\r\n\tOver the years, the concept of maintenance became more comprehensive, reducing fault occurrence and increasing industrial system availability. Besides, reliability, safety, and criticality requirements were associated with the system or equipment under analysis. Maintenance strategies or schemes can be classified as corrective (run-to-break), preventive (time-based), and predictive (condition-based maintenance). Corrective maintenance is only performed after an occurrence of a fault. Therefore, it involves unexpected breakdowns, high costs, changes in the production chain, and it could lead to catastrophic events. Preventive maintenance and interventions occur based on a scheduled maintenance plan or the equipment's mean time between failures. Although it is more effective than corrective maintenance, unexpected failure may still occur by preventing most failures. Additionally, the process cost is still high, especially the costs associated with labor, inventory, and unnecessary replacement of equipment or components.
\r\n\tOn the other hand, predictive maintenance analyses the equipment condition so that a possible fault can still be identified at an early stage. Predictive maintenance aims to identify a machine anomaly so that it does not result in a fault. Such maintenance involves advanced monitoring, processing, and signal analysis techniques, which are generally performed non-invasively and, in many cases, in real-time. In the case of machines or processes, these techniques can be developed based on vibration, temperature, acoustic emission, or electrical current signal monitoring. It should be noted that monitoring such signals or parameters to verify the operating condition is called condition monitoring. Condition monitoring aims to observe the machine's current operational condition and predict its future condition, keeping it under a systematic analysis during its remaining life. In this sense, a fault condition can be detected and identified from systematic machine condition monitoring. A diagnosis procedure can be established, whereby properly investigating the fault symptoms and prognosis.
\r\n\t
\r\n\tThis book will aim to merge all these ideas in a single volume, aggregate new maintenance experiences, apply new techniques and approaches, and report field experiences to establish new maintenance processes and management paradigms.
\r\n\t
One of the challenges in the biomedical engineering domain is the bio-signal processing with special electronics devices and circuits, (Kutz, 2009). A parallel target is the remote medicine, which need mobile platforms for diagnosis and an internet link to ensure the telemedicine requirements, (Hung & Yuan-Ting, 2003). In this scope, the electronic devices and circuits play a crucial role. For instance, a noisy amplifier involves pseudo-signals, while an active filter can reject the undesired frequencies and adjust the useful signal, (C. Ravariu, 2010a).
\n\t\t\tThe remote diagnosis centers, automate instruments for drug delivery (F. Ravariu et al., 2004) or mobile platforms for domestic applications (Woodward et al., 2001) are common targets accepted by the medical insurance companies form the world wide. The physician-patient remote interaction, so necessary in telemedicine, needs the development of various tools for home analysis, in order to be able to send all the collected tests to a database on Internet, (Fong, 2005). In real labs, more accurate results extracted from the electrophysiological measurements need the development of different hardware or software tools in order to send proper tests, without noise or pseudo-signals, to a medical center, (Babarada, 2010a).
\n\t\t\tOn the other hand, this chapter has the following additional scopes:
\n\t\t\tit offers an alternative circuit for the noise rejection in electromyography and
it represent a starting platform for new others electrophysiological signals recording, starting from cellular origin of the electrical biosignals (Sanmiguel, 2009) and the products can be easily used for learning in bioelectronics platforms, too (C. Ravariu, 2009b).
In this chapter is firstly proposed a simple and cheap platform for the electrocardiogram ECG recording on a Personal Computer PC. Why still ECG? Unfortunately, because the cardiovascular diseases are maintaining their first place in morbidity and mortality too, in many countries, (WHO Reports, 2008). The general electrical circuit for the ECG recording was adapted in order to be available for home applications. The amplified signal is then connected via the microphone muff to PC. A conversion of the input “noise” signal from microphone, into an ECG trace is available on PC. In this way, the ECG becomes available, in the simpler mode directly on the computer screen, without any expensive tracer.
\n\t\t\tFor instance this apparatus can become mobile with a laptop connection or with its own LCD display and can be used by customers without medical knowledge. Therefore, one of the original points of this chapter consists in the practical assembling of the hardware parts into a so called “mobile ECG platform”.
\n\t\t\tTwo extreme facts occur in a medical center with the classical ECG equipment: 90% of the daily tests are false alerts. At the opposite extreme are placed the grave cases that don’t benefit in time about these kinds of centers. The mobile ECG platform provide in 1-2 minutes the main electrocardiograph shape, at home, and can alert the person if a dangerous situation is recorded, as emergency in cardiovascular diseases, (Drew, 2011).
\n\t\tThe prime novelty of the paper isn’t a new spectacular circuit, because the standard ECG analog blocks are used, (Popa, 2006). But some distinct theoretical principles were collected together with the own implementation idea, to practically create this particular ECG. As integrated circuit, the TL 084 CN has been used, which possesses four operational amplifiers OP, figure 1.
\n\t\t\tThe internal configuration of the integrated circuit TL 084 CN, (
The internal electronic scheme of each OP amplifier is represented in figure 2, (Texas Instruments, 2007).
\n\t\t\tThe bipolar and JFET technologies combination conffers special performances, useful in biomedical applications. A first demand is the noise immunity, ensured by the JFET input configuration with extremely low gate currents as inputs. Then, the bipolar transistors are the most sensitive components in transconductance term, suitable for the biological signal amplification, as another demand.
\n\t\t\tThe advantages of this circuit are: low power consumption, wide common-mode and differential voltage ranges, low input bias and offset currents, output short-circuit protection, high input impedance due to the JFET-input stage, common-mode input voltage range includes VCC\n\t\t\t\t+, high slew rates. The CN-suffix devices are characterized for operation from 00C to 700C, suitable for the human environment.
\n\t\t\tThe interconnections among these operational amplifiers, since to produce the input signal amplification, besides to the low pass filter function, are presented in the design paragraph.
\n\t\t\tThe internal schema of one operational amplifier
The work principle is based on the voltage difference measuring between two electrodes applied on the chest skin in respect with a third electrode – the reference electrode applied on the left hand skin. The electrodes are simple metal plates. For a smaller contact resistance, an electrolyte or gel is applied onto the electrode.
\n\t\t\t\tIn this scope, an instrumentation amplifier function was made up from three previous operational amplifiers, figure 3.
\n\t\t\t\tThe design of the amplifier
This circuit is constructed from a buffered differential amplifier stage with three new resistors, linking two buffer circuits together, (Rusu, 2008). All resistors have equal values, excepting for Rgain: R1=R2=R3=R. The negative feedback of the upper-left operational amplifier causes the voltage in the point 1 to be equal with V1. Likewise, the voltage in the point 2 is held to a value equal with V2. This establishes a voltage drop across Rgain equal to the voltage difference between V1 and V2. That voltage drop causes a current through Rgain; since the feedback loops of both operational amplifiers draw no current on inputs, the same amount of current through Rgain must be going through two R1 resistors, above and below it. This produces a voltage drop between the points 3 and 4 equal to:
\n\t\t\t\tThe regular differential amplifier on the right-hand side of the circuit then takes this voltage drop between points 3 and 4 and amplifies it:
\n\t\t\t\tThe gain becomes 1, assuming again that all "R" resistors are of the same value. Although this method looks like a cumbersome way to build an instrumentation amplifier, it has the distinct advantages of possessing extremely high input impedances on the V1 and V2 inputs, because they connect straight into the non-inverting inputs of their respective operational amplifier and adjustable gain that can be set by a single resistor. The global gain of the amplifier results from eq. (1) and (2), taking into account that R1=R2=R3=R:
\n\t\t\t\tBecause there are very small voltage differences, there is also a low pass filter added in one branch of the instrumentation amplifier, fig. 4.
\n\t\t\t\tLow pass active filter with operational amplifiers
The advantage of this circuit is that it is powered from only one 9V battery, the 0 level is at VCC/2. The VCC/2 level is given by one simple resistor divider, followed by a buffer.
\n\t\t\t\tThe final schema used for the hardware implementation of the mobile ECG platform is available in figure 5.
\n\t\t\t\tFinal scheme of the ECG circuit
The body potential is firstly recorded at VCC/2, connecting the “body electrode” to the left hand. Next, the instrumentation amplifier measures the voltage fluctuations between electrode 1 and 2, amplifies the signal, filtering it and send it to the computer microphone input.
\n\t\t\t\tThe performances of the proposed circuit, in the case of Varta Superlife9V battery using, are provided in table 1.
\n\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Power consumption | \n\t\t\t\t\t\t\tmax. 15W | \n\t\t\t\t\t\t
Voltage powering | \n\t\t\t\t\t\t\t230V AC Univ., 50Hz, 80VA (or 9V DC battery) | \n\t\t\t\t\t\t
Battery life | \n\t\t\t\t\t\t\t12 hours | \n\t\t\t\t\t\t
CMRR of amplifier | \n\t\t\t\t\t\t\t75-86dB | \n\t\t\t\t\t\t
Circuit bandwidth | \n\t\t\t\t\t\t\t0.05-120Hz | \n\t\t\t\t\t\t
The inter-connection of this hardware to a PC or laptop implies some potential hazards for patients and additional noise introducing. Therefore, a main set of algorithms used for the ECG conditioning with respect to different types of hazards, noise and artifacts in order to extract the basic electrocardiographic signal, is briefly discussed. As the specialty literature notify, the electrical safety should be very careful concerning a home-built circuit connection to something that is running off a significant power source. In principle, one can more safely read out the circuit using a laptop computer that is running off its battery, (Sornmo, 2006). Nevertheless, this leaves the laptop’s ground floating, without a good ground connection, with a remarkable amount of noise superposed over the ECG collected signal. Only if the circuit can be connected to a good ground point, then using a battery powered laptop should work well. A solution is to connect the ground of the circuit and the input and output cables to a metal box housing the circuit as carcase, which still fulfils a shield effect. Consequently, the circuit ground will then come from whatever device is looking to the output – either the laptop, PC or oscilloscope. Since these devices are usually powered from the line voltage, the ground from the wall socket often provides a very good ground connection.
