Summary of advantages and disadvantages of transplant options for diabetic kidney disease(Wiseman, 2010).
\r\n\tThis book will intend to look at different migrant patterns, voluntary and involuntary migration, over the last three centuries. What influenced people to leave their home countries, family, and friends and settle somewhere else? The book may include histories of the 19th century, consider tragedies and movements activated by political events in the 20th century, and/or look at recent events of the 21st century. Push and pull factors are important points. While most of us may be influenced in a negative way by the current happenings in Eastern Europe, the Russian invasion and resulting tragedies also demonstrate some very positive human traits – the preparedness of Ukraine’s surrounding countries to help those in need and to provide a safe place for the present.
\r\n\tWhether one looks at voluntary or involuntary migration into any country, after a period of adjustment, migrants do play a positive role. The research found that migrants contribute to the economy (food, shelter, employment, tax) and enrich a country’s cultural norms. Prerequisites for successful settlements are that the host society adopts a tolerant approach and that the migrants recognize the law and the language of the host country. Nothing is ever easy or without controversy, but I am a migrant (German Australian), and life in Australia has been relatively harmonious. Issues that could be considered in the book are multicultural societies (do monocultural societies still exist?) and theories of acculturation versus integration (settlement processes).
\r\n\tTwo further issues are very important in relation to human migration. There is climate change, global warming, and the environment, which clearly affect people’s movement. Small island populations are very concerned about rising sea levels. 2021 has also seen floods costing human lives: Turkey (August 2021), Brazil (December 2021), Chile (January 2021), and South India (November 2021), to name but a few. In Australia (March 2022), farms and whole townships in New South Wales and Queensland have been flooded for the second time in five years, and plans to resettle these towns are considered. Official and social media provide ample coverage of the events, which leads me to the next issue. There is today’s very important role of the media, of the official and social media. We are constantly bombarded with images of human war tragedies and flood victims. People in industrialized, western countries must be the best-informed populace. How far do the images and up-to-date TV news influence us, make us change our behavior, and perhaps even consider us more generous than we have been?
\r\n\tClimate change and the media are relatively new to the human migration debate, but both issues play important parts, and some interesting discussions are appreciated.
\r\n\t
Pancreas transplantation is well recognised and established treatment for selected patients with type-1 diabetes. Furthermore, this treatment remains the only therapeutic modality to offer excellent and reliable glycemia control, without the administration of insulin in type-1 diabetics.
It is well documented that combination of pancreas and kidney transplant (i.e. Simultaneous Pancreas and Kidney Transplantation or Pancreas After Kidney Transplantation) gives to patients who suffer from type-1 diabetes and End-Stage Renal Failure superior outcomes, improved patients’ survival and better quality of life compared to other therapeutic modalities.
In this chapter will be reviewed current status of pancreas transplantation with focus on recipient selection, management and outcomes.
Diabetic nephropathy (DN) has been acknowledged as the most common disorder leading to End-Stage Renal Failure (ESRF) in adults (Fig. 1). Renal disease is associated with higher morbidity and mortality in diabetics compared to patients who do not suffer from diabetes. Approximately 0.5% of the population in developed countries (United States and Europe, i.e. Western societies) is thought to have diabetes (ADA, 1999). It is well known that DN is the most common diabetic complication. Patients with type-1 diabetes have the highest risk of developing nephropathy, but those with type-2 have significant risk, too. This condition develops in 50% of type-1 diabetics progressively over a period of 10 to 15 years. In contrast, people suffering from type-2 diabetes can undergo a more variable course and approximately 30% of them will develop DN at some point.
The patho-physiologic mechanisms of diabetic nephropathy are not completely understood yet, but they include hyperglycemia (causing hyperfiltration and renal injury), glycosylation of circulating and intrarenal proteins, hypertension, and abnormal intrarenalhemodynamics.
Primary Causes of Kidney failure (
For DN are typically three major histological changes that seem to have a similar prognostic impact. Mesangial expansion is induced by hyperglycaemia, causing matrix production or glycosylation of matrix proteins. Another common feature is glomerular sclerosis caused by intraglomerular hypertension; induced by renal vasodilatation or from ischemic injury induced by the hyaline narrowing of the vessels supplying glomeruli. Glomerular basement membran thickening is another common feature, too.
Among patients with DN we see an increased prevalence of other secondary diabetic complications. Hypertension significantly increases diabetes-related morbidity and is the second most common cause of morbidity in diabetics. It has been documented that hypertension increases mortality in diabetics with renal failure by 37 folders (Mac Leod & Mc Lay, 1998). Hypertension also contributes to the developing of DN, microvascular and macrovascular complications.
Diabetic micro and macroangiopatic complications develop simultaneously and have a widespread effect on many organs as well as participating on the development of various diseases (diabetic nephropathy, retinopathy, coronary artery disease, peripheral vascular disease, cerebrovascular disease, etc).
Diabetic retinopathy is the leading cause of visual loss in diabetics due to retinal damage. This condition affects up to 80% of patients who have suffered from diabetes for more than 10 years (Kertes & Johnson, 2007). The main mechanism of diabetes induced retinal damage is a combination of cytotoxic effect of high blood glucose levels and hypertension. Characteristic retinal lesions include the formation of retinal capillary microaneurysms, extensive vascular permeability, vascular occlusion, angio proliferation and basement membrane thickening (Matthew et al., 1997). Some studies have demonstrated (Wong et al., 2008) that the prevalence of retinopathy rises with the increasing duration and severity of the diabetes. However, good glycaemia control reduces retinopathy development by more than 40% (TDCCTG, 1993).
In some diabetics, mainly in patients with long standing or poorly controlled diabetes, symptoms of hypoglycaemia (e.g. palpitation, sweating, tremor, headache, etc.) do not occur. The absence of these symptoms during hypoglycaemia is called hypoglycaemic unawareness. Patients suffering from this condition have a lack of warning signals and cannot actively correct their hypoglycaemia before plasma glucose falls to extremely low levels. The main factor responsible for the development of hypoglycaemic unawareness is autonomic diabetic neuropathy and brain desensitization to hypoglycaemia.
Absence of glucose homeostasis in diabetes also causes pathological damage and functional disturbance of the peripheral (motor and sensor) and autonomic nerves. Frequently, patients suffer from motor neuropathy: pain, paresthesiaand anesthesia. Autonomic neuropathy (arrhythmia, postural hypotension, diabetic diarrhoea, gastroparesis, neurogenic bladder, impotence, etc) is less common than peripheral neuropathy, but is a more symptomatic and has limited therapeutic effect (Watkins & Edmonds, 1997).
The development of complications is related to the severity and length of diabetes, and its management involves glucose control and symptomatic treatment which seems to have a positive effect (Ward, 1997).
In recent years, there has been significant progress in the management and treatment of diabetics. We have seen not only a reduced morbidity but also increased patients’ survival and improved patients’ quality of life. Median patient survival in recent years amongst this population has increased from 6 to 15 years (Wiesbauer et al., 2010).
It is well known that poor diabetic control is responsible for developing various diabetic complications; mainly DN. The risk of developing nephropathy is significantly reduced if HbA1c stays below 7.5-8.0% (Deferrari et al., 1998; Di Landro et al, 1998). For that reason the American Diabetes Association highlights in their “Guidelines for Glycemic Control” to target HBA1c level below 7% to achieve a normal or near normal glycemia (ADA, 2005).
It was documented in two large studies on a cohort of 1349 patients, the DCCT (Diabetes Controlled and Complication Trial) and EDIC (Epidemiology of Diabetes Intervention and Complications) that tight glycemic control decreases the risk of development of microvascular disease (retinopathy, nephropathy, and neuropathy) and even slows down established DN (TDCCTRG, 1993), (DCCT, 2003).
In brittle type-1 diabetes serum glucose levels can rapidly swing between extremely low and high levels. This can lead to the development of acute and life threatening conditions: keto-acidosis, coma or even death. Often patients have absent warning symptoms. In some diabetics it is difficult, and even impossible, to achieve a good glycemic control with conventional management.
Nowadays, varieties of insulin preparations are available. The type, the dose and the frequency of insulin doses depends on patient’s individual factors. For type-1 diabetics “Basal-bolus insulin regiment” (a combination of high frequency boluses of short-acting insulin with long-acting insulin) is often used. Some people benefit from “Mixed insulin regiment”. This includes a mixture of short and long-acting insulin delivered two to three times a day. Regardless of meticulous blood glucose monitoring and accurate insulin dosage, some patients may still have problems achieving an appropriate blood glucose level. These patients may be considered for an insulin pump. The disadvantage of this method is increased frequency of hypo/hyper glycemia episodes and also the fact that it requires a cannula implantation (Collins et al., 2007).
The innovations in insulin formulation and delivery have had a significant impact on the management of type-1 diabetes and they have improved glycaemic control. Despite this progress, many patients cannot achieve a good degree of serum glucose control and keep suffering from frequent sudden hypoglycaemia episodes. These circumstances have a negative impact on patients’ quality of life and can even be life threatening.
In addition, sufficient management of DN also includes rigorous treatment of hypertension in combination with conventional management of renal failure, hyperlipidemia, anaemia, etc.
The first pancreas transplant was performed at the University of Minnesota, in Minneapolis, on 17 December 1966 by the team led by Dr William Kelly and Dr Richard Lillehei (Kelly et all., 1967). A pancreas, together with a kidney, was implanted to a 28-year old woman. Immediately after the transplantation the patient became euglycemic, but unfortunately she died three months later from a pulmonary embolism with functioning grafts. The same team in Minneapolis, on 3 June 1969, performed the first successful pancreas transplant and the pancreas graft functioned for more than one year (Lillehei et al., 1970). Early experiences with pancreas transplantation were disappointing, as they were associated with a high incidence of rejection, infectious complications and early graft failure. Progressively in the late 70’s and early 80’s the results of pancreas transplantation improved. First of all, the original Lillehei surgical technique was modified and refined. In 1988 Starz published a technique of anastomozing graft duodenum to the recipient jejunum for draining a pancreas graft exocrine secretion (Fig 2) (Starzl et al., 1988). Subsequently, his technique was adopted by other big pancreas transplant institutions; by Dr Hans Sollinger at the University of
The Enteric drainage technique in simultaneous pancreas and kidney transplantation. Pancreas graft duodenum is anastomosed side-to-side to the jejunum of a recipient.
Wisconsin and Dr Robert Corry at the University of Iowa. Later, all three centres employed to their routine practice the technique of draining graft duodenum to the bladder (Fig 3) (Sutherland et al., 1988; Sollinger & Belzer, 1988; Corry, 1988). Both techniques, with minimal modifications are still used these days. A number of studies compared the outcomes between bladder and enteric drained pancreas transplants. Most of them showed similar complication rates (Lo et al., 2001; Stratta et al., 2000), graft and patient survival (Sugitani et al., 1998).
The Bladder drainage technique in simultaneous pancreas and kidney transplantation. Pancreas graft duodenum is anastomosed side-to-side to the bladder of a recipient.
The Enteric Drainage pancreas technique compared (ED) to the Bladder Drainage pancreas technique (BD) is a more physiological option because it drains pancreatic enzymes into intestinal track. However, this technique is associated with a higher rate of surgical complications (anastomotic leak, chemical and infectious peritonitis, ileus, intra-abdominal abscess formation, etc.). A typical complication of bladder drainage technique is the recurrence of urinary track infections, haematuria, urethral strictures, prostatitis, pyeloneophritis, reflux pancreatitis, etc. Additionally to these complications, the urinary diversion of exocrine pancreas graft secretion potentiates excessive loss of bicarbonates, sodium and fluid. This results in acid-base and electrolytes disturbance (metabolic acidosis) and fluid depletion. Metabolic acidosis is even more exacerbated by renal dysfunction. For those reasons, serum electrolytes must be closely monitored in patients with bladder drained pancreas, patients must be well hydrated and receive bicarbonate supplements. Enteric conversion is a surgical alternative to manage sever complications related to the bladder drainage of pancreas graft (Stephanian et al., 1992). The United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) data from 2005 reports the overall conversion rate from BD to ED of 9% at 1 year and 17% at 3 years after transplant (Gruessner& Sutherland, 2005). The major indications for conversion were recurrent episodes of haematuria, graft pancreatitis, chronic urinary track infections, dehydration and bladder calculi (Jimenez-Romero, et al., 2009).
In terms of pancreas venous drainage there are two available variations: portal venous and systemic venous drainage. Portal drainage is a more physiological alternative, but with regards to the complication rate; graft and patient survival there are not any significant differences. Some data suggests that portal venous drainage is an important factor to determine peripheral insulin sensitivity (Radziuk et al., 1993). In portal venous drainage, serum glucose and insulin concentration recover to normal in contrast with systemic venous drainage, where plasma insulin levels are increased, as a result of bypassing liver circulation (Gu et al., 2002). Hyperinsulinemia contributes to hyperlipidemia, hypercholesterolemia and accelerate the development of atherosclerosis.
A milestone in the history of transplantation occurred in 1976, when Calne published the first clinical experiences with Cyclosporin-A. He reported improved graft and patients’ survival in a cohort of 34 transplant recipients (32 kidneys, 2 pancreases and 2 livers) who received only Cyclosporin-A maintenance immunosuppressive regiment (Lillehei et al., 1979). A Cyclosporin-A helped to achieve a better control of rejection and minimise steroid dependence. Although, the introduction of new immunosuppressive drugs (tacrolimus,
Pancreas transplant activity rate (incidence per million population) in USA and 13 European countries considered together (SEC) and individually during the period 2002–06 (Gonzales-Posada et al.
Population, total number of pancreas transplants, pancreas waiting list and DD in USA and 13 European countries (Gonzales-Posada et al.
MMF, sirolimus, antibody based agents) contributed to further improved graft survival, reduction of rejection rate and the overall expansion of transplantation.
These days, pancreas transplantation has become a worldwide popular therapeutic alternative for type-1 diabetics. According to data from the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR), more than 30,000 pancreas transplants have been performed worldwide (>22,000 reported from the United States and >8,000 from rest of the world) between December 1966 and 31 December 2008 (UNOS & IPTR, 2008). The majority pancreas transplants have been performed in North America and Western Europe (Fig 4), (Tab. 1) (Gonzales-Posada et al. 2010).
At the present, Pancreas Transplantation is the only therapeutic modality that can achieve full insulin independence and euglycemic state in type-1 diabetic patients. It is well known that normoglycemia has a positive impact on preventing secondary diabetic complications. Therefore, this modality does not only improve patients’ quality of life but also it has a positive impact on patients’ medical conditions. Nevertheless, this therapeutic alternative is recommended only to a selected group of diabetics.
For a pancreas transplantation should be considered patients with brittle type-1 diabetes who suffer from secondary diabetic complications (diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, diabetic gastro-enetopathy, etc); frequent hypoglycaemic episodes or hypoglycaemic unawareness and failure to achieve eu-glycemia even on intensive insulin treatment (insulin pump, etc.).
A detailed assessment of potential candidates for pancreas transplantation is mandatory because many of these patients have pre-existing cardiac diseases or other medical problems related to diabetes, and these may significantly increase per-operative morbidity, mortality and early graft failure.
The first part of the evaluation is to determine the type of diabetes. It is generally accepted that pancreas transplantation should be reserved for type-1 diabetics. However, there are published data repording successes of pancreas transplantation also in type-2 diabetic patients. Nevertheless, a more strict patients’ selection is required (Orlando et al., 2010). For diagnosis type-1 diabetes it is satisfactory to detect an absence or very low levels of C-peptide together with raised HbA1c (>7.5%). However, the patient’s considered for pancreas transplantation cannot exceed insulin requirements beyond 1.5mg/kg/day; as this is the marker of peripheral insulin resistance. These patients do not achieve full insulin independence even with successful pancreas transplantation. Patients who are failing to achieve a reasonable serum-glucose control with conventional insulin treatment should be also considered for pancreas transplantation. Usually, they suffer from frequent hypo and hyper-glycemic episodes. Sever hypoglycaemia is the most common casualty in diabetics on insulin treatment. These complications are potentially life-threatening, associated with high morbidity and mortality rate.
Diabetes doubles the risk of developing cardio-vascular disease; coronary-artery disease, cerebro-vascular disease and peripheral vascular disease (Grundy et al., 1999). Over 50% of diabetics have some degree of coronary artery disease. Also, it is well known that diabetics suffer from accelerated atherosclerosis and a high incident of silent ischemia and cardio-myopathy compared to the non-diabetic population. Furthermore, cardio-vascular disease is the leading cause of death in the general population (35%) but diabetic patients are two times (67%) more likely to die due to this cause (Watkins, 2003).
The key purpose of the pre-transplant cardiac assessment is to identify risk factors (reversible ischemia, impaired left ventricular function, coronary artery disease, etc.) that may increase per-operative morbidity and mortality; and minimize them with the appropriate management and treatment. For cardiac evaluation standard echocardiography, Dobutamine stress echocardiography (DSE), exercise tolerance testing, nuclear (thalium) myocardial perfusion scan and formal coronary angiogram are routinely used. Because each of these tests has some limitations, there is not a consensus yet regarding which method has the highest predicting value.
