On-going efforts to test and refine the Adaptation for Conservation Targets (ACT) Framework in landscapes across the United States.1The Southwest Climate Change Initiative is led by The Nature Conservancy in partnership with the Climate Assessment for the Southwest, Wildlife Conservation Society, National Center for Atmospheric Research, Western Water Assessment, USDA Forest Service, and the University of Washington.
1. Introduction
The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007) presented clear evidence that the global climate is changing because of human activities (Box 1). There is little doubt that this human-forced climate change event will become one of the main contributors to the global loss of biological diversity and has already caused accelerated rates of species’ extinctions and changes to ecosystems across Earth (Sala et al., 2000; Thomas et al., 2004; Pimm, 2008). However, despite grim, almost doomsday-like, warnings in both the scientific literature and the general media for the best part of the last two decades (Peters & Darling 1985; Hannah et al., 2002), there has been little headway in the development of appropriate methodologies for integrating climate adaptation into conservation planning (Hannah et al., 2010; Poiani et al., 2011).
The purpose of this book chapter is to describe and classify some of the different methodologies governments and non-government organisations are using to integrate climate adaptation into conservation planning. By writing this book chapter, we hope to describe some of the benefits and limitations of the different adaptation planning approaches that are currently being espoused in the conservation arena. We conclude by describing some of the major hurdles human-forced climate change presents to conservation planners and some ways to overcome these. By no means is this an exhaustive review; rather, it builds on the work of others (e.g. Mawdsley et al., 2009; Dawson et al., 2011) by categorising some of the different adaptation planning activities being conducted within the conservation realm, so as to provide some clarity to national and international policy makers, private and public funding agencies, and practitioners, on what the best options are for conservation planning when climate change is considered.
Here, we focus on species-oriented conservation planning because it will ultimately be the reaction of species that define how ecosystems (and the services they provide) change because of human-forced climate change; species, as the basic evolutionary unit always need to be a focus of conservation planning.Although this chapter is species focused, many of the conclusions are also applicable to ecosystems, habitats, ecological communities, and genetic diversity, whether terrestrial, marine, or fresh water.
2. What is being done to integrate climate adaptation into conservation planning?
A quick review of the conservation literature when searching on terms such as ‘climate change’, ‘climate adaptation’ and ‘conservation planning and climate change’ highlights two things. First, the vast majority of research conducted to date has focused on documenting the effects of climate change on species and ecosystems. Relatively few studies go into much detail about what should be done when planning for conservation in a time of rapid climate change. This is not unsurprising considering ecologists and conservation biologists have only just started to grapple with the threat climate change poses to biodiversity and it normally takes conservation scientists time to move from understanding a threat to planning to overcome it. Second, when strategies for conservation in light of climate change are developed, a myriad of approaches are raised, all under the guise of ‘climate adaptation’. An soon to be published survey of all activities being undertaken by the African Biodiversity Collaborative Group (ABCG) in response to the impacts of climate highlights a number of distinctly different planning activities conducted by seven NGO partners over the past five years— for example, identifying where corridors needed to be restored, undertaking species vulnerability analyses, assessing agricultural production against different climate forecasts, and holding stakeholders conferences—all of which were labelled ‘climate adaptation planning’.
It is our contention that despite some excellent work on describing different adaptation-relevant activities (see, for example, Mawdsley et al., 2009) there has been little critical review of what distinguishes some of the very familiar conservation approaches and actions (e.g. protecting corridors) touted as adaptation strategies as truly addressing the new or enhanced challenges faced by species in the context of rapidly changing climate conditions and their impacts. It is unclear which activities are appropriate and which are not. As the literature increasingly addresses climate change and conservation, we believe it is important to go beyond calling everything we do ‘climate adaptation’. Without critically evaluating the different approaches identified as climate adaptation by planners and practitioners, the confusion around which actions are effective responses will only get greater.
To date, we argue that most conservation planning activities that have been labelled in some form ‘climate adaptation’ can be placed into three broad strategies:
Continuing ‘best practice’;
Extending on ‘best practice’ principles in consideration of species response to past climate change; and
Integrating assessments on species vulnerability to climate change into a conservation planning framework.
The following sections summarize these categories in more detail.
3. Continuing ‘best practice’
The start of the 1980s marked a new era for spatial conservation planning. Since Kirkpatrick et al.’s (1983) groundbreaking work of using detailed biogeographic information and selection algorithms in the design of protected area networks, the days of adhoc placement of protected areas and the focus on saving a few flagship species are (hopefully) in the past. Over the past thirty years we have seen an extraordinary growth in systematic conservation planning, and related tools are now used by all the major environmental organizations and many governments. From the publications of hundreds of peer-reviewed papers (see Moilanen et al., 2009; Watson et al., 2011 for summaries), a series of key principles have been identified as ‘best practice’:
Identify and protect representative habitats (e.g. all habitats in a region are represented in conservation areas);
Identify a persistence (adequacy) target of protection;
Avert risk through replication (i.e. protection of multiple examples of each target);
Protect critical habitats for threatened species; and
Ensure the design is efficient, and aiming to reduce current threats to natural systems.
Until relatively recently, one of the most common beliefs held by governments and NGOs has been that continued planning using these principles will remain appropriate in a changed climate (Hannah et al., 2002). For example, the Australian government has stated that the first thing they need to accomplish when considering the long term impacts of climate change, is to ensure that a comprehensive, adequate and representative reserve system is achieved (Steffen et al., 2009).
