1. Introduction
The microorganism is known to produce a variety of toxins and enzymes that are responsible for severe myonecrotic lesions. Notably, alpha-toxin, which possesses hemolytic, necrotic and lethal activities, and phospholipase C (PLC) and sphingomyelinase (SMase) activities, is an important agent for the diseases (Bryant et al. 2000, Sakurai, Nagahama and Oda 2004). It has been reported that the toxin is required for myonecrosis, hemolysis, inhibition of neutrophil infiltration and thrombosis (Stevens and Bryant 1997, Awad et al. 2001, Ellemor et al. 1999). We also reported that the toxin stimulated O2
- production in neutrophils, and firm adhesion of the cells to matrix ligands, fibrinogen, fibronectin, and collagen (Ochi et al. 2002), suggesting that the toxin stimulates the binding of neutrophils to the vascular endothelium and inflammation there. The findings suggest that neutrophils activated by the toxin are unable to migrate across the vascular endothelium in an infectious focus. Actually, gas gangrene caused by
Stevens et al. reported that alpha-toxin may cause shock indirectly by stimulating the release of endogenous mediators (Bryant and Stevens 1996, Stevens 2000). We found that the intravenous injection of alpha-toxin in mice resulted in the release of various cytokines (Oda et al. 2008). Cytokines are immunoregulatory peptides with a strong inflammatory action, mediating the immune/metabolic response to an external noxious stimulus and later the transition from septicemia to septic shock, multiple organ dysfunction syndromes, and/or multiple organ failure (Tracey et al. 1987, Riedemann, Guo and Ward 2003, Dinarello 2004). It is thought that synergistic interactions between cytokines can cause or attenuate tissue injury (Calandra, Bochud and Heumann 2002). Tumor necrosis factor (TNF)-α, released from neutrophils, macrophages, and endothelial cells, is an important cytokine involved in the pathophysiology of septicemia (Tracey et al. 1987, Lum et al. 1999). TNF- α-induced tissue injury is largely mediated through neutrophils which respond by producing elastase, superoxide ion, hydrogen peroxide, phospholipase A, platelet-activating factor, leukotriene B1, and thromboxane A2 (Aldridge 2002). Therefore, it is possible that the exacerbation of gas gangrene with inflammatory symptom and septicemia with massive intravascular hemolysis caused by
Macrolide antibiotics, including erythromycin (ERM), azithromycin (AZM), clarithromycin and kitasamycin (KTM), are recognized as potent antibiotics for the treatment of various microbial infections (Schmid 1971). Some of these antibiotics have been reported to be effective against diffuse panbronchiolitis characterized by chronic inflammation with inflammatory cell infiltration (Kadota et al. 1993, Fujii et al. 1995). Thereafter, macrolides were shown to exert immunomodulatory effects on a wide range of cells; epithelial cells, macrophages, monocytes, eosinophils, neutrophils, and lymphocytes. The 14- and 15-membered macrolides are known to lead to suppression of neutrophil chemotaxis and oxidative burst, and inhibition of the release of proinflammatory cytokines from monocytes (Sato et al. 1998, Khan et al. 1999, Rubin and Tamaoki 2000). From the point of view of their unique pharmacological actions, recently we revealed that these macrolides inhibited alpha-toxin-induced events in vivo and in vitro. In this review, we show the mechanism for the action of macrolides on the biological activities of the toxin.
