Sequences and features of some cell-penetrating peptides
1. Introduction
The application of embryonic stem (ES) cells to research and therapy has been a landmark development in science. Cell therapy using ES cells depends on the progress of the stable culture conditions and differentiation induction methods. ES cells were first obtained directly from inner cell masses (ICMs) of blastocysts by Evans and Kaufman (1981), and Martin (1981). These cells can self renew to produce stem cell itself and repopulate into many different tissues, including the somatic- and germ-cell lineages in chimeras (Bradley et al., 1984). After developing the methods for establishing the ES (mES) cell lines of mice, ES cell lines of other species including primates and human were also established (Thomson et al., 1995, 1998). Although ES cells can be obtained from 8-cell stage embryos or morula, they are more easily obtained from blastocyst stage embryos (Delhaise et al., 1996; Strelchenko et al., 2004). Now the sources of ES cells have been extended to include epiblast cells (Nichols and Smith, 2011) (Fig. 1).

Figure 1.
The origins of embryonic stem cell. A, blastomeres of 8-cell and morula stage embryos; B, inner cell mass of blastocyst; C, epiblast cells of implanting embryo.
2. Human and mouse embryonic stem cells
2.1. Mouse embryonic stem cell
mES cells have been used mainly in the generation of mutant mice and in investigating cellular differentiation and the physiological role of genes during embryogenesis and development. These things can be accomplished through gene targeting and transmission of the acquired characters. Transmission of foreign genes to the next generation can be accomplished with incorporation of foreign genes into the germ cell-lineage (Bradley et al., 1984; Wang et al., 1996). Specific gene deficient mice can be developed by manipulation of the genes in ES cells and introduce of ES cells into ICM (Hooper et al., 1987; Kuehn et al., 1987;Wang et al., 1996). Mutations targeting specific genes by homologous recombination in ES cells have been designed and initially achieved using hypoxanthine-guanine phosphoribosyl transferase (HPRT) (Doetschmann et al., 1987). Germ line transmission of a targeted mutation in a gene other than HPRT was first obtained with c-abl (Schwartzberg et al., 1989) and β2-microglobulin (Zijlstra et al., 1989). To date, several hundred genes have been disrupted by homologous recombination in ES cells. The application of these techniquesprovided a way to evaluate the physiological roles of specific genes in ontogeny. In addition, conditional knockout mice are developed using ES cells and are used to analyze gene functions in a specific tissue or developmental stage. These approaches have provided much novel information and several important tools to study human development including ES cell therapies.
2.2. Early data from embryonic carcinoma cells
Human ES (hES) cells have become a key word in basic sciences and applied sciences. Before the optimal conditions were established for ES cell cultures, most of the basic knowledge about ES cells came from studies on embryonic carcinoma (EC) cells (Jakob, 1984; Rossant and Papaioannou, 1984; Smolich and Papkoff, 1994). The first human EC cell line was established in vitro in 1985 (Sekiya et al., 1985). EC cells can spontaneously differentiate into somatic cells, germ cells and extraembryonic cells (Zákány et al. 1984), and have self-renewal ability (Andrews, 1987; Rosenstraus et al., 1984). During differentiation of EC cells into other cell types, proliferation is prerequisite, and apoptosis of EC cell derivatives accompany this process (Azizi et al., 2010; Mummery et al., 1984). After starting differentiation, the expression levels of some genes are determined at the levels of transcription and translation. In 1984, Schindler and Sherman reported the profile of protein and mRNA expression in murine EC cells, and the expression patterns of specific genes were explored during differentiation of EC cells (Scott et al., 1984; Silvan et al., 2009). Additionally, studies on proteins and carbohydrates have been performed to characterize the EC cells and their induced descendants (Amano et al., 2010; Andrews et al., 1984; Jemmerson et al., 1985). The role of the extracellular matrix is also examined during differentiation induction of EC cells (Grabel, 1984; Wartiiovaara et al., 1984) as the karyoplasm in EC cell gene expression (Gautsch, 1982). Differentiation induction of EC cells has been successful with various substances, such as retinoic acid, dibutyryl cyclic AMP (Jones-Villeneuve et al., 1983; Muramatsu and Muramatsu, 1983), dimethyl sulfoxide (Edwards et al., 1983) and coculture with specific cell types (Allin, 1984). Bell et al (1984) used growth factors to induce EC cell differentiation in target tissues.
2.3. Stemness and the differentiation of embryonic stem cells
Although ES cells share some characteristics with EC cells, they have important differences (Chamber and Smith, 2004). The in vitro developmental potency and differentiation of ES cells havebeen studied since themid-1980s. The developmental potency of ES cells was studied in vitro by Doetschman et al (1985). Additionally, the pluripotency and the characteristics of ES cells in vitro were analyzed in depth. ES cells lack differentiation-inhibitory activity (DIA) unlike cells of cell lines, and they can differentiate into a wide variety of cell types. ES cells have an apparently normal diploid karyotype during long-term culture, can extensively colonize embryos without causing tumors or developmental anomalies, and can form normal gametes when differentiated into the germ line (Kaufman et al., 1983; Martin, 1981; Suda et al., 1987). The purified and clonedmyeloid leukemia inhibitory factor (LIF) can exhibit DIA in the maintenance of competent mES cell lines (Smith et al., 1988; Williams et al., 1988). However, the requirement for maintaining stemness varies with the source of the ES cells. Primate ES cells stay in an undifferentiated state when grown on embryonic fibroblast feeder layers but differentiate or die in the absence of feeder cells, despite the presence of recombinant leukemia inhibitory factor (Thomson et al., 1995).
Studies on the differentiation of stem cells during organogenesis have a long history (Ruch, 1967). ES cell differentiation in vitro is controlled by exogenous factors, particularly paracrine factors (Heath and Smith, 1986; Spence et al., 2010). Various cell types can be induced from embryoid bodies using paracrine factors (Risau et al., 1988). During differentiation induction, various genes, such as genes of transcription factors, are up-regulated or down-regulated (Dyson et al., 1989). The up-regulated transcription factors trigger a series of gene expression changes for the formation of a specific cell type (Kopp et al., 2008).
3. Potency of embryonic stem cell in clinic
3.1. Sources of human embryonic stem cells
Through the accumulating knowledge on pluripotency and on the control of cellular differentiation, a fundamental understanding of developmental biology at the cellular and molecular levels has been expanded. It represents a gateway to major future clinical applications of these principles. The levels of transcription factors including nuclear receptors in ES cells are critical in the maintenance of stemness or differentiation of ES cells (Jeong and Mangelsdorf, 2009; Redshaw and Strain, 2010). Certain nuclear receptors are involved in the maintenance of ES cells in cooperation with Oct3/4, Nanog and Klf4 upon exogenous signals. Liver receptor homolog 1 (LRH1) and estrogen-related receptor beta (ERRβ) have functional roles in the maintenance of stemness of ES cells. On the other hand, germ cell nuclear factor (GCNF) and retinoic acid receptors (RARs) promote ES cell differentiation (Jeong and Mangelsdorf, 2009). The
In the late of 1990s the possibility of using ES cells for medicine was suggested (Gearhart, 1998). The use of stem cells in regenerative medicine already has a long history, for example, in bone marrowtransplantation and skin grafting. With the establishment of human embryonic stem (hES) cell lines, future clinical applications based on their developmental and regenerative abilities will become possible. hES cells were first established in 1998 by Thomson and colleagues. As in primate ES cells, the feeder layer seems essential for maintaining the hES cell lines. It is suggested that TGF-beta and myofibroblasts can support the propagation of hES cells in vitro (Kumar et al., 2010).
Previously, the source of hES cells was restricted to morula and blastocysts but this is no longer the case. In 2006, induced pluripotent stem (iPS) cells were generated from mouse embryonic or adult fibroblasts by the retrovirus-mediated introduction of four transcription factors, Oct3/4, sox2, c-Myc, and Klf4 (Takahashi and Yamanaka, 2006). In 2007, iPS cells were established from human fibroblasts via introduction by the same four factors (Takahashiet al., 2007), and by using a slightly different combination of genes (Yu et al., 2007). Human iPS cells are similar to human ES cells in many aspects, e.g., morphology and proliferation ability. Furthermore, mouse iPS cells are competent for adult chimeric mice and germline transmission. Growth potential, gene expression patterns, and the epigenetic status of iPS cells are similar to those observed in hES cells. iPS cells can differentiate into all three germ layers through embryoid bodies and to teratomas. In addition, they have been differentiated directly into neurons, beating cardiomyocytes in vitro (Carvajal-Vergara et al., 2010) and others (Liu et al., 2011).