While achieving these best practices principles are important aspects of an overall conservation agenda aimed at overcoming existing stressors that are creating the current extinction crisis, they should not be the sole basis of a climate adaptation strategy. The reason for this is the strategies that come from these ‘best practice’ principles are based on two problematic assumptions: (1) a relatively stable climate, and (2) that biological attributes are inextricably linked to place. We are not living in a period of a stable climate (see Box 1) and there is increasing evidence to show that the paradigm of ‘place’ (i.e. each site or region has its own suite of species, ecosystems, and genetic attributes that can be conserved without thinking of wider spatial or long-term temporal considerations) is very rare, regardless of climate change (Whittaker et al., 2005, Anderson and Ferree, 2010). When the problematic logic to these assumptions is ignored, the ‘best practice’ conservation paradigm is largely predicated on static spatial planning, and focused almost entirely on the establishment of protected areas and the identification of ‘gaps’ of important habitat. This type of planning does not consider the long-term implications of climate change and is not, as Game et al., (2010) observe, “approaches to climate change adaptation, despite commonly being cited as such in conservation literature; they are all things that we should be doing anyway.”
4. Extending on ‘best practice’ principles
A goal of simply trying to achieve an adequate and representative system of reserves based on current species and ecosystem distributions and conditions has been rejected by most planners as insufficient to overcome the climate change challenge, and its use is in decline (Mackey et al., 2008). It has been replaced by the identification of a series of extensions of these principles, all of which are based on the fact that climate change is a natural phenomenon. Research over the past two decades has shown that there have been severe climatic oscillations for at least the last 500,000 years (Petit et al., 1999). Importantly, the ice core record shows that the transition out of glacial troughs may have been extremely rapid; arguably involving as much as 5°C warming in 20 years in some localities (Taylor, 1999). Almost all the species that persist today have gone through at least one of these glacial-interglacial cycles (Dawson et al., 2011), and a key question is – how did they survive past (often rapid) climate change events?
Five adaption strategies have been derived based on past climate and biological response (see Box 2), and Mackey et al., (2008) argue that these strategies distil into a set of ‘common sense’ general, inter-related principles for conserving species and ecosystem viability in light of future climate changes (Heller & Zavaleta, 2009; Mackey et al., 2010; Watson et al., 2009). These principles are:
Significantly expand the current protected area estate to maintain viable populations of speciesand maximize adaptive capacity;
Significantly expand the current protected area estate so as to capture refugia;
Assign priority to protecting large, intact landscapes; and
Ensure functional connectivity is maintained beyond protected areas.
These ‘extending on best practices’ principles are summarized below.
4.1. Principle 1: significantly expanding the current protected area estate to maintain viable populations of species and maximize adaptive capacity
A primary principle for conservation in a time of climate change is to maintain viable populations of all extant species across natural ranges in order to maximize intra-species genetic diversity and thus options for local adaptation and phenotypic plasticity (adaptation responses (1) and (2) in Box 2). A fundamental focus is thus replicating habitats in the reserve system so as to protect multiple source-populations across the environmental gradients occupied by the species (Watson et al., 2011).
4.2. Principle 2: significantly expanding the current protected area estate so as to capture refugia
A related goal is the identification and protection of refugia, or macro- and micro-habitats that supported relict species during past episodes of climatic warming (e.g., during interglacial periods) (Morton et al., 1995; Pressey et al., 2007; Ashcroft, 2010). Past climate change has resulted in some species experiencing dramatic range shifts and/or in-situ reductions; many species now only occur in networks of scattered locations that retain suitable conditions at a micro-scale because of this. It is thought that protection of refugia may prove critical in assisting certain species to persist through future rapid climate change (Mackey et al., 2002). If information on the specific locations of refugia that supported cooler-climate species during past times of warming is lacking, then a logical extension of the idea presented in section 4.1 is to significantly expand the protected area estate in the hope that this will increase the likelihood of capturing important refugia.
4.3. Principle 3: assign priority to protecting large, intact landscapes
As discussed in the ‘Continuing best practices’ section (3), conservation biologists and planners have reacted to the biodiversity crisis that is currently caused by, among others, rampant vegetation clearance and the introduction of invasive species by identifying priority areas to manage for conservation (Margules & Pressey, 2000; Fuller et al., 2010). Many of these approaches prioritize areas using criteria such as maximizing the number of threatened species and/or ecosystems (Myers et al., 2000; Dietz & Czech, 2005). While this threat-based approach to spatial prioritisation, targeting a snapshot of vulnerable biodiversity and landscapes, is logical in the short term given accelerating anthropogenic threats and past impacts (Brooks et al., 2002; Spring et al., 2007), it is not likely to be sufficient to ensure the long term persistence of biodiversity in the face of climate change. A reactive, threat-based approach does not take into consideration the impacts of climate change on the degree of threat and vulnerability of species.
Therefore a key principle is to proactively conserve large intact areas, often termed ‘wilderness’, alongside hotspots of threatened biodiversity (Mackey et al., 2008; Watson et al., 2009), as these landscapes sustain key ecological and evolutionary processes outlined in Box 2 (Soulé et al., 2006; Mackey et al., 2008). The high level of natural connectedness and climatic gradients driven by variability in elevation and aspect in intact landscapes improves the likelihood of survivorship of species by supporting large populations and a range of microhabitats. The ecosystems of extensive and intact lands will play a vital role in facilitating natural adaptation responses by species to human-forced climate change (Soulé & Terborgh, 1999). In particular, mobile species will have more habitat options as they disperse to find suitable locations in response to rapidly changing climate.
