Descriptive statistics of health data BUP
1. Introduction
The harmful effects of air pollution on human health have been observed in both overall mortality[1-9] and mortality from specific causes such as cardiovascular disease[10-16] or respiratory diseases[13, 17-19]. Effects on morbidity have also been observed and include increases in respiratory symptoms in children, decreases in lung function[21-23], increase respiratory diseases[24, 25], or simply an increase in school absenteeism[26,27]. More recently, several studies have used the number of hospitalizations as an indicator of the effects of pollution on health[28-34].
Considering the amount of research that have been produced in many countries, various issues, however, deserve further elucidation, for example, which pollutants would be more associated with the effects investigated or which individuals more susceptible to these hazardous exposures. A recent study that uses data from several cities showed that daily exposure to volatile pollutants appears to be associated with respiratory hospital admissions than exposure to particulate matter with a diameter of up to 10 microns (PM10)[35].
The effects of air pollutants seem to relate differently between men and women. Kotesovec and colleagues (2000)[36], observed a significant increase in daily mortality associated with increased levels of Total Solid Particulate(TSP) and SO2 in men until 65 and not among women of similar age, while that for the population over 65 years the mortality significantly increased only among women. Zanobetti and Schwartz (2000)[37] showed that the effect of PM10 on mortality could be modified by gender, the curve of deaths among women 1/3 higher than that of men.
In relation to cancer, and more specifically to lung cancer, several studies have shown differences in the occurrence of this disease between urban and rural areas[38]. It is assumed that this difference can be attributed to different carcinogens in environmental pollutants, but the difficulty of confirming this hypothesis is due to the presence of other risk factors that also are implicated in the etiology of disease, including active and passive smoking and occupational exposures.
Dean (1966) [39] showed that the highest rates observed in urban areas remained even after controlling for age and the start of smoking. Several studies have compared the coefficients of lung cancer between areas with different pollution levels showed a slight increase in those most polluted. [38]
In Brazil, some studies showed the effects of air pollution on health, Pena and Dulchiade (1991) [40] comparing annual averages of particulate matter at the rates of infant mortality from pneumonia in several areas of the city of Rio de Janeiro and found a statistically significant association. In Sao Paulo, Saldiva and colleagues conducted two important studies [41,42] using time series, and have shown associations between mortality from respiratory diseases and levels of nitrogen oxides (NOX) and mortality in the elderly and levels of particulate matter. More recently, the same group showed evidence of an association between intrauterine mortality and air pollution[43].
Regarding morbidity, Sobral (1989) [44], using a cross-sectional study compared the proportions of children with respiratory symptoms in two areas of Greater Sao Paulo with different levels of pollution and found a positive correlation. Cubatão differences were observed in lung function of children living in areas with varying levels of pollution[45]. Rumel and colleagues (1993) [46] studied the occurrence of visits to emergency services for acute myocardial infarction and found an association with levels of carbon monoxide (CO) and ambient temperature. In an experimental study, Reymão and colleagues (1997) [47] suggest that air pollution may facilitate the formation of certain types of lung cancer in rats.
However, the ecological character of some these studies, the lack of specificity regarding the age groups most susceptible and the various health effects, the short period of investigation (usually one year), which hampers control of temporal trends and the short careful control of meteorological variables, among other issues, prevented a better assessment of the effects of air pollution on health in the Brazilian context. Moreover, none of previous studies investigated the effects of pollution on hospital admissions, or tried to define the most vulnerable population subgroups.
Encouraged by these results, a series study covering a longer period of time (three years) was conducted with data from the city of Sao Paulo[48,49]. In these studies, special attention was given to the control of meteorological variables, and an investigation of different causes of death as well as in different age groups was made. Also, was first investigated the effect of pollution on morbidity of children through the examination of hospital admissions. An enhancement of 3.4% in the number of deaths from all causes (excluding violent deaths) and cardiovascular causes, compared to an increase in pollution levels from 10th to 90th percentile. For respiratory causes of the increase was 6%. Furthermore, it was observed that the effects of pollution on mortality alone were more prominent from age 65, having no effect on mortality for children or young adults. Moreover, hospital admissions for respiratory diseases in children under 5 years age group only investigated with regard to hospitalization, also showed an association with increases in daily levels of pollutants.
The aim of this study was to assess the association between exposure to daily records on air pollution concentrations emitted from the industrial and car emissions and the daily numbers of children outpatient and hospital admissions due to respiratory diseasesunder 6 years in public hospitals and the Universal Healthcare System in the urban area of Vitoria from 2001 to 2003,in individuals of the age groups considered most susceptible to air pollution in the city of Vitoria in Espirito Santo.
2. Methodology
2.1. Area and period of the study
Vitoria is located at latitude South 20°19’9” and longitude West 40°20’50” and borders on the cities of Serra to the North, Vila Velha to the South, Cariacica to the West, and the Atlantic Ocean to the East. It is an extension of continental land consisting of a mountainous island with the same name and several mangrove and salt marsh areas[50], resulting from theretreat of ocean levels.
There were 293,305 inhabitants in an area of 93km2, corresponding to 3,154 inhabitants per square kilometer, with the highest population density in the State of Espirito Santo and some 50% of the State’s entire industrial activity[51]
Vitoria has the second highest annual per capita income of all the BrazilianState capitals, with R$1,588.00, and a human development index (HDI) of 0.856. [52]
The daily records from the air quality monitoring program were provided by the State Environmental Secretariat (SEAMA) and State EnvironmentalInstitute (IEMA), and outpatient records on respiratory diseases were furnished by the Municipal Health Secretariat. Daily records on respiratory diseases were obtained from the Unified Productivity Bulletin (UPB), a registry used by 27 primary health units in the municipality of Vitoria, which is the only municipality that uses this kind of outpatient registry. Both data sets referred to January 1, 2001, to December 31, 2003. The UPB was established in the early 1990swith the aim of providing information related to population morbidity at outpatient services. This type of registry presents individual data on treatment in the primary health system. The information available contained date of consultation, patient’s name, sex, date of birth, age, place of residence, and main diagnosis. The study analyzed respiratory diseases in general (J00-J99),pneumonia (J12-J18), and asthma (J45) for children under 6 years of age, based on the International Classification of Diseases, 10th Revision (ICD-10).
Despite the low frequency of missing observations in environmental databases, we used an imputation procedure. The purpose of the imputation was to minimize the loss of statistical precision of estimates of effects.
The air quality program is managed by the IEMA, which is responsible for five automatic monitoring stations that provided daily records of CO (8-hour averages), SO2 (24-hour averages); particulate matter with an aerodynamic profile ≤ 10μg (PM10 – 24-hour averages); and O3 and NO2 (one-hour means), for Greater Vitoria. The IEMA also provides daily records on minimum, average,and maximum daily temperatures and relative humidity.