3.2. Applied developmental biology
A fertilized mammalian oocyte is totipotent and develops into the fetus and placenta concurrently losing its totipotency. During cleavage, the transition from maternal to embryonic genome activation encompassed in early stage embryos and cleaving embryos can gain the competence to become blastocysts (Hamatani et al., 2004). The competency to accomplish implantation and further development is gained during the periimplantation stages. For that process, the epithelium like structure, trophectoderm is formed and interacts with the epithelium of the uterine endometrium. On the other hand, the cells isolated within the blastoceol become inner cell mass (ICM) (Johnson and Mcconnell, 2004). ICM is a mass of cells having pluripotency and its cells can differentiate into all cell types of adult and extraembryonic membranes (Fernanez-Tresquerres et al., 2010). In specific in vitro conditions, ICM cells can keep their potency and maintain their proliferation ability (Yamanakaet al., 2006).
Grouped cell movement and sequential spatio-temporal expressions of gene sets was observed after implantation. As a consequence of gastrulation, the embryos have three germ layers, endoderm, mesoderm and ectoderm (Hassoun et al., 2010; Luxardi et al., 2010). This process is accomplished with the forming of the axis (Rocha et al., 2010). For example, Med12, a large protein complex of 30 subunits interacting with transcription factors, is essential in correct Wnt/β-catenin and Wnt/planar cell polarity signaling (Rocha et al., 2010; Taatjes et al., 2004).
Most cells of embryos are eventually committed through triggering to a particular developmental pathway from which they rarely depart (Belting et al., 2004). Cell determination is a stepwise process, and that full determination is preceded by a state of bias. This bias is either conformed or modified through cell interactions later in development. It is accomplished through community effect, lateral inhibition among equivalent cells, and embryonic induction which is the interaction between nonequivalent cells (Artavanis-Tsakonas et al., 1999). The determined state is almost stably passed on during mitosis. These are matched with the default progression and/or induced progression.
A specific type cell is derived from a preexisting progenitor or stem cell for the specific area (Belting et al., 2004; Frieberg, 1996). Designed modification of a group of ES cells to a specific cell type is mostly achieved by step by step induction through morphogens or intracellular signaling molecules as shown during organogenesis (Osakada and Takahashi, 2011). The accumulation of knowledge regarding tissue genesis and organogenesis during gastrulation will give rise to the accomplishment of goals across other fields.
The revolutionary advances in developmental biology have extended the utility of ES cells to both therapy and industry. As applied to the study of developmental biology (Lehtonen et al., 1989), the stemness and developmental potency of ES cells can be applied to various fields of medicine (Gearhart, 1998;Saxena et al., 2010). Thus far, stem cell biology has focused on identifying novel pathways such as those that maintain pluripotency and induce specific cell types. However, to date, it is not yet feasible to use ES cells in medicine or to strictly control their differentiation to a specific cell type in humans. To readily apply ES cells in therapy or other industries, the improvement of efficient protocols to direct stem cell differentiation into well-defined lineages is critical (Heng et al., 2004).
4. Approaches to modulate embryonic stem cell properties
To obtain a specific cell type, it is critical to understand the interactions of multiple genes and the associated factors that are involved in the differentiation and de-differentiation of ES cells. When we use inducers to generate a specific cell type from the embryoid body (EB) or directly from ES cells, it is difficult to generate single cell types at one time (Lu et al., 2009; Park and Lee, 2007). As shown in gastrulation and organogenesis, most morphogens and inducers are secreted into the intercellular fluid and into induced concentration-dependent specific gene expressions in neighboring cells (Wolpert, 1978). Therefore, in most cases of induction by inducer, unexpected results can occur during the induction of a cell type from an ES cell or embryoid bodies (EBs).
Selective activation of the gene sets is essential to get a unique function of a specific cell. One of the best ways to accomplish this is through the delivery of a construct which contains target genes and expression-control sequences (Ishizaka et al., 2002). Among them intracellular signaling mediators and transcription factors are key molecules to get a specific cell type and they are main target for differentiation induction. To meet these requirements, many experimental conditions and gene delivery systems have been used. However, ES cells cannot be translocated to high affinity variable regulators such as a molecule of DNA, RNA or proteins. To overcome this problem, various approaches have been developed. When we classified according to their characteristics, mediators are either chemical, physical, or viral.
Induced pluripotent stem cell (iPS) is a good example of a cell type in which transgene delivery and induction by transcription factors has been successful (Meissner et al., 2007; Park et al., 2008).However, those strategies introduce changes in DNA sequences or disorder in genomic equivalence. Moreover, viral systems are suspected to have life-threatening effects of immunogenicity and carcinogenicity. In addition, the efficiency of gene transfer in hES cells is still poor compared with other cell lines (Cao et al., 2010; Wasungu and Hoekstra, 2006).
For these reasons, many scientists hesitate to use these strategies in medicine and have searched for new ways to control ES cell differentiation. Functional protein is easily turned over in the cytoplasm and regulates the function of a cell without disturbing the genetic background. Therefore, if we develop an easy way of introducing the transcription factors, intracellular signaling molecules or drug molecules into ES cells, ES cells will become a safe medicine.
4.1. Delivery of nucleotides in to ES cells
Introduction of regulating DNA or RNA into ES cells can be mediated by chemicals. Leaped progress in chemical mediated method has led to successful expression-construct delivery. Chemical mediators include diethylaminoethyl-dextran (DEAE-D), calcium phosphate, cationic lipid (liposome), cationic polymer, polylysine, histone, chitosan and peptides.
The delivery of DNA or RNA with calcium phosphate was developed by Graham and van der Eb (1973) and has become a common method (Marucci et al., 2011). The mixture of DNA construct, calcium ion and phosphate are presented to cells in culture and the cells import the mixture through endocytosis. DEAE-D was developed by Pagano and Vaheri in 1965 for enhancing the infectivity of poliovirus RNA for cell culture. DEAE-D is a polycation, and the mixture of DNA and DEAE-D is positively charged. It is known that the mixtures are transferred into cytoplasm through endocytosis. Cationic lipids for DNA-transfection procedures were developed in 1987 (Felgner et al., 1987) and have become one of the most common methods (Templeton et al., 1997). Cationic lipids form liposome and the surface of liposome is positively charged. Cationic polymers are a group of highly water-soluble molecules such as polyethyleneimine (PEI) and dendrimers (Boussif et al., 1995; Dunlap et al., 1997). There are several types of cationic polymers; linear (polylysine, spermine, and histone), branched (polyethyleneimine, dendrimers) and spherical (Chitosan) (Zhao et al., 2006). Cationic polymer self-assemble with DNA and generate tortoidal or spherical particles (Tang and Szoka, 1997). Polyplexes are engulfed by cells. Cationic peptide carriers are a new development and are expected to have an important role in gene delivery in vivo and in vitro. The peptides bind with DNA through ionic interaction to the phosphate backbone and additional noncovalent bonds. The transport mechanisms are endosomolytic (Chen et al., 2001) or membrane-penetrating (Xia et al., 2001). This method is not commonly used to carry the DNA or RNA constructs but the modular design of proteins is a good method for gene delivery (Xavier et al., 2009).