4.4. Principle 4: ensure functional connectivity is maintained beyond protected areas
A strategy based solely on the first three principles (e.g. expanding the protected area estate to increase species’ adaptive capacity and protect past climate refugia, and ensuring large intact landscapes remain large and intact), is not likely to be sufficient to protect all biodiversity in a time of climate change (Rodrigues et al., 2004a; 2004b). This is because many of the most biologically productive landscapes around the world have been converted to agricultural uses, are privately owned or are in demand for more lucrative land uses (Mittermeier et al., 2003; Recher, 2004). As such, there is a general shortage of large intact areas to preserve in many landscapes (Lindenmayer, 2007). For these reasons, it is also important to undertake conservation management in the lands around formal protected areas to buffer them from threatening processes originating off-reserve and ensure ‘connectivity’ between protected areas.
Until recently, ensuring ‘connectivity’ in fragmented landscapes was focused entirely on the spatial arrangement of different types of habitat patches in the landscape and assessing ways to connect them (Tischendorf & Fahrig, 2000). Landscape connectivity was measured by analysing landscape patterns (McGarigal et al., 2002). In recent years, ‘increasing ecological connectivity’ has moved away from assessing the best design for vegetation corridors between protected areas, and towards achieving ‘functional connectivity’, which refers to protecting the spatially dependent biological, ecological and evolutionary processes within a landscape that will ensure long term persistence of biodiversity (Crooks & Sanjayan, 2006; Mackey et al., 2010). Examples of ‘functional connectivity’ processes include: maintaining ecologically functional populations of highly interactive species in the landscape (i.e. trophic regulators), understanding the habitat requirements of dispersive fauna, and maintaining natural disturbance (e.g. fire) and hydro-ecological regimes (Soulé et al., 2004; Mackey et al., 2007). The move towards ensuring functional connectivity does not preclude the creation of corridors, but rather it ensures a more holistic set of considerations that will be critical when considering the more dynamic connectivity needs of species during times of rapid climate change.
As noted above, the habitat loss, fragmentation and degradation now present in many productive landscapes presents significant impediments and barriers to species that may need to disperse and find new habitats (Bennett et al., 1992; Mansergh & Cheal, 2007). Therefore, an important component of ensuring functional connectivity is the protection and/or restoration of large-scale migration corridors that operate at regional and continent scales (Mackey et al., 2008). Where habitat connectivity has already been largely disrupted through broad scale land clearing, it is imperative that large scale rehabilitation of land cover conditions and land use between existing nature reserves becomes an integral part of the conservation framework. These intervening lands need to become more conducive to biological permeability and associated ecological and evolutionary processes. In this context, restoration will include development of regional networks of habitat patches, habitat corridors and habitat ‘stepping stones’.
Some off-reserve ‘connectivity conservation’ actions that have been identified in the literature include:
halting and reversing land clearing as this will help prevent further loss and fragmentation of core habitats and migration corridors (Soulé et al., 2004);
developing policies that lead to removal of unsustainable extractive land use activities (primarily livestock grazing and logging (Woinarski et al., 2007; Lindenmayer, 2007) thereby preventing further habitat degradation;
halting further large scale impoundment and diversion of water (Mackey et al., 2007);
restoring migration corridors and stepping stones between intact protected areas (Donlan et al., 2006);
re-vegetating riparian systems so as to provide corridors and at the same time ensure waterways remain cool (Seavy et al., 2009);
restoring (or protecting) altitudinal and latitundinal gradients (Hodgson et al., 2009);
controlling invasive weeds and animal pests (Woinarski et al., 2007); and
restoring ecologically appropriate fire regimes (Soulé et al., 2004).
5. Integrating assessments on species vulnerability to climate change into a conservation planning framework
While it is widely accepted that the principles based on past climate responses outlined in the previous section are useful as they provide a ‘rule of thumb’ set of activities to guide conservation planning, it must be remembered that this the current anthropogenically-driven climate change event is different. All extant species are going to be exposed to climate changes of a rate and magnitude that they have most previously experienced, or that they have not experienced for thousands of years. Paleoecological data suggests the majority of the last 800,000 years was considerably cooler than today and the lowest or near-lowest global temperatures were reached at the last glacial maximum, 20,000 years ago. It is therefore thought that there has been much stronger selection for cold tolerance than heat-tolerance for nearly a million years (and possibly much longer), with the implication that the most heat-tolerant genes and species will already have been eliminated (Corlett et al., 2011). Moreover, the rate of change is going to be extremely rapid when compared to much of the warming that has taken place in the past (Box 1), and species are already coping with landscapes that have been significantly altered by human activities. As a consequence, simply adhering to the principles outlined above is unlikely to capture a coherent conservation adaptation agenda and it is therefore necessary that conservation planning and action explicitly account for this unique human-forced climate change event, and the vulnerabilities and impacts it will cause.
5.1. Assessing species vulnerability
To develop a plan that identifies strategies that will help species overcome this human-forced, and unnatural, climate change event, it is first necessary to understand how species differ in their vulnerability to projected future climate (Foden et al., 2009). As elaborated in Box 3, the vulnerability of species to climate change is generally assessed as a product of its: (i) susceptibility/sensitivity (defined by its intrinsic biological traits), (ii) exposure (does the species occur in a region of high climatic change?) and (iii) adaptive capacity (Box 3; Foden et al., 2009; Hole et al., 2011).
There are a number of methods that assess species vulnerability and integrate this into conservation planning (Hole et al., 2011). Arguably the most commonly used methods utilize some variation of climate-envelope (or empirical niche) models (Guisan and Thuiller, 2005). Climate-envelope models use current distributions of species to articulate the range of climatic conditions that suit them. Climate model projections for the future are then examined to determine where on the landscape the optimal 'envelope' of climate conditions may be located in the future. For many species, these models have shown that large geographic displacements and widespread extinctions will take place (e.g Araújo et al., 2006).
