\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"3457",leadTitle:null,fullTitle:"Developmental Disabilities - Molecules Involved, Diagnosis, and Clinical Care",title:"Developmental Disabilities",subtitle:"Molecules Involved, Diagnosis, and Clinical Care",reviewType:"peer-reviewed",abstract:"Although various developmental disabilities affecting children and adults might have different pathogeneses, underlying mechanisms, and clinical presentations, the current books emphasizes the fact that there are numerous commonalities in methods of understanding, clinical diagnosis, and handling of behavioral abnormalities in affected individuals. For instance, understanding sexual maturation and its consequences in people with intellectual disability would certainly present a path to better understanding of the differences with controls and more effective handling of the unwanted consequences in people affected.",isbn:null,printIsbn:"978-953-51-1177-1",pdfIsbn:"978-953-51-7173-7",doi:"10.5772/56808",price:119,priceEur:129,priceUsd:155,slug:"developmental-disabilities-molecules-involved-diagnosis-and-clinical-care",numberOfPages:154,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"77f126f58762e0ee8a31b52485df3e1a",bookSignature:"Ahmad Salehi",publishedDate:"July 10th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/3457.jpg",numberOfDownloads:10572,numberOfWosCitations:4,numberOfCrossrefCitations:4,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:8,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:16,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 9th 2012",dateEndSecondStepPublish:"May 30th 2012",dateEndThirdStepPublish:"September 3rd 2012",dateEndFourthStepPublish:"December 2nd 2012",dateEndFifthStepPublish:"January 1st 2013",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"27595",title:"Prof.",name:"Ahmad",middleName:null,surname:"Salehi",slug:"ahmad-salehi",fullName:"Ahmad Salehi",profilePictureURL:"https://mts.intechopen.com/storage/users/27595/images/system/27595.jpg",biography:"Ahmad Salehi, M.D., Ph.D. is a Clinical Associate Professor at the Department of Psychiatry and Behavioral Sciences, Stanford Medical School and at the VA Palo Health Care System in California. His main interest in the field of developmental disabilities is Down syndrome, using mouse models and human postmortem material. Due to his innovative use of mouse models to identify genes responsible for degeneration of different brain regions in Down syndrome, in 2010, he received the World Technology Award in the field of biotechnology from the World Technology Network in Manhattan, New York. Currently, his group is working on developing new therapeutic strategies for cognitive dysfunction in people with Down syndrome.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1059",title:"Neuroscience",slug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system-neuroscience"}],chapters:[{id:"44593",title:"Cytogenomic Abnormalities and Dosage-Sensitive Mechanisms for Intellectual and Developmental Disabilities",doi:"10.5772/55689",slug:"cytogenomic-abnormalities-and-dosage-sensitive-mechanisms-for-intellectual-and-developmental-disabil",totalDownloads:2095,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Fang Xu and Peining Li",downloadPdfUrl:"/chapter/pdf-download/44593",previewPdfUrl:"/chapter/pdf-preview/44593",authors:[{id:"159180",title:"Associate Prof.",name:"Peining",surname:"Li",slug:"peining-li",fullName:"Peining Li"},{id:"159183",title:"Dr.",name:"Fang",surname:"Xu",slug:"fang-xu",fullName:"Fang Xu"}],corrections:null},{id:"43525",title:"Chromatin Structure and Intellectual Disability Syndromes",doi:"10.5772/55730",slug:"chromatin-structure-and-intellectual-disability-syndromes",totalDownloads:2289,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Adrienne Elbert and Nathalie G. Bérubé",downloadPdfUrl:"/chapter/pdf-download/43525",previewPdfUrl:"/chapter/pdf-preview/43525",authors:[{id:"160514",title:"Dr.",name:"Nathalie",surname:"Berube",slug:"nathalie-berube",fullName:"Nathalie Berube"},{id:"162586",title:"M.Sc.",name:"Adrienne",surname:"Elbert",slug:"adrienne-elbert",fullName:"Adrienne Elbert"}],corrections:null},{id:"45038",title:"Intellectual and Behavioral Disabilities in Smith — Magenis Syndrome",doi:"10.5772/55721",slug:"intellectual-and-behavioral-disabilities-in-smith-magenis-syndrome",totalDownloads:2463,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Danilo Moretti-Ferreira",downloadPdfUrl:"/chapter/pdf-download/45038",previewPdfUrl:"/chapter/pdf-preview/45038",authors:[{id:"159518",title:"Associate Prof.",name:"Danilo",surname:"Moretti-Ferreira",slug:"danilo-moretti-ferreira",fullName:"Danilo Moretti-Ferreira"}],corrections:null},{id:"44480",title:"Humans Walking on all Four Extremities with Mental Retardation and Dysarthric or no Speech: A Dynamical Systems Perspective",doi:"10.5772/55685",slug:"humans-walking-on-all-four-extremities-with-mental-retardation-and-dysarthric-or-no-speech-a-dynamic",totalDownloads:1798,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Sibel Karaca, Meliha Tan and Üner Tan",downloadPdfUrl:"/chapter/pdf-download/44480",previewPdfUrl:"/chapter/pdf-preview/44480",authors:[{id:"63626",title:"Prof.",name:"Uner",surname:"Tan",slug:"uner-tan",fullName:"Uner Tan"},{id:"124280",title:"Dr.",name:"Sibel",surname:"Karaca",slug:"sibel-karaca",fullName:"Sibel Karaca"},{id:"124282",title:"Prof.",name:"Meliha",surname:"Tan",slug:"meliha-tan",fullName:"Meliha Tan"}],corrections:null},{id:"44770",title:"Sexuality and Sex Education in Individuals with Intellectual Disability in Social Care Homes",doi:"10.5772/55782",slug:"sexuality-and-sex-education-in-individuals-with-intellectual-disability-in-social-care-homes",totalDownloads:1927,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Stanislava Listiak Mandzakova",downloadPdfUrl:"/chapter/pdf-download/44770",previewPdfUrl:"/chapter/pdf-preview/44770",authors:[{id:"159677",title:"Ph.D.",name:"Stanislava",surname:"Mandzáková",slug:"stanislava-mandzakova",fullName:"Stanislava Mandzáková"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"4461",title:"Advanced Brain Neuroimaging Topics in Health and Disease",subtitle:"Methods and Applications",isOpenForSubmission:!1,hash:"30152982950eed84faf2ad2a75f78f4e",slug:"advanced-brain-neuroimaging-topics-in-health-and-disease-methods-and-applications",bookSignature:"T. Dorina Papageorgiou, George I. Christopoulos and Stelios M. Smirnakis",coverURL:"https://cdn.intechopen.com/books/images_new/4461.jpg",editedByType:"Edited by",editors:[{id:"92641",title:"Dr.",name:"T. Dorina",surname:"Papageorgiou",slug:"t.-dorina-papageorgiou",fullName:"T. Dorina Papageorgiou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4496",title:"Autism Spectrum Disorder",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"554c56c045ceba00b9a03e831e47292c",slug:"autism-spectrum-disorder-recent-advances",bookSignature:"Michael Fitzgerald",coverURL:"https://cdn.intechopen.com/books/images_new/4496.jpg",editedByType:"Edited by",editors:[{id:"28359",title:"Prof.",name:"Michael",surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1425",title:"Bipolar Disorder",subtitle:"A Portrait of a Complex Mood Disorder",isOpenForSubmission:!1,hash:"3ee6477398a272c39010b2332a62e4d9",slug:"bipolar-disorder-a-portrait-of-a-complex-mood-disorder",bookSignature:"Jarrett Barnhill",coverURL:"https://cdn.intechopen.com/books/images_new/1425.jpg",editedByType:"Edited by",editors:[{id:"33657",title:"Dr.",name:"Jarrett",surname:"Barnhill",slug:"jarrett-barnhill",fullName:"Jarrett Barnhill"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2055",title:"Contemporary Trends in ADHD Research",subtitle:null,isOpenForSubmission:!1,hash:"a454586260fd47a4153d3670833bf7df",slug:"contemporary-trends-in-adhd-research",bookSignature:"Jill M. Norvilitis",coverURL:"https://cdn.intechopen.com/books/images_new/2055.jpg",editedByType:"Edited by",editors:[{id:"91842",title:"Dr.",name:"Jill M.",surname:"Norvilitis",slug:"jill-m.