",isbn:"978-1-80356-948-2",printIsbn:"978-1-80356-947-5",pdfIsbn:"978-1-80356-949-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"c0d1c1c93a36fd9d726445966316a373",bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",keywords:"Indigenous People, Natives, First People, Minorities, United Nations, UN Declaration, Indigenous People Rights, Self-Determination, States, Independence, Struggle for Rights, Contemporary Times",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 7th 2022",dateEndSecondStepPublish:"May 5th 2022",dateEndThirdStepPublish:"July 4th 2022",dateEndFourthStepPublish:"September 22nd 2022",dateEndFifthStepPublish:"November 21st 2022",remainingDaysToSecondStep:"15 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Legal practitioner, consultant and a law academic with a diversity of interest in multi and intra-disciplinary scholarship on legal issues at national regional and international levels.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",middleName:"Gbendazhi",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas",profilePictureURL:"https://mts.intechopen.com/storage/users/293764/images/system/293764.jpg",biography:"Sylvanus Barnabas is a Senior Lecturer in Law at the Faculty of Law, Nile University of Nigeria where he teaches various subjects in law; he obtained the degree of Doctor of Philosophy in international human rights law from Northumbria University at Newcastle upon Tyne, United Kingdom; he has a Master of Laws degree obtained with distinction in Environmental Law and Policy from University of Kent at Canterbury, Kent, United Kingdom; he also holds a Bachelor of Laws degree from Ahmadu Bello University, Zaria, Nigeria; and he is also a qualified a barrister and solicitor of the Supreme Court of Nigeria.",institutionString:"Nigerian Turkish Nile University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Nigerian Turkish Nile University",institutionURL:null,country:{name:"Nigeria"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440204",firstName:"Ana",lastName:"Cink",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440204/images/20006_n.jpg",email:"ana.c@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde",surname:"Nielsen",slug:"hilde-nielsen",fullName:"Hilde Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17727",title:"Silicon Nanocrystals",doi:"10.5772/22015",slug:"silicon-nanocrystals",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
Silicon has many advantages over other semiconductor materials: low cost, nontoxicity, practically unlimited availability, and decades of experience in purification, growth and device fabrication. It is used for almost all modern electronic devices. However, the indirect energy gap in bulk crystalline Si makes it unable to emit light efficiently and thus unsuitable for optoelectronic applications. For example, lasers, photodetectors are not constructed from silicon. On the other hand, although silicon is widely used for solar cell fabrication, the efficiency can not exceed the Schockley and Queisser limit in single band gap device, because of its inability to absorb photons with energy less than the band gap and thermalisation of photon energy exceeding the band gap. One approach for tackling this disadvantage is to use tandem cells, which can implement the increasing of the number of band gaps (Conibeer et al., 2006; Cho et al., 2008). Moreover, the band gap in silicon is too small to interact effectively with the visible spectrum. If the gap could be adjusted, silicon would be used for either electronic or optical application. In 1990, it was firstly observed experimentally by Canham (Canham, 1990), that photoluminescence (PL) occurs in the visible range at room temperature in porous silicon (PS). Since then the silicon clusters or silicon quantum dots (Si-QDs) or silicon nanocrystals (Si-NCs) have attracted much of research interest, and many of theoretical models, computations, and experimental results on band structures, PL and other electronic properties have been reported during the last decades (Öğüt et al., 1997; Fang & Ruden, 1997; Wolkin et al., 1999; Wilcoxon et al., 1999; Soni et al., 1999; Vasiliev et al., 2001; Garoufalis & Zdetsis, 2001; Carrier et al., 2002; Nishida, 2004; Biteen et al., 2004; Tanner et al., 2006). The results from these reports show that in low-dimension silicon structures, such as silicon nanocrystals or silicon quantum dots, electronic and optical properties can be quite different from those of silicon bulk counterpart, for instance, free-standing Si-NCs show strong luminescence, the color of which depends on the size of the Si-NCs, and the gap and energy increase when their size is reduced. Therefore, the energy gap can be tuned as a function of the size of quantum dots.
\n\t\t\t
We are especially interested in the theoretical study on the band gap and the optical spectrum with respect to the size of the Si-NCs or Si-QDs and surface terminations and reconstructions.
\n\t\t\t
The effective mass approximation (EMA) is used by Chu-Wei Jiang and M. Green to calculate the conduction band structure of a three-dimensional silicon quantum dot superlattice with the dots embedded in a matrix of silicon dioxide, silicon nitride, or silicon carbide( Jiang & Green, 2006), and later the EMA is only of partial use in determining the absolute confined energy levels for small Si-NCs, because it has been found a decreasingly accurate prediction of the confined energy level by the EMA as the Si-QDs size decreases( Conibeer et al., 2008).
\n\t\t\t
Time dependent density functional theory (TDDFT) has been performed by Aristides D. Zdetsis and C. S. Garoufalis over the last ten years (Garoufalis & Zdetsis, 2001; Zdetsis & Garoufalis, 2005). In their calculations the Si dangling bonds on the surface of the Si-NCs are passivated by hydrogen and oxygen. In the DFT method, they have used the hybrid nonlocal exchange correlation functional of Becke and Lee, Yang and Parr, which includes partially exact Hartree–Fock exchange (B3LYP). Their results are in excellent agreement with accurate recent and earlier experimental data. It is found that the diameter of the smallest oxygen-free nanocrystal that could emit PL in the visible region of the spectrum is around 22 Å, whereas the largest diameter falls in the range of 84– 85 Å. The high level and the resulting high accuracy of their calculations have led to the resolution of existing experimental and theoretical discrepancies. Their results also clarify unambiguously and confirm earlier predictions about the role of oxygen on the gap size. More recently, they report accurate high level calculations of the optical gap and absorption spectrum of ultra small Si-NCs of 1nm, with hydrogen and oxygen passivation (with and without surface reconstruction) (Garoufalis & Zdetsis, 2009). They show that some of the details of the absorption and emission properties of the 1 nm Si nanoparticles can be efficiently described in the framework of TDDFT/B3LYP, by considering the effect of surface reconstruction and the geometry relaxation of the excited state. Additionally, they have examined the effect of oxygen contamination on the optical properties of 1nm nanoparticles and its possible contribution to their experimentally observed absorption and emission properties.
\n\t\t\t
By performing the same method, TDDFT, the optical absorption of small Si-NCs embedded in silicon dioxide is studied systematically by Koponen (Koponen et al., 2009). They have found that the oxide-embedded Si-NCs exhibit absorption spectra that differ significantly from the spectra of the hydrogen-passivated Si-NCs. In particular, the minimum absorption energy is found to decrease when the Si-NCs are exposed to dioxide coating. The absorption energy of the oxide-embedded Si-NCs remains approximately constant for core sizes down to 17 atoms, whereas the absorption energy of the hydrogen-passivated Si-NCs increases with decreasing crystal size. They suggest a different mechanism for producing the lowest-energy excitations in these two cases.
\n\t\t\t
Wang, et al, generate and optimize geometries and electronic structures of hydrogenated silicon nanoclusters, which include the T\n\t\t\t\t\n\t\t\t\t\td\n\t\t\t\t and I\n\t\t\t\t\n\t\t\t\t\th\n\t\t\t\t symmetries by using the semi-empirical AM1 and PM3 methods, the density functional theory DFT/ B3LYP method with the 6-31G(d) and LANL2DZ basis sets from the Gaussian 03 package, and the local density functional approximation (LDA), which is implemented in the SIESTA package(Wang et al., 2008). The calculated energy gap is found to be decreasing while the diameter of silicon nanocluster increases. By comparing different calculated results, they conclude that the calculated energy gap by B3LYP/6-31G(d)//LDA/SIESTA is close to that from experiment. For investigation of the optical properties of Si-NCs as a function of surface passivation, they carry out a B3LYP/6-31G(d)//LDA/SIESTA calculation of the Si35 and Si47 core clusters with full alkyl-, OH-, NH2-, CH2NH2-, OCH3-, SH-, C3H6SH-, and CN- passivations. In conclusion, the alkyl passivant affects the calculated optical gaps weakly, and the electron-withdrawing passivants generate a red-shift in the energy gap of silicon nanoclusters. A size-dependent effect is also observed for these passivated Si nanoclusters.
\n\t\t\t
The optical absorption spectra of SinHm nanoclusters up to 250 atoms are computed using a linear response theory within the time-dependent local density approximation (TDLDA) (Vasiliev et al., 2001). The TDLDA formalism allows the electronic screening and correlation effects, which determine exciton binding energies, to be naturally incorporated within an ab initio framework. They find the calculated excitation energies and optical absorption gaps to be in good agreement with experiment in the limit of both small and large clusters. The TDLDA absorption spectra exhibit substantial blueshifts with respect to the spectra obtained within the time-independent local density approximation.
\n\t\t
\n\t\t
\n\t\t\t
2. Structure of silicon quantum dots
\n\t\t\t
Typically, the size of Si-QDs is less than ten nanometers which is close to the exciton Bohr radius of bulk silicon. Owing to the extreme small dimensions, silicon quantum dots exhibit strong quantum confinement which causes the band gaps to widen, the electronic states to become discrete, and the oscillator strength of the smallest electronic transitions to increase. Generally, at ideal conditions, we consider that the interior of the dot has the structure of crystalline silicon while the surface of the dot is passivated with specific atoms depending on the surrounding environment of the dot, such as hydrogen, oxygen and so on.
\n\t\t\t
\n\t\t\t\t
2.1. Physical characterization
\n\t\t\t\t
Direct physical evidence of the crystallinity of Si-QDs has been obtained from high resolution TEM, see Fig. 1a and b (Conibeer et al., 2006). Crystal planes are apparent in many of the darker areas in these HRTEM images. The darker areas are denser material in a less dense matrix, which are attributed to Si-NCs in a SiO2 matrix.
\n\t\t\t\t
Figure 1.
Cross-sectional TEM (a) HRTEM (b) images of Si QDs in oxide. (a) Shows the layered structure and (b) shows individual nanocrystals in which crystal planes can be seen
\n\t\t\t\t
Scientists also have studied about the nanostructures of Si QDs in other dielectrics such as silicon nitride and silicon carbide, see Fig. 2a and b (Conibeer et al., 2006, 2008). Results from HRTEM images are very promising, showing crystalline nanocrystals in the nitride matrix and carbide matrix.
\n\t\t\t\t
From the introduction stated above, we can see that it is reasonable to suppose that the interior of the dot has the structure of crystalline silicon while the surface of the dot is passivated with specific atoms at ideal conditions.
\n\t\t\t\t
Figure 2.
HRTEM images of Si-QDs in (a) silicon nitride and (b) silicon carbide
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.2. Ideal structure
\n\t\t\t\t
Lots of experimental researches have been made on the electronic and optical properties of Si-QDs. However, several factors contribute to making the interpretation of measurements a difficult task. For instance, samples show a strong dispersion in the QD size that is difficult to be determined. In addition, Si-NCs synthesized by different techniques often show different properties in size, shape and the interface structure (Guerra et al., 2009). For the reasons stated above, the majority of experimental work give diverse results. Therefore, theoretical model calculations for some ideal structures have been considered very necessary to investigate the properties of Si-QDs. Generally, passivated-surface silicon nanoclusters are the ideal theoretical structure for us to study Si-QDs. In this section, we will introduce several ideal structures of Si-QDs in theoretical simulation.
\n\t\t\t\t
\n\t\t\t\t\t
2.2.1. Hydrogen-passivated silicon quantum dots
\n\t\t\t\t\t
Hydrogen is often used as the passivating agent for the silicon nanocluster surface in most of the theoretical calculations and computations. It is generally accepted that hydrogen-passivated silicon nanocluster (SinHm cluster) is the simplest structure to represent Si-QDs in a vacuum environment and can reproduce most of the experimental results in despite of neglecting some interface effects.
\n\t\t\t\t\t
In Fig. 3, some idealized hydrogen-passivated quantum dots of silicon are illustrated. The interior of the dot consists of silicon atoms in the diamond structure; the surface of the dot is hydrogen-passivated. We can see that hydrogen atoms remove all dangling bonds on the surface.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
2.2.2. Oxidized silicon quantum dots
\n\t\t\t\t\t
Si-QDs are believed to be the luminescence centres in PS. Experimental measurements on PS samples have indicated that a large PL redshift is observed as soon as the freshly etched samples (oxygen-free PS) are transferred from Ar to a pure oxygen atmosphere or to air; however, no redshift at all is detected when the samples are kept in pure hydrogen atmosphere or in vacuum (Wolkin et al., 1999). Therefore, it is obviously that the chemistry of oxygen at the surface has played an important role when PS is exposed to air and has to be considered in theoretical models for this problem.
\n\t\t\t\t\t
Figure 3.
Structures of SinHm clusters represented in terms of ball-and-stick models. Yellow balls denote Si atoms and the white balls denote surface H atoms
\n\t\t\t\t\t
There are totally four possible oxygen passivations on the surface of Si-QDs: (i) double-bonded, (ii) backbonded, (iii) bridge-bonded and (iiii) inserted oxygen configurations. The ball and stick representations of these oxygen passivation configurations are illustrated in Fig. 4. Compared with corresponding hydrogen-passivated silicon clusters, oxidized clusters are built up by substituting H or Si atoms on the surface with oxygen. From (b) to (e), they are double-bonded, backbonded, bridge-bonded and inserted oxygen configurations, respectively. It should be noted that the backbonded oxygen configuration is different in geometry from the bridge-bonded oxygen configuration, in that the former can preserve hydrogen coverage on a Si nanocrystal and retain the number of Si atoms when it is oxidized, while in the latter, one oxygen atom replaces a surface SiH2 dihydride on the initial dot causing a decrease of the number of H and Si atoms. In another word, for the backbonded oxygen configuration, the oxygen atom is situated between the nearest-neighbor Si atoms while in the bridge-bonded oxygen configuration it is situated between the second nearest-neighbor Si atoms, referring Fig. 4(c) and (d).
\n\t\t\t\t\t
Figure 4.
Ball and stick representations of four possible oxygen passivation configurations, the yellow balls represent Si atoms, red balls represent O atoms, and the white balls, H atoms: (a) initial hydrogen-passivated silicon cluster, (b) double-bonded oxygen passivation configuration (c) backbonded (d) bridge-bonded (e) inserted oxygen configuration
\n\t\t\t\t\t
Actually there may exist other oxygen-contamination on the surface of Si-QDs when oxidized. Zdetsis and Garoufalis (Zdetsis & Garoufalis, 2005) proposed a structure that can maintain the Td symmetry of the nanocrystals, considering only double-bonded oxygen configuration, see Fig. 5.
\n\t\t\t\t\t
Figure 5.
Structure of oxidized nanocrystals with Td symmetry: The blue spheres are Si atoms, the red spheres are O atoms, and the white spheres are H atoms
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
2.2.3. Silicon quantum dots embedded in different matrixes
\n\t\t\t\t\t
Si-QDs are often embedded in a dielectric matrix based on the fabrication of Si-QDs. Therefore, it is necessary to build an appropriate structure to simulate Si-QDs in such kind of environment.
\n\t\t\t\t\t
Figure 6.
Structures of Si-QDs embedded in an ionic environment, SiO2, Si3N4, SiC matrix and a co-valent environment (left to right; top to bottom): SiH4, Si5(CH3)12, Si10(NH2)16, Si14(OH)20, Si18F24, Si26H32, Si35(CH3)36; Si53(NH2)48, Si84(OH)64, Si165F100\n\t\t\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\tKönig et al (König et al., 2009) have used F, OH, NH2, CH3 and H groups as the passivating agent for the Si clusters surface to simulate Si-QDs embedded in an ionic environment, SiO2, Si3N4, SiC matrix and a co-valent environment, respectively, see Fig. 6. Apparently, these structures are simply built by replacing all the hydrogen atoms on the surface of hydrogen-passivated Si clusters with F, OH, NH2 and CH3 groups, respectively.
\n\t\t\t\t\t
However, there are many more complex structures when Si-QDs embedded in a SiO2 matrix. For instance, Koponen et al (Koponen et al., 2009) put forward some structures in which Si clusters are embedded in one or two neutral SiO2 shells and the outermost layer of the cluster is hydrogen passivated in order to get rid of dangling bonds and to better mimic the effect of bulk silicon oxide. One of these structures is presented in Fig. 7(a). In addition, Guerra et al (Guerra et al., 2009) obtained a crystalline embedded structure from a β-cristobalite (BC) matrix by removing all the oxygen atoms included in a cut-off sphere, whose radius determines the size of the Si-QDs. The final optimized structure of the Si32 in β-cristobalite matrix is illustrated in Fig. 7(b).
\n\t\t\t\t\t
Figure 7.
a) A stick and ball representation of Si17@Si24O36H60 (Si clusters embedded in one neutral SiO2 shell), (b) The final optimized structure of the Si32 in β-cristobalite matrix
\n\t\t\t\t\t
From the introduction stated above, we can clearly see that different structures should be used for simulating Si-QDs in different environment. Besides the structures presented above, there are many other structures used to simulate Si-QDs, we’ll not elaborate here. It is crucial to choose an appropriate structure for a certain problem, otherwise the results may be inaccuracy and make no sense.
\n\t\t\t\t
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
3. Method of calculation
\n\t\t\t
Local-density approximations (LDA) are a class of approximations to the exchange correlation energy functional in DFT that depends solely upon the value of the electronic density at each point in space (and not, for example, derivatives of the density or the Kohn-Sham orbits). It was used to study on the band gap and PL of Si-QDs in early researches because of its simplicity and low computation cost. However, it is well known that time-independent LDA calculations typically underestimate the experimental photo-absorption gaps of Si-QDs (Vasiliev et al., 2001). TDLDA is then developed by Vasiliev as a natural extension of the ground state density-functional formalism and LDA, designed to include the proper representation of excited states.
\n\t\t\t
The computation software we used is CASTEP module of Material Studio. CASTEP is an ab initio quantum mechanical program employing DFT to simulate the properties of solids, interfaces, and surfaces for a wide range of materials classes such as ceramics, semiconductors, and metals. First principle calculations allow researchers to investigate the nature and origin of the electronic, optical, and structural properties of a system without the need for any experimental input. It allows to choosing local, gradient-corrected, and non-local functionals for approximating exchange and correlation effect, and non-local functional include screened exchange, HF, B3LYP and PBE0. The screened exchange LDA (sX-LDA) is used to calculate the band structures of silicon quantum dots by considering the computational cost and accuracy. The structures with hydrogen and oxygen passivations are partially shown in Fig. 3 and Fig.4, respectively.
