\r\n\tWith the discovery of more unconventional heavier crude and alternative hydrocarbon sources, primary upgrading or cracking of the oil into lighter liquid fuel is critical. With increasing concern for environmental sustainability, the regulations on fuel specifications are becoming more stringent. Processing and treating crude oil into a cleaner oil with better quality is equally important. Hence, there has been a relentless and continuous effort to develop new crude upgrading and treating technologies, such as various catalytic systems for more economical and better system performance, as well as cleaner and higher-quality oil.
\r\n\r\n\tThis edited book aims to provide the reader with an overview of the state-of-the-art technologies of crude oil downstream processing which include the primary and secondary upgrading or treating processes covering desulfurization, denitrogenation, demetallation, and evidence-based developments in this area.
",isbn:"978-1-80356-681-8",printIsbn:"978-1-80356-680-1",pdfIsbn:"978-1-80356-682-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"808b0ddfb3b92e0636ae44a83ef7dbd9",bookSignature:"Dr. Ching Thian Tye",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11542.jpg",keywords:"Crude Oil Properties, Hydrocracking, Catalytic Cracking, Coking, Visbreaking, Thermal Cracking, Hydroprocessing, Hydrodesulfurization, Desulfurization, Denitrogenation, Demetallation, Dearomatization",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 22nd 2022",dateEndSecondStepPublish:"April 19th 2022",dateEndThirdStepPublish:"June 18th 2022",dateEndFourthStepPublish:"September 6th 2022",dateEndFifthStepPublish:"November 5th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Associate professor at the School of Chemical Engineering in Universiti Sains Malaysia and dedicated researcher in fuel-related catalytic process and chemical reaction engineering. Dr. Tye serves on a review panel for international and national refereed journals, scientific proceedings as well as international grants.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"304947",title:"Dr.",name:"Ching Thian",middleName:null,surname:"Tye",slug:"ching-thian-tye",fullName:"Ching Thian Tye",profilePictureURL:"https://mts.intechopen.com/storage/users/304947/images/system/304947.jpg",biography:"Dr. Tye is an associate professor at the School of Chemical Engineering in Universiti Sains Malaysia. She received her doctoral degree at The University of British Columbia, Canada. She is working in the area of chemical reaction engineering and catalysis. She has been involved in projects to improve catalysis activities, system efficiency, as well as products quality via different upgrading and treating paths that are related to petroleum and unconventional oil such as heavy oil, used motor oil, spent tire pyrolysis oils as well as renewable resources like palm oil. She serves as a review panel for international & national refereed journals, scientific proceedings as well as international grants.",institutionString:"Universiti Sains Malaysia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universiti Sains Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"18623",title:"Physiological Cybernetics: An Old-Novel Approach for Students in Biomedical Systems",doi:"10.5772/22748",slug:"physiological-cybernetics-an-old-novel-approach-for-students-in-biomedical-systems",body:'Wiener in a seminal book (Wiener, 1948) associated the ancient Greek word ‘κυβερνητικος’ to the control of physiological systems. “Thus, as far back as four years ago, the group of scientists about Dr. Rosenblueth and myself had already become aware of the essential unity of the set of problems centering about communication, control and statistical mechanics, whether in the machine or in the living tissue. [...] We have decided to call the entire field [...] by the name Cybernetics, which we form from the Greek κυβερνητης or steersman. In choosing this term, we wish to recognize that the first significant paper on feed-back mechanisms is an article on governors, which was published by Clerk Maxwell in 1868 and that governor is derived from a Latin corruption of κυβερνητης. We also wish to refer to the fact that the steering engines of a ship are indeed one of the earliest and best developed forms of feed-back mechanisms.”
Norbert Wiener (1894-1964) and his book on cybernetics
The increasing knowledge in each sector of science led to a huge diversification of scientific research, especially in a borderline sector like cybernetics applied to physiological systems. A first problem to solve was the following: let’s suppose that two groups, one with a control engineering experience and the other one with a medical background (e.g., physicians), decide to cooperate, because they strongly believe that a joined research could be useful for developing mathematical and statistical models. Usually physicians do not have enough time to study and apply advanced modelling.
Wiener approached the communication between scientists belonging to different disciplines: “If a physiologist, who knows no mathematics, works together with a mathematician, who knows no physiology, the one will be unable to state his problem in terms that the other can manipulate, and the second will be unable to put the answers in any form that the first can understand. [...] The mathematician need not have the skill to conduct a physiological experiment, but he must have the skill to understand one, to criticize one, and to suggest one. The physiologist need not be able to prove a certain mathematical theorem, but he must be able to grasp its physiological significance and to tell the mathematician for what he should look.”
A correct interaction in terms of a clear communication and reciprocal comprehension of the objectives of the research activity between groups with different competences is a crucial aspect in any interdisciplinary research.
In 2003 at the University of Pisa it was decided to introduce a new course for undergraduate students in biomedical engineering, based on the Wiener ‘utopia’, in order to teach a novel discipline useful for helping biomedical students to communicate and cooperate effectively with physicians. We named this new course as Physiological Cybernetics, remembering the old Wiener definition.
The organization of this course was a difficult task, and it required to gain experience in order to integrate so different disciplines and to produce a common language between students in biomedical engineer and physicians. At a first glance this attempt seemed to be too ambitious, because the different approaches of biomedical engineers with respect to physicians seemed incompatible and even the languages of the two groups were so different to remember the Babel tower…
Tower of Babel (1563) Pieter Bruegel the Elder, Oil on Wood Panel - Kunsthistorisches Museum, Vienna, Austria.
A great deal of effort and attention was required to produce appealing and stimulating lectures, but after many years we can affirm that this challenge is successful, especially for the enthusiastic answers of the students: their number was increasing year after year (about seventy students per year are now attending the course).
A strict and trusted cooperation between different groups of physicians is growing up and several groups of physicians belonging to different medical fields are going to join us for new interactions.
The aim of this chapter is to describe how the approach to physiological cybernetics has led to integrate academic lessons with research activities. To be more specific, the basic idea of Physiological Cybernetics was to search for models able to emulate physiological systems based on the feedback theory and/or the system theory.
In fact, recently, the widespread use of friendly software packages for modelling, along with the development of powerful identification and control techniques has led to a renewed interest in control (Khoo, 2011; Hoppensteadt & Peskin, 2002; Cobelli & Carson, 2008) and identification (Westwick & Kearney, 2003) of physiological systems. Unfortunately physiological systems are intrinsically time variant and highly non linear. Moreover, an effective balance of the model complexity is a difficult task: low order models are usually too simple to be useful, on the other hand high order models are too complex for simulation purposes and they have too many unknown parameters to be identified.
Each model selected for investigation was studied by a group of biomedical students supervised by physicians. Each model required several iterations and reformulations, due to the continuous adjustment of the research objectives, changing their final horizon, because of the gap between experimental data and theoretical models, so that the answers to the doubts and questions were continuously moving with the obtained partial results.
A final goal of the research was to apply a mathematical framework for helping medical diagnostic techniques and for testing new therapeutic protocols.
The procedure of model extraction followed two main pathways: the first one (pathway A) led to a formulation of a mathematical model usually based on differential equations and on an as deep as possible insight into physiological mechanisms (Marmarelis, 2004; Ottesen et al., 2004; Edelstein-Keshet, 2005; Jones et al., 2009) via a physical description of the system.
The second one (pathway B) was founded on a model description based on a black-box and data-driven identification (Westwick & Kearney, 2003; Cobelli & Carson, 2008), usually leaving to stochastic models with a parametric or non-parametric structure (Ljung, 1987), depending on the a-priori knowledge of constitutive laws governing the observed system.