Dobutamine stress echocardiography (DSE) is a non-invasive imaging modality which combines two-dimensional echocardiography with cardiovascular stress induced by dobutamine infusion. This test is sensitive to detect coronary artery disease in asymptomatic, high risk (diabetic, patients with peripheral vascular disease, etc.) patients.
The nuclear myocardial perfusion study (MPI) is a sensitive, non-invasive test for the assessment of myocardial perfusion, ejection fraction, wall motion and wall thickness. Stress radionuclide myocardial perfusion imaging, on the other hand, displays the downstream functional consequences of epicardial coronary artery disease in the myocardium. It also may visualize the regional effects of micro vascular endothelial dysfunction and impairment of regional coronary flow reserve.
DSE and MPI methods are generally accepted as standard and non-invasive screening studies useful to identify patients (diabetics with ESRF) with significantly increased risk of myocardial infarction or cardiac death (Rabbat et al., 2003; Cai et al., 2010). Nevertheless, they have low sensitivity and specificity to define coronary artery disease in patients with ESRD (Lentine et al., 2010).
On the other hand, the coronary-angiogram (CA) offers high sensitivity to detect coronary-artery disease but it is limited in regards to predicting survival. This is mainly because myocardial infarction is more likely to be caused by plague instability rather than angiographic stenosis. Additionally, the contrast used for this test is nephro-toxic and it can have a catastrophic impact on impaired kidney function (Lentine et al., 2010).
There is only one published study which directly compares doputamine stress echocardiography to coronary angiogram in renal transplant candidates (Herzog et al., 1999). Fifty potential transplant candidates underwent DSE followed by CA. Twenty of fifty DSE were positive for inducible ischemia. Sensitivity and specificity of DSE were 52% and 74%, respectively, for stenosis ≥50%; 75% and 71% for stenosis greater than 70%; 75% and 57% for stenosis greater than 75%. At the end the authors concluded that DSE is a good screening method, in spite of low sensitivity to detect coronary artery disease. For that reason, CA is reserved for high risk groups of patient with a previous history of cardiac problems (cardiac event, ishemic heart deseaseetc) or for patients with positive stress echocardiography or MPI scan.
A well balanced nutrition in transplant recipients plays a vital role in a pre and pos-transplant period to ensure the best possible outcomes. The role of a dietician is to evaluate the patient’s nutrition status and design a nutrition plan for a pos-transplant period. For that reason it is important we ensure pre-operatively the following parameters:
The transplant recipient must receive adequate nutrition support (25-30 kcal/kg ideal body weight per day) during the first seven pos-operative days to avoid starvation and to enhance postoperative recovery (Braga et al., 2009). We should aim to identify the patient’s post-transplant nutrition requirements prior to a surgery and in advance to design an individual sufficient nutrition plan.
The European Society for Clinical Nutrition and Metabolism (ESPEN) developed guidelines on enteral nutrition management after surgery (Weimann et al., 2006). These guidelines suggest that oral diet and supplements should be initiated early after surgery, where possible. Furthermore, enteral nutrition should be considered in patients with obvious under-nutrition and those whose oral intake will be inadequate (<60% of requirements) for 10 days after surgery. These patients should ideally have a naso-jejunal tube placed during surgery and feeding commenced on the first pos-operative day. According to these guidelines, parenteral nutrition is reserved for those patients who are unable to tolerate enteral feeding; due to complication including interstinal obstruction, ileus and sever shock (Braga et al., 2009).
In the long term, it is important to maintain a healthy weight and maintain good nutrition status. A team from the Netherlands (Hoogeveen et al., 2011) reports that 1-year post-transplant BMI is more strongly related to death and graft failure than pre-transplant BMI. According these data, patients who reached pos-transplant BMI>30 kg/m2 have a 20-40% higher risk of death and graft failure compared to patients with lower BMI.
A routine part of the pre-transplant assessment includes blood tests:
a.
b.
Additional studies may include oral or intravenous glucose challenge, anti-insulin and islet cell antibodies, proinsulin level and lipoprotein.
c.
d.
Overall, contraindications to pancreas transplantation are the same as for kidney transplantation, and they are often determined by patient co-morbidity.
a.Insufficient cardiovascular reserve: Ejection fraction below 50%, Myocardial infarction within 6 months, Non-correctable coronary artery disease or refractory congestive heart failure
b. Non curable malignancy (excluding localised skin malignancy)
c. Active sepsis
d. Active peptic ulcer
e. Major psychiatric history likely to result in non-compliance
f. Inability to withstand surgery and immunosuppression (UKT, 2003)
Some contraindications are relative and must be individually assessed and discussed with the responsible specialist on multidisciplinary bases and with the patient, too.
a.Cerebrovascular accident with long term impairment.
b.HIV (subject to discussion).
c.Chronic liver disease: Candidates with Hepatitis B/C need recent viral screen, LFT and assessment by hepatologist prior activating on a WL. The aim is to exclude active viral disease as well as advanced irreversible liver disease.
d.Body Mass Index greater than 30.
e.Malignancy: In patients with a history of cancer a cancer free interval from three to five years according the type of cancer, stage and cancer therapy are required. This issue must be discussed in detail with an oncologist. A valuable source of information is “Israel Penn International Transplant Tumor Registry” (www.ipittr.org).
f.Type-2 diabetes was originally an absolute contraindication to pancreas transplantation. However, a recently published review reports that selected group type-2 diabetics benefit from whole organ pancreas transplantation, too. Transplant outcomes (after SPK) are comparable between type 1 and 2 diabetics. But a strict patient selection is required; BMI less than 30 kg/m2, insulin requirements <1.0 units/kg/day, C-peptide level less than 10 ng/ml, etc. (Orlando et al., 2010).
g.Extensive aorta/iliac and/or peripheral vascular disease.
h.Continued abuse of alcohol, smoking or other drugs. (UKT, 2003)
For diabetic patients with ESRF three transplant alternatives are currently available: kidney transplantation (including cadaver and living donor kidney transplantation); Simultaneous Pancreas-Kidney Transplantation (SPK) and Pancreas After Kidney Transplantation (PAK). Each of them has some recognised advantages and disadvantages (Tab. 2).
Provides better survival than dialysis options | Inferior to other transplant options with respect to kidney graft survival and patient survival | |
Minimizes waiting time, time spent on dialysis Very low early morbidity and mortality | Absence to normalize of blood glucose Inferior patient survival over time when compared with SPK recipients with functioning grafts | |
Glycemic control, with recent median pancreas graft survival of "/>10 years High-quality, deceased donor kidney graft | Higher morbidity and mortality due to larger operation If pancreas fails within the first year, outcomes are worse than LRD | |
Glycemic control If living donor kidney transplant, comparable/better patient and kidney graft survival than LRD | Two separate surgical procedures, increased mortality early postoperatively following pancreas transplant Historically inferior pancreas graft survival (35% at10 years) than SPK |
Summary of advantages and disadvantages of transplant options for diabetic kidney disease(Wiseman, 2010).
Kidney transplantation is a widely used and well accepted transplant option for patient with ESRF secondary to DN. It is indisputable that this alternative gives survival advantages to these patients over chronic dialysis. The estimated survival of a diabetic on dialysis is only 30-40% at five years, while kidney transplantation increases their 5 year survival to up to 70% for Cadaver Kidney Transplantation (CKT), and to up to 80% for Living Donor Kidney Transplantation (LRD) (Reddy et al., 2003; USRDS 1998; Cecka et al. 1996). As we know, LRD is associated with better outcomes due to a superior quality of kidney graft and reduced cold ischemia time. This type of transplantation has relatively low risk of post-transplant complications (10-12%) and compared to pancreas transplantation it is less traumatic, too. For that reason, a greater population of diabetic patients with ESRF is eligible for renal transplantation rather pancreas transplantation. A successfully treated ESRF with renal transplantation does not only improve overall patients’ medical conditions (anaemia, hypertension, etc) but in many cases it also stabilises brittle diabetes.
During recent years, Simultaneous Pancreas and Kidney Transplantation (SPK) has become the most popular transplant alternative and golden standard for type-1 diabetic with ESRF. Additionally to renal transplantation in these patients pancreas transplantation helps to achieve euglycemia, insulin independence and enhances patients’ quality of life (Sureshkumar et al., 2006). Also, the tight glycaemic control prevents the recurrence of diabetic nephropathy and improves secondary diabetic complications; mainly diabetic retinopathy, cardiovascular disease, diabetic neuropathy, etc.
Overall, it has been proven that SPK gives some survival benefits to these patients. In one of the largest studies (Ojo et al., 2001) SPK was associated with a 10-year patient survival of 67% compared to 46% in a CKT recipient group. However, in comparison with the LRD benefit of SPK, in terms of patient and graft survival, it does diminish. Wisconsin experiences (Tab. 3) (Rayhill et al., 2000) have shown that patient and renal graft survival was not different between the LRD and the SPK groups, but it was significantly lower in the CKT group (Fig 5,6) (Young et al., 2009).
The main advantage of LRD is the low immunological risk and good quality kidney graft that participates on excellent kidney function and prolongs graft survival. However, only an additional pancreas transplant gives a protective role to prevent the recurrence of DN, maintain a good kidney function, improve the quality of life and eliminate secondary diabetic complications. On the other hand, we cannot forget that SPK is associated with a double level of morbidity (20-40%) and mortality (2-5%) compared to kidney transplantion. For that reason, younger patients with better medical conditions (Rayhill et al., 2000) should be considered for SPK.
100% | 94% | |
99% | 85% | |
96% | 88% | |
94% | 72% | |
96% | 85% | |
94% | 72% | |
87% | 78% | |
86% | 64% |
The 1-year and 5-year pos-transplant outcomes (Rayhill et al., 2000). LRDi – HLA-identical living related donor, LRDh – haplotype-identical living related donor
Unadjusted kidney graft survival by transplant type (
Unadjusted patient survival by transplant type (
Historically, Pancreas After Kidney Transplantation (PAK) was not a very popular pancreas transplant alternative due to the inferior pancreas graft survival compared to SPK. The impact of pancreas graft on patients with kidney graft from two different donors was associated with high immunological graft failure. However, the development of new immunosuppressive regiments based on depleting antibody induction and Tacrolimus and MMF maintenance reduced the risk of immunological graft loss and improved graft survival outcomes. For those reasons, this alternative has become more popular (Larson et al., 2004).
Diabetic patients who have undergone kidney transplant or who underwent SPK and have lost pancreas graft might be todayconsidered for PAK. With increased frequency, this two-stage procedure involves a living donor kidney transplantation followed by a cadaver pancreas transplant (PALK). This alternative has the advantage of a short waiting time and of a superior quality kidney graft (Kleinclauss et al., 2009). The second great advantage of PAK is performing major pancreas transplant surgery on a non-uremic patient. This minimizes the risk of per-operative morbidity and mortality related to renal failure.
Pominipanin analysed data of the Organ Procurement Transplant Network/United Network of Organ Sharing (OPTN/UNOS) database and compared outcomes of SPK with CKT and PALK. He reports that renal graft outcomes were superior in PALK compared to SPK. The 1-year pancreas graft survival was marginally higher for the SPK cohort (86%) vs. 80% for PALK. The overall patient survival was better in PALK compared to SPK (Fig 7 a,b). Even this study showed that PAK is an alternative with competitive results to SPK.
At present, SPK and PAK are the most common options for uremic type-1 diabetics. SPK is a one-stage procedure and this is its main advantage over PAK. On the other hand, PAK has the advantage of involving living donor with superior quality of kidney graft function and subsequently of performing pancreas transplantation on a non-uremic patient. Simultaneous Cadaver Pancreas and Living Donor Kidney Transplantation (SPLK) is an innovative approach that merges some benefits of both alternatives; superior quality of living donor kidney and s single procedure with shorter waiting time for cadaver pancreas graft.
Kidney graft survival (Poommipanit et al.,
Despite increased immunological risk, SPLK showed comparable results with SPK and PAK (Boggi et al., 2004). In a study from Maryland (Farney et al., 2000), it was reported that 1-year pancreas graft survival in the SPLK group was not significantly higher than in SPK and PAK (88% vs. 84% vs. 71%) Fig. 8,9,10 (Farney et al., 2000). The 1-year patient survivals were 95% (SPLK), 94% (SPK) and 100% (PAK). The SPLK group showed lower incidence of delay graft function and better kidney function.
Pancreas graft survival rates (
Patient survival rates (
Kidney graft survival rates (
Despite worldwide growing experience with pancreas transplantation, this procedure is still associated with high incidence of pos-transplant complications; and compared with other solid organ transplants; it has the highest incidence of serious intrabdominal complications and reoperations. We know that up to 50% of pancreas recipients develop pos-transplant complication and around 32% of patients require further surgery to deal with these problems (Troppmann et al., 1998). According the United Network for Organ Sharing report, from 11% to 21% of all pancreas grafts are lost because of surgical complication (Gruessner& Sutherland, 2005).
There are recognised several factors that participate in development of postransplan complications. Diabetes was found to be the strongest independent risk factor. It is well documented that diabetics have significantly higher complication rate compared with non-diabetic population. Also, these patients receive strong immunosuppressive regiment, compared to other solid organ recipients. This makes patients more immunocompromised and vulnerable to infection. Open bowel or bladder, during pancreas implantation is other possible source of abdominal contamination and infection. Furthermore, SPK recipients are compromised by uraemia and PAK recipients are chronically immunosuppressed at the time of transplant. Additional risk factors include: older donors and recipients, long cold ischemia time and high BMI (UNOS & IPTR, 2008).
The most common surgical complication after pancreas transplantation is abdominal infection and graft pancreatitis (38%), followed by pancreas graft thrombosis (27%) and anastomotic leak (9%) (Troppmann et al., 1998).
Vascular thrombosis is the second leading cause of pancreas graft failure after rejection. Incidence is reported between 2-20% and it can be either arterial or venous (Gruessner& Sutherland, 2000).
It is well known that pancreas is more susceptible to thrombosis than other organs. Pancreas has naturally low microvascular flow. Removing the spleen from pancreatic graft as a part of the pancreas bench-work, venous flow does reduce even more. The pancreas also requires vascular reconstruction because blood supply to the pancreas is divided during explantation. The donor iliac artery extension ”Y” graft is joined to the superior mesenteric artery and the splenic artery to create a single arterial conduit (Fig. 11). The venous extension graft is an additional risk factor causing venous thrombosis. Furthermore, hyper-coagulable status in renal failure patients and endothelial damage are recognised as other negative factors in developing venous thrombosis (Muthusamy et al., 2010).
Vascular reconstruction. An end-to-end anastomosis between limb of internal iliac artery of the “Y” graft and stump of the splenic artery of the pancreas graft; and limb of external iliac artery and stump of the superior mesenteric artery. A - “Y“graft, B- superior mesenteric artery, C – splenic artery
If venous thrombosis occurs, often a patient develops abdominal pain due to organ swelling with an acute drop of haemoglobin levels. Raising levels of serum glucose are usually late sings of thrombosis. Arterial thrombosis is much less common with a less dramatic clinical picture. In the majority of cases, the pancreas graft is non-salvageable and requires urgent graftectomy. Some data report that in an early stage urgent radiological intervention with thrombectomy or thrombolysis can salvage a pancreas allograft (Stockland et al., 2009) (Fig. 12).
Conventional angiography of pancreas graft. a/ Thrombus in the portal vein of pancreas graft (black arrow points on filling defect, thrombus, in portal vein). A thrombectomy catheter is in the graft’s portal vein via right external iliac vein by cannulation right femoral vein. b/ Status after thrombectomy. Improvement in venous flow and full patency of portal vein without a thrombus. c/ Normal angiogram of pancreas graft.
A key part of the post-operative thrombosis management is prevention, close monitoring, early diagnosis and early intervention, but mainly meticulous vascular reconstruction, bench-work and refine implantation technique. Patients after transplantation receive a high dose of fractionated/continued infusion heparin to develop hypo-coagulable status to reduce clot formation. Sensitive markers for careful coagulation monitoring are APTT ratio (INR) and Thromboelastogram (TEG) (Burke et al., 2004). Several diagnostic methods are recommended for graft monitoring and diagnosis vascular complications: duplex ultrasound, CT-angiography or MR-angiography and formal angiography.
This vascular complication does mainly occur in combination with intra-abdominal infection or during sever hypo-coagulable status secondary to heparin treatment. Heparin induced bleeding usually has a slow progress and it is often managed conservatively; with antibiotics and blood transfusions. Bleeding secondary to infection is a serious event and it can be life-threatening. Clinical presentation is rapid, sudden hypotension, significant fall of haemoglobin levels and pulsative intra-abdominal mass. In that case urgent laparotomy is vital to control bleeding and abdominal sepsis. At presence of advanced abdominal sepsis or infection involving pancreas graft it is recommended to perform graftectomy to prevent fatal bleeding.