\n\t\t\t\tEven with the laptop plugged into the mains socket, a significant amount of noise is still found. The best results were obtained by keeping the cables connecting the subject to the circuit close together, thereby reducing the inductive pick-up.
\n\t\t\t\tProfessionally medical devices are built with significant overvoltage protection, so that line power glitches do not represent a hazard to patients, during the test. To supplementary increase the safety an optically-coupled linear ISOlation amplifier can be added to the existing circuit so that the subject is completely isolated from the power supply. In simpler applications, the pair diodes provide limited over-voltage protection.
\n\t\t\tThe software can process the incoming signal from the ECG output and can offer information about the heart beat, (Rusu, 2008). It is a display software, converting the input analog signal from the microphone muff into a graph. Usually, the program analyses the beat ration, suggesting a normal ECG trace, after the periodicity and beat numbers, or abnormal trace, in terms of P-Q-R-S-T-U waves, (Macfarlane, 2011). The ventricular contraction produces the most clears QRS complex displayed on PC. The P and T waves aren\'t so consistent in our experiments. Therefore, this mobile ECG system is more recommended for ventricular alerts, especially encountered in the QRS complex deformation.
\n\t\t\t\tIn absence of a suitable ECG signal generator (e.g. fluke medSim 300B), the circuit was tested directly on a healthy patient, 24 years, as a real ECG signal source. Some output waves recorded with the previous circuit and exposed on PC are presented in fig. 7, 8, 9. Without a 50Hz filter and without a shield additional protection, the dragging signal looks like in fig. 7, due to the antenna behavior of the human body versus the 230V, 50Hz AC signal from laboratory.
\n\t\t\t\tThe output signal without the 50Hz filter
The output signal with the 50Hz filter
After the 50Hz signal removal, the ECG signal recorded by prior circuit and displayed on PC looks like in fig. 8. Here are obviously the heartbeats, via QRS incipient complex. The output signal from fig. 9 is the best recorded signal, after a low pass filter and choosing different skin sensors with electrolyte solution.
\n\t\t\t\tThis ECG mobile system has the advantage that it can be connected to a home computer or laptop and it can be used by anyone, not only by the medical staff. The global product is available in fig. 10.
\n\t\t\t\tThe final output signal after low pass filter and different skin sensors
The circuit, battery, electrodes, connectors and jack output of the circuit
Adding a LCD device to monitor anytime the signal (e.g. at office, walking, running situations), the system can be improved, in order to offer a small, cheap and portable ECG compact device, (Kara, 2006). The power dissipation can be minimized if the circuit is integrated. Some major software improvements could consist in the comparison of the recorded waves within an implemented database, alerting the user if there is a change in the ECG trace and suggesting an initial diagnosis, or normal ECG state.
\n\t\t\tIn the biomedical engineering domain, the circuits design with high noise immunity for electrophysiology is maintained as a main aim. Besides to the classical ECG, others electro-physiological methods have been developed in order to record the electrical activity of muscles at the skin level. This is the Electro-Myo-Graphy (EMG), (Merletti, 2004). There are two kinds of EMG: surface EMG and intramuscular EMG. A surface electrode may be used to monitor the general picture of the muscle activation, while a few fibers activity can be observed using only an invasive needle, intramuscular applied, (Raez, 2006). The non-invasive EMG method suffers from noise, collected by the surface electrodes.
\n\t\t\tThere are many types of noise to be considered, when EMG is recorded through surface electrodes.
\n\t\t\t\t\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
A noisy signal (black) and power spectrum (red), in typical EMG
The electrical potential measured by non-invasive EMG represents the grouped activity of many muscles fibers firing in varying sequences, at different rates. It has an amplitude range of 0–10 mV peak to peak, prior to amplification and a useable energy for f=0 - 500Hz. The dominant frequency is 50 – 150Hz, fig. 11.
\n\t\t\t\tActivity above 500Hz is rather an external electrical artifact and can be hardware eliminated by low-pass filters, with 400-450Hz as cut-off frequency and with a usual roll-off slope of 40dB/dec. Lower frequencies can be contaminated with external noise from the wall power and from biological sources such as ECG and EEG activity - eliminated by the high-pass filters.
\n\t\t\tAt the skin level, the entire electrical activity spans a frequency range from several cycles per second through 500Hz. A special attention must be paid to those spectral characteristics of the EMG that dramatically shifts toward lower frequency ranges, when muscles become fatigued. The noise filters must take into account this useful domain.
\n\t\t\t\tThe first stage of a differential amplifier, frequently used for the EMG acquiring, works also as a high-pass filter, which removes noise caused by the electrode movement on skin. A common-mode feedback is often adopted to reduce the common mode voltage on the subject.
\n\t\t\t\tTheoretically, if a biosignal is equally applied on the differential inputs of the operational amplifier, the output should not be affected. In practice, changes in common mode voltage propagate changes to output. The common-mode rejection ratio (CMRR) is the ratio of the common-mode gain to differential-mode gain. The common-mode rejection ratio expressed in decibels, dB, is referred as common-mode rejection (CMR).
\n\t\t\t\tIn EMG signal acquisition, the amplifier should have the capability to reject the common mode voltages, mainly the power line voltage between subject and ground, which may be thousand times higher then the surface EMG signal. Therefore, a CMR range of 100-120dB is required to limit the equivalent input voltage to a value negligible in respect with EMG, (Bogdan, 2009). Hence, a common mode feedback is often adopted to reduce the common mode voltage. This technique consists in detecting and re-applying of the common mode voltage to the subject, with opposite phase.
\n\t\t\t\tThe proposed active filter for the EMG recording
\n\t\t\t\t\tFigure 12 proposes a circuit based on an amplifier/high-pass filter, with INA2128, INA2137 as instrumentation amplifiers that uses the negative feedback. Due to the INA2128 current-feedback topology, the gate voltage is roughly 0.7V, less than the common-mode input voltage, (Texas Instruments, 2007). This DC offset into the guard potential is satisfactory for many guarding applications.
\n\t\t\t\ta) Gain versus Frequency for the prior filter; (b) the input-referred noise versus frequency
The amplitude of the acquired EMG signals ranges from 10μV to 1000μV. These signals need amplification from 60 to 100dB, so that 1V signal is available for the amplification sub-system. This technique also helps to the EMG signal quality and keeps the distortions as minimal as possible. INA2128 has an adjustable gain, using a single external resistor, R:
\n\t\t\t\twhere R = R1 = R13, from fig. 12, are expressed in kΩ. Despite to the quiescent current, the Gain - Frequency curve presents wide bandwidth, even at high gain. This is due to its current-feedback topology, fig. 13.a. The output-referred noise does not allow a fair comparison of the circuits performances because it depends on the gain between the input refereed noise and the input signal - both multiplied by the gain as they are processed by circuit. Thus, the input-referred noise indicates how much the input signal is corrupted by the circuit’s noise, fig. 13.b.
\n\t\t\tAnother way to remove the noise from an EMG signal is by software processing of the acquired signal. Some methods that proved their efficiency are:
\n\t\t\t\t\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
The autoregressive (AR) time series model can be used in EMG study, too. A surface electrode picks up the EMG activity from all the active muscles in its vicinity, while the intramuscular EMG is highly sensitive, with only minimal crosstalk from adjacent muscles. The EMG signal is represented as an AR model with the delayed intramuscular EMG as input. An artificial neural network combined with an autoregressive model was used to drive the biceps of an arm prosthesis, (Fisher, 2006). The Ag electrodes are placed on biceps at 3cm distance from each other and behind the triceps. The EMG signal obtained from the electrodes is amplified and passed through a low-pass filter to be sent to the level determining circuit.
\n\t\t\t\t\n\t\t\t\t\t\t\t
\n\t\t\t\t\tFigure 14 shows the result of wavelet analysis in the EMG processing.
\n\t\t\t\tComparison of the initial noisy signal (grey) and the denoised signal (black)
In the last years the biology has advanced in the natural pacemakers researching. Although all of the heart\'s cells possess the ability to generate the electrical impulses or action potentials, only a specialized portion of the heart, called the sinoatrial node, is responsible for the whole heart\'s beat. The cells that create these rhythmical impulses are called pacemaker cells. Besides to the cord rhythm and brain periodical activity, others and others organs were discovered with a cyclic activity. For instance, the digestive muscles, without any alimentary stimulus, have periodic contractions, from 0.3 up to 12 cycles / minute. In this case, the Interstitial Cajal Cells (ICC), distributed along the gastrointestinal tract, fulfill the pacemaker role, (Sanders & Ward, 2006). Many types of smooth muscle tissues have recently been shown to contain ICC, but with few exceptions, the functions of these cells are a research subject, being still unknown. In this way, the electrophysiological measurements are possible, recording the electrical gastric activity within the electrogastrography, EGG, (Květina, 2010).
\n\t\t\tAnother electrophysiological test is the electroretinography, ERG, relatively recent standardized, (Marmor, 1999), but still a rare clinical test. A related electrophysiological eyes test measures the resting potential of retina, by electro-oculography, EOG, (Brown, 2006). Unlike the electroretinography, the EOG does not represent the response to individual visual stimuli. Also, an electrohepatography, EHG, was possible in a canine model, revealing waves with identical frequency and amplitude from the 3 electrodes, which were sutured to the capsule on the anterior surface of the canine liver. The mean frequency of the waves was 10.6 ± 1.8 cycles/sec and the amplitude 63.7 ± 11.6 µV. The waves were reproducible when the test was repeated in the same animal. Hepatoarrhythmic electric activity was registered in liver insult of the canine model or in liver diseases, (Shafik, 2000).
\n\t\t\tThere are some organs, whose pacemakers were proved, but are not known yet. For instance, the pancreas presents a cyclic insulino-secretion, with or without meals, which prooves the existance of some cells with natural pacemaker role, (Ravariu, 2011). Probably, an electrophysiological activity coud be detected, in the next future, in a same manner as for liver or brain. So, the way toward new electrophysiological methods will be opened in the next years.