In this paper we will describe two examples of research activity based on the Physiological Cybernetics, both of them addressed to produce a biomedical framework for predicting the effects of therapeutic actions, but following the two different pathways. The first example follows a statistical non parametric approach, the second one a mathematical model based on differential equations
In 2004, some lessons of the Physiological Cybernetics course were addressed to describe metabolic dynamics of thyroid hormones T3 and T4.
It was an emblematical example regarding physiological feedback theory, intrinsically embedded inside human body.
We decided to focus some lessons on the model presented by Di Stefano et al. (1975), in an interesting paper, showing how this hormonal regulatory system could be described in terms of differential equations. This item was so intriguing for students, to require the support of physicians belonging to the Department of Endocrinology and Metabolism of the University of Pisa, in order to gain a better understanding of the physiology related to the feedback regulation of thyroid hormones. It was a representative example of pathway A, typical of classic physiological feedback, with a controller -the thyroid gland- embedded in the human body.
One of the physicians proposed a different challenging test to students: how to model another pathology with growing interest in endocrinology, i.e. the obesity?
This challenge was very complex and unsolved from a mathematical viewpoint. It was a classical example of Babel tower, because what physicians expected from us was impossible to be fulfilled in a deterministic framework, similar to the approach leading to the thyroid model.
First, we tried to consider differential equations for modelling dynamics of hormones, like leptin and ghrelin, playing an important role in controlling our weight, but the results obtained were too qualitative, simple and poor to mimic the multi-factorial aspects of obesity. It seemed to be a failed attempt, because it produced a useless model.
Hence we decided to change our approach to the challenge: if a deterministic model was inadequate, a data-driven black box model could be an alternative solution and we decided to follow pathway B. We came to the conclusion that the first and reachable step for coping with obesity was to build an interactive, user-friendly and graphically oriented toolbox for classifying obese patients. Therefore a SW tool, named Obefix, was developed for helping physicians in the classification of obese patients from physiological and psychological data.
Obefix program (Landi et al., 2007) was designed in order to produce an easy-to-use software tool for capturing all essential information on the patients using a reduced data set, solving the problem related to the high data dimensionality.
Obefix window for a classification of obese patients: the interface
An interesting outcome was that this software tool was able to classify patients in a limited and user-selected number of clusters.
Consider to analyze a numerous group of patients. First Obefix’s user may use the toolbox for searching a blind unsupervised partition of the treated data in different clusters, using a reduced set of variables, valuable for a correct classification of the patients.
After this first step, a supervised action is possible: physicians, after an evaluation of the unsupervised classification, can ask Obefix to repeat the analysis on a restricted subset of the initial individuals, in order to eventually exclude out-of-range patients (the outliers).
In this framework, physicians can easily load data, select variables of interest, run a fast analysis and visualize results. Clusters are represented in planes, the principal planes, and single patients can be followed, automatically classified as belonging to a cluster, and grouped in Excel spreadsheets.
Obefix employs PCA (Principal Component Analysis) (Jolliffe, 2002) as an engineering statistical tool for reducing data dimensionality: users can then select either hierarchical or k-means clustering methods, for classification of patients on selected principal planes.
A clinical example of Obefix application was presented in Landi et al., (2007) the case study was the
At first, Obefix toolbox was applied for a multiple regression analysis (Mardia et al., 1979) with delta BMI (variation of the Body Mass Index expressed in %) six months after the gastric banding surgery as a dependent variable, associated with changes in pre-operative psychological data tests as independent variables.
The administrated questionnaire included 567 statements and subjects had to answer ‘‘true’’ or ‘‘false’’ according to what was predominantly true or false for them. It must be remarked that these results have been obtained using only psychological data and that in the literature the quantitative extraction of effective similarities in groups of patients in the case of a so complex and multi-factorial pathology is considered a critical and unsolved problem.
Three main homogeneous clusters were identified, representing subgroups of patients with working problems, with antisocial personality disorder and with obsessive-compulsive disorder. A strict correlation was statistically verified between the variations of BMI six months after surgery with the patients belonging to each subgroup.
All conclusions regarding the similarities between individuals belonging to different clusters were in a good accordance with medical experience and with clinical literature. Since Obefix development was considered a winning experience, we proceeded toward a following step, more interesting for the aims of the physiological cybernetics, i.e., produce and use a model able not only to classify the patients, but also to predict individual therapeutic outcome in terms of Excess Weight Loss (EWL, another common index for evaluating the loss of weight) after two years from surgery, using a set of pre-surgical data.
To be clearer, the more interesting aspect of this research was to set up a software tool able to predict the effects of a therapy and to address clinical researchers in choosing the patients that will maximally benefit from surgery.
A success in this task could represent the demonstration that the novel vision of Wiener was not a utopia, but a first example of dream coming true.
The research was again addressed to the study of the loss of weight for patients submitted to adjustable gastric banding surgery, because it was intriguing to consider a case study characterized by a high level of uncertainty in the prediction of long term effects.
Nowadays, in the medical literature it is still debated which categories of patients are better suited to this type of bariatric procedure and the selection of candidates for gastric banding surgery doesn\'t follows standardized guidelines.
In order to create a predictive model, the use of Artificial Neural Networks (ANNs) (Bishop, 1995; Rojas, 1996) appeared to be the best solution for predicting the weight loss after bariatric surgery, with respect to more traditional and used mathematical tools, e.g., the multiple linear regression. Therefore, a particular ANN was developed (see Figure 4) to improve the predictability of the linear model using a multi-layer Perceptron (MLP) with non linear activation functions (Rumelhart et al., 1986).
Architecture of the MLP model for calculating non linear WL predictive score u
A preliminary study on the feasibility of the statistical approach for obese patients was presented in Landi et al., (2010) while, a paper considering the application of ANNs in the outcome prediction of adjustable gastric banding in obese women was published in Piaggi et al., (2010).
In the following, an outline on the engineering approach to this predictive tool is briefly sketched.
The first step was to select the most significant predictors of long term weight loss (the dependent variable) among the psychological scales, age and pre-surgical BMI (independent variables) (Van Hout et al., 2005).
In order to choose the most predictive inputs of a ANN with a limited data set and several potential predictors, a best-subset algorithm based on multiple linear regression (Neter, 1975) was employed. Namely, all combinations of the independent variables (subsets including from one to four variables, in order to avoid over-fitted solutions due to a large number of parameters, with respect to observations) were separately considered as models for computing the best linear fit of the dependent variable.
The best predictive subset was selected from all these models as that with the highest adjusted R2 and a p-value less than 0.05.
The result was that age and the three psychological scales Paranoia - Pa, Antisocial practices - Asp and type-A behaviour - TpA constituted the best subset, and a predicted weight loss (WL) score was estimated through the formula
based on the linear combination of their regression coefficients, i.e., regression coefficients of (1) were a measure of the linear relationship between each independent variable and WL.
A non linear model was then built upon the same variables: the aim was to increase the goodness of prediction, taking advantage of ANNs data fitting capability.
For doing this, the four selected variables were used as inputs of a standard MLP for obtaining a non linear predictive score named u (see Figure 5).
Figure shows predicted WL on x-axis versus actual WL on y-axis. A comparison between the non linear (green solid line) and linear (red solid line) regressions show the better fit in the non linear case
A non linear activation function (i.e., the hyperbolic tangent function) was employed at the hidden layer units of the MLP to obtain a non linear combination of the inputs, as following:
This ANN architecture extended the regression performance of the previous linear model, which can be still obtained by replacing the nonlinear activation functions with the identity functions in the MLP, removing the nonlinear capability of the model.
The u score was then obtained as:
The global cost function - minimized by the ANN training process - was based on the correlation between u and WL scores, including their standardization terms, as following:
In this way, the ANN found the optimal values of weights (Wxh and Whu) and bias (bxh and bhu), which accounted the maximum correlation between the two scores.