Among the chemical mediated methods, mostly cationic lipids are employed in ES cells (Liou et al., 2010; Ma et al., 2004). One of the merits of the cationic lipid methods is that it is simple to apply. Methods which are optimized to ES cells or EB are a developing field (Liou et al., 2010; Ma et al., 2004; Villa-Diaz et al., 2010). In the case of the other chemical mediators, the efficiency is quite low or inadaptable to ES cells (Hong et al., 2004). On the other hand, combined methods are developed in ES cells such as peptide-liposome (Torchilin et al., 2003)
On the other hand, physical forces such as, pressure, sound, shock, wave, or electrical pulse are used to deliver constructs. The history of using physical methods for gene delivery is relatively short. The good points of these methods are saving cost, reducing risk through the large amount of DNA, and standardizing the quantity and procedure of gene delivery. The restriction of physical delivery includes restriction of delivery into the nucleus and internal organs or tissues that are difficult to reach. The microinjection method is one widely used procedure to delivery DNA or RNA constructs directly into the cells. Using injection pipette the constructs are introduced into the cytosol or microorganells of the target cell and it makes it possible to study the complicated cellular processes, structure, and function. Usually direct DNA inoculation by conventional needle injection and hydrodynamics deliver the naked plasmid DNA into cells, tissues or organs in vivo. These are very restricted, so far (Davis et al., 1993; Zhang et al., 1999). The genetic shotgun was introduced for gene delivery in 1990 (Armaleo et al., 1990). In this protocol, microscopic tungsten spheres are used to deliver DNA or RNA constructs. This method has been used to transfect plants cells, muscle cells, and various cultured cells including epithelial cells, endothelial cells, and monocytes (Chou et al., 2004). Gene delivery using electroporation is the most versatile method and can be applied to a wide variety of cell types. A short-pulsed electric field can result in the cellular uptake of DNA. Ultrasound is another physical energy source to open the membrane. Using this energy, new gene delivery methods have been developed. It facilitates the transfer of DNA into cells and across tissues. Its efficiency is very high and intraturmoral injection of DNA followed by focused ultrasound increased the expression of the target gene (Watanabe et al., 2010). The polymer-encapsulated microsphere delivery system developed the DNA construct in a manner of controlled drug-delivery. It can deliver the constructs in a manner that has site-specificity, is nuclease-safe, and provides a sustained release of DNA without repeated administration (Little et al., 2004). Polymer-encapsulated microsphere delivery may be useful in therapy in vivo (Little et al., 2004).
Among the physical force mediated transduction methods, electroporation has been used as a standard transfection method for mES cells because its efficiency is quite high (Ma et al., 2004). However, its use has also been limited because the viability of the transfected cells is quite low (Matsuoka et al., 2007;Svingen et al., 2009). The other limit is that ES cells have to located in a spedific chamber to get treatment. However, with the progression of the electroporation system, it is possible to get a large fraction of transiently transfected cells with minimal loss of cell viability and pluripotency (Moore et al., 2010). The microinjection method, conventional needle injection, hydrodynamics deliver, genetic shotgun, ultrasound and polymer-encapsulated microsphere delivery systems are not yet commonplace and, although further research is needed, it is expected that physical mediators will be good tools for working with ES cells.
Virus mediate foreign gene delivery is observed in nature. Viruses have host specificity and the efficiency of viral infection can be increased by higher titers while avoiding immunosurveillance by an infected host. Using those characteristics, viral genomes have been developed as gene-delivery vehicles, since the early 1980s (Berkner, 1988; Shimotohno and Temin, 1981). Viral vectors include the adenoviruses, adeno-associated viruses, herpes simplex viruses, baculoviruses, lentiviruses, retroviruses and alphaviruses (Robbins and Ghivizzani, 1998; Couto and High 2010). The characteristics of vectors are dependent on their origins. Varial mediated gene delivery is a powerful method used with ES cells. iPS cells are a good example of viral mediate gene delivery of functional DNA constructs (Meissner et al., 2007; Park et al., 2008).
4.2. Delivery of functional proteins
DNA constructs are powerful mediators for induction of ES cell differentiation. However, genetic modification by exogenous DNA construct can cause unidentified side effects. The development of a safe and efficient differentiation controller is, therefore, an urgent requirement for the effective implementation of stem cells in therapy and industry. As an efficient differentiation controller, functional proteins such as signal transduction proteins and transcription factors are suggested, because they degrade rapidly in physiological condition and can maintain or modulate the cell types.
The molecular size of the protein is huge compared with the amino acid and cannot freely pass the cell membrane or nuclear membrane. To deliver proteins, cationic lipids and cationic polymers also have been applied (Murthy et al., 2003; Verdurmen and Brock, 2011). However, their translocation efficiency is variable, depending on the cell type and the size and quality of the mixtures. Besides, the functional proteins cannot be translocated into the karyoplasms. Peptides are also a useful candidate for the translocation of peptides into cytoplasm but it also has limitations in medical or biological application. However, they have aroused great interest and have continuouslyprogressed.
Cell-penetrating peptides (CPPs) are synthesized peptides derived from various proteins. CPPs can transport small molecules, peptides and proteins in the form of recombinants and mixtures (Sawant and Torchilin, 2010). Some transcription factors have a domain with strongly basic heteropeptides, containing at least four arginines and lysines, which functions as a nuclear localization signal (Boulikas, 1994; Henkel et al., 1992).
Applying CPPs to basic sciences, medicine and industry has been attempted. CPPs can translocate a specific protein into the cytoplasm in mixed form or recombinant protein form. Using a recombinant cell-permeable Cre protein (His-TAT-NLS-Cre), recombination can be efficiently induced in mES cell-derived cells. Fortunately, the permeable Cre protein has no overt side effects on proliferation and neural differentiation (Haupt et al., 2007). Yang and colleagues (2009) worked with a library of poly-(beta-amino ester) end-modified derivatives. These derivatives were developed and optimized for high transfer efficiency in hES cell-derived cells, human adipose-derived stem cells (hADSCs) and human mesenchymal stem cells (hMSCs). In the presence of 10% serum, the transfer efficiency was 27 ± 2% in hMSCs, 24 ± 3% in hADSCs and 56 ± 11% in hSECds (Yang et al., 2009). Recently human iPS cells were successfully established with CPP-conjugated reprogramming proteins (Kim et al., 2009). However, the importation efficiency was poor.
CPP | Cys-CPP Sequence | Numer of | Class of CPP | |
Lys | Arg | |||
Tat-PTD | GRKKRRQRRRPPQ | 2 | 6 | Cationic |
Penetratin (ATF) | RQIKIWFQNRRMKWKK | 4 | 3 | Cationic |
M918 | MVTVLFRRLRIRRASGPPRVRV | 0 | 7 | Cationic |
KALA | WEAKLAKALAKALAKHLAKALAKALKACEA | 7 | 0 | Cationic |
R7 | RRRRRRR | 0 | 7 | Cationic |
R8 | RRRRRRRR | 0 | 8 | Cationic |
R11 | RRRRRRRRRRR | 0 | 11 | Cationic |
MAP | KLALKLALKALKAALKLA | 5 | 0 | Amphipathic |
pEP-1 | KETWWETWWTEWSQPKKKRKV | 5 | 1 | Amphipathic |
Buforin 2 | TRSSRAGLQFPVGRVHRLLRK | 1 | 5 | Amphipathic |
Transportan 10 (P10) | AGYLLGKINLKALAALAKKIL | 4 | 0 | Chimeric |
Transportan | GWTLNSAGYLLGKbINLKALAALAKKIL | 4 | 0 | Chimeric |
pVec | LLIILRRRIRKQAHAHSK | 2 | 4 | Chimeric |
K-FGF | AAVALLPAVLLALLAP | 0 | 0 | Hydrophobic sequences |
β3-S | AAVALLPAVLLALLAP | 0 | 0 | Hydrophobic sequences |
SynB1 | RGGRLSYSRRRFSTSTGR | 0 | 6 | Antimicrobial sequence |
NLS | ALWKTLLKKVLKAPKKKRKVC | 8 | 1 | Antimicrobial sequence |
Table 1.