\n\t\t\tThe excitable cells, like neurons, myocytes or some secretory cells in glands, like beta cells alpha cells, maintain a negative potential difference across the cellular membrane, due to a gradient of the ionic charges. All these phenomena are caused by specific changes in membrane permeability for potasium, sodium, calcium and chloride, which produces concerted changes in the functional activity of different ion channels, ionic pumps, exchangers and protein transporters. Conventionally, the membrane resting potential, RP, can be defined as the value of the transmembranar voltage from i.c. to e.c. environment in these cells. Any kind of cell posses its own resting potential value, (e.g. RP = -70mV for some neurons, RP = -60mV for beta cells), (Fox et al, 2006).
\n\t\t\t\tAn action potential, AP, is a self-regenerating wave of electrochemical activity that allows excitable cells to carry a signal over a distance. This feature of the excitable cells is to provide an output reply to an input stimulus. Among the neuronal cells, the stimulus consists in neurotransmitters and the reply is propagating as the action potential, also named nervous impulse. For small incoming stimulus, the potassium current prevails thru the ionic channels and the membranar voltage turns back to its resting value, typically −70mV, (Purves, 2008). For stronger stimulus that overcomes a critical threshold value, typically 15mV, higher than the resting value, the sodium channels are opening. This produces a positive feedback from the sodium current that activates others sodium channels. Thus, the cell fires, producing an action potential, (e.g. AP = +30mV for neurons or AP = -30mV for beta cells).
\n\t\t\t\tIn the case of muscular activity, the electrical stimulus of myocytes is provided by a motor neuron and electrochemically transmitted by acetylcholine neurotransmitter. For instance, a motor unit is defined as one motor neuron and all of the muscle fibers it innervates. The area where the nerve contacts the muscle is called the neuromuscular junction. After the action stimulus is transmitted across the neuromuscular junction, an action potential is elicited in all of the innervated muscle fibers of that particular motor unit. The sum of all these electrical activities is known as a motor unit action potential (MUAP), (Raez et al, 2006). This electrophysiological activity from multiple motor units is the typical signal evaluated during an EMG.
\n\t\t\t\tEMG signal and the decomposition of MUAPs
In figure 15 can be observed in principle the EMG recording signal, the neuromuscular junction and the shapes of the motor unit action potential, after a decomposition of the physical signal.
\n\t\t\tThe interstitial Cajal cells serve as electrical pacemakers and generate spontaneous electrical slow waves in the gastrointestinal tract. Electrical slow waves spread from ICC to smooth muscle cells and the resulting depolarization initiates the calcium ion entry and contraction. The Cajal cells trigger the gut contractions with different frequencies: 3 per minute for stomach, 12 per minute for duodenum, 10 per minute for ileum, 3 per hour for colon, ensuring the bowel peristalsis. Therefore, the electrical activity recording of the bowels is possible, by electrogastrography. The classical method is invasive, with needle inserted in the stomach during the endoscopy or by surgical act. Nowadays methods try to use a non-invasive recording, with a pair of bipolar electrodes configuration.
\n\t\t\t\tIn a first experiment, the six electrodes of a standard ECG apparatus, were placed onto the gastric zone, since to observe an electrogastrography trace, fig. 16.a. Unfortunately, the collected signal preserve the heart beat cadence, due to the internal set-up of the dedicated cardiac apparatus, fig. 16.b. In this way, was proved that the cardiac signal is strong enough to cover all surrounding organs. Other experiments are necessary.
\n\t\t\t\tThe electrodes places and the recorded EGG
The prior electrophysiological equipment, designated for the ECG mobile platform, was re-allocated toward the gastric signal detection, by skin electrodes. In this scope, three plat electrodes were placed on skin, on the epigastric zone. The filter resistances were adjusted in order to collect only 1Hz-0.05Hz frequencies, as useful domain for an EGG test. The subject was monitored, after 3 hours post-prandial. Figure 16.c presents the acquired signal. It appears rather as an electromyography signal, probably due to the strong muscular abdominal wall. The interaction among different organs and tissues signals, at skin level, represents the main disadvantage of the remote electrophysiological techniques.
\n\t\t\tThis paragraph intends to promote a novel term for the medical techniques, in order to be more precise. There are well-known and well-accepted the investigations classifications, after body space or intrusion, as in vivo / in vitro and also intrusive / non-invasive methods. From our experimental tests in electrophysiology, a distinct concept arises in order to proper characterize a measurement. For instance, an electrogastrography is classical recorded by invasive needles. Obviously, this is a strong invasive method, applied in vivo. A less invasive technique is to introduce some plate electrodes, by endoscope, till they contact the internal stomach wall. This last EGG is in vivo recorded, but is almost non-invasive, avoiding the tissue penetration. However, the electrodes touch the gastric mucosa and a special attention has to be paid to the instruments sterilization. It doesn\'t enter in touch with the blood, as for the needles case, but the danger of diseases transmission still exists. Therefore, both methods are named "
If the electrogastrography EGG test occurs with some surface electrodes, at skin level, the gastric signal is remotely registered. This is a non-invasive technique, applied in vivo, at a considerable distance from the source electrical signal emitted by the stomach pacemakers. These "
There are many other medical techniques that can collect signs and tests, either by an immediate contact with the investigated organ, either by remote recording. As much as more biological layers and tissues are interposing between the medical tool terminal and the target organ, the test move from "
One of the main contributions of this chapter is the global application idea for an ECG mobile platform and its practical implementation. An integrated circuit - TL 084 CN – was used, which posses four operational amplifiers. The advantage of the proposed circuit is that it is powered from only one 9V battery, the 0 level is at VCC/2. The VCC/2 level is given by one simple resistor divider, followed by a buffer.
\n\t\t\tThe amplified signal is introduced in a PC, by the microphone muff. The incoming signal can be software processed and shown as ECG trace on the computer display. This electronic format of the ECG data avoids the additional expensive mechanics tracer for customer and can be easily transferred to a medical center, via the telemedicine methods.
\n\t\t\tSecondly, the chapter discussed some hardware and software methods to reduce the noise during the Electromyography. The hardware technique consists in detecting and re-applying of the common mode voltage to the subject with opposite phase via the INA2128 current-feedback topology. The main software contribution is by wavelet transform (WT) that represents a very suitable method for the classification of EMG signals due to its linearity advantage, yielding a multi-resolution representation.
\n\t\t\tFinally, an incursion into nowadays electrophysiology is exposed, in order to estimate the new challenges. The electrogastrography EGG was intensively investigated in the last ten years in the world wide, but it is a novelty in Europe. This study reveals the interferences among the EGG, ECG and EMG signals, at skin level. The strongest is the cardiac signal and the weakest is the gastric signal. But the low level of the non-invasive EGG collected signal is related to many biological layers and frontiers between the target organ and the skin electrodes. In this way, a novel concept was introduced: remote electrophysiological tests versus in-touch tests. Sometimes, only remote methods can be accepted, in respect with the tissue particularities. The term of "remote medicine" ensure a larger spectrum, taking into account the remote diagnosis centers, coupled with telemedicine. Therefore, the term of remote medicine find a technical sense in electrophysiology, but also a social dimension in the modern medicine.
\n\t\tThe work has been co-funded by the Sectorial Operational Program Human Resources Development of the Romanian Ministry of Labor, Family and Social Protection through the Financial Agreement POSDRU/89/1.5/S/62557 // Partenership PN2 - 62063 - 12095 // contract no. 717/code 449.
\n\t\tThe clinical specialty of radiotherapy is an essential part of the multidisciplinary process of treatment of malignant neoplasms. Moreover, oncological diseases are and will continue to be a growing health - social and socio - economic problem nationally and globally in the coming decades. The development of the clinical method of radiotherapy is based on advances in nuclear and information technology. In recent years, dramatic and I would say revolutionary changes have taken place in connection with the introduction into routine practice of a number of new methods and radiotherapy techniques for delivering of the therapeutic dose. All these innovations, set the requirements for the development of precise and clear rules, criteria and standards for the quality of the radiotherapy process as well as for conducting a regular dosimetric quality audit. Clinical audit is defined as a process of quality improvement that seeks to improve patient care and outcomes by systematically reviewing the clinical activity performed against certain formulated criteria [1].
The quality audit in radiotherapy is an independent review of the quality assurance programs, which is ideally external to the process or part of the process being audited, ie. it is performed through independent procedures and by independent staff, who are not responsible for the performance of the activities, that are the subject of the audit.
The purpose of the introduction and development of the concept of external audit in the radiotherapy is to create and maintain a consistently high quality of the treatment method. The external audit ensures, that the clinical requirements for the quality of radiotherapy are met to achieve optimal treatment in terms of maximizing the likelihood of tumor control, while maintaining low normal tissue damage within clinically acceptable levels. As part of this, the implementation of a quality assurance program will minimize errors and incidents. Most countries seek to establish transparent quality management systems in health care for a number of reasons - professional, social, financial and political. The main goal of this form of quality assurance (QA) is to improve patient care with the intention of maximizing the effect of clinical activities, minimizing harm to the individual and society as a whole.
Achieving high quality in clinical practice in general and in radiation therapy in particular is a fundamental goal. The effectiveness of the clinical method of radiotherapy depends on the exact reproducibility of the patient’s position, the technical parameters of the irradiation systems and the exact dosimetric calibration of the used photon or electron beams of radiation, which are subject to international standards. The technical achievements and the conducted clinical studies impose the need of quality control programs and respectively external dosimetric audit of the radiation therapy process. This has led to the development and publication of a large number of international recommendations. The aim is to provide reliable, effective and precise radiation therapy. One of the key element is the organization and conducting of dosimetry audit in modern radiation therapy.
Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. The most common in 2020 (in terms of new cases of cancer) are: breast (2.26 million cases); lung (2.21 million cases); colon and rectum (1.93 million cases); prostate (1.41 million cases); skin (non-melanoma) (1.20 million cases) and stomach (1.09 million cases) [2]. Radiotherapy is recognized as an essential element of an effective cancer care program throughout the world. It is vital component of the treatment of cancer for many years. Aproximatelly half of all cancer patients requiring a radiotherapy in some time of their deceases. Abdel-Wahab et al. [3], Barton et al. [4], and Atun et al. [5], argue, that radiotherapy is a critical and cost-effective component of a comprehensive cancer control plan [6].
Modern radiotherapy is a very complex process of treatment planning and delivery of radiation dose. Today, radiotherapy encompasses a lot of steps from clinical evaluation to posttreatment follow-up. The clinical process of modern radiation therapy starts with a therapeutic decision at the first appointment with cancer patient, where the radiation oncologist prescribes the radiotherapy treatment. Then the immobilization of patient is performed, which be adopted during treatment. A computerized tomography (CT) scan of the patient is acquired for delineations of the planning target volumes (PTV) and the organs-at-risk (OARs). The CT images may be fusion with other imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET) for the precise determination of PTV and OARs. A treatment plan is created on a treatment planning system (TPS) based on the outlined structures and on the dose prescription to the PTV and tolerance dose criteria to the OARs. A pre-treatment quality assurance (QA) verification of the treatment plan has been performed after its evaluation and approving by the radiation oncologist. Image guided radiation therapy (IGRT) modality is using to check patient positioning before each treatment.
In recent years, radiotherapy has been advancing toward achieving a higher cure rate with a higher therapeutic dose and minimum side-effects. This has been possible through the development of high-performance and highprecision radiotherapy techniques and by applying cutting-edge medical technologies [7].
Modern radiotherapy reached a very high degree of complexity and sophistication and expected to represent an added value for the cancer patients in terms of clinical outcomes and improved radiation protection.
In 2016, IAEA published a new guidance document titled: Accuracy Requirements and Uncertainties in Radiotherapy [8]. All forms of radiotherapy should be applied as accurately as reasonably achievable with technical and biological factors being considered, but that regular independent dosimetry audit be conducted using postal (remote) or on-site visits [9].
The concept of verifying the realized dose in the medical applications of ionizing radiation was introduced in the early 20th century shortly after the first application of X-rays for the treatment of cancer.
Initially, in order to adequately assess the daily fraction that would be prescribed to patients, doctors irradiated their own hands to observe a skin reaction - “dose of erythema”.
In 1925, the Swedish physicist R. Sievert [10] created a circulating physical department to standardize the Roentgen radiation (X-rays) used in oncology therapy in his country. The department found some unreliable dosimeters and identified the need for better protective equipment for X-ray personnel. At the same time, the data collected from the measurements of the dosimetric value - Percent Depth Dose (PDD) were used as reference values for the technical equipment used for clinical purposes at that time.
Another documented example of an early dosimetry audit was found in Poland, following Marie Curie’s idea that a Laboratory for measuring the dose of X-rays and the radioactive isotope radium used in hospitals at the time should be opened. The laboratory for dosimetry measurements was founded in 1936 [10].
The dosimety laboratory in the International Atomic Energy Agency (IAEA) was established in the early 1960s to organize and conduct dosimetry audits for radiotherapy centers worldwide and to ensure international consistency in radiation dosimetry. The first pilot postal comparison of the radiation dose between different radiotherapy centers was organized by the IAEA in the period 1965–1966 as a joint project with the World Health Organization (WHO).
Dosimetry audit (DA) is a tool for quality improvement. It can be defined as a systematic and critical analysis of the quality of the dosimetry activities performed in specific radiotherapy center. The dosimetry audit includes an assessment of data, documents and resources in order to verify the performed clinical dosimetry activity against the adopted international standards of good practice. The essence of the dosimetry audit can be summarized as:
Improving the quality and organization of the dosimetry activities.
Further professional training of medical physicists.
Increasing the efficiency and safety of the radiotherapy.
Improving the quality of the overall radiotherapy process.
Promoting the efficient use of available resources.
The results of the dosimetry audit inform the staff about the main elements of the quality and the weaknesses of the dosimetry activities carried out, comparing the audited dosimetric practice with the standards for good clinical radiation dosimetry. Dosimetry audit identify areas for improvement and provide confidence in safety and efficacy, which are essential to creating a clinical environment of continuous development and improvement.
One of the main risks for patients undergoing radiation therapy is the delivery of a dosimetry inaccurate therapeutic dose during radiation therapy sessions. Dosimetry inaccuracies directly reflect on tumor control, cancer treatment and toxicity affected the survival, and quality of life of cancer patients. The differences between the prescribed and delivered dose directly affect the clinical outcomes. The precision of the therapeutic method of radiation therapy is mainly related to the high degree of accuracy of the radiation dose applied during the treatment of patients.
Dosimetry audit is a partial audit and related to the quality assurance procedures in the field of the performed dosimetry activities in a specific radiotherapy center and namely [11, 12, 13]:
Quality tool that improves the accuracy of clinical radistion dosimetry.
Conducted on a voluntary basis, but each radiotherapy center must initiate it itself.
DA is a “second opinion”, regardless of the specific treatment center regarding the performed clinical dosimetry - procedures, protocols, measuring instruments, etc.
Identifies gaps in procedures and methods used as well as errors in routine practice.
Identifying and understanding of errors leads to improved quality in general in the clinical activities of specific radiotherapy center.
Illustrates the good dosimetry practice in the field of radiation clinical dosimetry based on world standards.
Contributes to the avoidance of accidents and omissions in the daily radiotherapy activity.
DA is confidential.
DA leads to the exchange of knowledge, skills, information and competence.
Dosimetry audit is proactive, ie. consists in reviewing the current clinical dosimetry in order to improve its quality. It is organized and conducted remotely, ie. It is (remote audit).
Dosimetry audit worldwide are organized in different ways, often for geographical, economic or political reasons, but mainly check the fundamental value - the absorbed dose in reference conditions, ie. so-called - beam output [12]. The measurement of the value of the absorbed dose in the so-called reference conditions i.e. beam output is the most fundamental measurement that confirms whether the therapeutic system generating ionizing radiation and used for radiotherapy is properly calibrated [14].
The existence of an error in the calibration of the radiation beams leads to the creation of a systemic error in the treatment of each individual patient, which in turn leads to systemic differences in the results of the conducted radiation therapy.
DA is a key component in quality management in radiotherapy and plays an important role in the safe application and use of new methods and techniques of radiotherapy [15, 16].
The International Atomic Energy Agency (IAEA) as the founder of the idea of dosimetry audit and main organizator of the program for postal dosimetryc audit with thermoluminescent dosimeters (TLDs) and radiophotoluminescent dosimeters (RPLDs) for nearly fifty years has identified the following types [17] (See Figure 1).
IAEA classification of different types dosimetry audits [
The European Union has issued a new directive on the use of ionizing radiation for medical purposes 2013/58 / EURATOM, which entered into force in 2014 [18]. The new Directive updates the basic standards for radiation protection in clinical and professional settings, emphasizes clinical audits, reinforces their importance for quality improvement and recommends, that Member States ensure that dosimetry audits are carried out in accordance with national audit procedures.
A clinical audit is defined as “a systematic review or review of medical radiological procedures that seeks to improve the quality and outcome of patient care through a structured review in which medical radiological practices, procedures and outcomes are performed against established standards for good medical radiological procedures. procedures, changing practices where appropriate and applying new standards if necessary.”
Dosimetry audits are one of the main measures introduced to ensure the safety of patients undergoing radiotherapy. The international organizations conducting clinical trials set as a condition for participation the results of the dosimeter audit in order to evaluate the clinical dosimetry in the specific radiotherapy center, with it participated in the clinical trial [19]. In this way, dosimetry quality assurance (QA) and quality control (QC) are doubled as a tool in the fine-tuning used in clinical trial technology [20].
Performing an external dosimetry audit is an expensive procedure that requires special knowledge, skills, actions, time and effort. In some countries, basic safety standards require regular dosimetric audits with different requirements and frequencies.
The audit documentation of radiotherapy centers participating in an international clinical trial is not always easy to obtain and analyze because it is heterogeneous in terms of the type and frequency of dosimetric audit and is different for different centers and countries in Europe.
All this is the basis of the European Federation of Organizations for Medical Physics (EFOMP) to initiate a survey to determine what kind of audit, clinical or dosimetric, is required by law in different European countries, what role the medical physicist plays and to get a general idea for the regulations and practices regarding the quality assurance and quality control of the radiotherapy equipment.
EFOMP is developing a questionnaire in order to obtain the necessary information on the general requirements and standards for organizing and conducting dosimetric audit, quality assurance of dosimetric activity and periodic dosimetric inspections in EU countries at the end of 2019. The questions are addressed to the community of medical physicists to assess the regulatory status of dosimetric audits performed in radiotherapy centers.
The questionnaire was sent to 33 National Member Organizations (NMOs) in November 2019 (at the time of the survey’s dissemination, 33 NMOs were part of EFOMP). The results were obtained in the period December 2019–March 2020.
The first section of the questionnaire refers to the requirements for conducting periodic dosimetric audits in radiotherapy centers in Europe, the subject (auditor) performing the audit according to national legislation, as well as the source of the auditor (internal / external).
19 NMOs (58%) of the 33 EFOM members replied to the questionnaire. Of these, 14 are EU Member States (54%) and 5 are non-EU (46%).
In eleven European countries (11/19 NMOs), 9 EU members and 2 non-EU countries, national regulations require regular dosimetric audits to be carried out in radiotherapy centers (See Figure 2).
Dosimetric audit requirements according to the NMO responses [
Dosimetry audits are performed as follows: by external auditors in (6/11 NMOs), by internal auditors (2/11 NMOs) and by an unspecified auditor in (3/11 NMOs). 42% (8/19 NMOs), of which 5 EU members and 3 non-EU countries state that the requirements for conducting a dosimetric audit are not regulated at national level.