The non linear solution accounted for 36% of WL variance, significantly higher than 10% of the linear model using the same independent variables: this indicated a better fit for the non linear model.
Furthermore, subjects were assigned to different groups according to actual WL quartiles in order to evaluate the classification (ROC curves) and prediction (cross-validation) capabilities of the estimated models. In Figure 6, the sensitivity and specificity of both models in relation to WL outcome are plotted for each possible cut-off in the so-called ROC curves and the Area Under each ROC Curve (AUC) is estimated. AUC measures the discriminating accuracy of the model, i.e., the ability of the model to correctly classify patients in their actual quartile of WL.
As a result, the non linear model achieved better results in terms of accuracy and mis-classification rates (70% and 30% vs. 66% and 34%, respectively) than the linear model.
ROC curves for nonlinear and linear models
So far, both linear and nonlinear predictive models were built by considering all patients of the data set, i.e., each model was estimated from a database with known input and output data.
After this model-building step, the linear and nonlinear models were applied to new patients, with unknown output values, in order to have a quantitative check on the effectiveness of the proposed method on the correct selection of the therapeutic effects.
Two additional statistic tools were introduced: the cross-validation method and the confusion matrix.
Both in case of linear and nonlinear model, patients were randomly subdivided in two groups, used for building and testing the models. A training data set was considered for calculating linear regression coefficients in the case of linear model and for selecting the optimal weights and bias in the case of the MLP. A test data set was used to make a prediction of the WL two years after the bariatric surgery.
Confusion matrix was the tool used for the validation of the prediction. The cross-validation method was repeated 100 times, changing the subsets of patients for training and test sets. It was surprising to verify that after this blind test on the whole dataset, it was possible to establish with over 70% of reliability if the patients will either maximally or minimally benefit from the intervention after two years, in the case of the nonlinear model. Conversely, the reliability was reduced of about 30% in the case of the linear model (Piaggi et al., 2010). Considering that the analysis was restricted to psychological presurgical tests and to age, this result seems to be a surprising success of a research derived from the physiological cybernetics course.
The second example shows the application of model predictive control (MPC) for an optimization of the therapy in HIV disease. It applies the subject of a group of lessons held during the physiological cybernetics course, in which the predictive control theory was presented to students as an effective tool for helping (and emulating) physicians in the selection of an optimal therapy, based on the patients\' responses.
The origin of this activity was born when some students asked to study a mathematical model for HIV.
It was easy to find HIV models existing in literature: many of them are well known and accepted from mathematical and from biomedical engineers as gold standards for studies in viral models.
In the literature, (Wodarz & Nowak, 1999) the simplest model presented for mathematical modelling of HIV considers only three state variables and it is mathematically described by:
System (5) consists of three differential equations. The state variables are: x, the concentration of healthy CD4+ T-cells; y, the concentration of HIV-infected CD4+ cells; v, the concentration of free HIV copies.
Healthy cells have a production constant rate λ and a death rate d. Infected cells have a death rate a, free virions are produced by the infected cells at a rate k and u is their death rate. In the case of active HIV infection the concentration of healthy cells decreases proportionally to the product xv, with a constant rate β representing a coefficient that depends on various factors, including the velocity of penetration of virus into cells and the frequency of encounters between uninfected cells and free virus.
A five-state model was developed in Wodarz & Nowak (1999). This model offers important theoretical insights into immune control of the virus based on treatment strategies, which can be viewed as a fast subsystem of the dynamics of HIV infection. It is mathematically described by:
Two states are added to (5) to describe the dynamics of w, the concentration of precursor cytotoxic T-lymphocytes (CTLp) responsible for the development of immune memory and z, the concentration of effector cytotoxic T-lymphocytes (CTLe) responsible for killing virus-infected cells cytotoxic T-lymphocyte precursors CTLp.
In the fourth and fifth differential equations c, q, b and h are relative production rate, conversion rate to effector CTLs, death rate of precursor CTLs, and of effector CTLs, respectively.
This model can discriminate the trend of infection as a function of the rate of viral replication: if the rate is high a successful immune memory cannot establish; conversely, if the replication rate is slow, the CTL-mediated immune memory helps the patient to successfully fight the infection.
In Landi & al. (2008) model (6) was modified as:
Model (7) differs from previous W-N in the new state variable r, an index of the aggressiveness of the virus, which substitutes the constant β.
An arbitrary assumption is that r increases linearly with time in untreated HIV-infected individuals, with a growth rate that depends on the constant r0 (a higher r0 value indicates a higher virulence growth rate). This hypothesis was verified consistent with the simulation results obtained in the case of infected people who do not show significant disease progression for many years without treatment (long-term non Progressors -LTNP).
Different typologies of patients may require to change the law describing the aggressiveness dynamics. We evaluated the possibility to adapt the model (7) to patients with different clinical progressions, changing the values of some parameters. In particular, we supposed to vary the coefficients b and h, which represent the death rate of immune defensive cells (effector CTLs and precursor CTLs). We considered the two extreme cases for HIV progression (see Figure 7): the lower values correspond to the model dynamics of LTNP patients; the higher values model the dynamics of fast progressor patients (FP).
The coefficients μT and μP represent the drug effectiveness weights for specific external inputs fT and fP, which represent the drug uptakes in case of Highly Active Antiretroviral Therapy (HAART).
HAART is a combination therapy that includes:
Reverse Transcriptase Inhibitors (RTI), to prevent cell-to-cell transmission, inhibiting reverse transcriptase activity.
Protease Inhibitors (PI), to prevent the production of virions by infected cells, inhibiting the production of viral protein precursors.
Dynamic behaviour of the state variables x, v, w and z vs. time in the case of untreated LTNP (solid line) and FP (dashed line) patients.
In different models presented in literature, the effects of RTI and PI drugs have been aggregated, nevertheless we decided to mimic the effects of PI drugs reducing the rate of virus production, i.e., modifying the rate coefficient k of production of new infected cells in the dynamical equation. Instead the effect of RTI drugs is simulated by reducing the infection rate of CD4+ cells by free virus. So, in model (7) the RTI drugs act in virulence equation, because their main role is halting cellular infection.
Another important feature differentiating the proposed model from standard literature is that it does not admit stable steady states, since the model parameters are such that, i.e., the aggressiveness never becomes a constant, since a slow increase of r describes well a real progression of the HIV infection. This hypothesis originates from the observation that the possibility of eradicating completely the virus has not been demonstrated and the HIV disease cannot be long-term controlled.
The inclusion of aggressiveness as a new state variable represented the main outcome of the study: this simple extension to Wodarz & Nowak models allowed us to mirror the natural history of HIV infection and to introduce a new state equation useful for introducing in the model the effects of pharmacologic control.
In Fig. 8 are shown the time courses of CD4 cells and virions obtained in simulation with model (7); for a qualitative validation of the model, compare the results with the plotted experimental data shown in Fig. 9 (Abbas et al., 2000).
Simulated behaviour of untreated LTNP HIV-infected patients for ten years with model described in (4). The graph shows viral load (dashed line) and CD4+ cells (solid line)
Typical clinical behaviour of HIV infection for about ten years. Figure shows HIV copies (triangles) and CD4+ cells (squares), in case of untreated HIV-infected human
A straightforward application of the control theory to model (7) was proposed in Pannocchia et al., (2010), with the application of a MPC strategy in anti-HIV therapy.
MPC algorithms (Mayne et al., 2000) utilize a mathematical model of the system to be controlled, to generate the predicted values of the future response. Predicted values are then used to compute a control sequence over a finite prediction horizon, in order to optimize the future behaviour of the controlled system. The control sequence is chosen minimizing a suitable cost function, including a measure of the deviation of the future state variables from reference target values and a measure of the control effort, while respecting state and control constraints. In plain words, the core of the control algorithm is an optimization algorithm, keeping the controlled variables close to their targets and within suitable constraints. The first output in the optimal sequence of control actions is then injected into the system, and the computation is repeated at subsequent control intervals.