\n\t\t
\n\t\t
\n\t\t\t
4. Energy gaps of silicon quantum dots
\n\t\t\t
Researches of Si-QDs can be divided into two groups: experimental measurements and theoretical simulations. The results of experiments are coincide with that of simulations to some extent, in spite of some discrepancies attributing to the measurement errors in experiments and the idealized structures in simulations. In this section, some results from other researchers are introduced first. Our computational results are then illustrated in the figures.
\n\t\t\t
\n\t\t\t\t
4.1. Experimental results
\n\t\t\t\t
Very Large amounts of works have been done on light emission from Si-QDs because they are believed to be the luminescence centres in PS which had been observed having visible PL and electroluminescence at room temperature. Generally, the properties of Si-QDs are studied by measuring their PL in experiments. As we mentioned above, it is so hard to precisely control the purity and size of the sample that the results of different experiments may be differ from each other to some extent.
\n\t\t\t\t
Figure 8.
Summary of experimental data on peak PL energy versus Si- QD size
\n\t\t\t\t
\n\t\t\t\t\tWilcoxon et al (Wilcoxon et al., 1999) had summarized most of the existing experimental results for PL peak energies as a function of the diameter of the Si-QDs, see Fig. 8. We note that there are differences in the dependence on size reported by different authors. As explained by Wilcoxon et al, all PL peaks of SiO2 capped Si-QDs or Si-QDs embedded in glass matrices fall into the shaded region of the diagram while the experimental data for the oxygen-free samples (for the same value of the diameter) fall above this shaded region. So we can clearly see that the interface situation plays a significant role in the luminescence from Si-QDs.
\n\t\t\t\t
In addition, Wolkin et al (Wolkin et al., 1999) obtained a similar conclusion by comparing the PL of PS samples in different atmosphere, see Fig. 9. They first examined the freshly etched samples (oxygen-free PS) with different porosities (equal to different sizes of Si-QDs) and emitting throughout the visible spectrum. Then the oxygen-free PS samples were exposed to air and their PL energies were measured again. We can clearly see from Fig. 9 that after exposure to air, a redshift of the PL is observed, which can be as large as 1 eV for blue luminescent samples that contain QDs smaller than 2 nm. Besides, authors pointed out that a PL redshift was also observed as soon as the oxygen-free PS samples were transferred from Ar to a pure oxygen atmosphere while no redshift at all was detected when the samples were kept in pure hydrogen atmosphere or in vacuum. Moreover, they found that there is an upper limit of the emission energy (2.1 eV) which is independent of size. So the conclusion is that the surface passivation plays an important role, especially the chemistry of oxygen at the surface can cause an evident change on the PL of Si-QDs and an upper limit of energy gap.
\n\t\t\t\t
Figure 9.
Room temperature PL spectra from PS samples with different porosities kept under Ar atmosphere (a) and after exposure to air (b)
\n\t\t\t\t
On the whole, despite some inevitable differences, the experimental results show that for ultra pure Si-QDs as their sizes decrease, there is a considerable blue-shift in the peak PL energy which is due to the increase of band gap. However, if the Si-QD is not pure enough, much more complex results will be obtained due to the influence of impurity contamination and complicate interface situation.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.2. Theoretical calculation results
\n\t\t\t\t
As we have mentioned above, a number of computations based on TDDFT, TDLDA, and other methods have been performed to simulate the properties of Si-QDs with different structures and passivations. In this section, we are going to introduce our calculation results and some theoretical results from other reports.
\n\t\t\t\t
\n\t\t\t\t\t
4.2.1. Hydrogen-passivated silicon quantum dots
\n\t\t\t\t\t
Zdetsis and Garoufalis calculated the band gaps of hydrogen-passivated Si-QDs using TDDFT, the results are shown in Table 1 (Zdetsis & Garoufalis, 2005). As it can be easily seen in Table 1, with the size of Si-QDs decreases, the band gaps increases.
\n\t\t\t\t\t
We have calculated the energy gaps of silicon QDs of different sizes from 0.6nm to 2nm in diameter by using the CASTEP computation program, which employ the plane-wave peseudopotentials method based on DFT. Some of the structures of Si-QDs we used are shown in Fig. 3. In the computations, screening exchange LDA (sX-LDA)/CA-PZ is used as the type of exchange-correlation potential. As comparison, LDA/CA-PZ is selected as the type of DFT exchange-correlation potential and calculations are performed again. The results are shown in Fig. 10. It can be seen that LDA/CA-PZ suffer from the well-known underestimation of the energy gap while sX-LDA/CA-PZ can obtain a more accurate result which is well consistent with the results from other literatures (Vasiliev et al., 2001; Conibeer et al., 2006).
\n\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tNo. of Si atoms\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tTotal No. of atoms\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tTDDFTb (eV)\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
5
\n\t\t\t\t\t\t\t\t
17
\n\t\t\t\t\t\t\t\t
6.66
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
17
\n\t\t\t\t\t\t\t\t
353
\n\t\t\t\t\t\t\t\t
5.03
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
29
\n\t\t\t\t\t\t\t\t
65
\n\t\t\t\t\t\t\t\t
4.53
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
35
\n\t\t\t\t\t\t\t\t
71
\n\t\t\t\t\t\t\t\t
4.42
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
47
\n\t\t\t\t\t\t\t\t
107
\n\t\t\t\t\t\t\t\t
4.04
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
71
\n\t\t\t\t\t\t\t\t
155
\n\t\t\t\t\t\t\t\t
3.64
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
99
\n\t\t\t\t\t\t\t\t
199
\n\t\t\t\t\t\t\t\t
3.39
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
147
\n\t\t\t\t\t\t\t\t
247
\n\t\t\t\t\t\t\t\t
3.19
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t
Table 1.
The band gaps for small Si nanoclusters
\n\t\t\t\t\t
Figure 10.
Energy gaps of silicon QDs as a function of the QD diameter with H-termination from our work (■) & (●), and from the literatures [(▲) & (◄) from Vasiliev et al; (▼) from Conibeer et al]
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
4.2.2. Oxidized silicon quantum dots
\n\t\t\t\t\t
Luppi and Ossicini (Luppi & Ossicini, 2005) carried out density-functional theory calculations on oxidized Si-QDs using local density approximation, considering three kinds of oxygen configurations: double-bonded, backbonded and bridge-bonded. The structures’ schematic diagram has been shown in Fig. 4. They pointed out that the multiple presence of silanonelike Si=O bonds can be a reliable model for explaining the PL redshift observed in oxidized PS samples. The same conclusion has been reached by Zdetsis and Garoufalis (Zdetsis & Garoufalis, 2005) using TDDFT. Some of their calculated structures have been shown in Fig. 5.
\n\t\t\t\t\t
However, a model based on a backbonded oxygen configuration has been proposed by Nishida to explain the observed PL redshift (Nishida, 2006). Nishida carried out self-consistent calculations using the extended Hückel-type non-orthogonal tight-binding method (EHNTB) for three different oxygen configurations (double-bonded, backbonded and inserted). The results are illustrated in Fig. 11. The author pointed out that the energy gaps calculated for Si dots double-bonded to oxygen are gradually decrease from 2.2 eV to about 1.7 eV with increasing dot size and the inserted oxygen configuration does not cause a significant energy-gap redshift even in the smallest Si-QD. At last he found out that the energy gaps calculated for the Si-QDs backbonded to oxygen coincide well with luminescence redshifts observed in PS.
\n\t\t\t\t\t
Figure 11.
Calculated energy gaps as a function of the diameter (D) of the Si -QDs studied. The dashed line shows the oxidation-induced peak energy (at ∼2.1 eV) in PL spectra observed in PS
\n\t\t\t\t\t
Obviously, the two conclusions stated above contradict each other. For this reason, we have performed calculations using the CASTEP computation program for all four kinds of oxygen configurations. The results we obtained based on LDA method are shown in Fig. 12, from which we can safely come to a conclusion that it is the formation of a Si=O double bond which is responsible for the PL redshifts in PS and other three types of oxygen configurations only cause a few decrease in energy gap.
\n\t\t\t\t\t
The discrepancy between the above results may be due to the difference of the oxygen geometries, initial silicon clusters and the models based on different theories. So it is clear that different structures or models may obtain quite different results.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
4.2.3. Silicon quantum dots embedded in different matrixes
\n\t\t\t\t\t
König et al performed a systematic analysis of Si-QDs embedded in different environment by non-periodic spatial space density-functional–Hartree–Fock (DF–HF) computations of Si clusters comprising 1–165 Si atoms corresponding to a spherical QD diameter of dQD=3.4–18.5Å (König et al., 2009). Some of the structures they used have been shown in Fig. 6 and their simulation results are illustrated in Fig. 13. Obviously, it shows that different interface termination causes different energy gaps. However, we can see that the entire trends of different interface terminations are the same. It is that the energy gap increase with the size decreasing.
\n\t\t\t\t\t
Figure 12.
Calculated energy gaps as a function of the diameter (D) of the Si-QDs
\n\t\t\t\t\t
Figure 13.
Band gaps as a function of the diameter of Si-QDs with different interface terminations. For clarity, the graph is split into two sub-graphs with different energy scale. The points for the Si10X16 clusters (dQD = 7.3 Å) are shown in both graphs
\n\t\t\t\t\t
There are many more complicate calculations simulating Si-QDs in specific environments, we’ll not list them one by one here. From the results above, we know that many factors will influence the properties of Si-QDs, other than the size, the interface termination also have a significant impact, so we should make an comprehensive considerations to study the properties of Si-QDs.
\n\t\t\t\t
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
5. Conclusion
\n\t\t\t
The band gap of Si-NCs or Si-QDs is size-dependent, and the energy of PL can be tuned from the near infrared to the ultraviolet by changing the size of nanocrystals. The surface passivation also plays an important role in determining the band gap. The third generation photovoltaic (PV) solar cell using tandem cells, which is based on Si quantum dots nanostructures, is proposed by Martin Green group (Conibeer et al., 2006, 2008). A number of theoretical models, computations results on PL have been reported, and much of research effort on the properties of Si-QDs has been performing currently. Based on CASTEP quantum mechanical program with choice of sX-LDA/CA-PZ, the band gap of Si-QDs with H-passivation and O-passivation is calculated. The results show that band gap increases when the size of quantum dots decreases for both H-passivation and O-passivation structures. The computation method sX-LDA/CA-PZ is comparable with TDLDA in the computational accuracy. Further research on the band gap and PL of Si-QDs by choosing other non-local functional as the exchange correlation is in progress.
\n\t\t
\n\t
Acknowledgments
\n\t\t\t
This work is partially supported by National High-Tech Research and Development Program of China under Grant No 2007AA04Z301.
\n\t\t
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/17727.pdf",chapterXML:"https://mts.intechopen.com/source/xml/17727.xml",downloadPdfUrl:"/chapter/pdf-download/17727",previewPdfUrl:"/chapter/pdf-preview/17727",totalDownloads:4076,totalViews:459,totalCrossrefCites:0,totalDimensionsCites:2,totalAltmetricsMentions:0,impactScore:1,impactScorePercentile:62,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"November 17th 2010",dateReviewed:"May 6th 2011",datePrePublished:null,datePublished:"July 27th 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/17727",risUrl:"/chapter/ris/17727",book:{id:"332",slug:"crystalline-silicon-properties-and-uses"},signatures:"Hong Yu, Jie-Qiong Zeng and Zheng-Rong Qiu",authors:[{id:"45879",title:"Dr.",name:"Hong",middleName:null,surname:"Yu",fullName:"Hong Yu",slug:"hong-yu",email:"h_yu@seu.edu.cn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"90139",title:"Ms.",name:"Jie-Qiong",middleName:null,surname:"Zeng",fullName:"Jie-Qiong Zeng",slug:"jie-qiong-zeng",email:"caihe605@126.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Southeast University",institutionURL:null,country:{name:"China"}}},{id:"97322",title:"MSc.",name:"Zheng-Rong",middleName:null,surname:"Qiu",fullName:"Zheng-Rong Qiu",slug:"zheng-rong-qiu",email:"qiuzhengrongqzr@163.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Southeast University",institutionURL:null,country:{name:"China"}}}],sections:[{id:"sec_1",title:"1. Introduction ",level:"1"},{id:"sec_2",title:"2. Structure of silicon quantum dots",level:"1"},{id:"sec_2_2",title:"2.1. Physical characterization",level:"2"},{id:"sec_3_2",title:"2.2. Ideal structure",level:"2"},{id:"sec_3_3",title:"2.2.1. Hydrogen-passivated silicon quantum dots",level:"3"},{id:"sec_4_3",title:"2.2.2. Oxidized silicon quantum dots",level:"3"},{id:"sec_5_3",title:"2.2.3. Silicon quantum dots embedded in different matrixes",level:"3"},{id:"sec_8",title:"3. Method of calculation",level:"1"},{id:"sec_9",title:"4. Energy gaps of silicon quantum dots",level:"1"},{id:"sec_9_2",title:"4.1. Experimental results",level:"2"},{id:"sec_10_2",title:"4.2. Theoretical calculation results",level:"2"},{id:"sec_10_3",title:"Table 1.",level:"3"},{id:"sec_11_3",title:"4.2.2. Oxidized silicon quantum dots",level:"3"},{id:"sec_12_3",title:"4.2.3. Silicon quantum dots embedded in different matrixes",level:"3"},{id:"sec_15",title:"5. Conclusion",level:"1"},{id:"sec_16",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBiteen\n\t\t\t\t\t\t\tJ. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLewis\n\t\t\t\t\t\t\tN. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Size-dependen oxygen-related electronic states in silicon nanocrystals. Applied Physics Letters, 84\n\t\t\t\t\t2004\n\t\t\t\t\t5389\n\t\t\t\t\t5391\n\t\t\t\t\n\t\t\t'},{id:"B2",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCanham\n\t\t\t\t\t\t\tL. T.\n\t\t\t\t\t\t\n\t\t\t\t\t Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 57 1990), 1046\n\t\t\t\t\t1048\n\t\t\t\t\n\t\t\t'},{id:"B3",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCarrier\n\t\t\t\t\t\t\tP. .\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLewis\n\t\t\t\t\t\t\tL. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Optical properties of structurally relaxed 2 superlattices : the role of bonding at interfaces. Physical Review B, 65 (2002), 165339\n\t\t\t\t\t165331 -165339-11\n\t\t\t'},{id:"B4",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCho\n\t\t\t\t\t\t\tE. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPark\n\t\t\t\t\t\t\tS. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Silicon quantum dot/crystalline silicon solar cells. Nanotechnology, 19\n\t\t\t\t\t19 (2008), 1\n\t\t\t\t\t5\n\t\t\t\t\n\t\t\t'},{id:"B5",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tConibeer\n\t\t\t\t\t\t\tG. .\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGreen\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films,\n\t\t\t\t\t511-512\n\t\t\t\t\t511512 (2006), 654\n\t\t\t\t\t662\n\t\t\t\t\n\t\t\t'},{id:"B6",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tConibeer\n\t\t\t\t\t\t\tG. .\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGreen\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films,\n\t\t\t\t\t516 2008), 6748\n\t\t\t\t\t6756\n\t\t\t\t\n\t\t\t'},{id:"B7",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFang\n\t\t\t\t\t\t\tT. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRuden\n\t\t\t\t\t\t\tP. P.\n\t\t\t\t\t\t\n\t\t\t\t\t Electronic structure model for n- and p- type silicon quantum dots. Superlattices and Microstructures, 22\n\t\t\t\t\t1997\n\t\t\t\t\t590\n\t\t\t\t\t596\n\t\t\t\t\n\t\t\t'},{id:"B8",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGaroufalis\n\t\t\t\t\t\t\tC. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZdetsis\n\t\t\t\t\t\t\tA. D.\n\t\t\t\t\t\t\n\t\t\t\t\t High level Ab Initio calculations of the optical gap of small silicon quantum dots. Physical Review Letters,\n\t\t\t\t\t87\n\t\t\t\t\t2001\n\t\t\t\t\t276402\n\t\t\t\t\t276401 -276402-4\n\t\t\t'},{id:"B9",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGaroufalis\n\t\t\t\t\t\t\tC. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZdetsis\n\t\t\t\t\t\t\tA. D.