Despite their frequent use, climate envelope models are contentious, not least because they omit a number of factors that may be as or more important than climate in controlling species distributions. For example, these models generally exclude consideration of human activities, interactions with other species and random events. They are also not comprehensive, since they focus almost exclusively on exposure to climate change and do not incorporate other aspects of vulnerability such as acclimation, interspecific interactions, dispersal limitations and adaptive capacity (Corlett in press, , Dawson et al., 2011, Rowland et al., 2011).
A recent paper by Dawson et al., 2011 outlined a new framework for assessing how vulnerable a species is to climate change, based on the integration of mechanistic, empirical and observational methodologies (See Figure 1). While this framework has not yet been utilized (as far as we are aware), it is likely to be useful because it overcomes the shortfalls of climate envelope models.
While the integrated methodology outlined by Dawson et al., (2011) has never been used, there exist expert opinion driven methodologies that capture all the aspects of vulnerability (exposure, sensitivity, adaptive capacity). For example, NatureServe has developed a
5.2. Integrating species vulnerability into a conservation planning framework
Adaptation, as defined by the IPCC (Schneider et al., 2007), is an
While still in its infancy, there are now a number of tools aimed at overcoming the considerable uncertainty and complexity of climate change by tailoring adaptation strategies to particular species, human communities and geographies (e.g. Groves et al., 2010; Cross et al., in review). Common to many of these tools are the following steps:
Identify features targeted for conservation (e.g., species, ecological processes, or ecosystems) and specify explicit, measurable management objectives for each feature.
Build a conceptual model that illustrates the climatic, ecological, social, and economic drivers of each feature.
Examine how the feature may be affected by multiple plausible climate change scenarios. This can be a threats-based analysis of current and future states, and often takes the form of a vulnerability assessment (see section 5.1).
Identify intervention points and potential actions required to achieve objectives for each feature under each scenario.
Prioritize potential actions based on feasibility and tradeoffs.
Implement priority actions, monitor the efficacy of actions and progress toward objectives, and re-evaluate to address system changes or ineffective actions.
The Adaptation for Conservation Targets (ACT) Framework is one such tool that was developed by a team of conservation planners and practitioners (affiliated with the National Center for Ecological Analysis and Synthesis in Santa Barbara, California, and including NGO, government agency and university participants) (Cross et al, in review; Figure 3). The ACT Framework is a participatory and iterative process for generating adaptation strategies that is practical, proactive, place-based, and helps to overcome the reluctance to take actions due to uncertainties inherent in future projections. Working with multiple stakeholders and partners, the Wildlife Conservation Society is using the ACT Framework to identify and implement priority climate change-informed wildlife conservation and management strategies across a number of landscapes in the United States (see Table 1).The framework draws on collective knowledge to translate climate change projections into a portfolio of adaptation actions. These actions can then be evaluated in the social, political, regulatory, and economic contexts that motivate and constrain management goals and policies.
While planning processes such as the ACT Framework may end up recommending some of the same actions outlined in section 4 (e.g create and/or restore corridors, increase the size of protected areas etc), the key difference is the process by which those actions are identified. Rather than simply relying on ‘rules of thumb’, structured adaptation planning explicitly considers the long term impacts of climate change when determining appropriate and necessary conservation actions. Targeted climate change planning also attempts to strategically direct where adaptation actions are needed most.
7. Several challenges for effective climate change planning
This review provides a first attempt to classify some of the different climate adaptation approaches being undertaken around the world. While all the approaches are important for conservation, we argue that we need to move from a conservation paradigm dominated largely by static spatial assumptions (i.e. the
Jemez Mountains, New Mexico | Wildfire regime; Jemez River flows | Southwest Climate Change Initiative1 |
Gunnison River Basin, Colorado | Alpine wetlands; Gunnison River headwater flows; Gunnison sage-grouse | Southwest Climate Change Initiative |
Four Forest Restoration Initiative area, Arizona | Ponderosa pine wildfire regime; Ponderosa pine watershed function; Mexican spotted owl | Southwest Climate Change Initiative |
Bear River Watershed, Utah | Abandoned oxbow wetlands; Bonneville cutthroat trout | Southwest Climate Change Initiative |
Adirondack State Park, New York | Lowland boreal wetlands | Wildlife Conservation Society |
Northern U.S. and Transboundary U.S.-Canada Rocky Mountains | Grizzly bears; Wolverines | Wildlife Conservation Society and U.S. Fish and Wildlife Service |
Great Plains Landscape Conservation Cooperative region (parts of Colorado, Nebraska, Kansas, Oklahoma, Texas and New Mexico) | Grassland structural and compositional diversity (to support sustainable bird populations) | Wildlife Conservation Society |
7.1. Forecasting the impacts of climate change at scales that are relevant to planners
While the general physics of global warming can be easily explained and understood (e.g. more greenhouse gases in the atmosphere will lead to radiative forcing that will, in turn, lead to the Earth warming; see Box 1), the science of how climate change will affect landscapes and seascapes at the spatial scales at which conservation is normally planned for and conducted is far more complex. Current limitations in the different global circulation models (GCMs) and downscaling techniques, and the variability of forecasts that are derived from these exercises has resulted in considerable uncertainty (and sometimes scepticism) in how to best plan for climate change in different landscapes and seascapes (Wiens & Bachelet, 2010). For example, while most GCMs show consistent rainfall and temperature trends in east Africa over the next century, they are vastly inconsistent in their predictions throughout Southeast Asia (IPCC, 2007). Integrating future climate scenarios in conservation plans will mean very different things to conservation planners in Southeast Asia, as the degree of uncertainty is immense. A lack of information on what future climates are possible in different regions has hampered climate change adaptation planning to an extent that most conservation action undertaken across the globe is completely blind to the challenge that climate change presents. This challenge can only be overcome with increased efforts in understanding how the current climate system works. However, it is important to recognise that some of these problems outlined above may not be overcome for many years or decades. Therefore, while improving climate-change projections and downscaling techniques is important, planners must recognize that there will continue to be unknowns –we need to become comfortable planning for conservation within realms of uncertainty (Watson et al., 2011).