The problem was how to adapt MPC to determine the optimal drug scheduling in anti-HIV therapy.
Some examples of MPC applied to biomedical applications like control of the glucose–insulin system in diabetics (Parker et al., 1999), anaesthesia (Ionescu et al., 2008), and HIV (Zurakowski & Teel., 2006) have been presented in literature, but all applications were considered for models admitting a steady-state stable equilibrium. On the other hand, MPC emerged as the more suitable solution for solving the drug optimal administration problem in anti-HIV therapy, even if the model was unstable. MPC algorithm pursued the following logic:
future outputs of the control algorithm are generated by the HIV model; measurements on individual patient are considered and compared with the predictions of the model.
the cost function to be minimized keeps the controlled variables e.g., CD4+ cells and free virions concentration close to the targets and respecting suitable soft constraints on the manipulated variables.
the cost function of the future control movements is minimized using a sequence of future PI and RTI drugs over the chosen control horizon, but only the first element of the suggested control sequence is applied to the system.
at the successive decision time, the algorithm is solved again if measurements of CD4+ cells and free virions concentration are available and the drug sequence is updated, repeating step c)
Some practical issues were considered (see Pannocchia et al., (2010) for a detailed study), because MPC was applied considering the two different cases of continuous applications of drugs, or of a structured interruption of therapy (STI) for patients. STI is a treatment strategy in HIV-infected patients, involves interrupting HAART in controlled clinical settings, for a specified duration of time. The possible explanation of the effectiveness of this clinical protocol was an induced autovaccination in the patients. The use of STI is currently debated between clinical researchers and most studies agree that STI may be successful if therapy is initiated early in HIV infection, but unsuccessful for people who started therapy later.
Furthermore, a discrete dosage approach required to modify the control algorithm using a non linear MPC: this was due to the clinical request to maintain a maximum dosage of drugs, as in standard HAART protocol, in order to reduce the risks of virus mutations.
Some comments are mandatory to stress the results of this model based on a differential equation deterministic approach. From the viewpoint of a model builder, two different situations have to be usually considered: basal and pathological conditions. In the case of infections, like HIV, the mathematical model have to mirror the natural evolution of HIV infection, and the pathological model must be more accurate, because today it is the only one that can be validated by experimental data, since patients are all maintained under therapy. The impact of therapy into HIV models must be introduced in a way as simple as possible, if we have to satisfy the task to formulate a model suitable for use in feedback control.
Simulation results were coherent with the medical findings: the comments of clinical researchers expert in HIV therapies were essential in testing the model and for evaluating the effectiveness of the proposed control methods.
Obtaining reliable models is relevant from a diagnostic and prognostic point of view, because it allows the physician to prove the therapeutic action using the model for testing the treatment in terms of optimal dosage and administration of drugs.
In 2008, the FDA approved an
We strongly believe that also a simple but reliable
Future activity will be devoted to develop models of HIV infection, able to include the issues of drug resistance and viral mutation, key issues for the HIV studies, and the interest of many clinical researchers in our work is encouraging in the upcoming research.
The Physiological Cybernetics course represents an example of integration between different disciplines, in order to produce a common language between students in biomedical engineer and physicians. It offers students an opportunity to verify in practice how to move theoretical lectures, based on the development of mathematical models, to a practical interaction with physicians. This fact seems obvious from an educational viewpoint, but it isn\'t so usual in practice, because it requires a preliminary long period for preparing a common language between researchers in different fields. Judging from the students’ excellent results, if compared to students attending under-graduated courses in previous years, the example proposed was very successful.
In this chapter we presented two examples of research applications, derived from this educational experience, demonstrating that the old-novel vision of Wiener was not a utopia, and that a synergic cooperation between biomedical engineers and physicians can lead to interesting results.
The authors wish to thank all people cooperating with the activities of the Physiological Cybernetics course over many years, the physicians for their support and clinical supervision and the undergraduate active students for their enthusiasm.
Climate change is already present and will continue to change, affecting societies and the environment [1]. This occurs directly through changes in hydrological systems that are influencing water availability, water quality, and extreme events, and indirectly through changes in water demand, which in turn can have impacts on energy production, social and environmental damages, food security and the economy, among others [2]. On the other hand, communities have increased pressure on water resources, seeking new alternatives to mitigate the lack of this vital element. Among these alternatives is desalination technology, which is a solution to this problem [3], considering that the planet earth is 97.3% saltwater [4] and 2.5% freshwater [5]. However, in spite of being a solution that is becoming more and more common, this technology generates some environmental problems. On the one hand, it generates a product water or desalinated water that can be treated to be suitable for human consumption or irrigation, adding the necessary minerals, and on the other hand, a saline stream called brine that is generally disposed of in the sea, causing serious environmental problems [6]. It is estimated that for every 1 m3 of desalinated water, between 0.3 and 1 m3 of brine is generated [7]. Considering that the global product water capacity from seawater desalination plants as of 2020 was 9.72 × 109 m3/d [4] and according to the above estimate, in the same year, there have been between 2.92 × 109 and 9.72 × 109 m3 d−1 of brine. According to Ihsanullah 2021, reusing and recycling brine is presented as a good alternative to minimize the negative impacts it produces, being favorable on a small scale. However, he indicates that more work is needed to assess the feasibility of brine treatment in commercial or larger desalination plants [8].
On the other hand, today’s economy is based on a circular model, which assumes that resources are abundant and that one must “take-make-consume-reuse.” Therefore, given the large amount of brine produced today, reutilization is a matter of principle that is strongly linked to the circular economy [9]. In that sense, wastewater such as brine is a valuable water, energy, and material resource; therefore, it is essential to manage its use and final disposal, following strategies of reduction, reuse, recycling, recovery, restoration, and regeneration, among others of the circular economy [10]. In addition, it is worth noting that the idea of circular economy through business models that encourage reuse and recycling can be very relevant for arid regions [11], where water is a valuable resource for basic needs such as drinking and sanitation, or for irrigation.
The agricultural sector uses 70% of the world’s water and is one of the most important sectors for human beings. According to the WHO, it is estimated that by the year 2050, the demand for food products will be approximately 70% higher than today, as a result of population growth [12]. On the other hand, FAO, in its reports “The State of Food and Agriculture,” indicates that 1.2 million people live in agricultural areas with high levels of water stress and 520 millions of them live in rural areas [13]. In addition, special attention is paid to agri-food systems, where food-producing families engaged in small-scale agriculture are increasingly being put to the test due to the lack of water for irrigation [14]. These potential effects on agriculture are mainly due to climate change, which could lead to regions with increased salinization and desertification in arid areas of South American countries such as Chile and Brazil [15].