Only 11 NMOs report that national regulations require regular dosimetric audits of radiotherapy centers, but only 6 European countries state that there are well-established procedures that must be followed for an audit to be valid. Dosimetric audit is of great interest to EFOMP and is given great importance in Council Directive 2013/59 / EURATOM. Overall, the EFOMP study shows significant heterogeneity in national policies on the dosimetric audit program of radiotherapy centers.
Dosimetric audits were conducted in only 58% of the countries (NMOs) that participated in the survey organized and conducted by EFOMP in November 2019, although the deadline for transposition of the European Directive 2013/59 / EURATOM into national legislations is the end of 2019.
The physical phenomenon of photoluminescence is the basis for the detection of ionizing radiation with radiophotoluminescent dosimeters. Radiophotoluminescence as a phenomenon shows that some materials, after irradiation with sources of ionizing radiation, begin to luminesce under illumination with ultraviolet (UV) light and the luminescent light is proportional to the dose they were irradiated [21] (See Figures 3 and 4).
Schematic representation of the RPL process in phosphate glass doped with silver Ag+ ions [
The amount of luminescent light is proportional to the radiation dose [
This effect was used to create radiophotoluminescent (RFL) dosimeters, which are alumina-phosphate glasses, activated with silver and synthesized by a special technology that used the effect of photoluminescence.
In 1949, the RPL phenomenon was first discovered and applied for measuring the dose in the event of a radiation accident. The magnitude of the radiation dose ranged from 0.1 to 1 Gy [22]. At that time, there were still some problems with glass surface contamination and measuring the RPL signal became a technical challenge. Later, the ability to register ionizing radiation was drastically improved by changing the chemical composition of the glass used. Thus, the measurement range is from 0.1 mGy to 10 Gy [23].
Radiophotoluminescent dosimeters are an accumulative type of dosimeter. They work on the principle of the phenomenon of radiophotoluminescence, which is observed in some solids. RPLDs are made of silver-activated phosphate glass and are shaped like small glass rods (See Figure 5).
General type of radiophotoluminescent dosimeters (RPLDs) – glass rods.
The glass rods are 12 mm long and 1.5 mm in diameter. Each glass rod has an identification number engraved on one end. The sensitive area of the dosimeter is 6 mm long. When irradiated with ionizing radiation, stable luminescent centers are formed in the silver ions - positive and negative. The measurement of the absorbed dose is performed by optical excitation of the dosimeter with a laser emitting ultraviolet light [21]. The first RPLD was produced in 1949 [22]. Significant technological improvements have been made over time, including the accuracy and reliability of their measurement [23]. They are currently one of the best solid state dosimeters [21].
Today, the production of RPL dosimetry is advancing remarkably thanks to modern electronics and is well accepted as a solid-state, passive dosimeter operating in the range of 10μGy to 10 Gy, using a pulsed laser beam of UV light. Radiophotoluminescence dosimeters (RPLD) as a new type of solid state dosimeters are used in radiation dosimetry for radiotherapy in the last two decades.
The dosimetry system based on radiophotoluminescent dosimeters (RPLDs) is the Ace Dosimetry System, consisting of GD-302 M glass rods and an FDG-1000 reader from Asahi Techno Glass Corporation (ATG). It is used in IAEA Dosimetry Laboaratory (See Figure 6).
Dose Ace dosimetry system consisting of GD-302 M glass rods and an FGD-1000 reader/analyzer from the Japanese Asahi Techno Glass Corporation (ATG).
The glass rods are made of silver-activated phosphate glass. They are 12 mm long and 1.5 mm in diameter. Each glass rod has an identification number engraved on one end. The sensitive area of the dosimeter is 6 mm long. The glass rods are placed in specially made waterproof capsules. Each capsule with a glass rod already placed in it can be considered as an
Glass rods on the left and waterproof capsule on the right.
The dosimetry audit with RPLDs is the newest form of the audit offering as a service by IAEA Dosimetry Laboratory to the Member States. The participants (radiotherapy centers) should to irradiate the RPLDs in a water phantom using an IAEA standard holder in reference conditions: S = 10x10 cm field size, 10 cm depth in water phantom and nominal Source Surface Distance (SSD) or Source Axis Distance (SAD) of 100 cm used clinically.
Each capsule has an ID number and a bar code. The sensitive area is also marked on the capsule to allow precise positioning (See Figure 8).
ID number and bar code of the capsules – in the left. The sensitive area is marked on the capsule – in the right.
The purpose of the dosimetric audit is to perform the measurements specified in the instruction in the same conditions under which the patients are irradiated on daily basis (See Figure 9).
The dosimetry audit should be performed in the same conditions in which patient is irradiated during treatment procedure.
The irradiation procedure of RPLDs includes the following steps according to the IAEA instruction sheet [25, 26]:
Assemble the holder (Figure 10).
Place the holder in a water tank on the treatment table (Figure 11).
Set the therapy unit for a vertical beam, with a 10 cm x 10 cm field size (Figure 11).
Align the holder tube with the central axis of the beam (Figure 11).
Adjust the water level by filling the water tank exactly to the level of the top of the holder. Make sure that the tube of the holder is also filled with water (Figure 11).
Adjust the patient’ couch height so that the water surface is at your usual distance using in the daily clinical practice.
Assembling the IAEA standard holder for the RPLDs irradiations [
Two alternative geometry set-ups for the RPLD irradiation [
The procedure of irradiation of the dosimeters covers the following actions:
Before irradiation recheck whether the alignment, field size, water level and distance are correct (Figure 11).
Insert the capsule into the hole of the holder, so that the dot on the capsule is positioned in the centre of the tube (Figure 12).
Irradiate the RPLD capsule with the number of monitor units (MU) calculated above.
Remove the capsule from the holder (Figure 12) and wipe it dry.
Repeat the procedure, steps 2 to 4, for the second capsule.
Different positions of the capsule with RPLD – inserting, capsule in the position and removing [
An RPLD capsule in a small bag must not be irradiated, because it is used to record environmental influences during transport and storage.
Calculation of the number of monitor units to deliver 2 Gy to a tumor, whose centre is the RPLD capsule is at 10 cm depth.
The absorbed dose to water Dw is calculated from the RPLD response registered by the RPLD reader according to the expression:
where:
The determination of all these factors, their values, meitanence, quality assurance and combined uncertainty of the RPLD system are comprehensively given in [27].
Bulgarian radiotherapy centres participated in the IAEA/WHO Postal Dose Audit Service with (RPLD) in last three years. The new Varian and Elekta therapy treatment machines have been installed in 2011–2017. The energy of the photon beams is in the range of 6 MV-15 MV. The total number of 34 beams were cheked. The results are given on Figure 13. The 33 beams (97%) in reference conditions are in the tolerance of +/− 5%. Follow up have been organized for the beam exceed the tolerance and successfully is clarified the reason. The results of the dosimetry audits despite the fact, that the radiotherapy equipment in Bulgaria was in long-term technology stagnation, show the ability of Bulgarian medical physicists to provide quality dosimetric control at the current world criteria.
The results of IAEA/WHO RPLD audit 2017–2019. Ratios of IAEA mean dose/stated dose. Each point in the graph represent averaged dose of 2(two) capsules.
The results show, that all measured values of the applied dose are within ±5%. There is a tendency to improve the accuracy, which we attribute to the in-depth knowledge, experience and skills of the staff of medical physicists due to their regularly participation in the dosimetry audits.
Independent dosimetry audits play an important role in patient treatment quality, radiation protection and safety. Audits have the potential to identify issues and resolve them, reducing the probability of harmful errors to occur. They also support the safe implementation of new techniques and technologies, and promote knowledge sharing at a national and/or international level by benchmarking centres with similar equipment [28]. Indeed, the IAEA stresses the importance of every radiotherapy centre equipped with new machines and those that are going to introduce new treatment techniques in clinical practice, participate in dosimetry audits before starting treating patients, and regularly after that [29]. Moreover, a recent European Directive (2013/59 Euratom) recommends that new radiological procedures should be audited. Independent dose audits are also mandatory in many multi-institutional clinical trials in radiotherapy to ensure that participants deliver accurate doses and so the reported results are not biased [30, 31, 32].
The need of safe and effective radiotherapy is growing as cancer morbidity is growing worldwide. Modern radiotherapy is used to treat and improve the quality of life of patients undergoing this type of therapy. Currently, radiation therapy is widely recognized as one of the safest areas of modern medicine and errors in radiation therapy are very rare [33].
Patient safety is of paramount importance to medical staff in radiotherapy centers and safety considerations are an element in all aspects of the day-to-day clinical activities. Technological advances and clinical research over the past few decades have given radiation oncologists the capability to personalize treatments for accurate delivery of radiation dose based on clinical parameters and anatomical information. Two major strategies, acting synergistically, will enable further widening of the therapeutic window of radiation oncology in the era of precision medicine: technology-driven improvement of treatment conformity, including advanced image guidance and particle therapy, and novel biological concepts for personalized treatment, including biomarker-guided prescription, combined treatment modalities and adaptation of treatment during its course [34].
Modern radiotherapy is one of most rapidly developing nuclear applications in medicine and today it is a safe and highly effective cancer treatment modality. Precise radiation dosimetry measurements are used to keep radiotherapy safe and effective. The need of dosimetric and geometric accuracy in radiotherapy is well defined [28, 35]. Recommendations of the International Commission of Radiation Units and Measurements (ICRU) given as early as in 1976, state that the dose delivery to the primary target should be within ±5% of the prescribed value (but in some special circumstances it should comply within ±2% to the prescribed dose to the target [36].
