Open access

Gastric Cancer Risk Diagnosis and Prevention in Subjects with Helicobacter pylori-related Chronic Gastritis

Written By

Shotaro Enomoto, Mika Watanabe, Chizu Mukoubayashi, Hiroshi Ohata, Hirohito Magari, Izumi Inoue, Takao Maekita, Mikitaka Iguchi, Kimihiko Yanaoka, Hideyuki Tamai, Jun Kato, Masashi Oka and Masao Ichinose

Submitted: November 17th, 2010 Published: September 15th, 2011

DOI: 10.5772/22086

Chapter metrics overview

2,361 Chapter Downloads

View Full Metrics

1. Introduction

Helicobacter pylori (HP) is recognized as a major pathogenic factor for persistent inflammation in the human stomach (Dooley et al., 1989; Marshall & Warren, 1984). In 1994, the International Agency for Research on Cancer (IARC) classified HP infection as a definite class I carcinogen (International Agency for Research on Cancer (IARC), 1994). HP triggers chronic inflammation of the infected stomach mucosa and is considered a major risk factor for gastric cancer (GC) and associated precursor lesions. Long-lasting inflammation in the stomach mucosa leads to a cascade of molecular and morphological changes, representing the gastritis-atrophy-metaplasia-dysplasia-cancer sequence (Correa, 1992). The HP infection rate is higher in Japan than in Western countries, with nearly all cases of GC occurring in subjects with underlying HP-related chronic gastritis. HP infection is widely accepted as a major risk factor for the development of GC and its precursor lesions, based on extensive evidence derived from many studies (Blaser et al., 1995; EUROGAST Study Group, 1993; Forman et al., 1991; Hirayama et al., 1999; Honda et al., 1998; Huang et al., 1998; Nomura et al., 1991; Parsonnet et al., 1991; Shimizu et al., 1999; Sipponen et al., 1992; Sugiyama et al., 1998; Talley et al., 1991; Tokieda et al., 1999; Uemura et al., 2001; Watanabe et al., 1998; Zheng et al., 2004).

However, in countries such as Japan, where the HP infection rate is high, prediction of GC risk based solely on the presence or absence of HP infection does not offer sufficient specificity. Elucidation of groups at high risk based on the natural history of GC is clearly necessary. The identification of useful markers of GC risk is thus hoped for. Evaluating HP-related chronic gastritis and determining which subjects are at high risk for developing GC is very important, and would likely increase the efficacy of GC screening by endoscopic or other examinations (Enomoto et al., 2010a; Mukoubayashi et al., 2007; Ohata et al., 2005), and strategic approaches to metachronous multiple GC after endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) performed as minimally invasive treatment for early GC (Gotoda, 2007; Kakushima & Fujishiro, 2008; Nakajima et al., 2006). In addition, in terms of GC prevention, it has become clear that HP-related chronic gastritis cannot be ignored as an origin of carcinogenesis.

Here, we discuss the significance of serum pepsinogen (PG) as a marker of GC risk and GC high-risk groups based on HP-related chronic gastritis. We also discuss the prevention for individuals with HP-related chronic gastritis.


2. GC risk diagnosis based on the natural history of HP-related chronic gastritis

Novel risk markers to identify GC high-risk groups based on a detailed natural history of HP-related chronic gastritis have long been awaited. In this section, we discuss the emerging significance of serum PG as a GC risk marker for more precise identification of GC high-risk groups.

2.1. Serum PG test

HP-related chronic gastritis usually starts in the antrum and expands proximally towards the body of the stomach (Kimura, 1972; Tatsuta et al., 1973). As several studies dealing with endoscopic biopsies or chromoendoscopic testing have found that progression of chronic atrophic gastritis (CAG) increases the risk of cancer (Meister et al., 1979; Sipponen et al., 1985; Siurala et al., 1966; Tatsuta et al., 1993; Testoni et al., 1987), accurate and reliable evaluation of the extent of CAG is considered important for identifying individuals at high risk of cancer. However, accurately diagnosing the extent of CAG based on a few biopsy samples is difficult, because CAG together with intestinal metaplasia is a multifocal process. Furthermore, histological diagnosis of gastric atrophy depends on subjective judgment without a gold standard (Guarner et al., 1999; Plummer et al., 1997). A test for CAG progression that is more convenient, free of discomfort or risk, economical and based on objective parameters is needed.

PG is the inactive precursor of pepsin, a digestive enzyme specifically produced in the stomach. Immunologically, two isozymes exist (Kageyama, 2003). PGI is produced by chief cells and mucus neck cells of the gastric fundic glands. In contrast, PGII is produced not only by chief cells and mucus neck cells, but also in cardiac glands, pyloric glands, and Brunner’s glands, with localization of producing cells in a wide range from the stomach to the duodenum. The majority of PG produced (about 99%) is secreted in the stomach lumen and functions as a digestive enzyme. However, a small amount of PG (about 1%) is also present in blood and can be evaluated by measuring serum PG levels. Serum PG levels are generally agreed to reflect the morphological and functional status of the stomach mucosa (Hirschowitz, 1957; Samloff et al., 1982).

In an endoscopic study with Congo red staining, we have shown a strong correlation between an increase in glandular boundary, associated with diagnosed progression of gastric mucosal atrophy, and stepwise reductions in serum PGI levels and the PGI/PGII ratio (Fig. 1) (Miki et al., 1987). In other words, by measuring serum PGI and the PGI/II ratio, the progression of CAG, which is involved in GC carcinogenesis, can be objectively evaluated (Ichinose et al., 2001). In addition, during HP infection, serum PGI and PGII increase, and the PG I/II ratio decreases. These findings are improved after eradication treatment (Furuta et al., 1997) and are useful as gastric mucosal inflammatory markers.

Several criteria are used in the serum PG test. As criteria for GC screening, the combination of PGI ≤70 ng/ml and PGI/II ratio ≤3.0, as a reference value by Miki et al., is widely accepted (PG index 1+) (Ichinose et al., 2001; Watanabe et al., 1997). Values lower than this

Figure 1.