-norvilitis",fullName:"Jill M. Norvilitis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"561",title:"When Things Go Wrong",subtitle:"Diseases and Disorders of the Human Brain",isOpenForSubmission:!1,hash:"cbf08acddb1a155af7723fbaa0dc0132",slug:"when-things-go-wrong-diseases-and-disorders-of-the-human-brain",bookSignature:"Theo Mantamadiotis",coverURL:"https://cdn.intechopen.com/books/images_new/561.jpg",editedByType:"Edited by",editors:[{id:"100551",title:"Dr.",name:"Theo",surname:"Mantamadiotis",slug:"theo-mantamadiotis",fullName:"Theo Mantamadiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"681",title:"Experimental Autoimmune Encephalomyelitis",subtitle:"Models, Disease Biology and Experimental Therapy",isOpenForSubmission:!1,hash:"3bd6f083e89ec79e18275773cf3a580f",slug:"experimental-autoimmune-encephalomyelitis-models-disease-biology-and-experimental-therapy",bookSignature:"Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/681.jpg",editedByType:"Edited by",editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5729",title:"Physical Disabilities",subtitle:"Therapeutic Implications",isOpenForSubmission:!1,hash:"556762ab3ec37051e98db256b44c4b58",slug:"physical-disabilities-therapeutic-implications",bookSignature:"Uner Tan",coverURL:"https://cdn.intechopen.com/books/images_new/5729.jpg",editedByType:"Edited by",editors:[{id:"63626",title:"Prof.",name:"Uner",surname:"Tan",slug:"uner-tan",fullName:"Uner Tan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7472",title:"Gut Microbiota",subtitle:"Brain Axis",isOpenForSubmission:!1,hash:"4aaffb64056f2ff00c7ddf1b0d235174",slug:"gut-microbiota-brain-axis",bookSignature:"Alper Evrensel and Barış Önen Ünsalver",coverURL:"https://cdn.intechopen.com/books/images_new/7472.jpg",editedByType:"Edited by",editors:[{id:"197156",title:"Dr.",name:"Alper",surname:"Evrensel",slug:"alper-evrensel",fullName:"Alper Evrensel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3852",title:"Peripheral Neuropathy",subtitle:null,isOpenForSubmission:!1,hash:"b3926052a402423f7579c23dd6cb0335",slug:"peripheral-neuropathy",bookSignature:"Paulo Armada-Da-Silva",coverURL:"https://cdn.intechopen.com/books/images_new/3852.jpg",editedByType:"Edited by",editors:[{id:"161503",title:"Prof.",name:"Paulo",surname:"Armada-Da-Silva",slug:"paulo-armada-da-silva",fullName:"Paulo Armada-Da-Silva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5751",title:"Event-Related Potentials and Evoked Potentials",subtitle:null,isOpenForSubmission:!1,hash:"a168280a67eae09db5340f85f6705920",slug:"event-related-potentials-and-evoked-potentials",bookSignature:"Phakkharawat Sittiprapaporn",coverURL:"https://cdn.intechopen.com/books/images_new/5751.jpg",editedByType:"Edited by",editors:[{id:"73395",title:"Dr.",name:"Phakkharawat",surname:"Sittiprapaporn",slug:"phakkharawat-sittiprapaporn",fullName:"Phakkharawat Sittiprapaporn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"69566",slug:"corrigendum-to-a-brief-overview-of-ophthalmic-ultrasound-imaging",title:"Corrigendum to: A Brief Overview of Ophthalmic Ultrasound Imaging",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/69566.pdf",downloadPdfUrl:"/chapter/pdf-download/69566",previewPdfUrl:"/chapter/pdf-preview/69566",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/69566",risUrl:"/chapter/ris/69566",chapter:{id:"65491",slug:"a-brief-overview-of-ophthalmic-ultrasound-imaging",signatures:"David B. Rosen, Mandi D. Conway, Charles P. Ingram, Robin D. Ross and Leonardo G. Montilla",dateSubmitted:"November 6th 2018",dateReviewed:"December 12th 2018",datePrePublished:"February 5th 2019",datePublished:"September 4th 2019",book:{id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,fullTitle:"Novel Diagnostic Methods in Ophthalmology",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"274007",title:"Prof.",name:"Mandi D.",middleName:null,surname:"Conway",fullName:"Mandi D. Conway",slug:"mandi-d.-conway",email:"mconway1@yahoo.com",position:null,institution:null},{id:"283754",title:"Dr.",name:"Robin",middleName:"Demi",surname:"Ross",fullName:"Robin Ross",slug:"robin-ross",email:"robindross@email.arizona.edu",position:null,institution:null},{id:"284051",title:"BSc.",name:"David",middleName:null,surname:"Rosen",fullName:"David Rosen",slug:"david-rosen",email:"davidrosen@email.arizona.edu",position:null,institution:null},{id:"284377",title:"BSc.",name:"Leonardo",middleName:null,surname:"Montilla",fullName:"Leonardo Montilla",slug:"leonardo-montilla",email:"funrunner13@gmail.com",position:null,institution:null},{id:"284378",title:"MSc.",name:"Charles",middleName:null,surname:"Ingram",fullName:"Charles Ingram",slug:"charles-ingram",email:"cingram@optics.arizona.edu",position:null,institution:null}]}},chapter:{id:"65491",slug:"a-brief-overview-of-ophthalmic-ultrasound-imaging",signatures:"David B. Rosen, Mandi D. Conway, Charles P. Ingram, Robin D. Ross and Leonardo G. Montilla",dateSubmitted:"November 6th 2018",dateReviewed:"December 12th 2018",datePrePublished:"February 5th 2019",datePublished:"September 4th 2019",book:{id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,fullTitle:"Novel Diagnostic Methods in Ophthalmology",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"274007",title:"Prof.",name:"Mandi D.",middleName:null,surname:"Conway",fullName:"Mandi D. Conway",slug:"mandi-d.-conway",email:"mconway1@yahoo.com",position:null,institution:null},{id:"283754",title:"Dr.",name:"Robin",middleName:"Demi",surname:"Ross",fullName:"Robin Ross",slug:"robin-ross",email:"robindross@email.arizona.edu",position:null,institution:null},{id:"284051",title:"BSc.",name:"David",middleName:null,surname:"Rosen",fullName:"David Rosen",slug:"david-rosen",email:"davidrosen@email.arizona.edu",position:null,institution:null},{id:"284377",title:"BSc.",name:"Leonardo",middleName:null,surname:"Montilla",fullName:"Leonardo Montilla",slug:"leonardo-montilla",email:"funrunner13@gmail.com",position:null,institution:null},{id:"284378",title:"MSc.",name:"Charles",middleName:null,surname:"Ingram",fullName:"Charles Ingram",slug:"charles-ingram",email:"cingram@optics.arizona.edu",position:null,institution:null}]},book:{id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,fullTitle:"Novel Diagnostic Methods in Ophthalmology",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11769",leadTitle:null,title:"Multiculturalism and Interculturalism",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tGlobalization and openness of the market for goods and services have contributed to the ever-increasing mobility of human talents across the globe. The historical background and evolution of societies have also created the co-existence of multiple cultures and modes of life. There are multiple cultures even within the border of the same country and there are multiple types of cultural differences among the habitants of a given country. Culture develops slowly its own norms, values, and beliefs regardless of the numerical size of its followers. Economic transactions and social cohesion cannot be conceived today without the consideration of cultural varieties and challenges. This is where we need to develop an in-depth understanding of culture and how we can function effectively within a multicultural society and economy. We invite book chapters from scholars exploring the cross-cultural, multi-cultural, and intercultural phenomena in our society and economy. We need to know how managers can effectively communicate, negotiate and lead the team within the cross-cultural business eco-system. Papers on Global Mindset and effective managerial approaches in the cross-cultural eco-system will be highly appreciated.