Graft pancreatitis usually occurs instantly after transplant as a result of excessive handling of an organ during retrieval, storage, bench-work and transplantation, as well as a consequence of ischemic-reperfusion injury. Most episodes of pancreatitis resolve uneventfully, however some may lead to secondary complications (fistula, pseudocyst, etc.). Also, Octreotide (synthetic somatostatinanalog that inhibits exocrine pancreatic secretion) has been used to prevent and treat some pos-transplant complications (i.e. graft pancreatitis, pancreatic fistula). But data from published studies are controversial with no statistical difference in complication rate between recipients who received octreotide and patient treated by placebo (Stratta et al., 1993).
Other common early surgical complications involve anastomotic leak, pancreatic fistula, intra-abdominal sepsis, ileus, wound infection, etc. They may cause graft lost and recipients’ mortality so it is important to actively search for them, to detect them early and to treat them.
The key role of immunosuppression in transplantation is to minimize graft lost due to rejection. Despite this major benefit, all immunosuppressive medication has some side effects. For that reason, a good immunosuppressive regiment should balance both aspects to deliver the best possible outcomes. The pancreas is a more immunogenic organ than the kidney, and precisely for that reason the majority of immunosuppressive regiments for pancreas transplantation are mainly based on quadruple drug therapy; including antibody agents for induction in combination with calcineurin inhibitors (CNI) and mycophenolatemofetil(MMF) or sirolimus and steroids (Singh & Stratta, 2008).
Initially, the IL-2 receptor antagonists (basiliximab, daclizumab) have been used as induction agents in pancreas transplantation for long period. In the PIVOT Study daclizumab induction was compared to no antibody induction in pancreas transplantation. The results showed that daclizumab significantly reduced the incidence of acute rejection. The 1-year rejection free interval in the daclizumab group was 68% compared to 51% in the non antibody induction group (Stratta et al., 2003). T-cells depleting antibody agents, such as antithymocyte globulin (ATG) and alemtuzumab (Campath), have gained great popularity these days. According to the United Network of Organ Sharing data, this type of induction significantly decreases incidence of immunologically related pancreas graft failure (Gruessner & Sutherland, 2003).
According to a review published in 1999 (Stratta, 1999), a combination of MMF and tacrolimus in primary immunosuppressive regiment resulted in an improved 2-years patient, kidney and pancreas survivals; 97.7%, 93.3% and 90%, respectively.
Lymphocyte-depleting antibody agents in combination with tacrolimus, and MMF or sirolimus, are effective in preventing acute rejection and allow corticosteroids elimination or even full avoidance (Heilman et al., 2010). The principle of the steroid sparing regiment is to avoid steroids related side effects (increased risk of hypertension, glucose intolerance, cholesterol, infection, cardiovascular events, anaemia, osteoporosis, etc.) in pancreas transplant recipients. There is strong evidence that steroid sparing/avoidance regiments are safe and effective with a positive impact on patient and graft survival. Also, we have seen significantly improved the short-term outcomes whereas the long-term outcomes are still insufficient (Mineo et al., 2009).
The development of surgical techniques and immunosuppressive drugs has significantly improved short-term outcomes of pancreas transplantation (Fig. 13). So these days the main target is to improve long-term results and minimize late graft dysfunction.
Pancreas graft survival by era for all transplants, 1987–2007: UNOS registry analysis.
Immunological graft loss still remains the main cause of graft failure; its rate in 1-year is significantly lower in SPK groups (2%) compared to solitary pancreas transplants (6% for PAK and PTA) (Fig 14) (Gruessner et al., 2008).
Pancreas Immunological loss (Waki et al.,
The incidence of acute rejection is at its highest early after the transplantation. Induction regiments based on antibody depleting agents (i.e. ATG, Campath) delay the repopulation of lymphocytes; so the peak of rejection rate is around six to nine months after transplantation instead of three months as we see in regiments based on IL-2 receptor antagonists induction. A clinical picture of acute rejection is non-characteristic (fever, abdominal pain, ileus, tenderness, diarrhea, haematuria in bladder drained pancreas) or in the majority of cases absent.
Close monitoring of the pancreatic graft is a crucial part of pos-transplant surveillance. Unfortunately, there are not any biomarkers that can sensitively predict rejection yet. For that reason routinely are monitored the levels of fasting blood glucose, fasting C-peptide, HbA1c, serum amylase, serum lipase, oGTT and CRP; but with limited sensitivity and specificity. In SPK patients we do monitor serum creatinine as an indirect marker, too. Also, we know that islet function is resistant to pancreas damage so serum glucose elevation is a late manifestation of pancreas graft dysfunction and predicts poor prognosis; i.e. acute or chronic rejection, pancreatitis, thrombosis, etc.
The bladder-drained pancreas technique gives easy and convenient access to monitor pancreas graft function by measuring urine amylase. A low amylase level is a marker of graft dysfunction (rejection, pancreatitis, etc). Also, cystoscopy enables to perform repeated pancreas graft biopsies with a relatively low risk of complication rate.
The only objective way to diagnose rejection is a histological evaluation of the pancreas graft. Precise diagnoses help to tailor management and subsequently improve graft function. Despite a higher incidence of biopsy related complications pancreas graft biopsy is now widely employed (Gaber, 2007). SPK cases have a high incidence of synchronous pancreas and kidney rejection rate, around 62.5%. Kidney graft biopsy has lower risks of complications compared to pancreas biopsy. Also for that reason, kidney biopsy is routinely employed to diagnose pancreas graft rejection. On the other hand, there is a 25% occurrence of kidney only rejection; that usually correlates with elevation of serum creatinine. In 12.5% cases rejection involves only pancreas without involvement of renal graft (Kitada et al., 2009).
A successful Banff scheme of grading rejection in kidney (Solez et al., 2007) and liver (ICD, 1997) transplantation was subsequently applied in pancreas transplantation, too. On the 9thBanff conference on Allograft Pathology in 2007 (La Coruña, Spain) a final version (Tab. 4,5) of Banff Schema for Grading Pancreas Allograft Rejection was agreed (Drachenberg et al., 2008).
The main purpose of pancreas transplantation is to achieve eu-glycemia, insulin independence and improve the quality of life in diabetics. A number of studies examined the impact of successful pancreas transplantation also on secondary diabetic complications (nephropathy, retinopathy, neuropathy, etc).
graft sclerosis. The fibrous component is limited to normal septa and its amount is proportional to the size of the enclosed structures (ducts and vessels). The acinar parenchyma shows no signs of atrophy or injury. rejection. 3. Cell-mediated rejection Acute cell-mediated rejection - Grade I/Mild acute cell-mediated rejection Active septal inflammation (activated, blastic lymphocytes, ± eosinophils) involving septal structures: venulitis (sub-endothelial accumulation of inflammatory cells and endothelial damage in septal veins, ductitis (epithelial inflammation and damage of ducts). Neural/peri-neural inflammation. and/or Focal acinar inflammation. No more than two inflammatory fociˆper lobule with absent or minimal acinar cell injury. - Grade II/Moderate acute cell-mediated rejection Multi-focal (but not confluent or diffuse) acinar inflammation (≥3 fociˆper lobule) with spotty (individual) acinar cell injury and drop-out. and/or Minimal intimal arteritis - Grade III/Severe acute cell-mediated rejection Diffuse, (widespread, extensive) acinar inflammation with focal or diffuse multi-cellular /confluent acinar cell necrosis. and/or Moderate- or severe-intimal arteritis and/or Transmural inflammation-Necrotizing arteritis Chronic active cell-mediated rejection. Chronic allograft arteriopathy (arterial intimal fibrosis with mononuclear cell infiltration in fibrosis, formation of neo-intima) 4. Antibody-mediated rejection = C4d positivityºº + confirmed donor specific antibodies + graft dysfunction Hyperacute rejection. Immediate graft necrosis (≤1 h) due to preformed antibodies in recipient’s blood Accelerated antibody-mediated rejection. Severe, fulminant form of antibody-mediated rejection with morphological similarities to hyperacute rejection but occurring later (within hours or days of transplantation). Acute antibody-mediated rejection. Specify percentage of biopsy surface (focal or diffuse). Associated histological findings: ranging from none to neutrophilic or mononuclear cell margination (capillaritis), thrombosis, vasculitis, parenchymal necrosis. Chronic active antibody-mediated rejection. Features of categories 4 and 5. 5. Chronic allograft rejection/graft sclerosis - Stage I (mild graft sclerosis) Expansion of fibrous septa; the fibrosis occupies less than 30% of the core surface but the acinar lobules have eroded, irregular contours. The central lobular areas are normal. - Stage II (moderate graft sclerosis) The fibrosis occupies 30–60% of the core surface. The exocrine atrophy affects the majority of the lobules in their periphery (irregular contours) and in their central areas (thin fibrous strands criss-cross between individual acin). - Stage III (severe graft sclerosis) The fibrotic areas predominate and occupy more than 60% of the core surface with only isolated areas of residual acinar tissue and/or islets present. 6. Other histological diagnosis. Pathological changes not considered to be due acute and/or chronic rejection. e.g. CMV pancreatitis, PTLD, etc. |
Diagnostic categories Banff working grading schemaa/o (Drachenberg et al., 2008). ª Categories from 2 to 6 may be diagnosed concurrently and should be listed in the diagnosis in the order of their clinico-pathologicalsignificance.ºSee Table 2 for morphological definition of lesions.ººIf there are no donor-specific antibodies or these data are unknown, identification of histological features of antibody-mediated rejectionmay be diagnosed as ‘suspicious for acute antibody- mediated rejection’, particularly if there is graft dysfunction
Pathological changes “other” than rejection in pancreas needle biopsies (
Algorithm to choose the best transplant alternatives for diabetics. T1DM – type-1 diabetes mellitus, KT – kidney transplant, LRD - living related donor, CKD – cadaver kidney donor
The outcomes following pancreas transplantation have significantly improved in the last decade. Careful patient selection, better organ procurement, refinements in surgical technique, new immunosuppressive drug regiments and better graft monitoring have all contributed to excellent outcomes. The available data provides strong evidence that pancreas transplantation not only improves diabetics’ quality of life but also improves their medical conditions and prolongs their life expectancy.
Pancreas transplantation has become the option of choice to treat patients with type-1 diabetes. Currently several alternatives for these patients are available. The best option should be selected after careful patient assessment and individually weight pros and cons of each alternative (Fig. 15).
Light emitting diodes are rapidly developing in light output, color rendering, efficiency, and reliability. Achieving good level of maintenance-free in harsh environment, while keeping product competitive, is the largest challenge which only few manufacturers manage to achieve. The latest high quality LED technologies are already exceeding all other available technologies by all technical parameters. According to its numerous advantages, even higher initial cost quickly pays for itself due to vastly reduced cost of electricity and maintenance. But to fully benefit from the outstanding advantages it is important to educate and recognize the difference between low quality and latest state of the art LED technologies, since low quality LED alternatives have quickly spread all over the world [1, 2].
LED lights use 40–80% less electricity and have at least 5 times the life expectancy than regular High Pressure Sodium (HPS) fixtures. LED lamps are 7 times more energy efficient than incandescent and twice as efficient as fluorescent lamps.
LED lights with a lower lumen output can replace conventional lamps with a higher output. For example, a 30 W LED street light can often replace an 80 W High Pressure Sodium lamp. The reason for this is directionality. LED street lamps are very directional and the light output is much more than other street lamps. Also there is little or no hot spot under the LED lamp. The light emitted from the LED lamp is directed downwards, spread throughout the entire area it covers. This means that a lower amount of light is needed to properly illuminate the area. This also dramatically reduces glare and light pollution which affects the mood of human beings, navigation in birds and insects, mating behavior in animals and flowering in plants.
LED lights last much longer than conventional lamps (4 to 8 times longer). This result in less expense in replacing the lights themselves but also the labor to replace the lamp is needed less often. This provides a great cost savings by itself.
Also the loss of brightness or lumen depreciation is slower over the life of an LED lamp than that of sodium or other lamp. So not only does the LED have a longer life span than the conventional lamp, but it stays brighter longer than other lamps. The long life span reduces maintenance expenses and makes these bulbs particularly suitable for difficult to reach locations and for streetlights where maintenance costs can be significant.
Lifetime and Lumen maintenance compression between LED and HID lights is illustrated in Figure 1. The comparison shows that relamping of HID fixture is required to be done 5 times to achieved one base life time of LED, considering the relamping is required when the Lumen reduces to 70% of initial lamp Lumen [1].
Lifetime and lumen maintenance compression between LED and HID.
LED operates at efficiently at low and high temperatures, and unaffected by on/off cycling. This makes them safer and efficient in special indoor applications such as refrigerator lights, cold room lights, offices, industrial plants and better for applications requiring frequent switching on and off lights. These bulbs are shocks and vibrations resistant making them the best choice for places like offshore platforms, oil refineries, steel factors, skids and similar applications.
The light is easily controllable with intelligent systems. The light can be turned on and off instantly and can be dimmed for added energy savings at dawn, dusk, and also during hours of low traffic. Switching on–off and dimming does not affect the life-time of the luminaire as in the case of fluorescent lights.
The carbon footprint of LED street lights is smaller than other lights due to lower energy usage. Moreover, LEDs last 4 to 8 times longer than any other bulbs, further reducing the carbon footprint of manufacture over the life time. From another angle, wide range application of LED in a country my give better chance to sale there international quota in CO2 emission to other countries.
Because of the directional light, light is carefully distributed exactly where it is meant to go and therefore there is no or little light which is wasted by illuminating the night sky or very low background light contribution. This is a considerable plus especially if the local community has a Dark-sky Initiative.
It is worth to mention here that for example LED street lamps with color temperature 3.500–4.200 K are rendering more natural light than the yellow of sodium lamps or green of fluorescent streetlights. Also no UV or IR radiation is emitted from the LED street lamps. Color rendering index (CRI) is high (80–90) and displays natural colors of illuminated objects. This reflect actual color of the objects.
LED luminaires contain no harmful substances, like mercury, lead or other hazardous chemical and gasses. Spent LED lamps can be thrown away without any special handling or disposal requirement, since they are recyclable and environmentally friendly. Other lighting bulbs often have hazardous materials such as lead and mercury which require special handling and waste management procedures which have both economic and environmental costs.
European Commission issued the Regulations EC No. 245/2009 for tertiary lighting products on 18 March 2009. On the basis of these Regulations, about 1 billion lighting products have to be replaced by LED type by the year 2015 only in the area of the EU, which translates to 100 million street lamps for street lighting and industry. The remaining 900 million refer to neon lamps.
Similarly, the Energy Information and Security Act of 2007 began the process of restricting the sale of inefficient lamps in the US. By 2012, with a few exceptions, the result of the legislation will be that inefficient incandescent lamps cannot be sold [1].
High-intensity discharge lamps (HID lamps) are a type of electrical gas-discharge lamp which produces light by means of an electric arc between tungsten electrodes housed inside a translucent or transparent fused quartz or fused alumina arc tube. This tube is filled with noble gas and often also contains suitable metal or metal salts. The noble gas enables the arc’s initial strike. Once the arc is started, it heats and evaporates the metallic admixture. Its presence in the arc plasma greatly increases the intensity of visible light produced by the arc for a given power input, as the metals have many emission spectral lines in the visible part of the spectrum.
Many lighting application use HID bulbs for the main lighting systems, although some applications are now moving from HID bulbs to LED because of the LED advantages [2].
By about 2010 LED technology came to dominate the outdoor lighting industry; earlier LEDs were not bright enough for outdoor lighting. A study completed in 2014 concluded that color temperature and accuracy of LED lights was easily recognized by consumers, with preference towards LEDs at natural color temperatures [3]. LEDs are now able to match the brightness and warmer color temperature that consumers desire from their outdoor lighting system.
By comparing the power characteristics and lighting characteristics for LED verse traditional lighting, it can be concluded that using LED lighting to replace the traditional lighting devices are possible and recommended. However, still protection circuits such as current, voltage and temperature are still needed to be revised to increase the reliability. In order to make such mission become truth, the first important thing should be done is to lower the unit cost and secondary to have a proper and reliable power circuit with less loading and less electrical faults probabilities. Also suitable optics is needed to control the light pattern from the LEDs including focus, diffusion, reflection, and light amplification [4, 5].
For indoor Lighting, seven criteria are proposed to assess the technical and economic characteristics of LED luminaires and ensure their compliance with European Norms regarding office lighting. The proposed decision support system can be applied to any type of luminaire and can be used by professionals who want to evaluate different luminaire suppliers and determine the optimal luminaire tender for the lighting of any indoor space [6].
Other researches concentrated in Road lighting to compares mainly the life cycle costs (LCCs) of two typical alternatives in current road lighting: the HPS and LED luminaires. These studies have considered only the road lighting design criteria, but the esthetics and visual attractiveness are excluded from the comparison. The comparison and the results have considered only the direct energy operating cost [7]. Also an Economic cost analysis comparison between LED and HPS flood lights for an outdoor design, but using solar PV as a power supply, has been carried as a part of renewable energy design [8].
Feasibility study of LED lamp in replacing the conventional fluorescent lamp was conducted. Analysis and comparison have been carried out on the two lighting systems in terms of electrical and photometrical performance. The study did not cover any HID outdoor lighting [9].
