific and Medical Techniques and Evidence under the Microscope",isOpenForSubmission:!1,hash:"54012b7d1952b634ff1bf86b8ce4a771",slug:"forensic-analysis-scientific-and-medical-techniques-and-evidence-under-the-microscope",bookSignature:"Ian Freckelton",coverURL:"https://cdn.intechopen.com/books/images_new/10579.jpg",editedByType:"Edited by",editors:[{id:"29183",title:"Prof.",name:"Ian",middleName:"Richard",surname:"Freckelton",slug:"ian-freckelton",fullName:"Ian Freckelton"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6262",title:"Post Mortem Examination and Autopsy",subtitle:"Current Issues From Death to Laboratory Analysis",isOpenForSubmission:!1,hash:"fce869ae396986e202a78883a0b1045f",slug:"post-mortem-examination-and-autopsy-current-issues-from-death-to-laboratory-analysis",bookSignature:"Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/6262.jpg",editedByType:"Edited by",editors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5259",title:"Forensic Analysis",subtitle:"From Death to Justice",isOpenForSubmission:!1,hash:"8e44125aafaaf6e8adb73d733f34fae9",slug:"forensic-analysis-from-death-to-justice",bookSignature:"B. Suresh Kumar Shetty and Jagadish Rao Padubidri",coverURL:"https://cdn.intechopen.com/books/images_new/5259.jpg",editedByType:"Edited by",editors:[{id:"70242",title:"Dr.",name:"B Suresh",middleName:"Kumar",surname:"Shetty",slug:"b-suresh-shetty",fullName:"B Suresh Shetty"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"243",title:"Forensic Medicine",subtitle:"From Old Problems to New Challenges",isOpenForSubmission:!1,hash:"132b119de3a751f6c764b7cc15b85a14",slug:"forensic-medicine-from-old-problems-to-new-challenges",bookSignature:"Duarte Nuno Vieira",coverURL:"https://cdn.intechopen.com/books/images_new/243.jpg",editedByType:"Edited by",editors:[{id:"31385",title:"Dr.",name:"Duarte Nuno",middleName:null,surname:"Vieira",slug:"duarte-nuno-vieira",fullName:"Duarte Nuno Vieira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"19163",doi:"10.5772/19261",title:"Forensic Age Estimation in Unaccompanied Minors and Young Living Adults",slug:"forensic-age-estimation-in-unaccompanied-minors-and-young-living-adults",totalDownloads:9037,totalCrossrefCites:38,totalDimensionsCites:76,abstract:null,book:{id:"243",slug:"forensic-medicine-from-old-problems-to-new-challenges",title:"Forensic Medicine",fullTitle:"Forensic Medicine - From Old Problems to New Challenges"},signatures:"Andreas Schmeling, Pedro Manuel Garamendi, Jose Luis Prieto and María Irene Landa",authors:[{id:"34264",title:"Prof.",name:"Pedro Manuel",middleName:null,surname:"Garamendi Gonzalez",slug:"pedro-manuel-garamendi-gonzalez",fullName:"Pedro Manuel Garamendi Gonzalez"}]},{id:"19161",doi:"10.5772/19234",title:"Diagnostic of Drowning in Forensic Medicine",slug:"diagnostic-of-drowning-in-forensic-medicine",totalDownloads:8219,totalCrossrefCites:9,totalDimensionsCites:18,abstract:null,book:{id:"243",slug:"forensic-medicine-from-old-problems-to-new-challenges",title:"Forensic Medicine",fullTitle:"Forensic Medicine - From Old Problems to New Challenges"},signatures:"Audrey Farrugia and Bertrand Ludes",authors:[{id:"34146",title:"Dr.",name:"Audrey",middleName:null,surname:"Farrugia",slug:"audrey-farrugia",fullName:"Audrey Farrugia"},{id:"49284",title:"Dr.",name:"Bertrand",middleName:null,surname:"Ludes",slug:"bertrand-ludes",fullName:"Bertrand Ludes"}]},{id:"19160",doi:"10.5772/18161",title:"Death Scene Investigation from the Viewpoint of Forensic Medicine Expert",slug:"death-scene-investigation-from-the-viewpoint-of-forensic-medicine-expert",totalDownloads:27475,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"243",slug:"forensic-medicine-from-old-problems-to-new-challenges",title:"Forensic Medicine",fullTitle:"Forensic Medicine - From Old Problems to New Challenges"},signatures:"Serafettin Demirci and Kamil Hakan Dogan",authors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"},{id:"32211",title:"Dr.",name:"Serafettin",middleName:null,surname:"Demirci",slug:"serafettin-demirci",fullName:"Serafettin Demirci"}]},{id:"50789",doi:"10.5772/63530",title:"Molecular Genetics and its Applications in Forensic Sciences",slug:"molecular-genetics-and-its-applications-in-forensic-sciences",totalDownloads:4657,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"The way to medico legal identification was open