2. Characterization of alpha-toxin
The genes encoding alpha-toxin (Titball et al. 1989),
3. The action of Clostridium perfringens alpha-toxin
3.1. The effect of pro-inflammatory cytokines on alpha-toxin-induced death
Cytokines are small proteins involved in key events of the inflammatory process. Beutler et al. reported that neutralization of TNF- α released by the intravenous injection of a lethal dose of lipopolysaccharide (LPS) prevented death in mice (Beutler, Milsark and Cerami 1985). Later, Tracey et al. demonstrated that a monoclonal anti-TNF- α antibody protected baboons against sepsis elicited by
To examine the role of inflammatory cytokines in the death caused by the toxin, mice were intravenously injected with the toxin after the administration of an anti-TNF-α, IL-1β, or IL-6 antibody. Untreated mice began to die within 10 hr after the administration of the toxin and all mice died within 12 hr. The survival rate of anti-TNF-α antibody-preinjected mice was 100 and 80% after 8 and 12 hr, respectively, under the conditions (Fig. 3). The anti-IL-1β and anti-IL-6 antibodies had little effect on the lethality (Fig. 3). From the result, it is likely that the lethality of the toxin is related to the release of TNF-α, not of IL-1β or IL-6. To confirm this, the effect of the toxin on TNF-α-deficient mice was tested (Fig. 4). The administration of alpha-toxin killed all of the wild-type mice within 12 h. The survival rate of the TNF-α-knockout mice was 100% and 75% within 12 and 24 h, respectively, consistent with the result obtained by injection of the anti-TNF-α antibody in mice. The observations showed that TNF-α released by the toxin is important in the death caused by the toxin. On the other hand, TNF-α in the range of concentrations found in mice treated with alpha-toxin was not lethal. Therefore, it is apparent that TNF-α alone did not participate in the death from alpha-toxin under our experimental condition. It is likely that TNF-α released by alpha-toxin plays a role in enhancing the actions of the toxin in vivo, but is not a major factor. Therefore, we cannot exclude the possibility that a TNF-α inhibitor is worth pursuing as a novel therapeutic approach to the treatment of gas gangrene and septicemia caused by the microorganism.
4. The potency of macrolide antibiotics
4.1. The effect on alpha-toxin-induced death
Macrolides, particularly those derived from 14- and 15-membered rings, exert anti-infammatory effects through a variety of signaling pathways including activator protein-1 (AP-1) and nuclear factor-kappaB (NF-κB) (Sato et al. 1998, Khan et al. 1999, Desaki et al. 2000, Rubin and Tamaoki 2000, Kikuchi et al. 2002). The antibiotics have been reported to impair the production of pro-inflammatory cytokines (Kadota et al. 1993, Fujii et al. 1995). Abe et al. reported that macrolides repressed IL-8 gene expression by suppressing both AP-1 binding sites and NF-κB (Abe et al. 2000). Shchultz et al. postulated that the treatment with macrolides results in suppression of the production of TNF-α and granulocyte-macrophage colony-stimulating factor (Schultz et al. 1998). Simpson et al. have also reported that 14- and 15-member macrolide antibiotics attenuated the activation of neutrophils induced by various inflammatory stimuli (Simpson et al. 2008).
We measured the release of these cytokines induced by the toxin in mice preinjected with the 14-membered macrolide, ERM or the 16-membered, KTM. In mice preinjected with ERM, the toxin-induced release of pro-inflammatory cytokines, TNF- α, IL-1β, and IL-6, in blood was markedly decreased (Fig. 2), whereas the toxin-induced release of the T-helper type 1 (Th1) cytokines, IFN-γ and IL-2, and the T-helper type 2 (Th2) cytokine, IL-10, increased approximately 2-fold, compared with that in mice preinjected with ERM (Fig. 2). The action of AZM resembled that of ERM. In mice preinjected with KTM, the toxin-induced release of these cytokines was the same as that in the control mice. The administration of ERM or KTM alone caused no release of these cytokines. It therefore is apparent that ERM and AZM inhibit the toxin-induced release of pro-inflammatory cytokines, and enhance that of Th1 and Th2 cytokines in vivo. It is interesting that the antibiotics increased levels of Th1 and Th2 cytokines under the conditions. The antibiotics may control a balance of the immune system disrupted by the toxin.