The daily air pollutant concentrations measured in Vitoria were compared to the National Environmental Council (CONAMA) standard 1990 [9] and WHOair qualityguidelines for PM10, SO2, NO2, and O3from 2005[10].
2.2. Statistical analysis
Data analysis techniques were used usual time series analysis. For each outcome a model was estimated using semi-parametric class of generalized additive models (GAM) [53]. These models that allow both linear and nonlinear structures are introduced in the model. The implementation of the application GAM S-Plus was used. Each outcome was modeled initially took as its basic assumption that the distribution of counts of health events (visits, procedures or hospital admissions) follow a Poisson distribution.
The problem of over dispersion, a phenomenon in which the observed variance is larger than expected for the Poisson distribution, was treated using the quasi-likelihood estimation[54]. In analyzing the series of procedures nebulizer, the residual autocorrelation after adjustment for potential confounding factors available were modeled using Poisson regression for auto correlated data[55]. Robust regression was used to deal with too high or too low for the series of outcome[53].
The analysis strategy was to deal with seasonality and trend series using
The meteorological confounding factors were controlled through functions
Finally, add to the model of the baseline or
3. Results
The biological manifestations of the effects of pollution on health appear to exhibit behavior that shows a lag in relation to the individual's exposure to pollutants. That is, events that occur on a given day may be associated with pollution levels that day and / or previous days. Thus, the daily values were tested for pollutants, lags of up to seven days and the average of two to seven days before the event as an indicator of cumulative exposure.
The results presented here represent the variationspercentage in emergency procedures, mist or hospitalizations related to variations of 10 μg /m³ in the levels of pollutants (except CO for which we calculated the percentage change in respect of 10 μg/m³). The respective relative risks using the same convention are also presented. The adopted significance level of 5% in all analysis.
3.1. Descriptive analysis
3.1.1. Health events
Unified Productivity Bulletin-UPB
Table 1 presents the mean, standard deviation and percentiles for all outcomes analyzed. It is observed that the average child attended. There were no missing data for outcomes, but the first two days were excluded because there is no environmental data available. The number of valid observation was 1093.
mean | SD | min | p5 | p10 | p25 | p50 | p75 | p90 | p95 | max | |
DAR6 | 126.15 | 72.09 | 5.00 | 39.00 | 47.00 | 71.00 | 119.00 | 167.00 | 203.80 | 224.40 | 582.00 |
ASMA6 | 18.75 | 11.33 | 0.00 | 5.00 | 7.00 | 12.00 | 17.00 | 23.00 | 31.00 | 36.00 | 96.00 |
NEB6 | 80.67 | 46.54 | 0.00 | 20.00 | 25.20 | 43.00 | 74.00 | 111.00 | 146.00 | 166.40 | 237.00 |
The Figure 2 in Figure 3 show the temporal trends of the daily number of emergency visits for asthma (ASMA6) and respiratory diseases (DAR6) in children, respectively.
The Figure 3 show the temporal evolution of the daily number of procedures performed in children nebulizer (NEB6).
AIHTable 2 shows the mean, standard deviation and percentiles for the number of daily hospital admissions for respiratory diseases in children (AIHDAR6), in the city of Victoria. The number of valid observations is 1093.
mean | SD | min | p5 | p10 | p25 | p50 | p75 | p90 | p95 | max | |
AIHDAR6 | 2.59 | 1.83 | 0.00 | 0.00 | 0.00 | 1.00 | 2.00 | 4.00 | 5.00 | 6.00 | 10.00 |
The Figure 4 show the temporal trends of the number of daily hospital admissions for respiratory diseases in children (AIHDAR6).
Meteorology
Table 3 shows the mean, standard deviation and percentiles for the meteorological variables: minimum temperature, average and maximum (degrees Celsius) and relative humidity (%). The number of valid observations is 1093.
mean | SD | min | p5 | p10 | p25 | p50 | p75 | p90 | p95 | max | |
Maximum temperature | 28.47 | 3.12 | 19.65 | 23.15 | 24.35 | 26.05 | 28.70 | 30.85 | 32.55 | 33.25 | 35.60 |
Average temperature | 24.17 | 2.35 | 17.91 | 20.41 | 21.07 | 22.19 | 24.28 | 26.15 | 27.28 | 27.66 | 28.84 |
Minimum temperature | 20.88 | 2.31 | 15.00 | 16.80 | 17.70 | 19.00 | 21.10 | 22.85 | 23.70 | 24.05 | 25.75 |
Relative Humidity | 77.36 | 6.01 | 57.98 | 68.58 | 70.26 | 72.98 | 77.00 | 81.45 | 85.87 | 88.33 | 95.63 |
The Figure 5 show the temporal trends of the average daily mean temperature and relative humidity. Each indicator is constructed by averaging the monitors in the city of Victoria.
Pollutants
Table 4 shows the mean, standard deviation and percentiles of the concentrations of PM10, SO2, NO2, CO and O3, in g/m³. Following imputation, the number of observations used in the analysis was 1093.
mean | SD | min | p5 | p10 | p25 | p50 | p75 | p90 | p95 | max | |
PM | 27.09 | 6.97 | 6.50 | 16.54 | 18.98 | 22.65 | 26.44 | 30.81 | 35.31 | 39.40 | 60.65 |
SO2 | 15.02 | 6.04 | 4.10 | 7.23 | 8.43 | 10.50 | 14.10 | 18.40 | 22.91 | 26.16 | 47.46 |
NO2 | 21.50 | 7.51 | 6.54 | 10.72 | 12.63 | 15.96 | 20.71 | 26.30 | 31.84 | 34.79 | 53.16 |
CO | 1024.41 | 381.10 | 357.63 | 546.50 | 620.50 | 756.00 | 944.25 | 1223.75 | 1496.61 | 1710.63 | 3157.00 |
O3 | 38.89 | 13.58 | 10.25 | 21.35 | 23.53 | 28.50 | 37.00 | 46.75 | 57.25 | 64.23 | 97.50 |
The Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 show the temporal trends of daily concentrations of PM10, SO2, NO2, CO and O3, respectively. The average concentrations of these pollutants in the city of Victoria was not violated in any day primary or secondary standards for air pollution established by Brazilian CONAMA Resolution 003/90[55].
3.2. Effects of pollutants
3.2.1. Respiratory diseases
In Table 5 are shown the percentage changes and relative risks with confidence intervals of 95% for the outcome of respiratory diseases in children. We estimated a 2.1% increase in average daily number of outpatients increased to 10 μg / m³ PM10 exposure in a cumulative average of 7 days. NO2 was estimated for a 2.6% increase in the number of attendancesoutpatients referring to an increase of 10 μg/m³. For O3 was estimated to increase 1.4% for the exposure with a lag of 3 days and from 1.14% to 1.21% cumulative average exposure for 4-6 days.