7.2. Addressing climate variability in addition to climate change
There is considerable confusion over what can be attributed to climate variability (at inter-annual and multi-decadal time scales) and what can be attributed to long-term climate change. This confusion can hamper the process of conservation planning. Regional variation in temperature and precipitation is sensitive to fine-scale topographic features that affect weather patterns (e.g. mountain ranges) as well as other larger-scale climate features (e.g. the El Niño-Southern Oscillation), some of which are not well understand and therefore not captured by the GCMs on which current projections are based (CSIRO, 2007, Sheridan & Lee, 2010). For example, for the continent of Australia, Prowse and Brook (2011) identify four modes of climate variability that are particularly important for the Australian climate: the El Niño Southern Oscillation (ENSO), the inter-decadal Pacific Oscillation (IPO), the Indian Ocean Dipole (IOD) and the Southern Annular Mode (SAM), none of which are accurately captured in the current generation of climate models, but all of which have significant impacts on biodiversity.
When assessing the effects of climate change, we need to move away from simply taking into account the long-term changes in mean climate variables (e.g. temperature increases or decreases in seasonal rainfall occurring over many years or decades). A thorough planning exercise needs to consider discrete impacts, principally extreme weather events (e.g., storms, droughts, fires, extreme temperate or rainfall events) that can have dramatic implications for the persistence of many species. Conservation planners need to formulate vulnerability assessments that integrate the impacts of both climate variability and climate change (and how climate change may impact climate variability), and integrate this knowledge into spatially explicit planning tools. This may only be achieved with a more thorough understanding of species thresholds to climate events, which is relatively unexplored in the climate – biodiversity literature at the moment (Corlett, 2011).
7.3. Incorporating the myriad of threats climate change presents into planning
Although most planners are likely to be aware of frequently discussed changes such as sea-level rise, melting of sea-ice and permafrost, or the impacts of severe droughts or storms, there are many less obvious impacts to ecosystems around the globe that are more difficult to predict and plan for. As the climate changes, so will key abiotic characteristics that are the basic building blocks of a species’ fundamental niche (e.g. temperature, rainfall, cloud formation, rates of evaporation, evapotranspiration etc). The distribution and abundance of many species are likely to be affected by climate change induced alterations of the length of the growing season, the timing of seasonal events (e.g. phenology), and the length of the stratification period in lakes, to name but a few examples (see Figure 4; Parmeson & Yohe, 2003; Root et al., 2006). These impacts of climate change are relatively hard to predict and require a depth of knowledge of a species’ ecology, which is rare for 99.9% of species (Whittaker et al., 2005). A recent paper by Geyer et al., (2011) highlight the issue that climate change impacts are complex: in their analyses of 20 conservation sites they classified and grouped climate change induced stresses on biodiversity and found that there were at least 90 different specific stresses could be attributed to climate change.
A related challenge is ascertaining how processes that currently effect species persistence will be indirectly affected (and often exacerbated) by climate change. When considering the impacts of climate change, it should not be forgotten that we are in the midst of an extinction crisis. Global species extinctions currently exceed the background rate by several orders of magnitude (Pimm et al., 1995; Woodruff, 2001) and the most recent International Union for Conservation of Nature (IUCN) Red List describes an ever worse situation for the world’s biodiversity, with at least 38% of all known species facing extinction in the near term (Vie et al., 2009). Habitat loss is the most pressing threat to species persistence globally (Baillie et al., 2004); however, a range of other threats also drive species endangerment, including spread of disease, increase in frequency and intensity of fire and the relative importance of particular types of threat varies across taxonomic groups (Ceballos & Ehrlich, 2002; Davies et al., 2006; Ehrlich & Pringle, 2008). For certain species overexploitation and loss of habitat are immediate threats- so actions such as enforcement need to be undertaken regardless of the predicted impacts of climate change on the species. Most of these other threats will ultimately be dictated by how humans respond to climate change, which leads to a further complexity. To overcome this challenge, more research needs to be focussed on both developing methods that assess (quickly) what the impacts of climate change will be for particular species and how current drivers of extinction will change as a consequence of climate change.
7.4. Mainstreaming adaptation
One of the main obstacles with conservation planning is that many of the products of planning, while well thought through, are never implemented because they do not consider how humans will be affected by the plan. To be successfully implemented, systematic conservation plans must be complemented with social, political, and institutional tools and processes (Knight et al., 2009 ). Planned adaptation involves societal intervention to manage systems based on the knowledge that conditions will change, and actions must be undertaken in order to reduce any risks that may arise from that change, and particularly within vulnerable systems. While often talked about, this is rarely achieved when conservation planning is conducted.
The linkages between the impacts and responses of people and biodiversity to climate change are very strong and in recent years a concept known as ‘ecosystem based adaptation’ (EBA) has been developed which aims to use biodiversity and ecosystem services as part of an overall adaptation strategy to help people to adapt to the adverse effects of climate change (Secretariat of the CBD, 2009). Such an approach aims to take into account the role that ecosystem services can play in human adaptation, while at the same time helping people to adapt in equitable and participatory ways that avoid bringing short-term benefits but in the longer term place additional pressures on natural systems, threatening the very systems that people depend on. We believe that this while in its infancy, the tenets of EBA can be integrated into the framework outlined in Figure 3 and be used to find optimum solutions to balance the needs of both humans and biodiversity.