Relationship between serum pepsinogen (PG)I/PGII ratio and progression of chronic atrophic gastritis (CAG). With atrophic changes in the gastric mucosa progressing from the pyloric glands to more proximally, the serum PGI/II ratio decreases, reflecting an associated loss of PG-producing cells. CAG, chronic atrophic gastritis; SE, standard error.

reference value are considered PG-test positive. In addition to this reference value, to identify more severe CAG progression, criteria of PGI ≤50 ng/ml and PGI/II ratio ≤3.0 (PG index 2+), and PGI ≤30 ng/ml and PGI/II ratio ≤2.0 (PG index 3+) are also used. Since 1992, when PG assay kits became commercially available, a number of screening services provided by workplaces or community health services have adopted this serum test as a filter test (Hattori et al., 1995; Kitahara et al., 1999; Kodoi et al., 1995; Miki et al., 1993; Miki et al., 2003; Ohata et al, 2005; Yoshihara et al., 1997). However, the long-term prognosis of subjects with extensive CAG identified by PG filter test is not fully known.

2.2. Detection accuracy of GC using the serum PG test

We conducted a large-scale cohort study spanning more than 10 years in Wakayama Prefecture, Japan, and identified groups at high risk for GC (Ohata et al., 2004; Yanaoka et al., 2008a; Yanaoka et al., 2008b). Based on the results, accuracy of each criteria of the serum PG test for GC that occurred during the observation period was evaluated (Yanaoka et al, 2008a). Accuracy of the criteria is shown in Table 1. For the most favorable criteria (PG index 1+), sensitivity was 58.7%, specificity was 73.4%, and positive predictive value was 2.6%. Compared to a meta-analysis of PG test sensitivity (Dinis-Ribeiro et al., 2004), these results were poor, particularly in terms of sensitivity.

As a reason for these poor results, the presence of GC easy to detect by barium X-ray, and GC easy to detect by the serum PG test, was cited (Ohata et al, 2005). In the above-mentioned meta-analysis, many of the previously reported cases that were reviewed were from studies in populations in which GC screening by conventional barium X-ray had been conducted over a period of many years. In other words, that study reviewed results for GC

Table 1.

Comparison of accuracy for each criterion in the serum PG test.

detection just after introduction of the serum PG test, over a short period, and targeting a population in whom GC was difficult to detect by barium X-ray, i.e., those in whom GC was easy to detect by the serum PG test. On the other hand, GC cases just after introduction of the serum PG test were excluded from our study, and observation was over a long period of 10 years. Accordingly, results for the detection of GC occurring during the observation period were more rigorously evaluated, and thus more correctly reflective of the accuracy for detecting GC by the serum PG test. Based on the above results, using the serum PG test alone for GC screening has limitations. A more elaborate system must therefore be developed, including for GC screening in PG test-negative cases.

2.3. GC risk in a serum PG test-positive group

Previous studies have examined the accuracy of the serum PG test as a filter test for endoscopy. Recently, as part of an investigation into the natural history of GC occurrence, we evaluated GC risk in populations identified by each criteria for the serum PG test (Yanaoka et al, 2008a). In a population of middle-aged healthy men, in an atrophy-negative group, the annual incidence of GC was 0.07%. In contrast, annual incidence was 0.28% in the PG index 1+ group, 0.32% in the PG index 2+ group, and 0.42% in the PG index 3 +group, showing significant stepwise increases in GC incidence with CAG progression (Fig. 2) Based on these results, PG test-positive groups, as assumed, are high-risk groups for GC. In other words, an individual who is serum PG test-positive, even if GC is not currently detectable, still has a high possibility of developing GC in the future. Careful monitoring with detailed testing is clearly indicated in such subjects. This again demonstrates the usefulness of the PG test as a marker of high risk for GC.

2.4. Natural history of HP-related chronic gastritis and GC risk

In addition to the serum PG test, the natural history of HP-related chronic gastritis and associations with GC risk have been examined by evaluating HP infection, as the major cause of onset and progression of chronic gastritis in Japan (Ohata et al, 2004; Yanaoka et al, 2008b). HP infection is diagnosed using anti-HP antibody titers, which, like the serum PG test, is a blood test that is easy to perform. The stages of HP-related chronic gastritis, from

Figure 2.

Kaplan-Meier analysis of gastric cancer development in subjects classified using the criteria of the serum pepsinogen (PG) test. Among middle-aged healthy men, annual incidence of gastric cancer is shown for each population identified using various criteria for the serum PG test. Progression of chronic atrophic gastritis showed a significant stepwise increase in the incidence of gastric cancer.

the onset of HP infection to development of atrophic gastritis, can be classified based on a combination of both serum blood tests: Group A [HP(-), PG(-)], Group B [HP(+), PG(-)], Group C [HP(+), PG(+)], and Group D [HP(-), PG(+)]. Group A comprised HP non-infected healthy subjects. Group B showed established HP infection, but without extensive CAG. Group C had extensive CAG. Group D had severe intestinal metaplasia due to progression of CAG, but HP had been spontaneously eliminated, representing so-called metaplastic gastritis.

The natural history of HP-related chronic gastritis from the onset of HP infection can be shown to progress from each stage: A→B→C→D. Based on a follow-up study, the annual incidence of GC for each group using this stage classification was: 0% for Group A (no occurrence of GC during 10 years in this group); 0.11% for Group B (GC in 1 per 1000 patients per year); 0.24% for Group C (GC in 1 per 400 patients per year); and 1.31% for Group D (GC in about 1 per 80 patients per year). Based on these data, with progression in stage of HP-related chronic gastritis, a stepwise increase is seen for GC incidence (Fig. 3). Similar results were reported by Watabe et al. (Watabe et al., 2005). During the 10-year follow-up study, all patients who developed GC were HP infection-positive. These results showed that in Japan, almost all cases of GC are associated with HP-related chronic gastritis. Theoretically, based on this fact, not only a GC high-risk group, but also a GC low-risk group (group A), can be identified. This is expected to contribute greatly to suitable and more intensive GC screening.

Figure 3.

