Classification of ECL-cell proliferations (originally from Solcia et al., 1995).BM, Basement membrane; ZET, Zollinger-Ellison syndrome; MEN-ZET, multiple endocrine neoplasia-Zollinger-Ellison syndrome.
\r\n\tThis book will intend to look at different migrant patterns, voluntary and involuntary migration, over the last three centuries. What influenced people to leave their home countries, family, and friends and settle somewhere else? The book may include histories of the 19th century, consider tragedies and movements activated by political events in the 20th century, and/or look at recent events of the 21st century. Push and pull factors are important points. While most of us may be influenced in a negative way by the current happenings in Eastern Europe, the Russian invasion and resulting tragedies also demonstrate some very positive human traits – the preparedness of Ukraine’s surrounding countries to help those in need and to provide a safe place for the present.
\r\n\tWhether one looks at voluntary or involuntary migration into any country, after a period of adjustment, migrants do play a positive role. The research found that migrants contribute to the economy (food, shelter, employment, tax) and enrich a country’s cultural norms. Prerequisites for successful settlements are that the host society adopts a tolerant approach and that the migrants recognize the law and the language of the host country. Nothing is ever easy or without controversy, but I am a migrant (German Australian), and life in Australia has been relatively harmonious. Issues that could be considered in the book are multicultural societies (do monocultural societies still exist?) and theories of acculturation versus integration (settlement processes).
\r\n\tTwo further issues are very important in relation to human migration. There is climate change, global warming, and the environment, which clearly affect people’s movement. Small island populations are very concerned about rising sea levels. 2021 has also seen floods costing human lives: Turkey (August 2021), Brazil (December 2021), Chile (January 2021), and South India (November 2021), to name but a few. In Australia (March 2022), farms and whole townships in New South Wales and Queensland have been flooded for the second time in five years, and plans to resettle these towns are considered. Official and social media provide ample coverage of the events, which leads me to the next issue. There is today’s very important role of the media, of the official and social media. We are constantly bombarded with images of human war tragedies and flood victims. People in industrialized, western countries must be the best-informed populace. How far do the images and up-to-date TV news influence us, make us change our behavior, and perhaps even consider us more generous than we have been?
\r\n\tClimate change and the media are relatively new to the human migration debate, but both issues play important parts, and some interesting discussions are appreciated.
\r\n\t
Chronic gastritis is one of the most frequent gastric diseases. The morphometry in diagnostic of chronic gastritis can as appear to be a potentially significant tool. The evaluation of the histoarchitectural structure of the gastric mucosa and quantification of the various neuroendocrine cells develop the new objective methods to describe changes caused by chronic gastritis. The development of specimen digitalization and computer image processing systems offer possibilities of automatization of this process on every high level.
Based on the endoscopic evaluation and mucosa biopsy analysis, variable numbers and various subtypes of the neuroendocrine (NE) cells have been described in association with different types of chronic gastritis. The neuroendocrine cell population, such as enterochromaffin-like cells (ECL), G cells, and D cells may occur as hyperplastic lesions, hypergastrinemia, hyperplasia, dysplasia, possibly type-1 gastric tumour or proliferation as an indirect effect of modern drugs, suppressing acid secretion (the post-pharmacotherapeutic hypo- or achlorhydric status). The wide range of methods used for evaluation of NE cells density in the histological slides from counting the number of cells per one microscopic field to shape diversity of gastric glands are frequently discussed in the literature. However, there is still a lack of acknowledged evidence on the participation of NE cells in stomach inflammation pathology and the relation between NE cells density and type of chronic gastritis require further investigation. The morphometry analysis of the mucosa specimen supported by the computerized automatic evaluation can be frequently taken into account in order to reflect the mechanism of stomach inflammation. In that analysis, other factors such as presence of Helicobacter pylori, sex and anatomical region of biopsy should be included and discussed.
In this chapter we focused on the following topics:
Investigation of the role of different types of NE cells in chronic gastritis.
Methodology of the evaluation of NE cells population in mucosa histological slides – different approaches and measures.
Statistical investigation of the observed variations in the NE cells population with respect to diagnosis (type of chronic gastritis), anatomical region, Helicobacter pylori, sex, hyperplasia and other factors.
Selected aspects of the computerization of automatic quantitative evaluation and space distribution of the NE cells, evaluation of the shape of mucosa glands and morphometry analysis, for digital images of the selected field of view and virtual slides of the whole mucosa specimen.
The diagnosis of chronic gastritis is a complex problem which includes the evaluation of different clinical and histological features. This problem drew attention of many researchers, however, the consensus has not been reached. Following numerous classification systems, since the 90\'s of XX century the Sydney System has been used. In 1994 it was updated and added certain modifications to improve the criteria of atrophy evaluation. The commonly used criteria, presented in the chapter "Chronic gastritis" with the quality evaluation of the specimens does not give specific results in many diagnostic cases. In the light of the recent researches, the diagnostic system will be developed and improved in near future by the morphometric quantitative evaluation of different aspects of the observed changes.
Evaluation of neuroendocrine cells, which was introduced into diagnostic, provides new objective methods to extend the analysis of chronic gastritis. The first works are dated back to the 70\'s of XX century and focused mainly on the detection of neuroendocrine cells also in gastric mucosa. The gastric neuroendocrine cells represent the diffuse neuroendocrine cells system (DeLellis et al., 1984; Falkmer & Wilander, 1995; Lloyd, 1999; Osamura, 2002). This system contains also the APUD cells (Amine Precursors Uptake and Decarboxylation cells), first described and classified by Pearse (Pearse, 1969, 1974; DeLellis et al., 1984). All these cells originate from the stem cells of alimentary duct (Fenoglio-Preiser, 1999; Furth, 2002). Currently, according to Pears and Takor-Takor concept (Pearse & Takor-Takor, 1979) about 40 different types of the neuroendocrine cells can be distinguished.
The neuroendocrine cells of the gastric mucosa are normally located in the epithelium layer of the mucosal glands in prepyloric and oxyntic parts of stomach, sometimes in the stem part and never in the superficial epithelium of the glands of foveolar layer of gastric musoca (Dayal, 1992; Kozlowski et al., 1995; Nichols et al., 1974; Ohning et al., 1998; Portela-Gomes & Grimelius, 1986). The most numerous cells are ECL (entorechromaffin-like) cells, G (gastrinin) cells, D (somatostatin) cells and ECn (Enterochromaffin) cells. The ECL, G and D are more than 75 percent of neuroendocrine cells of gastric mucosa in oxyntic and pyloric parts (D\'Adda et al., 1989; Dayal, 1992; Falkmer & Wilander, 1995; Fenoglio-Preiser, 1999). The ECL cells (this name was introduced by Hakanson et al. in 1967) are distributed in the deep 2/3 layers of gland epithelium in oxyntic and the fundus of the stomach (Bordi, 2000; Dayal, 1992; Falkmer & Wilander, 1995; Ohning et al., 1998; Solcia, 1988). They represent 30-44% of all neuroendocrine cells in these locations. Considering practical aspects, immunohistochemical methods are more valuable in detecting these cells by e.g. chromogranin-A reaction (Date et al., 2000; Dayal, 1992; Falkmer & Wilander, 1995; Whitehead, 1995). The G cells are localized only in the gland epithelium in pyloric part of gastric mucosa, mainly in the 1/3 middle region (Kozlowski et al., 1995). These cells give positive reaction not only with gastric stains, but also in chromogranin-A stain (Kinoshita et al., 1998). The D cells can be detected by anti-somatostatin reaction and ECn cells in anti-serotonin stain. The depicted monoclonal antibodies are the most specific and useful for the quantitative evaluation of several neuroendocrine cells for pathological evaluation of gastritis.
The relationship between hypergastrinemia and Helicobacter pylori colonization proved in the 90’s initiated a renaissance of gastric mucosa neuroendocrine cells examinations. Initially there were examinations of mutual relations between G and D cells, later other gastric mucosa endocrine cell types were taken into the consideration. Up to now there is lack of acknowledged evidence on the participation of cells of this type in the stomach inflammation pathology. The dependence of the density of the neuroendocrine cells such as D, EC or ECL on the type of stomach disease was confirmed in previous publications (Bordi et al., 2000; Falkmer & Wilander, 1995; Kozlowski et al., 1995, 2001, 2003a, 2003b). An interesting recently published study (Peterson et al., 2009) presents the comparison between G-cells morphometry performed in three different manners: G-cell counting and presented as a ratio between its number and 1000 epithelial cells; image analysis gives the results as a ratio between the brown stained area to the total cytokeratin positive area and point counting in the superimposed grid. As far as now, there are significant differences in the used methods of morphometry. As far as these methods are concerned, we focused on the manners based on the cell recognition. They can be distinguished from other approaches either with or without consideration of the histoarchitectural structure.
The most basic approach of the neuroendocrine cell quantification is count cells in the field of view without taking into account the observed histoarchitectural structure. As described in the study by Green et al., 1989, the neuroendocrine cells are counted in a few fields of view, with 200x magnification and results can be recalculate as the mean of cell quantity per one field. Generally, this method requires only the recognition of immunoreactivity of each cell in the field of view and counting them.
First, it should be noted that different distributions of the neuroendocrine cells in the area of the mucosa cross-section are observed. In the corpus of the stomach, the neuroendocrine cells are observed in the about 2/3 width of epithelium cross-section. Their distribution is approximately regular as it is presented in the Fig. 1.
The opposite cases are observed in the antrum where there is a high concentration of the neuroendocrine cells in the basis of foveolar region of the mucosa in cross-section (Fig. 2).
Accuracy of this approach is strongly influenced by the fact that the absolute number of the immunoreactivity cells in the field of view relates to the specimen orientation, thickness or size. As it can be seen, this quantification approach required selection of the field of view located exactly in the region with the presence of neuroendocrine cells. In the opinion of the authors, the calculation of the ratio between immunopositive and immunonegative cells in the gastric mucosa only in the region with presence of the neuroendocrine cells should be appropriate but more difficult to perform as it requires the specification of this area. A subjective opinion on location of neuroendocrine area border will have significant influence on the results.
The more complex approach, comparing to the one described above, is calculation of the number of cells per mm2 of the area of the mucosa glandular epithelium or per one gland (Aruin et al., 1984; Tzaneva & Julianov, 1999; Azzoni et al., 1996). The last proposition is particularly interesting, yet its implementation requires recognition of separate glands in the microscopic image. The benefit is additional possibilities of measuring the mucosa gland dimensionality.
The distribution of the neuroendocrine cells in the corpus mucosa (chromogranin-A, virtual slide).
The example the neuroendocrine cell localization in the antrum (chromogranin A, virtual slide)
It should be noted, that the obtained long cross-section shapes of the glands are very rare. The type of the specimen excludes efficient control over the section and as a result, the obtained shapes of gland sections located from epithelium to mucosa are rather round than ellipsoidal, as it is presented in Fig. 3.
Explanation of different shapes of glands (chromogranin-A, virtual slide).
Efficient evaluation of the number of neuroendocrine cells in the glands can be performed only by counting these cells in the sections of the glands. To support this evaluation, the shape of gland cross-sections should be taken into account.
This approach is connected with several problems that should be taken into account in the counting process. The first problem is to qualify particular glands for evaluation according to their cross-section. It is evident, that in the microscopic specimen some glands are cut not centrally by their lumen, but closely or exactly by their wall. In that glands the lumens are reduced to the narrow line area or only cell cluster is observed. These cases render difficult the recognition of the separate glands.
The second problem is the qualification of the glands to counting set according to its space location. This problem is illustrated in Fig 4.
Gland no. 1 is located half outside and half inside neuroendocrine region (black line outline) and its cross-section fully covers the width of this region. Gland no. 2 is fully included in the neuroendocrine area while gland no. 3 has only a small part located in this region and does not represent the full width of the measured region. For efficient counting the neuroendocrine cells in the separate glands, only glands no. 1 and 2 should be included.