8. Conclusion
Climate change is a fact of our times. It is already altering species from the poles to the tropics (Root et al., 2005; Parmesan, 2006) and because greenhouse gas emissions to date commit the Earth to substantial climate change, will do so for decades or centuries to come regardless of the mitigation efforts we undertake. This change is happening faster than originally expected and faster than most managed systems have experienced previously. The potential for the loss of biodiversity, termination of evolutionary potential, and disruption of ecological services must be taken seriously. Averting deleterious consequences for biodiversity will require immediate action, as well as strategic conservation planning for the coming years and decades.
In this chapter, we have identified a number of broad strategies being used by conservation planners to overcome the challenge presented by climate change. We are critical of an approach that blindly relies on status quo and
References
- 1.
Anderson M.G. & Ferree C.E. 2010 Conserving the stage: Climate change and the geophysical underpinnings of species diversity PLoS One, 5, e11554. - 2.
Araújo M. B. Cabeza M. Thuiller W. Hannah L. Williams P. H. 2004 Would climate change drive species out of reserves? An assessment of existing reserve selection methods. Global Change Biology10 1618 1626 - 3.
Ashcroft M.B. 2010 Identifying refugia from climate change 37 1407 1413 - 4.
Bennett S. Brereton R. Mansergh I. 1992 Enhanced greenhouse and the wildlife of south eastern Australia. Technical Report127 Arthur Rylah Institute for Environmental Research, Melbourne. - 5.
Berry S. L. Mackey B. Brown T. 2007 Potential applications of remotely sensed vegetation greenness to habitat analysis and the conservation of dispersive fauna. 13. - 6.
Bradshaw W. E. Holzapfel C. M. 2006 Evolutionary Response to Rapid Climate Change. Science,312 1477 1478 - 7.
Brooks T. M. Mittermeier R. A. Mittermeier C. G. da Fonesca. G. A. B. Rylands A. B. et al. 2002 Habitat loss and extinction in thehotspots of biodiversity.16 909 923 - 8.
Watson J. E. M. Fuller R. A. Watson A. W. T. Mackey B. G. Wilson K. A. Grantham H. S. Turner M. Klein C. J. Carwardine J. Joseph L. N. Possingham H. P. 2009 Wilderness and future conservation priorities in Australia, ,15 1028 1036 - 9.
CSIRO, 2007 . CSIRO, Australia. - 10.
Ceballos G. Ehrlich P. R. 2002 Mammal population losses and the extinction crisis.296 904 907 - 11.
Corlett R. 2011 in press). Impacts of warming on tropical lowland rainforests. . - 12.
Adaptation for Conservation Targets (ACT) Framework: A tool for incorporating climate change into natural resource conservation and management.Cross M. S. Zavaleta E. S. Bachelet D. Brooks M. L. Enquist C. A. F. Fleishman E. Graumlich L. Groves C. R. Hannah L. Hansen L. Hayward G. Koopman M. Lawler J. J. Malcolm J. Nordgren J. Petersen B. Scott D. Shafer S. L. Shaw M. R. Tabor G. M. In review. - 13.
Dawson T. P. Jackson S. T. House J. I. Prentice I. C. Mace G. M. 2011 Beyond predictions: biodiversity conservation in a changing climate. ,332 53 58 - 14.
Davies R. G. Orme C. D. L. Olson V. Thomas G. H. Ross S. G. et al. 2006 Human impacts and the global distribution of extinction risk.273 2127 2133 - 15.
Delmotte V. M. Kotlyakov M. Legrand V. Y. Lipenkov C. Lorius L. Pépin C. Ritz E. Saltzman Stievenard M. 1999 Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature,399 429 436 - 16.
Dietz R. W. Czech B. 2005 Conservation deficits for the continental United States: an ecosystem gap analysis.19 1478 1487 - 17.
Donlan C. J. Berger J. Bock C. E. Bock J. H. Burney D. A. et al. 2006 Pleistocene rewilding: An optimistic agenda for twenty-first century conservation.168 660 681 - 18.
Ehrlich P. R. Pringle R. M. 2008 Where does biodiversity go from here? A grim business-as-usual forecast and a hopeful portfolio of partial solutions105 11579 11586 - 19.
Foden W. B. Mace G. M. J. Vie C. Angulo A. Butchart S. H. M. De Vantier L. Dublin H. T. Gutsche A. Stuart S. Turak E. 2009 Species susceptibility to climate change impacts.77 88 in , edited by J.-C. Vie, C. Hilton-Taylor, and S. N. Stuart. Gland: International Union for Conservation of Nature and Natural Resources. 180 pp. - 20.
Fuller R. A. Mc Donald-Madden E. Wilson K. A. Carwardine J. Grantham H. Watson J. E. M. Klein C. J. Green D. Possingham H. P. 2010 Should we replace underperforming protected areas to achieve better conservation outcomes?466 365 377 - 21.
Geyer J. Kiefere I. Kreft S. Chavez V. Salafsky N. et al. 2011 in press) Classification of Climate-Change-Induced Stresses on Biological Diversity. . - 22.
Game E. T. Groves C. R. Andersen M. et al. 2010 Incorporating climate change adaptation into regional conservation assessments. pp Page, Arlington, Virginia, The Nature Conservancy. - 23.
Gilmore S. Mackey B. Berry S. 2007 The extent of dispersive movement behaviour in Australian vertebrate animals, possible causes, and some implications for conservation. Pacific Conservation Biology,13 93 103 - 24.
Groves C. Anderson M. Enquist C. Girvetz E. Sandwith T. Schwarz L. Shaw R. 2010 . The Nature Conservancy, Arlington VA. - 25.