Gastric cancer risk and prevention of gastric cancer based on Helicobacter pylori (HP)-related chronic gastritis stage. This shows the stage classification for HP-related chronic gastritis based on the serum pepsinogen (PG) test and HP antibodies. Among middle-aged healthy men, the annual incidence of gastric cancer showed a significant stepwise increase from Group A to Group D according to stage progression. Regarding gastric cancer prevention based on stage, in Group B, with mild atrophy, prevention of gastric cancer mainly by HP eradication can be expected. In Group D, with progression of atrophy and metaplastic gastritis, prevention of gastric cancer mainly by administration of non-steroidal anti-inflammatory drugs (e.g., cyclooxygenase 2 inhibitors) can be expected. In addition, prevention of gastric cancer may be possible with dietary habits.

2.5. Points in the diagnosis of GC risk using the serum PG test

The serum PG test is clearly a highly useful test for a GC risk marker. However, the occurrence of GC (particularly diffuse-type GC) in PG test-negative groups (group B in the stage classification for HP-related chronic gastritis) cannot be ignored. In our study, even when using the PG test criteria considered as the most balanced in terms of test accuracy (PG index 1+), the fact remains that about 40% of GC cases are PG test-negative. When diagnosing GC risk using the serum PG test, this fact must be carefully considered.

We therefore carefully investigated GC occurrence in a PG test-negative group. Specifically, to evaluate GC incidence, we subdivided the PG test-negative group into 3 groups: α group (serum PGI ≤70 ng/ml and PGI/II >3); β group (serum PGI >70 ng/ml and PGI/II >3), and γ group (serum PGI >70 ng/ml and PGI/II ≤3). The results identified a new group at high risk of GC, with GC incidence in the γ group (high serum PGII levels and severe inflammation of the gastric mucosa) reaching 0.2%, predominantly involving undifferentiated GC (Yanaoka et al, 2008a). This rate in the γ group, although not necessarily high among the PG test-negative group, still indicates a subgroup that deserves particular attention. In addition, a group with high HP antibody titer (a marker that, like serum PGII level, reflects severity of inflammation) showed higher incidence of GC compared to a low-titer group (Yanaoka et al, 2008b).

Among PG test-negative groups, in group A of the stage classification for HP-related chronic gastritis (PG test-negative and HP-negative), we observed no occurrence of GC over a 10-year follow-up period. However, some cautionary points must be considered in a confirmatory diagnosis of Group A status. First, with HP antibody assay kits showing low sensitivity, antibody titers may be negative despite prior HP infection. Second, in HP-negative cases after eradication therapy, it should be kept in mind that “although HP is negative, the risk of GC is not zero.” Third, risk assessment by the serum PG test cannot be applied in subjects with post-gastrectomy,with renal insufficiency, using proton pump inhibitors, or showing an acute gastric mucosal lesion (AGML). In addition, we have reported that in subjects with a PGI/II ratio ≤3.0, serum PGI ≤30 ng/ml, or serum PGII >30 ng/ml, the risk of GC is significantly higher (Yanaoka et al, 2008b). Based on these data, even among group A patients, if the PGI/II ratio is ≤3.0 or serum PGI is ≤30 ng/ml, endoscopy should be performed once to evaluate the possible presence of CAG.


3. Prevention of GC based on the natural history of HP-related chronic gastritis

The evaluation of HP-related chronic gastritis is especially important in the analysis of GC prevention. However, previous studies have not assessed the extent of coexisting CAG or have assessed it only with endoscopic findings and/or histopathology on endoscopic biopsy. In this section, we discuss the strategy of GC prevention according to the evaluation of HP-related chronic gastritis based on the serum PG test.

3.1. Prevention of GC by HP eradication

Many previous studies have been conducted on the inhibition of GC by eradication therapy for HP, a major factor in gastric carcinogenesis. HP eradication therapy has recently been shown to prevent metachronous cancer after endoscopic resection of early GC (Fukase et al., 2008). However, in several reports to date, the effects on prevention of GC have not been as clear-cut as the effects of HP eradication on prevention of peptic ulcers. The studies that found inhibitory effects on gastric carcinogenesis were often non-randomized studies with a short observation period of 5 years (Fuccio et al., 2007). Moreover, results have been mixed. For example, in studies of GC occurrence after HP eradication in groups with or without precancerous lesions (CAG or intestinal metaplasia), significant inhibition of GC in the without-precancerous-lesion group was reported (Take et al., 2007; Wong et al., 2004). On the other hand, absence of inhibition of GC, regardless of the presence or absence of precancerous lesions, has also been reported (You et al., 2006). In contrast, in an animal study using HP-infected Mongolian gerbils, inhibition of gastric carcinogenesis by HP eradication was clearly demonstrated (Tatematsu et al., 2007).

These study results suggest several points. First, inhibition of gastric carcinogenesis by HP eradication is not complete, and even after eradication, more than a few GC cases have been observed. Second, the earlier during infection that eradication therapy is started, the greater the inhibitory effect on GC. Third, after a duration has elapsed, irreversible changes due to HP infection develop, representing a “point of no return”. This suggests an attenuated eradication effect. Fourth, HP infection promotes the proliferation and growth of cancer cells that have already developed (promoter effect). During long-term observation, clear-cut inhibition of gastric carcinogenesis by HP eradication is not seen, but eradication groups with shorter observation periods may display apparent inhibition of GC, with slower growth rates, and without growth of cancer that can be clinically diagnosed. Fifth, besides promoter effects on GC, HP infection, as previously described in detail, is also involved in gastric carcinogenesis mediated through the development and progression of CAG and intestinal metaplasia. To achieve a reduction in GC risk by eradication, in addition to HP elimination, improvement of CAG and intestinal metaplasia is necessary.

Based on these points, when evaluating the prevention of GC by HP eradication, evaluation of the equivalence of GC risk in the eradication group and non-eradication group (control) is necessary. With regard to this point, in almost all previous studies, either evaluation of CAG progression has been lacking, or even if evaluated, endoscopic or histopathologic findings, with strong subjective elements, were used. We therefore conducted a 10-year follow-up study in middle-aged healthy adults in whom progression of atrophic gastritis was monitored by serum PG (Yanaoka et al., 2009). In that study, although non-randomized, both the HP eradication and control groups showed equivalence with regard to CAG progression (an important risk factor), in addition to major risk factors for GC such as age, gender, and smoking. In this study, no significant inhibition of GC was observed even with HP eradication.

However, with assessment by the PG test, evaluation in the PG test-positive (extensive CAG) and PG test-negative (non-extensive CAG) groups showed that HP eradication in the PG test-positive group did not prevent GC, whereas HP eradication in the PG test-negative group only achieved significant inhibition of GC (Fig. 4). These results confirm the

Figure 4.