\n\t\t\t\t\t\t\n\t\t\t\t\t Optical properties of ultra small nanoparticals:potential role of surface reconstruction and oxygen contamination. Journal of Math. Chem., 46\n\t\t\t\t\t2009\n\t\t\t\t\t952\n\t\t\t\t\t961\n\t\t\t\t\n\t\t\t'},{id:"B10",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuerra\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDegoli\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSize\n\t\t\t\t\t\t\toxidation.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tstrain\n\t\t\t\t\t\t\tin.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tsmall\n\t\t\t\t\t\t\tSi.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSi\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2 nanocrystals. Physical Review B,\n\t\t\t\t\t80 2009), 155332\n\t\t\t\t\t155331 -155332-5\n\t\t\t'},{id:"B11",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJiang\n\t\t\t\t\t\t\tC. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGreen\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. Journal of Applied Physics, 99 2006), 114902\n\t\t\t\t\t114901 -114902-7\n\t\t\t'},{id:"B12",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKönig\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRudd\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Impact of interface on the effective band gap of Si quantum dots. Solar Energy Materials & Solar Cells, 93\n\t\t\t\t\t2009\n\t\t\t\t\t753\n\t\t\t\t\t758\n\t\t\t\t\n\t\t\t'},{id:"B13",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKoponen\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTunturivuori\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Effect of the surrounding oxide on the photoabsorption spectra of Si nanocrystals. Physical Review B, 79\n\t\t\t\t\t2009\n\t\t\t\t\t235332\n\t\t\t\t\t235331 -235332-6\n\t\t\t'},{id:"B14",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t2\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLuppi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOssicini\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO2: Beyond the quantum confinement effect. Physical Review B,\n\t\t\t\t\t71 2005), 035340\n\t\t\t\t\t035341 -035340-15\n\t\t\t'},{id:"B15",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNishida\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t Electronic state calculations of Si quantum dots: Oxidation effects. Physics Review B., 69\n\t\t\t\t\t2004\n\t\t\t\t\t165324\n\t\t\t\t\t165321 -165324-5\n\t\t\t'},{id:"B16",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNishida\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t Calculations of the electronic structure of silicon quantum dots: oxidation-induced redshifts in the energy gap. Semicond. Sci. Technol.,\n\t\t\t\t\t21\n\t\t\t\t\t2006\n\t\t\t\t\t443\n\t\t\t\t\t449\n\t\t\t\t\n\t\t\t'},{id:"B17",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tÖğüt\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChelikowsky\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t Quantum confinement and optical gaps in Si nanocrystals. Physical Review Letters, 79\n\t\t\t\t\t1997\n\t\t\t\t\t1770\n\t\t\t\t\t1773\n\t\t\t\t\n\t\t\t'},{id:"B18",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSoni\n\t\t\t\t\t\t\tR. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFonseca\n\t\t\t\t\t\t\tL. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Size-dependent optical properties of silicon nanocrystals. Journal of Luminescence, 83-84\n\t\t\t\t\t8384 (1999), 187\n\t\t\t\t\t191\n\t\t\t\t\n\t\t\t'},{id:"B19",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTanner\n\t\t\t\t\t\t\tM. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHasko\n\t\t\t\t\t\t\tD. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Investigation of silicon isolated double quantum-dot energy levels for quantum computation. Microelectronic Engineering, 83\n\t\t\t\t\t2006\n\t\t\t\t\t1818\n\t\t\t\t\t1822\n\t\t\t\t\n\t\t\t'},{id:"B20",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVasiliev\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChelikowsky\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Ab initio absorption spectra and optical gaps in nanocrystalline silicon. Physical Review Letters, 86\n\t\t\t\t\t2001\n\t\t\t\t\t1813\n\t\t\t\t\t1816\n\t\t\t\t\n\t\t\t'},{id:"B21",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tB. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChou\n\t\t\t\t\t\t\tY. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation. Journal of Phys. Chem. A,\n\t\t\t\t\t112\n\t\t\t\t\t2008\n\t\t\t\t\t6351\n\t\t\t\t\t6357\n\t\t\t\t\n\t\t\t'},{id:"B22",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWilcoxon\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSamara\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Physical Review B, 60\n\t\t\t\t\t1999\n\t\t\t\t\t2704\n\t\t\t\t\t2714\n\t\t\t\t\n\t\t\t'},{id:"B23",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWolkin\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJorne\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\tet al.\n\t\t\t\t\t Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Physical Review Letters, 82\n\t\t\t\t\t1999\n\t\t\t\t\t197\n\t\t\t\t\t200\n\t\t\t\t\n\t\t\t'},{id:"B24",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZdetsis\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGaroufalis\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t Real space ab initio calculations of exitation energies in small silicon quantum dots, In : Quantum Dots: Fundamentals, Applications, and Frontiers, B. A. Joyce et al. 2005\n\t\t\t\t\t317\n\t\t\t\t\t332\n\t\t\t\t\n\t\t\t'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Hong Yu",address:"",affiliation:'
'}],corrections:null},book:{id:"332",type:"book",title:"Crystalline Silicon",subtitle:"Properties and Uses",fullTitle:"Crystalline Silicon - Properties and Uses",slug:"crystalline-silicon-properties-and-uses",publishedDate:"July 27th 2011",bookSignature:"Sukumar Basu",coverURL:"https://cdn.intechopen.com/books/images_new/332.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-587-7",pdfIsbn:"978-953-51-4478-6",reviewType:"peer-reviewed",numberOfWosCitations:207,isAvailableForWebshopOrdering:!0,editors:[{id:"50632",title:"Prof.",name:"Sukumar",middleName:null,surname:"Basu",slug:"sukumar-basu",fullName:"Sukumar Basu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"956"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"45801",type:"chapter",title:"Amorphous and Crystalline Silicon Films from Soluble Si-Si Network Polymers",slug:"amorphous-and-crystalline-silicon-films-from-soluble-si-si-network-polymers",totalDownloads:3398,totalCrossrefCites:0,signatures:"Michiya Fujiki and Giseop Kwak",reviewType:"peer-reviewed",authors:[{id:"47698",title:"Prof.",name:"Michiya",middleName:null,surname:"Fujiki",fullName:"Michiya Fujiki",slug:"michiya-fujiki"},{id:"47710",title:"Prof.",name:"Giseop",middleName:null,surname:"Kwak",fullName:"Giseop Kwak",slug:"giseop-kwak"}]},{id:"17722",type:"chapter",title:"Study of SiO2/Si Interface by Surface Techniques",slug:"study-of-sio2-si-interface-by-surface-techniques",totalDownloads:14110,totalCrossrefCites:13,signatures:"Rodica Ghita, Constantin Logofatu, Catalin-Constantin Negrila, Florica Ungureanu, Costel Cotirlan, Adrian-Stefan Manea, Mihail-Florin Lazarescu and Corneliu Ghica",reviewType:"peer-reviewed",authors:[{id:"50919",title:"Dr.",name:"Rodica V.",middleName:null,surname:"Ghita",fullName:"Rodica V. Ghita",slug:"rodica-v.-ghita"},{id:"57132",title:"Dr.",name:"Constantin",middleName:null,surname:"Logofatu",fullName:"Constantin Logofatu",slug:"constantin-logofatu"},{id:"57133",title:"Dr.",name:"Catalin-Constantin",middleName:null,surname:"Negrila",fullName:"Catalin-Constantin Negrila",slug:"catalin-constantin-negrila"},{id:"57134",title:"Mrs.",name:"Florica",middleName:null,surname:"Ungureanu",fullName:"Florica Ungureanu",slug:"florica-ungureanu"},{id:"57135",title:"Dr.",name:"Costel",middleName:null,surname:"Cotirlan",fullName:"Costel Cotirlan",slug:"costel-cotirlan"},{id:"57136",title:"Dr.",name:"Adrian-Stefan",middleName:null,surname:"Manea",fullName:"Adrian-Stefan Manea",slug:"adrian-stefan-manea"},{id:"57137",title:"Dr.",name:"Mihail-Florin",middleName:null,surname:"Lazarescu",fullName:"Mihail-Florin Lazarescu",slug:"mihail-florin-lazarescu"},{id:"101735",title:"Dr.",name:"Corneliu",middleName:null,surname:"Ghica",fullName:"Corneliu Ghica",slug:"corneliu-ghica"}]},{id:"17723",type:"chapter",title:"Effect of Native Oxide on the Electric Field-induced Characteristics of Device-quality Silicon at Room Temperature",slug:"effect-of-native-oxide-on-the-electric-field-induced-characteristics-of-device-quality-silicon-at-ro",totalDownloads:2221,totalCrossrefCites:0,signatures:"Halyna Khlyap, Viktor Laptev, Luydmila Pankiv and Volodymyr Tsmots",reviewType:"peer-reviewed",authors:[{id:"40433",title:"Dr.",name:"Viktor",middleName:null,surname:"Laptev",fullName:"Viktor Laptev",slug:"viktor-laptev"},{id:"47878",title:"Dr.",name:"Halyna",middleName:null,surname:"Khlyap",fullName:"Halyna Khlyap",slug:"halyna-khlyap"},{id:"92204",title:"MSc.",name:"Luydmila",middleName:null,surname:"Pankiv",fullName:"Luydmila Pankiv",slug:"luydmila-pankiv"},{id:"92205",title:"Prof.",name:"Volodymyr",middleName:null,surname:"Tsmots",fullName:"Volodymyr Tsmots",slug:"volodymyr-tsmots"}]},{id:"17724",type:"chapter",title:"Structure and Properties of Dislocations in Silicon",slug:"structure-and-properties-of-dislocations-in-silicon",totalDownloads:6929,totalCrossrefCites:2,signatures:"Martin Kittler and Manfred Reiche",reviewType:"peer-reviewed",authors:[{id:"49724",title:"Dr.",name:"Manfred",middleName:null,surname:"Reiche",fullName:"Manfred Reiche",slug:"manfred-reiche"},{id:"49726",title:"Prof.",name:"Martin",middleName:null,surname:"Kittler",fullName:"Martin Kittler",slug:"martin-kittler"}]},{id:"17725",type:"chapter",title:"High Mass Molecular Ion Implantation",slug:"high-mass-molecular-ion-implantation",totalDownloads:5825,totalCrossrefCites:1,signatures:"Bill Chang and Michael Ameen",reviewType:"peer-reviewed",authors:[{id:"56067",title:"Dr.",name:"Bill",middleName:null,surname:"Chang",fullName:"Bill Chang",slug:"bill-chang"},{id:"57908",title:"Dr.",name:"Michael",middleName:null,surname:"Ameen",fullName:"Michael Ameen",slug:"michael-ameen"}]},{id:"17726",type:"chapter",title:"Infrared Spectroscopic Ellipsometry for Ion-Implanted Silicon Wafers",slug:"infrared-spectroscopic-ellipsometry-for-ion-implanted-silicon-wafers",totalDownloads:3372,totalCrossrefCites:0,signatures:"Li and Xianming Liu",reviewType:"peer-reviewed",authors:[{id:"52038",title:"Dr.",name:"Bincheng",middleName:null,surname:"Li",fullName:"Bincheng Li",slug:"bincheng-li"},{id:"57024",title:"Dr.",name:"Xianming",middleName:null,surname:"Liu",fullName:"Xianming Liu",slug:"xianming-liu"}]},{id:"17727",type:"chapter",title:"Silicon Nanocrystals",slug:"silicon-nanocrystals",totalDownloads:4076,totalCrossrefCites:0,signatures:"Hong Yu, Jie-Qiong Zeng and Zheng-Rong Qiu",reviewType:"peer-reviewed",authors:[{id:"45879",title:"Dr.",name:"Hong",middleName:null,surname:"Yu",fullName:"Hong Yu",slug:"hong-yu"},{id:"90139",title:"Ms.",name:"Jie-Qiong",middleName:null,surname:"Zeng",fullName:"Jie-Qiong Zeng",slug:"jie-qiong-zeng"},{id:"97322",title:"MSc.",name:"Zheng-Rong",middleName:null,surname:"Qiu",fullName:"Zheng-Rong Qiu",slug:"zheng-rong-qiu"}]},{id:"17728",type:"chapter",title:"Defect Related Luminescence in Silicon Dioxide Network: A Review",slug:"defect-related-luminescence-in-silicon-dioxide-network-a-review",totalDownloads:9429,totalCrossrefCites:43,signatures:"Roushdey Salh",reviewType:"peer-reviewed",authors:[{id:"48391",title:"Dr.",name:"Roushdey",middleName:null,surname:"Salh",fullName:"Roushdey Salh",slug:"roushdey-salh"}]},{id:"17729",type:"chapter",title:"Silicon Nanocluster in Silicon Dioxide: Cathodoluminescence, Energy Dispersive X-Ray Analysis and Infrared Spectroscopy Studies",slug:"silicon-nanocluster-in-silicon-dioxide-cathodoluminescence-energy-dispersive-x-ray-analysis-and-infr",totalDownloads:4693,totalCrossrefCites:6,signatures:"Roushdey Salh",reviewType:"peer-reviewed",authors:[{id:"48391",title:"Dr.",name:"Roushdey",middleName:null,surname:"Salh",fullName:"Roushdey Salh",slug:"roushdey-salh"}]},{id:"17730",type:"chapter",title:"Nanocrystalline Porous Silicon",slug:"nanocrystalline-porous-silicon",totalDownloads:5970,totalCrossrefCites:8,signatures:"Sukumar Basu and Jayita Kanungo",reviewType:"peer-reviewed",authors:[{id:"50632",title:"Prof.",name:"Sukumar",middleName:null,surname:"Basu",fullName:"Sukumar Basu",slug:"sukumar-basu"},{id:"58906",title:"Dr.",name:"Jayita",middleName:null,surname:"Kanungo",fullName:"Jayita Kanungo",slug:"jayita-kanungo"}]},{id:"17731",type:"chapter",title:"Nanocrystalline Porous Silicon: Structural, Optical, Electrical and Photovoltaic Properties",slug:"nanocrystalline-porous-silicon-structural-optical-electrical-and-photovoltaic-properties",totalDownloads:5380,totalCrossrefCites:1,signatures:"Ma. Concepción Arenas-Arrocena, Marina Vega-Gonzalez, Omar Martinez and Oscar H. Salinas-Aviles",reviewType:"peer-reviewed",authors:[{id:"40078",title:"Dr.",name:"Ma. Concepción",middleName:null,surname:"Arenas-Arrocena",fullName:"Ma. Concepción Arenas-Arrocena",slug:"ma.-concepcion-arenas-arrocena"},{id:"57630",title:"Dr.",name:"Marina",middleName:null,surname:"Vega-Gonzalez",fullName:"Marina Vega-Gonzalez",slug:"marina-vega-gonzalez"},{id:"57631",title:"Dr.",name:"Omar",middleName:null,surname:"Martinez",fullName:"Omar Martinez",slug:"omar-martinez"},{id:"57632",title:"Dr.",name:"Oscar H.",middleName:null,surname:"Salinas-Aviles",fullName:"Oscar H. Salinas-Aviles",slug:"oscar-h.-salinas-aviles"}]},{id:"17732",type:"chapter",title:"Porous Silicon Integrated Photonic Devices for Biochemical Optical Sensing",slug:"porous-silicon-integrated-photonic-devices-for-biochemical-optical-sensing",totalDownloads:3117,totalCrossrefCites:0,signatures:"Emanuele Orabona, Ivo Rendina, Luca De Stefano and Ilaria Rea",reviewType:"peer-reviewed",authors:[{id:"27129",title:"Dr.",name:"Luca",middleName:null,surname:"De Stefano",fullName:"Luca De Stefano",slug:"luca-de-stefano"},{id:"40496",title:"Dr.",name:"Ilaria",middleName:null,surname:"Rea",fullName:"Ilaria Rea",slug:"ilaria-rea"},{id:"57211",title:"Dr.",name:"Emanuele",middleName:null,surname:"Orabona",fullName:"Emanuele Orabona",slug:"emanuele-orabona"},{id:"57212",title:"Dr.",name:"Ivo",middleName:null,surname:"Rendina",fullName:"Ivo Rendina",slug:"ivo-rendina"}]},{id:"17733",type:"chapter",title:"Life Cycle Assessment of PV systems",slug:"life-cycle-assessment-of-pv-systems",totalDownloads:7898,totalCrossrefCites:3,signatures:"Masakazu Ito",reviewType:"peer-reviewed",authors:[{id:"50764",title:"Dr.",name:"Masakazu",middleName:null,surname:"Ito",fullName:"Masakazu Ito",slug:"masakazu-ito"}]},{id:"17734",type:"chapter",title:"Design and Fabrication of a Novel MEMS Silicon Microphone",slug:"design-and-fabrication-of-a-novel-mems-silicon-microphone",totalDownloads:6920,totalCrossrefCites:0,signatures:"Bahram Azizollah Ganji",reviewType:"peer-reviewed",authors:[{id:"42543",title:"Dr.",name:"Bahram",middleName:null,surname:"Azizollah Ganji",fullName:"Bahram Azizollah Ganji",slug:"bahram-azizollah-ganji"}]},{id:"17735",type:"chapter",title:"Global Flow Analysis of Crystalline Silicon",slug:"global-flow-analysis-of-crystalline-silicon",totalDownloads:4097,totalCrossrefCites:1,signatures:"Hiroaki Takiguchi",reviewType:"peer-reviewed",authors:[{id:"52603",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Takiguchi",fullName:"Hiroaki Takiguchi",slug:"hiroaki-takiguchi"}]}]},relatedBooks:[{type:"book",id:"7684",title:"Multilayer Thin Films",subtitle:"Versatile Applications for Materials Engineering",isOpenForSubmission:!1,hash:"fd04577df0c895320c3f06d98308ea67",slug:"multilayer-thin-films-versatile-applications-for-materials-engineering",bookSignature:"Sukumar Basu",coverURL:"https://cdn.intechopen.com/books/images_new/7684.jpg",editedByType:"Edited by",editors:[{id:"50632",title:"Prof.",name:"Sukumar",surname:"Basu",slug:"sukumar-basu",fullName:"Sukumar Basu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"70303",title:"A Review on Metal Oxide-Graphene Derivative Nano-Composite Thin Film Gas Sensors",slug:"a-review-on-metal-oxide-graphene-derivative-nano-composite-thin-film-gas-sensors",signatures:"Arnab Hazra, Nagesh Samane and Sukumar Basu",authors:[{id:"50632",title:"Prof.",name:"Sukumar",middleName:null,surname:"Basu",fullName:"Sukumar Basu",slug:"sukumar-basu"},{id:"303335",title:"Dr.",name:"Arnab",middleName:null,surname:"Hazra",fullName:"Arnab Hazra",slug:"arnab-hazra"},{id:"303337",title:"Mr.",name:"Nagesh",middleName:null,surname:"Samane",fullName:"Nagesh Samane",slug:"nagesh-samane"}]},{id:"69377",title:"Crystalline Silicon Nitride Films on Si(111): Growth Mechanism, Surface Structure and Chemistry down to Atomic Scale",slug:"crystalline-silicon-nitride-films-on-si-111-growth-mechanism-surface-structure-and-chemistry-down-to",signatures:"Subhashis Gangopadhyay",authors:[{id:"303374",title:"Prof.",name:"Subhashis",middleName:null,surname:"Gangopadhyay",fullName:"Subhashis Gangopadhyay",slug:"subhashis-gangopadhyay"}]},{id:"68321",title:"Nanostructured Silicon Sensors",slug:"nanostructured-silicon-sensors",signatures:"Huseyn M. Mamedov",authors:[{id:"293543",title:"Prof.",name:"Huseyn",middleName:null,surname:"Mamedov",fullName:"Huseyn Mamedov",slug:"huseyn-mamedov"}]},{id:"69657",title:"Environmental