Comprehensive techno-economic analyses that considered the Company and National economic benefits that can be achieved from the high service life of the LED light fittings (up to 100,000 Hours) and its low power consumption compared with HPS was carried out. However, this analysis is limited only for 400 W HPS lighting case.
For the above survey, it can be found that several efforts carried out economic analysis of replacement different light fittings with LED. But, none of these works has considered the economics for replacement the HID lamps by LED lamps in industrial plants. Moreover, none of these researches have presented any type of economic index to support such type of lighting projects, except [10], which limited the research the replacement of only HPS type used in access road of a gas production company.
Based on the above survey, the first goal of this chapter is to discuss the economic benefits of replacing outdoor different type of HID lights with different rating installed in an oil and gas plant, as typical “Case-Study” for industrial plant, with suitable equivalent number of LED lighting fittings, to provide even better lighting effect level, without changing the lighting poles. The second goal is to determine the global saving norm based on two main aspects. “Company Benefits”, in which the Company can gain it directly, and “National Benefits” that can be achieved by creating better gas sales opportunity for the county and by the reduction of the CO2 emission and hence the pollution.
In this section, firstly, comprehensive economic study is introduced to replace 241 pieces of 150 W Metal Halide, 103 pieces of 400 W HPS lighting, 20 pieces of 1000 W MH lighting and 162 pieces of 70 W Bollard lighting by equivalent number of LED lighting fittings. Next, economic discussion is to carried out to provide four important economic indicators. Finally, summary, conclusion and recommendation are given.
The methodology in this economic study is carried out to estimate the financial benefits of replacement of outdoor HID (High intensity discharge) lights in an oil and gas plant by the equivalent LED (Light Emitting Diodes) lighting fixture. The Study has considered the following factors:
Company (Direct) Benefits:
The initial cost of the replacement the lighting fixtures.
The energy saving.
The maintenance cost.
National (Indirect) Benefits:
Natural Gas Sales opportunity
Pollution Cost
In Company Benefits, calculation for “Luminaire Cost”, “Power Consumption” and “Maintenance Cost” are given based on offers and prices collected on 2015–2016 from different bidders, contractors and suppliers to find the lowest prices.
In National Benefits, two benefits are considered. First benefit is the gas sales opportunity that will be gained from the reduction of the power consumption in case LED light is used. Natural gas valued using the wholesale price of $4.618/MMBtu based on US Energy Information Administration Henry Hub/NYMEX futures prices; Equivalent energy rate of 5.6 ¢/kWhr is used to value the energy produced over 10 years, assuming 1% annual escalation factor and Euro to USD exchange rate of 1.2 [10, 11] Accordingly,
Where Δ kWhr is the reduction in the power consumption.
However, the second benefit is the cost saving due to the reduction of the CO2 emission, and hence less pollution. Carbon credits based on current market is typically 6 euro/ton. Where, CO2 emission is considered to be 0.83 kg/kWh. Assuming Euro to USD exchange rate of 1.2, the annual saving in pollution reduction can be calculated as following [10, 11]:
The economic study is categorized based on HID lamp type that is needed to be replaced in the plant under the study. Typical study is summarized in the following Table 1 for 150 W Metal Halide luminaire replaced by 65 W GREE LED luminaire. Where.
I. LUMINAIRE PRICE ANALYSIS | ||||
---|---|---|---|---|
S/N | Description | 150 W MH Metal Halide [12] | 65 W CREE LED [13] | Remarks |
1 | Initial Fixture cost | $227.52 | $449.59 | |
2 | Total quantity | 241 | 241 | |
3 | Total quantity Cost | 0 | 108351.4986 | |
4 | Cost/lamp manpower, crane, dumping etc.… | 108.9918256 | 108.9918256 | This estimate taking into consideration replacement cost, man power, vehicle, manpower to divert/block traffic, cost of loading/unloading & installation |
a | Therefore initial investment for LED | 0 | Additional investment for using LED luminaire. | |
1 | Wattage per fixture | 150 | 72 | System Wattage includes losses |
2 | No of fixtures in the lighting circuit | 241 | 241 | |
3 | Total power consumed (kW) | 36.15 | 17.352 | |
4 | Hence total Power consumed per year(kWHr) | 145142.25 | 69668.28 | Average daily operating time is considered 11 Hours |
5 | Cost per kWHr | 0.026948229 | 0.026948229 | As agreed with Utility |
6 | Annual cost | 3911.326574 | 1877.436755 | |
7 | Service Life Range | 16,000–20,000 | 60,000–100,000 | |
8 | Average Service life (Hrs) | 18,000 | 80,000 | |
b | Therefore the saving in 10 Years |
S/N | Description | 150 W MH Metal Halide [12] | 65 W CREE LED [13] | Remarks |
---|---|---|---|---|
Service Life Range | 16,000–20,000 | 60,000–100,000 | ||
1 | Average Service life (Hrs) | 18,000 | 80,000 | |
2 | Number of Lamps change cycle in 10 Year | 2.230555556 | 0 | LEDs have no downtime against MH lamps which fail arbitrarily |
3 | Total No. of Lamps | 538 | 0 | |
4 | Cost/lamp manpower, crane, dumping etc | 108.992 | 0 | The estimate take into consideration new lamp cost, man power, vehicle, manpower to divert/block traffic, cost of loading/unloading & installation. |
c | Therefore savings in lamp maintenance in 10 Years | |||
1 | Rated life (Hrs) | 15,000 | N/A | |
2 | Life in 10 years | 2.676666667 | N/A | |
3 | Total No. of Ballasts | 241 | N/A | |
4 | Thus component to be replaced in 10 Years | 645 | N/A | |
5 | Cost/lamp manpower, crane, dumping etc.… | 81.74386921 | N/A | This estimate takes into consideration new ballast cost, man power, vehicle, manpower to divert/block traffic, cost of loading/unloading & installation. |
c | Therefore savings in component maintenance in 10 Years | N/A | ||
a | ||||
b | ||||
c | ||||
d | Natural gas valued using the wholesale price of $4.618/MMBtu based on US Energy Information Administration Henry Hub/NYMEX futures prices; Equivalent energy rate of 5.6¢/kWh used to value the energy produced over 10 years, assuming 1% annual escalation factor. | |||
e | Carbon credits –based on current forward market @ 6 euro/ton, CO2 emission in kg/kwh: 0.83, Euro to USD exchange rate of 1.2. | |||
Summary of economic study for replacement of 150 W metal halide luminaire by 65 W LED luminaire.
Similar to the typical economic study that is carried out for 150 W Metal Halide lighting, economic study is done for the remaining types of lighting; 103 pieces of 400 W HPS lighting, 20 pieces of 1000 W MH lighting and 162 pieces of 70 W Bollard lighting. Summary Tables (Tables 2–5) are provided hereinafter to show the Total Benefit and the Economic Analysis for these luminaire types.
Total Benefits: | |
---|---|
Total Net Average Annual Saving | $14,899.66 |
Company Saving Norm = Annual Saving / kW (3) [10] | $184.02 |
Total Saving Norm = Annual Saving / kW (4) [10] | $360.29 |
Economic Analysis | |
Payback Period in Years | 4.632 Year |
Annual “ROI” in Percentage | 21.59% |
Replacement of 400 W HPS lighting with (100–130) W CREE LED.
Total Benefits: | |
---|---|
Total Net Average Annual Saving | $2543.09 |
Company Saving Norm = Annual Saving / kW (3) [10] | $ 107.15 |
Total Saving Norm = Annual Saving / kW (4) [10] | $127.15 |
Payback Period in Years | 10.93 Years |
Annual “ROI” in Percentage | 19.15% |
Replacement of 1000 W MH lighting with (426) W CREE XAX LED.
Total Benefits: | |
---|---|
Total Net Average Annual Saving | $9291.03 |
Company Saving Norm = Annual Saving / kW (3) [10] | $799.05 |
Total Saving Norm = Annual Saving / kW (4) [10] | $819.31 |
Payback Period in Years | 8.657 Year |
Annual “ROI” in Percentage | 11.55% |
Replacement of 70 W bollard lighting with (34) W CREE EDGE LED.
Project Total Investment | $339,550.41 |
---|---|
Project economics.
Base on the above techno-economic, following Table 5 is developed to summarize the main project economics indicators that can be used as good guide line for future similar projects that consider the replacement of HID lighting by LED Lighting.
Based on the Saving Norm calculated for individual luminaire type in the above from Tables 1–4 the Global Saving Norm can be calculated based on the following Eq.:
Where “n” is the number of replaced lighting types in the study.
Using Eq. (7), the calculated Global Company Saving Norm is (355.19$/kW).
From Table 2, it can be concluded that replacement of HPS lighting by LED lighting have the highest Total Net Average Annual Saving. Therefore, it is highly recommended to use LED lights instead of HID lights in industrial lighting applications.
It is also observed from Table 4 that replacement Bollard Light Lamps by LED Lamp has highest economic value because of the very short lifetime Bollard Light Lamps compared with LED lifetime.
In Table 4, project main economic indicators are illustrated with very attractive total payback period of 8.654 years and Project Annual Return on Investment of 11.55% which is higher approximately 10 times than the international bank rate for dollar deposit. This indicator supports the decision of investment in such scope of work.
In this Section, comprehensive economic study is carried out to calculate the Global Saving Norm for the replacement of High-intensity discharge lamps with different types by LED lamp in an Oil and Gas plant, which includes also the operational cost per year. The study considered Company direct benefits and National indirect benefits in evaluating project economic indicators and in calculating the Global Saving Norm as well. The result is compared and validated with previous research effort. Four important economic indicator were provided in this Section; Global Total Saving Norm ($433.37/kW), Global Company Saving Norm ($355.19/kW), typical total payback period of (8.654 year) and typical Project Annual Return on Investment of (11.55%). These four figures are important for both project decision makers and for cash-flow controllers.
In Section 2 of this chapter, comprehensive economic study is carried out to calculate the Global Saving Norm for the replacement of High-intensity discharge lamps with different types by LED lamp in an Oil and Gas plant as “Case Study” representing industrial plant. The analysis considered Company direct benefits and National indirect benefits in evaluating project economic indicators and in calculating the Global Saving Norm as well. Four important economic indicator were provided in this Section; Global Total Saving Norm ($433.37/kW), Global Company Saving Norm ($355.19/kW), typical total payback period of (8.654 year) and typical Project Annual Return on Investment of (11.55%). These four figures are important for both project decision makers and for cash-flow controllers.
Various road classifications are existed in terms of traffic flow. Principal arterials, minor arterials, rural collectors, local roads and very low-volume roads. The last is what our concern in this section. Statistically, for low-traffic roads the flow rate of the vehicles is assumed to be 400 vehicles per day [14]. In these roads, even simple lighting system is not installed mostly, and authorities rely on vehicle lights to illuminate the roads, which putting people life and valuable product passing in these roads under the risk. The main reason of non-lighting system is the desired of saving electrical energy. The main reason of non-lighting system is the desired of saving electrical energy. However, continuously lightened fully roads cause wastage of electricity, as only one vehicles may appear every three or four hours and even more during the night time. Each of these two scenarios are contradicting and are extremely significant issues.
Several researchers did some projects and published their work related to this topic, however, none of them has considered the lighting automation system on low traffic road. Articles are mainly related to smart or automated main street lighting systems or parking areas. In the following paragraphs, several researches’ results is discussed, and main points are drawn into attention.
Some studies proposed a suggestion to use two sensors in order to consume less power with maximized efficiency of a system [15]. Light Dependent Resistor (LDR) sensor is utilized to measure the sun light intensity to control the switching action of LED streetlights, and Passive Infrared Resistor (PIR) motion sensor is used for changing the intensity of LED light when there is no motion of object in the street at mid-night, then all the streetlights are dimmed. However, [16] indicates that LDR and PIR sensor are used for same purpose, but without dimming the light, just switched on or off. In [17], the author worked on this topic using Infrared Resistor (IR) sensors which measure the heat of an object as well as detects the motion, in contrast to previous researchers did. They developed the system using Arduino Uno R3 while [18] achieved the same by Raspberry Pi 3 micro controller.
Another research effort offered Zigbee Based Smart Street Light Control System Using LabVIEW. Here, movement is detected by motion sensors, communication between lights is enabled by Zigbee technology. So, when a passer-by is detected by a motion sensor, it will communicate this to neighboring streetlights, which will brighten so that people are always surrounded by a safe circle of light [19].
Another author developed Intelligent Street Lighting System Using GSM technology. The aim is to achieve the energy saving and autonomous operation on economical affordable for the streets by installing chips on the lights. These chips consist of a micro-controller along with various sensors like CO2 sensor, fog sensor, light intensity sensor, noise sensor and GSM modules for wireless data transmission and reception between concentrator and PC. The emissions in the atmospheres would be detected along with the consumption of energy and any theft of electricity [20].
Automatic street-light control system using wireless sensor networks is also proposed in some design. The system contains lamp station and base station [21]. Each lamp station consists of Arduino Uno board as microcontroller, PIR sensor, emergency switch, LDR sensor, nRF24L01 transceiver, ultrasonic sensor, relay, LED light and a solar panel as energy source. The base station consists of Raspberry Pi as processor, nRF24L01 transceiver, and a GSM module. The automatic streetlight turns on under three conditions. Firstly, when PIR sensor detects a human or a moving object vehicle LED light is turned on. Secondly, an ultrasonic sensor is used to detect distance objects and turn on the light accordingly. Lastly, a switch is included for manual operation in case of maintenance work. The LDR sensor is included to measure the light intensity for identification of the day and night. There nRF24L01 wireless transceiver transmits the sensor information and the light status to the Raspberry web server to upload on the web page. Also, it receives commands sent from the web page to turn on or off the light at a particular node. The entire system is powered using solar cells making it more energy efficient.
The problem of high operational cost of low traffic light that use HPS lighting is partially solve by using LED light fitting instead of HPS luminaries [10].
Many real projects and researches have been done on this area [22, 23, 24], but few of them are focused in this topic exactly. Most of them consider street, campus, parking, park or any small area lighting system. The rest of them is devoted to road light and control systems. Brief analysis, discussion and comparison will be introduced hereinafter.
From the above literature review, firstly, all systems mentioned above used LDR sensor to sense night-time to operate the control system itself. In the system prosed in this Section, the same day/night sensor idea is also use to know exact hours of night-time or any dark time during the day time due to heavy cloud or any other reasons.
Secondly, all systems above have used motion sensors to detect the object movement whatever this object is, even if it is not vehicle, and hence control the lights in terms of switching ON/OFF or dimming. IR sensors and PIR sensor were the preferred sensors used to detect the object. These type of sensors detect mainly warm object and their movement. But, for the suggested system in this Section that need to be used for low traffic road, movement of only vehicle is needed to be recognized and hence switch on the light or dim them. The proposed system need to be designed to avoid any other motion such as animals, birds, or other objects which may be detected by IR or PIR sensors as this unnecessary detection of motion can cause unjustified energy consumption. Therefore, it is needed to give new approach to tackle with such problems. New approach could be to add the night vision smart camera to the system in order to recognize only the vehicles among all other objects that the camera detects.
Thirdly, some systems control the illumination by measuring the intensity of the objects movement and change the dimming of the lights accordingly. But for illumination system of low traffic roads, the intensity of the vehicles is continuously very low, and hence dimming technique is not effective solution.
Fourth, using LED light continuously operate during the night for low traffic roads can reduce the cost of illuminating the road compared with any other HID lighting, but still this is not best solution because the utilization of this system by this operational philosophy is not an efficient utilization because most of the time the light is ON unnecessary.
Fifth, in general, previous researches have been done on lighting automation system for the roads which serve both pedestrians and vehicles. But, this Section tries to design automation lighting system for long road with low traffic, where no need to switch on the lights for movement of any object except the vehicles.
In this section, efficient, safe and cost effective solution to design automated lighting system suitable for long roads with low-traffic is provided. First, description of the entire system design is discussed. Then, methodology and the programing of vehicles recognition using camera images are illustrated. Economic analysis for the proposed system is carried out. Finally, conclusion is given.
Lighting automation system in low traffic roads is intended to implement in the illuminated roads. It is supposed to have source power supply, feeder pillar with controller, light poles with day/night sensor. Such conventional system can be upgraded by new automated system. The methodology of lighting automation system in low traffic roads is achieved by applying the moving object recognition technique using cameras. Firstly, the road is sectionalized into several zones. Each zone depends on how much distance is existed between two feeder pillars, typically 400 meters. So, light poles in each zone will be switch on/off together. It means that each zone will have its feeder pillar (control panel) with controller, day/night sensor, motion sensor, and camera. Night vision cameras are installed on the road in such way to detect the vehicle arrival-to and departure-from each zone. The controller is designed to illuminate only the zones in which the vehicle is detected. The type and span of the zone are calculated based on the road design considering straight spans and roundabout.