Kaplan-Meier analysis of the proportion of subjects free of gastric cancer in the serum pepsinogen (PG) test-positive group and the PG test-negative group according to Helicobacter pylori (HP) infection status. In the serum PG test-positive group (extensive chronic atrophic gastritis (CAG)), no reduction in gastric cancer incidence was observed with HP eradication. Only the PG test- negative group (non-extensive CAG) showed a reduction in gastric cancer incidence with HP eradication.

previously mentioned results that assumed that no significant prevention of GC by HP eradication was achieved due to advanced CAG. This strongly suggests that in the majority of PG test-positive subjects, the stomach is past the “point of no return.” The significance of HP eradication thus lies in achieving: 1) a decrease in GC proliferation and growth rates by inhibiting the GC-promoting effects of HP; 2) inhibition of carcinogenesis by halting progression of CAG; and 3) inhibition of inflammation-based gastric carcinogenesis (particularly diffuse-type GC) by healing chronic active gastritis. In fact, our study also showed that diffuse-type GC can be significantly inhibited by HP eradication.

3.2. Chemoprevention of GC by NSAIDs

Although prevention of GC by HP eradication can be expected, from a more realistic perspective, the effectiveness may be somewhat limited. In particular, among patients with advanced CAG, the chemopreventive effects of HP eradication therapy alone are unlikely to be sufficient. In populations where inhibition of gastric carcinogenesis cannot be achieved by HP eradication therapy alone, chemoprevention with the use of non-steroidal anti-inflammatory drugs (NSAIDs) is promising as a treatment strategy. Cyclooxygenase (COX) is a rate-limiting enzyme of prostaglandin synthesis in the arachidonic acid cascade. Among COX isozymes, attention has been focused on inducible COX-2, which is expressed in inflammatory responses and cancer proliferation (Kujubu et al., 1991). COX-2 expression has been reported in many gastrointestinal cancers, including colorectal cancer (Eberhart et al., 1994), and research has been undertaken into the prevention of carcinogenesis by COX-2 regulation (Giardiello et al., 1993; Kawamori et al., 1998; Kune et al., 1988; Thun et al., 1991).

With regard to COX-2 expression in the gastric mucosa, not only a high rate of COX-2 expression in GC cells, but also COX-2 expression in precancerous lesions such as CAG, intestinal metaplasia, and dysplasia has been reported (Sung et al., 2000). In a study of GC tissue types, a high rate of COX-2 expression was found in intestinal-type GC (Saukkonen et al., 2001). In a study of GC according to site, cancers of the gastric cardia showed decreased COX-2 expression compared to cancers of other gastric areas (Ratnasinghe et al., 1999). In epidemiologic and animal studies, long-term use of aspirin or other NSAIDs has been reported to decrease GC risk in a dose-dependent manner (Duan et al., 2008; Hu et al., 2004; Wang et al., 2003).

In a Mongolian gerbil model of chronic active gastritis, which closely resembles HP-related chronic gastritis in humans, we evaluated the effects of etodolac, a selective COX-2 inhibitor, after initiation with a low dose of N-methyl-N-nitrosourea, a chemical carcinogen (Magari et al., 2005). The results confirmed that treatment with etodolac early in HP infection completely inhibited gastric carcinogenesis, which usually occurs at a high rate. In this model, we confirmed that proliferation of gastric mucosal epithelial tissue was significantly inhibited by etodolac, and that the development of intestinal metaplasia, thought to be a precancerous lesion, was significantly inhibited. In addition, we conducted a clinical study of GC chemoprevention using a COX-2 inhibitor in patients with metaplastic gastritis (Yanaoka et al., 2010). This study, although non-randomized, included patients who had undergone endoscopic resection of intestinal-type GC with a background of metaplastic gastritis. The incidence of metachronous cancer was evaluated in etodolac and non-treatment groups during a mean observation period of 4.2 years. The diagnosis of metaplastic gastritis was based on serum testing, as previously described. Regarding HP-related chronic gastritis stage, these patients were classified as Group D [HP(-), PG(+)]. In this study, long-term treatment with etodolac as a selective COX-2 inhibitor effectively inhibited metachronous cancer development in curatively treated, early GC patients with metaplastic gastritis. These results are in line with the results of our previous animal experiment using HP-infected Mongolian gerbils, indicating that etodolac can prevent stomach carcinogenesis involving the CAG-metaplasia-dysplasia-cancer sequence. Serious cardiovascular events, depending on the drug, have been reported with long-term administration of COX-2 inhibitors. Whether etodolac is the best choice requires further investigation. However, particularly among patients with extensive CAG, in addition to HP eradication therapy, aggressive chemoprevention using NSAIDs such as selective COX-2 inhibitors may effectively inhibit gastric carcinogenesis (Fig. 3).

3.3. Possible GC prevention by dietary habits

On the other hand, HP eradication therapy and chemoprevention using NSAIDs were not carried out in all subjects, as problems exist with adverse effects of HP eradication or chemoprevention, drug-resistant bacteria, and medical economics. Research into HP-related chronic gastritis and promoters and inhibitors of gastric carcinogenesis, and studies of alternative therapies, primarily in the form of functional foods, has thus been conducted. In the progression of HP-related chronic gastritis, besides HP virulence factors such as VacA and CagA (Hatakeyama, 2004), and host factors such as cytokine polymorphisms (El-Omar et al., 2000), environmental factors such as lifestyle and dietary habits have been shown to be involved. In particular, dietary factors have been highly implicated as the factors to which the gastric mucosa is most frequently and directly exposed. For example, high sodium intake increases gastric mucosal inflammation and the risk of gastric cancer (Nozaki et al., 2002; Shikata et al., 2006) and cigarette smoking is considered to be deeply involved in the transition of CAG to intestinal metaplasia and dysplasia (Kneller et al., 1992; Tredaniel et al., 1997), which are precancerous conditions, in a model of gastric carcinogenesis postulated by Correa (Correa and Houghton, 2007). On the other hand, epidemiologic and animal studies have found that vegetables, fruits, and green tea can inhibit gastritis and reduce gastric carcinogenesis (Kobayashi et al., 2002; Yu et al., 1995).