Exposição aPM10 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 0.48 | -0.821;1.792 | 1.00 | 0.992;1.018 | 0.473 |
lag of 1 day | 0.44 | -0.839;1.740 | 1.00 | 0.992;1.017 | 0.501 |
lag of 2 days | 0.46 | -0.859;1.800 | 1.00 | 0.991;1.018 | 0.495 |
lag of 3 days | 0.17 | -1.106;1.471 | 1.00 | 0.989;1.015 | 0.791 |
average of 2 days | 0.66 | -0.834;2.174 | 1.01 | 0.992;1.022 | 0.389 |
average of 3 days | 0.85 | -0.809;2.544 | 1.01 | 0.992;1.025 | 0.317 |
average of 4 days | 0.85 | -0.926;2.650 | 1.01 | 0.991;1.027 | 0.352 |
average of 5 days | 1.22 | -0.651;3.121 | 1.01 | 0.993;1.031 | 0.203 |
average of 6 days | 1.77 | -0.185;3.769 | 1.02 | 0.998;1.038 | 0.076 |
average of 7 days | 2.09 | 0.050;4.172 | 1.02 | 1.001;1.042 | 0.045 |
Exposição aSO2 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | -0.98 | -2.429;0.483 | 0.99 | 0.976;1.005 | 0.188 |
lag of 1 day | -0.15 | -1.593;1.313 | 1.00 | 0.984;1.013 | 0.840 |
lag of 2 days | -0.08 | -1.541;1.398 | 1.00 | 0.985;1.014 | 0.912 |
lag of 3 days | -1.08 | -2.568;0.430 | 0.99 | 0.974;1.004 | 0.160 |
average of 2 days | -0.73 | -2.298;0.859 | 0.99 | 0.977;1.009 | 0.365 |
average of 3 days | -0.63 | -2.295;1.053 | 0.99 | 0.977;1.011 | 0.459 |
average of 4 days | -1.07 | -2.813;0.711 | 0.99 | 0.972;1.007 | 0.238 |
average of 5 days | -0.95 | -2.765;0.906 | 0.99 | 0.972;1.009 | 0.314 |
average of 6 days | -0.72 | -2.602;1.191 | 0.99 | 0.974;1.012 | 0.456 |
average of 7 days | -0.98 | -2.900;0.978 | 0.99 | 0.971;1.010 | 0.324 |
Exposição aNO2 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 0.78 | -0.528;2.097 | 1.01 | 0.995;1.021 | 0.245 |
lag of 1 day | -0.16 | -1.503;1.207 | 1.00 | 0.985;1.012 | 0.820 |
lag of 2 days | 0.54 | -0.924;2.023 | 1.01 | 0.991;1.020 | 0.473 |
lag of 3 days | 0.72 | -0.726;2.185 | 1.01 | 0.993;1.022 | 0.331 |
average of 2 days | 0.44 | -1.031;1.936 | 1.00 | 0.990;1.019 | 0.559 |
average of 3 days | 0.67 | -0.977;2.347 | 1.01 | 0.990;1.023 | 0.427 |
average of 4 days | 0.99 | -0.794;2.807 | 1.01 | 0.992;1.028 | 0.279 |
average of 5 days | 1.44 | -0.439;3.352 | 1.01 | 0.996;1.034 | 0.134 |
average of 6 days | 1.92 | -0.020;3.900 | 1.02 | 1.000;1.039 | 0.053 |
average of 7 days | 2.64 | 0.645;4.680 | 1.03 | 1.006;1.047 | 0.009 |
Exposição aCO | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 0.00 | -0.025;0.023 | 1.00 | 0.975;1.023 | 0.935 |
lag of 1 day | 0.01 | -0.019;0.030 | 1.01 | 0.981;1.030 | 0.669 |
lag of 2 days | -0.03 | -0.049;-0.004 | 0.97 | 0.952;0.996 | 0.020 |
lag of 3 days | -0.02 | -0.042;0.005 | 0.98 | 0.959;1.005 | 0.119 |
average of 2 days | 0.00 | -0.027;0.033 | 1.00 | 0.974;1.034 | 0.829 |
average of 3 days | -0.02 | -0.054;0.014 | 0.98 | 0.947;1.014 | 0.243 |
average of 4 days | -0.03 | -0.072;0.003 | 0.97 | 0.930;1.003 | 0.071 |
average of 5 days | -0.05 | -0.090;-0.010 | 0.95 | 0.914;0.990 | 0.015 |
average of 6 days | -0.06 | -0.098;-0.014 | 0.95 | 0.906;0.986 | 0.009 |
average of 7 days | -0.04 | -0.085;0.003 | 0.96 | 0.919;1.003 | 0.070 |
Exposição O3 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 0.22 | -0.500;0.953 | 1.00 | 0.995;1.010 | 0.546 |
lag of 1 day | 0.22 | -0.485;0.926 | 1.00 | 0.995;1.009 | 0.544 |
lag of 2 days | 0.31 | -0.398;1.032 | 1.00 | 0.996;1.010 | 0.388 |
lag of 3 days | 1.44 | 0.740;2.150 | 1.01 | 1.007;1.022 | 0.000 |
average of 2 days | 0.32 | -0.497;1.146 | 1.00 | 0.995;1.011 | 0.442 |
average of 3 days | 0.47 | -0.420;1.363 | 1.00 | 0.996;1.014 | 0.303 |
average of 4 days | 1.21 | 0.270;2.151 | 1.01 | 1.003;1.022 | 0.012 |
average of 5 days | 1.18 | 0.212;2.150 | 1.01 | 1.002;1.022 | 0.017 |
average of 6 days | 1.14 | 0.161;2.128 | 1.01 | 1.002;1.021 | 0.023 |
average of 7 days | 0.94 | -0.052;1.937 | 1.01 | 0.999;1.019 | 0.064 |
Asthma
In Table 6, the estimated effects for the outcome of asthma in children. Estimated to increase from 3.9% to 6.1% in the average daily number of outpatients increased to 10 μg / m³ PM10 in an average cumulative exposure ranging from 4 to 7 days. NO2 was estimated for a 2.9% increase in the number of outpatient visits related to an increase of 10 μg / m³ exposure lagged 3 days and 3.7% to 5.8% for the cumulative exposure of 3 to 7 days. The effect of CO is less than 0.1%, very small although statistically significant. For O3 was estimated to increase 1.8% for the exhibition on the same day and from 2% to 3.5% cumulative average exposure for 2-7 days.