",isbn:"978-1-83768-144-0",printIsbn:"978-1-83768-143-3",pdfIsbn:"978-1-83768-145-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"6c4bda24f278d74f943f2155f13f4d73",bookSignature:"Dr. Muhammad Mohiuddin, Dr. Tareque Aziz and Dr. Sreenivasan Jayashree",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11769.jpg",keywords:"Professional Culture, Organizational Culture, Popular Culture, Cross-Cultural Conflict, Cross-Cultural Team Management, Cross-Cultural Management and Performance, National Culture, Individual Culture, Conducive Environment and Knowledge Sharing, Cultural Studies and Methodology, Cultural Diversity, Global Mindset",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 24th 2022",dateEndSecondStepPublish:"June 21st 2022",dateEndThirdStepPublish:"August 20th 2022",dateEndFourthStepPublish:"November 8th 2022",dateEndFifthStepPublish:"January 7th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A reputed researcher in the cross-cultural management area with experience in teaching and research in the world's four continents.",coeditorOneBiosketch:"A pioneer in service sector development research in Bangladesh and officially the patent applicant and copyright owner of the “Service Quality Index (SQI)” certification in Bangladesh.",coeditorTwoBiosketch:"Dr. S. Jayashree is an associate professor at Multimedia University, Malaysia. She is pioneering research in Technology and the cross-cultural area and has demonstrated how to function effectively within a multi-cultural environment. Her research has been published in leading peer-reviewed journals and books.",coeditorThreeBiosketch:"Dr. S. Jayashree is an associate professor at Multimedia University, Malaysia. She is pioneering research in Technology and the cross-cultural area and has demonstrated how to function effectively within a multi-cultural environment. Her research has been published in leading peer-reviewed journals and books.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],coeditorOne:{id:"474140",title:"Dr.",name:"Tareque",middleName:null,surname:"Aziz",slug:"tareque-aziz",fullName:"Tareque Aziz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003SaNGSQA3/Profile_Picture_2022-05-13T10:39:36.png",biography:'Dr. Mohammed Tareque Aziz is the country’s leading service sector management consultant. Currently, Dr. Aziz is the Dean and professor of relationship marketing and retailing at Green Business School (GBS) of Green University Bangladesh (GUB). He is a member of the editorial board of the Journal for Service Quality Improvement (JSQE). Officially the patent applicant and copyright owner of Bangladesh\'s "Service Quality Index (SQI)" certification. BRAC University and the University Grants Commission have named him a "Certified Academic Quality Expert." In addition, he is an honorary Senior Fellow at India\'s Centre for Advanced Studies in Policy Research (CASPR). He is on the International Fellowship Journal of Interdisciplinary Research\'s Editorial Advisory Board.',institutionString:"Green University of Bangladesh",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Green University of Bangladesh",institutionURL:null,country:{name:"Bangladesh"}}},coeditorTwo:{id:"154427",title:"Dr.",name:"Sreenivasan",middleName:null,surname:"Jayashree",slug:"sreenivasan-jayashree",fullName:"Sreenivasan Jayashree",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8DPQA0/Profile_Picture_2022-05-13T10:37:31.jpg",biography:"Dr. S. Jayashree is an associate professor at the Faculty of Management (FOM), Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia. She is pioneering research in Technology and cross-cultural area. Her research has been published in leading peer-reviewed journals and books. She has also presented her findings at many international conferences.",institutionString:"Multimedia University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Multimedia University",institutionURL:null,country:{name:"Malaysia"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6926",title:"Biological Anthropology",subtitle:"Applications and Case Studies",isOpenForSubmission:!1,hash:"5bbb192dffd37a257febf4acfde73bb8",slug:"biological-anthropology-applications-and-case-studies",bookSignature:"Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:"Edited by",editors:[{id:"313084",title:"Ph.D.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17645",title:"Thermal Responsive Shape Memory Polymers for Biomedical Applications",doi:"10.5772/19256",slug:"thermal-responsive-shape-memory-polymers-for-biomedical-applications",body:'\n\t\tShape memory polymers (SMPs) are a type of polymeric materials that can be programmed to memorize a less-constrained shape/configuration, subsequently assume a strained temporary shape/configuration, and then revert to the memorized shape/configuration upon triggering by an external stimulus(Lendlein & Kelch, 2002). Such responsiveness to stimuli is reminiscent of the adaptive responses universally observed in living organisms. Based on the nature of the external stimulus, SMPs can be categorized into light-responsive SMPs, chemical-responsive SMPs, magnetic field-responsive SMPs, and thermal-responsive SMPs, etc. Thermal-responsive SMPs are one of the most studied systems and will be the focus of this chapter.
\n\t\t\tShape memory effect is not a universal property of polymeric materials. Polymer networks comprising of both net-points and reversible switching components, which are responsible for maintaining the dimensional stability and determining reversible thermal response of the polymer, respectively, have the potential to be programmed to exhibit shape memory effect. Processing histories and programming conditions also impact the shape memory effect of an SMP. The intrinsic mechanism for shape memory behavior in thermal responsive SMPs is the reversible freezing and activation of polymeric chain motion in the switching segments below and above the transition temperature (Ttrans), respectively. Shape memory properties have been reported in a wide range of polymers including, but not limited to, polyurethanes, epoxies, polyolefins and polyesters (Behl & Lendlein, 2007a; Behl, 2010; Lendlein & Kelch, 2002; Liu, 2007; Mather, 2009).