The Japanese apricot (JA) (ume in Japanese; Prunus mume Siebold et Zucc.), in extracted or pickled form, has long been empirically used in Japan as a folk remedy for gastrointestinal infections such as gastroenteritis. In an in vitro study, Fujita et al. reported that JA extract displayed bactericidal activity against HP (Fujita et al., 2002). In addition, in an animal study using Mongolian gerbils, Otsuka et al. showed in vivo anti-HP effects of JA extract, demonstrating inhibition of chronic gastritis in HP-infected Mongolian gerbils (Otsuka et al., 2005). Based on these reports, because of the presumably potent anti-HP effects of JA, we conducted a study on associations between regular consumption of JA and HP-related chronic gastritis (Enomoto et al., 2010b; Jones, 2010). As a result, we found that consumption of JA is effective in inhibiting HP-related active inflammation of the stomach and CAG progression, and that development of GC may be inhibited by JA intake. Of course, because dietary habits are greatly influenced by other lifestyle factors, depending on the population being studied, the effectiveness achieved in preventing GC may differ. However, promoting dietary habits that protect against GC, including JA intake, may be an ideal alternative strategy for GC prevention (Fig. 3).


4. Conclusion

In conclusion, based on the natural history of HP-related chronic gastritis from blood test data, including the serum PG test and HP antibodies, specific prediction of the risk of GC in each individual is now possible. With this information, more effective strategies to prevent GC are becoming possible. These are anticipated to have clinical applications such as in more effective GC screening, and in establishing appropriate GC prevention.