Gas Sensors Based on Nanostructured Thin Films",slug:"environmental-gas-sensors-based-on-nanostructured-thin-films",signatures:"Nithya Sureshkumar and Atanu Dutta",authors:[{id:"303746",title:"Dr.",name:"Atanu",middleName:null,surname:"Dutta",fullName:"Atanu Dutta",slug:"atanu-dutta"},{id:"311082",title:"Ms.",name:"Nithya",middleName:null,surname:"S",fullName:"Nithya S",slug:"nithya-s"}]},{id:"68742",title:"Synthesis and Characterization of CoO-ZnO-Based Nanocomposites for Gas-Sensing Applications",slug:"synthesis-and-characterization-of-coo-zno-based-nanocomposites-for-gas-sensing-applications",signatures:"Parthasarathy Panchatcharam",authors:[{id:"267068",title:"Ph.D. Student",name:"Parthasarathy",middleName:null,surname:"Panchatcharam",fullName:"Parthasarathy Panchatcharam",slug:"parthasarathy-panchatcharam"}]},{id:"67285",title:"Metal Organic Frameworks-Based Optical Thin Films",slug:"metal-organic-frameworks-based-optical-thin-films",signatures:"Cheng-an Tao, Jianfang Wang and Rui Chen",authors:[{id:"188409",title:"Associate Prof.",name:"Cheng-An",middleName:null,surname:"Tao",fullName:"Cheng-An Tao",slug:"cheng-an-tao"},{id:"300924",title:"Prof.",name:"Jianfang",middleName:null,surname:"Wang",fullName:"Jianfang Wang",slug:"jianfang-wang"},{id:"300925",title:"MSc.",name:"Rui",middleName:null,surname:"Chen",fullName:"Rui Chen",slug:"rui-chen"}]},{id:"69084",title:"Nanoscale Optical Patterning of Amorphous Silicon Carbide for High-Density Data Archiving",slug:"nanoscale-optical-patterning-of-amorphous-silicon-carbide-for-high-density-data-archiving",signatures:"Tania Tsvetkova",authors:[{id:"233190",title:"Dr.",name:"Tania",middleName:null,surname:"Tsvetkova",fullName:"Tania Tsvetkova",slug:"tania-tsvetkova"}]},{id:"69745",title:"Multilayered and Chemiresistive Thin and Thick Film Gas Sensors for Air Quality Monitoring",slug:"multilayered-and-chemiresistive-thin-and-thick-film-gas-sensors-for-air-quality-monitoring",signatures:"Tynee Bhowmick, Vibhav Ambardekar, Abhishek Ghosh, Moumita Dewan, Partha Pratim Bandyopadhyay, Sudip Nag and Subhasish Basu Majumder",authors:[{id:"286709",title:"Dr.",name:"Partha Pratim",middleName:null,surname:"Bandyopadhyay",fullName:"Partha Pratim Bandyopadhyay",slug:"partha-pratim-bandyopadhyay"},{id:"303773",title:"Ph.D. Student",name:"Tynee",middleName:null,surname:"Bhowmick",fullName:"Tynee Bhowmick",slug:"tynee-bhowmick"},{id:"303776",title:"Mr.",name:"Vibhav",middleName:null,surname:"Ambardekar",fullName:"Vibhav Ambardekar",slug:"vibhav-ambardekar"},{id:"303777",title:"Dr.",name:"Sudip",middleName:null,surname:"Nag",fullName:"Sudip Nag",slug:"sudip-nag"},{id:"303778",title:"Prof.",name:"Subhasish B",middleName:null,surname:"Majumder",fullName:"Subhasish B Majumder",slug:"subhasish-b-majumder"},{id:"311443",title:"Dr.",name:"Abhishek",middleName:null,surname:"Ghosh",fullName:"Abhishek Ghosh",slug:"abhishek-ghosh"},{id:"311444",title:"Ms.",name:"Moumita",middleName:null,surname:"Dewan",fullName:"Moumita Dewan",slug:"moumita-dewan"}]},{id:"68457",title:"Nano Layers of 2D Graphene Versus Graphene Oxides for Sensing Hydrogen Gas",slug:"nano-layers-of-2d-graphene-versus-graphene-oxides-for-sensing-hydrogen-gas",signatures:"Anuradha Kashyap, Shikha Sinha, Partha Bir Barman and Surajit Kumar Hazra",authors:[{id:"299271",title:"Dr.",name:"Surajit Kumar",middleName:null,surname:"Hazra",fullName:"Surajit Kumar Hazra",slug:"surajit-kumar-hazra"},{id:"309162",title:"Dr.",name:"P.B",middleName:null,surname:"Barman",fullName:"P.B Barman",slug:"p.b-barman"},{id:"309163",title:"Ms.",name:"Shikha",middleName:null,surname:"Sinha",fullName:"Shikha Sinha",slug:"shikha-sinha"},{id:"309164",title:"Ms.",name:"Anuradha",middleName:null,surname:"Kashyap",fullName:"Anuradha Kashyap",slug:"anuradha-kashyap"}]},{id:"69217",title:"Multilayered Nanostructures Integrated with Emerging Technologies",slug:"multilayered-nanostructures-integrated-with-emerging-technologies",signatures:"Maria L. Braunger, Rafael C. Hensel, Gabriel Gaál, Mawin J.M. Jimenez, Varlei Rodrigues and Antonio Riul Jr",authors:[{id:"306770",title:"Prof.",name:"Antonio",middleName:null,surname:"Riul Jr.",fullName:"Antonio Riul Jr.",slug:"antonio-riul-jr."},{id:"310349",title:"Dr.",name:"Maria Luisa",middleName:null,surname:"Braunger",fullName:"Maria Luisa Braunger",slug:"maria-luisa-braunger"},{id:"310350",title:"MSc.",name:"Rafael",middleName:null,surname:"Hensel",fullName:"Rafael Hensel",slug:"rafael-hensel"},{id:"310351",title:"MSc.",name:"Gabriel",middleName:null,surname:"Gaál",fullName:"Gabriel Gaál",slug:"gabriel-gaal"},{id:"310352",title:"Dr.",name:"Mawin",middleName:null,surname:"Jimenez",fullName:"Mawin Jimenez",slug:"mawin-jimenez"},{id:"310353",title:"Prof.",name:"Varlei",middleName:null,surname:"Rodrigues",fullName:"Varlei Rodrigues",slug:"varlei-rodrigues"}]},{id:"67451",title:"Spin Transport in Nanowires Synthesized Using Anodic Nanoporous Alumina Films",slug:"spin-transport-in-nanowires-synthesized-using-anodic-nanoporous-alumina-films",signatures:"Supriyo Bandyopadhyay",authors:[{id:"300070",title:"Dr.",name:"Supriyo",middleName:null,surname:"Bandyopadhyay",fullName:"Supriyo Bandyopadhyay",slug:"supriyo-bandyopadhyay"}]},{id:"69080",title:"Concepts for Designing Tailored Thin Film Surfaces with Potential Biological Applications",slug:"concepts-for-designing-tailored-thin-film-surfaces-with-potential-biological-applications",signatures:"Nicolás Eduardo Muzzio, Omar Azzaroni, Sergio E. Moya and Miguel Ángel Pasquale",authors:[{id:"302821",title:"Dr.",name:"Miguel Angel",middleName:null,surname:"Pasquale",fullName:"Miguel Angel Pasquale",slug:"miguel-angel-pasquale"},{id:"309985",title:"Dr.",name:"Nicolás",middleName:null,surname:"Muzzio",fullName:"Nicolás Muzzio",slug:"nicolas-muzzio"},{id:"309986",title:"Prof.",name:"Omar",middleName:null,surname:"Azzaroni",fullName:"Omar Azzaroni",slug:"omar-azzaroni"},{id:"309987",title:"Dr.",name:"Sergio",middleName:null,surname:"Moya",fullName:"Sergio Moya",slug:"sergio-moya"}]},{id:"69827",title:"Multilayer Thin Films on Fine Particles",slug:"multilayer-thin-films-on-fine-particles",signatures:"Sajjad Habibzadeh, Ehsan Rahmani, Mohammad Reza Saeb, Mohammad Reza Ganjali and Jamal Chaouki",authors:[{id:"96495",title:"Prof.",name:"Jamal",middleName:null,surname:"Chaouki",fullName:"Jamal Chaouki",slug:"jamal-chaouki"},{id:"301541",title:"Prof.",name:"Sajjad",middleName:null,surname:"Habibzadeh",fullName:"Sajjad Habibzadeh",slug:"sajjad-habibzadeh"},{id:"310937",title:"Dr.",name:"Ehsan",middleName:null,surname:"Rahmani",fullName:"Ehsan Rahmani",slug:"ehsan-rahmani"},{id:"310938",title:"Prof.",name:"Mohammad Reza",middleName:null,surname:"Saeb",fullName:"Mohammad Reza Saeb",slug:"mohammad-reza-saeb"},{id:"310939",title:"Prof.",name:"Mohammad Reza",middleName:null,surname:"Ganjali",fullName:"Mohammad Reza Ganjali",slug:"mohammad-reza-ganjali"}]}]}],publishedBooks:[{type:"book",id:"332",title:"Crystalline Silicon",subtitle:"Properties and Uses",isOpenForSubmission:!1,hash:"c8a4a98e2179065e6e713a5d907f5692",slug:"crystalline-silicon-properties-and-uses",bookSignature:"Sukumar Basu",coverURL:"https://cdn.intechopen.com/books/images_new/332.jpg",editedByType:"Edited by",editors:[{id:"50632",title:"Prof.",name:"Sukumar",surname:"Basu",slug:"sukumar-basu",fullName:"Sukumar Basu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6083",title:"Semiconductors",subtitle:"Growth and Characterization",isOpenForSubmission:!1,hash:"53bed47ef5d839f8d10d5f1a3b050c49",slug:"semiconductors-growth-and-characterization",bookSignature:"Rosalinda Inguanta and Carmelo Sunseri",coverURL:"https://cdn.intechopen.com/books/images_new/6083.jpg",editedByType:"Edited by",editors:[{id:"174858",title:"Prof.",name:"Rosalinda",surname:"Inguanta",slug:"rosalinda-inguanta",fullName:"Rosalinda Inguanta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6845",title:"Graphene and Its Derivatives",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"63a9783e678fc42ce981efb35be02096",slug:"graphene-and-its-derivatives-synthesis-and-applications",bookSignature:"Ishaq Ahmad and Fabian I. Ezema",coverURL:"https://cdn.intechopen.com/books/images_new/6845.jpg",editedByType:"Edited by",editors:[{id:"25524",title:"Prof.",name:"Ishaq",surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8866",title:"Silicon Materials",subtitle:null,isOpenForSubmission:!1,hash:"c7cfb39af7a429ef119b71a2e1f221e7",slug:"silicon-materials",bookSignature:"Beddiaf Zaidi and Slimen Belghit",coverURL:"https://cdn.intechopen.com/books/images_new/8866.jpg",editedByType:"Edited by",editors:[{id:"230574",title:"Dr.",name:"Beddiaf",surname:"Zaidi",slug:"beddiaf-zaidi",fullName:"Beddiaf Zaidi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"332",title:"Crystalline Silicon",subtitle:"Properties and Uses",isOpenForSubmission:!1,hash:"c8a4a98e2179065e6e713a5d907f5692",slug:"crystalline-silicon-properties-and-uses",bookSignature:"Sukumar Basu",coverURL:"https://cdn.intechopen.com/books/images_new/332.jpg",editedByType:"Edited by",editors:[{id:"50632",title:"Prof.",name:"Sukumar",surname:"Basu",slug:"sukumar-basu",fullName:"Sukumar Basu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"72304",title:"Clinical Use of Melatonin in the Treatment of Sleep Disorders",doi:"10.5772/intechopen.92656",slug:"clinical-use-of-melatonin-in-the-treatment-of-sleep-disorders",body:'
1. Introduction
Sleep is fundamental to the mental and physical health of a person. Lack of sleep is a significant risk factor for obesity, diabetes, diseases of the cardiovascular system, as well as anxiety and depressive disorders. Sleep disorders have a significant financial burden on the healthcare system and complicate the treatment of major somatic diseases. Sleep disorders are a category of diseases that include hypersomnia, insomnia (accompanied by difficulty falling asleep, maintaining sleep, and early awakening), circadian rhythm disturbance, parasomnia, and sleep-dependent breathing disorders. The consequence of some sleep disorders is a violation of falling asleep and maintaining sleep, drowsiness, and, as a consequence, a decrease in the quality of life. Some sleep disorders can also lead to severe impaired ability to perform every day and professional tasks related to concentration, switching attention, and spatial perception [1].
The development of pharmacological treatment methods has provoked an increase in the frequency of sleep disorders in the last decade, as a result of undesirable effects of this therapy. The most common disease is insomnia, which according to the classification criteria for mental disorders Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) in the general population is found in 4–6%. The main classes of drugs for the treatment of insomnia are barbiturates, benzodiazepines, benzodiazepine agonists, antidepressants, and anxiolytics. These drugs can cause a large number of side effects associated with excessive daytime sleepiness, decreased concentration, and switching attention and can cause deterioration of short-term memory. In some cases, with prolonged use of these drugs, dependence may form, and with cancelation, a “rebound phenomenon” may occur. In this regard, it becomes relevant to search for new pharmaceuticals that reduce the number and severity of these side effects while maintaining the proper level of effectiveness. One of these drugs, with long-term administration of minimal side effects and sufficient effectiveness in certain sleep disorders, is melatonin. Melatonin is mainly produced by the pineal gland with a peak of activity at night; the concentration fluctuation coincides with the circadian rhythm. Melatonin-based preparations have good tolerance in various age periods, without forming dependency [2, 3, 4].
Other effects are inherent to melatonin, namely, regulation of circadian, seasonal rhythms; regulation of the psychoemotional and cognitive sphere; antioxidant, neuroprotective, and geroprotective effect; immunomodulatory; vegetative stabilizing; and oncological and stress-protective effect.
The multiplicity of effects of melatonin is due to the large number of targets on which this hormone has an effect. The most studied mechanism for the implementation of the action of melatonin remains its effect on suprachiasmal nuclei (SCN) of the hypothalamus. Through SCN, the chronobiological effect of melatonin is realized and, of course, its hypnotic effects. Melatonin interacts with two types of G-protein-bound receptors—MT1 and MT2 [5]. MT1-type receptors are distributed in the hippocampus, caudate nucleus, pillow, suprachiasmatic nuclei, paraventricular nucleus, supraoptic nucleus, Meynert nucleus, adjacent nucleus, substantia nigra, mammary bodies, and retina. MT2-type receptors are mainly detected in the hippocampus, SCN, and the retina. Both types of receptors are expressed by neurons and glial cells of the cerebral and cerebellar cortex, in the thalamus, and pineal gland [5, 6].
Melatonin is released into the blood plasma as a rhythmic oscillatory pattern, which is regulated by SCN neurons. Daylight suppresses the release of melatonin through the retinohypothalamic tract, projecting from melanopsin-expressing retinal ganglion cells to SCN neurons. It is known, for example, that night illumination is 2000–2500 Lux within 2 hours, which completely inhibits the secretion of melatonin. On the other hand, traditional home light (50–300 Lux) practically does not have a suppressive effect on the secretion of melatonin [7]. The neural relationship between the structures of the central nervous system, where axons of melanopsin-expressing ganglion cells are projected, primarily with SCN neurons and the sympathetic nervous system, is via the superior cervical sympathetic ganglion, from where the nerve fibers go directly to the pinealocytes and regulate the exocytosis of norepinephrine, which activates melatonin synthesis and its release [8]. As mentioned above, melatonin easily penetrates through biological barrier: it is secreted continuously into the blood plasma and enters various fluids (saliva, urine, cerebrospinal fluid, preovulatory follicle, spermatozoa, amniotic fluid, and human milk). The maximum level of melatonin in blood plasma is at 03.00–04.00 at night. The indicator varies depending on the chronotype and is not determined in the daytime. Melatonin levels have a pronounced intersubject heterogeneity but are steadily repeated in the same person. After birth, the rhythmic production of melatonin during the day reaches very high levels by 3–6 years of life and then decreases by almost 80% to levels in an adult. The melatonin rhythm is generated by the endogenous clock of the hypothalamic SCN neurons, which are affected by the light/dark cycle (zeitgeber). Seasonal effects on the secretion of melatonin are manifested in an increase in nighttime secretion of melatonin, which is associated with a decrease in plasma of ovarian steroids. On the other hand, urban lighting reduces seasonal differences in the secretion of melatonin, cortisol, and thyrotropin. Winter-type seasonal affective disorders are characterized by recurrent depressive episodes during a short photoperiod.
Melatonin, due to its amphotericity (amphiphilicity), is able to penetrate into the cell, organelles, and nuclear membranes and directly interacts with intracellular molecules, exerting a non–receptor-mediated effect. Along with this, melatonin exerts a receptor-mediated effect on target cells, as a result of the interaction of the hormone with either membrane or nuclear receptors [9]. The main physiological functions of melatonin are due to its hormonal properties; however, the hormone also has an autocrine and paracrine effect, in particular in the retina and gastrointestinal tract [10].
Outside of SCN, MT1 and MT2 receptors are also found in large numbers in the duodenum, colon, cecum and appendix, gallbladder epithelium, parotid gland, pancreas, β-cells of the endocrine system, pancreas, coronary, and cerebral arteries adipose tissue. In addition to membrane receptors for melatonin, there are also nuclear receptors: RORα and RORβ. The prevalence of RORα is highest in T and B lymphocytes, neutrophils, and monocytes, whereas RORβ are found mainly in the brain, pineal gland, retina, and spleen.
The modulating effect on sleep architecture is also realized by melatonin due to membrane receptors MT1 and MT2. The activation of the MT2 receptor contributes to increasing the duration of slow-wave sleep. The activation of the MT 1 receptor has a decrease in the duration of slow-wave sleep [11, 12].
The effects of melatonin, in addition to effects on SCN, on neural networks of passive brain function default mode network (DMN) were also demonstrated. Their activation is accompanied by the appearance of a feeling of fatigue and is characterized by changes typical of sleep in such parts of the cortex as the precuneus located in the rostromedial aspect of the occipital cortex [13, 14]. Because the general effect of melatonin through two membrane receptors does not increase the duration of slow-wave sleep (SWS) [15], the main effect of melatonin is not associated with its homeostatic effect on sleep. Therefore, its effect can be attributed to sleep regulation through the circadian component [16].