Guisan A. Thuiller W. 2005 Predicting species distribution: offering more than simple habitat models.8 993 1009 - 26.
Hannah L. 2010 A Global Conservation System for Climate-Change Adaptation. ,24 70 77 - 27.
Hannah L. Hansen L. 2005 Designing landscapes and seascapes for change. In: Lovejoy T, Hannah L, editors. . New Haven & London: Yale University Press.329 341 - 28.
Hannah L. Midgley G. F. Millar D. 2002 Climate change-integrated conservation strategies. ,11 485 495 - 29.
Hansen J. Sato M. Kharecha P. Russell G. Lea D. W. Siddall M. 2007 Climate change and trace gases. ,365 1925 1954 - 30.
Heller N. E. Zavaleta E. S. 2009 Biodiversity management in the face of climate change: A review of 22 years of recommendations. ,142 14 32 - 31.
Hole D. G. Young K. R. Seimon A. Gomez C. Hoffmann D. Schutze K. Sanchez S. Muchoney D. Grau H. R. Ramirez E. 2011 Adaptive management for biodiversity conservation under climate change- a tropical Andean perspective. In, Herzog, S.K., R. Martínez, P.M. Jørgensen & H. Tiessen (Eds.). Climate change effects on the biodiversity of the tropical Andes: an assessment of the status of scientific knowledge. Inter-American Institute of Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), São José dos Campos and Paris. - 32.
Hodgson J. A. Thomas C. D. BA Wintle Moilanen. A. 2009 Climate change, connectivity and conservation decision making: back to basics46 964 969 - 33.
Holling C. S. 1996 Surprise for science, resilience for ecosystems, and incentives for people,6 733 735 - 34.
Hutchinson G. E. 1957 Concluding remarks. Cold Spring Harbor Symposium. ,22 415 427 - 35.
IPCC. 2007 Working group I Report: The physical science basis- Contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. - 36.
Kingsford R.T. 1995 Occurrence of high concentrations of waterbirds in arid Australia. ,29 421 425 - 37.
Kirkpatrick S. Gelatt C. D. Vecchi M. P. 1983 Optimisation by simulated annealing,220 671 680 - 38.
Knight A.T., Cowling RM, Possingham HP, Wilson KA 2009 From Theory to Practice: Designing and Situating Spatial Prioritization Approaches to Better Implement Conservation Action. In: Moilanen A, Wilson KA, possingham HP, editors. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools. Oxford: Oxford Univerersity Press.249 259 - 39.
Lindenmayer D.B. 2007 . Camberwell: CSIRO Publishing. - 40.
Mackey B. G. Lindenmayer D. B. Gill M. MA Mc Carthy Lindesay. J. 2002 . Collingwood: CSIRO Publishing. - 41.
Mackey B. G. Soule M. E. Nix H. A. Recher H. F. Lesslie R. G. et al. 2007 Applying landscape-ecological principles to regional conservation: the Wildcountry Project in Australia. In: Wu J, Hobbs R, editors. . Cambridge: Cambridge University Press. - 42.
Mackey B. G. Watson J. E. M. Hope G. Gilmore S. 2008 Climate change, biodiversity conservation, and the role of protected areas: An Australian perspective,9 11 18 - 43.
Mansergh I. Cheal D. 2007 Protected area planning and management for eastern Australian temperate forests and woodland ecosystems under climate change- a landscape approach. In: Protected Areas: Buffering nature against climate change. A symposium on building and managing the terrestrial protected area system to best enable Australia’s biodiversity to adapt to climate change. WWF/ IUCN/WCPA Canberra. - 44.
Margules C. R. Pressey R. L. 2000 Systematic conservation planning,405 243 - 45.
Mawdsley J. R. O’Malley R. Ojima D. S. 2009 A Review of Climate-Change Adaptation Strategies for Wildlife Management and Biodiversity Conservation. ,23 1080 1089 - 46.
Mayr E. 2001 . Washington: Basic Books. - 47.
Mc Garigal K. Cushman S. A. Neel M. C. Ene E. 2002 FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. - 48.
.Amherst : Computer software program produced by the authors at the University of Massachusetts - 49.
Mittermeier R. A. Mittermeier C. G. Brooks T. M. Pilgrim J. D. Konstant W. R. et al. 2003 Wilderness and biodiversity conservation. ,100 10309 10313 - 50.
Moilanen A. Wilson K. Possingham H. 2009 Spatial Conservation Prioritization Quantitative Methods and Computational Tools. Oxford University Press. - 51.
Morton S. R. J. S. R. D. B. 1995 Refugia for Biological Diversity in Arid and Semi-arid Australia. Canberra.: Biodiversity Series, Paper4 Department of the Environment, Sport and Territories. - 52.
Moser S.C. & Ekstrom J.A. 2010 A framework to diagnose barriers to climate change adaptation. , 107,22026 22031 - 53.
Muller R. A. Gordon J. Mac J. Donald 1997 Glacial Cycles and Astronomical Forcing. ,277 215 218 - 54.
Myers N. Mittermeier R. A. Mittermeier C. G. da Fonseca. G. A. B. Kent J. 2000 Biodiversity hotspots for conservation priorities. ,403 853 858 - 55.
Nussey D. H. Postma E. Gienapp P. Visser M. E. 2005 Selection on heritable phenotypic plasticity in a wild bird population,310 304 306 - 56.
Orr H. G. Wilby R. L. Hedger M. M. Brown I. 2008 Climate change in the uplands: a UK perspective on safeguarding regulatory ecosystem services. ,37 77 98 - 57.