ExposiçãoaPM10 | %RR | IC(95%) | RR | IC (95%) | p-valor |
current day | 0.57 | -2.027; 3.235 | 1.01 | 0.980; 1.032 | 0.670 |
lag of 1 day | 2.51 | -0.078; 5.158 | 1.03 | 0.999; 1.052 | 0.058 |
lag of 2 days | 2.06 | -0.486; 4.673 | 1.02 | 0.995; 1.047 | 0.114 |
lag of 3 days | 2.10 | -0.462; 4.720 | 1.02 | 0.995; 1.047 | 0.109 |
average of 2 days | 2.22 | -0.786; 5.325 | 1.02 | 0.992; 1.053 | 0.149 |
average of 3 days | 3.10 | -0.195; 6.511 | 1.03 | 0.998; 1.065 | 0.066 |
average of 4 days | 3.89 | 0.346; 7.550 | 1.04 | 1.003; 1.076 | 0.031 |
average of 5 days | 4.98 | 1.213; 8.884 | 1.05 | 1.012; 1.089 | 0.009 |
average of 6 days | 6.10 | 2.139; 10.219 | 1.06 | 1.021; 1.102 | 0.002 |
average of 7 days | 5.92 | 1.797; 10.206 | 1.06 | 1.018; 1.102 | 0.005 |
ExposiçãoaSO2 | %RR | IC(95%) | RR | IC (95%) | p-valor |
current day | -2.33 | -5.123; 0.551 | 0.98 | 0.949; 1.006 | 0.112 |
lag of 1 day | -1.55 | -4.373; 1.365 | 0.98 | 0.956; 1.014 | 0.295 |
lag of 2 days | -3.33 | -6.129;- 0.442 | 0.97 | 0.939; 0.996 | 0.024 |
lag of 3 days | -5.02 | -7.824;- 2.122 | 0.95 | 0.922; 0.979 | 0.001 |
average of 2 days | -2.47 | -5.492; 0.653 | 0.98 | 0.945; 1.007 | 0.120 |
average of 3 days | -3.66 | -6.842;- 0.379 | 0.96 | 0.932; 0.996 | 0.029 |
average of 4 days | -5.32 | -8.603;- 1.927 | 0.95 | 0.914; 0.981 | 0.002 |
average of 5 days | -6.13 | -9.512;- 2.632 | 0.94 | 0.905; 0.974 | 0.001 |
average of 6 days | -6.37 | -9.828;- 2.777 | 0.94 | 0.902; 0.972 | 0.001 |
average of 7 days | -7.28 | -10.794;- 3.625 | 0.93 | 0.892; 0.964 | 0.000 |
ExposiçãoaNO2 | %RR | IC(95%) | RR | IC (95%) | p-valor |
current day | 1.94 | -0.947; 4.915 | 1.02 | 0.991; 1.049 | 0.190 |
lag of 1 day | 2.64 | -0.330; 5.694 | 1.03 | 0.997; 1.057 | 0.082 |
lag of 2 days | 1.71 | -1.102; 4.599 | 1.02 | 0.989; 1.046 | 0.236 |
lag of 3 days | 2.90 | 0.143; 5.739 | 1.03 | 1.001; 1.057 | 0.039 |
average of 2 days | 3.27 | -0.069; 6.711 | 1.03 | 0.999; 1.067 | 0.055 |
average of 3 days | 3.71 | 0.118; 7.428 | 1.04 | 1.001; 1.074 | 0.043 |
average of 4 days | 4.86 | 1.067; 8.788 | 1.05 | 1.011; 1.088 | 0.012 |
average of 5 days | 4.82 | 0.928; 8.871 | 1.05 | 1.009; 1.089 | 0.015 |
average of 6 days | 5.07 | 1.079; 9.217 | 1.05 | 1.011; 1.092 | 0.012 |
average of 7 days | 5.78 | 1.689; 10.031 | 1.06 | 1.017; 1.100 | 0.005 |
ExposiçãoaCO | %RR | IC(95%) | RR | IC (95%) | p-valor |
current day | 0.03 | -0.020; 0.074 | 1.03 | 0.981; 1.076 | 0.256 |
lag of 1 day | 0.06 | 0.018; 0.111 | 1.07 | 1.018; 1.117 | 0.007 |
lag of 2 days | -0.01 | -0.058; 0.028 | 0.99 | 0.943; 1.029 | 0.502 |
lag of 3 days | 0.01 | -0.035; 0.052 | 1.01 | 0.966; 1.054 | 0.691 |
average of 2 days | 0.08 | 0.020; 0.137 | 1.08 | 1.020; 1.147 | 0.009 |
average of 3 days | 0.06 | -0.010; 0.121 | 1.06 | 0.990; 1.129 | 0.097 |
average of 4 days | 0.06 | -0.011; 0.133 | 1.06 | 0.989; 1.143 | 0.099 |
average of 5 days | 0.05 | -0.026; 0.129 | 1.05 | 0.974; 1.138 | 0.196 |
average of 6 days | 0.02 | -0.060; 0.104 | 1.02 | 0.941; 1.110 | 0.602 |
average of 7 days | 0.07 | -0.018; 0.155 | 1.07 | 0.982; 1.167 | 0.120 |
Exposição O3 | %RR | IC(95%) | RR | IC (95%) | p-valor |
current day | 1.76 | 0.331; 3.205 | 1.02 | 1.003; 1.032 | 0.016 |
lag of 1 day | 1.07 | -0.321; 2.479 | 1.01 | 0.997; 1.025 | 0.132 |
lag of 2 days | 1.02 | -0.324; 2.384 | 1.01 | 0.997; 1.024 | 0.138 |
lag of 3 days | 2.56 | 1.222; 3.912 | 1.03 | 1.012; 1.039 | 0.000 |
average of 2 days | 2.00 | 0.389; 3.643 | 1.02 | 1.004; 1.036 | 0.015 |
average of 3 days | 2.20 | 0.491; 3.944 | 1.02 | 1.005; 1.039 | 0.012 |
average of 4 days | 3.21 | 1.426; 5.034 | 1.03 | 1.014; 1.050 | 0.000 |
average of 5 days | 3.45 | 1.610; 5.321 | 1.03 | 1.016; 1.053 | 0.000 |
average of 6 days | 3.34 | 1.470; 5.244 | 1.03 | 1.015; 1.052 | 0.000 |
average of 7 days | 3.20 | 1.305; 5.130 | 1.03 | 1.013; 1.051 | 0.001 |
Table 7 Estimated effects for the outcome nebulization in children. We estimated an increase of 2% and 2.3% for the exhibition on the same day and with a lag of 3 days respectively, and 3.1% to 3.6% for the cumulative exposure from 4 to 7 days in the average number daily for an increase of 10 μg/m³ PM10. For NO2 was estimated to increase from 2.9% to the cumulative exposure of 7 days. For O3 was estimated to increase from 1.8% to the exposure with a lag of 2 days and 1.4% cumulative average exposure for 4 days.