The multiple representation of melatonin receptors in the central nervous system, its effect on one of the key components of the regulation of the sleep-wake cycle, leads to the multiplicity of the clinical use of this hormone, especially in pathological conditions accompanied by primary or secondary circadian rhythm disturbances.
2. Melatonin and sleep disorders
2.1 Melatonin and disorders of the sleep-wake cycle
Circadian disturbances of the sleep-wake rhythm are associated with disconnection of the synchronization of the endogenous circadian rhythm and environmental influences. Melatonin signals the onset of darkness, and activation of its production indirectly depends on the activity of intrinsically photosensitive retinal ganglion cells (ipRGC) or true light-sensitive retinal ganglion cells. However, there is also an endogenous melatonin release profile that allows SCN activation regardless of external light, maintaining sleep-wake rhythms and neuroendocrine rhythms in a 24-hour cycle. However, the absence of external-stabilizing effect of zeitgeber (daily light change) can lead to the formation of a non-24-hour sleep-wake cycle. For example, in completely blind subjects, it is quite common (in 50–75% of cases) to observe a non-24-hour sleep-wake disorder (non-24-hour sleep-wake disorder), the occurrence of which is associated with the inability to synchronize with changes in light [17]. Circadian rhythm disorders can be divided into conditions that may be caused by endogenous or exogenous factors. The first subgroup includes the syndrome of delayed onset of sleep and wake phases (advanced sleep-wake phase disorder), early onset of the sleep phase (delayed sleep-wake phase disorder), irregular sleep-wake rhythm disorder (irregular sleep-wake rhythm disorder), and non-24-hour sleep-wake cycle (non-24-hour sleep-wake disorder). The group with exogenous causes of occurrence includes jet lag disorder, a disorder caused by a shift work schedule (shift work disorder) or a result of behavioral features of going to bed and violation of the work and rest regime in the format of about 24-hour circadian rhythm. The circadian rhythm is regulated by melatonin, while the production of melatonin itself is regulated by external influences, the most important of which is the effect of light, which activates the retinal ganglion cells containing the light-sensitive pigment melanopsin. External influences with excessive activation of signal systems implemented through SCN excitation are caused by the lifestyle of modern people, the use of electronic devices. Such excessive activation can lead to difficulty in initiating sleep, reducing its duration [18]. A decrease in melatonin secretion serves as one of the main mechanisms for the occurrence of such a disorder as delayed sleep phases [19]. There is a positive modulating effect of melatonin on the circadian rhythm of sleep-wakefulness and sleep efficiency both in pathology and in healthy subjects [20].
In separate studies in patients with delayed onset of sleep and wake phases in combination with attention deficit hyperactivity disorder, therapy was performed at a dose of 10 mg, lasting for 4 or more years. The therapeutic effect of melatonin was shown in reducing the start time of sleep and increasing the time of wakefulness in these patients. The use of melatonin in a dose of 3 mg for the treatment of disorders of the sleep-wake cycle in children did not show any effects on the process of puberty in the long-term period. However, it should be noted that these studies are isolated and do not carry a sufficiently high level of evidence [21]. However, even this long-term use of melatonin was not accompanied by any significant or serious adverse events.
Table 1 presents data on the efficacy of melatonin and its agonists in various forms of sleep-wake disorder [21].
Type of disorder (syndrome)
Efficiency
Level of evidence
Delayed onset of the phases of sleep and wakefulness
Recommended for adults with or without depression Recommended for children and adolescents without or with concomitant psychiatric pathology
Low
Recommended for children and adolescents without or with concomitant psychiatric pathology
Moderate
Non-24-hour sleep-wake cycle
Recommended for blind adults
Low
Irregular rhythm of sleep-wakefulness
Not recommended for seniors with dementia. Recommended for children and adolescents with neurological pathology
Moderate
Table 1.
The use of melatonin and its agonists in various types of disorders of the sleep-wake cycle.
According to the recommendations for the treatment of these conditions, melatonin and its agonists have a sufficient level of evidence when applied to the diagnosis of delayed onset of sleep and wake phases and irregular sleep-wake rhythm syndrome. Concerning the recommendations on the dose of melatonin, no consensus has been formed, since in studies on the basis of which recommendations are formed with the use of a wide variety of doses of melatonin, from 0.3 to 10 mg. For the non-24-hour sleep-wake cycle syndrome alone, in 2014, the US Food and Drug Administration (FDA) approved a melatonin agonist (tasimelteon) as a therapy.
However, individual studies have demonstrated a high therapeutic effect in the treatment of completely blind patients with N24HSWD immediate-release melatonin preparations. Taking a 0.5–10 mg of melatonin helped accelerate the synchronization of the endogenous sleep-wake rhythm with a 24-hour rhythm, according to the profile of the production of melatonin and cortisol. Also, separate studies demonstrate that drugs with modified melatonin release can also be effective in stabilizing circadian rhythms in completely blind patients with N24HSWD [22].
The so-called sleep-wake cycle disturbance states, namely, “jetlag,” which occurs when changing time zones during an eastbound flight, can be corrected quite well with exogenous melatonin. In separate studies, various doses of melatonin (from 0.5 to 10 mg) used at bedtime, 3 days before the transmeridian flight and 5 days after it, were used to treat jetlag [23, 24]. The effectiveness of melatonin in most studies was already shown during the first 3 days after the completed flight, but subsequently, patients who did not take melatonin showed the same sleep-wake cycle characteristics as the group of people taking it. The main effect of melatonin in the first 3 days after the transmeridian flight was an increase in the duration and quality of night sleep, based both on subjective sensations and on the data of objective methods for recording sleep patterns (polysomnography and actigraphy) [25, 26].
At the same time, melatonin had a positive effect on latency and duration of sleep. Melatonin agonists have also shown their effectiveness in accelerating adaptation to a new time zone. Melatonin agonists (ramelteon and tasimelteon) are approved by the FDA for the treatment of time zone change syndrome (“jet lag”). As a pharmacological method of treating these types of disorders, the use of agomelatine, long-acting melatonin, and tasimelteon was approved by the European Medicines Agency. Most studies have evaluated the effects of melatonin on jet lag when changing time zones eastward, but there are also few studies showing its effectiveness in treating jet lag with a transmeridian flight (12 time zones) westward [27, 28]. A definitive statement regarding the most effective dose of melatonin in jet lag treatment cannot be made; however, separate studies have shown a greater efficacy of a 5 mg immediate-release melatonin dose relative to the group of patients taking 2 mg delayed-release melatonin [24].
Melatonin, as a dietary supplement, is used widely enough but is not an approved treatment for these types of disorders. The reason for this, as a rule, is the lack of sufficient evidence in the form of clinical trials conducted at the appropriate level to evaluate the clinical effects.
2.2 Melatonin in the treatment of insomnia
Insomnia is a pathological condition caused by a variety of endogenous and exogenous factors. Insomnia is characterized primarily by the difficulty of initiating and maintaining sleep, which results in low-quality daily activity. People suffering from chronic insomnia are usually more prone to psychiatric disorders, primarily anxiety-depressive disorders, and cardiovascular diseases [29]. With age, the prevalence of insomnia increases; one of the reasons for this is an involutional decrease in the level of secretion of melatonin [30], a decrease in its concentration with SCN [6]. According to epidemiological studies, 6% of adults in industrialized countries suffer from a chronic form of insomnia [30]. In addition to night manifestations, accompanied by an increase in sleep latency, a decrease in sleep time, low sleep efficiency, and an increase in wakefulness during sleep, daytime manifestations of this disease are also formed, namely, fatigue, decreased short-term memory, decreased mood, headaches, and gastrointestinal disturbances intestinal tract [31].
The architecture of sleep begins to change already in adulthood, while initially a decrease in the duration of slow sleep is observed. The main goals of treating insomnia are to improve the quality of sleep and its duration and also to improve daily activity. As polysomnographic markers used to objectify the effectiveness of therapy insomnia, wake time after sleep onset (WASO), sleep onset latency (SOL), the number of awakenings, and sleep effectiveness. Despite this, polysomnography is an optional research method. Its use is advisable in cases of suspected secondary genesis of insomnia, as well as to exclude other sleep disorders.
According to the questionnaire, patients with insomnia have higher values (more than 7 points) when questioning on the Insomnia Severity Index (ISI) scale. According to the Pittsburgh Sleep Quality Index (PSQI), there may be more than 5 points. The Beck Depression Questionnaire demonstrates at least the presence of minimal signs of a depressive state, reaching values of 10 or more points. To assess the long-term effects of therapy, keeping a sleep diary is one of the objective methods (recommendation level IIB, based on expert consensus).
According to the recommendations of the American Academy of Sleep Medicine (AASM) from 2008, the use of benzodiazepines and a melatonin receptor agonist (ramelteon) is recommended as a therapy for primary insomnia (psychophysiological, idiopathic, and paradoxical forms). At the same time, there are no clear recommendations regarding the order of initiation of therapy with one of the groups of these drugs. The simultaneous use of melatonin and benzodiazepines is acceptable, to reduce the severity of side effects of the latter. It has been shown that agonists of melatonin receptors have a positive effect on the subjective quality of night sleep and their positive therapeutic effect is objectively confirmed by a polysomnographic study. At the same time, the main criteria for the effectiveness of the treatment of insomnia are achieved, namely, a decrease in WASO and SOL by at least 30 minutes, a decrease in the frequency of awakenings, an increase in sleep duration of more than 6 hours, and an increase in sleep efficiency (ratio of sleep time to recording time) to 80% or more [32, 33]. However, given the short half-life of melatonin and melatonin receptor agonists (e.g., ramelteon), the main clinical effects of these drugs are aimed at the treatment of presomic disorders [33]. In this case, immediate-release melatonin has no other effects on the structure of night sleep, except as a decrease in sleep latency. At the same time, there are observations demonstrating, but not explaining, the reason for the increase in the efficiency of activation of MT1 receptors with SCN, which increases their sensitivity to melatonin, which may be the basis of the therapeutic effect in relation to presominal disorders [34].
One of the mechanisms for implementing the hypnotic effect of melatonin can be realized through hormonal stabilization of the limbic system, which is involved in adaptogenic behavior [7, 9].
According to the recommendations of the European Sleep Research Society (ESRS) from 2017, based on a meta-analysis of 109 studies with a total number of patients 13,969 for the period from 2005 to 2016, melatonin and melatonin receptor agonists have shown unequivocal efficacy in the treatment of insomnia (weak recommendation – low-quality evidence). According to the results of individual studies, polysomnographic criteria for the effectiveness of insomnia therapy were achieved, namely, a decrease in sleep latency and an increase in the total sleep time and sleep efficiency [35, 36]. In a number of studies, even a decrease in the number of nocturnal awakenings was noted, which demonstrated effectiveness in relation to intrasomnic disorders. According to these studies, no dependence of the clinical effect on the dose of melatonin used was revealed. A common opinion formed as a result of the analysis of research data is a high safety profile for melatonin.
Melatonin is approved in Europe for the treatment of primary insomnia in adults over the age of 55, with a level of evidence of 1B (level of evidence based on the results of several randomized, placebo-controlled trials) [37].
Studies are demonstrating the effectiveness and perspective use of new forms of melatonin delivery [38]. Modified release tablet formulations with melatonin (MLT) are clinically more useful in initiating and maintaining sleep in elderly insomniacs than those designed for immediate release. The release of MLT from formulation F(nf)2 (nanofiber mats incorporated into 3-layered tablets containing lactose monohydrate both in the upper and lower layers) was found to be in closer alignment with these effects than the other delivery systems [39].
Among healthy children, sleep problems are observed in 20–40% [40] and, among children with impaired development of the nervous system, up to 80% [41, 42]. In pediatric practice, sleep disturbance is most often found among children with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), as well as in anxiety or depressive states [43]. Numerous clinical studies have shown the effectiveness of melatonin in the treatment of falling asleep in patients of various age groups, including children with ASD [44] or adolescents suffering from depression [45]. The physiological concentration of melatonin is crucial for the development of cognitive and behavioral functions [46]. A number of studies have demonstrated a causal relationship between a decrease in melatonin levels and the onset of ASD. Forty percent of children with ASD experienced an increase in serotonin while a decrease in melatonin. An increase in the intermediate metabolite of N-acetylserotonin (NAS) was also observed in 47% of patients [47]. One of the reasons for a decrease in the level of melatonin and an increase in the concentration of its precursor may be due to a violation of the activity of hydroxyindole-O-methyltransferase [46].
Despite the lack of clinical recommendations, the use of delayed-release melatonin is recommended for children with difficulty maintaining sleep, while immediate-release melatonin is recommended for children with difficulty falling asleep [41, 48]. According to individual recommendations (level of evidence C), melatonin should be used as a sleep inducer at a dose of 1–3 mg 30 minutes before bedtime. To obtain chronobiological effects, a melatonin drug should be taken with immediate release 3–4 hours before bedtime at a dose of 0.2–0.5 mg; the maximum dose for children is 3 mg and for adolescents 5 mg [49].
Despite the fact that in a number of studies melatonin has been shown to be effective in treating insomnia in patients with attention ADHD, its effect on cognitive function and behavior in this population of children has not been found [50].
Melatonin has also been shown to be effective in patients with secondary iatrogenic insomnia receiving beta blockers for hypertension [51] as well as in children with attention deficit hyperactivity disorder (level of IA recommendations based on the results of randomized, placebo-controlled clinical trials) [52, 53].
The use of melatonin in pediatric practice is associated with a minimal number of side effects. However, there are reports of undesirable phenomena of mild severity, namely, an increase in the clinical manifestations of nocturnal enuresis, morning drowsiness, and extremely rare insomnia [54].
Thus, according to the main clinical recommendations in the treatment of insomnia, melatonin has a positive effect both on the subjective quality of night sleep and on its objective characteristics. The drug has a high level of evidence of its effectiveness in the long-term therapy of insomnia in patients older than 55 years, associated mainly with the difficulty of falling asleep and the poor quality of night sleep. Ensuring physiological control of the sleep-wake cycle in children with pathology of the development of the nervous system and patients older than 55 years with insomnia is the goal of replacement therapy with melatonin, since in both groups there is a decrease in the secretion of endogenous melatonin during the night [55, 56].
2.3 Melatonin and parasomnia
Parasomnias are undesirable physical or psychological phenomena that usually form at certain stages of sleep, causing a number of clinical manifestations, including the formation of secondary insomnia. Quite often, parasomnia, especially accompanied by motor manifestations, can lead to injuries of varying severity and the formation of psychological problems or social maladaptation [21, 57]. The most striking in its clinical manifestation is REM behavior disorder (RBD). In the treatment of this form of parasomnia, clonazepam is most successfully used. But, the use of this drug is associated with numerous side effects typical of benzodiazepines, especially if the elderly patient has sleep-related breathing disorders (SRBD). An alternative pharmacological method is the use of melatonin. Melatonin also causes a decrease in the frequency and severity of motor activity during an RBD episode, which leads to a decrease in the frequency and severity of injuries. According to the results of a few studies, the use of melatonin at a dose of 3–15 mg led to a significant reduction in paradoxical sleep without atony, as well as the severity of motor manifestations of behavior disorder in the REM phase [58]. One of the options for therapeutic treatment may be taking the drug melatonin for 5–7 days at a minimum dose of 3 mg, followed by an increase in the dose of the drug every 5–7 days to a maximum of 12 mg at night [59, 60]. Little information is available regarding the efficacy of prolonged forms of melatonin or agonists in patients with RBD. There were also no comparisons of the clinical efficacy of clonazepam and melatonin.
Indeed, a number of studies demonstrate a more effective therapeutic effect with the combination of clonazepam and melatonin [61]. The potentiation of the effects of melatonin and clonazepam in the context of RBD therapy has no definitive explanation. It is believed that clonazepam reduces the phase activity inherent in paradoxical sleep, but at the same time, motor activity and minimal disturbance of behavior may remain, according to a polysomnographic survey [62]. The effect of melatonin in combination with clonazepam is due to the modulating effect of the structure of paradoxical sleep, reducing the number of transitions to other stages [59]. An alternative hypothesis explaining the effectiveness of melatonin in RBD may be its effect on increasing the effect of GABA on the GABA receptors of motor neurons of the anterior horns of the spinal cord, which leads to more intense muscle atony. Efficiency may also be related to the fact that melatonin helps to reduce the concentration of calmodulin, which affects the structure of the cytoskeleton and nicotinic acetylcholine receptors of skeletal muscles, which also leads to a progressive decrease in muscle tone [61]. The presence of a favorable safety profile makes the use of melatonin more attractive relative to clonazepam, especially in the elderly [61]. Therefore, in some few clinical trials, melatonin is used as a first-line therapy for RBD, especially in the presence of cognitive impairment, Parkinsonism, or SRBD. In the presence of minimal effectiveness of melatonin or a decrease in its effectiveness during therapy, clonazepam should be additionally prescribed. According to AASM recommendations, melatonin has a “B” level of evidence regarding its effectiveness. Doses of the drug in the studies on the basis of which these recommendations were made ranged from 8 to 12 mg; therefore, there are no clear recommendations regarding the dose of administration [63].
There is also another class of parasomnia in the treatment of which the effectiveness of melatonin was studied. These are parasomnia associated with slow eye movement, which is defined as undesirable motor and psychophysiological manifestations that occur at the time of awakening from a slow-wave sleep. Parasomnia associated with slow eye movement is defined as undesirable motor and psychophysiological manifestations that occur at the time of awakening from a slow-wave sleep [64]. In cases of severe clinical manifestations of these forms of parasomnia, benzodiazepines (clonazepam) or antidepressants (imipramine or clomipramine) may be used. When walking in a dream, the drugs of choice are benzodiazepines or selective serotonin reuptake inhibitors (SSRIs), such as paroxetine and imipramine [64]. The use of melatonin did not reveal a reliable therapeutic effect on the clinical manifestations of these forms of parasomnia. There are only a few studies on the use of melatonin as a first-line therapy for nightly fears in children; the first-line drug is melatonin or L-5-hydroxytryptophan [65]. The absence of a significant clinical effect is associated with the absence of a homeostatic effect on sleep in melatonin.