Radiation beams produced by radiotherapy machines need to be calibrated. Precise measurement of the dose is crucial for this calibration, since the quality and effectiveness of the medical radiation therapy rely on their accuracy. By the end of 2018, 2364 radiotherapy centres in 136 countries world-wide have been audited by the IAEA/WHO; 4427 machines and 5790 beams were encompassed by the audit programme. The total results of 13,756 individual TLD/RPLD irradiated sets over a period of 50 years were readout, evaluated and analyzed. 86% of them are within the 5% acceptance limit [37].
In our days, modern radiation therapy requires technologically advanced equipment and a professional strategy for the treatment of cancer patients in order to achieve the best clinical result, especially when the vision of the European Society for Radiation Therapy and Oncology for 2020 is: “Every cancer patient in Europe will have access to state-of-the-art radiation therapy as part of a multidisciplinary approach in which treatment is individualized for a particular patient’s cancer, taking into account the patient’s personal circumstances” [38].
Professionalism and morality oblige us to provide safe and effective radiation therapy, i.e. to know, that we are doing everything well, but also to be able to do it even better. Times have changed, mostly for the better. Few could argue with the fact that the tools we work with today are extremely superior and extremely complex than a few years ago. Advances in technology provide more sophisticated, promising and accurate techniques for targeting malignancies, while minimizing normal tissue damage is crucial for patients treated with radiation therapy [39].
Dosimetry audit has been identified in the activities of ESTRO as one of the most important topics, accompanying the improvement of the quality of radiotherapy practice in Europe through standardization [28]. International organizations as the IAEA and EU in their recent recommendations place external dosimetry audit as a mandatory element in the quality assurance program in radiotherapy [18, 35].
Over the years, the audits have contributed to good dosimetry practice and accuracy of dose measurements in modern radiotherapy. Dosimetry audit ensures, that the correct therapeutic dose is delivered to the patients undergoing radiotherapy and play a key role in activities to create a good
With acknowledgments to the IAEA for organizing my scientific visit at IAEA Dosimetry Laboratory in October 2019 in connection with Technical Cooperation Project: BUL6014 Establishing a National Dosimetry Audit System and Dosimetry Quality Audit Programme in Radiation Therapy with objective to enhance safer radiation therapy treatment in Bulgaria.
The author declare no conflict of interest.
The author highly appreciate the long-term efforts and activities of IAEA to improve continuously quality of radiotherapy, radiation protection and safety of patients, providing standards, training and guidance, direct technical assistance and building capacity and awareness.
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2460},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17721}],offset:12,limit:12,total:134203},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,10,11,14,15,20,22,24"},books:[{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11509",title:"Wireless Power Transfer - Perspectives and Application",subtitle:null,isOpenForSubmission:!0,hash:"f188555eee4211fc24b6cca361983149",slug:null,bookSignature:"Dr. Kim Ho Yeap",coverURL:"https://cdn.intechopen.com/books/images_new/11509.jpg",editedByType:null,editors:[{id:"126825",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11760",title:"Applications and Use of Diamond",subtitle:null,isOpenForSubmission:!0,hash:"2edcf9a24450d8655e756e1080defe32",slug:null,bookSignature:"Mr. Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/11760.jpg",editedByType:null,editors:[{id:"21254",title:"Mr.",name:"Evgeniy",surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11486",title:"Climate Change - Recent Observations",subtitle:null,isOpenForSubmission:!0,hash:"741543ff220f5cf688efbf12d3e2f536",slug:null,bookSignature:"Assistant Prof. Terence Epule Epule",coverURL:"https://cdn.intechopen.com/books/images_new/11486.jpg",editedByType:null,editors:[{id:"348146",title:"Assistant Prof.",name:"Terence Epule",surname:"Epule",slug:"terence-epule-epule",fullName:"Terence Epule Epule"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",subtitle:null,isOpenForSubmission:!0,hash:"f1043cf6b1daae7a7b527e1d162ca4a8",slug:null,bookSignature:"Dr. Carmine Massarelli and Dr. Claudia Campanale",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",editedByType:null,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11529",title:"Product Design - A Manufacturing Perspective",subtitle:null,isOpenForSubmission:!0,hash:"b6f9e61bc85962bbae25e2aa2e1bb22e",slug:null,bookSignature:"Ph.D. Evren Yasa and Dr. Ozgur Poyraz",coverURL:"https://cdn.intechopen.com/books/images_new/11529.jpg",editedByType:null,editors:[{id:"219594",title:"Ph.D.",name:"Evren",surname:"Yasa",slug:"evren-yasa",fullName:"Evren Yasa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11759",title:"Copper - From the Mineral to the Final Application",subtitle:null,isOpenForSubmission:!0,hash:"afea7aef1cb09fc3a1a5d619152d02a6",slug:null,bookSignature:"Dr. Daniel Fernández González and Dr. Luis Felipe Verdeja González",coverURL:"https://cdn.intechopen.com/books/images_new/11759.jpg",editedByType:null,editors:[{id:"211395",title:"Dr.",name:"Daniel",surname:"Fernández González",slug:"daniel-fernandez-gonzalez",fullName:"Daniel Fernández González"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11545",title:"Tunnel Engineering - Modelling, Construction and Monitoring Techniques",subtitle:null,isOpenForSubmission:!0,hash:"abfea4d94310e94cba417826644c59d5",slug:null,bookSignature:"Dr. Kenneth Imo-Imo Israel Eshiet",coverURL:"https://cdn.intechopen.com/books/images_new/11545.jpg",editedByType:null,editors:[{id:"195037",title:"Dr.",name:"Kenneth Imo-Imo Israel",surname:"Eshiet",slug:"kenneth-imo-imo-israel-eshiet",fullName:"Kenneth Imo-Imo Israel Eshiet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11860",title:"Holography - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"dc0d34170f033ec1ab982bd15773bb2d",slug:null,bookSignature:"Prof. Joseph Rosen",coverURL:"https://cdn.intechopen.com/books/images_new/11860.jpg",editedByType:null,editors:[{id:"16544",title:"Prof.",name:"Joseph",surname:"Rosen",slug:"joseph-rosen",fullName:"Joseph Rosen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11501",title:"Qualitative and Computational Aspects of Dynamical Systems",subtitle:null,isOpenForSubmission:!0,hash:"d9d21a5db7515233f254abc02d89c2be",slug:null,bookSignature:"Dr. Kamal Shah, Dr. . Eiman and Dr. Arshad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/11501.jpg",editedByType:null,editors:[{id:"231748",title:"Dr.",name:"Kamal",surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11840",title:"Arid Environment - Perspectives, Challenges and Management",subtitle:null,isOpenForSubmission:!0,hash:"4c2e03f295fbc697350f0bf3bf89a14f",slug:null,bookSignature:"Associate Prof. Murat Eyvaz, Dr. Ahmed Albahnasawi, M.Sc. Ercan Gürbulak and MSc. Mesut Tekbaş",coverURL:"https://cdn.intechopen.com/books/images_new/11840.jpg",editedByType:null,editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:167},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4433},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"122",title:"Robotics",slug:"engineering-robotics",parent:{id:"11",title:"Engineering",slug:"engineering"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:24,numberOfWosCitations:5,numberOfCrossrefCitations:6,numberOfDimensionsCitations:15,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"122",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10416",title:"Robotics Software Design and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3c72993bf70b3d895473f4feabd32e6a",slug:"robotics-software-design-and-engineering",bookSignature:"Alejandro Rafael Garcia Ramirez and Augusto Loureiro da Costa",coverURL:"https://cdn.intechopen.com/books/images_new/10416.jpg",editedByType:"Edited by",editors:[{id:"184021",title:"Dr.",name:"Alejandro Rafael",middleName:null,surname:"Garcia Ramirez",slug:"alejandro-rafael-garcia-ramirez",fullName:"Alejandro Rafael Garcia Ramirez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9178",title:"Industrial Robotics",subtitle:"New Paradigms",isOpenForSubmission:!1,hash:"45fdf583c1321490f0b4cb966b608343",slug:"industrial-robotics-new-paradigms",bookSignature:"Antoni Grau and Zhuping Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9178.jpg",editedByType:"Edited by",editors:[{id:"13038",title:"Prof.",name:"Antoni",middleName:null,surname:"Grau",slug:"antoni-grau",fullName:"Antoni Grau"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"70877",doi:"10.5772/intechopen.90412",title:"Fourth Industrial Revolution: Opportunities, Challenges, and Proposed Policies",slug:"fourth-industrial-revolution-opportunities-challenges-and-proposed-policies",totalDownloads:2854,totalCrossrefCites:4,totalDimensionsCites:9,abstract:"In this paper, key elements about the Fourth Industrial Revolution are set under examination. Concerns, challenges, and opportunities related to the Industry 4.0 are analyzed, and specific policies to deal with the challenges and take advantage from the opportunities are proposed. Other issues that are set under consideration in this paper are the rate at which the human labor is threatened by the technological achievements, the main factors that increase workers’ exposure to the risk of automation, the jobs that are more at risk due to automation, and the basic factors that make political intervention necessary in order to deal with the unpredictable consequences of the technological progress such as the threat of a nuclear disaster and a possible income and social inequality gap widening. Finally, a special reference is done for the case of Greece.",book:{id:"9178",slug:"industrial-robotics-new-paradigms",title:"Industrial Robotics",fullTitle:"Industrial Robotics - New Paradigms"},signatures:"Evanthia K. Zervoudi",authors:null},{id:"70361",doi:"10.5772/intechopen.90315",title:"Visual-Inertial Indoor Navigation Systems and Algorithms for UAV Inspection Vehicles",slug:"visual-inertial-indoor-navigation-systems-and-algorithms-for-uav-inspection-vehicles",totalDownloads:783,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"In UAV navigation, one of the challenges in which considerable efforts are being focused is to be able to move indoors. Completing this challenge would imply being able to respond to a series of industrial market needs such as the inspection of internal environments for safety purpose or the inventory of stored material. Usually GPS is used for navigation, but in a closed or underground environment, its signal is almost never available. As a consequence, to achieve the goal and ensure that the UAV is able to accurately estimate its position and orientation without the usage of GPS, an alternative navigation system based on visual-inertial algorithms and the SLAM will be proposed using