We examined the effect of ERM, AZM, and KTM on the toxin-induced death. Alpha-toxin-injected mice began to die after about 8 hr, and all mice died within 12 hr of the administration (Fig. 5). ERM- or AZM-preinjected mice survived up to 18 hr after the injection of alpha-toxin. The survival rate of mice preinjected with ERM and AZM was about 80 and 70%, respectively, 24 h after the administration of the toxin, showing that ERM and AZM inhibited the toxin’s lethal effect. These results show that the 14-ring and the 15-ring macrolides have inhibitory effects on the lethality of alpha-toxin
4.2. Effect on systemic hemolysis induced by alpha-toxin
Massive intravascular hemolysis is reported to be diagnostic of
We have reported the relationship between the toxin-induced hemolysis and activation of phospholipid metabolism via pertussis toxin-sensitive GTP-binding protein (Gi) (Sakurai, Ochi and Tanaka 1994, Ochi et al. 1996, Ochi et al. 2004, Oda et al. 2008). Intravenous injection of alpha-toxin in mice resulted in massive intravascular hemolysis (Sugahara and Osaka 1970, Kreidl, Green and Wren 2002). However, little is known about the mechanism of hemolysis induced by the toxin in vivo. We investigated the effect of cytokines on the hemolysis induced by alpha-toxin. Mouse erythrocytes were treated with a sub-hemolytic dose of alpha-toxin at 37oC for 30 min, and then incubated with various concentrations of TNF-α, IL-1β or IL-6 for 60 min. Fig. 6 shows that TNF-α enhanced the toxin-induced hemolysis of mouse erythrocytes in a dose-dependent manner, but IL-1β and IL-6 did not.
To investigate the effect of ERM and KTM on the hemolysis induced by alpha-toxin in vivo, mice preinjected with ERM and KTM were intravenously administered the toxin. The alpha-toxin-induced hemolysis was markedly decreased in the ERM- or AZM-injected mice, but not KTM-injected mice (Fig. 7). Blockage of TNF-α’s release by ERM or AZM in vivo paralleled the reduction in hemolysis caused by the toxin. It therefore appears that TNF-α enhances the toxin-induced hemolysis in vivo, suggesting that ERM and AZM are effective against the systemic hemolysis induced by alpha-toxin. The result suggests that the antibiotics may prevent hemolytic anemia induced by the toxin.
4.3. The effect on alpha-toxin-induced activation of neutrophils
Alpha-toxin induced the release of TNF-α from neutrophils and macrophages. The 14- and 15-membered macrolides inhibited the toxin-induced release of TNF-α, IL-1β, and IL-6 in vivo, as mentioned above. Furthermore, the macrolides prevented the toxin-induced activation of phagocytes and release of TNF-α from cells in vitro. We investigated the effect of the toxin on neutrophils isolated from the macrolide-preinjected mice. The release of TNF-α induced by the toxin from neutrophils prepared from ERM- or AZM-preinjected mice was about 20% of that from neutrophils of untreated mice (Fig. 8A). Little significant reduction in the amount of TNF-α released was observed in neutrophils from mice pretreated with KTM, compared with the control (Fig. 8A). Furthermore, the pretreatment of macrophages with ERM and AZM in vivo resulted in a reduction in the toxin-induced release of TNF-α, but that with KTM did not. It therefore appears that the treatment of these phagocytes with ERM and AZM resulted in a reduction in the response to the toxin.
We have reported the mechanism for activation of neutrophils by the toxin as follows (Fig. 8B). Alpha-toxin stimulated the generation of O2 - in rabbit neutrophils in vitro (Ochi et al. 2002, Oda et al. 2006). Treatment of neutrophils with the toxin resulted in tyrosine phosphorylation of a protein of about 140 kDa (Fig. 8C). The protein reacted with an anti-tyrosine kinase A (TrkA) antibody and bound nerve growth factor (NGF). The anti-TrkA antibody inhibited the toxin-induced production of O2 - from the cells and binding of the toxin to the protein. In addition, the toxin did not bind to PC12 cells treated with TrkA-siRNA, which did not express TrkA. The observations show that the TrkA is a receptor of alpha-toxin. The toxin induced phosphorylation of 3-phosphoinositide-dependent protein kinase 1 (PDK1), which functions as a downstream mediator of TrkA. K252a, an inhibitor of TrkA, and LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), reduced the toxin-induced production of O2 - and phosphorylation of PDK1, but not the formation of diacylglycerol (DG) (Fig. 8D). These inhibitors inhibited the toxin-induced phosphorylation
Neutrophils were prepared from mice injected with ERM, AZM, or KTM. A) The neutrophils were incubated with 100 ng of alpha-toxin at 37oC for 3 h. The release of TNF-α was assayed with an ELISA kit. *,
of protein kinase C θ (PKCθ). On the other hand, U73122, a PLC inhibitor, and pertussis toxin inhibited the toxin-induced generation of O2 - and formation of DG, but not the phosphorylation of TrkA and PDK1 (Fig. 8D). These observations show that the toxin independently induces production of DG through activation of endogenous phosphatidylinositol PI-PLC via Gi and phosphorylation of PDK1 via the TrkA signaling pathway and the two events synergistically activate PKCθ which is involved in the generation of O2 - through the stimulation of mitogen-activated protein kinase (MAPK)-associated signaling events (Fig. 9).