at the end of the twenty‐first century by the “digital fingerprinting” represented by the multifactorial phenotypical trait, determined by both polygenic and environmental factors, followed by group‐specific antigens, or with specificity for blood and tissue, and ending with the DNA molecule in use today. Because of this aspect, the framework of modern forensic medicine includes a new field, that of forensic genetics, that mostly involves working with investigations that have human genotype identification as a goal.",book:{id:"5259",slug:"forensic-analysis-from-death-to-justice",title:"Forensic Analysis",fullTitle:"Forensic Analysis - From Death to Justice"},signatures:"Raluca Dumache, Veronica Ciocan, Camelia Muresan and Alexandra Enache",authors:[{id:"179199",title:"Dr.",name:"Raluca",middleName:null,surname:"Dumache",slug:"raluca-dumache",fullName:"Raluca Dumache"},{id:"181860",title:"Prof.",name:"Alexandra",middleName:null,surname:"Enache",slug:"alexandra-enache",fullName:"Alexandra Enache"},{id:"190151",title:"Dr.",name:"Camelia",middleName:null,surname:"Muresan",slug:"camelia-muresan",fullName:"Camelia Muresan"},{id:"190153",title:"Dr.",name:"Veronica",middleName:null,surname:"Ciocan",slug:"veronica-ciocan",fullName:"Veronica Ciocan"}]},{id:"19164",doi:"10.5772/19434",title:"Epidemiology and Diagnostic Problems of Electrical Injury in Forensic Medicine",slug:"epidemiology-and-diagnostic-problems-of-electrical-injury-in-forensic-medicine",totalDownloads:6433,totalCrossrefCites:5,totalDimensionsCites:6,abstract:null,book:{id:"243",slug:"forensic-medicine-from-old-problems-to-new-challenges",title:"Forensic Medicine",fullTitle:"Forensic Medicine - From Old Problems to New Challenges"},signatures:"William Dokov and Klara Dokova",authors:[{id:"34961",title:"Dr.",name:"Klara",middleName:null,surname:"Dokova",slug:"klara-dokova",fullName:"Klara Dokova"},{id:"34976",title:"Dr.",name:"Klara",middleName:null,surname:"Dokova",slug:"klara-dokova",fullName:"Klara Dokova"}]}],mostDownloadedChaptersLast30Days:[{id:"50789",title:"Molecular Genetics and its Applications in Forensic Sciences",slug:"molecular-genetics-and-its-applications-in-forensic-sciences",totalDownloads:4655,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"The way to medico legal identification was open at the end of the twenty‐first century by the “digital fingerprinting” represented by the multifactorial phenotypical trait, determined by both polygenic and environmental factors, followed by group‐specific antigens, or with specificity for blood and tissue, and ending with the DNA molecule in use today. Because of this aspect, the framework of modern forensic medicine includes a new field, that of forensic genetics, that mostly involves working with investigations that have human genotype identification as a goal.",book:{id:"5259",slug:"forensic-analysis-from-death-to-justice",title:"Forensic Analysis",fullTitle:"Forensic Analysis - From Death to Justice"},signatures:"Raluca Dumache, Veronica Ciocan, Camelia Muresan and Alexandra Enache",authors:[{id:"179199",title:"Dr.",name:"Raluca",middleName:null,surname:"Dumache",slug:"raluca-dumache",fullName:"Raluca Dumache"},{id:"181860",title:"Prof.",name:"Alexandra",middleName:null,surname:"Enache",slug:"alexandra-enache",fullName:"Alexandra Enache"},{id:"190151",title:"Dr.",name:"Camelia",middleName:null,surname:"Muresan",slug:"camelia-muresan",fullName:"Camelia Muresan"},{id:"190153",title:"Dr.",name:"Veronica",middleName:null,surname:"Ciocan",slug:"veronica-ciocan",fullName:"Veronica Ciocan"}]},{id:"19160",title:"Death Scene Investigation from the Viewpoint of Forensic Medicine Expert",slug:"death-scene-investigation-from-the-viewpoint-of-forensic-medicine-expert",totalDownloads:27471,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"243",slug:"forensic-medicine-from-old-problems-to-new-challenges",title:"Forensic Medicine",fullTitle:"Forensic Medicine - From Old Problems to New Challenges"},signatures:"Serafettin Demirci and Kamil Hakan Dogan",authors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"},{id:"32211",title:"Dr.",name:"Serafettin",middleName:null,surname:"Demirci",slug:"serafettin-demirci",fullName:"Serafettin Demirci"}]},{id:"57199",title:"Negative Autopsy in Infant and Juvenile Population: Role of Cardiac