: attachment of Cys(Npys) on the
To promote the transduction of functional proteins into cytoplasm and karyoplasms of ES cells, the transduction abilities of various types of CPPs have been analyzed in mES cells (Jung et al., 2007). In these studies, the effects of the site ofthe CPP and the His tag in functional recombinant proteinwere first analyzed. We chose two expression vectors, one with an N-terminal His tag (6xHis-tag) and the other with a C-terminal tag (Fig. 2). Buforin 2 cannot mediate the translocation of conjugated EGFP into the cytoplasm of R1 mES cells whether the His tag is located N-terminally (Buforin 2-EGFP-N) or C-terminally (Buforin 2-EGFP-C). In contrast, pEP-1-EGFP-N translocates into the cytoplasm of R1 ES cells but pEP-1-EGFP-C does not. pEP-1-EGFP-C mainly localized at the plasma membrane. The translocational efficiency of a CPP depends on the amino acid sequence and the length of the CPP. Buforin 2 is a 21-residue peptide containing a +7 net charge (TRSSRAGLQFPVGRVHRLLRK) and is a membrane-permeabilizing antimicrobial peptide (Takeshima et al., 2003). Its structure is amphipathic, consisting of an N-terminal random coil region, an extended helical region, a hinge, and a C-terminal regular α-helical region. The membrane permeability is dependent on the α-helical content of the peptides (Park et al., 2000). Although it efficiently translocates into HeLa cells (Takeshima et al., 2003), it can-not penetrate ES cells whether the 6xHis-tag is located N-terminally or C-terminally (Fig. 3). In HeLa cells, buforin 2-mediated translocation of proteins is concentration-dependent but temperature-independent (Takeshima et al., 2003). pEP-1 is a 21-residue peptide with a +6 net charge (KETWWETWWTEWSQPLKKRKV), and is a membrane-permeabilizing antimicrobial peptide and is amphipathic. pEP-1 can be translocated into cytoplasm and karyoplasms of R1 mES cells when the 6x His is located N-terminally (pEP-1-EGFP-N), as in COS-7 cells (Petrescu et al., 2009), but pEP-1-EGFP-C cannot penetrate the R1 cell membrane (Fig. 3) (Jung et al., 2007). The translocation of Buforin 2-EGFP-N, Buforin 2-EGFP-C, pEP-1-EGF-N and pEP-1-EGF-C does not depend on their concentrations (Fig. 4) (Jung et al., 2007). Translocation into the cell by pEP-1 dose not depend on energy (Henriques et al., 2007). It is suggested that electrostatic interactions are most important in the pEP-1 membrane interactions (Henriques et al., 2007). Although both Buforin 2 and pEP-1 are amphipathic, their translocation effects in ES cells differ. Additionally, the penetration affinity of pEP-1 is changed by the 6xHis-tag. Based on these observations, it is suggested that the N-terminal location of His on pEP-1 is responsible for its cell-penetrating efficiency. Therefore, the penetration effects of CPPs in ES cells are different from other cell types, such as epithelial-derived cell lines or stroma-derived cell lines (Jung et al., 2007; Petrescu et al., 2009; Takeshima et al., 2003).
Although 6xHis-tag is important in the efficiency of pEP-1 penetration into ES cells, the best strategy to express functional proteins in cells is to use a vector with a C-terminal tag. Based on the previous analysis, R7, MAP, pVec, K-FGF and yPFY were chosen as CPP and analyzed for their ability to transport EGFP through the plasma membrane of ES cells. R7 is an arginine-rich peptide with a +7 net charge. pVec is an 18-amino-acid peptide with a +8 net charge and is derived from the murine vascular endothelial-cadherin protein (Elmquist et al. 2010; Hällbrink et al., 2001). N-terminal hydrophobic part of pVEC is crucial for efficient cellular translocation (Elmquist et al., 2006). MAP (KLAL, model amphipathic

Figure 2.
Constructs of recombinant EGFP, CPP-EGFP-N and Pep-1-EGFP-C. In this construct, we wanted to use 6xHis-tag for purify and identification. Because it is known that 6xHis-tag usually do not disturb the formation of 3-dimensional structure and function of gene products. It is possible that His has + charge and it can effect on the role of CPP. Therefore we tested the possible effects of 6x His on the ability of CPPs.

Figure 3.
Translocation of EGFP-N and -C (A-1 and A-2, respectively), Buforin 2-EGFP-N and -C (B-1 and B-2, respectively), and pEP-1-EGFP-N and -C (C-1 and C-2, respectively) into R1 mES cells 24 hr after treatment. In natural culture condition, EGFP could not pass the cell membrane and the R1 ES cell did not take it through endocytosis. Site of 6xHis-tad did not give effect on the Buforin-2 transduction ability in mES cells but it gave effect on the pEP-1 transduction ability in mES cells.

Figure 4.
Efficiency of transfection depends on the kinds ofbut independent on the concentration of Buforin 2 and pEP-1-EGFPs. CPP-EGFPs were administered at various concentrations (1; 5μg/ml, 2; 50 μg/ml; 3; 500 μg/ml) and observed after 12 hr. Vehicle (A), EGFP(B) and EGFP (B-b), Buforin 2-EGFP(C), pEP-1-EGFP (D) was administered to R1 mES cells and detected using confocal microscopy. -a means the N terminal 6xHis-tag and –b means the C terminal 6xHis-Tag.
peptide) is an amphipathic helical peptide with a +5 net charge (Hällbrink et al., 2001). A positive charge as well as helicity and amphipathicity are all required for efficient translocation (Wolf et al., 2006). K-FGF and yPFY have no net positive charge. In our laboratory, pET-20b(+)deXhoI modified of pET-20b was used to construct CPP-EGFPs. To get the recombinant CPP-EGFPs,
Recently, it was discovered that R7 mediates the translocation of functional proteins into the cytoplasm of stem cells (Jo et al., 2010). Short-form human ESRRB was cloned in R7-pET-20b(+)deXhoI, and recombinant RT-ESRRB was purified in BL21(DE3)pLysS. R7-ESRRB-6xHis successfully translocated into the cytoplasm and karyoplasm (Fig. 6), and increased the expression of OCT4, NANOG and SOX2 (Fig. 7).

Figure 5.
Translocation of CPP-eGFP into R1 ES cells.(A-F) mES cells were treated with 10ng/ml EGFP(A), R7-EGFP (B), yPFY-EGFP (C), MAP-EGFP (D), K-FGF-EGFP (E), or pVec-EGFP (F) for 6 hr at 37ºC. After treatment, all cells were stained with propidium iodide. 1 is eGFP images and 2 is the merged images.

Figure 6.
R7-hESRRB-His6 protein can penetrate the plasma membrane within 5 hr after treatment and are completely localized in the nucleus within 24 hr after treatment.(A-C) the cells were not treated with R7-hESRRB-His6 protein but were immunostained with anti-His-Taq(6X) antibody; (D-F) the cells were immunostained with anti-His-Taq(6X) antibody 5 hours after treatment with R7-hESRRB-His6 protein; (G-I) the cells were immunostained with anti-His-Taq(6X) antibody 24 hours after treatment with R7-hESRRB-His6 protein. Images were captured using a confocal microscope(Carl Zeiss LSM 510 META, Zeiss, Jena, Germany) at ×1,000 magnification.

Figure 7.
Treatment with R7-hESRRB-His6 protein for 8days (192 hr) increases the expression of OCT4, NANOG and SOX2. A,real-time PCR for the expression of OCT4, NANOG and SOX2; B,agarose gel electrophoresis and EtBr staining after real-time PCR. Statistically significant differences between each group are denoted by different letters (P<0.05)
4.3. Usage of nanobeads as carriers of functional proteins
The amount of translocated functionalprotein is also an important factor in directing the induction of ES cells into specific cell types or maintaining ES cell stemness. In addition, the stability of the CPP-proteins is limited under physiological conditions. The translocation of CPP-proteins into cytoplasm can be inhibited by serum (Furuhata et al., 2006). Therefore, to control ES cell differentiation, it is necessary to regulate the amount of translocated functional protein. To prolong the lifespan of CPPs or CPP-conjugates, they have been modified but this approach has limits (Grunwald et al., 2009).
Recently, nanoparticle techniques have been applied to medicine. Due to the physical and chemical characteristics of nanoparticles, they are more effective at targeting difficult-to-reach sites and have a better side effect profile. Hence, smaller doses of nanomedicines are needed to achieve the same therapeutic effect (Hock et al., 2011; Kuai et al., 2010; Neundorf, 2008). These advantages of nanoparticles as carriers are also evident in the study of ES cells. Poly(β-amino esters) can fulfill the role of translocation mediator of a VEGF plasmid into hES cells (Yang et al. 2009). A chimeric protein, GFP-FRATtide, attached to a hydrophobically modified 15-nm silica nanoparticle is efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells (Shah et al., 2011). Tran and colleagues studied the effects of nanoparticles on morphologicaldifferentiation in mES cells (Tran et al., 2007). However, so far, the efficiency of this technique is not high in ES cell studies.