data fusion techniques. In addition to the navigation system, we propose an obstacle avoidance method based on a Lidar sensor that allows navigation even in the absence of light.",book:{id:"9178",slug:"industrial-robotics-new-paradigms",title:"Industrial Robotics",fullTitle:"Industrial Robotics - New Paradigms"},signatures:"Lorenzo Galtarossa, Luca Francesco Navilli and Marcello Chiaberge",authors:null},{id:"72807",doi:"10.5772/intechopen.93164",title:"Deep Learning-Based Detection of Pipes in Industrial Environments",slug:"deep-learning-based-detection-of-pipes-in-industrial-environments",totalDownloads:675,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Robust perception is generally produced through complex multimodal perception pipelines, but these kinds of methods are unsuitable for autonomous UAV deployment, given the restriction found on the platforms. This chapter describes developments and experimental results produced to develop new deep learning (DL) solutions for industrial perception problems. An earlier solution combining camera, LiDAR, GPS, and IMU sensors to produce high rate, accurate, robust detection, and positioning of pipes in industrial environments is to be replaced by a single camera computationally lightweight convolutional neural network (CNN) perception technique. In order to develop DL solutions, large image datasets with ground truth labels are required, so the previous multimodal technique is modified to be used to capture and label datasets. The labeling method developed automatically computes the labels when possible for the images captured with the UAV platform. To validate the automated dataset generator, a dataset is produced and used to train a lightweight AlexNet-based full convolutional network (FCN). To produce a comparison point, a weakened version of the multimodal approach—without using prior data—is evaluated with the same DL-based metrics.",book:{id:"9178",slug:"industrial-robotics-new-paradigms",title:"Industrial Robotics",fullTitle:"Industrial Robotics - New Paradigms"},signatures:"Edmundo Guerra, Jordi Palacin, Zhuping Wang and Antoni Grau",authors:[{id:"13038",title:"Prof.",name:"Antoni",middleName:null,surname:"Grau",slug:"antoni-grau",fullName:"Antoni Grau"}]},{id:"70219",doi:"10.5772/intechopen.90169",title:"Dynamic Compensation Framework to Improve the Autonomy of Industrial Robots",slug:"dynamic-compensation-framework-to-improve-the-autonomy-of-industrial-robots",totalDownloads:678,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"It is challenging to realize the autonomy of industrial robots under external and internal uncertainties. A majority of industrial robots are supposed to be programmed by teaching-playback method, which is not able to handle with uncertain working conditions. Although many studies have been conducted to improve the autonomy of industrial robots by utilizing external sensors with model-based approaches as well as adaptive approaches, it is still difficult to obtain good performance. In this chapter, we present a dynamic compensation framework based on a coarse-to-fine strategy to improve the autonomy of industrial robots while at the same time keeping good accuracy under many uncertainties. The proposed framework for industrial robot is designed along with a general intelligence architecture that is aiming to address the big issues such as smart manufacturing, industrial 4.0.",book:{id:"9178",slug:"industrial-robotics-new-paradigms",title:"Industrial Robotics",fullTitle:"Industrial Robotics - New Paradigms"},signatures:"Shouren Huang, Yuji Yamakawa and Masatoshi Ishikawa",authors:null},{id:"75911",doi:"10.5772/intechopen.97011",title:"QoS Control in Remote Robot Operation with Force Feedback",slug:"qos-control-in-remote-robot-operation-with-force-feedback",totalDownloads:292,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Recently, many researchers focus on studies of remote robot operation with force feedback. By using force feedback, since users can touch remote objects and feel the shape, weight, and softness of each object, the efficiency and accuracy of operation can be largely improved. However, when the haptic information such as force and/or position information is transmitted over a QoS (Quality of Service) non-guaranteed network like the Internet, QoE (Quality of Experience) and stability may seriously deteriorate. Therefore, it is important to carry out QoS control and stabilization control together to solve the problems. In this chapter, we mainly focus on QoS control. We also introduce our remote robot system with force feedback which we constructed to study QoS control and stabilization control by experiment. In the system, a user operates a remote industrial robot with a force sensor by using a local haptic interface device while monitoring the robot operation by a video camera. We handle two types of operation; operation with a single remote robot system and that between two remote robot systems. We explain several types of QoS control which we have proposed so far for remote robot operation with force feedback. Finally, we discuss the challenges and future directions of QoS control in remote robot operation with force feedback.",book:{id:"10416",slug:"robotics-software-design-and-engineering",title:"Robotics Software Design and Engineering",fullTitle:"Robotics Software Design and Engineering"},signatures:"Pingguo Huang and Yutaka Ishibashi",authors:[{id:"5473",title:"Prof.",name:"Yutaka",middleName:null,surname:"Ishibashi",slug:"yutaka-ishibashi",fullName:"Yutaka Ishibashi"},{id:"342154",title:"Associate Prof.",name:"Pingguo",middleName:null,surname:"Huang",slug:"pingguo-huang",fullName:"Pingguo Huang"}]}],mostDownloadedChaptersLast30Days:[{id:"70877",title:"Fourth Industrial Revolution: Opportunities, Challenges, and Proposed Policies",slug:"fourth-industrial-revolution-opportunities-challenges-and-proposed-policies",totalDownloads:2850,totalCrossrefCites:4,totalDimensionsCites:9,abstract:"In this paper, key elements about the Fourth Industrial Revolution are set under examination. Concerns, challenges, and opportunities related to the Industry 4.0 are analyzed, and specific policies to deal with the challenges and take advantage from the opportunities are proposed. Other issues that are set under consideration in this paper are the rate at which the human labor is threatened by the technological achievements, the main factors that increase workers’ exposure to the risk of automation, the jobs that are more at risk due to automation, and the basic factors that make political intervention necessary in order to deal with the unpredictable consequences of the technological progress such as the threat of a nuclear disaster and a possible income and social inequality gap widening. Finally, a special reference is done for the case of Greece.",book:{id:"9178",slug:"industrial-robotics-new-paradigms",title:"Industrial Robotics",fullTitle:"Industrial Robotics - New Paradigms"},signatures:"Evanthia K. Zervoudi",authors:null},{id:"70985",title:"Real-Time Robot Software Platform for Industrial Application",slug:"real-time-robot-software-platform-for-industrial-application",totalDownloads:727,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this study, we present the requirements of a real-time robot software (SW) platform that can be used for industrial robots and examine whether various kinds of existing middleware satisfy them. Moreover, we propose a real-time robot SW platform that extends RTMIA to various industrial applications, which is implemented on Xenomai real-time operating system and Linux. The proposed SW platform utilizes the timer-interrupt based approach to keep strict period and the shared memory for convenient usage, on which the shared variable is designed and used. We verify the proposed platform by showing that the robot task and the Programmable Logic Controller (PLC) program are performing with interlocking each other on the presented platform.",book:{id:"9178",slug:"industrial-robotics-new-paradigms",title:"Industrial Robotics",fullTitle:"Industrial Robotics - New Paradigms"},signatures:"Sanghoon Ji, Donguk Yu, Hoseok Jung and Hong Seong Park",authors:null},{id:"71637",title:"Socially Assistive Robotics: State-of-the-Art Scenarios in Mexico",slug:"socially-assistive-robotics-state-of-the-art-scenarios-in-mexico",totalDownloads:668,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, we describe the experience about the use of a humanoid robotic platform, in scenarios such as education and health in Mexico. The results obtained are commented on through the perspective of cultural, technological, and social aspects in the frameworks of education (from elementary to high school) and training of health professionals. The opening towards humanoid robotic systems in elementary school children, as well as health professionals, is not far from the acceptance due not only for the technological advancement but also for different social aspects. These two considerations influenced the results obtained and experiences achieved. At the same time, this chapter shows how humanoid robotics has functioned as a tool for final projects of undergraduate students.",book:{id:"9178",slug:"industrial-robotics-new-paradigms",title:"Industrial Robotics",fullTitle:"Industrial Robotics - New Paradigms"},signatures:"Edgar Lopez-Caudana, Germán Eduardo Baltazar Reyes and Pedro Ponce Cruz",authors:null},{id:"70117",title:"Cooperative Step Climbing Using Connected Wheeled Robots and Evaluation of Remote Operability",slug:"cooperative-step-climbing-using-connected-wheeled-robots-and-evaluation-of-remote-operability",totalDownloads:678,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The present study evaluates the remote operability of step climbing using two connected robots that are teleoperated by individual operators. In general, a teleoperated robot is manipulated by an operator who is viewing moving images from a camera, which is one of the greatest advantages of such a system. However, robot teleoperation is not easy when a teleoperated robot is affected by the force from another robot or object. We constructed a step climbing system using two connected teleoperated robots. A theoretical analysis and the results of simulations clarified the correlations among the robot velocity, the manipulation time of the robots, and the height of the front wheels when climbing a step. The experimental results demonstrate the step climbing ability of the teleoperated robot system.",book:{id:"9178",slug:"industrial-robotics-new-paradigms",title:"Industrial Robotics",fullTitle:"Industrial Robotics - New Paradigms"},signatures:"Hidetoshi Ikeda, Natsuko Muranaka, Keisuke Sato and Eiji Nakano",authors:null},{id:"70361",title:"Visual-Inertial Indoor Navigation Systems and Algorithms for UAV Inspection Vehicles",slug:"visual-inertial-indoor-navigation-systems-and-algorithms-for-uav-inspection-vehicles",totalDownloads:781,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"In UAV navigation, one of the challenges in which considerable efforts are being focused is to be able to move indoors. Completing this challenge would imply being able to respond to a series of industrial market needs such as the inspection of internal