The calculation of the neuroendocrine cell density based on this approach can be implemented by calculating the number of neuroendocrine cells per recognized gland, qualified for evaluation, with description of gland shape. In practice, the semi-quantitative method can be used - the glands can be divided into four groups depending on their cross-section shape: round, short ellipse, long ellipse and open. The criteria, presented in the studies (Kozlowski et al., 2009; Markiewicz et al., 2009a), are:
Different level of inclusion of the glands in the neuroendocrine area.
round shape – proportion between major and minor axis lengths is close to 1 (e.g. less than 1.2),
short ellipse - proportion between major and minor axis lengths is less than 2,
long ellipse - proportion between major and minor axis lengths is higher than 2,
open – the gland cross-section shape is open.
The final step of the quantitative evaluation is a calculation of the number of neuroendocrine cells, detected in maximum 5 glands of any shapes described below. The recognition of the gland structures in the images gives possibility to count the ratio between numbers of neuroendocrine cells and all the cells of the mucosa glandular epithelium. Also, various geometrical features of the gland shape can be measured in these approaches.
The connection between neuroendocrine cells and inflammatory disorder of the stomach is the subject of many researches. One of the observed relations deals with G cells hyperplasia in the hypochlorhydria or achlorhydria. The role of the gastrin as a regulator of the proliferation of G, ELC and D cells and their evaluation also required the morphometry of neuroendocrine cells (Calatayud et al., 2010). In another study, high correlation between age, H. pylori colonisation and atrophy of the corpus and G-cell density (Petersson et al., 2009) was reported. The degree of chronic inflammation and percentage of the G-cell was also statistically correlated. The endocrine cell hyperplasia can be developed as a consequence of functional changes and is the most prominent of autoimmune chronic gastritis. In antrum the endocrine hyperplasia is easily detected in H&E stain, but in oxyntic mucosa the immunohistochemical stains give better visualization and quantification of the changes in ECL cell population. The most detailed criteria for diagnosis and classification of gastric ECL proliferation was proposed by Solcia et al., 1995. The details are presented in table 1.
Also the changes in the number of D and G cells in atrophic gastritis were observed and several studies presented the therapy promoting the secretion of gastric acid and gastric pepsin and regulating the neuroendocrine mechanism in rats (Zhu et al., 2008; Wang et al., 2009; Czaja et al., 2008; Todorovic et al., 2008). However, as it was reported (Czaja et al., 2008), changes of serum gastrin concentration in gastric antrum in children with chronic gastritis are not statistically significantly connected with D and G cell densities.
Diagnosis | Criteria regarding increased endocrine cells | Common disorder |
Simple/diffuse hyperplasia | "/>2x standard deviation (age/gender matched) | ZES, primary gastrin cell hyperplasia |
Linear hyperplasia | Linear groups of five or more inside the glandular BM | ZES, pernicious anemia |
Micronodular hyperplasia | Clusters of five or more cells within epithelium measuring <150 microns in diameter | Autoimmune atrophic gastritis |
Adenomatoid hyperplasia | Aggregates of five or more micronodulares in lamina propria | Autoimmune atrophic gastritis, MEN-ZES |
Dysplasias | Autoimmune atrophic gastritis, MEN-ZES | |
Enlarged micronodules | "/>150 microns | |
Adenomatous micronodules | Collection(s) of at least five closely adherent micronodules, intervening BM only | |
Fused micronodules | Adenomatous nicronodules with no intervening BM | |
Microinfiltrative lesions | Infiltration of the lamina propria | |
Carcinoids | Autoimmune atrophic gastritis, MEN-ZES | |
Intramucosal | Expansile/infiltrative nodules "/> 0.5 mm | |
Invasive | Any size tumor within submucosa |
Classification of ECL-cell proliferations (originally from Solcia et al., 1995).BM, Basement membrane; ZET, Zollinger-Ellison syndrome; MEN-ZET, multiple endocrine neoplasia-Zollinger-Ellison syndrome.
Based on our clinical material, the authors of this chapter study the correlation between two types of chronic gastritis (superficial and deep) and neuroendocrine cells such as Chromogranin A positive cells, D cells and EC cells, identified by immunohistochemical stains. The sex and antrum/oxyntic parts are taken into account in the quantitative analysis.
The three types of primary antibodies has been applied:
Monoclonal Mouse Anti-Human Chromogranin A, clone DAK-A3, code M 0869 DAKO
Monoclonal Mouse Anti-Serotonin, clone 5HT-H209, code M 0758 DAKO
Rabbit Polyclonal Anti-Human Somatostatin, code A0566 DAKO
Density of the following types of the cells has been further evaluated:
Neuroendocrine cells (Chromogranin A positive cells)
EC cells (Serotonin positive cells)
D cells (Somatostatin positive cells)
Patients from the Military Hospital in Warsaw in Poland suffering for stomach diseases from the 1999 to 2010 were selected.
The slides used in further quantitative analysis should fulfil the following histological criteria: proper sections (automatic fixed paraffin sections, slide thickness from 3 to 5 micrometers), the right technical quality of tissue samples and the correct histo- and immunohistochemical staining, lack of any mechanical injury or any artefact (fragmentation, hemorrhages).
The morphometric evaluation of the specimens with the counting of the cell density in the field of view was performed using the acquired images of 400x magnification, at resolution of 768x576 pixels. Images were taken using Olympus BX50 microscope with the Olympus Camedia C-3030 camera and used for computer analysis. In semi-quantitative part of the studies, human experts count the number of neuroendocrine cells per one gland in five selected fields of view in each specimen.
In the last few years many computer programs for automation of quantitative analysis of microscopic specimen, based on the image processing, have been developed (Bartels et al., 1996; Lezoray et al., 2000; Markiewicz et al., 2006, 2009b, 2010). In chronic gastritis the main task of computer automatization is the quantitative evaluation (recognition and counting) of the neuroendocrine cells. In last few years we proposed various approaches and programs used in the different types of the tissues and markers (Markiewicz et al., 2006, 2008, 2009) and our experience confirmed their accuracy. The developed programs used mainly the mathematical morphology operations, such as erosion, dilation, opening, closing or watershed method (Soille, 2003; Matlab, 2010). Counting neuroendocrine cells marked by the immunohistochemistry stains, such as chromogranin-A, serotonin, somatostatin or PCNA can be performed automatically by the program in a particular field of view. The automatization of these analyses can give an answer to the methods based on counting the cells in the field of view without taking into account any specific histological structures.
For evaluation of the density of the neuroendocrine cells the authors designed the automatic program written in Matlab language. The correct recognition of the separated nuclei and reactivity of these cells is the main task in the appropriate evaluation of the distribution density of the selected stained endocrine cells. The primary antibodies used (Chromogranin A, Serotonin and Somatostatin) stains of cytoplasmic structures. In the correct stain the nuclei are blue and only cytoplasm in the immunopositive cell is brown. The problem of recognition can be solved by the following steps: extraction of the blue nuclei of the cells and their classification into two groups – immunopositive and immunonegative cells based on the neighbouring cytoplasm. However, usually in the field of view some cells are stained fully brown. This results from the fact that cutting plane of the tissue specimen may go through any possible cutting levels of the cell. Moreover, some cells in the slide are only viewed as a part of the cytoplasm. Additionally, the nuclei are sometimes covered by the cytoplasm. According to this fact, the segmentation algorithm should posses two extraction lines: one for the cells with recognized blue nucleus and the second for recognition of the immunopositive cells without the blue nucleus.
The input image for quantitative analysis is in the form of RGB standard file. The first step is the image standardization, which means the calculation of the average RGB values of the lighter area in the field of view and linearly transformed RGB values of all pixels in the image in such a way that the lighter area will be exactly white. This step eliminates the influence of the differences in the glass transparency, lighting and other unstable values.
After standardization, the extraction of the blue nuclei as separate cells was performed. In the literature (Bartels et al., 1996; Lezoray et al., 2000; Markiewicz et al., 2006, 2008, 2009, 2010; Kayser et al., 2006) the basic method for solving this task is the threshold operation, which is defined as follows: (Soille, 2003)
were f(x) is the value of pixel of the image f in the x position and t2 is the threshold value. This operation was done on the greyscale images, received by means different from the colour image, with one threshold value. Generally, this is a very difficult task because the nuclei are stained at different intensity and selecting one threshold value for this operation is problematic, and for some images even not possible.
In the papers (Markiewicz et al., 2008, 2009) the authors suggest a solution to this problem based on the threshold operation performed step by step with the increased threshold value. For the stomach specimen images we use the thresholding operation sequentially and apply an artificial neural network of Support Vector Machine (SVM) type (Vapnik, 1995; Schölkopf & Smola, 2002). The idea of this network is to create a hyperplane dividing the feature space of the input data into two separated parts with the maximum margin between them. In our case the input data are the pixels selected from the image. The input vector is composed of three colour components in RGB standard. For learning phase these data are representative for three classes: blue nuclei, brown cytoplasm and light background. Because one network recognizes only two classes, we must build three SVM networks for recognizing pixels between all pairs of classes and then use the one-against-one strategy to find the winner (Schölkopf & Smola, 2002). The learning data are manually selected from the sampled images and their quantity was 150 pixels per class. The output of the network is determined using the following formula:
were w is the weight vector, x is the input vector and
and
where dk is 1 or -1 and
After learning of the network the weights and bias are fixed. In the testing phase the input vectors represent the colour values of all pixels in the image. They are put to the SVM. It is evident that the output value D(x) will be different, depending on its relation to the respected class. For example, if the pixel is light blue, the D(x) signal of the SVM recognizing the nuclei will take 0<D(x)<1 values. For the dark blue pixels this value will be higher than 1. Based on this relevance we use D(x) value as an indicator of the recognized class. In the constructed algorithm we use sequential thresholding operation starting from the minimum D(x) value as a threshold. Then, this threshold is increased step by step until the maximum. In any step D(x) for the whole image is thresholded and the separated objects, whose area are in the selected range, are added to the mask of the recognized nuclei. The result of this process will be the mask of all blue nuclei for which the area is in the preselected range. This range is selected on the basis of some knowledge and the image resolution with some margin. This process is supported by the watershed operation for the bigger cells to divide them into two cells if there is a narrow space between the two or more parts of them. This will help in the case of the overlapping nuclei of the cells.
The next step is the recognition of the immunopositive cells. This is performed with the use of the SVM and mathematical morphology operations such as closing and reconstruction. First, the brown cytoplasm is extracted by using the one-against-one strategy with three SVM networks. Next, all brown areas are closed by the structural element with the disk shape of the diameter of 7 pixels long. This operation outputs the mask of the brown cytoplasm with filled internal area of them. This filled area should be only on the internal side of the cytoplasm that is on the nuclei of the cell. If the immunopositive cell is touched with the other immunonegative cell, the second nucleus should not be selected. In practice, we can tolerance some errors in the case of overlapping.
The last process of segmentation is the extraction of still unrecognized immunopositive cells without the distinct blue nuclei. They are created from a brown mask, received in the previous step of the algorithm. Any separated brown objects that did not possess the blue nucleus and lie in the selected range of the cell area are added to the set of the immunopositive cells after a watershed operation dividing the touched items.
The final task is to count the cells according to their immunoreactivity classes. This is done in the form of simple counting of any separated objects in the masks of immunopositive and immunonegative cells, independently. Figure 5a presents a sample result of recognition in the Chromogranin stain. The immunopositive cells are marked “○”, the immunonegative “+”, in yellow and red colours respectively. The results for the serotonin and somatostatin stains of the same patient specimens are presented in Fig. 5b and c respectively. We evaluated more than 30 patients and the achieved accuracy was on the acceptable level. Less than 5% of the cells were unrecognized or misclassified. The developed program was written in Matlab language and tested with PC Centrino Duo 1.86 MHz, 2GB RAM. The result for one image is received in less than 1 minute. It is possible to correct the classification results of the cell manually by the intervention of a human expert.
The result of cell recognition in chromogranin-A (a), serotonin (b) and somatostatin (c) stains.