Another strategy to use nanoparticles is to apply the metabolic characteristics of ES cells and the characteristics of membranes to the nanoparticles. ES cells can use glucose and require glucose for further development. During the development of preimplantation embryos, the mammalian embryo needs a constant supply of energy substrates to remain viable. Usually, mammalian oocytes receive substrates, especially energy substrates, from the oviduct and uterus because they do not store much substrate in the cytoplasm during oogenesis. Glucose, lactate and pyruvate are essential components in preimplantation embryo culture media, and there are stage-specific preferences for them. Glucose may permit the expression of metabolic enzymes and transporters in compacting morula that are capable of generating the energy required for blastocyst formation.In addition, metabolites of glucose may be involved in cellular activity during the development of preimplantation embryos. Periimplantation embryos need glucose (Biggers and Summers, 2008). Therefore, ES cells can take up glucoseaswell as glycated proteins. Glucose-coated polymeric nanobeads have been prepared by dispersionpolymerization (Jung et al., 2009). As a model protein, enhanced green fluorescent protein wasligated to the nanobeads and successfully translocated into mES cells (Fig. 8, Fig. 9). It is suggested that glucose-coated nanobeads could be a general cargo for the intracellulardelivery of various macromolecules in ES cells.

Figure 8.
Translocation experiments of the EGFP-ligated beads into R1 mouse embryonic stem cells.A, the confocal microscopic images.1-a and 1-b, cells treated with EGFP alone; 2-a and 2-b, cells treated with non-coated beads; 3-a and 3-b, cells treated with 5%-glucose-coated beads; 4-d and 4-m, cells treated with 10%-glucose-coated beads; 1-a, 2-a, 3-a, and 4-a are dark field images; 1-b, 2-b, 3-b, and 4-b are merged images (dark-bright fields). The merged images show that the cells are localized at the fluorescent regions. B, the relative intensities of the translocated EGFP. The intensities were measured using confocal microscopy (average ± SD; the measurements were repeated seven times and averaged).

Figure 9.
TEM photomicrograph of EGFP-ligated glucose beads in R1 mouse embryonic stem cells. Arrows indicate the translocated beads.
In addition, these nanobeads could be more stable in the blood stream and tissue fluids compared than CPPs. On the other hand, if we add more functions in nanobeads, it can be carry a designed amount of functional protein. For example, shuttle signaling and self degradation can be helpful. To apply glucose nanobeads to in vitro and in vivo systems, further studies are needed, such as optimizing their homing and controlling the transporting amounts in karyoplasms and cytoplasm.
5. Summary
ES cells have been used to study the differentiation of various cell types and tissues in vitro, such as neural cells, hematopoietic lineages, cardiomyocytes, hepatocytes, β-cells, and epithelium. In addition, ES-derived cells have been successfully transplanted into fetal and adult mice, where they have demonstrated morphological and functional integration (Kennedy et al., 1997). However, their use is still in the beginning stages in humans. It is difficult to translate laboratory advancements to human therapy because there are many obstacles to using ES cells in medicine (Piscaglia et al., 2010;Rossi et al., 2010). DNA construct mediated induction of ES cell-differentiation can cause unexpected side effects in the body. Therefore the bestway is to use the functional proteins which regulate cellular characteristics such as transcription factors. Those factors can express their functional role, when they are located in proper sites, cytoplasm or karyoplasms. CPPs can be transported into cytoplasm and karyoplasms.
This means that a membrane penetrating carrier is needed for the protein-application to get a specific cell type from ES cells. Based on this, CPP may be a clue to get such a goal. A nanobead which can easily translocate the cell membrane is also a clue to achieve such a goal. Although to apply the CPPs or specific nanoparticle-cargo in cell therapy using protein, further studies are needed. These studies would open up new methods of therapy which are safe and economic. However, research on all aspects of ES cell biology will soon overcome these obstacles and make their use in therapy more safe and effective.
References
- 1.
Allin EP. 1984 Induction of differentiation in mouse embryonal carcinoma cell lines by coculture with rat glioma cells. Cell Mol Biol30 377 384 - 2.
Amano M. Yamaguchi M. Takegawa Y. Yamashita T. Terashima M. Furukawa J. Miura Y. Shinohara Y. Iwasaki N. Minami A. Nishimura S. 2010 Threshold in state-specific embryonic glycotypes uncovered y a full portrait of dynamic N-glycan expression during cell differentiation. Mol Cell Proteomics9 523 537 - 3.
Andrews PW. 1987 Human teratocarcinoma stem cells: glycolipid antigen expression and modulation during differentiation. J Cell Biochem35 321 332 - 4.
Andrews P. W. Banting G. Damjanov I. Arnaud D. Avner P. 1984 Three nonoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma3 347 361 - 5.
Armaleo D. Ye G. N. Kein T. M. Shark K. B. Sanford J. C. Johnston S. A. 1990 Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr Genet17 97 103 - 6.
Artavanis-Tsakonas S. Md Rand Lake. R. J. 1999 Notch signaling: Cell fate control and signal intergration in development.Science284 770 776 - 7.
Azizi H. Mehrjardi N. Z. Shahbazi E. Hemmesi K. Bahmani M. K. Baharvand H. 2010 Dehydroepiandrosterone stimulates neurogenesis in mouse embryonal carcinoma cell- and human embryonic stem cell-derived neural progenitors and induces dopaminergic neurons. Stem Cells Dev19 809 818 - 8.
Balayssac S. Burlina F. Convert O. Bolbach G. Chassaing G. Lequin O. 2006 Comparison of penetratin and other homeodomain-derived cell-penetration peptides: interaction in a membrane-mimicking environment and cellular uptake efficiency. Biochemistry45 1408 1420 - 9.
Bell S. M. Aspinall R. Stern P. L. 1984 Enrichment of rat NK cytotoxicity for H2-negative murine embryonal carcinoma cells by panning and short-term culture in TCGF.53 23 32 - 10.
Belting M. Dorrell M. I. Sandgren S. Aguilar E. Ahamed J. dorfleutner A. Carmeliet P. BM Mueller Friedlander. M. Ruf W. 2004 Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nat med10 502 509 - 11.
Berkner KL. 1988 Development of adenovirus vectors for the expression of heterologous genes. Biotechniques6 616 629 - 12.
Biggers ID, Summers MC. 2008 Choosing a culture medium: making informed choices. Fertil Steril90 473 483 - 13.
Boulikas T. 1994 Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem55 32 58 - 14.
Boussif O. Lezoualch F. MA Zanta Mergny. MD Scherman D. Demeneix B. Behr J. P. 1995 A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A92 7297 7301 - 15.
Bradley A. Evans M. Kaufman M. H. Rovertson E. 1984 Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature309 255 256 - 16.
Cao F. Xie X. Gollan T. Zhao L. Narsinh K. Lee R. J. Wu J. C. 2010 Comparison of gene-transfer efficiency in human embryonic stem cells. Mol Imaging Bio12 15 24 - 17.
Carvajal-Vergara X. Sevilla A. D’Souza S. L. Ang Y. S. Schaniel C. Lee D. F. Yang L. Kaplan A. D. Adler E. D. Rozov R. Ge Y. Cohen N. Edelmann L. J. Chang B. Waghray A. Su J. Pardo S. Lichtenbelt K. D. Tartaglia M. Gelb B. E. Lemischka I. R. 2010 Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature465 808 812 - 18.
Chambers I. Smith A. 2004 Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene23 7150 7160 - 19.
Chen Q. R. Zhang l. Stass A. Mixson A. J. 2001 Branched co-polymers of histone and lysine are efficient carriers of plasmids. Nucleic Acids Res29 1334 1340 - 20.
Chou T. H. Biswas S. Lu S. 2004 Gene delivry using physical methods; an overview. Methods Mol Biol245 147 166 - 21.
Christophersen NS, Helin K. 2010 . Epigenetic control of embryonic stem cell fate. J Exp Med 207:2287-2295 - 22.
Chugh A. Eudes F. Shim Y. S. 2010 Cell-penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life62 183 193 - 23.
Couto LB, High KA. 2010 Viral vector-mediated RNA interference. Curr Opin Pharmacol.10 534 542 - 24.
Davis HL, Whalen RG, Demeneix BA. 1993 Direct gene transfer into skeletal muscle in vivo; factors affecting efficiency of transfer and stability of experession. Hum Gene Ther4 151 159 - 25.