  1. 1. MJBlaserPerez-PerezG. I.KleanthousH.CoverT. L.PeekR. M.ChyouP. H.StemmermannG. N.NomuraA.1995Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res, 5510211121150008-5472
  2. 2. CorreaP.1992Human gastric carcinogenesis: a multistep and multifactorial process-First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res, 5224673567400008-5472
  3. 3. CorreaP.HoughtonJ.2007Carcinogenesis of Helicobacter pylori. Gastroenterology, 13326596720016-5085
  4. 4. Dinis-RibeiroM.YamakiG.MikiK.Costa-PereiraA.MatsukawaM.KuriharaM.2004Meta-analysis on the validity of pepsinogen test for gastric carcinoma, dysplasia or chronic atrophic gastritis screening. J Med Screen, 1131411470969-1413
  5. 5. CPDooleyCohenH.FitzgibbonsP. L.BauerM.MDApplemanPerez-PerezG. I.MJBlaser1989Prevalence of Helicobacter pylori infection and histologic gastritis in asymptomatic persons. N Engl J Med, 32123156215660028-4793
  6. 6. DuanL.WuA. H.Sullivan-HalleyJ.BernsteinL.2008Nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric adenocarcinomas in Los Angeles County. Cancer Epidemiol Biomarkers Prev, 1711261341055-9965
  7. 7. CEEberhartCoffeyR. J.RadhikaA.GiardielloF. M.FerrenbachS.DuBois.RN1994Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 1074118311880016-5085
  8. 8. El -OmarE. M.CarringtonM.ChowW. H.Mc CollK. E.BreamJ. H.YoungH. A.HerreraJ.LissowskaJ.YuanC. C.RothmanN.LanyonG.MartinM.FraumeniJ. F.Jr RabkinC. S.2000Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature, 40467763984020028-0836
  9. 9. EnomotoS.MaekitaT.OhataH.YanaokaK.OkaM.IchinoseM.2010aNovel risk markers for gastric cancer screening: Present status and future prospects. World J Gastrointest Endosc, 2123813871948-5190
  10. 10. EnomotoS.YanaokaK.UtsunomiyaH.NiwaT.InadaK.DeguchiH.UedaK.MukoubayashiC.InoueI.MaekitaT.NakazawaK.IguchiM.AriiK.TamaiH.YoshimuraN.FujishiroM.OkaM.IchinoseM.2010bInhibitory effects of Japanese apricot (Prunus mume Siebold et Zucc.; Ume) on Helicobacter pylori-related chronic gastritis. Eur J Clin Nutr, 6477147191476-5640
  11. 11. EUROGAST Study Group.1993An international association between Helicobacter pylori infection and gastric cancer. Lancet, 3418857135913620140-6736
  12. 12. FormanD.NewellD. G.FullertonF.YarnellJ. W.StaceyA. R.WaldN.SitasF.1991Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ, 3026788130213050959-8138
  13. 13. FuccioL.ZagariR. M.MEMinardiBazzoliF.2007Systematic review: Helicobacter pylori eradication for the prevention of gastric cancer. Aliment Pharmacol Ther, 2521331410269-2813
  14. 14. FujitaK.HasegawaM.FujitaM.KobayashiI.OzasaK.WatanabeY.2002Anti-Helicobacter pylori effects of Bainiku-ekisu (concentrate of Japanese apricot juice). Nippon Shokakibyo Gakkai Zasshi, 9943793850446-6586
  15. 15. FukaseK.KatoM.KikuchiS.InoueK.UemuraN.OkamotoS.TeraoS.AmagaiK.HayashiS.AsakaM.2008Effect of eradication of Helicobacter pylori on incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer: an open-label, randomised controlled trial. Lancet, 37296363923970147-4547X
  16. 16. FurutaT.KanekoE.BabaS.AraiH.FutamiH.1997Percentage changes in serum pepsinogens are useful as indices of eradication of Helicobacter pylori. Am J Gastroenterol, 92184880002-9270
  17. 17. GiardielloF. M.HamiltonS. R.KrushA. J.PiantadosiS.HylindL. M.CelanoP.BookerS. V.RobinsonC. R.OfferhausG. J.1993Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med, 32818131313160028-4793
  18. 18. GotodaT.2007Endoscopic resection of early gastric cancer. Gastric Cancer, 1011111436-3291
  19. 19. GuarnerJ.Herrera-GoepfertR.MoharA.SanchezL.HalperinD.LeyC.ParsonnetJ.1999Interobserver variability in application of the revised Sydney classification for gastritis. Hum Pathol, 3012143114340046-8177
  20. 20. HatakeyamaM.2004Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer, 496886940147-4175X
  21. 21. HattoriY.TashiroH.KawamotoT.KodamaY.1995Sensitivity and specificity of mass screening for gastric cancer using the measurment of serum pepsinogens. Jpn J Cancer Res, 8612121012150910-5050
  22. 22. HirayamaF.TakagiS.IwaoE.YokoyamaY.HagaK.HanadaS.1999Development of poorly differentiated adenocarcinoma and carcinoid due to long-term Helicobacter pylori colonization in Mongolian gerbils. J Gastroenterol, 3444504540944-1174
  23. 23. HirschowitzB. I.1957Pepsinogen: its origins, secretion and excretion. Physiol Rev, 3744755110031-9333
  24. 24. HondaS.FujiokaT.TokiedaM.SatohR.NishizonoA.NasuM.1998Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res, 5819425542590008-5472
  25. 25. HuP. J.YuJ.ZengZ. R.LeungW. K.LinH. L.BDTangBaiA. H.SungJ. J.2004Chemoprevention of gastric cancer by celecoxib in rats. Gut, 5321952000017-5749
  26. 26. HuangJ. Q.SridharS.ChenY.HuntR. H.1998Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology, 1146116911790016-5085
  27. 27. IchinoseM.YahagiN.OkaM.IkedaH.MikiK.OmataM.2001Screening for gastric cancer in Japan, In: Cancer Screening, Wu GY, Aziz K, editors, 255Humana Press, 0-89603-865-3New Jersey
  28. 28. International Agency for Research on Cancer (IARC).1994Schistosomes,liver flukes, and Helicobacter pylori Working group on the evaluation of carcinogenic risks to humans. IARC Monogr Eval Carcinog Risks Hum, 61June 1994), 177241
  29. 29. JonesR.2010Japanese apricots reported to inhibit inflammation and gastritis progression related to Helicobacter pylori infection. Nat Rev Gastroenterol Hepatol, 79478
  30. 30. KageyamaT.IchinoseM.2003Diversity of structure and function of pepsinogens and pepsins Rescent Research Developments and Biophysics and Biochemistry, 3159178
  31. 31. KakushimaN.FujishiroM.2008Endoscopic submucosal dissection for gastrointestinal neoplasms. World J Gastroenterol, 1419296229671007-9327
  32. 32. KawamoriT.RaoC. V.SeibertK.BSReddy1998Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res, 5834094120008-5472
  33. 33. KimuraK.1972Chronological transition of the fundic-pyloric border determined by stepwise biopsy of the lesser and greater curvatures of the stomach. Gastroenterology, 6345845920016-5085