2.4 Melatonin in the treatment of complications of sleep-dependent respiratory disorders
Sleep-dependent respiratory disorders are represented by several types of pathological conditions: Obstructive sleep apnea (OSA), central sleep apnea, sleep-related hypoventilation, and sleep-related hypoxemia disorder. Most studies are devoted to the study of melatonin metabolism in OSA. A number of studies have demonstrated impaired melatonin secretion in OSA. At the same time, it is believed that the decrease in secretion is secondary. There is also data on the relationship between the concentration of melatonin at night and the duration of night sleep, as well as body weight [66, 67, 68]. Some studies have shown a relationship between the severity of OSA and the degree of decrease in melatonin [69]. Approximately 25% of patients with OSA have an altered circadian rhythm of melatonin secretion. In patients with OSA with a maintained rhythm of secretion, peak melatonin levels at night are significantly lower than in healthy people. The 3-month treatment period with continuous positive airway pressure (CPAP) can help restore the physiological rhythm of melatonin in patients with OSA with an impaired secretion profile [70]. One of the uses of melatonin is its use as a drug that reduces the complications associated with respiratory failure during sleep. Numerous studies on biological models demonstrate the positive effect of melatonin on the unfolding pathophysiological cascade of changes in the body in the presence of sleep-dependent respiratory disorders. For example, melatonin inhibits an increase in glucose, the concentration of which increases during periods of apnea [71]. Melatonin modulation of the activity of adenosine monophosphate-activated protein kinase reduces the progression of cardiac muscle hypertrophy. Melatonin also inhibits the expression of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6, and cyclooxygenase-2 [72]. It also helps to reduce the severity of Ca2+ caused by impaired myocardial contractile function, thus reducing the manifestations of endothelial dysfunction.
The use of melatonin as a prophylactic helps to prevent cardiac remodeling due to hypoxia arising from obstructive apnea [73]. Effects on the cardiovascular system are also realized due to the ability of melatonin and melatonin receptor agonists to inhibit bradykinin B2 receptors, as well as dimerization of angiotensin-converting enzyme I, improving therapeutic control of blood pressure [74]. Another way of realizing the effects of melatonin is the stabilizing effect on angiotensin II receptors and ACE-B2R dimers, which increases the production of nitric oxide by endothelial cells, increasing tissue perfusion. The activation of the MT1 receptor promotes vasoconstriction and MT2 receptor vasodilation. Thus, melatonin can act as a therapeutic agent in the treatment of cardiovascular diseases and hypertension resulting from comorbid diseases in sleep-dependent respiratory disorders. These effects of melatonin in carotid-dependent respiratory disorders were found as a result of a few studies; therefore, they do not have a sufficient recommended level.
2.5 Melatonin in the treatment of hypersomnia
Hypersomnia, such as type I and type II narcolepsy, and idiopathic hypersomnia, are diseases of which the main clinical syndrome is excessive daytime sleepiness. At the same time, drowsiness, being one of the obligate syndromes of diseases, can be modulated by sleep disturbances, observed in these patients, associated with disturbances in sleep structure, and the stability of being in a slow-wave sleep. Currently, drugs approved by FDA, for example, include methylphenidate, modafinil, oxybate, and pitolisant. Methylphenidate, being an analogue of amphetamine, blocks the transport of dopamine and norepinephrine, increasing their concentration. This drug has a fairly large number of side effects. Modaphenyl is better tolerated but may cause psychological dependence on administration [75]. Oxybate and pitolisant are well tolerated. Pitolisant is currently undergoing an expansion of indications up to 6 years of age in the treatment of types 1 and 2 narcolepsy.
Melatonin can affect the severity of hypersomnia in these patients indirectly due to the effect on the architecture of night sleep. A positive impact on the architecture of night sleep is realized by increasing the representation of paradoxical sleep. The positive effects of melatonin administration in patients with hypersomnia in Parkinson’s disease have been described, slowing down the decrease in the loss of dopamine-producing neurons and contributing to the suppression of dopamine transport [76]. Presumably, one of the causes of excessive daytime sleepiness in Parkinson’s disease is the decrease in the concentration of melatonin [77]. The use of melatonin in patients with neurodegenerative diseases is promising, since a number of interesting effects of melatonin exposure were obtained on biological models. For example, melatonin, freely penetrating the blood-brain barrier, activates brain-derived neurotrophic factor and cyclooxygenase-10, suppressing plasma tumor necrosis factor (TNF-alpha) and IL-10 levels. In experiments, a decrease in the number of apoptotic cells induced by phenylhydrazine was demonstrated. These studies confirm the role of melatonin in neuroprotection and protection against apoptosis in oxidative damage to neurons [78]. According to domestic guidelines for the treatment of nonmotor manifestations of Parkinson’s disease, melatonin is recommended for use as a therapy for excessive daytime sleepiness [79].
3. Conclusion
A decrease in the secretion of melatonin is often observed with aging and diseases of various etiologies. Inadequate sleep hygiene, namely, excessive night illumination or night work, are the most common causes of suppression of pineal melatonin production, which has a chronobiological effect on the body. A decrease in the production of melatonin in some cases can be caused by neurodegeneration, accompanied by a change in the functioning of SCN, disrupting the operation of the circadic oscillator. The most common manifestations of epiphyseal deficiency of this hormone are various functional psychopathological disorders in the form of insomnia, anxiety, or depressive disorders. The role of melatonin is currently being actively discussed in the treatment of insomnia and the sleep-wake cycle disorder. A few clinical studies demonstrate the effects in the treatment of the main manifestations of such forms of sleep disorders as hypersomnia and parasomnia. A positive effect is noted in the correction of the pathophysiological cascade arising as a result of hypoxia against the background of sleep-dependent respiratory disorders. Thus, the numerous clinical effects of melatonin demonstrate its universal modulating effect on physiological processes in the body and some common features of the pathogenesis of pathological conditions such as insomnia and circadian rhythm disturbances.
Acknowledgments
We thank Pytin Vasiliy and Poverennova Irina (Samara Medical University).
Conflict of interest
The authors declare no conflict of interest.
Notes/thanks/other declarations
We thank the management and rector Samara Medical University (Kolsanov Alexander) for the opportunity to conduct scientific work.
\n',keywords:"sleep, melatonin, sleep disorders, sleep-wake cycle",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/72304.pdf",chapterXML:"https://mts.intechopen.com/source/xml/72304.xml",downloadPdfUrl:"/chapter/pdf-download/72304",previewPdfUrl:"/chapter/pdf-preview/72304",totalDownloads:891,totalViews:0,totalCrossrefCites:0,dateSubmitted:"November 4th 2019",dateReviewed:"April 26th 2020",datePrePublished:"May 26th 2020",datePublished:"June 24th 2020",dateFinished:"May 25th 2020",readingETA:"0",abstract:"Sleep disorders are a group of conditions that affect the circadian rhythm of sleep-wake, leading to social and professional maladaptation. At the moment, there is a wide range of medications aimed at the treatment of sleep disorders, but the results from their use are not always satisfactory. Benzodiazepines, antidepressants, and antihistamines may cause dependence or withdrawal effects. Melatonin (N-acetyl-5-methoxytryptamine) is an endogenous hormone produced by the pineal gland that affects intraday, seasonal rhythm, and the sleep-wake cycle. Studies of the effects of melatonin have demonstrated its ability to synchronize circadian rhythms, reduce the latency of slow sleep, increase the duration of sleep, and improve its subjective quality. This review highlights the current therapeutic possibilities of using melatonin in various sleep disorders, taking into account the mechanisms of its action. Also, the prospects of using melatonin due to its chronobiological effect in other sleep disorders, such as parasomnia, sleep-dependent respiratory disorders, and hypersomnia, are emphasized. At the moment, melatonin is one of the methods for correcting intraday rhythms and some types of insomnia.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/72304",risUrl:"/chapter/ris/72304",signatures:"Alexander Zakharov and Elena Khivintseva",book:{id:"8762",type:"book",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",bookSignature:"Marilena Vlachou",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-909-9",printIsbn:"978-1-83962-908-2",pdfIsbn:"978-1-83962-910-5",isAvailableForWebshopOrdering:!0,editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Melatonin and sleep disorders",level:"1"},{id:"sec_2_2",title:"2.1 Melatonin and disorders of the sleep-wake cycle",level:"2"},{id:"sec_3_2",title:"2.2 Melatonin in the treatment of insomnia",level:"2"},{id:"sec_4_2",title:"2.3 Melatonin and parasomnia",level:"2"},{id:"sec_5_2",title:"2.4 Melatonin in the treatment of complications of sleep-dependent respiratory disorders",level:"2"},{id:"sec_6_2",title:"2.5 Melatonin in the treatment of hypersomnia",level:"2"},{id:"sec_8",title:"3. Conclusion",level:"1"},{id:"sec_9",title:"Acknowledgments",level:"1"},{id:"sec_12",title:"Conflict of interest",level:"1"},{id:"sec_9",title:"Notes/thanks/other declarations",level:"1"}],chapterReferences:[{id:"B1",body:'Amihaesei IC, Mungiu OC. Main neuroendocrine features and therapy in primary sleep troubles. Revista Medico-Chirurgicală̆ a Societă̆ţ̜ii de Medici şṃi Naturalişṃti din Iaşṃi. 2012;116(3):862-866'},{id:"B2",body:'Geoffroy PA, Etain B, Franchi JA, Bellivier F, Ritter P. Melatonin and melatonin agonists as adjunctive treatments in bipolar disorder. Current Pharmacogenomics. 2015;21(23):3352-3358. DOI: 10.2174/1381612821666150619093448'},{id:"B3",body:'Galley HF, Lowes DA, Allen L, Cameron G, Aucott LS, Websteret NR. Melatonin as a potential therapy for sepsis: A phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. Journal of Pineal Research. 2014;56(4):427-438. DOI: 10.1111/jpi.12134'},{id:"B4",body:'Chang YS, Lin MH, Lee JH, Lee PL, Dai YS, Chu KH, et al. Melatonin supplementation for children with atopic dermatitis and sleep disturbance: A randomized clinical trial. JAMA Pediatrics. 2016;170(1):35-42. DOI: 10.1001/jamapediatrics.2015.3092'},{id:"B5",body:'Ng KY, Leong MK, Liang H, Paxinos G. Melatonin receptors: Distribution in mammalian brain and their respective putative functions. Brain Structure & Function. 2017;222(7):2921-2939. DOI: 10.1007/s00429-017-1439-6'},{id:"B6",body:'Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, et al. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: Colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. The Journal of Comparative Neurology. 2006;499(6):897-910. DOI: 10.1002/cne.21152'},{id:"B7",body:'Claustal B, Leston J. Melatonin: Physiological effects in humans. Neurochirurgye. 2015;61(2-3):77-84. DOI: 10.1016/j.neuchi.2015.03.002'},{id:"B8",body:'Moller M, Baeres FM. The anatomy and innervation of the mammalian pineal gland. Cell and Tissue Research. 2002;309(1):139-150. DOI: 10.1007/s00441-002-0580-5'},{id:"B9",body:'Cipolla-Neto J, Amaral FG. Melatonin as a hormone: New physiological and clinical insights. Endocrine Reviews. 2018;39(6):990-1028. DOI: 10.1210/er.2018-00084'},{id:"B10",body:'Tan DX, Manchester LC, Sanchez-Barcelo E, Mediavilla MD, Reiter RJ. Significance of high levels of endogenous melatonin in mammalian cerebrospinal fluid and in the central nervous system. Current Neuropharmacology. 2010;8(3):162-167. DOI: 10.2174/157015910792246182'},{id:"B11",body:'Ochoa-Sanchez R, Comai S, Spadoni G, Bedini A, Tarzia G, Gobbi G. Melatonin, selective and non-selective MT1/MT2 receptors agonists: Differential effects on the 24-h vigilance states. Neuroscience Letters. 2014;561:156-161. DOI: 10.1016/j.neulet.2013.12.069'},{id:"B12",body:'Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S, Spadoni G, et al. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. The Journal of Neuroscience. 2011;31(50):18439-18452. DOI: 10.1523/JNEUROSCI.2676-11.2011'},{id:"B13",body:'Gorfine T, Assaf Y, Goshen-Gottstein Y, Yeshurun Y, Zisapel N. Sleep-anticipating effects of melatonin in the human brain. NeuroImage. 2006;31(1):410-418. DOI: 10.1016/j.neuroimage.2005.11.024'},{id:"B14",body:'Gorfine T, Zisapel N. Late evening brain activation patterns and their relation to the internal biological time, melatonin, and homeostatic sleep debt. Human Brain Mapping. 2009;30(2):541-552. DOI: 10.1002/hbm.20525'},{id:"B15",body:'Arbon EL, Knurowska M, Dijk DJ. Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people. Journal of Psychopharmacology. 2015;29(7):764-776. DOI: 10.1177/0269881115581963'},{id:"B16",body:'Zisapel N. Sleep and sleep disturbances: Biological basis and clinical implications. Cellular and Molecular Life Sciences. 2007;64(10):1174-1186. DOI: 10.1007/s00018-007-6529-9'},{id:"B17",body:'Emens JS, Eastman CI. Diagnosis and treatment of non-24-h sleep-wake disorder in the blind. Drugs. 2017;77(6):637-650. DOI: 10.1007/s40265-017-0707-3'},{id:"B18",body:'Kyba C, Kantermann T. Does ambient light at night reduce total melatonin production? Hormones. 2016;15(1):142-143. DOI: 10.14310/horm.2002.1613'},{id:"B19",body:'Micic G, Lovato N, Gradisar M, Burgess HJ, Ferguson SA, Kennaway DJ, et al. Nocturnal melatonin profiles in patients with delayed sleep-wake phase disorder and control sleepers. Journal of Biological Rhythms. 2015;30(5):437-448. DOI: 10.1177/0748730415591753'},{id:"B20",body:'Leonardo-Mendonca RC, Martinez-Nicolas A, de Teresa G, Ocaña-Wilhelmi J, Rusanova R, Guerra-Hernández E, et al. The benefits of four weeks of melatonin treatment on circadian patterns in resistance-trained athletes. Chronobiology International. 2015;32(8):1125-1134. DOI: 10.3109/07420528.2015.1069830'},{id:"B21",body:'Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: Advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. Journal of Clinical Sleep Medicine. 2015;11(10):1199-1236. DOI: 10.5664/jcsm.5100'},{id:"B22",body:'Roth T, Nir T, Zisapel N. Prolonged release melatonin for improving sleep in totally blind subjects: A pilot placebo-controlled multicenter trial. Nature and Science of Sleep. 2015;7:13-23. DOI: 10.2147/nss.s71838'},{id:"B23",body:'Suhner A, Schlagenhauf P, Hofer I, Johnson R, Tschopp A, Steffen R. Effectiveness and tolerability of melatonin and zolpidem for the alleviation of jet lag. Aviation, Space, and Environmental Medicine. 2001;72:638-646'},{id:"B24",body:'Suhner A, Schlagenhauf P, Johnson R, Tschopp A, Steffen R. Comparative study to determine the optimal melatonin dosage form for the alleviation of jet lag. Chronobiology International. 1998;15(6):655-666. DOI: 10.3109/07420529808993201'},{id:"B25",body:'Comperatore CA, Lieberman HR, Kirby AW, Adams B, Crowley JS. Melatonin efficacy in aviation missions requiring rapid deployment and night operations. Aviat Space & Environmental Medcine. 1996;67(6):520-524'},{id:"B26",body:'Paul MA, Gray G, Sardana TM, Pigeau RA. Melatonin and zopiclone as facilitators of early circadian sleep in operational air transport crews. Aviation, Space, and Environmental Medicine. 2004;75(5):439-443'},{id:"B27",body:'Petrie K, Conaglen JV, Thompson L, Chamberlain K. Effect of melatonin on jet lag after long haul flights. BMJ. 1989;298(6675):705-707. DOI: 10.1136/bmj.298.6675.705'},{id:"B28",body:'Petrie K, Dawson AG, Thompson L, Brook R. A double-blind trial of melatonin as a treatment for jet lag in international cabin crew. Biological Psychiatry. 1993;33(7):526-530. DOI: 10.1016/0006-3223(93)90007-z'},{id:"B29",body:'Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, van den Berg JF, Verschuren WM. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: The MORGEN study. Sleep. 2011;34(11):1487-1492. DOI: 10.5665/sleep.1382'},{id:"B30",body:'Zhang W, Wing YK. Sex differences in insomnia: A meta-analysis. Sleep. 2006;29(1):85-93. DOI: 10.1093/sleep/29.1.85'},{id:"B31",body:'Edinger JD, Bonnet MH, Bootzin RR, Doghramji K, Dorsey CM, Espie CA, et al. Derivation of research diagnostic criteria for insomnia: Report of an American Academy of Sleep Medicine Work Group. Sleep. 2004;27(8):1567-1596. DOI: 10.1093/sleep/27.8.1567'},{id:"B32",body:'Schutte-Rodin S, Broch L, Buysse D, Dorsey C, Sateia M. Clinical guideline for the evaluation and management of chronic insomnia in adults. Journal of Clinical Sleep Medicine. 2008;4(5):487-504. DOI: 10.5664/jcsm.27286'},{id:"B33",body:'Erman M, Seiden D, Zammit G, Sainati S, Zhang J. An efficacy, safety, and dose-response study of Ramelteon in patients with chronic primary insomnia. Sleep Medicine. 2006;7(1):17-24. DOI: 10.1016/j.sleep.2005.09.004'},{id:"B34",body:'Dubocovich ML. Melatonin receptors: Role on sleep and circadian rhythm regulation. Sleep Medicine. 2007;8(3):34-42. DOI: 10.1016/j.sleep.2007.10.007'},{id:"B35",body:'Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I, Ben-Shushan A, et al. Effects of exogenous melatonin on sleep: A meta-analysis. Sleep Medicine Reviews. 2005;9(1):41-50. DOI: 10.1016/j.smrv.2004.06.004'},{id:"B36",body:'Zakharov AV, Khivintseva EV, Pyatin VF, Sergeeva MS, Antipov OI. Melatonin—Known and novel areas of clinical application. Neuroscience and Behavioral Physiology. 2019;49(1):60-63. DOI: 10.1007/s11055-018-0692-3'},{id:"B37",body:'Wilson SJ, Nutt DJ, Alford C, Argyropoulos SV, Baldwin DS, Baldwin DS, et al. British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders. Journal of Psychopharmacology. 