The Arica and Parinacota region is located in northern Chile and has arid characteristics. Although this region has available water resources such as the Lluta River or Camarones River, this water is limited and of poor quality due to high concentrations of arsenic, boron, and total dissolved solids (TDSs) [16] that exceed standards such as NCh 409.Of1.2005 for “drinking water” [17] or NCh 1333.Of1978mod1989 “water for irrigation” [18]. This condition limits their use to only a few crops such as corn, tomatoes, alfalfa, among others. Also, the soils of the Lluta Valley and the Camarones Valley, where these rivers are located, are affected by the poor quality of their waters, causing a lack of crop diversification [19]. This condition considerably affects the agricultural and livestock production sector and the local community. One of the most important crops in this region is alfalfa production, which is the main feed for bovines and goats [16]. On the other hand, there is
Consequently, to mitigate this lack of water in quantity and quality, research on desalination technologies for water production is being carried out at the Universidad de Tarapacá (Arica and Parinacota region). To this end, a desalination plant has been implemented for the production of drinking water or irrigation. However, one of the problems generated by this type of plant was what to do with the brine produced. Considering this question, this work is expected to evaluate the use of brine for the production of halophytes (
Desalination is a process of removing dissolved salts and other minerals from seawater or brackish water, resulting in freshwater and a subproduct called brine [21, 22]. Seawater desalination is an alternative that can extend water supplies beyond what is available in the hydrological cycle, with a constant and climate-independent supply [23]. The main desalination technologies include thermal methods such as multistage flash distillation (MSF) and multi-effect distillation (MED) and within membrane methods, reverse osmosis (RO). These desalination technologies commercially cover almost 90% of the world market. RO processes lead with a 53% share, followed by thermal technologies with 33% [24], and RO is a technology that has lower energy requirements, low complexity and, therefore, lower economic cost [25]. This technique requires electrical energy to activate a high-pressure pump, whereby the saline water is forced through semipermeable membranes to separate the freshwater (or product) from the saltwater (brine) [26]. However, despite the benefits offered by desalination, it is still an environmental challenge to consider the disposal of coproduced brine to mitigate the environmental impacts attributed to discharges into the environment. Generally, brine is discharged to the sewer or to the sea [27]. Currently, desalination technologies are also applied to treat the large amount of brine generated in these processes, which can be by electrodialysis [28] or by membrane distillation crystallization (MDC) [29], among other alternatives, in order to recover a greater volume of product water.
On the other part, being RO the most widely used technology, its performance depends largely on the type of membrane, which have a pore size <1 nm, allowing the passage of small molecules such as water and rejecting larger species such as Na+, K+, Cl−, or dissolved organic compounds. In that sense, there are several studies that seek to improve and optimize the membrane material to generate higher permeability, better selectivity, and anti-incrustant properties [30].
The most commonly used methods of brine disposal are i) discharge to the sea (surface and through multiport diffusers installed on the deep sea floor), ii) disposal in sewers (wastewater collection system, low cost and energy), iii) injections into deep wells (injected into porous subsurface rock formations), iv) injections into deep wells (injected into porous subsurface rock formations) (v) sewage disposal (wastewater collection system, low cost and energy), (vi) deep well injections (injected into porous subsoil rock formations), (vii) land applications (irrigation of salt-tolerant crops and grasses), and (viii) evaporation ponds (evaporation of brine in ponds, salts accumulate at the base of the pond) [7]. In addition, when selecting the disposal technology, it is important to consider the location, quality, and volume of the brines [31].
Among these applications, irrigation of crops with a concentrated solution of salts is a great solution in these times, considering that currently there is low-quality water available and that there is an increase in temperature worldwide, which is causing a greater demand for irrigation water [32], which is why having water, even if it is saline (brine), is a benefit to be considered.
Generally, the use of brine in sprinkler irrigation is common in parks, lawns, and golf courses, and also, in the cultivation of forage plants, which require low volumes of this solution. However, its use is limited for large volumes due to climatic conditions, plant size, seasonal demand, and depending on the stratigraphic and structural conditions where the subway aquifer is formed [33].
There are studies of halophyte plants such as
The means by which halophytes sequester salts and the degree of salt absorption differs according to plant species affect the efficiency of their use for remediation of affected soils. Halophytes have many productive applications: rehabilitating degraded lands, preventing desertification, providing firewood and timber, creating shade and shelter, and producing industrial crops and animal fodder. Halophytes can be grown on soils too saline for normal crops and pastures, from inland soils to soils near the sea, and thus can make a significant contribution to food security for living things [35].
Considering the above, it can be evaluated that this type of brine from desalination plants, when used in irrigation, presents advantages and disadvantages, which are described as follows:
Water availability (for irrigation).
No environmental impact if brine is used for irrigation.
Inland desalination plants compared to plants located in sectors avoid marine pollution.
Soil degradation or seepage into groundwater is avoided if brine is added directly through injection from deep wells.
Its use in aquaponics would allow to produce fish and at the same time to nourish the plants through an aquaculture recirculation system.
There are plants that are tolerant to salinity (halophytes).
Low capital cost by reusing the brine directly for irrigation of halophytes.
Allows remediation of saline soils.
Not all plants are tolerant to high salinity concentrations.
Risk of soil contamination if irrigated soils are microporous such as clay or silt soils.
Not applicable for large volumes.
One of the main problems in the installation of desalination plants is the cost of brine disposal, which is usually very high, ranging from 5 to 33% of the total cost of the desalination plant [7].
In addition, this cost depends on factors such as concentrate characteristics, treatment prior to disposal, disposal method, environmental regulations, location, concentrate volume, among others. It is also important to consider that the economic and environmental risks would be reduced if there is good management of brine use and final disposal. Así como también, es importante considerar que los riesgos económicos y ambientales se reducirían si existe una buena gestión del uso y disposición final de la salmuera [31].
It is worth mentioning that among the few existing regulations worldwide, the Mexican regulation is a good option to start controlling the start-up of desalination plants and their waste. In this regulation called “PROY-NOM-013-CON AGUA/SEMARNAT-2015: that establishes specifications and requirements for intake and discharge works to be complied with in desalination plants or processes that generate brackish or saline rejection water,” it indicates that it has 11 parameters and whose maximum limits include temperature, pH, total dissolved solids, turbidity, aluminum, copper, cadmium, among others. However, it does not refer to the main compound within the brine, NaCl [36].
Currently in Chile, there are no specific regulations related to desalination plants, as well as no regulatory system that considers the maximum concentration of brine expressed in NaCl, (mg L−1) or salinity (dimensionless), or for the temperature (°C) for its final disposal, there is only a guide with minimum technical guidelines for desalination projects related to the jurisdiction of the maritime authority prepared by DIRECTEMAR [37] which includes desalination projects that may or may not be submitted to the Evaluación de Impacto Ambiental (SEIA) [38]. Cornejo-Ponce, et al. 2020 [7] proposed that both salinity and temperature, which are essential parameters, should have their upper limits expressed as follows: for salinity, the concentration should be less than or equal to that of the receiving mass. For example, if discharged into the sea, it should be lower than the salinity of the sea (35 mg L−1), and for temperature, it should be considered approximately 2°C higher than that of the receiving mass, respecting the 2015 Paris agreement. In addition, once these parameters have been established, the different alternatives for their elimination can be evaluated.
The calculations involved in the desalination process (Table 1) and specifically for obtaining the amount of brine produced consider a concentration of feedwater Ca (Kg m−3), product water Cp (Kg m−3), and brine Cs (Kg m−3), as well as a flow rate of feedwater Qa (m3 h−1), product Qp (m3 h−1), and brine Qs (m3 h−1) [39, 40].
Item | Equation | Definition |
---|---|---|
Charge balance | ||
Rejection factor (R) | Corresponds to the rejection of salts from the membranes and in a membrane system, and it is the factor that determines the final quality of the product water of a distillation system. | |
Salt passage (SP) | It corresponds to the ratio between the salt concentration of the product and the feed, measured as a percentage. | |
Conversion (Y) | It corresponds to the percentage ratio between the permeate flow rate and the water flow rate entering the desalination process. | |
Concentration factor (CF) | Corresponds to the number of times the brine is concentrated with respect to the feedwater. |
The world is changing; the economic, environmental, and social challenges facing today’s society are becoming increasingly demanding. In this sense, the principle of the “circular economy” is a good way to make this approach more sustainable [39]. Whereas, over the past 10 years, private/public sector actors, governments, policy-makers, citizens, the media, and the scientific community have been working to make the world more sustainable [41], changing the economic model from extract-use-dispose to an extract-use-reuse model. Thus, the circular economy seeks that system resources, energy, and materials are reused several times, considering a minimum processing for each subsequent use, through a closed loop. In other words, turning waste into a resource is an essential part of increasing our efficiency and moving toward a more circular economy [8].