Parmesan C. Yohe G. 2003 A globally coherent fingerprint of climate change impacts across natural systems,421 37 42 - 58.
Peters R. L. Darling J. D. S. 1985 The greenhouse effect and nature reserves,35 707 717 - 59.
Petit J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Benders, J. Chappellaz, M. Davis, G. Delayque, M. 1999 - 60.
Pimm S. L. Russell G. L. Gittleman J. L. Brooks T. M. 1995 The future of biodiversity. ,269 347 350 - 61.
Pimm S.L. 2008 Biodiversity: Climate change or habitat loss- Which will kill more species? , 18: R117 R119. - 62.
Poiani K. A. Goldman R. L. Hobson J. Hoekstra J. M. Nelson K. S. 2011 Redesigning biodiversity conservation projectsfor climate change: examples from the field. ,20 185 201 - 63.
Pressey R. L. Cabeza M. Watts M. E. Cowling R. M. Wilson K. A. 2007 Conservation planning in a changing world. ,22 583 592 - 64.
Recher H.F. 2004 WildCountry. Pacific Conservation Biology,10 221 222 - 65.
Reid H. Alam M. Berger R. Cannon T. Huq S. Milligan A. 2009 Community-based adaptation to climate change: an overview. In Participatory Learning and Action,60 pg. 13. - 66.
Rodrigues A. S. L. Andelman S. J. Bakarr M. I. Boitani L. Brooks T. M. et al. 2004a Effectiveness of the global protected area network in representing species diversity. ,428 640 643 - 67.
Rodrigues A. S. L. Akcakaya H. R. Andelman S. J. Bakarr M. I. Boitani L. et al. 2004b Global gap analysis: Priority regions for expanding the global protected-area network,54 1092 1100 - 68.
Root T. L. Price J. T. Hall K. R. Schneider S. H. Rosenzweig C. et al. 2003 Fingerprints of global warming on wild animals and plants. Nature,421 57 60 - 69.
Sala O. E. Chapin F. S. Armesto J. J. Berlow E. Bloomfield J. et al. 2000 Global biodiversity scenarios for the year 2100. ,287 1770 1774 - 70.
Secretariat of the Convention on Biological Diversity. 2009 Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second Ad Hoc Technical Expert Group on Biodiversity and Climate Change. Montreal, Technical Series41 pages. - 71.
Schneider S. H. Semenov S. Patwardhan A. Burton I. Magadza C. H. D. et al. 2007 Assessing key vulnerabilities and the risk from climate change. Climate Change 2007: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the [M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, (eds.)] Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp. - 72.
Sheridan S. C. Lee C. C. 2010 Synoptic climatology and the general circulation model.34 101 109 - 73.
Soderquist T. R. Mac Nally. R. 2000 The conservation value of mesic gullies in dry forest landscapes: mammal populations in the box-ironbark ecosystem of souther Australia,93 281 291 - 74.
Soulé M. E. Terborgh J. 1999 Continental Conservation: Scientific Foundations of Regional Reserve Networks - 75.
Soulé M. E. Mackey B. Recher H. Williams J. Woinarski J. et al. 2004 The role of connectivity in Australian conservation.10 266 279 - 76.
Soulé M. E. Mackey B. G. Recher H. Williams J. E. Woinarksi J. C. Z. et al. 2006 The role of connectivity in Australian conservation. In: Crooks K, Sanjayan M, editors. . Cambridge: Cambridge University Press.649 675 - 77.
Spring D. A. Cacho O. Mac Nally. R. Sabbadin R. 2007 Pre-emptive conservation versus "fire-fighting": A decision theoretic approach. ,136 531 540 - 78.
Steffen W. Burbidge A. A. Hughes L. Kitchling R. Lindenmayer D. B. et al. 2009 . Melbourne: CSIRO publishing. 236 pp. - 79.
Terborgh J. editors Washington. D. C. Island Press. Taylor K. 1999 Rapid Climate Change. , 87: 320. - 80.
The Allen Consultant Group 2005 Climate Change Risk and Vulnerability- Final Report to the Australian Greenhouse Office. Commonwealth of Australia. - 81.
Thomas C. D. Cameron A. Green R. E. Bakkenes M. Beaumont L. J. et al. 2004 Extinction risk from climate change.427 145 148 - 82.
Thompson J. N. 2005 The Geographic Mosaic of Coevolution. The University of Chicago Press., Chicago and London. - 83.
Tischendorf L. Bender D. J. Fahrig L. 2003 Evaluation of patch isolation metrics in mosaic landscapes for specialist vs. generalist species,18 41 - 84.
Watson J. E. M. Fuller R. A. Watson A. W. T. Mackey B. G. Wilson K. A. Grantham H. S. Turner M. Klein C. J. Carwardine J. Joseph L. N. Possingham H. P. 2009 Wilderness and future conservation priorities in Australia, ,15 1028 1036 - 85.
Watson J. E. M. Grantham H. Wilson K. A. Possingham H. P. 2011 Systematic Conservation Planning: Past, Present and Future. In: (editors: R. Whittaker and R. Ladle), Wiley-Blackwell, Oxford,136 160 - 86.
Whittaker R. J. Araújo M. B. Jepson P. Ladle R. J. Watson J. E. M. et al. 2005 Conservation Biogeography: assessment and prospect. ,11 3 - 87.
Wiens J. A. Bachelet D. 2010 Matching the Multiple Scales of Conservation with the Multiple Scales of Climate Change.24 51 62 - 88.
Woinarski J. Mackey B. Nix H. Traill B. 2007 . Canberra: ANU Press. - 89.
Woodruff D.S. 2001 Declines of biomes and biotas and the future of evolution.,98 5471 5476