Arrhythmias",slug:"negative-autopsy-in-infant-and-juvenile-population-role-of-cardiac-arrhythmias",totalDownloads:1417,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Negative autopsy is a post-mortem examination in which a comprehensive analysis does not provide a cause of death. These include situation of death, anatomical and histological analysis, toxicology and microbiological study. A low part of autopsies remain without a conclusive cause of death, but all these cases are usually seen in young population, apparently healthy who died suddenly and unexpectedly. In these situations a cardiac arrhythmia is suspected as cause of death and genetic testing is recommended despite not regularly performed. Sudden death is a natural and unexpected decease that occurs in apparently healthy people, or whose disease was not severe enough to expect a fatal outcome. It can be due to several pathologies, usually of cardiac cause and called sudden cardiac death. In infants and young people, both long QT syndrome and catecholaminergic polymorphic ventricular tachycardia are main causes in negative autopsies. These genetic diseases lead to ventricular fibrillation, syncope and sudden cardiac death in a normal heart. Unfortunately, sudden cardiac death could be the first manifestation of the diseases, being early identification and prevention a crucial point in current medical practice. This chapter focuses on sudden death and negative autopsy in young population, mainly due to cardiac arrhythmias.",book:{id:"6262",slug:"post-mortem-examination-and-autopsy-current-issues-from-death-to-laboratory-analysis",title:"Post Mortem Examination and Autopsy",fullTitle:"Post Mortem Examination and Autopsy - Current Issues From Death to Laboratory Analysis"},signatures:"Georgia Sarquella-Brugada, Sergi Cesar, Anna Fernandez-Falgueras,\nMaria Dolores Zambrano, Anna Iglesias, Josep Brugada, Ramon\nBrugada and Oscar Campuzano",authors:[{id:"54165",title:"Prof.",name:"Ramon",middleName:null,surname:"Brugada",slug:"ramon-brugada",fullName:"Ramon Brugada"},{id:"54168",title:"Dr.",name:"Oscar",middleName:null,surname:"Campuzano",slug:"oscar-campuzano",fullName:"Oscar Campuzano"},{id:"218478",title:"Dr.",name:"Georgia",middleName:null,surname:"Sarquella-Brugada",slug:"georgia-sarquella-brugada",fullName:"Georgia Sarquella-Brugada"},{id:"218479",title:"Dr.",name:"Sergi",middleName:null,surname:"Cesar",slug:"sergi-cesar",fullName:"Sergi Cesar"},{id:"218480",title:"MSc.",name:"Anna",middleName:null,surname:"Fernandez-Falgueras",slug:"anna-fernandez-falgueras",fullName:"Anna Fernandez-Falgueras"},{id:"218482",title:"Dr.",name:"Maria Dolores",middleName:null,surname:"Zambrano",slug:"maria-dolores-zambrano",fullName:"Maria Dolores Zambrano"},{id:"218483",title:"MSc.",name:"Anna",middleName:null,surname:"Iglesias",slug:"anna-iglesias",fullName:"Anna Iglesias"},{id:"218484",title:"Prof.",name:"Josep",middleName:null,surname:"Brugada",slug:"josep-brugada",fullName:"Josep Brugada"}]},{id:"57778",title:"Defining Dental Age for Chronological Age Determination",slug:"defining-dental-age-for-chronological-age-determination",totalDownloads:2606,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Dental age assessment is one of the most reliable methods of chronological age estimation used for criminal, forensic and anthropologic purposes. Visual, radiographic, chemical and histological techniques can be used for dental age estimation. Visual method is based on the sequence of eruption of the teeth and morphological changes that are caused due to function such as attrition, changes in color that are indicators of aging. Radiographs of the dentition can be used to determine the stage of dental development of the teeth from initial mineralization of a tooth, crown formation to root apex maturation. Histological methods require the preparation of the tissues for detailed microscopic examination. The chemical analysis of dental hard tissues determines alterations in ion levels with age, whereas the histological and chemical methods are invasive methods requiring extraction/sectioning of the tooth. In this chapter, the different techniques and considered studies were overviewed in conjunction with their advantages and disadvantages. It needs to be taken into consideration that rather than restricting on one age estimation technique, using the other available techniques additionally and performing