\n\t\t\tThe earliest report of shape memory effect dated back to the 1940s (Liu, 2007). Industrial applications of the shape memory effect took place in the 1950s when chemist Paul Cook, founder of Raychem Corporation, invented heat shrink tubings using radiation-crosslinked polyethylenes (Dole, 1981). The term “shape memory polymer” became better known as shape memory poly(norborene), developed by the French company CDF-Chimie, was commercialized in Japan by Nippon Zeon Company in the 1980s under the brand name Norsorex. Poly(trans-isoprene) and poly(styrene-butadiene) with shape memory effect were subsequently developed by two other Japanese companies (Leng, 2010). These events ushered in the first golden age of SMP research, which had primarily focused on polyene-based systems until segmental polyurethane-based SMPs were introduced by Mitsubishi Heavy Industry (MHI) in the early 1990s (Hayashi, 1995; Ito, 1996; Takahashi, 1996; Tobushi, 1996; Tobushi, 1997; Tobushi, 2001). The flexibility of urethane chemistries enabled the development of shape memory polyurethanes with a wide range of mechanical properties and glass transition temperatures (Tg’s) for individual applications. The publication of a series of landmark papers by Lendlein et al. since 2002 (Lendlein, 2001; Lendlein & Kelch, 2002; Lendlein & Langer, 2002), exploring the potential application of SMPs in modern medicine ushered in a second surge in SMP research, with >100 SMP-related patents and research articles published annually (Liu, 2007).
\n\t\t\tShape memory polymers as "smart" materials have been extensively reviewed in recent literature (Behl & Lendlein, 2007a; b; Behl, 2010; Lendlein & Kelch, 2002; Liu, 2007; Madbouly & Lendlein, 2010; Mather, 2009; Rousseau, 2008; Sokolowski, 2007; Wagermaier, 2010). This chapter briefly reviews the fundamental principles of thermal responsive SMPs and discusses the challenges of SMPs for biomedical applications. Instead of providing an exhaustive citation of recent literatures, we choose to highlight some key concepts and a few examples revealing the structure-property relationship of SMPs that have inspired our on-going work in this area.
\n\t\tThe driving force for shape recovery of an SMP is the recoiling of polymeric chains from a strained configuration (temporary state) to a less-ordered configuration ("memorized" state), namely, entropy elasticity. The "memorized" state could be the most relaxed, equilibrated configuration as the material was prepared. Upon deformation at a higher temperature (T > Ttrans), the original orientations of the chain segments are altered and the net-points are dislocated, resulting in new sets of local chain-chain interactions. The temporarily deformed shape can be fixed as the material cools (T < Ttrans), provided that the newly formed chain-chain interactions are strong enough to overcome the tendency of the chain segments for elastic recoiling. Upon triggering by a higher temperature (T > Ttrans), the increased entropy of chain segments overcomes the constraining local chain-chain interactions, permitting the recoiling of chain segments to a more disordered state.
\n\t\t\tThe net-points of an SMP network, which maintain its dimensional stability, could be either covalent or physically crosslinked. The switching components that reversibly respond to temperature changes could be either amorphous or semicrystalline. Thus, SMPs could be classified into four main categories (Lendlein & Kelch, 2002; Liu, 2007; Rousseau, 2008) based on the nature of net-points and switching components: (1) chemically crosslinked net-points with amorphous switching compnents; (2) chemically crosslinked net-points with semicrystalline switching components; (3) physically crosslinked net-points with amorphous switching components; (4) physically crosslinked net-points with semicrystalline switching componetns. According to the polymer classification convention, the first two categories belong to thermosets and the last two belong to thermoplastics, respectively (Gedde, 1995). All four types of SMPs have been realized (Alteheld, 2005; Jeon, 2000; Lendlein, 2001; Ping, 2005).
\n\t\t\tIn thermoplastic SMPs, the chain entanglements or local crystalline domains formed by strong chain-chain interactions can serve as the physical crosslinking sites. The advantages of thermoplastic SMPs include their moldability with different permanent shapes/ configurations, high shape deformation range, and the ease for blending with other polymers and additives. On the other hand, the molecular weight of the polymer chains in thermoplastic SMPs need to be sufficiently high in order to enable effective entanglement or distinctive phase separation. Due to the dynamic nature and temperature-dependency of these physical crosslinks, the original network points could be destroyed during the deformation with a loss of stored elastic energy, resulting in incomplete shape recovery.
\n\t\t\tBy contrast, thermoset SMPs rarely show creeps (Gedde, 1995). Chemically crosslinked SMPs generally exhibit better strain fixing ratios and strain recovery ratios, faster strain recovery rates and larger shape recovery stress, but lower strain-to-failure values. Such a combination of properties of thermoset SMPs may arise from their higher crosslinking densities and the ability of the chemical crosslinks to better withstand tensile deformations. The main disadvantages of thermoset SMPs are the need for tailored polymer processing and their inability to be reprocessed into a new shape/configuration after being chemically crosslinked, which may not be a concern when the SMP is designed for one time applications, for instance, as
An ideal SMP system may lie at the interface of thermoplastics and thermosets. Optimization through rational molecular and network designs, combined with the choice of appropriate processing programs, is the key for successful, application-driven design of SMPs.
\n\t\t\tIn essence, the shape memory property is a combination of thermal and mechanical properties. To facilitate subsequent discussions on SMP performances, key terms and techniques used to describe and characterize the shape memory properties of SMPs are defined and summarized below.
\n\t\t\tTransition temperature (Ttrans) is the temperature around which a material changes from one state to another. Ttrans could be either melting temperature (Tm) or glass transition temperature (Tg). Ttran is usually determined by differential scanning calorimetry (DSC), thermomechanical analysis (TMA) or dynamic mechanical thermal analysis (DMA). DSC measures the change in heat capacity, TMA measures the change in coefficient of thermal expansion, while DMA measures the change in elastic modulus during the thermal transition. Due to intrinsic polydispersity in molecular weights and imperfect spatial distribution of network chains, the unique thermal characteristics of a polymer should be defined as a temperature range rather than at one specific temperature. For the ease of comparison, however, a single Ttrans (Tm or Tg) value taken from the peak or midpoint of a broader transition is often reported in literature.
\n\t\t\tMelting temperature (Tm) is the temperature at which a material changes from solid to liquid state. In polymers, Tm is the peak temperature at which a semicrystalline phase melts into an amorphous state. Such a melting process usually takes place within a relative narrow range (<20 ºC), thus it is acceptable to report Tm as a single value.
\n\t\t\tGlass transition temperature (Tg) is the temperature beyond which a polymer turns from a hard, glass-like state to a rubber-like state. For the ease of comparison of conventional polymers, a single Tg value taken from the midpoint of a broader transition is often used in literature. However, since the width of glass transition have a profound impact on the shape memory performance of SMPs, it will be more appropriate to report the width of the transition along with the mid-point Tg value, or to report the onset glass transition temperature (Tg\n\t\t\t\tonset) and the ending glass transition temperature (Tg\n\t\t\t\tend) along with the mid-point Tg value.