  34. 34. KitaharaF.KobayashiK.SatoT.KojimaY.ArakiT.MAFujino1999Accuracy of screening for gastric cancer using serum pepsinogen concentrations. Gut, 4456936970017-5749
  35. 35. KnellerR. W.YouW. C.ChangY. S.LiuW. D.ZhangL.ZhaoL.XuG. W.FraumeniJ. F.Jr BlotW. J.1992Cigarette smoking and other risk factors for progression of precancerous stomach lesions. J Natl Cancer Inst, 8416126112660027-8874
  36. 36. KobayashiM.TsubonoY.SasazukiS.SasakiS.TsuganeS.2002Vegetables, fruit and risk of gastric cancer in Japan: a 10-year follow-up of the JPHC Study Cohort I. Int J Cancer, 102139440020-7136
  37. 37. KodoiA.YoshiharaM.SumiiK.HarumaK.KajiyamaG.1995Serum pepsinogen in screening for gastric cancer. J Gastroenterol, 3044524600944-1174
  38. 38. KujubuD. A.BSFletcherVarnumB. C.LimR. W.HerschmanH. R.1991TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem, 2662012866128720021-9258
  39. 39. KuneG. A.KuneS.WatsonL. F.1988Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res, 4815439944040008-5472
  40. 40. MagariH.ShimizuY.InadaK.EnomotoS.TomekiT.YanaokaK.TamaiH.AriiK.NakataH.OkaM.UtsunomiyaH.TsutsumiY.TsukamotoT.TatematsuM.IchinoseM.2005Inhibitory effect of etodolac, a selective cyclooxygenase-2 inhibitor, on stomach carcinogenesis in Helicobacter pylori-infected Mongolian gerbils. Biochem Biophys Res Commun, 33426066120000-6291X
  41. 41. MarshallB. J.WarrenJ. R.1984Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 18390131113150140-6736
  42. 42. MeisterH.HolubarschC.HaferkampO.SchlagP.HerfarthC.1979Gastritis, intestinal metaplasia and dysplasia versus benign ulcer in stomach and duodenum and gastric carcinoma-- a histotopographical study. Pathol Res Pract, 16432592690344-0338
  43. 43. MikiK.IchinoseM.ShimizuA.HuangS. C.OkaH.FurihataC.MatsushimaT.TakahashiK.1987Serum pepsinogens as a screening test of extensive chronic gastritis. Gastroenterol Jpn, 2221331410435-1339
  44. 44. MikiK.IchinoseM.IshikawaK. B.YahagiN.MatsushimaM.KakeiN.TsukadaS.KidoM.IshihamaS.ShimizuY.SuzukiT.KurokawaK.1993Clinical application of serum pepsinogen I and II levels for mass screening to detect gastric cancer. Jpn J Cancer Res, 8410108610900910-5050
  45. 45. MikiK.MoritaM.SasajimaM.HoshinaR.KandaE.UritaY.2003Usefulness of gastric cancer screening using the serum pepsinogen test method. Am J Gastroenterol, 9847357390002-9270
  46. 46. MukoubayashiC.YanaokaK.OhataH.AriiK.TamaiH.OkaM.IchinoseM.2007Serum pepsinogen and gastric cancer screening. Intern Med, 4662612661349-7235
  47. 47. NakajimaT.OdaI.GotodaT.HamanakaH.EguchiT.YokoiC.SaitoD.2006Metachronous gastric cancers after endoscopic resection: how effective is annual endoscopic surveillance? Gastric Cancer, 9293981436-3291
  48. 48. NomuraA.StemmermannG. N.ChyouP. H.KatoI.Perez-PerezG. I.MJBlaser1991Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med, 32516113211360028-4793
  49. 49. NozakiK.ShimizuN.InadaK.TsukamotoT.InoueM.KumagaiT.SugiyamaA.MizoshitaT.KaminishiM.TatematsuM.2002Synergistic promoting effects of Helicobacter pylori infection and high-salt diet on gastric carcinogenesis in Mongolian gerbils. Jpn J Cancer Res, 9310108310890910-5050
  50. 50. OhataH.KitauchiS.YoshimuraN.MugitaniK.IwaneM.NakamuraH.YoshikawaA.YanaokaK.AriiK.TamaiH.ShimizuY.TakeshitaT.MoharaO.IchinoseM.2004Progression of chronic atrophic gastritis associated with Helicobacter pylori infection increases risk of gastric cancer. Int J Cancer, 10911381430020-7136
  51. 51. OhataH.OkaM.YanaokaK.ShimizuY.MukoubayashiC.MugitaniK.IwaneM.NakamuraH.TamaiH.AriiK.NakataH.YoshimuraN.TakeshitaT.MikiK.MoharaO.IchinoseM.2005Gastric cancer screening of a high-risk population in Japan using serum pepsinogen and barium digital radiography. Cancer Sci, 96107137201347-9032
  52. 52. OtsukaT.TsukamotoT.TanakaH.InadaK.UtsunomiyaH.MizoshitaT.KumagaiT.KatsuyamaT.MikiK.TatematsuM.2005Supressive effect of fruits-juice concentrate of Prunus Mume Sieb. et Zucc. (Japanese apricot, Ume) on Helicobacter pylori-induced glandular stoach lesion in Mongolian gerbils Asian Pacific J Cancer Prev, 6Jul-05), 337341
  53. 53. ParsonnetJ.FriedmanG. D.VandersteenD. P.ChangY.VogelmanJ. H.OrentreichN.SibleyR. K.1991Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med, 32516Oct 17 1991), 112711310028-4793
  54. 54. PlummerM.BuiattiE.LopezG.PerazaS.VivasJ.OliverW.MunozN.1997Histological diagnosis of precancerous lesions of the stomach: a reliability study. Int J Epidemiol, 2647167200300-5771
  55. 55. RatnasingheD.TangreaJ. A.MJRothDawseyS. M.AnverM.BAKasprzakHuN.WangQ. H.TaylorP. R.1999Expression of cyclooxygenase-2 in human adenocarcinomas of the gastric cardia and corpus. Oncol Rep, 65Sep-99), 9659680102-1335X
  56. 56. SamloffI. M.VarisK.IhamakiT.SiuralaM.RotterJ. I.1982Relationships among serum pepsinogen I, serum pepsinogen II, and gastric mucosal histology. A study in relatives of patients with pernicious anemia. Gastroenterology, 831Pt 2, (82), 2042090016-5085
  57. 57. SaukkonenK.NieminenO.van ReesB.VilkkiS.HarkonenM.JuholaM.MecklinJ. P.SipponenP.RistimakiA.2001Expression of cyclooxygenase-2 in dysplasia of the stomach and in intestinal-type gastric adenocarcinoma. Clin Cancer Res, 77192319311078-0432
  58. 58. ShikataK.KiyoharaY.KuboM.YonemotoK.NinomiyaT.ShirotaT.TanizakiY.DoiY.TanakaK.OishiY.MatsumotoT.IidaM.2006A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population: the Hisayama study. Int J Cancer, 11911962010020-7136
  59. 59. ShimizuN.InadaK.NakanishiH.TsukamotoT.IkeharaY.KaminishiM.KuramotoS.SugiyamaA.KatsuyamaT.TatematsuM.1999Helicobacter pylori infection enhances glandular stomach carcinogenesis in Mongolian gerbils treated with chemical carcinogens. Carcinogenesis, 2046696760143-3334
  60. 60. SipponenP.KekkiM.HaapakoskiJ.IhamakiT.SiuralaM.1985Gastric cancer risk in chronic atrophic gastritis: statistical calculations of cross-sectional data. Int J Cancer, 352Feb 15 1985), 1731770020-7136
  61. 61. SipponenP.KosunenT. U.ValleJ.RiihelaM.SeppalaK.1992Helicobacter pylori infection and chronic gastritis in gastric cancer. J Clin Pathol, 4543193230021-9746
  62. 62. SiuralaM.VarisK.WiljasaloM.1966Studies of patients with atrophic gastritis: a 10-15-year follow-up. Scand J Gastroenterol, 1140480036-5521