environments for safety purpose or the inventory of stored material. Usually GPS is used for navigation, but in a closed or underground environment, its signal is almost never available. As a consequence, to achieve the goal and ensure that the UAV is able to accurately estimate its position and orientation without the usage of GPS, an alternative navigation system based on visual-inertial algorithms and the SLAM will be proposed using data fusion techniques. In addition to the navigation system, we propose an obstacle avoidance method based on a Lidar sensor that allows navigation even in the absence of light.",book:{id:"9178",slug:"industrial-robotics-new-paradigms",title:"Industrial Robotics",fullTitle:"Industrial Robotics - New Paradigms"},signatures:"Lorenzo Galtarossa, Luca Francesco Navilli and Marcello Chiaberge",authors:null}],onlineFirstChaptersFilter:{topicId:"122",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218",scope:"\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"June 30th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:8,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"1",title:"Oral Health",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"267724",title:"Dr.",name:"Febronia",middleName:null,surname:"Kahabuka",slug:"febronia-kahabuka",fullName:"Febronia Kahabuka",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZpJQAW/Profile_Picture_2022-06-27T12:00:42.JPG",institutionString:null,institution:null}]},{id:"2",title:"Prosthodontics and Implant Dentistry",coverUrl:"https://cdn.intechopen.com/series_topics/covers/2.jpg",editor:{id:"179568",title:"Associate Prof.",name:"Wen Lin",middleName:null,surname:"Chai",slug:"wen-lin-chai",fullName:"Wen Lin Chai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHGAQA4/Profile_Picture_2022-05-23T14:31:12.png",biography:"Professor Dr. Chai Wen Lin is currently a lecturer at the Department of Restorative Dentistry, Faculty of Dentistry of the University of Malaya. She obtained a Master of Dental Science in 2006 and a Ph.D. in 2011. Her Ph.D. research work on the soft tissue-implant interface at the University of Sheffield has yielded several important publications in the key implant journals. She was awarded an Excellent Exchange Award by the University of Sheffield which gave her the opportunity to work at the famous Faculty of Dentistry of the University of Gothenburg, Sweden, under the tutelage of Prof. Peter Thomsen. In 2016, she was appointed as a visiting scholar at UCLA, USA, with attachment in Hospital Dentistry, and involvement in research work related to zirconia implant. In 2016, her contribution to dentistry was recognized by the Royal College of Surgeon of Edinburgh with her being awarded a Fellowship in Dental Surgery. She has authored numerous papers published both in local and international journals. She was the Editor of the Malaysian Dental Journal for several years. Her main research interests are implant-soft tissue interface, zirconia implant, photofunctionalization, 3D-oral mucosal model and pulpal regeneration.",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},editorTwo:{id:"479686",title:"Dr.",name:"Ghee Seong",middleName:null,surname:"Lim",slug:"ghee-seong-lim",fullName:"Ghee Seong Lim",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003ScjLZQAZ/Profile_Picture_2022-06-08T14:17:06.png",biography:"Assoc. Prof Dr. Lim Ghee Seong graduated with a Bachelor of Dental Surgery from University of Malaya, Kuala Lumpur in 2008. He then pursued his Master in Clinical Dentistry, specializing in Restorative Dentistry at Newcastle University, Newcastle, UK, where he graduated with distinction. He has also been awarded the International Training Fellowship (Restorative Dentistry) from the Royal College of Surgeons. His passion for teaching then led him to join the faculty of dentistry at University Malaya and he has since became a valuable lecturer and clinical specialist in the Department of Restorative Dentistry. He is currently the removable prosthodontic undergraduate year 3 coordinator, head of the undergraduate module on occlusion and a member of the multidisciplinary team for the TMD clinic. He has previous membership in the British Society for Restorative Dentistry, the Malaysian Association of Aesthetic Dentistry and he is currently a lifetime member of the Malaysian Association for Prosthodontics. Currently, he is also the examiner for the Restorative Specialty Membership Examinations, Royal College of Surgeons, England. He has authored and co-authored handful of both local and international journal articles. His main interest is in prosthodontics, dental material, TMD and regenerative dentistry.",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},editorThree:null,editorialBoard:null}]},overviewPageOFChapters:{paginationCount:15,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",doi:"10.5772/intechopen.105045",signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:58,paginationItems:[{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81595",title:"Prosthetic Concepts in Dental Implantology",doi:"10.5772/intechopen.104725",signatures:"Ivica Pelivan",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:59,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",doi:"10.5772/intechopen.101489",signatures:"Gopathy Sridevi and Seshadri Srividya",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:50,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",doi:"10.5772/intechopen.99575",signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},subseriesFiltersForOFChapters:[{caption:"Oral Health",value:1,count:23,group:"subseries"},{caption:"Prosthodontics and Implant Dentistry",value:2,count:35,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:33,paginationItems:[{id:"424419",title:"Dr.",name:"Matthew",middleName:"Ayorinde",surname:"Ayorinde Adebayo",slug:"matthew-ayorinde-adebayo",fullName:"Matthew Ayorinde Adebayo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/424419/images/17356_n.jpg",biography:null,institutionString:null,institution:null},{id:"354033",title:"Dr.",name:"Ahmed",middleName:null,surname:"Nasri",slug:"ahmed-nasri",fullName:"Ahmed Nasri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435702",title:"Dr.",name:"Amel",middleName:null,surname:"Hannachi",slug:"amel-hannachi",fullName:"Amel Hannachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420857",title:"Prof.",name:"Ezzeddine",middleName:null,surname:"Mahmoudi",slug:"ezzeddine-mahmoudi",fullName:"Ezzeddine Mahmoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420856",title:"Prof.",name:"Hamouda",middleName:null,surname:"Beyrem",slug:"hamouda-beyrem",fullName:"Hamouda Beyrem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435703",title:"Dr.",name:"Hary",middleName:null,surname:"Demey",slug:"hary-demey",fullName:"Hary Demey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Cartagena",country:{name:"Spain"}}},{id:"425026",title:"Mr.",name:"Kholofelo",middleName:null,surname:"Clifford Malematja",slug:"kholofelo-clifford-malematja",fullName:"Kholofelo Clifford Malematja",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Tshwane University of Technology",country:{name:"South Africa"}}},{id:"435701",title:"Dr.",name:"Mohamed",middleName:null,surname:"Allouche",slug:"mohamed-allouche",fullName:"Mohamed Allouche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420855",title:"Prof.",name:"Patricia",middleName:null,surname:"Aïssa",slug:"patricia-aissa",fullName:"Patricia Aïssa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435699",title:"Dr.",name:"Takoua",middleName:null,surname:"Mhadhbi",slug:"takoua-mhadhbi",fullName:"Takoua Mhadhbi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"442300",title:"Prof.",name:"Véronique",middleName:null,surname:"Perrier",slug:"veronique-perrier",fullName:"Véronique Perrier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Montpellier",country:{name:"France"}}},{id:"445179",title:"Mr.",name:"Aman",middleName:null,surname:"Jaiswal",slug:"aman-jaiswal",fullName:"Aman Jaiswal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Science Education and Research Mohali",country:{name:"India"}}},{id:"445178",title:"Mr.",name:"Dhiraj",middleName:null,surname:"Dutta",slug:"dhiraj-dutta",fullName:"Dhiraj Dutta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"445180",title:"Dr.",name:"Rama",middleName:null,surname:"Dubey",slug:"rama-dubey",fullName:"Rama Dubey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"424992",title:"Dr.",name:"Mohamed",middleName:null,surname:"Helal",slug:"mohamed-helal",fullName:"Mohamed Helal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Institute of Oceanography and Fisheries",country:{name:"Egypt"}}},{id:"428329",title:"Mr.",name:"Collet",middleName:null,surname:"Maswanganyi",slug:"collet-maswanganyi",fullName:"Collet Maswanganyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"428546",title:"MSc.",name:"Ndivhuwo",middleName:null,surname:"Shumbula",slug:"ndivhuwo-shumbula",fullName:"Ndivhuwo Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"352155",title:"Dr.",name:"Poslet",middleName:"Morgan",surname:"Shumbula",slug:"poslet-shumbula",fullName:"Poslet Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"435064",title:"Dr.",name:"Mohammadtaghi",middleName:null,surname:"Vakili",slug:"mohammadtaghi-vakili",fullName:"Mohammadtaghi Vakili",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yangtze Normal University",country:{name:"China"}}},{id:"437268",title:"Dr.",name:"Linda Lunga",middleName:null,surname:"Sibali",slug:"linda-lunga-sibali",fullName:"Linda Lunga Sibali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437269",title:"Dr.",name:"Peter P.",middleName:null,surname:"Ndibewu",slug:"peter-p.-ndibewu",fullName:"Peter P. Ndibewu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424106",title:"Ph.D. Student",name:"Siyabonga",middleName:null,surname:"Aubrey Mhlongo",slug:"siyabonga-aubrey-mhlongo",fullName:"Siyabonga Aubrey Mhlongo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424233",title:"Ph.D. Student",name:"Ifeoluwa Oluwafunmilayo",middleName:null,surname:"Daramola",slug:"ifeoluwa-oluwafunmilayo-daramola",fullName:"Ifeoluwa Oluwafunmilayo Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446429",title:"Dr.",name:"Dev Vrat",middleName:null,surname:"Kamboj",slug:"dev-vrat-kamboj",fullName:"Dev Vrat Kamboj",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"425585",title:"Dr.",name:"NISHA",middleName:null,surname:"GAUR",slug:"nisha-gaur",fullName:"NISHA GAUR",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"226635",title:"Prof.",name:"Amany",middleName:null,surname:"El-Sikaily",slug:"amany-el-sikaily",fullName:"Amany El-Sikaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"435668",title:"Dr.",name:"Sara",middleName:null,surname:"Ghanem",slug:"sara-ghanem",fullName:"Sara Ghanem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426808",title:"Associate Prof.",name:"Yesim",middleName:null,surname:"Gucbilmez",slug:"yesim-gucbilmez",fullName:"Yesim Gucbilmez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423291",title:"Assistant Prof.",name:"Giovanni",middleName:null,surname:"Cagnetta",slug:"giovanni-cagnetta",fullName:"Giovanni Cagnetta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"