\n\t\t\tStress (σ) is defined as the force exerted on the material per area. The ultimate tensile stress that leads to the tensile failure of an SMP, or the ultimate tensile strength, as well as the lowest stress that produces a permanent deformation in an SMP, or the yield strength, are both utilized in the characterization of SMPs.
\n\t\t\tStrain (ε) is defined as the deformation per unit length due to stress. The strain-to-failure value indicates the maximum strain that a SMP could reach under external stress.
\n\t\t\tModulus (E) is also referred as Young\'s modulus or elastic modulus. It is the slope of the linear elastic region of a stress-strain curve. E changes significantly with temperature in thermal-responsive SMPs. The glassy state modulus of an SMP at a lower temperature can be several orders of magnitude higher than its rubbery state modulus at a higher temperature. The rubbery state modulus of an SMP, indicative of the density of crosslinks, has only minimal influence on the free-strain recovery behavior (e.g. shape recovery rate and shape recover percentage) except when the crosslinking density is extremely low. However, the rubbery state modulus of an SMP dictates the recovery stress during the fixed-strain recovery. The recovery stress is proportional to the energy stored as a deformed SMP is being cooled to fix its temporary shape/configuration. Since the deformation of an SMP usually takes place at its rubbery state, the energy stored could be approximated as the product of its rubbery state modulus and the imposed strain.
\n\t\t\tShape fixing components are defined as the domain or net-point, either covalently crosslinked or physically formed (e.g. via physical entanglement or H-bonding), in an SMP network that maintains the dimensional stability during the deformation and subsequent recovery.
\n\t\t\tShape switching components are the polymeric chains in an SMP network that can switch from one state to another in response to the temperature change, which are responsible for the temperature-dependent deformation and recovery.
\n\t\t\tShape deforming temperature (Td) is the working temperature at which SMP is strained to a temporary shape. The relationship of Td relative to Ttrans (below, at or above) has significant impact on the shape memory performance of an SMP.
\n\t\t\tTemporary shape fixing temperature (Tf) is the working temperature at which the temporary shape of a deformed SMP is fixed. Tf is usually lower than the Ttrans.
\n\t\t\tShape recovery temperature (Tr) is the working temperature at which an SMP is triggered to recover from its fixed temporary shape. Tr is usually higher than Ttrans and is often chosen to be the same as the Td.
\n\t\t\tCyclic thermo-mechanical test is a widely used quantitative analysis of shape memory performance using a mechanical testing instrument equipped with a temperature control unit (Knight, 2008; Lendlein & Kelch, 2002; Wagermaier, 2010). The test can be carried out in either stress-controlled or strain-controlled mode. In a stress-controlled cyclic thermo-mechanical test, a predefined stress and temperature ramping are applied to the SMP and the strain is recorded over time. In a strain-controlled cyclic thermo-mechanical test, a predefined strain and temperature ramping are applied to the SMP and the stress is recorded over time. A typical stress-controlled cyclic thermo-mechanical test in the Nth cycle constitutes 4 distinctive steps (Fig. 1):
\n\t\t\tProgramming steps in a stress-controlled cyclic thermo-mechanical test of an SMP. Denotations: p = permanent, l = with loading, d = deformation temperature Td, u = unloading
Equilibrating an SMP with a recorded permanent strain εp(N-1) at deformation temperature Td, followed by subjecting the SMP to predefined deformation stress σ at Td. The deformed sample length at Td is recorded as εl\n\t\t\t\t\t\td (N).
Fixing the temporary length εl\n\t\t\t\t\t\td (N) by cooling the SMP to a lower fixing temperature (Tf) under constant loading σ. The recorded fixed strain at Tf under loading is εl (N).
Unloading the stress to zero or a specific lower constrain stress (σc). The resulting strain after unloading is recorded as εu(N).
Recovering the shape under either zero stress or a specific constrain stress σc at Tr. The final recovered strain is recorded as εp(N). In a free-strain recovery mode, the SMP recovers without external constrains either as a function of temperature during a transient heating or as a function of time during an isothermal hold. In the alternative fixed-strain recovery mode, stress is generated within the SMP under full deformation constraint either as a function of temperature during a transient heating or as a function of time during an isothermal hold. Shape recovery stress (Er), defined as the stress that a SMP exhibits during recovery, could be recorded during this mode.
Shape fixing ratio (Rf) is used to evaluate how stably can an SMP be held in a strained temporary shape. It is defined as the ratio of the deformation after unloading versus the deformation at Tf under the loading σ, as calculated per Equation (1):
\n\t\t\t\n\t\t\t\t
A representative 3-D plot for presenting cyclic thermo-mechanical testing results.
\n\t\t\t\t
Cyclic thermo-mechanical testing data are most commonly presented in a three-dimensional (3-D) plot with temperature, stress and strain as X, Y, and Z axis (Figure 2), respectively.(Knight, 2008; Lee, 2008; Wagermaier, 2010) Alternatively, the data can be presented in a two-dimension (2-D) graph with multiple Y axes representing stress, strain and temperature plotting against time on the X axis (Fig.3 ).(Lendlein, 2001; Xie, 2010).
\n\t\tA representative 2-D plot for presenting cyclic thermo-mechanical testing results. The lines represent a hypothetically ideal SMP with 100% fixing ratio and and 100% recovery ratio.
The unique properties of SMPs present enormous opportunities for the design of next-generation less invasive, resorbable smart medical implants, tissue scaffolds and medical devices. Traditional commercial SMPs, including polyurethane-based, polystyrene-based, cyanate ester-based, and epoxy-based SMPs, were not originally designed for biomedical applications. However, as recently reviewed by Sokolowski, Mather, Lendlein and their colleagues (Lendlein, 2010; Mather, 2009; Sokolowski, 2007), a wide range of potential biomedical applications based on SMPs have already emerged or are currently being pursued.
\n\t\t\tThe first SMP-based biomedical application was demonstrated by Hayashi and colleagues who developed SMP-based catheters, which would soften at body temperature, potentially reducing the risks for soft tissue / organ injuries during their surgical delivery (Utsumi, 1995). Maitland et al. designed a thermoset polyurethane SMP-based microactuator for treating strokes (Maitland, 2002; Small, 2007). The microactuator was coupled to an optical fiber and was set in a straight configuration for easy surgical insertion. Upon reaching the targeted blood clot, laser heating was applied to activate the SMP to form a pre-cast corkscrew shape to facilitate the capturing of the thrombus. In order to reach the necessary temperature (65-85 ºC) required for actuating the devices, however, significant engineering challenges of the SMP in terms of its optical properties and device geometries had to be met. &In addition, SMP-based biodegradable self-expanding and drug eluting stents (Wache, 2003; Xue, 2010; Yakacki, 2007), biodegradable self-deployable intragastric implants for treating obesity (Klausner, 2003; Pagano & Serezin, 2009), self-fitting vascular and coronary grafts (Sokolowski, 2007), patient-specific customized orthopedic devices (Sokolowski, 2007), tissue engineering scaffolds (Cui, 2011; Filion, 2011; Neuss, 2009; Xu & Song, 2010), and dynamic cell culture substrates (Davis, 2011) have also been explored.