In relation to the circular economy in water, in addition to complying with the reuse of this good, its quality and quantity must be prioritized [42]. Therefore, evaluating brine disposal management measures is an alternative to consider, depending on factors such as: (a) the volume or quantity of the concentrate, (b) quality of the concentrate, (c) physical and geographic location of the discharge point, (d) capital and operational costs, among others [43].
In addition, it is worth mentioning that the Office of Agricultural Studies and Policies, 2019 [44], proposed 3 principles and 11 strategies of circular economy, based on the World Economic Forum, 2018. Each principle is related to the strategies defined as follows:
Design (R1): Integrate environmental impact in the development of products and services.
Reduce/Prevent (R2): Avoid use of unnecessary resources and prevent waste generation.
Optimize (R3): Maximize the usefulness of products, materials, resources, and assets.
Reuse/Distribute (R4): Take advantage of discarded or old products in good condition so that they fulfill their original function.
Repair (R5): Repair defective or old products to fulfill their original function.
Remanufacture (R6): Capture the value of components of discarded products to fulfill an original function, a new product.
Revaluate (R7): Transform discarded products, parts, or waste to condition a new function by capturing the value of materials.
Recycle (R8): Process materials to obtain products of equal or lower quality.
Recover (R9): Energy recovery by incineration of materials.
Regenerate (R10): Regenerate natural ecosystems to promote positive impact on the environment.
Supply (R11): Procure sustainable supply of inputs with the least environmental impact.
The use of brines in saline agriculture can be beneficial, as it reduces the current demand for food production and maximizes water resources and the use of saline soils in accordance with the three principles of the circular economy (optimizing resources, maximizing the utility of materials, and preserving natural capital).
Today, it is possible to find salt-tolerant crops such as halophytes. These plants have developed a series of physiological and morphological adaptations that allow their tolerance to salt, and although they represent only 2% of terrestrial plant species, their domestication and cultivation in a context of saline agriculture may be interesting to consider [45].
Among the halophyte plants is the forage shrub
Forage crop
In addition, there are studies in Brazil where they have cultivated forage plants irrigated with brine (obtained from RO), indicating that the yield for
To achieve the objective of this work, it is proposed to follow the following flow chart of the research methodology to be carried out (Figure 2). For this purpose, the use of water from the Luta River, feedwater to be treated in the reverse osmosis desalination plant, from which product water and brine are obtained, is considered. The latter is the subject of this publication. For this, according to the existing brine disposal factors, it is proposed as an alternative to minimize the potential environmental impacts to apply the 3 principles and 11 strategies of circular economy [44] for the cultivation of halophyte plants (
Methodology for the use of brine for the production of halophyte plants (proper elaboration).
In addition, the methodology is based on mathematical calculations to obtain information on flow rate and brine concentration, feed flow, among others, according to formulas in item 2.5 calculation of brine concentrate, considering the factors that influence brine disposal [43].
The reverse osmosis plant is located at the
The feedwater for the reverse osmosis plant was obtained from the Lluta River, which was transported by truck, in order to study real samples to generate information to support the rural communities that live in and use this water directly for their crops, limiting their diversification. The parameters used to determine the quality of the Lluta River feedwater were temperature, conductivity, pH, and total dissolved solids (TDSs). These were measured with a multiparameter apparatus (model HI 9828, HANNA Instruments, USA). The concentration of arsenic was also determined using the VARIAN FS 280 VGA 77 atomic absorption equipment with hydride generation and 950°C electrothermal blanket, which were analyzed according to international standards [49] at the Laboratorio de Investigación Ambiental de Zonas Áridas, LIMZA, of the Universidad de Tarapacá (Arica, Chile).
To evaluate the quality of the soil in the sector adjacent to the Lluta River, samples were taken to determine parameters such as, texture, organic matter, pH, electrical conductivity, arsenic, available phosphorus, and total nitrogen, which were analyzed according to international standards [49] and the recommended methods of analysis for Chilean soils of the Comisión de Normalización y Acreditación (CNA), 2004 [50] at the Laboratorio de Investigación Ambiental de Zonas Áridas, LIMZA, of the Universidad de Tarapacá (Arica, Chile).
The pilot plant under study in this work corresponds to a reverse osmosis desalination plant, Wave Cyber Vessels, Model 300E 4” Side Port Housing, with 300 PSI (21 bar) maximum pressure, 49°C maximum temperature, −7°C minimum temperature, and dimensions of 328.2 cm in length. The product water yield is 360 L h−1 and the rejection factor is 50% brine [51].
The feedwater passes through a water pump first passing through sand and activated carbon filters, respectively. The 5-micron cartridge filter retains sediment (sand, sludge, and oxidation particles) to obtain clean water, and the granular carbon filter retains bacteria, chlorine, odors, and organic chemicals.
Subsequently, by reducing salts and compounds that can clog the membrane, it enters the osmosis system where arsenic and salts are reduced (Figure 3).
Reverse osmosis plant (proper elaboration).
The use of brine as irrigation water for the cultivation of halophytes (
The Lluta River, located in the Lluta Valley, is a water system in which the physicochemical characteristics vary seasonally, mainly in summer due to the altiplanic summer rains. In addition, there are variations at different points along its course due to the presence of minor tributaries. The concentration of arsenic is notable, exceeding 29 times the value recommended by the WHO (10 mg L−1) [52]. Table 2 presents the physicochemical parameters of the Lluta River water.
Physicochemical parameters | Lluta River water values | NCh409/1.Of2005 drinking water | NCh1333. of 1978 Mod.1987 water for irrigation | Unit |
---|---|---|---|---|
pH | 7.69 | 6.5 – 8.5 | 6.0 – 9.0 | — |
Electrical conductivity | 1.52 | — | — | mScm−1 |
Temperature | — | 30 | °C | |
Chloride | 528.1 | 400 | 200 | mgL−1 |
Sulfate | 1,389 | 500 | 250 | mgL−1 |
Sodium | 31.15 | — | — | mgL−1 |
Magnesium | 41.14 | 125 | — | mgL−1 |
Calcium | 174.05 | — | — | mgL−1 |
Arsenic | 0.29 | 0.01 | 0.1 | mgL−1 |
Total dissolved solids | 1,981 | 1,500 | — | mgL−1 |
Physicochemical characterization of the Lluta River water (proper elaboration).
In the Lluta Valley, mainly only corn (
Texture | Organic matter (%m/m) | pH | Electrical conductivity (mScm−1) | Arsenic (mgkg-1) | Available phosphorus (mgkg−1) | Total nitrogen (mgkg-1) |
---|---|---|---|---|---|---|
53.5% sand 14.5% clay 32% silt | 1.80 | 6.88 | 2.34 | 276.6 | 26.5 | 0.61 |
Physicochemical characterization of the soil in the Lluta Valley (proper elaboration).
The calculation of the feed flow is made by means of Eq. (4), where Qp is 360 L h−1 and the conversion is 50%, obtaining Qa equal to 720 L h−1. With the optimum flow rates of feedwater and plant product water, the brine flow rate is obtained by means of a load balance (Ec. (1)), with Qs equal to 360 L h−1.
To estimate the concentration of salts, present in the brine, a theoretical calculation was made, considering that the plant has a yield equal to Y (%) = 50. Through (Ec. (5)), the concentration factor (CF) is obtained, whose result is 2. This value was used to characterize the brine, multiplying its value by the initial concentration of each parameter of the Lluta River water (Table 2), where the results are expressed in Table 4.