Calculating the number of neuroendocrine cells per one gland of the gastritis mucosa is a more complex process. The system must recognize also separate glands, measure their shape and count cells according to this histological structures. Also, based on the computerized image processing, the selected aspects of histological evaluation of the gastric mucosa can be performed. That can be gland distribution in the mucosa, proportion between gland lumen and its size. To perform the gland extraction from the image, first the cell nuclei should be recognized based on the algorithm described before. The input stage is a binary mask composed of the immunonegative and immunopositive cells. Although the contours of gland cross-section are not visible (in particular as a continuous shape), the gland face cells created the composition of the linearly bordered objects with blue stained nuclei and sometimes brown stained cytoplasm (only immunopositive cells). In comparison with other cells, the gland face cells are located more closely to each other. In practice, only gland face cells created the convex structures in the image. To reconstruct the completed gland outlining, the spaces between these cells should be filled. This task can be accomplished with the help of the Hit-or-Miss transform (HMT) with anisothropic structure element (SE) of a 35 pixels line shape (Soille, 2003; Markiewicz et al., 2009a). The based pixel of SE was a center point on the line shape, the SE foreground was formed by 3 last pixels at both ends; the rest of pixels of the line shape formed background. Because of the multipolarity and the gland contour in the image, and in the effect unconnected cell nuclei, the reconstruction process carried out by HMT should be performed in the series of SE rotation (every 5° in the scale from 0° to 175°).
Also, this operation is repeated with 23 pixels SE for obtaining the full continuous gland shape. The results of the gland face reconstruction are presented in Fig. 6. Based on the area criteria only dominant objects composed of the gland lumen and cells surrounding them should be selected as a gland cross-section planes. The recognized glands can be also categorized based on the morphometrical criteria, mainly by their major and minor axis lengths. The details of this approach were presented in the paper by Markiewicz et al., 2009a.
The evaluated specimens were taken from patients with the following diagnosis:
chronic gastritis (CHG)
chronic superficial gastritis (CHSG)
The specimens were divided based on oligobiopsy anatomical region – prepyloric or oxyntic part of stomach.
According to the statistical method for the ratio of immunopositive cell, the Chromogranin A, Serotonin and Somatostatin antibodies stain specimens should be evaluated. The images of them have been acquired in the manually selected regions, with the higher number of immunopositive cells in the center, mainly three per slide. As these cells are significanly more numerous in the Chromogranin A antibody stain, the regions were selected on the basis of this stain. In the Serotonin and Somatostatin stains we got images from too same regions. Based on the statistical results we found the threshold of the ratio of immunopositive cells for the selected antibody type. This threshold divided the set of patients into two groups. We evaluated the relation between this division and diagnosis (chronic gastritis and chronic superficial gastritis). Our suggestion on the dependence significance was based on the Fisher exact test (Fisher, 1922). If the returned p –value was
The sample result of the gland cross-section plane recognition in the image.
less than 0.05, it is justified to reject the null hypothesis on lack of statistical dependence. We signed these cases as positive. The cases with p –value less than 0.07 were signed as conditionally positive with regard to restricted number of items in the data base.
To same items were evaluated with cell divided into the glands of the gastric mucosa, as was defined. The numbers of the positive cells in the recognized gland with respect to their cross-section were countered. The analysis was performed in five view fields. The returned value was calculated as the sum of the mean numbers of the positive cells in the four types of gland cross-section if they were present. Only glands with correct cutting plane were evaluated. If a field was fully packed with the cells in the gland light, this item was not useful for counting. They were divided into a set with a threshold value, similarly to the previous manner. A difference between the number of items is the effect of the fact that some stains were too bad for automatic system but acceptable for human experts. We calculated the mean value for both examinations to illustrate scale of the difference in the cell density between types of the disease.
The results for the whole neuroendocrine cells (Chromogranin-A positive cells) are presented in table 2. The ratio of the whole neuroendocrine cells in the field of view shows that the significant dependencies with the type of disease are when:
Ratio between NE and all cells [%] | NE cell quantity calculated in the glands | |||||||||
Type of specimen | Type of disease | Threshold value and no of items | Mean of ratio | Median of ratio | Fisher test | Threshold value and no of items | Mean of cell number | Fisher test | ||
All patients and both regions | < 5 % | "/>= 5 % | p=0.0965 negative | < 5.1 | "/>=5.1 | p=0.0769 negative | ||||
CHSG | 20 | 11 | 4.61 | 4.18 | 14 | 16 | 6.65 | |||
CHG | 17 | 22 | 5.12 | 5.04 | 10 | 30 | 8.94 | |||
Only women, both regions | < 5 % | "/>= 5 % | p=0.0105 positive | < 5.1 | "/>=5.1 | p=0.3175 negative | ||||
CHSG | 12 | 5 | 4.58 | 4.27 | 8 | 9 | 7.55 | |||
CHG | 6 | 16 | 5.42 | 5.73 | 6 | 15 | 7.76 | |||
Only men, both regions | <4.49% | "/>=4.49% | p=1 negative | < 6.4 | "/>=6.4 | p=0.1492 negative | ||||
CHSG | 7 | 6 | 4.65 | 4.18 | 8 | 5 | 7.35 | |||
CHG | 10 | 9 | 4.79 | 3.88 | 6 | 13 | 10.24 | |||
All patients, only prepy-loric | < 5 % | "/>= 5 % | p=0.6946 negative | < 9.6 | "/>=9.6 | p=0.4328 negative | ||||
CHSG | 6 | 4 | 5.60 | 4.88 | 6 | 4 | 10.78 | |||
CHG | 8 | 10 | 5.26 | 5.0 | 7 | 11 | 12.29 | |||
All patients, oxyntic | < 5.07 % | "/>= 5.07 % | p=0.0618 conditionally positive | < 5 | "/>=5 | p=0.0600 condi-tionally positive | ||||
CHSG | 16 | 5 | 4.14 | 4.18 | 12 | 8 | 4.58 | |||
CHG | 10 | 12 | 5 | 5.15 | 6 | 16 | 6.19 | |||
Only women, prepyloric | < 5 % | "/>= 5 % | p=0.6224 negative | < 7.8 | "/>=7.8 | p=0.3287 negative | ||||
CHSG | 3 | 3 | 5.83 | 5.79 | 3 | 3 | 8.77 | |||
CHG | 3 | 6 | 5.03 | 5.00 | 2 | 7 | 10.68 | |||
Only women, oxyntic | <5.07% | "/>=5.07% | p=0.0033 positive | < 5.1 | "/>=5.1 | p=0.2203 negative | ||||
CHSG | 10 | 2 | 3.96 | 3.71 | 7 | 4 | 4.66 | |||
CHG | 2 | 10 | 5.71 | 6.02 | 4 | 8 | 5.57 | |||
Only men, prepyloric | < 4% | "/>= 4% | p=0.5622 negative | <13.4 | "/>=13.4 | p=0.5638 negative | ||||
CHSG | 3 | 1 | 5.25 | 3.89 | 3 | 1 | 13.8 | |||
CHG | 4 | 6 | 5.50 | 4.50 | 4 | 5 | 13.9 | |||
Only men, oxyntic | <4.18% | "/>=4.18% | p=0.3698 negative | < 5 | "/>=5 | p=0.0698 condi-tionally positive | ||||
CHSG | 3 | 6 | 4.39 | 4.73 | 6 | 3 | 4.48 | |||
CHG | 6 | 4 | 4.15 | 3.71 | 2 | 8 | 6.94 |
The dependence between the type of chronic gastritis and the neuroendocrine cells
patient is a woman, both regions
region is oxyntic (conditionally)
patient is a woman and region is oxyntic
However, the results of the Fisher test synonymously indicate, that only for women and oligobiopsy from oxyntic should be considered a significant dependence. The rest of the listed cases have the positive return of the test because they included them. The evaluation of the ratio of the neuroendocrine cells in the other cases has dubious diagnostic value or does not have it.
Comparison of these results counted only in the glands epithelium of the gastric mucosa shows that there are significant differences. A conditionally positive relation was obtained in both evaluation methods only for oxyntic region and patient gender totally. By the use of this type of examination of the specimens we received additional conditionally positive dependence for male patients and mucosa oligobiopsy from oxyntic part of the stomach. A significant dependence for female patients did not reach such significance level as in the ratio method. However, some similar relations exist and this fact suggests that for the recognition of the type of gastritis diseases the ratio method is more adequate for this evaluation than the counting only in the glands epithelium of the gastric mucosa.
The next results for the EC cells (serotonin positive cells) are presented in table 3. The ratio of the EC cells in the field of view shows that the significant dependencies with the type of disease are when:
patient is a woman, both regions
patient is a man, both regions
all patients and regions
patient is a woman and region is oxyntic
However, the results of the Fisher test for all patients are not precise because there is a high inequality in the number of items in selected division. Additionally, there are significant differences in the level of the ratio between oligobiopsy region that influence the received results. Practically, only in the case of oxyntic region can we say that there are some disease dependencies, but patients must be divided in respect to their sex. For women oligobiopsy from oxyntic gastric mucosa can be considered as a significant dependence, for men it is not unequal. The results received on the set of gland shapes did not show any significant dependencies and for the recognition of the type of the disease they are not useful.
The results for the last considered type of the cells D (somatostatin positive cells) are presented in table 4. The ratio of the D cells in the field of view shows that the significant dependencies with the type of disease are when:
patient is a woman, both regions
all patients and regions (conditionally)
patient is a woman and region is oxyntic
The results of the Fisher test for all patients is conditionally positive and practically only woman can speak about dependence of the ratio of the cell D with the disease. Unfortunately, in our database we have too small number of biopsies from the prepyloric for female patients (with correct somatostatin stain) to decide that this relation is for both regions. We can only think that a certain dependence is for woman patients and in the examination of the oxyntic region. We noted that for all types of staining the difference between median values for both diseases were near 100% of the level in the CHSG. This confirms well recognizable chronic gastritis and chronic superficial gastritis for this case.