The control scheme of the automatic lighting system is illustrated in Figure 2. Day/night switch detects darkness status to start the controller and hence motion sensor and night vision cameras. Now, let us consider that there are two adjacent zones (Zone N) and (Zone N + 1), and vehicle enters to Zone (N + 1). Mainly, day/night sensor and motion sensors of (Zone N + 1) need to be installed before the camera of (Zone N + 1), while camera of (Zone N + 1) need to be installed in (Zone N) near to the end. This is because camera need to start capture the moving objects images only after motion sensor detects any object in advance and sends the signal to the camera to start operation, and hence the controller takes the proper decision for switch the light of (Zone N + 1) before the object enter the zone.
Automatic lighting system schematic.
For that, camera is installed on a light pole about 80 m before each zone. This distance provides approximately 2 seconds for data processing and control assuming maximum speed is approximately 60 km/hour. Figure 3 illustrates the installation location of (Zone N + 1) camera, day/night sensor and motion sensors in (Zone N).
Zone definition.
The software in the controller extracts the image from the camera and analyze it to determine whether the object is vehicle or not. If the object is not a vehicle, no action is taken by controller. In case the object is vehicle, signal shall be sent to Zone N + 1 lighting feeder pillar to switch on light of Zone N + 1 Simultaneously signal shall be sent to Zone N controller to switch off lightning system of Zone.
As we explained above, each Zone has its own lighting control system consists of Day/night switch, motion sensor, night vision camera, controller and feeder pillar.
When the controller of any zone detect “vehicles” the digital counter inside this controller counts the number of these detected vehicle (Nin). In the same time, the same controller receives from the digital counter inside the controller of next Zone updated number of the vehicle interring the next zone (Nout). The communication between the controllers can be achieved by Power Line Telecommunications method. or RS-485 cable. If the difference between the these to numbers (Nin- Nout) is zero, this means that no vehicles exist in this zone, and the controller switches “Off” the light. As long as (Nin- Nout) is not zero, the light of the zone will be kept “On”. This methodology insures that the lighting system for any zone is kept “On” if any vehicle(s) still in that zone for any reason such as accident, maintenance or temporary parking. Also, this methodology insures that the lighting system of the zone free of any vehicle is “OFF”.
In Figure 4, flow chart for two consequent lighting system control logic is illustrated.
Control flow chart for zone N and zone N + 1 lighting system.
Several researches are done to recognize the vehicle at night based on vehicle lamp detection [25, 26]. This method will not work in case the vehicle lights are switches off for any reason. Another researches are carried out to detect the information in vehicle number-plate using artificial intelligent methods [27, 28]. However, using artificial intelligent method is time consuming and not useful for the application of the proposed system. In this application, recognition of the number-plate rectangular frame is simple method and more than enough to confirm that the moving object is “Vehicle”.
The process of detection of vehicle number-plate consists of the following steps: capture of image, pre-processing, plate region extraction (Figure 5).
Vehicle recognition flowchart.
In this step, the image is captured by electronic devices such as infrared digital camera or any other camera suitable for night time. The image captured is stored in JPEG format. After that the captured image is converted into gray scale image.
The next step after capturing the image is the pre-processing of the image. When the image is captured a lot of noises present in the image. Reducing the noises from the image are required to obtain an accurate result.
The RGB image is then converted into a gray scale image for easy analysis as it consists of only two color channels.
The aim of this pre-processing is to improve the quality of the image. Image enhancement techniques are used in this step. Image enhancement techniques consists process of sharpening the edges of image, contrast manipulation, reducing noise, color image processing and image segmentation.
The most important stage is the extraction of number-plate from eroded image significantly. The extraction of number-plate can be done by using image segmentation method. Mathematical morphology is used to detect the region of interest and Sobel operator are used to calculate the threshold value.
In general, any vehicle has its own number-plate which is always in rectangular shape consists characters. Accordingly, the basic approach in the detection of a vehicle is to recognize its number-plate which is mainly frame with characters (Numbers and letters). So, it is necessary to detect two criteria: the edges of the rectangular plate and there are characters within the rectangular.
A morphology based approach for detection number-plates is used. Our proposed method applies basic mathematical morphology operations like dilation and erosion.
The software model using the image processing technology is designed. The programs are implemented in MATLAB. The algorithm is divided into following parts: capture image, pre-processing, plate region extraction, characters recognition.
The following MATLAB code is written to implement the above mentioned parts:
Image capturing from camera
% Read Image
Input_image = imread(‘Car.jpg’);
RGB to gray scale
% Convert the truecolor RGB image to the grayscale image
I = rgb2gray (Input_image);
The following steps are used:
Image capturing from camera
% Read Image
Input_image = imread(‘Car.jpg’);
RGB to gray scale
% Convert the truecolor RGB image to the grayscale image
I = rgb2gray (Input_image);
Edge detection
% Sobel Operator Mask
Mx = [−1 0 1; −2 0 2; −1 0 1];
My = [−1–2 -1; 0 0 0; 1 2 1];
% Sobel Masking for filtering image
S = imfilter (I, Mx,\'replicate’);
Vertical and Horizontal Dilation
% Vertical Dilation
Dy = strel(‘rectangle’, [80,4]);
Iy = imdilate (M,Dy);
Iy = imfill(Iy,\'holes’);
% Horizontal Dilation
Dx = strel(‘rectangle’, [4,80]);
Ix = imdilate(M,Dx);
Ix = imfill(Ix,\'holes’);
% Joint Places
JP = Ix.*Iy;
ID = imdilate(JP,Dy);
ID = imfill(ID,\'holes’);
Erosion
The process of erosion reduces removing unwanted details from a binary image.
% Erosion
E = strel(‘line’,50,0);
IE = imerode(ID,E);
Filtering of digits
By filtering, the unwanted substances or noise can be removed or filtered out that is not a character or digits. Small objects or connected components should be removed and then the frame line that is connected to the digits should be identified and separated.
Bwareaopen (Image Processing Toolbox) is applied for removing all the connected components from the binary image that have value less than P pixels.
image2 = bwareaopen(image, min(numberofpixel, 100));
Stats = regionprops (L, properties) is applied for measuring a set of properties for each labeled region in the label matrix L.
stats = regionprops (image2,\'all’);
Detect plate from image
The validation of the of the number-plate recognition program, and hence the detection of vehicle, is done by two tests.
In this first test it needs to insure that the program recognizes any object, that is captured by the camera, has number plat. Therefore, the test is carried out to detect the number plat for different vehicle models and types with different orientations. The test result is illustrated in Figure 6. The program succeeded to detect the number-plate as rectangular frame include characters. It is worth to highlight here that it is not part of the program function to “read” the number-plate.
The results for objects with number-plate.
The objective of the second test is to ensure that for any object that does not have number plat, the program shall detect no number-plate. The test is done using four images for different objects consist of peoples and animals - Camels and Dog- (Figure 7). The program also succeeded to detect no number-plate.
The results with non-car images.
Any moving object enters any zone of the road shall be subject to two steps of recognition process: the first recognition process is by the motion sensor which detects that there is a moving object leaving the zone (serves-zone) and enters the next zone. The second recognition process is carried out by the image processing software that detects the moving objects which has rectangular plate with characters (Vehicle). If the two condition is satisfied simultaneously, the intelligent lighting system puts ON the road lighting of the next zoon (vehicle entering zoon) and switch off the lighting of the service-zoon after short time delay (vehicle leaving zoon).
Comprehensive economic study is carried out with the same methodology discussed is Section 2, but to estimate the financial benefits of using the proposed lighting automation system for the low traffic roads. The Study considers also Direct Benefit and Indirect Benefits [10] in order to evaluate the entire economic value of the system.
Assuming for low traffic; the vehicle flow is 400 vehicles per day [14], vehicle speed is 60 km/hour, zone distance is 400 meter, lighting pole span is 40 meter, LED fixture consumption per pole is 75 Watts [30] and electricity tariffs is typically (0.053$) per kWh [29].
From the above assumptions, flow rate of the vehicle can be calculated to be 17 vehicles per hour. Considering worst road operation scenario, at which the 17 vehicles are driven with constant speed of 60 km/hour and equal distances from each other, it is obvious to conclude that one vehicle shall enter the first zone each 212 seconds and leaving the zone (400 meter) after approximately 24 seconds. Accordingly, the zone lighting fixtures shall be switched on for 29 seconds and switched of for 183 second approximately. From that, the percentage saving in power consumption using the proposed controller compared with the power consumption when road is illuminated continuously during the night is approximately 183 × 100/212 = 86% saving.
Considering 4 km low traffic road operating for typically 50 years, Direct benefits and Indirect benefits can be calculated as following:
Considering the cost of; camera (approximate number), day/night sensor, motion sensor, controller (simplest version) [31], signal transmission between zones by RS-485 network [32], and installation [10] (lamp, manpower, crane, dumping etc.…), Table 6 can be obtained. The table illustrates that approximately $26,662.88 is needed to provide the proposed automation lighting system for 4 km.
S. No | Definition (in 4 km) | With controller | Without Controller |
---|---|---|---|
1 | Total Quantity of LED | 100 | 100 |
2 | Quantity of Day/Night sensor, Motion sensor, Camera & Controller | 10 | 0 |
3 | Unit price for Day/Night sensor, Motion sensor, Camera & Controller including maintenance | $107.40 | $0 |
4 | Total cost for item 3 | $1074.00 | $0 |
5 | Signal transmission between zones | $14,698.88 | $0 |
6 | Total Cost of Installation | $ 10,890.00 | $0 |
Initial investment.
Table 7 illustrates the comparison of energy consumption between using the proposed automation lighting system versus conventional system which operates all night, considering that both systems utilize LED fixtures with 75-Watt as minimum consumption for the conventional system. The table shows reduction in the power consumption of 86.31%. This reduces drastically the electrical fault probability in the lighting electrical circuits [33, 34].
S. No | Description | With Controller | Without controller |
---|---|---|---|
1 | Wattage per fixture (Watt) | 75 | 75 |
2 | № fixtures in 4 km | 100 | 100 |
3 | Total power Consumed (Watt) | 7500 | 7500 |
4 | Operating hours (hour) per day | 1.643 | 12 |
5 | Daily operating cycle % | 6.8458% | 50% |
6 | Operating hours (hour) in 50 Years | 29990.83 | 219,000 |
7 | Power consumed per day (kWh) | 12.325 | 90 |
8 | Power consumed for 50 years (kWh) | 224931.25 | 1,642,500 |
9 | Total Cost for per day ($) | 0.65 | 4.77 |
10 | Total Cost in 50 years ($) | 11,921.36 | 87,052.50 |
Energy saving.
Table 8 indicates the maintenance cost saving [10] (in terms of light fixture) such as lamp, manpower, crane, etc. for 50 years’ operation of the proposed automation lighting system and the conventional system.
S. No | Description | With Controller | Without controller |
---|---|---|---|
1 | Rated Life (Hours) | 100,000 | 100,000 |
2 | Operating hours in 50 years | 29990.83 | 219243.33 |
3 | Rate of maintenance in 50 years | 0 | 2 |
4 | Maintenance Cost per lightening pole | 108.9 | 108.9 |
5 | Total Maintenance $ | $0.00 | 21,780.00 |
Saving in maintenance cost.
In indirect saving, two benefits of implementing the lighting system will be drawn into attention [10].
First benefit is natural gas sales opportunity (Table 9) gained from reduction of the power consumption calculated based on Eq. (1).
S. No | Description | With Controller | Without controller |
---|---|---|---|
1 | Annual Power consumption (kWh) | 4498.63 | 32,850 |
2 | Reduction in Power Consumption (kWh) | 28351.38 | |
3 | Annual Natural Gas Sale Opportunity | $1587.68 | |
d |
Natural gas sales opportunity.
Second benefit is the cost saving due to reduction of the CO2 emission, hence less pollution. (Table 10) calculate the related saving based on Eq. (2).
S. No | Description | With Controller | Without Controller |
---|---|---|---|
1 | Annual Power Consumption (kWh) | 4498.625 | 32,850 |
2 | Power Consumption in 50 years (kWh) | 224931.25 | 1,642,500 |
3 | Annual Saving in Pollution | $1694.2752 | |
Saving in pollution.
Table 11 summaries the calculations in direct and indirect savings. It is obvious that total saving for only 4 km road in 50 years is $ 234,238.47.
a | Initial Investment | $ 26,770.28 |
---|---|---|
Net saving analysis in 50 years.
To sum up, huge amount of money can be saved if such technique is implemented. In case that this system is applied to only 100 km road, total annual saving becomes about $117,119.24; total saving in 50 years becomes $5,855,961.75. It means that such system saves huge amount of energy and hence expenditure saving that can be utilized in other projects’ investment. From is discussion, it is also possible to calculates the “Saving Norm” for the proposed system to be $1171.19/km/Year (Eq. (3)).
This Section provided automation design for the illumination system for low traffic roads in order to solve the problem of operating the road not only economically but also safely. Image recognition techniques was used based on identification of vehicle number-plate to recognize the objects, is it vehicles or not? Image recognition algorithm was tested on different objects. The result from test has proved the validity of the algorithm that is used to detect different types of vehicle. Comprehensive techno-economic analysis was carried out and the result showed a great saving can be achieved, and hence, “Saving Norm” of $1171.19/km/Year was calculated for the proposed system too. This “Saving Norm” is a good index to supports project management for both project decision makers and for cash-flow controllers. The calculated value of this “Saving Norm” index encourages the implementation of this technique in any Low-Traffic Long-Roads. This index is expected to be much higher, and hence more cost saving, in case road lighting uses HID bulbs instead of LED bulbs.
The ways which are used today in order to light houses, offices, and most of indoor areas are inefficient as a lot of energy is consumed unnecessarily during the day time. This problem is also one of the design concern in Green Building. In this section, a solution to this problem and a method for people’s comfort is presented. Lights switch on automatically when there is somebody in the room and switch off when there is no occupancy. In addition to this known technique, adjustment of the brightness level of the lights will be possible via the personal computer or any other smart device. In this method, for the illumination of the lights in the area, where is needed to be controlled, light automatically is measured by sensor and considering the amount of background light coming from outside, the brightness of lights automatically controlled to reach the preset level. By the means of this method, it is possible to provide both user comfort and energy saving [35].
The energy wasting created by lighting is very significant in places where is multi-occupant, especially in offices. In Today’s world, a lot of companies provide methods in order to minimize energy consumption, because energy consumption becomes a significant problem in developing world. Many researches show that lighting system accounts for approximately 30% of energy consumption [36]. Especially, departmental stores and big offices located in city territories causes a lot of energy consumption. In offices, lighting system consume approximately twice more than printers and computers [37]. One of the main causes of this problem is that people leaves lights “on” in unoccupied places. In almost 23% of the daytime this event occurs [38]. Another problem that causes to waste of energy is called over-illumination. Over-illumination occurs when lights are brighter than needed to illuminate room. In addition to this, researches demonstrate that excessive lighting can give rise to negative health effects [38]. This problem, however, still occurs in many structures everywhere, particularly in offices. Researches indicates that lights are off for just 1 percent of daytime while the room is unoccupied [39]. And this fact shows that over-illumination occurs during daytime because of external daylight coming into the room. And, in order to overcome these problems, implementation of intelligent lighting system can be a great solution.
The direct advantage of automated lighting system is to reduce energy consumption and maintenance cost. Energy consumption is reduced, because intelligent lighting system considers external daylight coming into the room and occupancy status, hence reduce the amount of power consumed. And, maintenance cost is minimized, since lifetime of the light bulbs is better utilized and this factor extends the life span of light bulbs. In addition to this, indirect advantages of proposed solution are that it allows the country to export more oil and gas, since the consumption of fuel that is needed to generate electricity will be reduced due to the energy savings caused by intelligent lighting system. Also, a reduction in pollution can be considered as positive advantage as well, because when less energy is consumed, the amount of carbon dioxide emission released by power generation plants is reduced.
It is important to highlight that during the engineering phases of indoor lighting system, because of uncertainty of the amount of daylight and any other background light which penetrates the room, engineers ignore this factor in the design which consequently introduce several drawbacks in the operation and maintenance cost of lighting system. Typical level of illuminance for indoor lighting is given in Table 12 [35].
Facility type | Area or task type | Emin(lux) |
---|---|---|
general | Entrance halls or corridors | 100 |
offices | Typing,Writing, Reading | 500 |
offices | Technical drawing/Working on computer | 500–750 |
offices | Conference rooms/Archives | 200–500 |
restaurant | Kitchen/Dining room | 300–500 |
schools | Classrooms/Library and Laboratories | 300–500 |
hospital | Waiting rooms/Operating theater | 200–1000 |
Design average level of illuminance for various places.
It is clear from the minimum level of illuminance indicted in Table 12 for each application that the design engineer has to consider the given value as Minimum. This make the designer not only ignore any background lighting contribution, but also it considers “Minimum” illumination level that allows the designer to go to higher values to satisfy other design criteria such as symmetrical distribution of lighting inside the room. Also, this “Minimum” value of the illuminance level considered the worst calculation safety-factors that may not be applicable in all cases. Therefore, in general, most of the time in day extra unnecessarily lux level can be obtained inside the room, and hence additional money for operation and maintenance need to be spent.