\n\t\t\tOne of the most studied biomedical SMPs is cold hibernated elastic memory (CHEM)-processed polyurethane foams for endovascular treatment of aneurysm in animals (Metcalfe, 2003). The pre-compressed CHEM foams were used to occlude aneurysms in dogs as they resumed an expanded, porous configuration, activated by the body heat, to produce near-complete obliteration of aneurysms, resulting in improved angiographic scores in 3 weeks.
\n\t\t\tComparing to shape memory alloys (SMAs) that have been broadly used in stents, the SMP counterparts offer the advantages of being lightweight, ease of processing, higher recovery strain, and programmable degradability (El Feninat, 2002). The relatively low recovery stress, slow recovery rate, and the one-way shape memory of most existing SMPs, however, present important yet exciting challenges for the molecular/network design of biocompatible and biodegradable SMPs as high-performance, expandable and resorbable stents.
\n\t\tTo realize the enormous potential and address the multifaceted challenges of SMPs for biomedical applications, innovative macromolecular designs and network engineering, nanotechnology, and creative shape memory programming techniques have been pursued to improve the shape memory performance within a physiologically relevant temperature range. In this section, we review a few examples that help illustrate how specific properties underlying the fundamental shape memory performance can be improved, followed by an example illustrating how multiple functional requirements may be integrated for biomedical applications.
\n\t\t\tThe recovery stress of an SMP positively correlates with the energy stored during its deformation. Most SMPs are deformed in the rubbery state where their typical elastic moduli are in the order of several megapascals (MPa), thus limiting the amount of energy that could be stored and resulting in relatively low shape recovery stress, especially when compared with SMA. A low shape recovery stress could result in incomplete expansive shape recovery within a spatially constraint environment such as a collapsed vertebral disc or a narrowed blood vessel.
\n\t\t\t\tTo improve the rubbery state elastic modulus, either the crosslinking density of a thermoset SMP or the degree of physical crosslinking in a thermoplastic SMP could be increased. Alternatively, one may improve the rubbery state elastic modulus by incorporating fillers within the SMP network. For instance, SMPs reinforced with SiC particles, carbon powders, carbon nanotubes (CNT), glass fibers or Kevlar fibers showed improved elastic modulus and shape recovery stress but decreased shape recovery percentage (Gall, 2000; Gall, 2002; Liu, 2009; Liu, 2004; Madbouly & Lendlein, 2010). Carbon-based nanoparticles, nanotubes, and nanofiber fillers also introduce electrical conductive properties to the SMPs, enabling potential electrical field-driven triggering. More recently, Miaudet et al. strengthened polyvinyl alcohol (PVA) SMP fibers with a large fraction of CNT (Miaudet, 2007). Significant broadening of the glass transition (Tg: 50 to 200 ºC) was observed for the CNT-PVA fiber versus the neat PVA fiber (Tg: ~80 ºC), with much improved storage modulus both at the glassy state and at the rubbery state. When deformed at 70 or 90 ºC, the CNT-PVA fiber exhibited a maximal stress of ~150 MPa, one to two orders of magnitude greater than the stress generated by conventional SMPs. However, the reinforced CNT-PVA fiber suffered from incomplete shape fixation (Rf< 60%) and no data on the shape recovery time was reported. Another special phenomenon observed in this system was the so-called temperature memory effect, in which the temperature correlating with the peak shape recovery stress during heating was identical to the deformation temperature.
\n\t\t\tOne of the most important advantages of SMPs over SMAs is their significantly larger deformation strains. Although deformation strains over several hundred percentages have been reported for SMPs, most of these strains could not be fully recovered. The development of SMPs with fully recoverable high-strains will be of significant value to applications requiring dramatic yet complete shape changes.
\n\t\t\tThermoplastic SMPs usually exhibit high strain-to-failure but not all of the strains is recoverable. Due to plastic deformation/irreversible damage of physically crosslinked net-points, Rr’s of thermoplastic SMPs are usually far less than 100%. By contrast, thermoset SMPs usually have high Rr’s yet their strain-to-failure tend not to be high. Gall\'s group proposed that an ideal high-strain SMP may exist at the boundary of a thermoset and a thermoplastic, and should have evenly distributed long chains tethered by light enough crosslinking (Voit, 2010). They systematically studied an acrylate crosslinking system to maximize its fully recoverable strain capacity by adjusting the composition of the co-monomers and crosslinkers. The acrylate network were prepared by crosslinking methyl acrylate (MA), methyl methacrylate (MMA), and isobornyl acrylate (IBoA) with crosslinkers such as poly(ethylene glycol) dimethacrylate (PEGDMA), bisphenol A ethoxylate di(meth)acrylate (BPAEDMA) or a bifunctional crosslinker with both crosslinking and photoinitiating functionalities. SMPs with varied glass transitions and high recoverable strains were obtained. During the optimization of a base polymer composition (19:1/MA:IBoA, wt%; 0.02 mol% initiator) using varied crosslinker BPAEDMA contents, they found that the SMPs with low loading of the crosslinker BPAEDMA (≤0.100wt%) were thermoplastic in nature and displayed inconsistent recoverability from high-strain deformations. With the content of BPAEDMA increasing to 0.014 and 0.027 mol%, the materials could be strained repeatedly to >800%, although some residual strains of 8 and 5% could not be fully recovered, respectively. At the BPAEDMA content of 0.054 mol%, the material still exhibited a fully recoverable high strain-to-failure of 800%. Further increase of BPAEDMA content resulted in the decrease of strain-to-failure. Photoinitiator content and crosslinker length also exerted significant effect on the recovery strain. These data suggested that designing a fully crosslinked network with crosslink spacing that is large and evenly distributed is the key in achieving fully recoverable strain capacity.
\n\t\t\tBiomedical SMPs that are designed to thermally deploy (e.g. via catheter heating)
For both chemically and physically crosslinked SMPs, the shape switching segments could be either crystalline or amorphous. The width of thermal transition of an SMP is dependent on the distribution of relaxation time associated with the molecular mobility of polymer chains, which in turn is dictated by the chemical composition and network structure of the SMP. Crystalline segments usually exhibit a sharp transition with a relatively narrow temperature range while amorphous segments tend to display a glass transition range tens of degrees wide. The maximum shape recovery rate seems to increase with the narrowing of glass transitions.
\n\t\t\t\tA broad transition temperature range has dual effects on the shape memory properties. One may take advantage of the broad transition range to program multi-stage shape memory effects or temperature memory effects, or to enable higher shape recovery stress on one end. For instance, it was shown that when deformation was carried out at a temperature lower than the Tg in an epoxy thermoset, it resulted in a lower shape recovery temperature and higher shape recovery stress (Gall, 2005; Liu, 2004).