ExposiçãoaPM10 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 1.98 | 0.043; 3.957 | 1.02 | 1.000;1.040 | 0.045 |
lag of 1 day | 0.21 | -1.713; 2.173 | 1.00 | 0.983;1.022 | 0.831 |
lag of 2 days | 1.46 | -0.435; 3.401 | 1.01 | 0.996;1.034 | 0.132 |
lag of 3 days | 2.31 | 0.426; 4.236 | 1.02 | 1.004;1.042 | 0.016 |
average of 2 days | 1.50 | -0.750; 3.792 | 1.01 | 0.993;1.038 | 0.194 |
average of 3 days | 2.11 | -0.342; 4.625 | 1.02 | 0.997;1.046 | 0.093 |
average of 4 days | 3.14 | 0.515; 5.826 | 1.03 | 1.005;1.058 | 0.019 |
average of 5 days | 3.59 | 0.823; 6.430 | 1.04 | 1.008;1.064 | 0.011 |
average of 6 days | 3.63 | 0.742; 6.607 | 1.04 | 1.007;1.066 | 0.014 |
average of 7 days | 3.36 | 0.354; 6.452 | 1.03 | 1.004;1.065 | 0.028 |
ExposiçãoaSO2 | RR | IC(95%) | RR | IC(95%) | p-valor |
current day | -0.57 | -2.673; 1.585 | 0.99 | 0.973;1.016 | 0.603 |
lag of 1 day | -0.92 | -3.000; 1.203 | 0.99 | 0.970;1.012 | 0.393 |
lag of 2 days | -0.60 | -2.691; 1.530 | 0.99 | 0.973;1.015 | 0.577 |
lag of 3 days | -0.35 | -2.487; 1.831 | 1.00 | 0.975;1.018 | 0.750 |
average of 2 days | -0.96 | -3.226; 1.349 | 0.99 | 0.968;1.013 | 0.411 |
average of 3 days | -1.09 | -3.478; 1.348 | 0.99 | 0.965;1.013 | 0.377 |
average of 4 days | -1.11 | -3.608; 1.445 | 0.99 | 0.964;1.014 | 0.390 |
average of 5 days | -1.38 | -3.956; 1.269 | 0.99 | 0.960;1.013 | 0.305 |
average of 6 days | -2.07 | -4.717; 0.641 | 0.98 | 0.953;1.006 | 0.133 |
average of 7 days | -2.77 | -5.462;- 0.011 | 0.97 | 0.945;1.000 | 0.049 |
ExposiçãoaNO2 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 0.82 | -1.258; 2.932 | 1.01 | 0.987;1.029 | 0.444 |
lag of 1 day | 1.59 | -0.549; 3.772 | 1.02 | 0.995;1.038 | 0.147 |
lag of 2 days | 1.71 | -0.342; 3.808 | 1.02 | 0.997;1.038 | 0.103 |
lag of 3 days | 1.63 | -0.370; 3.663 | 1.02 | 0.996;1.037 | 0.111 |
average of 2 days | 1.62 | -0.751; 4.042 | 1.02 | 0.992;1.040 | 0.183 |
average of 3 days | 2.38 | -0.177; 4.996 | 1.02 | 0.998;1.050 | 0.069 |
average of 4 days | 2.93 | 0.247; 5.684 | 1.03 | 1.002;1.057 | 0.032 |
average of 5 days | 2.60 | -0.155; 5.427 | 1.03 | 0.998;1.054 | 0.065 |
average of 6 days | 2.57 | -0.262; 5.476 | 1.03 | 0.997;1.055 | 0.076 |
average of 7 days | 2.36 | -0.529; 5.340 | 1.02 | 0.995;1.053 | 0.111 |
Exposição aCO | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 0.00 | -0.030; 0.040 | 1.00 | 0.971;1.040 | 0.781 |
lag of 1 day | 0.00 | -0.036; 0.036 | 1.00 | 0.964;1.037 | 0.990 |
lag of 2 days | 0.02 | -0.018; 0.050 | 1.02 | 0.982;1.051 | 0.356 |
lag of 3 days | -0.03 | -0.063; 0.003 | 0.97 | 0.939;1.003 | 0.079 |
average of 2 days | 0.00 | -0.040; 0.048 | 1.00 | 0.961;1.049 | 0.860 |
average of 3 days | 0.02 | -0.034; 0.066 | 1.02 | 0.966;1.069 | 0.529 |
average of 4 days | -0.01 | -0.061; 0.049 | 0.99 | 0.941;1.051 | 0.837 |
average of 5 days | 0.00 | -0.057; 0.062 | 1.00 | 0.945;1.064 | 0.937 |
average of 6 days | -0.01 | -0.069; 0.056 | 0.99 | 0.934;1.058 | 0.844 |
average of 7 days | -0.02 | -0.082; 0.046 | 0.98 | 0.921;1.047 | 0.584 |
ExposiçãoO3 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 0.38 | -0.670; 1.432 | 1.00 | 0.993;1.014 | 0.483 |
lag of 1 day | -0.44 | -1.502; 0.642 | 1.00 | 0.985;1.006 | 0.427 |
lag of 2 days | 1.82 | 0.803; 2.842 | 1.02 | 1.008;1.028 | 0.000 |
lag of 3 days | 0.99 | -0.003; 1.990 | 1.01 | 1.000;1.020 | 0.051 |
average of 2 days | -0.05 | -1.252; 1.174 | 1.00 | 0.987;1.012 | 0.940 |
average of 3 days | 1.05 | -0.234; 2.358 | 1.01 | 0.998;1.024 | 0.110 |
average of 4 days | 1.40 | 0.071; 2.755 | 1.01 | 1.001;1.028 | 0.039 |
average of 5 days | 1.06 | -0.299; 2.434 | 1.01 | 0.997;1.024 | 0.127 |
average of 6 days | 0.92 | -0.451; 2.307 | 1.01 | 0.995;1.023 | 0.190 |
average of 7 days | 0.87 | -0.515; 2.281 | 1.01 | 0.995;1.023 | 0.219 |
Hospitalizations
Table 8 Estimated effects presented for the outcome of hospital admissions of children. Statistically significant effect was found only for O3. Estimated to increase by 3.2% and 4% for exposure lagged by 1 and 3 days, respectively, and 4.3% to 7.9% average cumulative exposure for 2-7 days, referring to an increase of 10 μg/m³ of O3. Despite the impact of high frequency of occurrence of this outcome in the population is low.