  63. 63. SugiyamaA.MarutaF.IkenoT.IshidaK.KawasakiS.KatsuyamaT.ShimizuN.Tatematsu, M.1998Helicobacter pylori infection enhances N-methyl-N-nitrosourea-induced stomach carcinogenesis in the Mongolian gerbil. Cancer Res, 5810206720690008-5472
  64. 64. SungJ. J.LeungW. K.GoM. Y.ToK. F.ASChengNgE. K.ChanF. K.2000Cyclooxygenase-2 expression in Helicobacter pylori-associated premalignant and malignant gastric lesions. Am J Pathol, 15737297350002-9440
  65. 65. TakeS.MizunoM.IshikiK.NagaharaY.YoshidaT.YokotaK.OgumaK.2007Baseline gastric mucosal atrophy is a risk factor associated with the development of gastric cancer after Helicobacter pylori eradication therapy in patients with peptic ulcer diseases. J Gastroenterol, 42Suppl 17, (07), 21270944-1174
  66. 66. TalleyN. J.ZinsmeisterA. R.WeaverA.Di MagnoE. P.CarpenterH. A.Perez-PerezG. I.MJBlaser1991Gastric adenocarcinoma and Helicobacter pylori infection. J Natl Cancer Inst, 8323173417390027-8874
  67. 67. TatematsuM.TsukamotoT.ToyodaT.2007Effects of eradication of Helicobacter pylori on gastric carcinogenesis in experimental models. J Gastroenterol, 42Suppl 17, (07), 790944-1174
  68. 68. TatsutaM.SaegusaT.OkudaS.1973Studies on Gastritis in the Upper Portion of Stomach by Endoscopic Congo Red Test Endoscopy, 56169
  69. 69. TatsutaM.IishiH.NakaizumiA.OkudaS.TaniguchiH.HiyamaT.TsukumaH.OshimaA.1993Fundal atrophic gastritis as a risk factor for gastric cancer. Int J Cancer, 53170740020-7136
  70. 70. TestoniP. A.MasciE.MarchiR.GuslandiM.RonchiG.TittobelloA.1987Gastric cancer in chronic atrophic gastritis. Associated gastric ulcer adds no further risk. J Clin Gastroenterol, 932983020192-0790
  71. 71. MJThunMMNamboodiriHeathC. W.Jr 1991Aspirin use and reduced risk of fatal colon cancer. N Engl J Med, 32523159315960028-4793
  72. 72. TokiedaM.HondaS.FujiokaT.NasuM.1999Effect of Helicobacter pylori infection on the N-methyl-N’-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in mongolian gerbils. Carcinogenesis, 207126112660143-3334
  73. 73. TredanielJ.BoffettaP.BuiattiE.SaracciR.HirschA.1997Tobacco smoking and gastric cancer: review and meta-analysis. Int J Cancer, 7245655730020-7136
  74. 74. UemuraN.OkamotoS.YamamotoS.MatsumuraN.YamaguchiS.YamakidoM.TaniyamaK.SasakiN.SchlemperR. J.2001Helicobacter pylori infection and the development of gastric cancer. N Engl J Med, 345117847890028-4793
  75. 75. WangW. H.HuangJ. Q.ZhengG. F.LamS. K.KarlbergJ.WongB. C.2003Non-steroidal anti-inflammatory drug use and the risk of gastric cancer: a systematic review and meta-analysis. J Natl Cancer Inst, 9523178417911460-2105
  76. 76. WatabeH.MitsushimaT.YamajiY.OkamotoM.WadaR.KokuboT.DoiH.YoshidaH.KawabeT.OmataM.2005Predicting the development of gastric cancer from combining Helicobacter pylori antibodies and serum pepsinogen status: a prospective endoscopic cohort study. Gut, 5467647680017-5749
  77. 77. WatanabeT.TadaM.NagaiH.SasakiS.NakaoM.1998Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology, 11536426480016-5085
  78. 78. WatanabeY.KurataJ. H.MizunoS.MukaiM.InokuchiH.MikiK.OzasaK.KawaiK.1997Helicobacter pylori infection and gastric cancer. A nested case-control study in a rural area of Japan. Dig Dis Sci, 427138313870163-2116
  79. 79. WongB. C.LamS. K.WongW. M.ChenJ. S.ZhengT. T.FengR. E.LaiK. C.HuW. H.YuenS. T.LeungS. Y.FongD. Y.HoJ.ChingC. K.2004Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA, 29121871941538-3598
  80. 80. YanaokaK.OkaM.MukoubayashiC.YoshimuraN.EnomotoS.IguchiM.MagariH.UtsunomiyaH.TamaiH.AriiK.OhataH.FujishiroM.TakeshitaT.MoharaO.IchinoseM.2008aCancer high-risk subjects identified by serum pepsinogen tests: outcomes after 10-year follow-up in asymptomatic middle-aged males. Cancer Epidemiol Biomarkers Prev, 1748388451055-9965
  81. 81. YanaokaK.OkaM.YoshimuraN.MukoubayashiC.EnomotoS.IguchiM.MagariH.UtsunomiyaH.TamaiH.AriiK.YamamichiN.FujishiroM.TakeshitaT.MoharaO.IchinoseM.2008bRisk of gastric cancer in asymptomatic, middle-aged Japanese subjects based on serum pepsinogen and Helicobacter pylori antibody levels. Int J Cancer, 12349179261097-0215
  82. 82. YanaokaK.OkaM.OhataH.YoshimuraN.DeguchiH.MukoubayashiC.EnomotoS.InoueI.IguchiM.MaekitaT.UedaK.UtsunomiyaH.TamaiH.FujishiroM.IwaneM.TakeshitaT.MoharaO.IchinoseM.2009Eradication of Helicobacter pylori prevents cancer development in subjects with mild gastric atrophy identified by serum pepsinogen levels. Int J Cancer, 12511269727031097-0215
  83. 83. YanaokaK.OkaM.YoshimuraN.DeguchiH.MukoubayashiC.EnomotoS.MaekitaT.InoueI.UedaK.UtsunomiyaH.IguchiM.TamaiH.FujishiroM.NakamuraY.TsukamotoT.InadaK.TakeshitaT.IchinoseM.2010Preventive effects of etodolac, a selective cyclooxygenase-2 inhibitor, on cancer development in extensive metaplastic gastritis, a Helicobacter pylori-negative precancerous lesion. Int J Cancer, 1266Mar 2010), 146714731097-0215
  84. 84. YoshiharaM.SumiiK.HarumaK.KiyohiraK.HattoriN.TanakaS.KajiyamaG.ShigenobuT.1997The usefulness of gastric mass screening using serum pepsinogen levels compared with photofluorography. Hiroshima J Med Sci, 46281860018-2052
  85. 85. YouW. C.BrownL. M.ZhangL.LiJ. Y.JinM. L.ChangY. S.MaJ. L.PanK. F.LiuW. D.HuY.Crystal-MansourS.PeeD.BlotW. J.FraumeniJ. F.Jr.XuG. W.GailM. H.2006Randomized double-blind factorial trial of three treatments to reduce the prevalence of precancerous gastric lesions. J Natl Cancer Inst, 98149749831460-2105
  86. 86. YuG. P.HsiehC. C.WangL. Y.YuS. Z.LiX. L.JinT. H.1995Green-tea consumption and risk of stomach cancer: a population-based case-control study in Shanghai, China. Cancer Causes Control, 665325380957-5243
  87. 87. ZhengQ.ChenX. Y.ShiY.XiaoS. D.2004Development of gastric adenocarcinoma in Mongolian gerbils after long-term infection with Helicobacter pylori. J Gastroenterol Hepatol, 1910119211980815-9319

Written By

Shotaro Enomoto, Mika Watanabe, Chizu Mukoubayashi, Hiroshi Ohata, Hirohito Magari, Izumi Inoue, Takao Maekita, Mikitaka Iguchi, Kimihiko Yanaoka, Hideyuki Tamai, Jun Kato, Masashi Oka and Masao Ichinose

Submitted: November 17th, 2010 Published: September 15th, 2011