2010;24(11):1577-1601. DOI: 10.1177/0269881110379307'},{id:"B38",body:'Vlachou M, Kikionis S, Siamidi A, Tragou K, Ioannou E, Roussis V, et al. Modified in vitro release of melatonin loaded in nanofibrous electrospun mats incorporated into mono-layered and three-layered tablets. Journal of Pharmaceutical Sciences. 2019;108(2):970-976. DOI: 10.1016/j.xphs.2018.09.0351'},{id:"B39",body:'Vlachou M, Tragou K, Siamidi A, Kikionis S, Chatzianagnostou AL, Mitsopoulos A, et al. Modified in vitro release of the chronobiotic hormone melatonin from matrix tablets based on the marine sulfated polysaccharide ulvan. Journal of Drug Delivery Science and Technology. 2018;44:41-48. DOI: 10.1016/j.jddst.2017.11.019'},{id:"B40",body:'Fricke-Oerkermann L, Plück J, Schredl M, Heinz K, Mitschke A, Wiater A, et al. Prevalence and course of sleep problems in childhood. Sleep. 2007;30(10):1371-1377. DOI: 10.1093/sleep/30.10.1371'},{id:"B41",body:'Grigg-Damberger M, Ralls F. Treatment strategies for complex behavioral insomnia in children with neurodevelopmental disorders. Current Opinion in Pulmonary Medicine. 2013;19(6):616-625. DOI: 10.1097/mcp.0b013e328365ab89'},{id:"B42",body:'Damiani JM, Sweet BV, Sohoni P. Melatonin: An option for managing sleep disorders in children with autism spectrum disorder. American Journal of Health-System Pharmacy. 2014;71(2):95-101. DOI: 10.2146/ajhp130215'},{id:"B43",body:'Meltzer LJ, Mindell JA. Sleep and sleep disorders in children and adolescents. Psychiatric Clinics of North America. 2006;29(4):1059-1076. DOI: 10.1016/j.psc.2006.08.004'},{id:"B44",body:'Goldman SE, Adkins KW, Calcutt MW, Carter MD, Goodpaster RL, Wang L, et al. Melatonin in children with autism spectrum disorders: Endogenous and pharmacokinetic profiles in relation to sleep. Journal of Autism and Developmental Disorders. 2014;44(10):2525-2535. DOI: 10.1007/s10803-014-2123-9'},{id:"B45",body:'Bartlett DJ, Biggs SN, Armstrong SM. Circadian rhythm disorders among adolescents: Assessment and treatment options. The Medical Journal of Australia. 2013;199:16-20. DOI: 10.5694/mja13.10912'},{id:"B46",body:'Melke J, Goubran Botros H, Chaste P, Betancur C, Nygren G, Anckarsäter H, et al. Abnormal melatonin synthesis in autism spectrum disorders. Molecular Psychiatry. 2008;13:90-98. DOI: 10.1038/sj.mp.4002016'},{id:"B47",body:'Pagan C, Delorme R, Callebert J, Goubran-Botros H, Amsellem F, Drouot X, et al. The serotonin-N-acetylserotonin–melatonin pathway as a biomarker for autism spectrum disorders. Translational Psychiatry. 2014;4:479. DOI: 10.1038/tp.2014.120'},{id:"B48",body:'Veatch OJ, Goldman SE, Adkins KW, Malow BA. Melatonin in children with autism spectrum disorders: How does the evidence fit together? Journal of Nature and Science. 2015;1(7):125'},{id:"B49",body:'Bruni O, Alonso-Alconada D, Besag F, Biran V, Braam W, Cortese S, et al. Current role of melatonin in pediatric neurology: Clinical recommendations. European Journal of Paediatric Neurology. 2015;19:122-133. DOI: 10.1016/j.ejpn.2014.12.007'},{id:"B50",body:'Van der Heijden KB, Smits MG, Van Someren EJ, Ridderinkhof KR, Gunning WB. Effect of melatonin on sleep, behavior, and cognition in ADHD and chronic sleep-onset insomnia. Journal of the American Academy of Child and Adolescent Psychiatry. 2007;46:233-241. DOI: 10.1097/01.chi.0000246055.76167.0d'},{id:"B51",body:'Scheer FA, Morris CJ, Garcia JI, Smales C, Kelly EE, Marks J, et al. Repeated melatonin supplementation improves sleep in hypertensive patients treated with beta-blockers: A randomized controlled trial. Sleep. 2012;35:1395-1402. DOI: 10.5665/sleep.2122'},{id:"B52",body:'Shechter A, Lesperance P, Ng YKN, Boivin DB. Nocturnal polysomnographic sleep across the menstrual cycle in premenstrual dysphoric disorder. Sleep Medicine. 2012;13:1071-1078. DOI: 10.1016/j.sleep.2012.05.012'},{id:"B53",body:'Holvoet E, Gabriels L. Disturbed sleep in children with ADHD: Is there a place for melatonin as a treatment option? Tijdschrift voor Psychiatrie. 2013;55:349-357'},{id:"B54",body:'Andersen IM, Kaczmarska J, McGrew SG, Malow BA. Melaton in for insomniain children with autism spectrum disorders. Journal of Child Neurology. 2008;23:482-485. DOI: 10.1177/0883073807309783'},{id:"B55",body:'Haimov I, Laudon M, Zisapel N, Souroujon M, Nof D, Shlitner A, et al. Sleep disorders and melatonin rhythms in elderly people. BMJ. 1994;309(6948):167. DOI: 10.1136/bmj.309.6948.167'},{id:"B56",body:'Tordjman S, Najjar I, Bellissant E, Anderson GM, Barburoth M, Cohen D, et al. Advances in the research of melatonin in autism spectrum disorders: Literature review and new perspectives. International Journal of Molecular Sciences. 2013;14:20508-20542. DOI: 10.3390/ijms141020508'},{id:"B57",body:'Zakharov AV, Poverennova IE, Kalinin VA, Khivintseva EV. Parasomnias associated with disordered arousal from slow-wave sleep: Mechanism of occurrence and neurophysiological characteristics. Neuroscience and Behavioral Physiology. 2020;50:270-274. DOI: 10.1007/s11055-020-00897-z'},{id:"B58",body:'Kunz D, Mahlberg R. A two-part, double-blind, placebocontrolled trial of exogenous melatonin in REM sleep behaviour disorder. Journal of Sleep Research. 2010;19:591-596. DOI: 10.1111/j.1365-2869.2010.00848.x'},{id:"B59",body:'Kunz D, Bes F. Melatonin as a therapy in rem sleep behavior disorder patients: An open-labeled pilot study on the possible influence of melatonin on rem-sleep regulation. Movement Disorders. 1999;14:507-511. DOI: 10.1002/1531-8257(199905)14:3<507::aid-mds1021>3.0.co;2-8'},{id:"B60",body:'Schaefer C, Kunz D, Bes F. Melatonin effects in REM sleep behavior disorder associated with obstructive sleep apnea syndrome: A case series. Current Alzheimer Research. 2017;14:1084-1089. DOI: 10.2174/1567205014666170523094938'},{id:"B61",body:'McGrane IR, Leung JG, St Louis EK, Boeve BF. Melatonin therapy for REM sleep behavior disorder: A critical review of evidence. Sleep Medicine. 2015;16:19-26. DOI: 10.1016/j.sleep.2014.09.011'},{id:"B62",body:'Lapierre O, Montplaisir J. Polysomnographic features of REM sleep behavior disorder development of a scoring method. Neurology. 1992;42:1371. DOI: 10.1212/wnl.42.7.1371'},{id:"B63",body:'Aurora RN, Zak RS, Maganti RK, Auerbach SH, Casey KR, Chowdhuri S, et al. Best practice guide for the treatment of REM sleep behavior disorder (RBD). Journal of Clinical Sleep Medicine. 2010;6(1):85-95'},{id:"B64",body:'Sateia MJ. International classification of sleep disorders-third edition. Chest. 2014;146(5):1387-1394. DOI: 10.1378/chest.14-0970'},{id:"B65",body:'Bruni O, Ferri R, Miano S, Verrillo E. L-5-Hydroxytryptophan treatment of sleep terrors in children. European Journal of Pediatrics. 2004;163:402-407. DOI: 10.1007/s00431-004-1444-7'},{id:"B66",body:'Wetterberg L, Bratlid T, Knorring L, et al. A multinational study of the relationships between nighttime urinary melatonin production, age, gender, body size and latitude. European Archives of Psychiatry and Clinical Neuroscience. 1999;249:256-262. DOI: 10.1007/s004060050095'},{id:"B67",body:'Scheer F, Czeisler C. Melatonin, sleep and circadian rhythms. Sleep Medicine Reviews. 2005;9(1):5-9. DOI: 10.1016/j.smrv.2004.11.004'},{id:"B68",body:'Zhdanova I, Tucci V. Melatonin, circadian rhythms and sleep. Current Treatment Options in Neurology. 2003;5:225-229. DOI: 10.1007/s11940-003-0013-0'},{id:"B69",body:'Reutrakul S, Siwasaranond N, Nimitphong H, Saetung S, Chirakalwasan N, Chailurkit LO, et al. Associations between nocturnal urinary 6-sulfatoxymelatonin, obstructive sleep apnea severity and glycemic control in type 2 diabetes. Chronobiology International. 2017;34:382-392. DOI: 10.1080/07420528.2016.1278382'},{id:"B70",body:'Barnaś M, Maskey-Warzęchowska M, Bielicki P, Kumor M, Chazan R. Diurnal and nocturnal serum melatonin concentrations after treatment with continuous positive airway pressure in patients with obstructive sleep apnea. Polish Archives of Internal Medicine. 2017;127(9):589-596. DOI: 10.20452/pamw.4062'},{id:"B71",body:'Kaminski RS, Martinez D, Fagundes M, Martins EF, Montanari CC, Rosa DP, et al. Melatonin prevents hyperglycemia in a model of sleep apnea. Archives of Endocrinology and Metabolism. 2015;59:66-70. DOI: 10.1590/2359-3997000000012'},{id:"B72",body:'Xie S, Deng Y, Pan YY, Wang ZH, Ren J, Guo XL, et al. Melatonin protects against chronic intermittent hypoxia-induced cardiac hypertrophy by modulating autophagy through the 5′ adenosine monophosphate-activated protein kinase pathway. Biochemical and Biophysical Research Communications. 2015;464:975-981. DOI: 10.1016/j.bbrc.2015.06.149'},{id:"B73",body:'Yeung HM, Hung MW, Lau CF, Fung ML. Cardioprotective effects of melatonin against myocardial injuries induced by chronic intermittent hypoxia in rats. Journal of Pineal Research. 2015;58:12-25. DOI: 10.1111/jpi.12190'},{id:"B74",body:'Sabatini RA, Guimaraes PB, Fernandes LB, Reis FC, Bersanetti PA, Mori MA, et al. ACE activity is modulated by kinin B2 receptor. Hypertension. 2008;51(3):689-695. DOI: 10.1161/HYPERTENSIONAHA.107.091181'},{id:"B75",body:'Roth T, Schwartz JR, Hirshkowitz M, Erman MK, Dayno JM, Arora S. Evaluation of the safety of modafinil for treatment of excessive sleepiness. Journal of Clinical Sleep Medicine. 2007;3:595-602'},{id:"B76",body:'Lin CH, Huang JY, Ching CH, Chuang JI. Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. Journal of Pineal Research. 2008;44(2):205-213. DOI: 10.1111/j.1600-079X.2007.00510.x'},{id:"B77",body:'Videnovic A, Noble C, Reid KJ, Peng J, Turek FW, Marconi A, et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurology. 2014;71:463-469. DOI: 10.1001/jamaneurol.2013.6239'},{id:"B78",body:'Pazar A, Kolgazi M, Memisoglu A, Bahadir E, Sirvanci S, Yaman A, et al. The neuroprotective and anti-apoptotic effects of melatonin on hemolytic hyperbilirubinemia-induced oxidative brain damage. Journal of Pineal Research. 2016;60(1):74-83. DOI: 10.1111/jpi.12292'},{id:"B79",body:'Srinivasan V, Cardinali DP, Srinivasan US, Kaur C, Brown GM, Spence D, et al. Therapeutic potential of melatonin and its analogs in Parkinson’s disease: Focus on sleep and neuroprotection. Therapeutic Advances in Neurological Disorders. 2011;4(5):297-317. DOI: 10.1177/1756285611406166'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Alexander Zakharov",address:"zakharov1977@mail.ru",affiliation:'
Department Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
Department Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
'}],corrections:null},book:{id:"8762",type:"book",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",bookSignature:"Marilena Vlachou",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-909-9",printIsbn:"978-1-83962-908-2",pdfIsbn:"978-1-83962-910-5",isAvailableForWebshopOrdering:!0,editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"112426",title:"Prof.",name:"Chien-Min",middleName:null,surname:"Ou",email:"cmou@cyu.edu.tw",fullName:"Chien-Min Ou",slug:"chien-min-ou",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Chien Hsin University of Science and Technology",institutionURL:null,country:{name:"Taiwan"}}},booksEdited:[],chaptersAuthored:[{id:"33397",title:"Efficient VLSI Architecture for Memetic Vector Quantizer Design",slug:"efficient-vlsi-architecture-for-memetic-vector-quantizer-design",abstract:null,signatures:"Chien-Min Ou and Wen-Jyi Hwang",authors:[{id:"112426",title:"Prof.",name:"Chien-Min",surname:"Ou",fullName:"Chien-Min Ou",slug:"chien-min-ou",email:"cmou@cyu.edu.tw"},{id:"115914",title:"Prof.",name:"Wen-Jyi",surname:"Hwang",fullName:"Wen-Jyi Hwang",slug:"wen-jyi-hwang",email:"whwang@ntnu.edu.tw"}],book:{id:"2285",title:"Genetic Algorithms in Applications",slug:"genetic-algorithms-in-applications",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"99771",title:"Dr.",name:"Osama",surname:"Mahmood Al-Rawi",slug:"osama-mahmood-al-rawi",fullName:"Osama Mahmood Al-Rawi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99771/images/1190_n.png",biography:"Dr. Osama Y. Mahmood Al-Rawi was born in Baghdad, Iraq, in 1967. He received the B. Sc. Degree in Electrical & Electronics Engineering from the University of Technology, Baghdad, Iraq in 1989. The M.Sc. and Ph.D. degrees in Control System Engineering from the University of Technology, Baghdad, Iraq, in 1995 and 2003, respectively.\n\nHe was shared and carried out many practical projects in different locations and companies in Iraq. These companies are belonging to the ministries of industry, communications and others. In addition he worked in some companies as a consultant engineer on some projects that has been submitted and implemented at that time in different interested fields. He was worked as a FACULTY MEMBER and LECTURER in Engineering colleges of the following universities; University of Technology, University of Baghdad, both in Baghdad/ Iraq, Ittihad Private University Al-Rakka/Syria. He is currently a lecturer at Department of Electrical and Electronics/College of Engineering /Gulf University, kingdom of Bahrain. Some of his published papers.\n[1] \\Improving GPS Accuracy By Using Genetic Algorithms\\, IEEE, Third International Conference on Systems, Signals & Devices, Communication and signal processing, Vol. III, CSP-34-, March 21-24, 2005, Sousse, Tunisia.\n[2] “Switching Angle Optimization Based Genetic Algorithms for Harmonic Reduction in Three-Phase PWM Inverters”, The International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design, SM2ACD 2010, The 11th edition will be organized in Tunisia on October 5-6, 2010.\n[3] “Microcontroller Servomotor for Maximum Effective Power Point for Solar Cell System”, the 10th International Conference for Enhanced Building Operations (ICEBO) in Kuwait on 26-28 October 2010.\nHis professional experience includes teaching and research at the university as well as working in industry. His theoretical and practical interest includes modeling and control of uncertain and nonlinear systems, Artificial intelligence, power electronics applications, Power generation and conversions.",institutionString:null,institution:{name:"Gulf University",institutionURL:null,country:{name:"Bahrain"}}},{id:"107249",title:"Dr.",name:"Goran",surname:"Stojanovski",slug:"goran-stojanovski",fullName:"Goran Stojanovski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/107249/images/282_n.jpg",biography:"Goran Stojanovski is born on 1st of March 1984 in Resen, Macedonia. \nHe has received his B.Eng. and M.Sc. degrees in Electrical Engineering from SS Cyril and Methodius University at the Faculty of Electrical Eng. & Information Technologies in Skopje, Macedonia in 2007 and 2009, respectively. Currently, he is a PhD candidate working on advanced algorithms for switched model predictive control. He has a couple of journal and more than 15 conference papers published. His research interests include predictive control, switching systems and control, optimization algorithms and industrial applications.",institutionString:null,institution:{name:"University of Ss. Cyril and Methodius",institutionURL:null,country:{name:"Slovakia"}}},{id:"110138",title:"Dr.",name:"Qibo",surname:"Peng",slug:"qibo-peng",fullName:"Qibo Peng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National University of Defense Technology",institutionURL:null,country:{name:"China"}}},{id:"110816",title:"Prof.",name:"Limin",surname:"Jia",slug:"limin-jia",fullName:"Limin Jia",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Beijing Jiaotong University",institutionURL:null,country:{name:"China"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",institutionURL:null,country:{name:"Egypt"}}},{id:"115763",title:"Prof.",name:"Mile",surname:"Stankovski",slug:"mile-stankovski",fullName:"Mile Stankovski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ss. Cyril and Methodius",institutionURL:null,country:{name:"Slovakia"}}},{id:"115914",title:"Prof.",name:"Wen-Jyi",surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Ilan University",institutionURL:null,country:{name:"Taiwan"}}},{id:"116046",title:"MSc.",name:"Ghasem",surname:"Karimi",slug:"ghasem-karimi",fullName:"Ghasem Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",institutionURL:null,country:{name:"Iran"}}},{id:"116055",title:"MSc.",name:"Omid",surname:"Jahanian",slug:"omid-jahanian",fullName:"Omid Jahanian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",institutionURL:null,country:{name:"Iran"}}},{id:"116622",title:"Prof.",name:"Seiji",surname:"Aoyagi",slug:"seiji-aoyagi",fullName:"Seiji Aoyagi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kansai University",institutionURL:null,country:{name:"Japan"}}}]},generic:{page:{slug:"open-access-funding-funders-list",title:"List of Funders by Country",intro:"
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
IMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