Delhaise F. Bralion V. Schuurbiers N. Dessy F. 1996 Establishment of an embryonic stem cell line from 8-cell stage mouse embryos. Eur J Morphol34 237 243 - 26.
Dietz GP. 2010 Cell-penetrating peptide technology to deliver chaperones and associated factors in diseases and basic research. Curr Pharm Biotechnol11 167 174 - 27.
Dietz G. P. H. Bähr M. 2005 Peptideenhanced cellular internalization of proteins in neuroscience. Brain Res Bull68 103 114 - 28.
Doetschman T. C. Eistetter H. Katz M. Schmidt W. Kemler R. 1985 The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morpho87 27 45 - 29.
Doetschman T. Gregg R. G. Maeda N. Hooper M. L. Melton D. W. Thompson S. Smithies O. 1987 Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature330 576 578 - 30.
Dunlap D. D. Maggi A. Soria M. R. Monaco L. 1997 Nanoscopic structure of DNA condensed for gene delivery, Nucleic Acids Res25 3095 3101 - 31.
Dyson P. J. Poirier F. Watson R. J. 1989 Expression of c-myb in embryonal carcinoma cells and embryonal stem cells. Differentiation42 24 27 - 32.
Edwards MK, Harris JF, McBurney MW. 1983 . Induced muscle differentiation in an embryonal carcinoma cell line. Mol Cell Biol 3:2280-2286 - 33.
Elmquist A. Hansen M. Langel U. 2006 Structure-activity relationship study of the cell-penetrating peptide pVEC. Biochem Biophys Acta1758 721 729 - 34.
Elmquist A. Lindgren M. Bartfai T. Langel U. 2010 VE-cadherin derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res269 237 244 - 35.
Evans MJ, Kaufman MH. 1981 Establishment in culture of pluripotential cells from mouse embryos. Nature292 154 156 - 36.
Felgner P. L. Gadek T. R. Holm M. roman R. Chan H. W. Wenz M. Northrop J. P. Ringold G. M. Danilsen M. 1987 Lipofection: a highly efficient, lipid-meidated DNA-transfection procedure. Proc Natl Acad Sci U S A84 7413 7417 - 37.
Fernanez-Tresquerres B. Canon S. Rayon T. Parnaute B. Crespo M. Torroja C. Manzanares M. 2010 Evolution of the mammalian embryonic pluripotency gene regulatory network. Proc Natl Acad Sci USA107 19955 19960 - 38.
Freiberg RA, Spencer DM, Choate KA, Peng PD, Schreiber SL, Crabtree GR, Khavari PA. 1996 Specific triggering of the Fas signal transduction pathway in normal human keratinocytes. J Biol Chem271 31666 31669 - 39.
Furuhata M. Kawakami H. Toma K. Hattori Y. Maitani Y. 2006 Intracellular delivery of proteins in complexes with oligoarginine-modified liposomes and the effect of oligoarginine length. Bioconjug Chem17 935 942 - 40.
Gautsch JW. 1982 Lack of retrovirus gene expression in teratocarcinoma stem cells is limited to nucleus. Somatic Cell Genet8 143 149 - 41.
Gearhart J. 1998 New potential for human embryonic stem cells. Science282 1061 1062 - 42.
Grabel LB. 1984 Isolation of a putative cell adhesion mediating lectin from teratocarcinoma stem cells and its possible role in differentiation. Cell Differ15 121 124 - 43.
Graham FL, van der Eb AJ. 1973 Transformation of rat cells by DNA of human adenovirus 5. Virology54 536 539 - 44.
Grunwald J. Rejtar T. Sawant R. Wang Z. Torchilin V. P. 2009 TAT peptide and its conjugates: proteolytic stability. Bioconjugate Chem20 1531 1537 - 45.
Hällbrink M. Floren A. Elmquist A. Pooga M. Bartfai T. Langel U. 2001 Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta1515 101 109 - 46.
Hamatani T. Carter M. G. AA Sharov Ko. M. S. 2004 Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell6 117 131 - 47.
Hassoun R. Puschel B. Viebahn C. 2010 Sox17 expression patterns during gatrulation and early neurulation in the rabbit suggest two sources of endodermformation. Cells Tissues Organs191 68 83 - 48.
Haupt S. Edenhofer F. Peitz M. Leinhaas A. Brustle O. 2007 Stage specific conditional mutagenesis in mouse embryonic stem cell-derived neural cells and post-mitotic neurons by direct delivery of biologically active Cre recombinase. Stem Cells25 181 188 - 49.
Heath JK, Smith AG. 1988 Regulatory fators of embryonic stem cells. J Cell Sci Suppl10 257 266 - 50.
Heng B. C. Haider H. Kh Sim. E. K. Cao T. Ng S. C. 2004 Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc Res62 34 42 - 51.
Henkel T. Zael U. van Zee K. Müller J. M. Fanning E. Baeuerle P. A. 1992 Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the50 NF-kappa B subunit. Cell 68:1121-1133. - 52.
Henriques S. T. Quimtas A. Bagatolli L. A. Homblé F. Castanho M. A. 2007 Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1. Mol Membr Biol24 282 293 - 53.
Hock SC, Ying YM, Wah CL. 2011 A review of the current scientific and regulatory status of nanomedicines and the challenges ahead. DPA J Pharm Sci Technol65 177 195 - 54.
Hong Y. Chen S. Gui J. Schartl M. 2004 Retention of the developmental pluripotency in medaka embryonic stem cells after gene transfer and long-term drug selection for gene tarteting in fish. Transgenic Res13 41 50 - 55.
Hooper M. I. Hardy K. Handyside A. Hunter S. Monk M. 1987 HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germ-line colonization by cultured cells. Nature326 292 294 - 56.
Ishizaka S. Shiroi A. Kanda S. Yoshikawa M. Tsujinoue H. Kuriyama S. hasuma T. Nakatani K. Takahashi K. 2002 Development of hepatocytes from ES cells after transfection with the HNF-3beta gene. FASEB J16 1444 1446 - 57.
Jakob H. 1984 Stem cells and embryo-derived cell lines: tools for study of gene expression. Cell Differ15 77 80 - 58.
Jemmerson R. Shah N. Takeya M. Fishman W. H. 1985 Characterization of the placental alkaline phosphatase-like (Nagao) isozyme on the surface of A431 human epidermoid carcinoma cells. Cancer Res 45:282.287. - 59.
Jeong Y. Mangelsdorf D. J. 2009 Nuclear receptor regulation of stemness and stem cell differentiation. Exp Mol Med41 525 537 - 60.
Jo J. Lee Y. Oh M. H. Ko J. J. Cheon Y. P. Lee D. R. 2010 Up-regulation of pluripotency-related genes in humanamniotic fluid-derived stem cells by ESRB conjugated with cell-penetrating peptide. Dev Reprod14 243 251 - 61.
Johnson MH, McConnell JM. 2004 Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol15 583 597 - 62.
Jones-Villeneuve EM, Rudnicki MA, Harris JF, McBurney MW .1983 . Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Mol Cell Biol 3:2271-2279 - 63.
Jung S. Huh S. Cheon Y. P. Park S. 2009 Intracellular protein delivery by glucose-coated polymeric beads. Chem Commun33 5003 5005 - 64.
Jung S. Park S. Lim H. Cheon Y. 2007 Mouse embryonic stem cell uptakes of Buforin 2 and pEP-1 conjugated with EGFP. Dev Reprod11 111 119 - 65.
Kaufman MH, Robertson EJ, Handyside AH, Evans MJ. 1983 Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol73 249 261 - 66.
Kennedy M. Firpo M. Choi K. Wall C. Robertson S. Kabrun N. Keller G. 1997 A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature386 488 493 - 67.
Kim D. Kim C. H. Moon J. I. Chung Y. G. Chang M. Y. BS Han Ko. S. Yang E. Cha K. Y. Lanza R. Kim K. S. 2009 Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4 472 476 - 68.
Kopp J. L. BD Ormsbe Desler. M. Rizzino A. 2008 Small increases in the level of sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells26 903 911 - 69.