Macrolide antibiotics have been reported to inhibit effects through signaling pathways including NF-κB and AP-1. It has been reported that ERM, clarithromycin, and
roxithromycin inhibit the generation of O2 - by stimulus-activated neutrophils (Anderson 1989, Hand and King-Thompson 1990). However, little is known about the inhibitory mechanism of the antibiotics. Recently we revealed that macrolides prevent the toxin-induced death, production of O2 -, and release of TNF-α in neutrophils through inactivation of TrkA (Oda et al. 2008). ERM and AZM inhibited the toxin-induced phosphorylation of TrkA under conditions in which the toxin inhibits biological activities; production of O2 - and release of TNF-α (Fig. 8). On the other hand, treatment with ERM and AZM had no effect on the formation of DG via Gi in rabbit neutrophils treated with alpha-toxin. KTM, which does not inhibit the biological activities of the toxin, did not prevent them. These observations provided evidence that inhibition of the toxin-induced phosphorylation of TrkA by ERM and AZM results in suppression of activation of neutrophils, formation of O2 -, and release of TNF-α. Therefore, the results show that 14- and 15-membered macrolides specifically inhibit the phosphorylation of TrkA, viz. activation of the protein.
5. Discussion
TNF-α appears to play an important role in the lethal effect of the toxin, because 1) the anti-TNF-α antibody prevented death caused by the toxin, 2) TNF-α-knockout mice were resistant to the toxin, and 3) the 14- and 15-membered macrolides, which prevent the release of TNF-α induced by the toxin, inhibited the lethal and hemolytic effects of the toxin. However, Wiersnga and Poll reported that trials with an anti-TNF-α antibody and recombinant IL-1 receptor antagonist for clinical septicemia failed, and many other anti-inflammatory strategies were not successful in altering the outcome of patients with septicemia (Anas et al. 2010). Furthermore, the fallacy of the notion that excessive inflammation is the main or sole underlying cause of an adverse outcome in septic patients has been pointed out in the review by Wiersnga and Poll (Wiersinga and van der Poll 2007). On the other hand, considering that bacteria grow in patients with septicemia, there are many unanswered questions about the immune functions of the host, clearance of bacteria in vivo by antimicrobial agents, and surgical resection of foci and so on. Therefore, our findings on the role of TFN-α in diseases caused by
The 14- and 15- member-macrolide antibiotics are effective in the treatment of infectious diseases caused by
6. Conclusion
References
- 1.
Abe S. Nakamura H. Inoue S. Takeda H. Saito H. Kato S. Mukaida N. Matsushima K. Tomoike H. 2000 Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. 22, 51-60. ISSN1044 1549 - 2.
Alape-Giron A. Flores-Diaz M. Guillouard I. Naylor C. E. Titball R. W. Rucavado A. Lomonte B. Basak A. K. Gutierrez J. M. Cole S. T. Thelestam M. 2000 Identification of residues critical for toxicity in phospholipase C, the key toxin in gas gangrene. Eur J Biochem, 267,5191 5197 0014-2956 - 3.