Ratio between EC and all cells [%] | EC cell quantity calculated in the glands | |||||||||
Type of specimen | Type of diseases | Threshold value and no of items | Mean of ratio | Median of ratio | Fisher test | Threshold value and no of items | Mean of cell number | Fisher test | ||
All patients and both regions | < 0.4 % | "/>= 0.4 % | p=0.0060 positive | < 3 | "/>=3 | p= 0.4533 negative | ||||
CHSG | 17 | 17 | 0.83 | 0.60 | 13 | 15 | 3.58 | |||
CHG | 1 | 31 | 1.00 | 0.80 | 14 | 25 | 5.06 | |||
Only women, both region s | < 0.4 % | "/>= 0.4 % | p=0.0424 positive | < 3 | "/>=3 | p= 0.3208 negative | ||||
CHSG | 10 | 8 | 0.82 | 0.38 | 8 | 7 | 3.44 | |||
CHG | 4 | 16 | 0.8 | 0.70 | 7 | 13 | 3.89 | |||
Only men, both regions | < 1 % | "/>= 1% | p=0.0325 positive | < 3 | "/>=3 | p=1 negative | ||||
CHSG | 9 | 4 | 0.86 | 0.70 | 5 | 8 | 3.76 | |||
CHG | 5 | 13 | 1.23 | 1.26 | 7 | 12 | 3.62 | |||
All patients, only prepyloric | < 1 % | "/>= 1 % | p=0.4153 negative | < 4 | "/>=4 | p= 0.6828 negative | ||||
CHSG | 5 | 5 | 1.38 | 1.11 | 5 | 4 | 5.91 | |||
CHG | 5 | 12 | 1.29 | 1.37 | 7 | 10 | 5.03 | |||
All patients, oxyntic | < 0.4 % | "/>= 0.4 % | p=0.1180 negative | < 3 | "/>=3 | p= 0.5308 negative | ||||
CHSG | 12 | 9 | 0.58 | 0.39 | 12 | 7 | 2.49 | |||
CHG | 6 | 15 | 0.77 | 0.68 | 11 | 11 | 2.78 | |||
Only women, prepyloric | < 1.5 % | "/>= 1.5 % | p=0.5805 negative | < 4 | "/>=4 | p= 0.2929 negative | ||||
CHSG | 3 | 3 | 1.52 | 1.31 | 3 | 2 | 5.69 | |||
CHG | 6 | 2 | 1.17 | 1.12 | 2 | 6 | 5.94 | |||
Only women, oxyntic | < 0.4 % | "/>= 0.4 % | p=0.0391 positive | < 3 | "/>=3 | p= 0.3811 negative | ||||
CHSG | 9 | 3 | 0.47 | 0.37 | 8 | 2 | 2.31 | |||
CHG | 3 | 9 | 0.55 | 0.60 | 7 | 5 | 2.53 | |||
Only men, prepyloric | < 1 % | "/>= 1 % | p=0.2028 negative | <3 | "/>=3 | p=1 negative | ||||
CHSG | 2 | 2 | 1.17 | 1.11 | 1 | 3 | 6.20 | |||
CHG | 1 | 8 | 1.40 | 1.37 | 3 | 6 | 4.23 | |||
Only men, oxyntic | < 1 % | "/>= 1 % | p=0.3349 negative | < 5 | "/>=5 | p=1 negative | ||||
CHSG | 7 | 2 | 0.72 | 0.60 | 4 | 5 | 2.68 | |||
CHG | 4 | 5 | 1.05 | 1.11 | 4 | 6 | 3.07 |
The dependence between the type of chronic gastritis and the EC cells
Based on the results of morphometry of the neuroendocrine cells with recognition of the gland cross-section shape, the analysis of the correlation between the used measurements and quantity of the cells in one specific gland shape can be performed. Probably, the evaluation of the neuroendocrine cells in short ellipse-shape or long ellipse-shape glands will be representative for the whole population of the cells in a specimen. The analysis of this linear correlation gives the r coefficient equalled 0.726 and 0.809 for the short and long
Ratio between D and all cells | D cell quantity calculated in the glands | |||||||||
Type of specimen | Type of diseases | Threshold value and no of items | Mean of ratio | Median of ratio | Fisher test | Threshold value and no of items | Mean of cell nr | Fisher test | ||
All patients and both regions | < 1.2 % | "/>= 1.2% | p=0.0674 conditionally positive | < 3.1 | "/>=3.1 | p= 0.0876 negative | ||||
CHSG | 18 | 9 | 1.14 | 0.95 | 21 | 9 | 3.09 | |||
CHG | 13 | 19 | 1.51 | 1.33 | 19 | 21 | 3.50 | |||
Only women, both regions | < 0.83% | "/>= 0.83% | p=0.0155 positive | < 2.1 | "/>=2.1 | p= 0.0873 negative | ||||
CHSG | 12 | 3 | 0.97 | 0.80 | 8 | 9 | 3.12 | |||
CHG | 6 | 11 | 1.41 | 1.35 | 4 | 17 | 3.53 | |||
Only men, both regions | < 1 % | "/>= 1% | p=0.7063 negative | < 3.1 | "/>=3.1 | p= 0.0751 negative | ||||
CHSG | 5 | 7 | 1.37 | 1.21 | 10 | 3 | 3.04 | |||
CHG | 5 | 10 | 1.63 | 1.20 | 8 | 11 | 3.47 | |||
All patients, only prepyloric | < 1 % | "/>= 1 % | p=0.4153 negative | < 3.1 | "/>=3.1 | p= 0.0410 positive | ||||
CHSG | 5 | 5 | 1.38 | 1.11 | 4 | 6 | 3.92 | |||
CHG | 5 | 12 | 1.29 | 1.37 | 1 | 17 | 4.80 | |||
All patients, oxyntic | < 0.92 % | "/>= 0.92 % | p=0.2049 negative | < 2.1 | "/>=2.1 | p= 0.5335 negative | ||||
CHSG | 12 | 7 | 0.96 | 0.80 | 10 | 10 | 2.67 | |||
CHG | 8 | 12 | 1.16 | 1.00 | 8 | 14 | 2.44 | |||
Only women, prepyloric | < 2.1 % | "/>= 2.1 % | p=0.1738 negative | < 4.4 | "/>=4.4 | p= 0.6084 negative | ||||
CHSG | 5 | 0 | 1.63 | 1.96 | 2 | 4 | 3.77 | |||
CHG | 2 | 3 | 2.17 | 2.36 | 5 | 4 | 4.15 | |||
Only women, oxyntic | < 0.83 % | "/>= 0.83 % | p=0.0427 positive | < 2.1 | "/>=2.1 | p= 0.4136 negative | ||||
CHSG | 8 | 2 | 0.62 | 0.55 | 6 | 5 | 2.76 | |||
CHG | 4 | 8 | 1.09 | 1.12 | 4 | 8 | 2.37 | |||
Only men, prepyloric | < 1.68 % | "/>= 1.68 % | p=0.5012 negative | <3.1 | "/>=3.1 | p= 0.0769 negative | ||||
CHSG | 2 | 1 | 1.47 | 1.52 | 2 | 2 | 4.15 | |||
CHG | 2 | 5 | 2.03 | 1.83 | 0 | 9 | 4.53 | |||
Only men, oxyntic | < 1 % | "/>= 1 % | p= 1 negative | < 3 | "/>=3 | p=1 negative | ||||
CHSG | 4 | 5 | 1.33 | 1.12 | 4 | 5 | 2.55 | |||
CHG | 4 | 4 | 1.27 | 1.00 | 5 | 5 | 2.51 |
The dependence between the type of chronic gastritis and the D cells
ellipse-shapes respectively. Statistically, both correlations are significant (p-value less than 0.05) with R2 equals 0.73 and 0.81 and F-statistic equals 73 and 110. The graphical illustrations of this correlations are presented in Fig. 7a and b.
The presented results suggest that it is possible to perform an appropriate evaluation of the neuroendoctine cell quantity in the gastric mucosa taking into account only one type of the gland cross-section shape. The most representative aspect for this evaluation is a long ellipse shape of the glands.
Correlations between number of the neuroendocrine cells in the a) short ellipse-shape glands, or b) long ellipse-shape glands and the total number of cells in the specimen.
The presented results deal with statistical results of the density of the neuroendocrine cells in the gastric chronic diseases. The two used methods reflect some significant dependencies and possibilities of using them in the medical diagnosis. They confirm the dependence of the density of the neuroendocrine cells such as D, EC or ECL on the type of gastric disease, referred to in the previous researches. We received significant differences in the results of the used counting methods in dependence on sex of patient and oligobiopsy region. As far as recognition of type of chronic gastric diseases is concerned, we found the most significant dependence in the total neuroendocrine cells in female patients and oligobiopsy from the oxyntic part of the stomach. The Fisher test value for this case was p=0.0033 in the counting of all the cells in the field of view. For the EC and D cells this value was p= 0.0391 and p=0.0427 respectively. The other positive dependence received for the other groups of patients were negative or if there were positive, the evaluated group included women patients with oxyntic oligobiopsy specimens. We think that the positive test values in these cases (indicating possible recognition of disease type) were caused only by the cases of women oxyntic specimens. This fact confirmed the negative recognition results received for the other types of specimens included in this evaluated group.
For the semi-quantitative method, based on the cell counting only in glandular epithelium of the stomach, the received results confirmed the significant dependence between number of the positive cells and type of gastritis only for D cells in the women oxyntic specimens. Additionally, very interesting results were obtained as regards counting all neuroendocrine cells in men oxyntic specimens. Contrary to the statistical counting, in this method we received conditionally positive test value p=0.0698. This dependence should be verified on the high number of patients.
The presented algorithm for computerized image analysis combines the mathematical morphology operations with artificial neural network of SVM type for evaluation of the ratio of the positive cells in the field of view. It can be helpful for researches in checking the endocrine cells in gastric disease and can be easily adapted to the other cytoplasm immunohistoreactivity stains. In difference to the other approaches, it imitates the human view strategy in recognition of the separated nuclei of the cells. The received accuracy is on good level and fully repeatable. In the case where we cannot use this method, the other solution is the use of semi-quantitative method with counting made manually by human experts. However, this evaluation is restricted to only few cases with a less precise method than the automatic one.
In the literature other approaches to counting neuroendocrine cell, based on grid graph, can be found (Ozkan et al., 2007). In such methods a randomly oriented parallel line-and-dot graph (grid) is superimposed on the analyzed image. The positive cells (marks in nuclear or cytoplasm staining) and negative cells coinciding with the dots on the gridare counted. This approach is oriented more on the statistics rather than on real cell recognition and in our opinion includes higher risk of counting error than full cell recognition process.
The most significant dependence between the ratio of the positive cells and type of the gastritis was in the total neuroendocrine cells in female patients and oligobiopsy from the oxyntic part of the stomach. Similar relations were found in the EC and D types of the cells. In the other type of specimens significant relations, useful for disease types recognition, were not confirmed. In the semi-quantitative evaluation performed by the human expert the diseases recognizable in female patients and oligobiopsy from the oxyntic part of the stomach were confirmed only in D cell counting. The ratio method is more effective for the recognition of the type of the disease than semi-quantitative evaluation.
Plant secondary metabolites (PSM) are small organic molecules produced during plant metabolism that can function as a plant defense against herbivores, pathogens, neighboring plants, or environmental stresses [1, 2, 3]. Although proven to be incorrect, PSM [4, 5] used to be defined as (1) the part of metabolites not present in nonplant organisms or as (2) the part of plant metabolites not required for simple growth and development. These outdated PSM definitions still reflected some properties of PSM—they are widespread in the plant kingdom and are beyond the highly conserved primary metabolites, which are required in plant growth and development, such as proteins, carbohydrates, lipids, and nucleic acids. Hence, they represent plant diversity. The description of PSM often starts from the sessile property of terrestrial plants [1, 2, 6], where they cannot flee from the threat or stress from the environment and hence have to develop strategies to defend or reduce the threat or stress. PSM are their strategies.
Environmental factors, such as temperature, salinity, and water, are also called abiotic stresses [7]. The herbivores, pathogens, and neighboring plants are also called biotic stresses. Plant metabolites can be classified into primary metabolites, secondary metabolites, and plant hormones [3]. The defense function of secondary metabolites is often realized by integration with physical structures, such as cell wall, cutin, suberin, wax, and bark. According to Hartman [1], plant secondary metabolites are often lineage-specific and aid plants in interacting with the biotic and abiotic environment. For example, pine trees and mint plants often contain terpenes, peppers often contain capsaicin, and sicklepod contains anthraquinone derivatives for defense. The production of secondary metabolites can be constitutive or induced. Some plant secondary metabolites, such as anthraquinone derivatives, in sicklepod are routinely produced, and they are called constitutive secondary metabolites. The production of secondary metabolites demands a high metabolic cost on the host plant; thus, many of these compounds are not produced in large quantities until after insects have begun to feed. These secondary metabolites are called induced secondary metabolites [7].
The number of secondary metabolites reported is vast, and they have widespread applications. The most prominent application of the plant secondary metabolites is in the pharmaceutical industry, where about 25% of the drugs in use by humans are derived from medicinal plants [8]. The type and concentration(s) of the secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage, and environmental factors during its growth [2].
The application of plant secondary metabolites in agriculture is the focus of this chapter. In standard agricultural practices, the species, physiology, and development stages usually follow biological laws, and we cannot do much to change them. The genotype and environmental factors are currently where most work has been focused on in agriculture. According to Hartman [1], the functions of plant secondary metabolites could fall into three categories—(1) defense and competition involving herbivores (arthropods, vertebrates, and invertebrates), pathogens (viruses, bacteria, and fungi), and plants (allelopathy); (2) attraction and stimulation (pollination, seed dispersal, food-plant recognition, oviposition, sequestration, and symbiosis); and, (3) abiotic stresses defense. Compared to other reviews on secondary metabolites, this review chapter focuses on the agricultural applications of plant secondary metabolites, specifically categories (1) and (3).