ExposiçãoaPM10 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 1.06 | -4.675; 7.133 | 1.01 | 0.953;1.071 | 0.724 |
lag of 1 day | 3.14 | -2.755; 9.390 | 1.03 | 0.972;1.094 | 0.303 |
lag of 2 days | 1.00 | -4.845; 7.208 | 1.01 | 0.952;1.072 | 0.743 |
lag of 3 days | 1.32 | -4.410; 7.388 | 1.01 | 0.956;1.074 | 0.659 |
average of 2 days | 3.00 | -3.793; 10.263 | 1.03 | 0.962;1.103 | 0.396 |
average of 3 days | 3.13 | -4.398; 11.259 | 1.03 | 0.956;1.113 | 0.425 |
average of 4 days | 3.44 | -4.569; 12.121 | 1.03 | 0.954;1.121 | 0.411 |
average of 5 days | 3.90 | -4.539; 13.076 | 1.04 | 0.955;1.131 | 0.377 |
average of 6 days | 5.46 | -3.481; 15.219 | 1.05 | 0.965;1.152 | 0.240 |
average of 7 days | 6.00 | -3.351; 16.262 | 1.06 | 0.966;1.163 | 0.216 |
ExposiçãoaSO2 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 2.09 | -4.161; 8.739 | 1.02 | 0.958;1.087 | 0.522 |
lag of 1 day | 1.33 | -4.870; 7.928 | 1.01 | 0.951;1.079 | 0.682 |
lag of 2 days | 3.27 | -3.026; 9.975 | 1.03 | 0.970;1.100 | 0.316 |
lag of 3 days | -2.76 | -8.797; 3.667 | 0.97 | 0.912;1.037 | 0.391 |
average of 2 days | 2.16 | -4.583; 9.384 | 1.02 | 0.954;1.094 | 0.540 |
average of 3 days | 3.37 | -3.795; 11.069 | 1.03 | 0.962;1.111 | 0.366 |
average of 4 days | 1.69 | -5.663; 9.609 | 1.02 | 0.943;1.096 | 0.662 |
average of 5 days | 1.31 | -6.257; 9.498 | 1.01 | 0.937;1.095 | 0.742 |
average of 6 days | -0.32 | -8.006; 8.000 | 1.00 | 0.920;1.080 | 0.937 |
average of 7 days | -0.96 | -8.780; 7.536 | 0.99 | 0.912;1.075 | 0.819 |
ExposiçãoaNO2 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 0.26 | -5.870; 6.780 | 1.00 | 0.941;1.068 | 0.937 |
lag of 1 day | 5.53 | -0.834; 12.299 | 1.06 | 0.992;1.123 | 0.090 |
lag of 2 days | 0.45 | -5.609; 6.888 | 1.00 | 0.944;1.069 | 0.889 |
lag of 3 days | 2.28 | -3.649; 8.584 | 1.02 | 0.964;1.086 | 0.459 |
average of 2 days | 3.86 | -3.184; 11.408 | 1.04 | 0.968;1.114 | 0.291 |
average of 3 days | 3.39 | -4.088; 11.454 | 1.03 | 0.959;1.115 | 0.384 |
average of 4 days | 4.09 | -3.740; 12.563 | 1.04 | 0.963;1.126 | 0.315 |
average of 5 days | 2.87 | -5.068; 11.474 | 1.03 | 0.949;1.115 | 0.490 |
average of 6 days | 3.28 | -4.869; 12.118 | 1.03 | 0.951;1.121 | 0.442 |
average of 7 days | 3.22 | -5.076; 12.247 | 1.03 | 0.949;1.122 | 0.458 |
Exposição aCO | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | -0.06 | -0.159; 0.044 | 0.94 | 0.853;1.045 | 0.270 |
lag of 1 day | -0.02 | -0.126; 0.076 | 0.98 | 0.882;1.079 | 0.630 |
lag of 2 days | -0.02 | -0.125; 0.083 | 0.98 | 0.883;1.086 | 0.692 |
lag of 3 days | -0.09 | -0.195; 0.013 | 0.91 | 0.823;1.013 | 0.086 |
average of 2 days | -0.07 | -0.189; 0.058 | 0.94 | 0.828;1.060 | 0.300 |
average of 3 days | -0.08 | -0.217; 0.066 | 0.93 | 0.804;1.068 | 0.295 |
average of 4 days | -0.14 | -0.298; 0.017 | 0.87 | 0.742;1.017 | 0.081 |
average of 5 days | -0.19 | -0.360;- 0.020 | 0.83 | 0.697;0.981 | 0.029 |
average of 6 days | -0.20 | -0.379;- 0.020 | 0.82 | 0.684;0.980 | 0.030 |
average of 7 days | -0.17 | -0.352; 0.020 | 0.85 | 0.703;1.021 | 0.081 |
ExposiçãoO3 | %RR | IC(95%) | RR | IC(95%) | p-valor |
current day | 3.02 | -0.010; 6.145 | 1.03 | 1.000;1.061 | 0.051 |
lag of 1 day | 3.22 | 0.159; 6.379 | 1.03 | 1.002;1.064 | 0.039 |
lag of 2 days | 2.99 | -0.076; 6.154 | 1.03 | 0.999;1.062 | 0.056 |
lag of 3 days | 4.04 | 1.053; 7.124 | 1.04 | 1.011;1.071 | 0.008 |
average of 2 days | 4.35 | 0.864; 7.963 | 1.04 | 1.009;1.080 | 0.014 |
average of 3 days | 5.30 | 1.510; 9.233 | 1.05 | 1.015;1.092 | 0.006 |
average of 4 days | 6.55 | 2.580; 10.667 | 1.07 | 1.026;1.107 | 0.001 |
average of 5 days | 7.34 | 3.257; 11.594 | 1.07 | 1.033;1.116 | 0.000 |
average of 6 days | 7.94 | 3.783; 12.261 | 1.08 | 1.038;1.123 | 0.000 |
average of 7 days | 7.91 | 3.699; 12.294 | 1.08 | 1.037;1.123 | 0.000 |
4. Conclusion
Descriptive analysis of indicators of air pollution in the city of Victoria shows that, on average, these indicators did not exceed the primary standard or secondary air quality proposed by the World Health Organization (WHO) and by CONAMA 003/90[55]. However, even when the pollution levels are considered acceptable, it was possible to detect adverse health effects of some pollution indicators studied. These deleterious effects are observed on increasing the average daily number of outpatient procedures, hospitalizations in the mist and more susceptible populations, children residents in the city of Victoria.
The results of this study indicate the existence of statistical association between daily concentrations of air pollutants and daily average number of outpatient procedures, hospitalizations and mist in populations of children residents in the city of Victoria. This finding implies that some of these illnesses tracks stocks in the region may have been caused by air pollution. The pollutants whose effects were statistically significant were the PM10, O3 and NO2.
Thefrequency of occurrence of hospital admissions in the population of the city of victory is very low, as shown in Table 2, and therefore, effects of great magnitude had low impact on the population.