Aldridge A. J. 2002 Role of the neutrophil in septic shock and the adult respiratory distress syndrome. 168,204 214 - 4.
Alvarez A. Rives S. Nomdedeu B. Pereira A. 1999 Massive hemolysis in infection. Haematologica, 84,571 573 0390-6078 - 5.
Anas A. A. Wiersinga W. J. de Vos A. F. T. 147 152 1872-9061 - 6.
Anderson R. 1989 Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. 159,966 973 - 7.
Awad M. M. Ellemor D. M. Boyd R. L. Emmins J. J. Rood J. I. 2001 Synergistic effects of alpha-toxin and perfringolysin O in -mediated gas gangrene. Infect Immun, 69,7904 7910 0019-9567 - 8.
Beutler B. Milsark I. W. Cerami A. C. 1985 Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. 229,869 871 0036-8075 - 9.
Bryant A. E. Chen R. Y. Nagata Y. Wang Y. Lee C. H. Finegold S. Guth P. H. Stevens D. L. 2000 Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of . J Infect Dis, 182,799 807 - 10.
Bryant A. E. Stevens D. L. 1996 Phospholipase C and perfringolysin O from upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells. Infect Immun, 64,358 362 - 11.
Bunting M. Lorant D. E. Bryant A. E. Zimmerman G. A. Mc Intyre T. M. Stevens D. L. Prescott S. M. 1997 Alpha toxin from induces proinflammatory changes in endothelial cells. J Clin Invest, 100,565 574 - 12.
Calandra T. Bochud P. Y. Heumann D. 2002 Cytokines in septic shock. 22,1 23 - 13.
Desaki M. Takizawa H. Ohtoshi T. Kasama T. Kobayashi K. Sunazuka T. Omura S. Yamamoto K. Ito K. 2000 Erythromycin suppresses nuclear factor-kB and activator protein-1 activation in human bronchial epithelial cells.. 267,124 128 - 14.
Dinarello C. A. 2004 Therapeutic strategies to reduce IL-1 activity in treating local and systemic inflammation. 4,378 385 - 15.
Ellemor D. M. Baird R. N. Awad M. M. Boyd R. L. Rood J. I. Emmins J. J. 1999 Use of genetically manipulated strains of reveals that both alpha-toxin and theta-toxin are required for vascular leukostasis to occur in experimental gas gangrene. Infect Immun, 67,4902 4907 0019-9567 - 16.
Fujii T. Kadota J. Kawakami K. Iida K. Shirai R. Kaseda M. Kawamoto S. Kohno S. 1995 Long term effect of erythromycin therapy in patients with chronic infection. Thorax, 50,1246 1252 - 17.
Gilmore M. S. Cruz-Rodz A. L. Leimeister-Wachter M. Kreft J. Goebel W. 1989 A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. 171,744 753 0021-9193 - 18.
Guillouard I. Alzari P. M. Saliou B. Cole S. T. 1997 The carboxy-terminal C2-like domain of the alpha-toxin from mediates calcium-dependent membrane recognition. Mol Microbiol, 26,867 876 0095-0382 X - 19.
Hand W. L. King-Thompson N. L. 1990 Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts. 34,1189 1193 0066-4804 - 20.
Hough E. Hansen L. K. Birknes B. Jynge K. Hansen S. Hordvik A. Little C. Dodson E. Derewenda Z. 1989 High-resolution (1.5 A) crystal structure of phospholipase C from . Nature, 338,357 360 0028-0836 - 21.
Kadota J. Sakito O. Kohno S. Sawa H. Mukae H. Oda H. Kawakami K. Fukushima K. Hiratani K. Hara K. 1993 A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis. 147,153 159 - 22.
Khan A. A. Slifer T. R. Araujo F. G. Remington J. S. 1999 Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. 11,121 132 - 23.
Kikuchi T. K. Hagiwara Y. Honda K. Gomi T. Kobayashi H. Takahashi Y. Tokue A. Watanabe Nukiwa T. 2002 Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-κB transcription factors. , 49,745 755 - 24.