PSM are widely spread in the whole plant kingdom. As they are lineage-specific, the total number of PSM is much more than the number of primary metabolites [5]. PSM derive from primary metabolites using a limited number of key pathways. Their functional diversity is gained by adding diverse combination of reactive functional groups [9]. Terpenoids are the largest group of PSM and occur in all plants, including over 22,000 compounds. The simplest terpenoid is isoprene (C5H8), a volatile gas produced during photosynthesis in leaves. Terpenoids are classified into monoterpenoids consisting of two isoprene units, sesquiterpenoids (three units), diterpenoids (four units), and triterpenoids (six units), depending on how many isoprene units are in their structures [7]. Mint plants (Mentha spp.) produce large quantities of the monoterpenoids menthol and menthone stored in glandular trichomes on the epidermis [7]. Pyrethrins are monoterpenoid esters produced by chrysanthemum plants that act as insect neurotoxins (Saxona 1988). Gossypol (
Crop biotic stresses come from microbial pathogens, nematodes, insects, and mammalian herbivores. Crop abiotic stresses come from drought, salinity, temperature, ultraviolet, etc. Plant secondary metabolites can help to reduce these stresses. For example, some secondary metabolites containing benzene rings can absorb ultraviolet (UV) light and release the energy in the visible light range as fluorescence to avoid crop damage from UV light.
Secondary metabolites have a defense function in plants [1, 2]. The simplest way to utilize secondary metabolites for crop protection is to extract the secondary metabolites and apply them to crops for protection against pathogens, insects, and mammalian herbivores.
Deer is the primary pest in row crop production in the US. This was first concerned in the 1960s and gradually confirmed by the agricultural community during the following 40 years [14, 15]. The annual loss of row crops in the US was estimated to be up to $4.53 billion [14]. Deer repellent is one of the primary strategies to solve crop deer damage. Among them, deer repellent with putrescent egg solids as active ingredients occurred in the 1990s and still dominates the deer repellent market today. Deer acceptance of food is dependent on the concentration of secondary metabolites present [16]. They usually avoid plants containing high concentrations of terpenes, tannins [17], and gossypol (cotton). Sicklepod (
One of the best examples of secondary metabolites used as an insecticide was the development of the popular insecticide bifenthrin. The pyrethrins from chrysanthemum (
Gossypol is a unique diterpenoid in the cotton genus Gossypium. Cotton germplasm is not as big as soybean and rice, but variations in gossypol content in cotton leaves are still significant. Low gossypol variety suffering heavy insect defoliation was observed (Dr. Saha personal communication). Unlike food crops, genetically modified cotton is not debated so critically, so Bt-based GMO method was adopted early to prevent insect defoliation. Gossypol screening is still a cultivar selection and breeding direction to defend insects and nematodes.
Allelopathy is another term introduced to the science of plant ecology to describe the addition of chemical compounds (toxic or nontoxic) from a plant into the environment that affects the germination, growth, health, development, and population biology or behavior of another plant species [22]. Weeds are considered the most severe biotic constraint on crop production, with yield losses ranging from 45 to 95%, depending on environmental conditions and agronomic practices [23].
Rice (
A diversity of allelochemical compounds, such as fatty acids, phenolic acids, indoles, steroids, and others were found to be released by different parts of the plants, in root exudates, and rice soil [27]. Yet, rice inhibits weed growth primarily by secreting momilactone B, a diterpene produced from geranylgeranyl diphosphate (GGPP) [28]. It has been shown that momilactones A and B released by allelopathic rice varieties inhibit shoot and root growth of
Chemical structure of momilactones A and B, allelopathic molecules released by rice plants.
The rice germplasm has a large variation when testing for allelopathy. However, it was found that among the Brazilian and Asian cultivars tested, only about 3–4% showed greater allelopathic potential [30]. Similar results were found when testing allelopathic cultivars able to suppress the growth of weeds, such as
Weeds are a continuous hazard to agriculture in the United States, costing farmers up to $20 billion each year [32]. Herbicide resistance in weeds influences the long-term effectiveness of weed management practices globally [33]. Pesticide residues in food and the environment, as a result, are a significant public health hazard [34]. The use of weed suppressive traits in crop types, commonly known as allelopathy, is one of the potential weed control techniques in cotton production [35]. Several studies have reported using allelopathic crop varieties in weed management, including rice, wheat, sunflower, and canola [36, 37]. However, there is limited research on the direct allelopathic effect of cotton on weeds. A few research studies have established that cotton produces allelochemicals, which can impede the growth of pigweeds in other investigations [38]. According to preliminary studies on cotton allelopathy [39], cotton root showed significant quantities of four phenolic chemicals, including p-hydroxybenzoic acid, ferulic acid, gallic acid, and vanillin. A greenhouse study was conducted using eleven cotton chromosome substitution (CS) lines for allelopathy screening against Palmer amaranth (
Sweetpotato [
Allelochemicals are released by above- and belowground parts of sweetpotato (donor) plants suppressing the surrounding receiver plants.
Some sweetpotato varieties produce several allelochemicals, such as coumarin, chlorogenic acid, caffeic acid, hydroxycinnamic and trans-cinnamic acids [48] which were weed suppressive in rice. In terms of concentration, sweetpotato leaves were found to have the highest concentration of phenolic compounds, followed by stems and roots [47]. The allelopathic effect of sweetpotato on cowpea was reported when cowpea was grown as the following crop on the same field due to the presence of leaf litters and decaying residues of sweetpotato. Allelopathic varieties with the potential to suppress weed growth may be useful for breeding cultivars designed for organic production systems.
Sorghum [
Structures of sorgoleone and dihydrosorgoleone (reduced analog).
Phenolic acids (Figure 4) with phytotoxic activities, such as gallic, syringic, p-hydroxybenzoic, benzoic, vanillic, p-coumaric, and benzoic acids are also produced by sorghum [57]. However, the amount of production of these compounds depends on the type of cultivar [58] and the development stage of the sorghum plant [59].
Chemical structure of allelopathic phenolic compounds.
Weed suppressing potential of sorghum on several weed species has been explored by using it as a cover crop, intercrop, crop rotation, sorghum water extract, soil incorporation of sorghum residue, and allele-herbicides derived from sorghum [60, 61]. Sorghum extracts can be combined with lower herbicide doses to effectively manage the weeds and reduce the overall herbicide introduction into the environment. Sorghum residues combined with 50% of the labeled rate of trifluralin were effective in preventing yield loss in broad beans [62]. Aqueous extracts from Brassica–sunflower–sorghum reduced weed biomass of several species, such as Purple nutsedge, bermudagrass, crowfoot grass, horse purslane, field bindweed, jungle rice, and goosegrass. The extent of suppression was comparable with the full rate of atrazine or S-metolachlor with half rate of atrazine [63]. Sorghum water extract combined with a reduced rate of herbicides such as isoproturon and metsulfuron-methyl demonstrated similar weed control as the full rate of these herbicides in the wheat field [64, 65]. A combination of water extracts from sunflower, rice, and sorghum can reduce the rates by 27–67% for herbicides such as ethoxysulfuron, butachlor, and pretilachlor in rice fields [66]. The utilization of allelopathy in agriculture can be a more sustainable and cost-effective strategy for weed management.
The method of using cover crops in agricultural fields has been a widespread practice among a broad range of farms. Cover crops are crops that are grown prior to harvested crops to help increase the potential of the harvested crops [67]. In agricultural systems, the practice of using cover crops is shown to improve the quality of the soil by virtue of incorporating crop residues (organic matter) [68], Using a cover crop approach can also be beneficial via enhanced hydro-availability, decrease evaporation from the soil, as well as escalate the biodiversity of the soil.
An additionally impactful use for using the cover crop method in agricultural systems is its ability to suppress weeds due to either physical biomass of the terminated cover crop essentially smothering the weedy plants, physical shading of the cover crop causing inhibition of sunlight to the weeds, as well as via the production of allelochemicals from the cover crop. Allelochemicals are the product of allelopathy, which is positive or negative impact of one plant (the allelopathic plant) on another plant. Allelochemicals can increase or decrease the nutrient availability to surrounding plants by virtue of the symbiotic microbes [69]. It is appropriately thought that the use of cover crops with allelopathic properties in an agricultural field can have positively novel effects on the growth, ability to thrive, and production yields of so-called “cash crops”.
During a study in a semiarid area of Texas, USA, during a 3-year period, cotton that was cultivated following cover crop termination showed a shorter plant height and seed and lint yields. Simultaneously, the plant density did not affect the cover crops. Benzoxaziones concentrations in the soil were 2 to 3-fold higher under the cover crop treatments than in the fallow (control) plot. Though allelopathy may not be the only factor to cause these findings, it is likely to have played a significant role [70].
During a study on non-chemical weed suppression in vegetable fields, it was shown that there was a correlation between the quantity of cover crop biomass with the level of weed suppression (Figures 5 and 6). An 8 t ha−1 or greater cover crop biomass is possibly a significant enough level to have sufficient weed suppression [71]. Although this level of weed suppression may not have everything to do with allelopathy from the cover crops, it certainly played a critical role [72].
Effects of various cereal cover crops in different vegetable production systems on the dry biomass production (g m−2) of weed species at the time of cover crop termination in 2005 (gray bars) and 2006 (white bars). Vertical lines represent standard errors of the means (
Effects of various legume cover crops in different vegetable production systems on the dry biomass production (g m−2) of weed species at the time of cover crop termination in 2005 (gray bars) and 2006 (white bars). Vertical lines represent standard errors of the means (
In a study focused on weed germination and the growth of IdaGold mustard, a seed germination bioassay technique was used. Phenol (allelochemical) concentrations were measured during this study. The total concentration of phenols in the soil was negatively correlated with the level of weed germination (Figure 7). Also, there were low concentrations of phenol in the soil that contained live microbes (<20 ng). Additionally, the germination rates were lower when compared to a nonmicrobe-containing soil with the same concentrations of phenol [73].
Germination is inhibited by high concentrations of soil phenols.
Numerous studies have demonstrated the weed suppressive property of allelopathic cover crops, which is a piece of good news for farmers [74]. There is a need for more research on the possible positive growth effects of allelopathic cover crops on the cash crops’ ability to thrive.
While PSMs have a constitutive part, i.e., routinely produced, they are also induced. This is mainly reflected in pathogen-induced resistance (including PSM production) and herbivore-induced resistance (including PSM production) [75]. The former can be traced back to 120 years ago, while the latter be traced back to 50 years ago. Recently it was realized that both were similar in nature and were controlled by plant hormones, salicylic acid, and jasmonic acid, respectively [75].
Another group of PSMs, allelochemicals, is generally thought of as constitutive, i.e., routinely produced. Compared to PSM induced by pathogens and herbivores, allelochemical induction is a big gap in our knowledge, although the study of allelopathy can be traced back 90 years ago. A primary reason for the difference is that for pathogen/herbivore-induced PSM production, the PSM may (or may not) need activation upon induction (they do not need to be expelled out of the plant body to defend), while in allelopathy, the PSM needs to be expelled out of the plant body to be effective. Sporadic information on the induction of root exudation exists in the literature; for example, Dineli et al. [76] studied the translocation and root exudation of herbicide after foliar treatment of wheat and ryegrass using 14C-labeled diclofop-methyl and triasulfuron. The results showed the presence of untreated plants (wheat or ryegrass) in the same pot as triasulfuron-treated ryegrass or wheat induced the exudation of the herbicide 7 to 32 times more. In the case of diclofop, the induced root exudation of the herbicide was 3 to 6 times more in the presence of untreated wheat or ryegrass. The root exudated herbicides suppressed the adjacent plants, indicating a form of allelopathy. This study demonstrated that the presence of adjacent plants induces the release of allelopathic compounds. An immediate question following this case study is—could the biosynthesis of allelopathic compounds (PSM) be induced? If so, how were the signals transmitted during these processes, including the release of the compounds?
As we reviewed previously, PSMs are biopesticides widely used in agriculture. As the PSM are lineage-specific, the selection of a specific crop cultivar or cover crop is similar to selecting what kind of biopesticides to use. Similarly, understanding and application of PSM induction is the dose control of the selected biopesticides. Furthermore, in the pathogen and herbivore-induced resistance (expressed as PSM), the resistance was often called systematic acquired resistance, meaning the resistance was expressed as normal PSM for toxicity and included thickening of cell wall lignin, etc. Hence such systemic acquired resistance is more effective and lasts longer than toxic PSM increase. In this context, filling the knowledge gap of induction of allelopathic compound biosynthesis and release is similar to understanding the dose control of bioherbicide.