The damage to the respiratory system due to exposure to air pollutants is the result of combined effects of all pollutants present in complex mix of air pollution. The results associated with PM10 and O3 are consistent with the pathophysiology of these two pollutants. Both in an early act as primary irritant of the respiratory tract and may cause increased bronchial reactivity and symptoms of bronchospasm. Local inflammatory signs emerge that usually prevail over those of bronchospasm. The combination of possible respiratory effects at two different times may explain a greater number of medical visits on the same day and some days after the increase in the levels of pollutants.
In studies whose outcome variable is the pediatric emergency medical care, considering lags of one or more days between exposure and demand for health services, several factors must be considered. One is the motivation of parents or guardians to seek pediatric clinics that depends, among other reasons, concern about the health of the child[57], the knowledge of the meanings and possible worsening of respiratory signs and symptoms and also the possibility to attend a health facility.
The clinical effects of environmental pollutants on the respiratory system vary according to factors related to the pollutants and exposed individuals. Children less sensitive when exposed to low environmental concentrations have mild symptoms and few clinical implications and do not require medical attention. It is reasonable to assume that the estimated effect is smaller than one would estimate that if these children had sought a health service. With low levels of air pollution observed was not expected a high number of severe cases, but a large number of milder cases.
The results of this study are consistent with those of studies conducted in other cities in the world using similar methodology. However, the health information system used, the Unified Productivity Bulletin (BUP) available in the city of Victoria, have not been fully validated. It is therefore necessary to consider that bias resulting from lack of validity of information may be operating in the study population. It is therefore reasonable to consider that the accuracy of this study is subject to a validation study of BUP.
Acknowledgments
This study received financial support from the Strategic Development Program at the Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation (ENSP/FIOCRUZ), in partnership with the Vitória Municipal Health Secretaria. The State Environmental Secretariat (SEAMA) and State Environmental Institute (IEMA) provided the air quality database, with technical support from Nilson Castiglioni Júnior and José Gustavo da Costa. The authors wish to acknowledge the logistic field support provided by the State Health Secretariat through Maria de Fátima Bertollo Dettoni and Diana de Oliveira Frauches. The authors also acknowledge the collaboration and technical support from the Health Surveillance Secretariat of the Brazilian Ministry of Health.
References
- 1.
Dockery D. W. Schwartz J. JD Spengler 1992 Air pollution and daily mortality: associations with particulates and acid aerosols. Environ Res;59 2 362 373 - 2.
Dockery D. W. CA Pope I. I. I. Xu X. JD Spengler Ware. J. H. ME Fay et. al 1993 An association between air pollution and mortality in six U.S. cities. N Engl J Med;329 24 1753 1759 - 3.
Pope CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE et al. 1995 Particulate Air-Pollution As A Predictor of Mortality in A Prospective-Study of UsAdults. Am J Respir Crit Care Med;151 3 669 674 - 4.
Sartor F. Snacken R. Demuth C. Walckiers D. 1994 Temperature, ambient ozone levels, and mortality during summer, in Belgium. Environ Res 1995;70 2 105 113 - 5.
Particulate air pollution and daily mortality in Detroit. Environ ResSchwartz J. 1991 56 2 204 213 - 6.
Schwartz J. Dockery D. W. 1992 Increased mortality in Philadelphia associated with daily air pollution concentrations. Am Rev Respir Dis;145 3 600 604 - 7.
Schwartz J. 1993 Air pollution and daily mortality in Birmingham, Alabama. Am J Epidemiol;137 10 1136 1147 - 8.
Spix C. Wichmann H. E. 1996 Daily mortality and air pollutants: findings from Koln, Germany. J Epidemiol Community Health; 50 Suppl 1:s52 s58. - 9.
Touloumi G. Samoli E. Katsouyanni K. 1996 Daily mortality and "winter type" air pollution in Athens, Greece--a time series analysis within the APHEA project. J Epidemiol Community Health; 50 Suppl 1:s47 s51. - 10.
Ballester F. Corella D. Perez-Hoyos S. Hervas A. 1996 Air pollution and mortality in Valencia, Spain: a study using the APHEA methodology. J Epidemiol Community Health;50 5 527 533 - 11.
Borja-Aburto VH, Loomis DP, Bangdiwala SI, Shy CM, Rascon-Pacheco RA. 1997 Ozone, suspended particulates, and daily mortality in Mexico City. Am J Epidemiol;145 3 258 268 - 12.
Dockery DW, Pope CA. 1994 Acute Respiratory Effects of Particulate Air-Pollution.Annual Review of Public Health;15 107 132 - 13.
CA Pope Schwartz. J. Ransom M. R. 1992 Daily Mortality and Pm(10) Pollution in UtahValley. Archives of Environmental Health;47 3 211 217 - 14.
Schwartz J. Dockery D. W. 1992 Particulate air pollution and daily mortality in Steubenville, Ohio. Am J Epidemiol;135 1 12 19 - 15.
Schwartz J. 1994 Total suspended particulate matter and daily mortality in Cincinnati, Ohio. Environ Health Perspect;102 2 186 189 - 16.
Sunyer J. Castellsague J. Saez M. Tobias A. Anto J. M. 1996 Air pollution and mortality inBarcelona. J Epidemiol Community Health; 50 Suppl 1:s76 s80. - 17.
Fairley D. 1990 The relationship of daily mortality to suspended particulates in Santa Clara County, 1980-1986. Environ Health Perspect;89 159 168 - 18.
What are people dying of on high air pollution days? Environ ResSchwartz J. 1994 64 1 26 35 - 19.
Anderson HR, Ponce dL, Bland JM, Bower JS, Strachan DP. 1996 Air pollution and daily mortality in London: 1987-92. BMJ;312 7032 665 669 - 20.
Braun-Fahrlander C. Ackermann-Liebrich U. Schwartz J. Gnehm H. P. Rutishauser M. Wanner H. U. 1992 Air pollution and respiratory symptoms in preschool children. Am Rev Respir Dis;145 1 42 47 - 21.
Pope CA, Dockery DW. 1992 Acute Health-Effects of PM10 Pollution on Symptomatic and Asymptomatic Children. American Review of Respiratory Disease;145 5 1123 1128 - 22.
Roemer W. Hoek G. Brunekreef B. 1993 Effect of ambient winter air pollution on respiratory health of children with chronic respiratory symptoms. Am Rev Respir Dis;147 1 118 124 - 23.
Hoek G. Brunekreef B. 1993 Acute effects of a winter air pollution episode on pulmonary function and respiratory symptoms of children. Arch Environ Health;48 5 328 335 - 24.
Dockery DW, Speizer FE, Stram DO, Ware JH, Spengler JD, Ferris BG. 1989 Effects of inhalable particles on respiratory health of children. Am Rev Respir Dis;139 3 587 594 - 25.