repetitive measurements may be beneficial for accurate age estimation.",book:{id:"6262",slug:"post-mortem-examination-and-autopsy-current-issues-from-death-to-laboratory-analysis",title:"Post Mortem Examination and Autopsy",fullTitle:"Post Mortem Examination and Autopsy - Current Issues From Death to Laboratory Analysis"},signatures:"Fatma Deniz Uzuner, Emine Kaygısız and Nilüfer Darendeliler",authors:[{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner"},{id:"200985",title:"Dr.",name:"Emine",middleName:null,surname:"Kaygisiz",slug:"emine-kaygisiz",fullName:"Emine Kaygisiz"},{id:"222232",title:"Prof.",name:"Nilufer",middleName:null,surname:"Darendeliler",slug:"nilufer-darendeliler",fullName:"Nilufer Darendeliler"}]},{id:"50757",title:"Forensic Analysis of the Wakayama Arsenic Murder Case",slug:"forensic-analysis-of-the-wakayama-arsenic-murder-case",totalDownloads:2582,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This is a review paper of forensic analysis of a murder case of Wakayama arsenic poisoning incident. The influence of this case on scientific research was not small in such a way that papers related to PTSD, disaster medical, copycats, chemical analysis, unwanted chemicals in food, terrorism, and so on were published. The forensic analyses on Wakayama arsenic poisoning incidence have characteristic that SPring-8, a largest synchrotron radiation facility, was used, as well as many other analytical techniques, but now most of the forensic analyses submitted from the prosecutor have been revealed to be fabrication, hiding the truth by logarithmic calculations, and therefore not scientific. Most of the testimonies at the court by the analysts were also lies. Examples of such false analyses are explained.",book:{id:"5259",slug:"forensic-analysis-from-death-to-justice",title:"Forensic Analysis",fullTitle:"Forensic Analysis - From Death to Justice"},signatures:"Jun Kawai",authors:[{id:"180878",title:"Prof.",name:"Jun",middleName:null,surname:"Kawai",slug:"jun-kawai",fullName:"Jun Kawai"}]}],onlineFirstChaptersFilter:{topicId:"180",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"August 12th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:4,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:303,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"117248",title:"Dr.",name:"Andrew",middleName:null,surname:"Macnab",slug:"andrew-macnab",fullName:"Andrew Macnab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}}]}},subseries:{item:{id:"6",type:"subseries",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11402,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",slug:"lynn-zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",slug:"samuel-ikwaras-okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81226",title:"Computational Methods for the Study of Peroxisomes in Health and Disease",doi:"10.5772/intechopen.103178",signatures:"Naomi van Wijk and Michal Linial",slug:"computational-methods-for-the-study-of-peroxisomes-in-health-and-disease",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80326",title:"Anti-Senescence Therapy",doi:"10.5772/intechopen.101585",signatures:"Raghad Alshadidi",slug:"anti-senescence-therapy",totalDownloads:110,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79828",title:"Cellular Senescence in Bone",doi:"10.5772/intechopen.101803",signatures:"Danielle Wang and Haitao Wang",slug:"cellular-senescence-in-bone",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79668",title:"Identification of RNA Species That Bind to the hnRNP A1 in Normal and Senescent Human Fibroblasts",doi:"10.5772/intechopen.101525",signatures:"Heriberto Moran, Shanaz A. Ghandhi, Naoko Shimada and Karen Hubbard",slug:"identification-of-rna-species-that-bind-to-the-hnrnp-a1-in-normal-and-senescent-human-fibroblasts",totalDownloads:81,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79295",title:"Genetic and Epigenetic Influences on Cutaneous Cellular Senescence",doi:"10.5772/intechopen.101152",signatures:"Tapash Jay Sarkar, Maiko Hermsmeier, Jessica L. Ross and G. Scott Herron",slug:"genetic-and-epigenetic-influences-on-cutaneous-cellular-senescence",totalDownloads:135,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/34716",hash:"",query:{},params:{id:"34716"},fullPath:"/chapters/34716",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()