Generally, it has been accepted that salicylic acid (SA) and jasmonic acid (JA) or methyl jasmonate (MeJA) are recognized plant hormones specialized for defense. These defense hormones have been used to induce PSM production to defend pathogens and herbivores in agricultural studies [77]. This method has not been used in allelopathy.
A field study looked at the deer and insect repelling efficacy of coffee senna extract on soybean [12]. After 40 days, the soybean leaf holes were significantly lower than the control or other treatments. This was in contrast to the leaf disc assay results, where soybean loopers were exposed to both coffee senna and sesbania extracts for 24 hours. The soybean looper mortality for sesbania extract was higher than that of coffee senna. A possible explanation for the difference between the field and leaf disc results is that leaf disc experiments used detached leaves. In contrast, field experiments used living soybean plants where the coffee senna extract might have induced defense response in soybean plants. The active ingredient of coffee senna extract may be SA and JA, or a new type of defense response inducer, which is to be determined.
Besides plant hormones and plant extracts, some inorganic chemicals have also been used as crop defense activators. Juric et al. [78] reported that Ca2+ and Cu2+ increased secondary metabolites contents in lettuce. Such chemical crop activator is much less toxic for humans and their defense effects last much longer than insecticides or fungicides, hence they are more preferable to the agriculture community.
During the past ten years, the transcriptome was widely used to study the gene expression of secondary metabolites [79]. While plant secondary metabolites are thought to be the readouts of plant defense activation, usually PSM quantity increase can be detected around 20 days or more after treatment (defense activation). PSM increase can be detected from several hours to 40 hours by transcriptome analysis (qPCR).
With improvements in sequencing technology, the sequencing cost has plunged during the past decades. Crop or cultivar genome is not far from being available. One discovery with the available genome sequences is that plants devote a significant amount of their genes to secondary metabolites, implying plant ecological functions are equivalent to its growth and development. Kang et al. [80] sequenced the genome of
Compared to the estimated number of primary metabolites of 10,000, PSMs are estimated to be more than 200,000 in the plant kingdom. These PSMs function in various ecological roles, including defending pathogens, herbivores, and neighboring plants. Use of these PSM in agriculture includes (1) extraction of the PSM and applying it directly to the crop to reduce biotic stresses, (2) use of PSM in vivo/in situ by screening crop cultivars with desired PSM profiles to achieve better resistance to pests, (3) use of PSM biosynthesis regulation or plant defense activators to achieve defense readiness, (4) filling the knowledge gap on allelochemical induction, biosynthesis, and release, as it will be helpful in improving weed management practices in agriculture, and (5) employing transcriptomic and genomic tools to understand PSM biosynthesis and pathways.
The authors appreciate the funding from the Mississippi Soybean Promotion Board (MSPB) and Cotton Incorporated. This work is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch project under accession number 230100, and is a contribution of the Mississippi Agricultural and Forestry Experiment Station.
The authors declare that this work was presented in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
IntechOpen books and journals are available online by accessing all published content on a chapter/article level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2022-04-14
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2022-04-14
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:8616},{group:"region",caption:"Middle and South America",value:2,count:7693},{group:"region",caption:"Africa",value:3,count:3005},{group:"region",caption:"Asia",value:4,count:15646},{group:"region",caption:"Australia and Oceania",value:5,count:1284},{group:"region",caption:"Europe",value:6,count:22554}],offset:12,limit:12,total:134466},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11721",title:"Hypothermia and Hyperthermia - Physiology Concepts and Clinical Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b0d0d929b72cece233f4b8cd014550c",slug:null,bookSignature:"Dr. Marinos Kosmopoulos",coverURL:"https://cdn.intechopen.com/books/images_new/11721.jpg",editedByType:null,editors:[{id:"442908",title:"Dr.",name:"Marinos",surname:"Kosmopoulos",slug:"marinos-kosmopoulos",fullName:"Marinos Kosmopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11700",title:"Abdominal Trauma - New Solutions to Old Problems",subtitle:null,isOpenForSubmission:!0,hash:"8e898d70673411f9c222d429889c8967",slug:null,bookSignature:"Prof. Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11700.jpg",editedByType:null,editors:[{id:"108808",title:"Prof.",name:"Dmitry",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11688",title:"Advances in Drug Delivery Methods",subtitle:null,isOpenForSubmission:!0,hash:"b237999737fb375b4f629ab01a498a9f",slug:null,bookSignature:"Prof. Bhupendra Gopalbhai Prajapati",coverURL:"https://cdn.intechopen.com/books/images_new/11688.jpg",editedByType:null,editors:[{id:"340226",title:"Prof.",name:"Bhupendra",surname:"Prajapati",slug:"bhupendra-prajapati",fullName:"Bhupendra Prajapati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11820",title:"Acupuncture and Moxibustion - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"e40653fa6cd3f2c653436c4e4bd8ad1e",slug:null,bookSignature:"Dr. Wen-Long Hu, Dr. Mao-Feng Sun and Dr. Yu-Chiang Hung",coverURL:"https://cdn.intechopen.com/books/images_new/11820.jpg",editedByType:null,editors:[{id:"49848",title:"Dr.",name:"Wen-Long",surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11566",title:"Periodontology - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"75ef2eae3087ec0c7f2076cc64e2cfc3",slug:null,bookSignature:"Dr. Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",editedByType:null,editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11570",title:"Influenza - New Approaches",subtitle:null,isOpenForSubmission:!0,hash:"157b379b9d7a4bf5e2cc7a742f155a44",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11598",title:"Recent Advances, New Perspectives and Applications in the Treatment of Ovarian Cancer",subtitle:null,isOpenForSubmission:!0,hash:"326ce75672f3a0f7ef014ba3ac7f6318",slug:null,bookSignature:"Prof. Michael Friedrich",coverURL:"https://cdn.intechopen.com/books/images_new/11598.jpg",editedByType:null,editors:[{id:"278677",title:"Prof.",name:"Michael",surname:"Friedrich",slug:"michael-friedrich",fullName:"Michael Friedrich"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11812",title:"New Insights Into Pharmacodynamics",subtitle:null,isOpenForSubmission:!0,hash:"b889e24b3132aa437b6745db36fffe9b",slug:null,bookSignature:"Prof. Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/11812.jpg",editedByType:null,editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11720",title:"Research and Advanced Clinical Practice in the Treatment of Osteoarthritis",subtitle:null,isOpenForSubmission:!0,hash:"f7602ad192ad1dc79a6a37ce3b461769",slug:null,bookSignature:"Prof. Hechmi Toumi and Dr. Eric Lespessailles",coverURL:"https://cdn.intechopen.com/books/images_new/11720.jpg",editedByType:null,editors:[{id:"196403",title:"Prof.",name:"Hechmi",surname:"Toumi",slug:"hechmi-toumi",fullName:"Hechmi Toumi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:14},{group:"topic",caption:"Materials Science",value:14,count:23},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:106},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:118},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4438},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11042",title:"Complementary Therapies",subtitle:null,isOpenForSubmission:!1,hash:"9eb32ccbef95289a133a76e5808a525b",slug:"complementary-therapies",bookSignature:"Mario Bernardo-Filho, Redha Taiar, Danúbia da Cunha de Sá-Caputo and Adérito Seixas",coverURL:"https://cdn.intechopen.com/books/images_new/11042.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"157376",title:"Prof.",name:"Mario",middleName:null,surname:"Bernardo-Filho",slug:"mario-bernardo-filho",fullName:"Mario Bernardo-Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10037",title:"Thermoelectricity",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ad1d3f637564a29cf1636759f5401994",slug:"thermoelectricity-recent-advances-new-perspectives-and-applications",bookSignature:"Guangzhao Qin",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"188870",title:"Mr.",name:"Guangzhao",middleName:null,surname:"Qin",slug:"guangzhao-qin",fullName:"Guangzhao Qin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11357",title:"Sustainable Crop Production",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"ee41e09e4ad6a336ca9f0e5462da3904",slug:"sustainable-crop-production-recent-advances",bookSignature:"Vijay Singh Meena, Mahipal Choudhary, Ram Prakash Yadav and Sunita Kumari Meena",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"420235",title:"Dr.",name:"Vijay",middleName:null,surname:"Meena",slug:"vijay-meena",fullName:"Vijay Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10863",title:"Cardiac Rhythm Management",subtitle:"Pacing, Ablation, Devices",isOpenForSubmission:!1,hash:"a064ec49b85ebfc60585c9c3690af53a",slug:"cardiac-rhythm-management-pacing-ablation-devices",bookSignature:"Mart Min and Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/10863.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"62780",title:"Prof.",name:"Mart",middleName:null,surname:"Min",slug:"mart-min",fullName:"Mart Min"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10874",title:"Insights on Antimicrobial Peptides",subtitle:null,isOpenForSubmission:!1,hash:"23ca26025e87356a7c2ffac365f73a22",slug:"insights-on-antimicrobial-peptides",bookSignature:"Shymaa Enany, Jorge Masso-Silva and Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11137",title:"Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"e0e4727c9f1f9b34d788f0dc70278f2b",slug:"mineralogy",bookSignature:"Miloš René",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"70c3ce4256324b3c58db970d446ddac4",slug:"smart-drug-delivery",bookSignature:"Usama Ahmad, Md. Faheem Haider and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10885",title:"Snake Venom and Ecology",subtitle:null,isOpenForSubmission:!1,hash:"cc4503ed9e56a7bcd9f2ca82b0c880a8",slug:"snake-venom-and-ecology",bookSignature:"Mohammad Manjur Shah, Umar Sharif, Tijjani Rufai Buhari and Tijjani Sabiu Imam",coverURL:"https://cdn.intechopen.com/books/images_new/10885.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10381",title:"Electrocatalysis and Electrocatalysts for a Cleaner Environment",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"9dbafb0b297cf5cbdb220707e022a228",slug:"electrocatalysis-and-electrocatalysts-for-a-cleaner-environment-fundamentals-and-applications",bookSignature:"Lindiwe Eudora Khotseng",coverURL:"https://cdn.intechopen.com/books/images_new/10381.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"236596",title:"Dr.",name:"Lindiwe Eudora",middleName:null,surname:"Khotseng",slug:"lindiwe-eudora-khotseng",fullName:"Lindiwe Eudora Khotseng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10900",title:"Prunus",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"9261926500acb26c4ae5a29eee78f0db",slug:"prunus-recent-advances",bookSignature:"Ayzin B. Küden and Ali Küden",coverURL:"https://cdn.intechopen.com/books/images_new/10900.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"200365",title:"Prof.",name:"Ayzin B.",middleName:"B.",surname:"Küden",slug:"ayzin-b.-kuden",fullName:"Ayzin B. Küden"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"344",title:"Viticulture",slug:"viticulture",parent:{id:"38",title:"Horticulture",slug:"horticulture"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:109,numberOfWosCitations:127,numberOfCrossrefCitations:155,numberOfDimensionsCitations:319,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"344",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5253",title:"Grape and Wine Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"5626f83050894f6dfc5640fa908dc920",slug:"grape-and-wine-biotechnology",bookSignature:"Antonio Morata and Iris Loira",coverURL:"https://cdn.intechopen.com/books/images_new/5253.