\n\t\t\t\tOn the other hand, a broad transition temperature could also have negative impact on the shape memory performance, for instance, resulting in less stable/incomplete shape fixing, premature shape recovery, and/or slower shape recovery. For SMPs with narrow Ttrans windows, fixing a temporary shape at a temperature 20 ºC below the Ttrans and triggering the shape recovery at a temperature 20 ºC above the Ttrans are usually adequate in achieving good shape fixing and recovery. For SMPs with broad transition windows, however, some percentages of the switching segments would still remain mobile at 20 ºC below the Ttrans, and some switching components may start to recover prematurely at a temperature far below its Ttrans. For example, 20% of the shape recovery of a poly(MMA-co-PEGDA)-based SMP took place at a temperature at as low as >40 ºC below its Tg of 92 ºC (Yakacki, 2008). These disadvantages could cause problems for biomedical applications where an SMP implant needs to be delivered in a stably held minimally invasive configuration and remain so until a safe temperature triggers its rapid deployment. Premature deployment at an unintended
Predictable shape recovery is conventionally considered more obtainable by SMPs with crystalline switching segments. However, recent work shows that it is possible to design SMP networks with amorphous switching segments to display glass transitions as narrow as 10 ºC. The key is to keep the chain segments between netpoints as identical as possible, which can be accomplished by crosslinking well-defined star-branched macromers. For instance, Nagahama et al. prepared biodegradable polyurethane SMPs by crosslinking 8-arm star-branched poly(ε-caprolactone) (PCL) macromers, containing 10 or 20 PCL repeating units per arm, with hexamethylene diisocyanate (Nagahama, 2009). The resulting SMPs both showed outstanding strain fixing ratio (Rf> 97%) and strain recovery ratio (Rr ≈ 100%). The SMP crosslinked from macromers containing longer PCL arms displayed complete shape recovery within a 6 °C range (47-53 °C) that correlated well with its Tm of 49 °C. Interestingly, the SMP crosslinked from macromers containing shorted PCL arms exhibited a more temperature-sensitive recovery, accomplishing 90% strain recovery within a 2 ºC heating window (37-39 ºC) that was below its Tm of 43 °C and 100% recovery in 10 s at the Tm.
\n\t\t\t\tNair et al. recently reported homogenous SMP networks prepared by thiol-ene photo-polymerization that exhibited glass transitions as narrow as 12 ºC (Nair, 2010). By tuning the network compositions, two thiol-ene SMPs with Tg’s around 30-40 ºC were obtained. These materials exhibited excellent shape fixing at room temperature, distinct shape memory actuation response, and a rapid shape recovery rate (5%/min versus the 1.8-4.2%/min commonly observed with other SMPs).
\n\t\t\tIt\'s generally accepted that the number of shapes an SMP can memorize correlates with the number of discrete reversible phase transitions within its network. Conventional SMPs are designed to memorize only one permanent shape that corresponds to the most relaxed state of the switching segments, exhibiting the so-called dual-shape memory effect. The first example of triple-shape memory effect was reported by Bellin et al. where two types of polymeric chains with discrete transition temperatures were incorporated within a crosslinked network (Bellin, 2006). One of the polymer networks containing poly(ε-caprolactone) (PCL) segments and poly(cyclohexyl methacrylate) (PCHMA) segments, named MACL, exhibited a Tm around 50 ºC and a Tg around 140 ºC. The second network containing PCL segments and poly(oligomer polyethylene glycol monomethyl ether methacrylate) (PPEGMA), named CLEG, exhibited two Tm’s above 50 ºC and around 17-39 ºC depending on the content of PPEGMA. For shape memory programming, a sample adopting a shape C was deformed to shape B at a temperature (Thigh) above the higher one of the two Ttrans’s, and then shape B was fixed by cooling the sample to a temperature (Tmid) between the two Ttrans’s before it was further deformed into shape A at Tmid and fixed by cooling below the lower temperature of the two Ttrans’s. During the shape recovery, the sample was heated above Thigh where shape B and Shape C were recovered sequentially. Both MACL and CLEG engineered with appropriate compositions were able to display such a triple-shape memory effect. It\'s noteworthy that the deformed shapes B and A were not necessarily unidirectional, which opens the opportunity for applications where complex and multi-directional shape recovery is required. Tuning the triple-shape memory effect in these systems, however, required fine adjustments of the ratio of the two discrete phases. For example, the triple-shape memory effect was only observed for the MACL networks at PCL content of 40-60 wt% and for the CLEG networks at PCL content of 30-60 wt%. It was also found that Rf increased with increasing content of the component forming the domain responsible for the transition. In addition, low Rf’s were observed during the programming. In the case of the MACL network, the shape fixing ratio of B following deformation from C was relatively poor (Rf = 48% to 87%), likely due to the fact that polymeric chains exhibiting the higher Ttrans and those exhibiting the lower Ttrans could both be affected during this delicate programming step.
\n\t\t\t\tUsing a different approach, Xie et al. realized triple shape memory effect in a crosslinked macroscopic polymer bilayers with two well separated phase transitions (Xie, 2009). The bilayer SMPs were fabricated by curing an epoxy polymer layer L exhibiting a lower Tg (38 ºC) on top of another pre-formed epoxy polymer layer H exhibiting a higher Tg (78 ºC). A similar programming process as described above was used to program the triple-shape memory effect. Similarly, poor Rf’s were observed after the first deformation-fixing cycle. Strong interfacial bonding between the two macroscopic layers was found to be critical for accomplishing the triple shape memory effect using this approach. Because of the generalizability of this method, it may be extended for the fabrication of multiple-shape memory effect in an SMP consisting of more than two macroscopic layers.
\n\t\t\t\tMore recently, Xie designed a unique SMP system with multiple-shape memory effect using a single neat polymer, perfluorosulphonic acid ionomer (PFSA) (Xie, 2010). PFSA is a commercial thermoplastic with a polytetrafluoroethylene backbone and perfluoroether sulfonic acid side chains (Fig. 4a). It has a broad glass transition over 55-130 ºC (Fig. 4b) corresponding to the short-range segmental motions within the electrostatic network. PFSA exhibits dual shape memory effect with excellent Rf and Rr (~100%) regardless whether the employed Td and Tr are at the onset, the mid-point, or the ending of the glass transition window. However, it was found that the deformation strain introduced at a higher Td could not be recovered fully with a lower Tr, and a well-defined multi-stage recovery was observed when the sample was heated in a staged manner (Fig. 5). Deformation temperature memory effect was also observed in PFSA. Such a phenomenon was also observed in a strengthened PVA SMP (Voit, 2010), although no multiple-shape memory effect was reported. A broad glass transition such as the one in PFSA could be viewed as a collection of an infinite numbers of sharp transitions. At a given Td or Tf, only a portion of the collective transitions was activated or frozen, resulting in the multi-stage shape memory behaviors. Such a phenomenon is also expected in other amorphous or semicrystalline SMPs with broad reversible thermal transitions, which could serve as a more feasible approach to engineer SMPs with multi-shape memory effects.