For better control of the indoor lighting and reduce the operation and maintenance cost of the lighting system, there are many methods to implement intelligent lighting system in order to provide more efficient lighting [40]. First method is to use occupancy sensor in offices, homes etc. In this method, sensor is used to detect occupancy in order to control lights. If there is somebody in the room, lights switch on, otherwise lights switch off automatically. This is a good straight forward and easy method reduce energy consumption but it is not the optimum solution as the method still ignoring the contribution of background lighting, therefore it cannot be considered as high efficient way to control the indoor lighting intensity.
Second method is to utilize daylight to adjust brightness to a preset level. Energy savings are controlled by using dimming technique in which percentage of illumination of light bulbs change according to daylight coming into the room. Researches show that dimming technique reduces energy consumption up to 30% compared to non-dimmable light bulbs [41]. Daylight utilization can be accomplished by using light sensors which is used in order to detect level of illuminance inside the room and adjust brightness of the light bulbs on the basis of amount of daylight measured in the room and desired set-point. The energy saving can increase depending on the performance of light sensors used. It is reported by Electric Power Research Institute that daylight utilization can increase energy savings up to approximately 40% [42]. In addition, researches indicate that energy savings can enhance up to 76% by taking into account daylight and occupancy status [43].
In this section, both above mentioned approaches are considered to develop intelligent lighting system in order to minimize power consumption and provide sustainable lighting system. Economic analysis is required to be carried out to evaluate this new approach.
This integrated approach enables us to adjust brightness of lamps to a preset level, considering daylight coming into the room and also prevent unnecessary lighting in unoccupied places. In the economic analysis, LED lighting type is selected as its power consumption is the lowest among other types of light bulbs, and hence it is expected minimum energy cost saving to be achieved. In case, other type of bulb is used, such as fluorescent or incandescent bulb, the energy saving due to using this intelligent lighting system shall be much higher.
Energy consumption can be reduced significantly when light bulb’s output is controlled automatically. Two methods are commonly used for lighting control. First method uses individual lighting control system in which each light bulb’s output is adjusted independently according to light output level of its neighbor bulbs, the second method is networked lighting control system, which is more effective than the first method because all bulbs communicate intelligently with each other in order to achieve the required level for the room light intensity.
Networked lighting control system can be classified as DLCS (distributed lighting control system) for first method, or CLCS (centralized lighting control system) for second method. in DLC systems, each light bulb’s sensing data is received by the controller, and they can communicate with neighbors in order to adjust their output level according to each other’s state. However, in central unit CLCS which receives the status of each node based on information obtained from the sensors, and then performs control actions via actuators. In this system, central unit determines the output level of each light bulb on the basis of data obtained from sensors. In CLCS, many tasks are performed by central unit, such as, acquiring sensors’ data from each node, estimating the optimal state where each light bulb will meet light requirements of the room (Figure 8).
C LC system and DLC system.
PIR (Passive infrared) sensor is used to sense occupancy in places. PIR sensor detects occupancy at places and send commands to the controller to switch on or off lights. Light intensity sensor(s) is used to give the controller the required data. The control unit sends signal to light dimmer(s) to control the LED light imitation to achieve the preset Lux level required for the room considering daylight.
The term called intelligent luminaire is connected to a smarter level of illumination where devices are capable of creating lighting comfort, energy efficiency, and easy controllability. The concept which is named intelligent lighting system corresponds to a system that communicates and cooperates with many luminaires, creating a node that satisfies user requirements. The key goal of this kind of system is to save energy and, at the same time user comfort by the means of network communication. In Figure 9 the block-diagram of intelligent lighting system is illustrated. It is assumed that lighting system is dimmable (controllable) in order to provide intelligent method to tune the Lux level to the present value determined by the controller.
Block diagram of intelligent lighting system.
Firstly, this system checks for occupancy. If there is no occupancy, Arduino controller sends commands to AC light dimmer (which is controlling the intensity of light bulbs) to switch off lights. If there is somebody in the room, PIR sensor detects occupancy inside the room and activate Arduino controller. Consequently, the controller sends signal to the dimmer(s) to switch on the light and tune the lux of the room to achieve the preset value based on the input provided by the light intensity sensor(s).
The intelligent lighting system contains PIR sensor, BH 1750 light sensor, Arduino Mega, AC light dimmer, LED and light bulb.
PIR sensor is used to detect occupancy in the room. Light sensor is used to measure the amount of light in lux. Arduino Mega is used as a controller. Ac light dimmer is used in order to adjust the brightness of LED bulb. To monitor the amount of light (PV) and set point (SP), LCD is used. LED bulb is used to provide illumination in the room.
PIR sensor is one of the simplest and inexpensive type of occupancy sensors and this type of sensor is widely used around the world. It is capable of measuring various air temperatures in the room. When there is somebody in the room, sensor sends a signal to turn on or off lights. When object is moved in the sensor’s field of view, infrared lights which is radiating from the objects are measured by PIR sensor. People have a temperature that is higher than perfect zero and thermal energy is emitted from people in the form of radiation. During the day, the wavelength of radiation is approximately 9–10 micrometers. PIR sensor has capability to detect the wavelength of radiation which only arise when a person comes to sensor’s field of view. The radiation emitted by all objects which has temperature above absolute zero cannot be seen by human eye, since it is emitted at infrared wavelengths, however, electronic devices, such as PIR sensor, can detect it. This kind of sensors works totally by sensing the energy emitted by objects. When the amount of heat varies in intensity or position, sensor activates the controller.
PIR sensor which is used in this Intelligent Lighting System possesses pyro-electric sensor module that is designed for the detection of human body. This sensor has sensing range from 3 m to 4 m, and lens angle is about 140 degrees [44]. One of the advantages of PIR sensor compared with other types of occupancy sensor is that it is not complex, effortless to install, and it has compact size which is 28*28 mm. In addition to this, it is highly sensitive, power consumption is very low, and can perform under temperature from −15 to 70 degree. Most significantly, as contrasted with other sensors, it can penetrate walls in which motion can be anticipated and it is cheaper compared with other sensors. However, a constant and slight motion cannot be detected by PIR sensor and this sensor is sensitive to temperature. Another negative side of this sensor is that its field of view is smaller than other type of occupancy sensors. Moreover, this sensor cannot be mounted near the places where temperature changes commonly. But for application of indoor industrial building, this senior is adequate to be used.
BH1750 sensor is used in order to measure light intensity inside the room. This is a digital light sensor and it is used in the majority of mobile phones in order to adjust screen brightness, depending on lights coming from outside. This sensor has capability to measure directly lux value and there is no need to convert measured value to lux. This sensor uses I2C protocol to communicate with the controller. This protocol makes it easy to use with microcontroller. SCL and SDA pins which sensor have are required for I2C protocol. One of the advantages is that there is no need for calculation because we can get directly lux value by the means of this sensor. This sensor measures light intensity based on the amount of light which is hitting on it. The voltage between 2.4 V and 3.6 V and 0.12 mA current is needed to operate this sensor. The main component of BH1750 sensor is illustrated in Figure 10.
BH 1750 sensor circuit.
Arduino Mega is used as a master to control all slaves. It is the brain of this Intelligent Lighting System. It is a type of microcontroller board and uses ATmega 2560 microcontroller. Arduino Mega has 70 I/O pins. Fiftyfour (54) pins of Arduino Mega are digital I/O pin and 14 of them can be used as PWM pin. Other 16 pins are analog I/O. In addition to this, it consists of 4 UARTs, 16Mhz crystal oscillator, USB connection, power jack, ICSP header, and reset button. Arduino Mega can simply be connected to the computer and programmed. There are many types of shields used for several purposes can be added to the Arduino mega [13].
LED light bulbs are the best choice to use in energy saving lighting systems and they have great advantages over the fluorescent lamps and incandescent light bulbs. In these days, LED bulb technology has developed and this technology offer light bulbs which can be used for many applications. In addition to this, this type of light bulbs offer dimmable and non-dimmable options and it creates opportunity to be used in intelligent lighting systems. LED bulbs are very durable and no mercury is used in this type of bulbs. Although the initial cost of LED bulbs is higher than other types of bulbs, they are cheaper to use for overall life of the light bulb compared with fluorescent or incandescent light bulbs. For all of these reasons, it can be beneficial to use led bulbs instead of other types of bulbs in the Intelligent Lighting Systems [44].
AC Light Dimmer is used to adjust the light intensity by dimming the light bulb [45]. There are various methods for dimming, the usual way is to use variable resistor which change the voltage coming into the lamp. Nevertheless, when variable resistance is used in order to change the brightness of lamp, resistance converts some part of energy into the heat that is not used. An effective method for dimming is to turn off AC power regularly and provide only some portion of full wave to the light. It could sound strange at first, because it will produce flicker, however it is not visible by human eye, if the periodic light switches and phase of AC power are locked. In order to accomplish the dimming, two circuits are required, zero-crossing detector and pulse-controlled switch, respectively. This is used in order to maintain switching with the power source in phase. And, to deal with 220 V AC, safety precautions should be implemented. That is why, circuit should be mechanically and electrically isolated from outside by the means of metal box and optoisolators, accordingly. The zero-crossing detector is a full wave rectifier with high power resistors that is used to reduce voltage (Figure 11). And, the pulse-controlled switch contains a Diac or Triac.
Pulse control using AC light dimmer.
The response of system will be illustrated for three different preset values and three background in the room. The response of the system will be represented for occupied conditions. In unoccupied conditions, the intensity of light bulb will be set automatically to zero lux. In Figure 12, the response of the system is illustrated for preset value of 75 lux and external daylight with the amount of 25, 50, and 75 lux, ascending and descending. Another case is considered in Figure 13 represents the response of the system for setpoint of 150 lux and additional daylight with the amount of 50,100, and 150 lux, ascending and descending. And last test case is considered in Figure 14 shows the response of the system for setpoint 300 lux and external daylight with the amount of 100, 200, and 300 lux, ascending and descending. It is obvious from the results, the dimmer adjusts the light intensity of light bulb to achieve successfully to the present value, considering the external light coming into the room.
The response of system for 75 lux SP.
The response of system for 150 lux SP.
The response of system for 300 lux SP.
The transient state of the system response is not described in these graphs, only steady state is taken into account, since human’s eye does not recognize to the fast changes happen in the amount of light. Moreover, in general, the rate of the change in the daylight occurs slowly and gradually, consequently, the response of the controller will change the intensity of the light emitted from the controlled lighting system in small steps which are comfortable for the eye. Hence, the transient state is not concern for the proposed intelligent lighting system.
In this section, Techno-Economical evaluation is discussed that includes direct and indirect benefits obtained from using the proposed intelligent lighting system. As mentioned earlier in this Chapter, Direct benefits are categorized in two parts; operational and maintenance cost. However indirect benefit is categorized also into two parts, introducing more oil/gas sale opportunity and reduction of pollution. And, the cost of this intelligent lighting system is negligible compared with other lighting systems [46, 47].
Direct benefits of the proposed Intelligent Lighting System are explained as following:
This section determines the energy gains that intelligent lighting system can provide during the day. In order to achieve this, the response of controller is assumed to be maintained during the day. By considering occupancy status and level of illuminance during the day, energy savings which intelligent lighting system can provide may be calculated. Survey [37] illustrates that workers’ illuminance preference is approximately 300 lux, and energy waste is generated by over-illumination and turning on lights in unoccupied places.
In Figure 15, Data of illuminance and occupancy status during the day and workers’ illuminance preference in typical open-office are illustrated. In this survey, it is assumed that approximately 60% of daylight is coming into the room. From Figure 15, it can be observed that workers arrive at office at approximately 9:00 AM, occupies the working area and turn on the lighting system, because the level of illuminance is less than 300 lux (However, lighting system plus daylight coming into the room provides more than 300 lux). Thus, at the end of working hour, the lighting system was switched off about at 19:00. Also, from It can also be observed that workers leave working area at different times of the day, but lighting system turned on by causing the energy waste. In addition, between 15:00 and 17:00 the illumination which is generated by daylight is sufficient to satisfy the illuminance requirement at the office and lighting system is however switched on by causing over-illumination.
Data of illuminance and occupancy status in typical open-office.
This data represents that thanks to daylight utilization technique, energy can be saved significantly between 9:00 and 19:00 by controlling the amount of light provided by the lighting system. In addition to this, occupancy sensor will contribute us to save energy by switching off lighting system when there is no occupancy in the working area. Finally, the energy savings can be calculated from the Figure 15 by comparing the Areas under the curves. In order to find the energy savings, the area of curves, which are generated by the outputs of intelligent lighting system and Setpoint, should be calculated between 9:00 and 19:00. And, using the following equation, the percentage of energy savings accomplished from intelligent lighting system can be estimated.
From the equation above, it is calculated that in typical open-office energy savings can be approximately 81.7% by implementing proposed intelligent lighting system.
In Figure 15, it is clearly seen that operation hours of light bulbs reduce from 10 hours to approximately to 5.5 hours. So, implementation of proposed intelligent lighting system contributes also to reduce maintenance cost. The life span of light bulbs increases significantly, since lights are switched on at certain times of the day. From Figure 15, percentage of reduction of maintenance cost can be calculated by the means of following equation.
From the equation above, it is calculated that in typical open-office, maintenance cost can be reduced about 45% by implementing proposed intelligent lighting system.
Explanation of indirect benefits will be given in detail in the following paragraphs.
First benefit is that country can export larger amount of gas, since the consumption of gas will be reduced due to the energy savings caused by proposed intelligent lighting system. By using the selling price of $4.618/MMBtu on the basis of US Energy Information Administration Henry Hub/NYMEX, natural gas valued futures prices. Considering 1% annual escalation factor, equivalent energy rate of 5.6¢/kWhr used to measure the energy generated for one year. And, sales opportunity for the natural gas can be estimated annually by the means of equation Eq. (1) that can be used to calculate the annual gas sale opportunity for any project using this Intelligent Lighting System.
Second indirect benefit is that pollution caused by power plants can be reduced significantly. When the amount of power consumed is reduced, the amount of toxic fumes released by power plants will be reduced. The majority of power plants burn crude oil, coal, fossil fuel etc. Hence, this causes the emission of carbon dioxide that accounts for the majority of pollution. Carbon dioxide is released into the air and causes the absorption of sun’s warmth and heat in our atmosphere. When power plants burn more fuel in order to generate more energy, extra carbon waste traps cause too much heat. When carbon dioxide emission is reduced, it will cause less pollution. Eq. (2) can be used to calculate the Annual Saving in Pollution that can be gained in any project using this Intelligent Lighting System.
Nowadays, energy saving is one of the big problems, that is why energy-efficient lighting systems proceed rapidly over the past ten years [43]. Led light bulbs are the best choice to use in energy saving lighting systems and they have great advantages over the fluorescent lamps and incandescent light bulbs. In these days, led bulb technology has developed and this technology offer light bulbs which can be used for many applications. In addition to this, this type of light bulbs offers dimmable and non-dimmable options and it creates opportunity to be used in intelligent lighting systems. Led bulbs are very durable and no mercury is used in this type of bulbs. Although the initial cost of Led bulbs is higher than other types of bulbs, they are cheaper to use for overall life of the light bulb compared with fluorescent or incandescent light bulbs. For all of these reasons, it can be beneficial to use led bulbs instead of other types of bulbs in lighting systems.
One of the bunch of LED bulbs is diffused LED bulbs. It is covered by lens which have dimple shape, and this shape support to spread light around a big area. Nowadays, because of their tremendous efficiency, people increasingly use this type of bulbs. This type of bulbs is available in standard Edison bases, and they can be used for a lot of purposes, such as, reading lamp, lighting for rooms and offices, and some other applications in which light can remain on for a long time.
Flame Tip, Candelabra Base LED bulbs is another type of LED bulbs and it is used in many applications. The purpose of designing such type of light bulbs is to take the place of incandescent candelabra bulbs. This type of light bulbs is significantly effective because they can deliver corresponding light of 25 to 35 W and light does not spread top to bottom as far as typical lights, because of heat sink.
LED Tube Light bulbs is another type of LED light bulbs and it is used in a lot of applications. The purpose of designing this type of light bulbs is to replace typical fluorescent tube lights. They exist in 8 and 16 W. In commercial sites, fluorescent lights are frequently installed in high ceilings and using Led Tube Lights instead of fluorescent tube lights is extra saving, because the frequency of replacing bulbs is significantly decreased.
The life of LED bulbs is approximately 10 times more than incandescent and fluorescent light bulbs. The main reason why they are more effective is that they do not have filament and they are not destroyed under conditions in which typical incandescent and fluorescent light bulb can be damaged. This type of bulbs does not cause any heat, but common incandescent lamps heat and help to increase the room temperature. LEDs avoid this problem and contribute to reduce the air conditioning cost. In the manufacturing process of LED bulbs, no mercury is utilized and this kind of bulbs use approximately 2–17 W electricity. LED bulbs reduce electricity cost, remain cool and avoid the replacement cost, because they have long life.