Kuai R. Yuan W. Qin Y. Chen H. Tang J. Yuan M. Zhang Z. He Q. 2010 Efficient delivery of payload into tumor cells in a controlled manner by TAT and thiolytic cleavage PEG co-modified liposomes. Mol Pharm [Epub ahead of print]. - 70.
Kuehn M. Bradley A. Rovertson E. J. MJ Evans 1987 A potential animal model for Lesch-Nyhan syndrome through the introduction of HPTR mutations in mice. Nature326 295 298 - 71.
Kumar N. Pethe P. Bhartiya D. 2010 Role of TGFbeta and myofibroblasts in supporting the propagation of human embryonic stem cells in vitro. Hnt J Dev Biol54 1329 1336 - 72.
Kwon S. J. Han K. Jung S. Lee J. E. Park S. Cheon Y. P. Lim H. J. 2009 Transduction of the MPG-tagged fusion protein into mammalian cells and oocytes depends on amiloride-sensitive endocytic pathway. BMC Biotechnol 9:73. - 73.
Lehtonen E. Laasonen A. Tienari J. 1989 Teratocarcinoma stem cells as a model for differentiation in the mouse embryo. Int J Dev Biol33 105 115 - 74.
Lin Y. Z. Yao S. Y. Veach R. A. Torgerson T. R. Hawiger J. 1995 Inhibition of nuclear translocation of transcription factor NF-kB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem270 14255 14258 - 75.
Liou JY, Ko BS, Chang TC. 2010 An efficient transfection method for mouse embryonic stem cells. Methods Mol Biol650 145 153 - 76.
Little S. R. Lynn D. M. Ge Q. Anderson D. G. Puram S. W. Chen J. Eisen H. N. Langer R. 2004 Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc natl Acad Sci U S A101 9534 9539 - 77.
Liu H. Kim Y. Sharkis S. Marchionni L. Jang Y. Y. 2011 In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med 3:82ra39. - 78.
Lu M. MD Kardel O’Connor. MD Eaves C. J. 2009 Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells. Exp Hematol37 924 936 - 79.
Luxardi G. Marchal L. Thome V. Kodjabachian L. 2010 Distinct Xenopus Nodal ligands sequentially induce mesendoderm and contro gastrulation movements in parallel to the Wnt/PCP pathway. Development137 417 426 - 80.
Ma Liu H. Diamond Q. Pierce S. L. E. A. 2004 Mouse embryonic stem cells efficiently lipofacted with nuclear localization peptide result in a high yield of chimeric mice and retain germline transmission potency. Methods33 113 120 - 81.
Martin GR. 1981 Isolation of a pluripotent cell line from early mouse embryos culturedin medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA78 7634 7638 - 82.
Marucci G. Lammi C. Buccioni M. Dal Ben. D. lambertucci C. Amantini C. Santoni G. kandhavelu M. Abbracchio M. P. Lecca D. volpini R. Cristalli G. 2011 Comparison and optimization of transient transfection methods at human astrocytoma cell line 1321N1. Anal Biochem414 300 302 - 83.
Matsuoka H. Shimoda S. Ozaki M. Mizukami H. Shibusawa M. Yamada Y. Saito M. 2007 Semi-quantitative expression and knockdown of a target gene in single-cell mouse embryonic stem cells by high performance microinjection. Biotechnol Lett29 341 350 - 84.
Meissner A. Wernig M. Jaenisch R. 2007 Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol25 1177 1181 - 85.
Moore J. C. Atze K. yeung P. L. Toro-Ramos Aj. Camarillo C. Thompson K. Ricupero C. L. MA Brenneman Cohen. R. I. Hart R. P. 2010 Efficient, high-throughput transfection of human embryonic stem cells. Stem Cell Res Ther 1:23. - 86.
Mummery CL, van den Brink CE, van der Saag PT, de Laat SW. 1984 The cell cycle, cell death, and cell morphology during retinoic acid-induced differentiation of embryonal carcinoma cells. Dev Biol104 297 307 - 87.
Muramatsu H. Muramatsu T. 1983 A fucosyltransferase in teratocarcinoma stem cells. Decreased activity accompanying differentiation to parietal endoderm cells. FEBS Lett163 181 184 - 88.
Murthy N. Xu M. Schuck S. Kunisawa J. Shastri N. Mj Frehet 2003 A macromolecular delivery vehicle for protein-based vaccines; acid-degradable protein-loaded microgels. Proc Natl Acad Sci U S A100 4995 5000 - 89.
Navarro P. Oldfield A. Legoupi J. Festuccia N. Dubois A. Attia M. Schoorlemmer J. Rougeulle C. Chambers I. Avner P. 2010 Molecular coupling of Tsix regulation and pluripotency. Nature468 457 460 - 90.
Neundorf I. Rennert R. Franke J. Közle I. Bergmann R. 2008 Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides. Bioconjug Chem19 1596 1603 - 91.
Nichols J. Smith A. 2011 The origin and identity of embryonic stem cells. Development138 3 8 - 92.
Nilsson I. M. Gafvelin G. von Heijne. G. 1993 Different sec-requirements for signal peptide cleavage and protein translocation in a model E. coli protein. FEBS Lett318 7 10 - 93.
Osakada F. Takahashi M. 2011 Neural induction and patterning in mammalian pluripotent stem cells. CNS neurol Disord Drug Targets10 419 432 - 94.
Pagano J. S. Vaheri A. 1965 Enhancement of infectivity of poliovirus RNA with diethylaminoethyl-dextran (DEAE-D). Arch Gesamte Virusforsch17 456 464 - 95.
Park CH, Lee SH. 2007 Efficient generation of dopamine neurons from human embryonic stem cells. Methods Mol Biol407 311 322 - 96.
Park C. B. Yi K. S. Matsuzaki K. MS Kim Kim. S. C. 2000 Structure-activity analysis of buforin 2, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin 2. Proc Natl Acad Sci U S A97 8245 8250 - 97.
Park I. H. Zhao R. West J. A. Yabuuchi A. Huo H. Ince T. A. Lerou P. H. Lensch M. W. Daley G. Q. 2008 Reprogramming of human somatic cells to pluripotency with defined factors. Nature451 141 146 - 98.
Petrescu A. D. Vespa A. Huang H. Mclntosh A. L. Schroeder F. Kier A. B. 2009 Fluorescent sterols monitor cell penetrating peptide Pep-1 mediated uptake and intracellular targeting of cargo protein in living cells. Biochem Biophys Acta1788 425 441 - 99.
Piscaglia AC, Campanale M, Gasbarrini A, Gasbarrini G. 2010 . Stem cell-based therapies for liver diseases: state of the art and new perspectives. Stem Cells 2010:259461 - 100.
Pooga M. Hällbrink M. Zorko M. Laggel U. 1998 Cell penetration by transportan. FASEB J12 67 77 - 101.
Pooga M. Langel U. 2005 Synthesis of cell-penetrating peptides for cargo delivery.298 77 89 - 102.
Redshaw Z. Strain A. J. 2010 Human haematopoietic stem cells express Oct4 pseudogenes and lack the ability to initiate Oct4 promoter-driven gene expression. J Negat Results Biomed 9:2. - 103.
Risau W. Sariola H. Zerwes H. G. Sasse J. Ekblom P. Kemler R. Doetschman T. 1988 Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development102 471 478 - 104.
Robbins PD, Ghivizzani SC. 1998 Viral vectors for gene therapy. Pharmacol Ther80 35 47 - 105.
Rocha P. P. Scholze M. Bleiss W. Schrewe H. 2010 Med12 is essential for early mouse development and for canonical Wnt and Wnt/PCP signaling. Development137 2723 2731 - 106.
MJ Rosenstraus Sterman. B. Carr A. Brand L. 1984 Fibroblast feeder layers inhibit differentiation of retinoic acid-treated embryonal carcinoma cells by increasing the probability of stem cell renewal. Exp Cell Res152 378 389 - 107.
Rossant J. Papaioannou V. E. 1984 The relationship between embryonic, embryonal carcinoma and embryo-derived stem cells. Cell Differ15 155 161 - 108.
Rossi S. L. Nistor G. Wyatt T. Yin H. Poole A. J. Weiss J. H. MJ Gardener Dijkstra. S. Fischer D. F. Keirstead H. S. 2010 Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord. PLoS One 5:e11852. - 109.