Physicochemical parameters | Values Brine | Unit |
---|---|---|
pH | 7.9 | — |
Electrical conductivity | 3.04 | mScm−1 |
Temperature | 22.0 | °C |
Chloride | 1,056.2 | mgL−1 |
Sulfate | 2,778 | mgL−1 |
Sodium | 62.30 | mgL−1 |
Magnesium | 82.28 | mgL−1 |
Calcium | 348.1 | mgL−1 |
Arsenic | 0.58 | mgL−1 |
Total dissolved solids | 2,962 | mgL−1 |
Theoretical characterization of the physicochemical parameters presents in the brine (proper elaboration).
The present proposal considers the use of brine obtained from the RO plant, from which 360 L h−1 are generated (Figure 4). If we consider that the plant will operate 12 hours a day for 20 days a month, we obtain 86,400 L h−1 of this saline liquid waste, which can be stored in a pond to be used for irrigation.
Diagram of reverse osmosis plant and the use of brine in the cultivation of forage plants (proper elaboration).
The soil conditions for the cultivation of the fodder plant should be a fallowed, tracked, and leveled soil, where a drip irrigation system is established, whose Polyvinyl chlorid, PVC, lines could be at a depth of 40 cm. The plants can be produced in a nursery until they reach a size of 20 cm and then transplanted in furrows 1.5 m apart, conditions established for a cultivable land of 1000 m2 [53]. In addition, the distance between plants should be 2.5 to 3 m because these forages generate a high volume of biomass [54]. It is proposed to cultivate 400 halophyte plants in a 1500 m2 plot, considering an irrigation of 6 hours per week and a volume of 75 L plant−1 week−1 [19].
The production obtained from
On the other hand, according to the comparison of the chemical analysis between alfalfa and
It should be noted that the proposed system for the production of halophytes from brine will use 31.319 kWh day−1 (11,431.435 kWh year−1) of electrical energy obtained from the photovoltaic system.
Considering the chemical properties of the soil, the components detailed in Table 3, the Lluta Valley soil corresponds to the United States Department of Agriculture (USDA) textural triangle, being classified as a sandy loam soil [56].
In addition, it is worth mentioning that this type of soil has an apparent density of 1.50 g cm−3, which indicates the space occupied by the pores in the soil in relation to the volume of water. In addition, these soils have a real density of 2.6 g cm−3.
For the determination of the total porosity of the soil (ξ), it is calculated according to the following equation (Ec. (6)) [57]:
Considering the equation x, we obtain a ξ =43% of total porosity.
This result indicates that they present spaces between the particles of 0.05–2 mm, increasing the size of the pore spaces between the particles and facilitating the drainage and aeration of the soil. This percentage also shows an adequate porosity for the development of halophyte plants. It is worth mentioning that halophyte plants are able to accumulate high concentrations of NaCl in their tissues, and there is information of 39% in a shrub [58]. In addition, the use of halophytes plants for phytoremediation appears as a cost-effective, noninvasive alternative to other methods used for contaminated soils [34].
Each plant has a certain tolerance to salinity, depending on the plant species, the soil, and the characteristics of the brine. In general, some plants can tolerate TDS concentrations of 500 mgL−1, and this is the case of halophytes that can be irrigated with a brine concentration higher than 2000 mgL−1 of TDS [58]. In general, soil texture is the main factor affecting the infiltration rate of soils, as well as soil depth, which makes the permeability characteristics of these different [59]. The soil under study has a sandy loam texture, whose infiltration rate is 0.8 to 1.2 cm h−1 (Table 6). This characteristic allows inferring that the soil for cultivation has a moderate infiltration rate, being optimal for drip irrigation [60].
Nutrients | Alfalfa | Optimum nutritional value for a dairy cow | |
---|---|---|---|
Dry matter, % | 89.7 | 88.1 | 20 |
Crude protein, % | 16 | 20.2 | 18 |
Metabolizable energy, Mcal kg−1 | 2.21 | 1.99 | 1.67–1.76 |
Texture class | Basic infiltration rate (cm h−1) |
---|---|
Fine sand | 1.2 a 1.9 |
Sandy loam soil | 0.8 a 1.2 |
Silty loam soil | 0.6 a 1 |
Clay | 0.2 a 0.5 |
Basic infiltration rate according to soil texture class [60].
On the other side, the capacity of the soil to retain water, called soil ponding capacity (PC), is another factor that influences infiltration, and in irrigation, it is always limited to a given depth (normally to the depth of roots). For the calculation of the ponding capacity (Ec. (7)), [61] was used, according to the data obtained in Table 7 at a depth of 40 cm, obtaining a value of 48 mm. It is important to mention that the field capacity (FC) is the water content of a soil after having been abundantly irrigated and having drained freely for 24 to 48 hours, and the permanent wilting point (PWP) is the soil moisture condition in which the plants are unable to absorb water or do so with extreme difficulty, experiencing irreversible wilting:
Texture | Ad Apparent density | FC Gravimetric soil water content at field capacity (%) | PWP Gravimetric soil water content at permanent wilting Point (%) |
---|---|---|---|
Sandy | 1.5–1.8 (1.65) | 6–12 (9.0) | 2–6 (4) |
Sandy loam | 1.4–1.6 (1.50) | 10–18 (14.0) | 4–8 (6) |
Loam | 1.0–1.5 (1.25) | 18–21 (19.5) | 8–12 (10) |
Clay loam | 1.1–1.4 (1.25) | 23–31 (27) | 11–15 (13) |
Sandy clay | 1.2–1.4 (1.30) | 27–35 (31) | 13–17 (15) |
Clayey | 1.1–1.4 (1.30) | 31–39 (35) | 15–19 (17) |
Physical properties for different textures [61].
The PC value obtained indicates that the soil can store in a depth of 40 cm a height of water equivalent to 48 mm. However, not all of this water is available to the crop, since crops have different minimum water balances, for example, like halophyte, in the case of alfalfa, and in general, they require approximately 60% of the available water capacity to maintain evapotranspiration and avoid water stress.
This proposal was applied to the present work (Table 8), mentioning that strategies R1 to R3 are relevant for the optimal performance and utilization of the RO plant energetically sustained with solar energy, and that its resulting by-products are used for irrigation. From strategy R5 to R8, the products can be maximized through valorization, considering that the “brines” are allowed to produce “food” for other species such as “cattle or goats.” In addition, membranes can be reused either by regenerating them or by using them to produce another type of membrane. As for strategies R10 and R11, they allow improving and preserving the natural ecosystem through the use of renewable energies, using the brine for irrigation, and reducing the use of conventional water.
Principles | Strategies | EC PRC |
---|---|---|
Plan for the optimal use of resources | R1 Design | The integrated design, which considers the use of photovoltaic panels to the reverse osmosis plant, allows to reduce the carbon footprint. In addition, the brine obtained from the RO process will be used to irrigate the |
R2 Reduce/Prevent | Avoiding the use of conventional electricity and using solar photovoltaic energy to generate electricity reduce greenhouse gases. Preventing brine from being disposed of in the sea or in sewage systems is a great relief for the environment and much better than using it to grow halophyte fodder crops for goats or bovines. | |
R3 Optimize | Considering that if we have brackish water (720 L h−1) and that when treated through RO, 50% product water (360 L h−1) and 50% brine (360 L h−1) are generated. The brine is generally disposed of in sewers, the sea or deep wells, but to maximize the resources, it is essential that the brine is used as irrigation water for halophyte plants, optimizing the use of feedwater by 100%. | |
Maximize the usefulness of materials at all times | R4 Reuse/Distribute | Not applicable. |
R5 Repair | Parts such as water or brine storage ponds will be repaired, or any parts of the RO plant that have technical problems will be repaired. In addition, membrane regeneration periods will be provided due to membrane saturation, typical in brackish water use. | |
R6 Remanufacture | The disused membranes will be used for applied research (new materials) and to generate new membranes in the laboratory LIMZA/UTA. | |
R7 Revaluate | This project valorizes brine for irrigation of halophyte plants, reducing water consumption for irrigation and therefore reducing the cost of water consumption. | |
R8 Recycle | Activated carbon bags are reused to store forage plants when they are available for animal consumption. | |
R9 Recover | Not applicable. | |
Preserve and improve the natural capital | R10 Regenerate | The cultivation of halophyte plants helps to preserve the local natural resource and thus avoid environmental damage by disposing of the brine, for example, in the sea. |
R11 Supply | The electrical energy photovoltaic consumption of the system to produce halophyte is 11,431.435 kWh per year sustained with conventional energy would produce approximately 1.5 tons of CO2 [62] |
Principles and strategies of the circular economy applied to the cultivation of halophytes with brine obtained from the RO plant [44] (proper elaboration).