Although, initial cost of LED bulbs is higher, this cost compensates over time in electricity saving. The use of LED bulbs commercially adopted, because maintenance and replacement cost was significantly higher. Maintenance and replacement cost in LED bulbs are considerably less compared with others and the initial cost of LED bulbs is continuing to decrease.
Consider standard office with dimension 3mx4m. As per Table 12, the design lux level is 500 lux. Using matrix distribution 2x2 with 60cmx60cm light fitting, each consists of 4 lighting tube Fluorescent (25 W) or LED (9 W), the office Traditional lighting load shall be 400 W or 144 W respectively. For 9 hours working duty, the annual consumption shall be 4730kWh and 1314kWh.
Applying Equation-9, the office annual energy consumption can be reduced to 865.59kWh and 240.462kWh for Fluorescent lighting and LED lighting respectively.
From Table 13, cost of electricity (0.10per KWh). Accordingly, from two the values, 865.59kWh and 240.462kWh, Annual Energy Saving Norm/Office for offices using Fluorescent lighting and LED lighting can be calculated to be 86.6 $/office and 24$/office respectively. For example, if this technique applied on 100 Administration Building with 50 room each, so the total Annual Saving can be 433,000 $ and 120,000$ for Fluorescent lighting and LED lighting consequently. This example gives good impression how much reasonable saving can be obtained by applying such technique in industrial buildings.
Conditions | Led Bulbs | CFL | Incandescent |
---|---|---|---|
Light bulb projected Lifespan | 50,000 h | 10,000 h | 1200 h |
Watts for per bulb | 10 | 14 | 60 |
Cost for per bulb | $35.95 | $3.95 | $1.25 |
KWh of electricity used over 50,000 hours | 300–500 | 700 | 3000 |
Cost of electricity (0.10per KWh) | $50 | $70 | $300 |
Bulbs needed for 50 k hours of use | 1 | 5 | 42 |
Equivalent 50 k hours bulb expense | $35.95 | $19.75 | $52.50 |
Total cost for 50 k hours | $85.75 | $89.75 | $352.50 |
Economic comparison between LED, CFL and incandescent bulbs.
To conclude this section, it can be highlighted that most places are over illuminated because background light is not considered in the design sage. In addition, light is switched on in unoccupied places which causes waste of energy. Therefore, Intellect Lighting System is very essential to overcome this problem to control indoor lighting intensity taking into account occupancy status and background light coming into the room in order to adjust level of illuminance in efficient way. As a result, it is worth to highlighted that Intelligent Lighting System uses properly selected LED bulbs not only reduces power consumption, but also reduces maintenance cost, pollution caused by power plants and increases opportunity for gas sales. Finally, typical Annual Energy Saving Norm (Energy Saving$/Office) is calculated for both cases, offices using Fluorescent lighting and LED lighting.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11660},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11698",title:"Pigmentation Disorders",subtitle:null,isOpenForSubmission:!0,hash:"2ac6c9f424eec37ed85232c2c97ef6f6",slug:null,bookSignature:"Associate Prof. Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/11698.jpg",editedByType:null,editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11701",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ba8e8f4710bed414568846f8162a4942",slug:null,bookSignature:"Prof. Ahmet Mesrur Halefoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/11701.jpg",editedByType:null,editors:[{id:"51736",title:"Prof.",name:"Ahmet Mesrur",surname:"Halefoğlu",slug:"ahmet-mesrur-halefoglu",fullName:"Ahmet Mesrur Halefoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11599",title:"Leukemia - From Biology to Diagnosis and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"30b431385424f0b84aee499d839f46cc",slug:null,bookSignature:"Prof. Margarita Guenova and Prof. Gueorgui Balatzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11599.jpg",editedByType:null,editors:[{id:"52938",title:"Prof.",name:"Margarita",surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11651",title:"Bone Tumors - Recent Updates",subtitle:null,isOpenForSubmission:!0,hash:"cf7dd688b160a1ba07e3179613684f16",slug:null,bookSignature:"Dr. Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/11651.jpg",editedByType:null,editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11717",title:"Gastroesophageal Reflux Disease - A Growing Concern",subtitle:null,isOpenForSubmission:!0,hash:"0396d89369495b63682157e938f788fa",slug:null,bookSignature:"Dr. Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/11717.jpg",editedByType:null,editors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11874",title:"Craniofacial Surgery - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"91dd1465d7b60e227877563c5f978c16",slug:null,bookSignature:"Dr. Belma Işik Aslan and Prof. Ayşe Gülşen",coverURL:"https://cdn.intechopen.com/books/images_new/11874.jpg",editedByType:null,editors:[{id:"42847",title:"Dr.",name:"Belma",surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12107",title:"Contemporary Topics in Patient Safety - Volume 2",subtitle:null,isOpenForSubmission:!0,hash:"3fe674b93710773f0db746ca96d6e048",slug:null,bookSignature:"Dr. Philip Salen and Dr. Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/12107.jpg",editedByType:null,editors:[{id:"217603",title:"Dr.",name:"Philip",surname:"Salen",slug:"philip-salen",fullName:"Philip Salen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:77},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics",parent:{id:"15",title:"Mathematics",slug:"mathematics"},numberOfBooks:38,numberOfSeries:0,numberOfAuthorsAndEditors:755,numberOfWosCitations:584,numberOfCrossrefCitations:458,numberOfDimensionsCitations:880,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"163",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10959",title:"The Nonlinear Schrödinger Equation",subtitle:null,isOpenForSubmission:!1,hash:"0ea567b0851316220f6bc2c9c16c3095",slug:"the-nonlinear-schr-dinger-equation",bookSignature:"Nalan Antar and İlkay Bakırtaş",coverURL:"https://cdn.intechopen.com/books/images_new/10959.jpg",editedByType:"Edited by",editors:[{id:"281410",title:"Dr.",name:"Nalan",middleName:null,surname:"Antar",slug:"nalan-antar",fullName:"Nalan Antar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9965",title:"Computational Optimization Techniques and Applications",subtitle:null,isOpenForSubmission:!1,hash:"d2c7d240aed947e7780605dab6dde1c3",slug:"computational-optimization-techniques-and-applications",bookSignature:"Muhammad Sarfraz and Samsul Ariffin Abdul Karim",coverURL:"https://cdn.intechopen.com/books/images_new/9965.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!1,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:"advances-in-dynamical-systems-theory-models-algorithms-and-applications",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9325",title:"Mathematical Theorems",subtitle:"Boundary Value Problems and Approximations",isOpenForSubmission:!1,hash:"38c88a4ec0ff6c0184a6694c21ddedc5",slug:"mathematical-theorems-boundary-value-problems-and-approximations",bookSignature:"Lyudmila Alexeyeva",coverURL:"https://cdn.intechopen.com/books/images_new/9325.jpg",editedByType:"Edited by",editors:[{id:"232525",title:"Prof.",name:"Lyudmila",middleName:"Alexeyevna",surname:"Alexeyeva",slug:"lyudmila-alexeyeva",fullName:"Lyudmila Alexeyeva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8521",title:"Multicriteria Optimization",subtitle:"Pareto-Optimality and Threshold-Optimality",isOpenForSubmission:!1,hash:"05baea741edde509bab2259dad7f6384",slug:"multicriteria-optimization-pareto-optimality-and-threshold-optimality",bookSignature:"Nodari Vakhania and Frank Werner",coverURL:"https://cdn.intechopen.com/books/images_new/8521.jpg",editedByType:"Edited by",editors:[{id:"202585",title:"Prof.",name:"Nodari",middleName:null,surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7428",title:"Advances on Tensor Analysis and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"2339ac5eb978557d01451489e961b102",slug:"advances-on-tensor-analysis-and-their-applications",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/7428.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7662",title:"Nonlinear Systems",subtitle:"Theoretical Aspects and Recent Applications",isOpenForSubmission:!1,hash:"fdcb3bf6de1d84506ffc6aa9e5b691b3",slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",bookSignature:"Walter Legnani and Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/7662.jpg",editedByType:"Edited by",editors:[{id:"199059",title:"Dr.",name:"Walter",middleName:"Edgardo",surname:"Legnani",slug:"walter-legnani",fullName:"Walter Legnani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8656",title:"Probability, Combinatorics and Control",subtitle:null,isOpenForSubmission:!1,hash:"9993ec9b59bcb38d206f2e31125028b7",slug:"probability-combinatorics-and-control",bookSignature:"Andrey Kostogryzov and Victor Korolev",coverURL:"https://cdn.intechopen.com/books/images_new/8656.jpg",editedByType:"Edited by",editors:[{id:"148322",title:"Dr.",name:"Andrey",middleName:null,surname:"Kostogryzov",slug:"andrey-kostogryzov",fullName:"Andrey Kostogryzov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9324",title:"Dynamical Systems Theory",subtitle:null,isOpenForSubmission:!1,hash:"413cbcf9c048bb251eca1b5e32bbc640",slug:"dynamical-systems-theory",bookSignature:"Jan Awrejcewicz and Dariusz Grzelczyk",coverURL:"https://cdn.intechopen.com/books/images_new/9324.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",middleName:null,surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7776",title:"Research Advances in Chaos Theory",subtitle:null,isOpenForSubmission:!1,hash:"e9646ec4b2bff873ce958ed4d5ad7248",slug:"research-advances-in-chaos-theory",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7776.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:38,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"14634",doi:"10.5772/15998",title:"The Application of FT-IR Spectroscopy in Waste Management",slug:"the-application-of-ft-ir-spectroscopy-in-waste-management",totalDownloads:6651,totalCrossrefCites:18,totalDimensionsCites:34,abstract:null,book:{id:"1574",slug:"fourier-transforms-new-analytical-approaches-and-ftir-strategies",title:"Fourier Transforms",fullTitle:"Fourier Transforms - New Analytical Approaches and FTIR Strategies"},signatures:"Ena Smidt, Katharina Böhm and Manfred Schwanninger",authors:[{id:"20376",title:"Dr.",name:"Katharina",middleName:null,surname:"Böhm",slug:"katharina-bohm",fullName:"Katharina Böhm"},{id:"22840",title:"Dr.",name:"Ena",middleName:null,surname:"Smidt",slug:"ena-smidt",fullName:"Ena Smidt"},{id:"22915",title:"Dr.",name:"Manfred",middleName:null,surname:"Schwanninger",slug:"manfred-schwanninger",fullName:"Manfred Schwanninger"}]},{id:"15157",doi:"10.5772/15959",title:"Fourier Transform Mass Spectrometry for the Molecular Level Characterization of Natural Organic Matter: Instrument Capabilities, Applications, and Limitations",slug:"fourier-transform-mass-spectrometry-for-the-molecular-level-characterization-of-natural-organic-matt",totalDownloads:4347,totalCrossrefCites:6,totalDimensionsCites:34,abstract:null,book:{id:"122",slug:"fourier-transforms-approach-to-scientific-principles",title:"Fourier Transforms",fullTitle:"Fourier Transforms - Approach to Scientific Principles"},signatures:"Rachel L. Sleighter and Patrick G. Hatcher",authors:[{id:"22676",title:"Dr.",name:"Rachel L.",middleName:null,surname:"Sleighter",slug:"rachel-l.-sleighter",fullName:"Rachel L. Sleighter"},{id:"23168",title:"Dr.",name:"Patrick G.",middleName:null,surname:"Hatcher",slug:"patrick-g.-hatcher",fullName:"Patrick G. Hatcher"}]},{id:"60097",doi:"10.5772/intechopen.75381",title:"Robust Optimization: Concepts and Applications",slug:"robust-optimization-concepts-and-applications",totalDownloads:2562,totalCrossrefCites:23,totalDimensionsCites:31,abstract:"Robust optimization is an emerging area in research that allows addressing different optimization problems and specifically industrial optimization problems where there is a degree of uncertainty in some of the variables involved. There are several ways to apply robust optimization and the choice of form is typical of the problem that is being solved. In this paper, the basic concepts of robust optimization are developed, the different types of robustness are defined in detail, the main areas in which it has been applied are described and finally, the future lines of research that appear in this area are included.",book:{id:"6587",slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",fullTitle:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization"},signatures:"José García and Alvaro Peña",authors:[{id:"227809",title:"Ph.D.",name:"Jose",middleName:null,surname:"Garcia",slug:"jose-garcia",fullName:"Jose Garcia"},{id:"240407",title:"Dr.",name:"Alvaro",middleName:null,surname:"Peña",slug:"alvaro-pena",fullName:"Alvaro Peña"}]},{id:"51131",doi:"10.5772/63785",title:"Survey of Meta-Heuristic Algorithms for Deep Learning Training",slug:"survey-of-meta-heuristic-algorithms-for-deep-learning-training",totalDownloads:3161,totalCrossrefCites:15,totalDimensionsCites:25,abstract:"Deep learning (DL) is a type of machine learning that mimics the thinking patterns of a human brain to learn the new abstract features automatically by deep and hierarchical layers. DL is implemented by deep neural network (DNN) which has multi-hidden layers. DNN is developed from traditional artificial neural network (ANN). However, in the training process of DL, it has certain inefficiency due to very long training time required. Meta-heuristic aims to find good or near-optimal solutions at a reasonable computational cost. In this article, meta-heuristic algorithms are reviewed, such as genetic algorithm (GA) and particle swarm optimization (PSO), for traditional neural network’s training and parameter optimization. Thereafter the possibilities of applying meta-heuristic algorithms on DL training and parameter optimization are discussed.",book:{id:"5165",slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Zhonghuan Tian and Simon Fong",authors:[{id:"1952",title:"Dr.",name:"Simon",middleName:null,surname:"Fong",slug:"simon-fong",fullName:"Simon Fong"},{id:"186166",title:"MSc.",name:"Zhonghuan",middleName:null,surname:"Tien",slug:"zhonghuan-tien",fullName:"Zhonghuan Tien"}]},{id:"51209",doi:"10.5772/62472",title:"A Review and Comparative Study of Firefly Algorithm and its Modified Versions",slug:"a-review-and-comparative-study-of-firefly-algorithm-and-its-modified-versions",totalDownloads:2944,totalCrossrefCites:17,totalDimensionsCites:24,abstract:"Firefly algorithm is one of the well-known swarm-based algorithms which gained popularity within a short time and has different applications. It is easy to understand and implement. The existing studies show that it is prone to premature convergence and suggest the relaxation of having constant parameters. To boost the performance of the algorithm, different modifications are done by several researchers. In this chapter, we will review these modifications done on the standard firefly algorithm based on parameter modification, modified search strategy and change the solution space to make the search easy using different probability distributions. The modifications are done for continuous as well as non-continuous problems. Different studies including hybridization of firefly algorithm with other algorithms, extended firefly algorithm for multiobjective as well as multilevel optimization problems, for dynamic problems, constraint handling and convergence study will also be briefly reviewed. A simulation-based comparison will also be provided to analyse the performance of the standard as well as the modified versions of the algorithm.",book:{id:"5165",slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Waqar A. Khan, Nawaf N. Hamadneh, Surafel L. Tilahun and Jean\nM. T. Ngnotchouye",authors:[{id:"180330",title:"Dr.",name:"Surafel",middleName:null,surname:"Tilahun",slug:"surafel-tilahun",fullName:"Surafel Tilahun"},{id:"180784",title:"Dr.",name:"Waqar Ahmed",middleName:null,surname:"Khan",slug:"waqar-ahmed-khan",fullName:"Waqar Ahmed Khan"},{id:"185148",title:"Dr.",name:"Nawaf",middleName:null,surname:"Hamadneh",slug:"nawaf-hamadneh",fullName:"Nawaf Hamadneh"},{id:"185149",title:"Dr.",name:"Jean M. T.",middleName:null,surname:"Ngnotchouye",slug:"jean-m.-t.-ngnotchouye",fullName:"Jean M. T. Ngnotchouye"}]}],mostDownloadedChaptersLast30Days:[{id:"74096",title:"Time Frequency Analysis of Wavelet and Fourier Transform",slug:"time-frequency-analysis-of-wavelet-and-fourier-transform",totalDownloads:1283,totalCrossrefCites:6,totalDimensionsCites:8,abstract:"Signal processing has long been dominated by the Fourier transform. However, there is an alternate transform that has gained popularity recently and that is the wavelet transform. The wavelet transform has a long history starting in 1910 when Alfred Haar created it as an alternative to the Fourier transform. In 1940 Norman Ricker created the first continuous wavelet and proposed the term wavelet. Work in the field has proceeded in fits and starts across many different disciplines, until the 1990’s when the discrete wavelet transform was developed by Ingrid Daubechies. While the Fourier transform creates a representation of the signal in the frequency domain, the wavelet transform creates a representation of the signal in both the time and frequency domain, thereby allowing efficient access of localized information about the signal.",book:{id:"10065",slug:"wavelet-theory",title:"Wavelet Theory",fullTitle:"Wavelet Theory"},signatures:"Karlton Wirsing",authors:[{id:"325178",title:"Dr.",name:"Karlton",middleName:null,surname:"Wirsing",slug:"karlton-wirsing",fullName:"Karlton Wirsing"}]},{id:"54366",title:"Solution of Differential Equations with Applications to Engineering Problems",slug:"solution-of-differential-equations-with-applications-to-engineering-problems",totalDownloads:6866,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Over the last hundred years, many techniques have been developed for the solution of ordinary differential equations and partial differential equations. While quite a major portion of the techniques is only useful for academic purposes, there are some which are important in the solution of real problems arising from science and engineering. In this chapter, only very limited techniques for solving ordinary differential and partial differential equations are discussed, as it is impossible to cover all the available techniques even in a book form. The readers are then suggested to pursue further studies on this issue if necessary. After that, the readers are introduced to two major numerical methods commonly used by the engineers for the solution of real engineering problems.",book:{id:"5513",slug:"dynamical-systems-analytical-and-computational-techniques",title:"Dynamical Systems",fullTitle:"Dynamical Systems - Analytical and Computational Techniques"},signatures:"Cheng Yung Ming",authors:[{id:"191017",title:"Dr.",name:"Cheng",middleName:null,surname:"Y.M.",slug:"cheng-y.m.",fullName:"Cheng Y.M."