Kreidl K. O. Green G. R. Wren S. M. 2002 Intravascular hemolysis from a liver abscess. J Am Coll Surg, 194,387 1072-7515 - 25.
Lum L. Wong B. R. Josien R. Becherer J. D. Erdjument-Bromage H. Schlondorff J. Tempst P. Choi Y. Blobel C. P. 1999 Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. 274,13613 13618 - 26.
Nagahama M. Michiue K. Sakurai J. 1996a Membrane-damaging action of alpha-toxin on phospholipid liposomes. Biochim Biophys Acta, 1280,120 126 - 27.
Nagahama M. Mukai M. Morimitsu S. Ochi S. Sakurai J. 2002 Role of the C-domain in the biological activities of alpha-toxin. Microbiol Immunol, 46,647 655 - 28.
Nagahama M. Nakayama T. Michiue K. Sakurai J. 1997 Site-specific mutagenesis of alpha-toxin: replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activities. Infect Immun, 65,3489 3492 - 29.
Nagahama M. Ochi S. Kobayashi K. Sakurai J. 1996b The relationship between histidine residues and various biological activities of alpha toxin. Adv Exp Med Biol, 391,251 255 0065-2598 - 30.
Nagahama M. Okagawa Y. Nakayama T. Nishioka E. Sakurai J. 1995 Site-directed mutagenesis of histidine residues in alpha-toxin. J Bacteriol, 177,1179 1185 - 31.
Nakahata E. Shindoh Y. Takayama T. Shindoh C. 2001 Interleukin-12 prevents diaphragm muscle deterioration in a septic animal model. 130,653 663 1095-6433 - 32.
Naylor C. E. Eaton J. T. Howells A. Justin N. Moss D. S. Titball R. W. Basak A. K. 1998 Structure of the key toxin in gas gangrene. 5,738 746 1072-8368 - 33.
Ochi S. Hashimoto K. Nagahama M. Sakurai J. 1996 Phospholipid metabolism induced by alpha-toxin elicits a hot-cold type of hemolysis in rabbit erythrocytes. Infect Immun, 64,3930 3933 - 34.
Ochi S. Miyawaki T. Matsuda H. Oda M. Nagahama M. Sakurai J. 2002 alpha-toxin induces rabbit neutrophil adhesion. Microbiology, 148,237 245 - 35.
Ochi S. Oda M. Matsuda H. Ikari S. Sakurai J. 2004 alpha-toxin activates the sphingomyelin metabolism system in sheep erythrocytes. J Biol Chem, 279,12181 12189 - 36.
Oda M. Ikari S. Matsuno T. Morimune Y. Nagahama M. Sakurai J. 2006 Signal transduction mechanism involved in alpha-toxin-induced superoxide anion generation in rabbit neutrophils. Infect Immun, 74,2876 2886 - 37.
Oda M. Kihara A. Yoshioka H. Saito Y. Watanabe N. Uoo K. Higashihara M. Nagahama M. Koide N. Yokochi T. Sakurai J. 2008 Effect of erythromycin on biological activities induced by alpha-toxin. J Pharmacol Exp Ther, 327,934 940 - 38.
Palsson Mc Dermott. E. M. O’Neill L. A. 2004 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. 113,153 162 0019-2805 - 39.
Riedemann N. C. Guo R. F. Ward P. A. 2003 Novel strategies for the treatment of sepsis. 9,517 524 - 40.
Rubin B. K. Tamaoki J. 2000 Macrolide antibiotics as biological response modifiers. 1,169 172 - 41.
Sakurai J. Nagahama M. Oda M. 2004 alpha-toxin: characterization and mode of action. J Biochem (Tokyo), 136,569 574 - 42.
Sakurai J. Ochi S. Tanaka H. 1994 Regulation of alpha-toxin-activated phospholipase C in rabbit erythrocyte membranes. Infect Immun, 62,717 721 0019-9567 - 43.
Sato K. Suga M. Akaike T. Fujii S. Muranaka H. Doi T. Maeda H. Ando M. 1998 Therapeutic effect of erythromycin on influenza virus-induced lung injury in mice. 157,853 857 - 44.