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3143",title:"The Mediterranean Genetic Code",subtitle:"Grapevine and Olive",isOpenForSubmission:!1,hash:"1d7eb54003319184bf057161248f1ee3",slug:"the-mediterranean-genetic-code-grapevine-and-olive",bookSignature:"Danijela Poljuha and Barbara Sladonja",coverURL:"https://cdn.intechopen.com/books/images_new/3143.jpg",editedByType:"Edited by",editors:[{id:"88464",title:"Dr.",name:"Barbara",middleName:null,surname:"Sladonja",slug:"barbara-sladonja",fullName:"Barbara Sladonja"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"44143",doi:"10.5772/54592",title:"Production of Anthocyanins in Grape Cell Cultures: A Potential Source of Raw Material for Pharmaceutical, Food, and Cosmetic Industries",slug:"production-of-anthocyanins-in-grape-cell-cultures-a-potential-source-of-raw-material-for-pharmaceuti",totalDownloads:7964,totalCrossrefCites:24,totalDimensionsCites:72,abstract:null,book:{id:"3143",slug:"the-mediterranean-genetic-code-grapevine-and-olive",title:"The Mediterranean Genetic Code",fullTitle:"The Mediterranean Genetic Code - Grapevine and Olive"},signatures:"Anthony Ananga, Vasil Georgiev, Joel Ochieng, Bobby Phills and Violeta Tsolova",authors:[{id:"74792",title:"Dr.",name:"Joel W.",middleName:null,surname:"Ochieng",slug:"joel-w.-ochieng",fullName:"Joel W. Ochieng"},{id:"126149",title:"Dr.",name:"Anthony",middleName:null,surname:"Ananga",slug:"anthony-ananga",fullName:"Anthony Ananga"},{id:"136830",title:"Dr.",name:"Devaiah",middleName:null,surname:"Kambiranda",slug:"devaiah-kambiranda",fullName:"Devaiah Kambiranda"},{id:"137412",title:"Dr.",name:"Violetka",middleName:null,surname:"Tsolova",slug:"violetka-tsolova",fullName:"Violetka Tsolova"},{id:"165414",title:"Dr.",name:"Vasil",middleName:null,surname:"Georgiev",slug:"vasil-georgiev",fullName:"Vasil Georgiev"},{id:"165415",title:"Dr.",name:"Bobby",middleName:null,surname:"Phills",slug:"bobby-phills",fullName:"Bobby Phills"}]},{id:"52041",doi:"10.5772/64957",title:"Non-Saccharomyces Yeasts: Biotechnological Role for Wine Production",slug:"non-saccharomyces-yeasts-biotechnological-role-for-wine-production",totalDownloads:2606,totalCrossrefCites:9,totalDimensionsCites:26,abstract:"Non-Saccharomyces yeasts play a substantial role in the early stages of wine fermentation. With the increase in alcohol concentration, indigenous or commercial strains of Saccharomyces cerevisiae take over and complete the transformation of the grape must sugars into ethanol, CO2, and other secondary metabolites. The presence of non-Saccharomyces during the fermentation has an impact on the wine composition, and consequently, their contribution during the fermentation process cannot be ignored. The new challenges to enhance the appeal and value of wine elaborated by traditional technology are being achieved by selecting and using autochthonous non-Saccharomyces and Saccharomyces strains that may enhance regional identity of wines. Greater understanding of yeast biochemistry and physiology is enabling the selection and development of yeast strains that have defined specific influences on process efficiency and wine quality. The aim of this chapter was to show the different aspects of non-Saccharomyces species that may play a positive incidence in the biotechnological process to conduct to wine elaboration.",book:{id:"5253",slug:"grape-and-wine-biotechnology",title:"Grape and Wine Biotechnology",fullTitle:"Grape and Wine Biotechnology"},signatures:"Margarita García, Braulio Esteve-Zarzoso and Teresa Arroyo",authors:[{id:"182064",title:"Dr.",name:"Teresa",middleName:null,surname:"Arroyo",slug:"teresa-arroyo",fullName:"Teresa Arroyo"},{id:"182068",title:"Ms.",name:"Margarita",middleName:null,surname:"García",slug:"margarita-garcia",fullName:"Margarita García"},{id:"182089",title:"Dr.",name:"Esteve-Zarzoso",middleName:null,surname:"Braulio",slug:"esteve-zarzoso-braulio",fullName:"Esteve-Zarzoso Braulio"}]},{id:"52380",doi:"10.5772/65055",title:"Influence of Yeasts in Wine Colour",slug:"influence-of-yeasts-in-wine-colour",totalDownloads:2371,totalCrossrefCites:11,totalDimensionsCites:25,abstract:"Colour is the first impression that the consumer receives from wine and it influences the taste. Colour gives an idea about wine quality, age, oxidation and structure, so it has an important repercussion on the consumer perception of wine. Yeasts promote the formation of stable pigments by the production and release of fermentative metabolites affecting the formation of vitisin A and B type pyranoanthocyanins. The hydrox- and ycinnamate decarboxylase activity showed by some yeast strains produces highly reactive vinylphenols stimulating the formation of vinylphenolic pyranoanthocyanins from grape anthocyanin precursors during fermentation. Some yeasts also influence the formation of polymeric pigments by unclear mechanisms that can include the production of linking molecules such as acetaldehyde. Grape anthocyanins adsorbed in yeast cell walls during fermentation are removed from wine after racking processes affecting final pigment content. Moreover, the intensive use of non‐Saccharomyces yeasts in current oenology makes it interesting to assess the effect of new species in the improvement of wine colour.",book:{id:"5253",slug:"grape-and-wine-biotechnology",title:"Grape and Wine Biotechnology",fullTitle:"Grape and Wine Biotechnology"},signatures:"Morata Antonio, Loira Iris and Suárez Lepe Jose Antonio",authors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"},{id:"186423",title:"Dr.",name:"Iris",middleName:null,surname:"Loira",slug:"iris-loira",fullName:"Iris Loira"},{id:"186424",title:"Prof.",name:"Jose Antonio",middleName:null,surname:"Suárez Lepe",slug:"jose-antonio-suarez-lepe",fullName:"Jose Antonio Suárez Lepe"}]},{id:"44142",doi:"10.5772/52933",title:"The Current Status of Wild Grapevine Populations (Vitis vinifera ssp sylvestris) in the Mediterranean Basin",slug:"the-current-status-of-wild-grapevine-populations-vitis-vinifera-ssp-sylvestris-in-the-mediterranean-",totalDownloads:4159,totalCrossrefCites:11,totalDimensionsCites:19,abstract:null,book:{id:"3143",slug:"the-mediterranean-genetic-code-grapevine-and-olive",title:"The Mediterranean Genetic Code",fullTitle:"The Mediterranean Genetic Code - Grapevine and Olive"},signatures:"Rosa A. Arroyo García and Eugenio Revilla",authors:[{id:"154744",title:"Dr.",name:"Rosa Adela",middleName:null,surname:"Arroyo-Garcia",slug:"rosa-adela-arroyo-garcia",fullName:"Rosa Adela Arroyo-Garcia"},{id:"164824",title:"Prof.",name:"Eugenio",middleName:null,surname:"Revilla",slug:"eugenio-revilla",fullName:"Eugenio Revilla"}]},{id:"52244",doi:"10.5772/65102",title:"Aroma Compounds in Wine",slug:"aroma-compounds-in-wine",totalDownloads:3120,totalCrossrefCites:9,totalDimensionsCites:20,abstract:"Volatile aroma compounds are very important to grape wine quality. In order to understand the flavor of wine, a multitude of scientific investigations was carried out and a number of appropriate analytical tools for flavor study were developed in the past few decades. This chapter deals with major achievements reported in wine aroma and flavor. Firstly, we illustrate the existing knowledge on aroma compounds contributing to wine flavor, as well as the types of wine aroma compounds. Furthermore, the main factors affecting flavor quality in wine are discussed. Finally, the genomics and biotechnology of wine flavor are also summarized. This chapter broadens the discussion of wine aroma compounds to include more modern concepts of biotechnology and also provides relevant background and offers directions for future study.",book:{id:"5253",slug:"grape-and-wine-biotechnology",title:"Grape and Wine Biotechnology",fullTitle:"Grape and Wine Biotechnology"},signatures:"Fengmei Zhu, Bin Du and Jun Li",authors:[{id:"180555",title:"Dr.",name:"Fengmei",middleName:null,surname:"Zhu",slug:"fengmei-zhu",fullName:"Fengmei Zhu"},{id:"180943",title:"Dr.",name:"Bin",middleName:null,surname:"Du",slug:"bin-du",fullName:"Bin Du"},{id:"180945",title:"Prof.",name:"Jun",middleName:null,surname:"Li",slug:"jun-li",fullName:"Jun Li"}]}],mostDownloadedChaptersLast30Days:[{id:"52017",title:"Grape Drying: Current Status and Future Trends",slug:"grape-drying-current-status-and-future-trends",totalDownloads:2961,totalCrossrefCites:12,totalDimensionsCites:17,abstract:"With high moisture and sugar content, fresh grapes respire and transpire actively after harvest, which contribute to quality loss. Drying can process grapes into raisins for longer shelf-life as well as dehydrated grapes, which can be used for wines or juice production. The pre-treatments, drying method and drying conditions, can significantly influence the quality of final products. In this chapter, firstly, different pre-treatments as a necessary operation previous to the drying of grapes into raisins is introduced. These pre-treatments include chemical pre-treatment, physical pre-treatment, and blanching. In addition, the quality and drying characteristics of different pre-treatments is summarized too. Secondly, the current status of different technologies for grape drying and their effects on drying kinetics and quality attributes of seedless grapes are described to highlight the advantages and disadvantages of each drying method. These drying methods include the traditional open sun drying, shade drying, hot-air drying, freezing drying, microwave drying, as well as the vacuum impulsed drying. Thirdly, influences of drying on bioactive substances (flavonoids, phenolics, anthocyanin, and resveratrol) and antioxidant capacity of grape by-products including seed, skin, stem, and stalk are also examined. Finally, the future research trends of grape and its by-product drying are indentified and discussed.",book:{id:"5253",slug:"grape-and-wine-biotechnology",title:"Grape and Wine Biotechnology",fullTitle:"Grape and Wine Biotechnology"},signatures:"Jun Wang, Arun S. Mujumdar, Weisong Mu, Jianying Feng,\nXiaoshuan Zhang, Qian Zhang, Xiao-Ming Fang, Zhen-Jiang Gao\nand Hong-Wei Xiao",authors:[{id:"28871",title:"Dr.",name:"Zhenjiang",middleName:null,surname:"Gao",slug:"zhenjiang-gao",fullName:"Zhenjiang Gao"},{id:"180873",title:"Prof.",name:"Hong-Wei",middleName:null,surname:"Xiao",slug:"hong-wei-xiao",fullName:"Hong-Wei Xiao"},{id:"181023",title:"Dr.",name:"Jun",middleName:null,surname:"Wang",slug:"jun-wang",fullName:"Jun Wang"},{id:"186411",title:"Prof.",name:"Arun S",middleName:null,surname:"Mujumdar",slug:"arun-s-mujumdar",fullName:"Arun S Mujumdar"},{id:"186412",title:"Prof.",name:"Xiaoshuan",middleName:null,surname:"Zhang",slug:"xiaoshuan-zhang",fullName:"Xiaoshuan Zhang"},{id:"186413",title:"Prof.",name:"Weisong",middleName:null,surname:"Mu",slug:"weisong-mu",fullName:"Weisong Mu"},{id:"186414",title:"Prof.",name:"Qian",middleName:null,surname:"Zhang",slug:"qian-zhang",fullName:"Qian Zhang"},{id:"186415",title:"Dr.",name:"Xiao-Ming",middleName:null,surname:"Fang",slug:"xiao-ming-fang",fullName:"Xiao-Ming Fang"}]},{id:"52146",title:"Grape and Wine Metabolites: Biotechnological Approaches to Improve Wine Quality",slug:"grape-and-wine-metabolites-biotechnological-approaches-to-improve-wine-quality",totalDownloads:2988,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Grape metabolites can be affected by many extrinsic and intrinsic factors, such as grape variety, ripening stage, growing regions, vineyard management practices, and edaphoclimatic conditions. However, there is still much about the in vivo formation of grape metabolites that need to be investigated. The winemaking process also can create distinct wines. Nowadays, wine fermentations are driven mostly by single-strain inoculations, allowing greater control of fermentation. Pure cultures of selected yeast strains, mostly Saccharomyces cerevisiae, are added to grape must, leading to more predictable outcomes and decreasing the risk of spoilage. Besides yeasts, lactic acid bacteria also play an important role, in the final wine quality. Thus, this chapter attempts to present an overview of grape berry physiology and metabolome to provide a deep understanding of the primary and secondary metabolites accumulated in the grape berries and their potential impact in wine quality. In addition, biotechnological approaches for wine quality practiced during wine alcoholic and malolactic fermentation will also be discussed.",book:{id:"5253",slug:"grape-and-wine-biotechnology",title:"Grape and Wine Biotechnology",fullTitle:"Grape and Wine Biotechnology"},signatures:"Fernanda Cosme, Berta Gonçalves, António Inês, António M. Jordão\nand Alice Vilela",authors:[{id:"60559",title:"Prof.",name:"Berta",middleName:null,surname:"Gonçalves",slug:"berta-goncalves",fullName:"Berta Gonçalves"},{id:"181011",title:"Dr.",name:"Alice",middleName:null,surname:"Vilela",slug:"alice-vilela",fullName:"Alice Vilela"},{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"},{id:"186820",title:"Prof.",name:"António",middleName:null,surname:"Inês",slug:"antonio-ines",fullName:"António Inês"},{id:"186821",title:"Prof.",name:"António",middleName:null,surname:"M. Jordão",slug:"antonio-m.