Ruch JV. 1967 Effect of dexamethasone phosphate on the differentiation of embryonic stem bronchi in vivo and in vitro. CR Seances Soc Bio Fil161 1339 13342 - 110.
Sawant R. Torchilin V. 2010 Intracellular transduction using cell-penetrating peptides. Mol biosyst6 628 640 - 111.
Saxena A. K. Singh D. Gupta J. 2010 Role of stem cell research in therapeutic purpose-ahope for new horizon in medical biotechnology. J Exp Ther Oncol8 223 233 - 112.
Schindler J. Sherman M. I. 1984 Changes in protein synthetic profiles during retinoic-acid induction of differentiation of murine embryonal carcinoma cells.28 78 85 - 113.
Schwartzberg PL, Goff SP, Robertson EJ. 1989 Germ line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science246 799 803 - 114.
Scott RW, Vogt TF, Croke ME, Tilghman SM. 1984 Tissue-specific activation of a cloned alpha-fetoprotein gene during differentiation of a transfected embryonal carcinoma cell line. Nature310 562 567 - 115.
Sekiya S. Kawata M. Iwasawa H. Inaba N. Sugita M. Suzuki N. Motoyama T. Yamamoto T. Takamizawa H. 1985 Characterization of human embryonal carcinoma cell lines derived from testicular germ-cell tumors. Differentiation29 259 267 - 116.
Shah D. A. Kwon S. J. Bale S. S. Banerjee A. Dordick J. S. Kane R. S. 2011 Regulation of stem cell signaling by nanoparticle-meidated intracellular protein delivery. Biomaterials32 3210 3219 - 117.
Shimotohno K. Temin H. M. 1981 Formation of infectious progeny virus after insertion of hepes simplex thymidine kinase gene into DNA of an avian retro virus. Cell26 67 77 - 118.
Silvan U, Diez-Torre A, Arluzea J, Andrade R, Silio M, Arechaga J. 2009 . Hypoxia and pluripotency in embryonic and embryonal carcinoma stem cell biology. Differentiation 2009 78:159-168 - 119.
Smith A. G. Heath J. K. Donaldson D. D. Wong G. G. Moreau J. Stahl M. Rogers D. 1988 Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature336 688 690 - 120.
BD Smolich Papkoff. J. 1994 Regulated expression of Wnt family members during neuroectodermal differentiation of19 embryonal carcinoma cells: overexpression of Wnt-1 perturbs normal differentiation-specific properties. Dev Biol 166:300-310. - 121.
Spence J. R. Mayhew C. N. Rankin S. A. Kuhar M. F. Vallance J. E. Tolle K. EE Hoskins Kalinichenko. W. Wells S. I. Zorn A. M. Shroyer N. F. Wells J. M. 2011 Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature470 105 109 - 122.
Strelchenko N. Verlinsky O. Kukharenko V. Vrlinsky Y. 2004 Morual-derived human embryonic stem cells. Reprod Biomed Online9 623 629 - 123.
Suda Y. Suzuki M. Ikawa Y. Aizawa S. 1987 Mouse embryonic stem cells exhibit indefinite proliferative potential. J Cell Physiol133 197 201 - 124.
Svingen T. Wilhelm D. Combes A. N. Hosking B. Harley V. R. Sinclair A. H. Koopman P. 2009 Ex vivo magnetofection: A novel strategy for the study of gene function in mouse organogenesis. Dev Dyn238 956 964 - 125.
Taatjes D. J. Marr M. T. Jjian R. 2004 Regulatory diversity among metazoan co-activator complexs. Nat Rev Mol Cell Biol5 403 410 - 126.
Takahashi K. Yamanaka S. 2006 Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126 663 676 - 127.
Takahashi K. Ohnuki M. Narita M. Ichisaka T. Tomoda K. Yamanaka S. 2007 Strategies and new developments in the generation of patient-specific pluripotent stem cells from adult human fibroblasts by defined factors. Cell131 861 872 - 128.
Takeshima K. Chikushi A. Lee K. K. Yonehara S. Matsuzaki K. 2003 Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem278 1310 1315 - 129.
Tang MX, Szoka FC. 1997 The influence of polymer structure on the interations of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther4 823 832 - 130.
Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN. 1997 Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol15 647 652 - 131.
Thomson J. A. Itskovitz-Eldor J. Shapiro S. S. MA Waknitz Swiergiel. J. J. VS Marshall Jones. J. M. 1998 Embryonic stem cell lines derived from human blastocysts. Science282 1145 1147 - 132.
Thomson J. A. Kalishman J. Golos T. G. Durning M. CP Harris Becker. R. A. Hearn J. P. 1995 Isolation of a primate embryonic stem cell line. Proc Natle Acad Sci USA92 7844 7848 - 133.
Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’Souza GGM. 2003 . Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci U S A 100:1972-1977 - 134.
Tran DN, Ota LC, Jacobson JD, Paaton WC, Chang PJ. 2007 Influence of nanoparticles on morphological differentiation of mouse embryonic stem cells. Fertil Steril87 965 970 - 135.
Verdurmen W. P. Brock R. 2011 Biological responses towards cationic peptides and drug carriers. Trends Pharmacol Sci32 116 124 - 136.
Villa-Diaz LG, Garcia-Perez JL, Krebsbach PH. 2010 . Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix. Stem Cells Dev 19:1949-1957 - 137.
Wadia JS, Dowdy SF. 2003 Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci4 97 104 - 138.
Wang Y. Krushel L. A. Edelman G. M. 1996 Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene. Proc Natl Acad Sci USA93 3932 3936 - 139.
Wartiovaara J. Liesi P. Rechardt L. 1984 Expression of laminin and fibronectin in endodermal and neural differentiation of F9 embryonal carcinoma cells. Prog Clin Biol Res151 233 247 - 140.
Wasungu L. Hoekstra D. 2006 Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release116 255 264 - 141.
Watanabe Y. Horie S. Funaki Y. Kikuchi Y. Yamazaki H. Ishii k. Mori S. Vassaux G. Kodama T. 2010 Delivery of Na/I symporter gene into skeletal muscle using nanobubbles and ultrasound: visualization of gene expression by PET. J Nucl Med51 951 958 - 142.
Williams R. L. Hilton D. J. Pease S. Willson T. A. Stewart C. L. Gearing D. P. Wagner E. F. Metcalf D. Nicola N. A. Gough N. M. 1988 Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature336 684 687 - 143.
Wolf Y. Pritz S. Abes S. Bienert M. Lebleu B. Oehlke J. 2006 Structural requirements for cellular uptake and antisense activity of peptide nucleic acids conjugated with various peptides. Biochemistry45 14944 14954 - 144.
Wolpert L. 1978 Pattern formation in biological development. Sci Am239 154 164 - 145.
Xavier J. Singh S. Dean D. A. Rao N. M. Gopal 2009 Designed multi-domain protein as a carrier of nucleic acids into cells. J Control Release133 154 160 - 146.
Xia H. Mao Q. Davidson B. L. 2001 The HIV Tat protein transduction domain improves the biodistribution of beta-glucuronidase expressed from ecombinant viral vetors. Nat Biotechnol19 640 644 - 147.
Yamanaka Y, Ralston A, Stephenson RO, Rossant J. 2006 . Cell and molecular regulation of the mouse blastocyst. Dev Dyn 235:2301-2314 - 148.
Yang F. Green J. J. Dino T. Keung L. Cho S. W. Park H. Langer R. Anderson D. G. 2009 Gene delivery to human adult and embryonic cell-derived stem cells using biodegradable nanoparticulate polymeric vectors. Gene Ther16 533 546 - 149.
Yang J. Gao C. Chai L. Ma Y. 2010 A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS One 5:e10766. - 150.
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. 2007 . Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917-1920 - 151.
Zákány J. Burg K. Raskó I. 1984 Spontaneous differentiation in the colonies of a nullipotent embryonal carcinoma cell line (F9). Differentiation27 146 151 - 152.
Zhang G. Budker V. Wolff J. A. 1999 High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther10 1735 1737 - 153.
Zhao X. Yu S. B. Wu F. L. Mao Z. B. Yu C. L. 2006 Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J Control Release112 223 228 - 154.
Zijlstra M. Li E. Sajjai F. Subramani S. Jaenish R. 1989 Germ-line transmission of a disrupted β2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature342 435 438