Jaakkola J. J. Paunio M. Virtanen M. Heinonen O. P. 1991 Low-level air pollution and upper respiratory infections in children. Am J Public Health;81 8 1060 1063 - 26.
Ransom MR, Pope CA. 1992 Elementary-School Absences and Pm(10) Pollution in UtahValley. Environmental Research;58 2 204 219 - 27.
Romieu I. Lugo M. C. Velasco S. R. Sanchez S. Meneses F. Hernandez M. 1992 Air pollution and school absenteeism among children in Mexico City. Am J Epidemiol;136 12 1524 1531 - 28.
Bates D. V. Sizto R. 1983 Relationship between air pollutant levels and hospital admissions in Southern Ontario. Can J Public Health;74 2 117 122 - 29.
Burnett R. T. Dales R. Krewski D. Vincent R. Dann T. Brook J. R. 1995 Associations between ambient particulate sulfate and admissions to Ontario hospitals for cardiac and respiratory diseases. Am J Epidemiol;142 1 15 22 - 30.
Burnett R. T. Dales R. E. ME Raizenne Krewski. D. Summers P. W. Roberts G. R. et al. 1994 Effects of low ambient levels of ozone and sulfates on the frequency of respiratory admissions to Ontario hospitals. Environ Res;65 2 172 194 - 31.
Ponce d. L. Anderson H. R. Bland J. M. Strachan D. P. Bower J. 1996 Effects of air pollution on daily hospital admissions for respiratory disease in London between1987 88 and1991-92. J Epidemiol Community Health; 50 Suppl 1:s63-s70. - 32.
Pope CA. 1989 Respiratory-Disease Associated with Community Air-Pollution and A Steel Mill, Utah Valley. American Journal of Public Health;79 5 623 628 - 33.
Pope CA, Dockery DW, Spengler JD, Raizenne ME. 1991 Respiratory Health and PM10Pollution- A Daily Time-Series Analysis. American Review of Respiratory Disease;144 3 668 674 - 34.
Schwartz J. 1996 Air pollution and hospital admissions for respiratory disease.Epidemiology;7 1 20 28 - 35.
Hagen J. A. Nafstad P. Skrondal A. Bjorkly S. Magnus P. 2000 Associations between outdoor air pollutants and hospitalization for respiratory diseases. Epidemiology;11 2 136 140 - 36.
Kotesovec F. Skorkovsky J. Brynda J. Peters A. Heinrich J. 2000 Daily mortality and air pollution in northern Bohemia: different effects for men and women. Cent Eur J Public Health;8 2 120 127 - 37.
Zanobetti A. Schwartz J. 2000 Race, gender, and social status as modifiers of the effects of PM10 on mortality. J Occup Environ Med;42 5 469 474 - 38.
Cohen AJ, Pope CA, Speizer FE. 1997 Ambient air pollution as a risk factor for lung cancer. Salud Publica de Mexico;39 4 346 355 - 39.
Dean G. 1966 Lung cancer and bronchitis in Northern Ireland, 1960-2. Br Med J;5502 1506 1514 - 40.
Penna M. L. F. Dulchiade M. 1991 Air pollution and infant mortality from pneumonia in theRio de Janeiro metropolitan area. Bulletin of PAHO;25 1 47 54 - 41.
Saldiva P. H. Lichtenfels A. J. Paiva P. S. Barone I. A. MA Martins Massad. E. et al. 1994 Association between air pollution and mortality due to respiratory diseases in children in Sao Paulo, Brazil: a preliminary report. Environ Res;65 2 218 225 - 42.
Saldiva P. H. N. CA Pope Schwartz. J. Dockery D. W. Lichtenfels A. J. Salge J. M. et al. 1995 Air-Pollution and Mortality in Elderly People- A Time-Series Study in Sao-Paulo, Brazil. Archives of Environmental Health;50 2 159 163 - 43.
Pereira L. A. Loomis D. Conceicao G. M. Braga A. L. Arcas R. M. Kishi H. S. et al. 1998 Association between air pollution and intrauterine mortality in Sao Paulo, Brazil. Environ Health Perspect;106 6 325 329 - 44.
Sobral HR. 1989 Air pollution and respiratory diseases in children in Sao Paulo, Brazil. Soc Sci Med;29 8 959 964 - 45.
Spektor D. M. Hofmeister V. A. Artaxo P. Brague J. A. Echelar F. Nogueira D. P. et al. 1991 Effects of heavy industrial pollution on respiratory function in the children of Cubatao, Brazil: a preliminary report. Environ Health Perspect;94 51 54 - 46.
Rumel D. Riedel L. F. Latorre M. R. Duncan B. B. 1993 Myocardial infarct and cerebral vascular disorders associated with high temperature and carbon monoxide in a metropolitan area of southeastern Brazil]. Rev Saude Publica;27 1 15 22 - 47.
MS Reymao Cury. P. M. Lichtenfels A. J. Lemos M. Battlehner C. N. Conceicao G. M. et al. 1997 Urban air pollution enhances the formation of urethane-induced lung tumors in mice. Environ Res;74 2 150 158 - 48.
Gouveia N. Fletcher T. 2000 Time series analysis of air pollution and mortality: effects by cause, age and socioeconomic status. J Epidemiol Community Health;54 10 750 755 - 49.
Gouveia N. Fletcher T. 2000 Respiratory diseases in children and outdoor air pollution inSao Paulo, Brazil: a time series analysis. Occup Environ Med;57 7 477 483 - 50.
Available at: http://www.ipes.es.gov.br/ - 51.
Available at: http://www.vitoria.es.gov.br/negocios/investe.htm/ - 52.
Available at: http://www.vitoria.es.gov.br/ - 53.
Hastie T. Tibshirani R. 2000 Generalized Additive Models. London: Chapman and Hall,1990. - 54.
Mc Cullagh P. Nelder J. A. 1989 Generalized Linear Models. 2 ed. London: Chapman andHall. - 55.
Zeger LS. 1988 A regression model for time series of counts. Biometrika;75 4 621 629 - 56.
Martins LC, Latorre MR, Cardoso MR, Goncalves FL, Saldiva PH, Braga AL. 2002 Air pollution and emergency room visits due to pneumonia and influenza in Sao Paulo, Brazil]. Rev Saude Publica;36 1 88 94 - 57.
Hernandez-Cadena L. MM Tellez-Rojo-Aguirre Sanin. Lacasana-Navarro L. H. Campos M. Romieu A. I. 2002 Relationship between emergency consultations for respiratory diseases and air pollution in Juarez City, Chihuahua]. Salud Publica Mex 2000;42 4 288 297 - 58.
BD Ostro Eskeland. G. S. Sanchez J. M. Feyzioglu T. 1999 Air pollution and health effects: Astudy of medical visits among children in Santiago, Chile. Environ Health Perspect;107 1 69 73