Wellcome Trust (Funding available only to Wellcome-funded researchers/grantees)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6597},{group:"region",caption:"Middle and South America",value:2,count:5902},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12537},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17560}],offset:12,limit:12,total:132762},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"8"},books:[{type:"book",id:"12073",title:"Solvents",subtitle:null,isOpenForSubmission:!0,hash:"d31c0b4deb8e2005ddefc42a4be8e451",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12073.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12074",title:"Updates on Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"8642ed95890654474416a163e3236afb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12074.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12075",title:"Arsenic",subtitle:null,isOpenForSubmission:!0,hash:"a1156f4143737baa68f568837f9edc94",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12075.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12076",title:"Ruthenium",subtitle:null,isOpenForSubmission:!0,hash:"08bd1ab70c296e319165eb763b112e00",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12076.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12077",title:"Heavy Metals",subtitle:null,isOpenForSubmission:!0,hash:"bcf87da8936c737e7fdd61cdc825128e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12077.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Heterocycles",subtitle:null,isOpenForSubmission:!0,hash:"fcadb070d3dbdf21157b1290d9880c3e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12080",title:"Density Functional Theory",subtitle:null,isOpenForSubmission:!0,hash:"fcd6287912c74f409babc8937c6d0fd1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12080.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12290",title:"Electrochemiluminescence",subtitle:null,isOpenForSubmission:!0,hash:"7a3bf39f9a3f87b0697d6855ab2d695b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12290.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12293",title:"Cobalt",subtitle:null,isOpenForSubmission:!0,hash:"c841e0833d63ee0f5962a22defe6d0b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12293.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12295",title:"Noble Gases",subtitle:null,isOpenForSubmission:!0,hash:"ef0dbba5426cbb55e8b0150ff3642aae",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12295.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12297",title:"Electrophile",subtitle:null,isOpenForSubmission:!0,hash:"ed99712e2d3a8ea85b8732d969e15ebd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12297.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12299",title:"Benzene",subtitle:null,isOpenForSubmission:!0,hash:"e0fdce171959cc4ddc167e1f658121f3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12299.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:46},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:14},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:107},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:17},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"285",title:"Design Engineering",slug:"technology-design-engineering",parent:{id:"24",title:"Technology",slug:"technology"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:226,numberOfWosCitations:215,numberOfCrossrefCitations:134,numberOfDimensionsCitations:305,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"285",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8374",title:"New Innovations in Engineering Education and Naval Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4019cba8abf5c1688f512dd73a1e79aa",slug:"new-innovations-in-engineering-education-and-naval-engineering",bookSignature:"Nur Md. Sayeed Hassan and Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/8374.jpg",editedByType:"Edited by",editors:[{id:"143363",title:"Dr.",name:"Nur Md. Sayeed",middleName:null,surname:"Hassan",slug:"nur-md.-sayeed-hassan",fullName:"Nur Md. Sayeed Hassan"}],equalEditorOne:{id:"248645",title:"Dr.",name:"Sérgio",middleName:null,surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada",profilePictureURL:"https://mts.intechopen.com/storage/users/248645/images/system/248645.jpg",biography:"Sérgio António Neves Lousada has an international Ph.D. in Civil Engineering (Hydraulics). He teaches Hydraulics, Environment, and Water Resources and Construction at the University of Madeira, Portugal. He has published articles and books and participated in events mainly in the areas of hydraulics, urban planning, and land management. Furthermore, he collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx); VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; CITUR - Madeira - Centre for Tourism Research, Development and Innovation, Madeira, Portugal; and Institute of Research on Territorial Governance and Inter-Organizational Cooperation, Dąbrowa Górnicza, Poland. Moreover, he holds an International master\\'s degree in Ports and Coasts Engineering.",institutionString:"University of Madeira",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Madeira",institutionURL:null,country:{name:"Portugal"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7249",title:"3D Printing",subtitle:null,isOpenForSubmission:!1,hash:"bd92f056fb3bb4793bf7f07413747568",slug:"3d-printing",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/7249.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1942",title:"Applied Measurement Systems",subtitle:null,isOpenForSubmission:!1,hash:"64893485e869fc18f5520846648ea70c",slug:"applied-measurement-systems",bookSignature:"Md. Zahurul Haq",coverURL:"https://cdn.intechopen.com/books/images_new/1942.jpg",editedByType:"Edited by",editors:[{id:"104292",title:"Prof.",name:"Md. Zahurul",middleName:null,surname:"Haq",slug:"md.-zahurul-haq",fullName:"Md. Zahurul Haq"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"307",title:"Rapid Prototyping Technology",subtitle:"Principles and Functional Requirements",isOpenForSubmission:!1,hash:"aa39f8a56e606bbc2935e87620674425",slug:"rapid-prototyping-technology-principles-and-functional-requirements",bookSignature:"Muhammad Enamul Hoque",coverURL:"https://cdn.intechopen.com/books/images_new/307.jpg",editedByType:"Edited by",editors:[{id:"39279",title:"Prof.",name:"Md Enamul",middleName:"Enamul",surname:"Hoque",slug:"md-enamul-hoque",fullName:"Md Enamul Hoque"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"930",title:"Advanced Applications of Rapid Prototyping Technology in Modern Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3775beff84516a387ab64fe05390fbea",slug:"advanced-applications-of-rapid-prototyping-technology-in-modern-engineering",bookSignature:"Muhammad Enamul Hoque",coverURL:"https://cdn.intechopen.com/books/images_new/930.jpg",editedByType:"Edited by",editors:[{id:"39279",title:"Prof.",name:"Md Enamul",middleName:"Enamul",surname:"Hoque",slug:"md-enamul-hoque",fullName:"Md Enamul Hoque"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"61889",doi:"10.5772/intechopen.78147",title:"Stereolithography",slug:"stereolithography",totalDownloads:2777,totalCrossrefCites:24,totalDimensionsCites:44,abstract:"The stereolithography (SLA) process and its methods are introduced in this chapter. After establishing SLA as pertaining to the high-resolution but also high-cost spectrum of the 3D printing technologies, different classifications of SLA processes are presented. Laser-based SLA and digital light processing (DLP), as well as their specialized techniques such as two-photon polymerization (TPP) or continuous liquid interface production (CLIP) are discussed and analyzed for their advantages and shortcomings. Prerequisites of SLA resins and the most common resin compositions are discussed. Furthermore, printable materials and their applications are briefly reviewed, and insight into commercially available SLA systems is given. Finally, an outlook highlighting challenges within the SLA process and propositions to resolve these are offered.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Christina Schmidleithner and Deepak M. Kalaskar",authors:[{id:"247897",title:"Dr.",name:"Deepak",middleName:null,surname:"Kalaskar",slug:"deepak-kalaskar",fullName:"Deepak Kalaskar"}]},{id:"29364",doi:"10.5772/36302",title:"Planar Microwave Sensors for Complex Permittivity Characterization of Materials and Their Applications",slug:"planar-microwave-sensors-for-complex-permittivity-characterization-of-materials-and-their-applicatio",totalDownloads:4850,totalCrossrefCites:16,totalDimensionsCites:25,abstract:null,book:{id:"1942",slug:"applied-measurement-systems",title:"Applied Measurement Systems",fullTitle:"Applied Measurement Systems"},signatures:"Kashif Saeed, Muhammad F. Shafique, Matthew B. Byrne and Ian C. Hunter",authors:[{id:"107789",title:"Dr.",name:"Kashif",middleName:null,surname:"Saeed",slug:"kashif-saeed",fullName:"Kashif Saeed"},{id:"108133",title:"Dr.",name:"Muhammad",middleName:"Farhan",surname:"Shafique",slug:"muhammad-shafique",fullName:"Muhammad Shafique"},{id:"112179",title:"Dr.",name:"Matthew",middleName:null,surname:"Byrne",slug:"matthew-byrne",fullName:"Matthew Byrne"},{id:"148470",title:"Dr.",name:"Ian C.",middleName:null,surname:"Hunter",slug:"ian-c.-hunter",fullName:"Ian C. Hunter"}]},{id:"20723",doi:"10.5772/24994",title:"Rapid Prototyping of Hybrid, Plastic-Quartz 3D-Chips for Battery-Operated Microplasmas",slug:"rapid-prototyping-of-hybrid-plastic-quartz-3d-chips-for-battery-operated-microplasmas",totalDownloads:2931,totalCrossrefCites:1,totalDimensionsCites:25,abstract:null,book:{id:"307",slug:"rapid-prototyping-technology-principles-and-functional-requirements",title:"Rapid Prototyping Technology",fullTitle:"Rapid Prototyping Technology - Principles and Functional Requirements"},signatures:"Weagant S., Li L. and Karanassios V.",authors:[{id:"60925",title:"Prof.",name:"Vassili",middleName:null,surname:"Karanassios",slug:"vassili-karanassios",fullName:"Vassili Karanassios"},{id:"96647",title:"Mr.",name:"Scott",middleName:null,surname:"Weagant",slug:"scott-weagant",fullName:"Scott Weagant"},{id:"96648",title:"Ms.",name:"Lu",middleName:null,surname:"Li",slug:"lu-li",fullName:"Lu Li"}]},{id:"61731",doi:"10.5772/intechopen.78145",title:"3D Printing of Scaffolds for Tissue Engineering",slug:"3d-printing-of-scaffolds-for-tissue-engineering",totalDownloads:2669,totalCrossrefCites:4,totalDimensionsCites:17,abstract:"Three-dimensional (3D) printing has demonstrated its great potential in producing functional scaffolds for biomedical applications. To facilitate tissue regeneration, scaffolds need to be designed to provide a suitable environment for cell growth, which generally depends on the selection of materials and geometrical features such as internal structures and pore size distribution. The mechanical property match with the original tissue to be repaired is also critical. In this chapter, the specific request of materials and structure for tissue engineering is briefly reviewed, and then an overview of the recent research in 3D printing technologies for tissue engineering will be provided, together with a discussion of possible future directions in this area.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Jingyu Liu and Cheng Yan",authors:[{id:"139494",title:"Prof.",name:"Cheng",middleName:null,surname:"Yan",slug:"cheng-yan",fullName:"Cheng Yan"},{id:"246713",title:"MSc.",name:"Jingyu",middleName:null,surname:"Liu",slug:"jingyu-liu",fullName:"Jingyu Liu"}]},{id:"29365",doi:"10.5772/37195",title:"Basics on Radar Cross Section Reduction Measurements of Simple and Complex Targets Using Microwave Absorbers",slug:"basics-on-radar-cross-section-reduction-measurements-of-simple-and-complex-targets-using-microwave-a",totalDownloads:12500,totalCrossrefCites:10,totalDimensionsCites:14,abstract:null,book:{id:"1942",slug:"applied-measurement-systems",title:"Applied Measurement Systems",fullTitle:"Applied Measurement Systems"},signatures:"Marcelo A. S. Miacci and Mirabel C. Rezende",authors:[{id:"111727",title:"Dr.",name:"Marcelo",middleName:"A. S.",surname:"Miacci",slug:"marcelo-miacci",fullName:"Marcelo Miacci"},{id:"112158",title:"Dr.",name:"Mirabel",middleName:null,surname:"Rezende",slug:"mirabel-rezende",fullName:"Mirabel Rezende"}]}],mostDownloadedChaptersLast30Days:[{id:"72725",title:"Communication Subsystems for Satellite Design",slug:"communication-subsystems-for-satellite-design",totalDownloads:1302,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The objective of this chapter is to provide a comprehensive end-to-end overview of existing communication subsystems residing on both the satellite bus and payloads. These subsystems include command and mission data handling, telemetry and tracking, and the antenna payloads for both command, telemetry and mission data. The function of each subsystem and the relationships to the others will be described in detail. In addition, the recent application of software defined radio (SDR) to advanced satellite communication system design will be looked at with applications to satellite development, and the impacts on how SDR will affect future satellite missions are briefly discussed.",book:{id:"7030",slug:"satellite-systems-design-modeling-simulation-and-analysis",title:"Satellite Systems",fullTitle:"Satellite Systems - Design, Modeling, Simulation and Analysis"},signatures:"Hung H. Nguyen and Peter S. Nguyen",authors:[{id:"316857",title:"Dr.",name:"Hung H.",middleName:null,surname:"Nguyen",slug:"hung-h.-nguyen",fullName:"Hung H. Nguyen"},{id:"316861",title:"Mr.",name:"Peter S.",middleName:null,surname:"Nguyen",slug:"peter-s.-nguyen",fullName:"Peter S. Nguyen"}]},{id:"61731",title:"3D Printing of Scaffolds for Tissue Engineering",slug:"3d-printing-of-scaffolds-for-tissue-engineering",totalDownloads:2670,totalCrossrefCites:4,totalDimensionsCites:17,abstract:"Three-dimensional (3D) printing has demonstrated its great potential in producing functional scaffolds for biomedical applications. To facilitate tissue regeneration, scaffolds need to be designed to provide a suitable environment for cell growth, which generally depends on the selection of materials and geometrical features such as internal structures and pore size distribution. The mechanical property match with the original tissue to be repaired is also critical. In this chapter, the specific request of materials and structure for tissue engineering is briefly reviewed, and then an overview of the recent research in 3D printing technologies for tissue engineering will be provided, together with a discussion of possible future directions in this area.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Jingyu Liu and Cheng Yan",authors:[{id:"139494",title:"Prof.",name:"Cheng",middleName:null,surname:"Yan",slug:"cheng-yan",fullName:"Cheng Yan"},{id:"246713",title:"MSc.",name:"Jingyu",middleName:null,surname:"Liu",slug:"jingyu-liu",fullName:"Jingyu Liu"}]},{id:"63539",title:"The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques",slug:"the-evolution-of-3d-printing-in-aec-from-experimental-to-consolidated-techniques",totalDownloads:1722,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"The chapter leads the reader through the historical development of additive manufacturing (AM) techniques until the most recent developments. A tentative taxonomy is added to the historical perspective, in order to better understand the main lines of development and the potential cross-fertilization opportunities. Some case studies are analyzed in order to provide a clearer picture of the practical applications of AM in architecture engineering and construction (AEC), with a particular attention to the use of AM for final products rather than just prototypes. Eventually, some thoughts are shared as to the impact of AM on AEC beyond the mere cost-effectiveness and well into the potential change of paradigms in how architecture can be thought of and further developed embracing the new world of opportunities brought by AM.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Ingrid Paoletti and Lorenzo Ceccon",authors:[{id:"246398",title:"Associate Prof.",name:"Ingrid",middleName:null,surname:"Paoletti",slug:"ingrid-paoletti",fullName:"Ingrid Paoletti"},{id:"261886",title:"MSc.",name:"Lorenzo",middleName:null,surname:"Ceccon",slug:"lorenzo-ceccon",fullName:"Lorenzo Ceccon"}]},{id:"61889",title:"Stereolithography",slug:"stereolithography",totalDownloads:2780,totalCrossrefCites:25,totalDimensionsCites:44,abstract:"The stereolithography (SLA) process and its methods are introduced in this chapter. After establishing SLA as pertaining to the high-resolution but also high-cost spectrum of the 3D printing technologies, different classifications of SLA processes are presented. Laser-based SLA and digital light processing (DLP), as well as their specialized techniques such as two-photon polymerization (TPP) or continuous liquid interface production (CLIP) are discussed and analyzed for their advantages and shortcomings. Prerequisites of SLA resins and the most common resin compositions are discussed. Furthermore, printable materials and their applications are briefly reviewed, and insight into commercially available SLA systems is given. Finally, an outlook highlighting challenges within the SLA process and propositions to resolve these are offered.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Christina Schmidleithner and Deepak M. Kalaskar",authors:[{id:"247897",title:"Dr.",name:"Deepak",middleName:null,surname:"Kalaskar",slug:"deepak-kalaskar",fullName:"Deepak Kalaskar"}]},{id:"75110",title:"Compression of High-Resolution Satellite Images Using Optical Image Processing",slug:"compression-of-high-resolution-satellite-images-using-optical-image-processing",totalDownloads:508,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter presents a novel method for compressing satellite imagery using phase grating to facilitate the optimization of storage space and bandwidth in satellite communication. In this research work, each Satellite image is first modulated with high grating frequency in a fixed orientation. Due to this modulation, three spots (spectrum) have been generated. From these three spots, by applying Inverse Fourier Transform in any one band, we can recover the image. Out of these three spots, one is center spectrum spot and other spots represent two sidebands. Care should be taken during the spot selection is to avoid aliasing effect. At the receiving end, to recover image we use only one spectrum. We have proved that size of the extracted image is less than the original image. In this way, compression of satellite image has been performed. To measure quality of the output images, PSNR value has been calculated and compared this value with previous techniques. As high-resolution satellite image contains a lot of information, therefore to get detail information from extracted image, compression ratio should be as minimum as possible.",book:{id:"7030",slug:"satellite-systems-design-modeling-simulation-and-analysis",title:"Satellite Systems",fullTitle:"Satellite Systems - Design, Modeling, Simulation and Analysis"},signatures:"Anirban Patra, Arijit Saha, Debasish Chakraborty and Kallol Bhattacharya",authors:[{id:"307075",title:"Dr.",name:"Debasish",middleName:null,surname:"Chakraborty",slug:"debasish-chakraborty",fullName:"Debasish Chakraborty"},{id:"319415",title:"Mr.",name:"Anirban",middleName:null,surname:"Patra",slug:"anirban-patra",fullName:"Anirban Patra"},{id:"320110",title:"Dr.",name:"Arijit",middleName:null,surname:"Saha",slug:"arijit-saha",fullName:"Arijit Saha"},{id:"320111",title:"Dr.",name:"Kallol",middleName:null,surname:"Bhattacharya",slug:"kallol-bhattacharya",fullName:"Kallol Bhattacharya"}]}],onlineFirstChaptersFilter:{topicId:"285",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"5",type:"subseries",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",slug:"fernando-jose-andrade-narvaez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",slug:"ricardo-izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/17727",hash:"",query:{},params:{id:"17727"},fullPath:"/chapters/17727",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()