Schmid E. E. 1971 The macrolide group of antibiotics. Mode of action. 17,52 66 - 45.
Schultz M. J. Speelman P. Zaat S. van Deventer S. J. T. 1998 Erythromycin inhibits tumor necrosis factor alpha and interleukin 6 production induced by heat-killed Streptococcus pneumoniae in whole blood. 42,1605 1609 0066-4804 - 46.
Simpson J. L. Powell H. Boyle M. J. Scott R. J. Gibson P. G. 2008 Clarithromycin targets neutrophilic airway inflammation in refractory asthma. 177,148 155 1535-4970 - 47.
Stevens D. L. 2000 The pathogenesis of clostridial myonecrosis. 290,497 502 - 48.
Stevens D. L. Bryant A. E. 1997 Pathogenesis of infection: mechanisms and mediators of shock. Clin Infect Dis, 25,160 164 - 49.
Sugahara T. Osaka A. (197 Two molecular. forms of. Clostridium perfringens. alpha-toxin associated. with lethal. hemolytic enzymatic activities. 61 66 - 50.
Titball R. W. 1993 Bacterial phospholipases C. 57,347 366 0146-0749 - 51.
Titball R. W. Hunter S. E. Martin K. L. Morris B. C. Shuttleworth A. D. Rubidge T. Anderson D. W. Kelly D. C. 1989 Molecular cloning and nucleotide sequence of the alpha-toxin (phospholipase C) of . Infect Immun, 57,367 376 0019-9567 - 52.
Tracey K. J. Fong Y. Hesse D. G. Manogue K. R. Lee A. T. Kuo G. C. Lowry S. F. Cerami A. 1987 Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. 330,662 664 - 53.
Tso J. Y. Siebel C. 1989 Cloning and expression of the phospholipase C gene from and Clostridium bifermentans. Infect Immun, 57,468 476 0019-9567 - 54.
Vallee B. L. Auld D. S. 1993 New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. 32,6493 6500 0006-2960 - 55.
van Bunderen C. C. Bomers M. K. Wesdorp E. Peerbooms P. Veenstra J. (2010 Clostridium perfringens. septicaemia with. massive intravascular. haemolysis a. case report. review of. the literature. 343 346 1872-9061 - 56.
van Setten, P. A., L. A. Monnens, R. G. Verstraten, L. P. van den Heuvel & V. W. van Hinsbergh (1996) Effects of verocytotoxin-1 on nonadherent human monocytes: binding characteristics, protein synthesis, and induction of cytokine release. 88, pp. 174-183. - 57.
Vazquez-Boland J. A. Kocks C. Dramsi S. Ohayon H. Geoffroy C. Mengaud J. Cossart P. 1992 Nucleotide sequence of the lecithinase operon of and possible role of lecithinase in cell-to-cell spread. Infect Immun, 60,219 230 0019-9567 - 58.
Weighardt H. Heidecke C. D. Westerholt A. Emmanuilidis K. Maier S. Veit M. Gerauer K. Matevossian E. Ulm K. Siewert J. R. Holzmann B. 2002 Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. 235,560 567 0003-4932 - 59.
Wiersinga W. J. T. 2007 Is the septic response good or bad? 9,366 373 1523-3847 - 60.
Yan J. J. Jung J. S. Lee J. E. Lee J. Huh S. O. Kim H. S. Jung K. C. Cho J. Y. Nam J. S. Suh H. W. Kim Y. H. Song D. K. 2004 Therapeutic effects of lysophosphatidylcholine in experimental sepsis. 10,161 167 1078-8956 - 61.
Yoshimura A. Hara Y. Kaneko T. Kato I. 1997 Secretion of IL-1 beta, TNF-alpha, IL-8 and IL-1ra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. 32,279 286 - 62.
Stevens, D.L., B.M. Laine, and J.E. Mitten. (1987) Comparison of single and combination antimicrobial agents for prevention of experimental gas gangrene caused by Clostridium perfringens. Antimicrob. Agents Chemother. 31, pp. 312-316.