Figure 5 is a proposal that considers three important components: 1. desalination plant, 2. photovoltaic system, and 3. halophyte cultivation. This integrated proposal would allow mainly rural communities to opt for the sustainable development of their products considering the circular economy in their processes.
Diagram of brine utilization in the cultivation of forage plants considering the principles of circular economy (proper elaboration).
Although, generally what is sought when implementing desalination plants is to obtain water for irrigation or human consumption; in this case, it is observed that the use of brine from this type of process serves for the cultivation of fodder plants. Therefore, environmental circularity would be achieved from the desalination plant by applying the different strategies of the circular economy.
Initially, the brine (R1) can be used for the cultivation of halophytes, reducing the consumption of irrigation water (R3 and R7). Subsequently, the fodder plant is used as feed for cattle and goats (R10 and R11), preserving the natural resource and reducing environmental pollution. It is worth mentioning that the valorization and consumption of animals fed with halophytes irrigated with brine should reduce production costs due to the water savings generated and the solar energy used as energy support for the system (R2).
Moreover, the desalination plant has parts that can be repaired (R5) or remanufactured (R6) or reevaluated (R7).
The combination of the adaptation of technologies with natural brackish water and solar energy in the area would help mitigate the effects of climate change. In other words, the use of brine is a proposal that provides another source of water for irrigation and reduces the greenhouse effect. The proposed system to produce
The use of brine in the cultivation of the halophyte plant
In addition to the environmental benefits, the integrated scheme used in the semiarid region of Arica and Parinacota would produce a new source of food for the agricultural sector, thus, diversifying the fodder for livestock in rural areas and adding value to a waste stream with potential contaminating effects.
The use of brine as irrigation water for halophilic plants is an option to consider compared to conventional forage crops such as alfalfa.
The circular economy can be considered as a valuable model to promote sustainable resource management, contributing to the construction of a vision for long-term sustainable development. Within this framework, the study complies with 9 of the 11 strategies of the circular economy.
The reverse osmosis technology produces a percentage of brine equal to that of the product water and researchers seek to improve and optimize the membranes to obtain more product water, in this particular case, it would not be necessary because the brine is used practically 100% in the irrigation of halophytes considering its cultivation in a sandy loam soil, with a pond capacity of 48 mm and a 43% of total porosity of the soil to be cultivated, introducing to this technology a new concept, circular economy, increasing its added value.
Finally, this study opens some potential opportunities for future research, such as the implementation of this type of projects in rural communities, considering the use of saline wastes as a source of water for irrigation, maintaining the circularity of RO desalination plants.
The authors thank the Solar Energy Research Center, SERC-Chile (ANID/FONDAP/15110019), proyecto UTA Mayor N° 8750-21 and Fondo de investigación estratégica en sequía (asignación rápida) año 2021, ANID, código FSEQ210016.
“The authors declare no conflict of interest.”
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\nIMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nLITHUANIA
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nSWITZERLAND
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nMonographs Only
\n\n\n\nLITHUANIA
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nSWITZERLAND
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:8,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"1",title:"Oral Health",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",isOpenForSubmission:!0,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"2",title:"Prosthodontics and Implant Dentistry",coverUrl:"https://cdn.intechopen.com/series_topics/covers/2.jpg",isOpenForSubmission:!0,editor:{id:"179568",title:"Associate Prof.",name:"Wen Lin",middleName:null,surname:"Chai",slug:"wen-lin-chai",fullName:"Wen Lin Chai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHGAQA4/Profile_Picture_2022-05-23T14:31:12.png",biography:"Professor Dr. Chai Wen Lin is currently a lecturer at the Department of Restorative Dentistry, Faculty of Dentistry of the University of Malaya. She obtained a Master of Dental Science in 2006 and a Ph.D. in 2011. Her Ph.D. research work on the soft tissue-implant interface at the University of Sheffield has yielded several important publications in the key implant journals. She was awarded an Excellent Exchange Award by the University of Sheffield which gave her the opportunity to work at the famous Faculty of Dentistry of the University of Gothenburg, Sweden, under the tutelage of Prof. Peter Thomsen. In 2016, she was appointed as a visiting scholar at UCLA, USA, with attachment in Hospital Dentistry, and involvement in research work related to zirconia implant. In 2016, her contribution to dentistry was recognized by the Royal College of Surgeon of Edinburgh with her being awarded a Fellowship in Dental Surgery. She has authored numerous papers published both in local and international journals. She was the Editor of the Malaysian Dental Journal for several years. Her main research interests are implant-soft tissue interface, zirconia implant, photofunctionalization, 3D-oral mucosal model and pulpal regeneration.",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},editorTwo:{id:"479686",title:"Dr.",name:"Ghee Seong",middleName:null,surname:"Lim",slug:"ghee-seong-lim",fullName:"Ghee Seong Lim",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003ScjLZQAZ/Profile_Picture_2022-06-08T14:17:06.png",biography:"Assoc. Prof Dr. Lim Ghee Seong graduated with a Bachelor of Dental Surgery from University of Malaya, Kuala Lumpur in 2008. He then pursued his Master in Clinical Dentistry, specializing in Restorative Dentistry at Newcastle University, Newcastle, UK, where he graduated with distinction. He has also been awarded the International Training Fellowship (Restorative Dentistry) from the Royal College of Surgeons. His passion for teaching then led him to join the faculty of dentistry at University Malaya and he has since became a valuable lecturer and clinical specialist in the Department of Restorative Dentistry. He is currently the removable prosthodontic undergraduate year 3 coordinator, head of the undergraduate module on occlusion and a member of the multidisciplinary team for the TMD clinic. He has previous membership in the British Society for Restorative Dentistry, the Malaysian Association of Aesthetic Dentistry and he is currently a lifetime member of the Malaysian Association for Prosthodontics. Currently, he is also the examiner for the Restorative Specialty Membership Examinations, Royal College of Surgeons, England. He has authored and co-authored handful of both local and international journal articles. His main interest is in prosthodontics, dental material, TMD and regenerative dentistry.",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:54,paginationItems:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",doi:"10.5772/intechopen.104725",signatures:"Ivica Pelivan",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},overviewPagePublishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}]},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}]},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}]},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12213",title:"New Advances in Photosynthesis",coverURL:"https://cdn.intechopen.com/books/images_new/12213.jpg",hash:"2eece9ed4f67de4eb73da424321fc455",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 15th 2022",isOpenForSubmission:!0,editors:[{id:"224171",title:"Prof.",name:"Josphert N.",surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 15th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:6,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:26,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"9",type:"subseries",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11405,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:397,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/18623",hash:"",query:{},params:{id:"18623"},fullPath:"/chapters/18623",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()