}]},{id:"56538",title:"Stochastic Resonance and Related Topics",slug:"stochastic-resonance-and-related-topics",totalDownloads:1718,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The stochastic resonance (SR) is the phenomenon which can emerge in nonlinear dynamic systems. In general, it is related with a bistable nonlinear system of Duffing type under additive excitation combining deterministic periodic force and Gaussian white noise. It manifests as a stable quasiperiodic interwell hopping between both stable states with a small random perturbation. Classical definition and basic features of SR are regarded. The most important methods of investigation outlined are: analytical, semi-analytical, and numerical procedures of governing physical systems or relevant Fokker-Planck equation. Stochastic simulation is mentioned and experimental way of results verification is recommended. Some areas in Engineering Dynamics related with SR are presented together with a particular demonstration observed in the aeroelastic stability. Interaction of stationary and quasiperiodic parts of the response is discussed. Some nonconventional definitions are outlined concerning alternative operators and driving processes are highlighted. The chapter shows a large potential of specific basic, applied and industrial research in SR. This strategy enables to formulate new ideas for both development of nonconventional measures for vibration damping and employment of SR in branches, where it represents an operating mode of the system itself. Weaknesses and empty areas where the research effort of SR should be oriented are indicated.",book:{id:"6128",slug:"resonance",title:"Resonance",fullTitle:"Resonance"},signatures:"Jiří Náprstek and Cyril Fischer",authors:[{id:"207472",title:"Dr.",name:"Jiri",middleName:null,surname:"Naprstek",slug:"jiri-naprstek",fullName:"Jiri Naprstek"},{id:"213311",title:"Dr.",name:"Cyril",middleName:null,surname:"Fischer",slug:"cyril-fischer",fullName:"Cyril Fischer"}]},{id:"74032",title:"Wavelets for EEG Analysis",slug:"wavelets-for-eeg-analysis",totalDownloads:1263,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"This chapter introduces the applications of wavelet for Electroencephalogram (EEG) signal analysis. First, the overview of EEG signal is discussed to the recording of raw EEG and widely used frequency bands in EEG studies. The chapter then progresses to discuss the common artefacts that contaminate EEG signal while recording. With a short overview of wavelet analysis techniques, namely; Continues Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), and Wavelet Packet Decomposition (WPD), the chapter demonstrates the richness of CWT over conventional time-frequency analysis technique e.g. Short-Time Fourier Transform. Lastly, artefact removal algorithms based on Independent Component Analysis (ICA) and wavelet are discussed and a comparative analysis is demonstrated. The techniques covered in this chapter show that wavelet analysis is well-suited for EEG signals for describing time-localised event. Due to similar nature, wavelet analysis is also suitable for other biomedical signals such as Electrocardiogram and Electromyogram.",book:{id:"10065",slug:"wavelet-theory",title:"Wavelet Theory",fullTitle:"Wavelet Theory"},signatures:"Nikesh Bajaj",authors:[{id:"326400",title:"Dr.",name:"Nikesh",middleName:null,surname:"Bajaj",slug:"nikesh-bajaj",fullName:"Nikesh Bajaj"}]},{id:"70067",title:"Analytic Prognostic in the Linear Damage Case Applied to Buried Petrochemical Pipelines and the Complex Probability Paradigm",slug:"analytic-prognostic-in-the-linear-damage-case-applied-to-buried-petrochemical-pipelines-and-the-comp",totalDownloads:2873,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"In 1933, Andrey Nikolaevich Kolmogorov established the system of five axioms that define the concept of mathematical probability. This system can be developed to include the set of imaginary numbers by adding a supplementary three original axioms. Therefore, any experiment can be performed in the set \n\nC\n\n of complex probabilities which is the summation of the set \n\nR\n\n of real probabilities and the set \n\nM\n\n of imaginary probabilities. The purpose here is to include additional imaginary dimensions to the experiment taking place in the “real” laboratory in \n\nR\n\n and hence to evaluate all the probabilities. Consequently, the probability in the entire set \n\nC\n=\nR\n+\nM\n\n is permanently equal to one no matter what the stochastic distribution of the input random variable in \n\nR\n\n is; therefore the outcome of the probabilistic experiment in \n\nC\n\n can be determined perfectly. This is due to the fact that the probability in \n\nC\n\n is calculated after subtracting from the degree of our knowledge the chaotic factor of the random experiment. Consequently, the purpose in this chapter is to join my complex probability paradigm to the analytic prognostic of buried petrochemical pipelines in the case of linear damage accumulation. Accordingly, after the calculation of the novel prognostic model parameters, we will be able to evaluate the degree of knowledge, the magnitude of the chaotic factor, the complex probability, the probabilities of the system failure and survival, and the probability of the remaining useful lifetime; after that a pressure time t has been applied to the pipeline, which are all functions of the system degradation subject to random and stochastic influences.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Abdo Abou Jaoude",authors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}]}],onlineFirstChaptersFilter:{topicId:"163",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:26,paginationItems:[{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:3,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:35,paginationItems:[{id:"248645",title:"Dr.",name:"Sérgio",middleName:null,surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248645/images/system/248645.jpg",biography:"Sérgio António Neves Lousada has an international Ph.D. in Civil Engineering (Hydraulics). He teaches Hydraulics, Environment, and Water Resources and Construction at the University of Madeira, Portugal. He has published articles and books and participated in events mainly in the areas of hydraulics, urban planning, and land management. Furthermore, he collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx); VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; CITUR - Madeira - Centre for Tourism Research, Development and Innovation, Madeira, Portugal; and Institute of Research on Territorial Governance and Inter-Organizational Cooperation, Dąbrowa Górnicza, Poland. Moreover, he holds an International master\\'s degree in Ports and Coasts Engineering.",institutionString:"University of Madeira",institution:{name:"University of Madeira",country:{name:"Portugal"}}},{id:"424419",title:"Dr.",name:"Matthew",middleName:"Ayorinde",surname:"Ayorinde Adebayo",slug:"matthew-ayorinde-adebayo",fullName:"Matthew Ayorinde Adebayo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/424419/images/17356_n.jpg",biography:null,institutionString:null,institution:null},{id:"215342",title:"Prof.",name:"José Manuel",middleName:null,surname:"Naranjo Gómez",slug:"jose-manuel-naranjo-gomez",fullName:"José Manuel Naranjo Gómez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"354033",title:"Dr.",name:"Ahmed",middleName:null,surname:"Nasri",slug:"ahmed-nasri",fullName:"Ahmed Nasri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435702",title:"Dr.",name:"Amel",middleName:null,surname:"Hannachi",slug:"amel-hannachi",fullName:"Amel Hannachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420857",title:"Prof.",name:"Ezzeddine",middleName:null,surname:"Mahmoudi",slug:"ezzeddine-mahmoudi",fullName:"Ezzeddine Mahmoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420856",title:"Prof.",name:"Hamouda",middleName:null,surname:"Beyrem",slug:"hamouda-beyrem",fullName:"Hamouda Beyrem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435703",title:"Dr.",name:"Hary",middleName:null,surname:"Demey",slug:"hary-demey",fullName:"Hary Demey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Cartagena",country:{name:"Spain"}}},{id:"425026",title:"Mr.",name:"Kholofelo",middleName:null,surname:"Clifford Malematja",slug:"kholofelo-clifford-malematja",fullName:"Kholofelo Clifford Malematja",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Tshwane University of Technology",country:{name:"South Africa"}}},{id:"435701",title:"Dr.",name:"Mohamed",middleName:null,surname:"Allouche",slug:"mohamed-allouche",fullName:"Mohamed Allouche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420855",title:"Prof.",name:"Patricia",middleName:null,surname:"Aïssa",slug:"patricia-aissa",fullName:"Patricia Aïssa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435699",title:"Dr.",name:"Takoua",middleName:null,surname:"Mhadhbi",slug:"takoua-mhadhbi",fullName:"Takoua Mhadhbi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"442300",title:"Prof.",name:"Véronique",middleName:null,surname:"Perrier",slug:"veronique-perrier",fullName:"Véronique Perrier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Montpellier",country:{name:"France"}}},{id:"445179",title:"Mr.",name:"Aman",middleName:null,surname:"Jaiswal",slug:"aman-jaiswal",fullName:"Aman Jaiswal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Science Education and Research Mohali",country:{name:"India"}}},{id:"445178",title:"Mr.",name:"Dhiraj",middleName:null,surname:"Dutta",slug:"dhiraj-dutta",fullName:"Dhiraj Dutta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"445180",title:"Dr.",name:"Rama",middleName:null,surname:"Dubey",slug:"rama-dubey",fullName:"Rama Dubey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"424992",title:"Dr.",name:"Mohamed",middleName:null,surname:"Helal",slug:"mohamed-helal",fullName:"Mohamed Helal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Institute of Oceanography and Fisheries",country:{name:"Egypt"}}},{id:"426808",title:"Associate Prof.",name:"Yesim",middleName:null,surname:"Gucbilmez",slug:"yesim-gucbilmez",fullName:"Yesim Gucbilmez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Eskisehir Technical University",country:{name:"Turkey"}}},{id:"428329",title:"Mr.",name:"Collet",middleName:null,surname:"Maswanganyi",slug:"collet-maswanganyi",fullName:"Collet Maswanganyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"428546",title:"MSc.",name:"Ndivhuwo",middleName:null,surname:"Shumbula",slug:"ndivhuwo-shumbula",fullName:"Ndivhuwo Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"352155",title:"Dr.",name:"Poslet",middleName:"Morgan",surname:"Shumbula",slug:"poslet-shumbula",fullName:"Poslet Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"435064",title:"Dr.",name:"Mohammadtaghi",middleName:null,surname:"Vakili",slug:"mohammadtaghi-vakili",fullName:"Mohammadtaghi Vakili",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yangtze Normal University",country:{name:"China"}}},{id:"437268",title:"Dr.",name:"Linda Lunga",middleName:null,surname:"Sibali",slug:"linda-lunga-sibali",fullName:"Linda Lunga Sibali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437269",title:"Dr.",name:"Peter P.",middleName:null,surname:"Ndibewu",slug:"peter-p.-ndibewu",fullName:"Peter P. Ndibewu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424106",title:"Ph.D. Student",name:"Siyabonga",middleName:null,surname:"Aubrey Mhlongo",slug:"siyabonga-aubrey-mhlongo",fullName:"Siyabonga Aubrey Mhlongo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424233",title:"Ph.D. Student",name:"Ifeoluwa Oluwafunmilayo",middleName:null,surname:"Daramola",slug:"ifeoluwa-oluwafunmilayo-daramola",fullName:"Ifeoluwa Oluwafunmilayo Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446429",title:"Dr.",name:"Dev Vrat",middleName:null,surname:"Kamboj",slug:"dev-vrat-kamboj",fullName:"Dev Vrat Kamboj",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"425585",title:"Dr.",name:"NISHA",middleName:null,surname:"GAUR",slug:"nisha-gaur",fullName:"NISHA GAUR",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"226635",title:"Prof.",name:"Amany",middleName:null,surname:"El-Sikaily",slug:"amany-el-sikaily",fullName:"Amany El-Sikaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"435668",title:"Dr.",name:"Sara",middleName:null,surname:"Ghanem",slug:"sara-ghanem",fullName:"Sara Ghanem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"91",type:"subseries",title:"Sustainable Economy and Fair Society",keywords:"Sustainable, Society, Economy, Digitalization, KPIs, Decision Making, Business, Digital Footprint",scope:"\r\n\tGlobally, the ecological footprint is growing at a faster rate than GDP. This phenomenon has been studied by scientists for many years. However, clear strategies and actions are needed now more than ever. Every day, humanity, from individuals to businesses (public and private) and governments, are called to change their mindset in order to pursue a virtuous combination for sustainable development. Reasoning in a sustainable way entails, first and foremost, managing the available resources efficiently and strategically, whether they are natural, financial, human or relational. In this way, value is generated by contributing to the growth, improvement and socio-economic development of the communities and of all the players that make up its value chain. In the coming decades, we will need to be able to transition from a society in which economic well-being and health are measured by the growth of production and material consumption, to a society in which we live better while consuming less. In this context, digitization has the potential to disrupt processes, with significant implications for the environment and sustainable development. There are numerous challenges associated with sustainability and digitization, the need to consider new business models capable of extracting value, data ownership and sharing and integration, as well as collaboration across the entire supply chain of a product. In order to generate value, effectively developing a complex system based on sustainability principles is a challenge that requires a deep commitment to both technological factors, such as data and platforms, and human dimensions, such as trust and collaboration. Regular study, research and implementation must be part of the road to sustainable solutions. Consequently, this topic will analyze growth models and techniques aimed at achieving intergenerational equity in terms of economic, social and environmental well-being. It will also cover various subjects, including risk assessment in the context of sustainable economy and a just society.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11975,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo, Ph.D., is a professor in the Department of Engineering, University of Naples “Parthenope,” Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino and Southern Lazio, Italy. Her research interests include multi-criteria decision analysis, industrial plants, logistics, manufacturing, and safety. She serves as an associate editor for the International Journal of the Analytic Hierarchy Process and is an editorial board member for several other journals. She is also a member of the Analytic Hierarchy Process (AHP) Academy.",institutionString:"Parthenope University of Naples",institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580"},editorialBoard:[{id:"179628",title:"Prof.",name:"Dima",middleName:null,surname:"Jamali",slug:"dima-jamali",fullName:"Dima Jamali",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSAIlQAO/Profile_Picture_2022-03-07T08:52:23.jpg",institutionString:null,institution:{name:"University of Sharjah",institutionURL:null,country:{name:"United Arab Emirates"}}},{id:"170206",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Özçatalbaş",slug:"dr.-orhan-ozcatalbas",fullName:"Dr. Orhan Özçatalbaş",profilePictureURL:"https://mts.intechopen.com/storage/users/170206/images/system/170206.png",institutionString:null,institution:{name:"Akdeniz University",institutionURL:null,country:{name:"Turkey"}}},{id:"250347",title:"Associate Prof.",name:"Isaac",middleName:null,surname:"Oluwatayo",slug:"isaac-oluwatayo",fullName:"Isaac Oluwatayo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVIVQA4/Profile_Picture_2022-03-17T13:25:32.jpg",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},{id:"141386",title:"Prof.",name:"Jesús",middleName:null,surname:"López-Rodríguez",slug:"jesus-lopez-rodriguez",fullName:"Jesús López-Rodríguez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRBNIQA4/Profile_Picture_2022-03-21T08:24:16.jpg",institutionString:null,institution:{name:"University of A Coruña",institutionURL:null,country:{name:"Spain"}}},{id:"208657",title:"Dr.",name:"Mara",middleName:null,surname:"Del Baldo",slug:"mara-del-baldo",fullName:"Mara Del Baldo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLMUQA4/Profile_Picture_2022-05-18T08:19:24.png",institutionString:"University of Urbino Carlo Bo",institution:{name:"University of Urbino",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:69,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:65,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:110,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:56,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:87,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:93,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:195,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:112,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-em-streptococcus-mutans-em-virulence-targets-a-proteomic",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:110,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79515",title:"White Spot Lesions and Remineralization",doi:"10.5772/intechopen.101372",signatures:"Monisha Khatri, Shreya Kishore, S. Nagarathinam, Suvetha Siva and Vanita Barai",slug:"white-spot-lesions-and-remineralization",totalDownloads:80,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10897",title:"Food Systems Resilience",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",slug:"food-systems-resilience",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Ana I. Ribeiro-Barros, Daniel S. Tevera, Luís F. Goulao and Lucas D. Tivana",hash:"ae9dd92f53433e4607f1db188dc649b4",volumeInSeries:1,fullTitle:"Food Systems Resilience",editors:[{id:"171036",title:"Dr.",name:"Ana I.",middleName:null,surname:"Ribeiro-Barros",slug:"ana-i.-ribeiro-barros",fullName:"Ana I. Ribeiro-Barros",profilePictureURL:"https://mts.intechopen.com/storage/users/171036/images/system/171036.jpg",institutionString:"University of Lisbon",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/19043",hash:"",query:{},params:{id:"19043"},fullPath:"/chapters/19043",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()