-jordao",fullName:"António M. Jordão"}]},{id:"52244",title:"Aroma Compounds in Wine",slug:"aroma-compounds-in-wine",totalDownloads:3119,totalCrossrefCites:9,totalDimensionsCites:19,abstract:"Volatile aroma compounds are very important to grape wine quality. In order to understand the flavor of wine, a multitude of scientific investigations was carried out and a number of appropriate analytical tools for flavor study were developed in the past few decades. This chapter deals with major achievements reported in wine aroma and flavor. Firstly, we illustrate the existing knowledge on aroma compounds contributing to wine flavor, as well as the types of wine aroma compounds. Furthermore, the main factors affecting flavor quality in wine are discussed. Finally, the genomics and biotechnology of wine flavor are also summarized. This chapter broadens the discussion of wine aroma compounds to include more modern concepts of biotechnology and also provides relevant background and offers directions for future study.",book:{id:"5253",slug:"grape-and-wine-biotechnology",title:"Grape and Wine Biotechnology",fullTitle:"Grape and Wine Biotechnology"},signatures:"Fengmei Zhu, Bin Du and Jun Li",authors:[{id:"180555",title:"Dr.",name:"Fengmei",middleName:null,surname:"Zhu",slug:"fengmei-zhu",fullName:"Fengmei Zhu"},{id:"180943",title:"Dr.",name:"Bin",middleName:null,surname:"Du",slug:"bin-du",fullName:"Bin Du"},{id:"180945",title:"Prof.",name:"Jun",middleName:null,surname:"Li",slug:"jun-li",fullName:"Jun Li"}]},{id:"52240",title:"Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses",slug:"grapevine-biotechnology-molecular-approaches-underlying-abiotic-and-biotic-stress-responses",totalDownloads:2489,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Grapevine is one of the most abundant crops worldwide, with varieties destined for fresh and dry consumption, as well as wine production. Unfortunately, grapevine plants are affected by both biotic and abiotic stresses, generating significant economic losses. These conditions can negatively impact grape cultivation at different stages: plant and berry development during pre- and post-harvest, production, fresh fruit processing and export, along with wine quality. Most of the grapevine varieties are susceptible to several pathogens and within this chapter, particular attention is given to fungi (Botrytis cinerea and Erysiphe necator) and viruses, since they are a worldwide concern. Within the latter, special focus is given to the grapevine leafroll disease, a complex and destructive infection. On the other hand, abiotic stress is also relevant in grapevine, and in this chapter it will be exemplified by UV-B radiation and its impact on growth and fruit development, plant adaptive responses and its relationship with the quality of grape berries for winemaking. The main biotic and abiotic grapevine stress factors are reviewed in this chapter, considering a special focus on biotechnological approaches carried out in order to address them and minimize their detrimental consequences.",book:{id:"5253",slug:"grape-and-wine-biotechnology",title:"Grape and Wine Biotechnology",fullTitle:"Grape and Wine Biotechnology"},signatures:"Grace Armijo, Carmen Espinoza, Rodrigo Loyola, Franko Restovic,\nClaudia Santibáñez, Rudolf Schlechter, Mario Agurto and Patricio\nArce-Johnson",authors:[{id:"181474",title:"Dr.",name:"Patricio",middleName:null,surname:"Arce-Johnson",slug:"patricio-arce-johnson",fullName:"Patricio Arce-Johnson"},{id:"182101",title:"Dr.",name:"Grace",middleName:null,surname:"Armijo",slug:"grace-armijo",fullName:"Grace Armijo"},{id:"182102",title:"Dr.",name:"Carmen",middleName:null,surname:"Espinoza",slug:"carmen-espinoza",fullName:"Carmen Espinoza"},{id:"182108",title:"Dr.",name:"Rodrigo",middleName:null,surname:"Loyola",slug:"rodrigo-loyola",fullName:"Rodrigo Loyola"},{id:"186721",title:"Dr.",name:"Franko",middleName:null,surname:"Restovic",slug:"franko-restovic",fullName:"Franko Restovic"},{id:"186722",title:"MSc.",name:"Claudia",middleName:null,surname:"Santibáñez",slug:"claudia-santibanez",fullName:"Claudia Santibáñez"},{id:"186723",title:"MSc.",name:"Rudolf",middleName:null,surname:"Schlechter",slug:"rudolf-schlechter",fullName:"Rudolf Schlechter"},{id:"186724",title:"MSc.",name:"Mario",middleName:null,surname:"Agurto",slug:"mario-agurto",fullName:"Mario Agurto"}]},{id:"44143",title:"Production of Anthocyanins in Grape Cell Cultures: A Potential Source of Raw Material for Pharmaceutical, Food, and Cosmetic Industries",slug:"production-of-anthocyanins-in-grape-cell-cultures-a-potential-source-of-raw-material-for-pharmaceuti",totalDownloads:7962,totalCrossrefCites:24,totalDimensionsCites:72,abstract:null,book:{id:"3143",slug:"the-mediterranean-genetic-code-grapevine-and-olive",title:"The Mediterranean Genetic Code",fullTitle:"The Mediterranean Genetic Code - Grapevine and Olive"},signatures:"Anthony Ananga, Vasil Georgiev, Joel Ochieng, Bobby Phills and Violeta Tsolova",authors:[{id:"74792",title:"Dr.",name:"Joel W.",middleName:null,surname:"Ochieng",slug:"joel-w.-ochieng",fullName:"Joel W. Ochieng"},{id:"126149",title:"Dr.",name:"Anthony",middleName:null,surname:"Ananga",slug:"anthony-ananga",fullName:"Anthony Ananga"},{id:"136830",title:"Dr.",name:"Devaiah",middleName:null,surname:"Kambiranda",slug:"devaiah-kambiranda",fullName:"Devaiah Kambiranda"},{id:"137412",title:"Dr.",name:"Violetka",middleName:null,surname:"Tsolova",slug:"violetka-tsolova",fullName:"Violetka Tsolova"},{id:"165414",title:"Dr.",name:"Vasil",middleName:null,surname:"Georgiev",slug:"vasil-georgiev",fullName:"Vasil Georgiev"},{id:"165415",title:"Dr.",name:"Bobby",middleName:null,surname:"Phills",slug:"bobby-phills",fullName:"Bobby Phills"}]}],onlineFirstChaptersFilter:{topicId:"344",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:17,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X",scope:"\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"June 27th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",slug:"taufiq-choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",doi:"10.5772/intechopen.105528",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82270",title:"From Corporate Social Opportunity to Corporate Social Responsibility",doi:"10.5772/intechopen.105445",signatures:"Brian Bolton",slug:"from-corporate-social-opportunity-to-corporate-social-responsibility",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82339",title:"Green Human Resource Management: An Exploratory Study from Moroccan ISO 14001 Certified Companies",doi:"10.5772/intechopen.105565",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"green-human-resource-management-an-exploratory-study-from-moroccan-iso-14001-certified-companies",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82194",title:"CSR and Female Directors: A Review and Future Research Agenda",doi:"10.5772/intechopen.105112",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Sirimon Treepongkaruna",slug:"csr-and-female-directors-a-review-and-future-research-agenda",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Marketing",value:88,count:1,group:"subseries"},{caption:"Business and Management",value:86,count:7,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:303,paginationItems:[{id:"313921",title:"Dr.",name:"Hassan M.",middleName:null,surname:"Heshmati",slug:"hassan-m.-heshmati",fullName:"Hassan M. Heshmati",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313921/images/system/313921.jpg",biography:"Dr. Hassan Massoud Heshmati is an endocrinologist with 46 years of experience in clinical research in academia (university-affiliated hospitals, Paris, France; Mayo Foundation, Rochester, MN, USA) and pharmaceutical companies (Sanofi, Malvern, PA, USA; Essentialis, Carlsbad, CA, USA; Gelesis, Boston, MA, USA). His research activity focuses on pituitary tumors, hyperthyroidism, thyroid cancers, osteoporosis, diabetes, and obesity. He has extensive knowledge in the development of anti-obesity products. Dr. Heshmati is the author of 299 abstracts, chapters, and articles related to endocrinology and metabolism. He is currently a consultant at Endocrinology Metabolism Consulting, LLC, Anthem, AZ, USA.",institutionString:"Endocrinology Metabolism Consulting, LLC",institution:null},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. in Chemistry in July 2000, and his Ph.D. in Physical Chemistry in 2007 from the University of Khartoum, Sudan. In 2009 he joined the Dr. Ron Clarke research group at the School of Chemistry, Faculty of Science, University of Sydney, Australia as a postdoctoral fellow where he worked on the Interaction of ATP with the phosphoenzyme of the Na+, K+-ATPase, and Dual mechanisms of allosteric acceleration of the Na+, K+-ATPase by ATP. He then worked as Assistant Professor at the Department of Chemistry, University of Khartoum, and in 2014 was promoted to Associate Professor ranking. In 2011 he joined the staff of the Chemistry Department at Taif University, Saudi Arabia, where he is currently active as an Assistant Professor. His research interests include:\r\n(1) P-type ATPase Enzyme Kinetics and Mechanisms; (2) Kinetics and Mechanism of Redox Reactions; (3) Autocatalytic reactions; (4) Computational enzyme kinetics; (5) Allosteric acceleration of P-type ATPases by ATP; (6) Exploring of allosteric sites of ATPases and interaction of ATP with ATPases located in the cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, México. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 270 peer-reviewed papers, 32 book chapters, and 4 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:null,institution:null},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"428313",title:"Dr.",name:"Sambangi",middleName:null,surname:"Pratyusha",slug:"sambangi-pratyusha",fullName:"Sambangi Pratyusha",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"CGIAR",country:{name:"France"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"319576",title:"Prof.",name:"Nikolay",middleName:null,surname:"Boyadjiev",slug:"nikolay-boyadjiev",fullName:"Nikolay Boyadjiev",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v4b3cQAA/Profile_Picture_2022-06-07T08:30:58.jpeg",institutionString:null,institution:{name:"Medical University Plovdiv",institutionURL:null,country:{name:"Bulgaria"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:15,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:28,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:198,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:221,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:199,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"74615",title:"Diet-Epigenome Interactions: Epi-Drugs Modulating the Epigenetic Machinery During Cancer Prevention",doi:"10.5772/intechopen.95374",signatures:"Fadime Eryılmaz Pehlivan",slug:"diet-epigenome-interactions-epi-drugs-modulating-the-epigenetic-machinery-during-cancer-prevention",totalDownloads:381,totalCrossrefCites:0,totalDimensionsCites:1,authors:[{name:"Fadime",surname:"Eryılmaz Pehlivan"}],book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:{name:"University of Macau",institutionURL:null,country:{name:"Macau"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Alberto Masuelli",slug:"martin-alberto-masuelli",fullName:"Martin Alberto Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.png",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/19871",hash:"",query:{},params:{id:"19871"},fullPath:"/chapters/19871",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()