\n\t\t\t\tStructure and dynamic mechanical properties of PFSA. a, Structure of PFSA, b, Dynamic mechanical analysis curve of PFSA. (Adapted with permission from (
Quadruple-shape memory properties of PFSA. S0: permanent shape; S1: first temporary shape (Td\n\t\t\t\t\t\t1: 140 ºC); S2: second temporary shape (Td\n\t\t\t\t\t\t2: 107 ºC); S3: third temporary shape (Td\n\t\t\t\t\t\t3: 68ºC); S2rec: recovered second temporary shape (Tr\n\t\t\t\t\t\t1: 68ºC); S1rec: recovered first temporary shape (Tr2: 107 ºC); S0rec: recovered permanent shape (Tr\n\t\t\t\t\t\t3: 140 ºC). (Adapted with permission from (
As discussed in Section 2,
Depiction of a multi-functional SMP network. (Adapted with permission from (
To achieve complete freezing of chain segment motion below Ttrans (temporary shape fixation) and full activation of all chain segments above Ttrans (shape recovery), a homogenous SMP network consisting of identical chains with tunable chain-chain interactions would be ideal. We recently demonstrated that a network crosslinked from well-defined star-branched macromer containing bulky rigid core could meet such requirements (Fig. 6) (Xu & Song, 2010). The bulky, rigid, symmetric core was designed to define the spatial distribution of polyester arms and decrease excessive chain-chain interactions upon crosslinking. The multiple reactive ends of the macromer were designed to achieve adequate mechanical strength via high-density crosslinking and desired bioactivity via selective end-group functionalization. By using the strategy of crosslinking of pre-formed macromers, a wide range of chemistries could be applied for preparing well-defined macromer with tunable chemical compositions and thus degradation profiles.
\n\t\t\t\tPreparation and thermal mechanical properties of SMPs containing POSS (POSS-SMP) vs. organic (Org-SMP) anchors: (A) synthesis and crosslinking of macromers; (B) Storage modulus (E‘)-temperature and loss angle (Tan δ)-temperature (denoted by black arrows) curves of POSS-SMP-20 vs. Org-SMP-20; (C) Recovery rates of POSS-SMP-20 (red arrows) vs. Org-SMP-20 (blue arrows) from an identical rolled-up temporary shape (left panel) to fully extended rectangle (30.0 mm × 6.0 mm × 0.5 mm) in water at 51 ºC. (Adapted with permission from (
Specifically, we designed a nanoparticle-mediated homogeneous SMP network that exhibited an extraordinary combination of stable temporary shape fixation and rapid and full shape recovery around physiological temperature with excellent mechanical properties (Xu & Song, 2010). Cubic polyhedral oligomeric silsesquioxane (POSS) was chosen as the core nanoparticle and POSS-centered, 8-arm polyester macromer, (POSS-(PLAn)8 (n = 10, 20, 40), were pre-synthesized by ring-opening polymerization of D,L-lactide (Fig. 7A). Upon crosslinking by diisocyanates, a POSS-modulated SMP network (POSS-SMP) was formed. A control network (Org-SMP) crosslinked from a less bulky and more flexible all-organic macromer, (Org-(PLAn)8 (n = 10, 20, 40), were also prepared to facilitate a comparative study of the role of the core structure on the thermal mechanical properties of the SMP network.
\n\t\t\t\tThe unique capability of the bulky and symmetric POSS core in modulating spatial distribution and interaction of chains enabled the formation of a highly crosslinked POSS-SMP network with homogenous and less entangled microstructure. Although POSS-SMP and Org-SMP possessed the same crosslinking density and equally narrow glass transitions, POSS-SMP had significantly lower Tg than its Org-SMP counterpart (Fig. 7B). The effect of POSS core on the interaction of polymeric arms within the nanostructured molecular network also translated, on a macroscopic scale, into more rapid shape recovery at a lower triggering temperature. For example, shape memory performance testing demonstrated that both POSS-SMP-20 and Org-SMP-20 could be stably fixed at a temporary shape within seconds upon cooling to room temperature, indicating complete freezing of chain segment motions below the Tg in both networks. At 51 ºC, the rate of shape recovery of POSS-SMP-20 (<3 s) was much faster than that of Org-SMP-20 (>20 s) (Fig. 7C), although they both recovered at a similar rate (<1 s) at 73 ºC.
\n\t\t\t\t\n\t\t\t\t\t\t\t
The effect of the POSS core on the thermal mechanical properties of the SMP network was further exemplified by the glass transition change as a function of PLA chain length. In contrast to Org-SMPs where the Tg’s decreased with the increase of chain length as a result of lower crosslinking density, the Tg’s in POSS-SMPs increased from 42.8 ºC at n= 10 to 48.4 ºC at n=40. The storage modulus of POSS-SMPs and Org-SMPs at the rubbery state both decreased with the increase of PLA chain length n, consistent with the expected lower crosslinking densities at longer inter-netpoint chain lengths.
\n\t\t\t\tAll POSS-SMPs (n=10, 20, and 40) exhibited a Tg slightly above body temperature (~ 50 ºC). Equally important, they all exhibited an extremely narrow glass transition range, with peak widths at the half peak height (WHPH) less than 10 °C, accompanied by sharp storage modulus changes of up to 3 orders of magnitude around the glass transitions. By contrast, most conventional SMP networks exhibit wide glass transitions (WHPH > 20 °C) with no more than 2 orders of magnitude modulus change around the Ttrans. Such a narrow glass transition endowed POSS-SMPs with excellent shape fixing at body temperature, which was slightly below their Tg’s, and instant recovery at a safe triggering temperature slightly above their Tg’s. Indeed, we showed that all POSS-SMPs exhibited stable temporary shape fixing at room temperature for >1 year, instant and complete recovery around 50 ºC, and over 2-GPa storage modulus at body temperature. These properties combined make the POSS-SMPs uniquely suited for weight-bearing
Moreover, we demonstrated that the degradability of POSS-SMPs could be tuned by the lengths of the PLA arms of the presynthesized macromers (Figure 8). The POSS-SMPs with shorter PLA arms degraded much faster than those with longer PLA arms. The tunable degradation profiles make it possible to make customized scaffold according to the tissue healing rate. Moreover, the multiple -OH end-groups on the macromer provide extra anchors for further attachment of bioactive molecules, as demonstrated by the covalent coupling of fluorescently tagged RGD peptide using “click” chemistry. Finally, using a rat subcutaneous implantation model, we showed that POSS-SMPs were minimally immunogenic and did not elicit pathologic abnormities in any vital/scavenger organs one year after implantation (Filion, 2011).
\n\t\t\tIn summary, despite significant progress on the macromolecular engineering, network formation strategies, shape memory programming / processing techniques in SMPs, the development of SMPs suitable for biomedical applications remains to be a challenging topic. Each SMP system we discussed above has its unique advantages and disadvantages, and provides valuable hints to an integrated solution to the design of biomedical SMPs.
\n\t\tThis work was supported by the National Institutes of Health grants R01AR055615 and R01GM088678.
\n\t\tThe core function of the immune system is preserving
The activation status of T cells plays a critical role in normal immunological homeostasis, the response to cancers, rejection of tissue/organ grafts, and the ontogeny and pathophysiology of autoimmune diseases. T cells encompass multiple subpopulations that can exert either a protolerogenic effects (regulatory T cells; Tregs) or a proinflammatory responses (effector T cells; Teff). Hence, in examining the immune status, the relative abundance of Tregs and Teff, i.e., the Treg:Teff ratio, is critical. Indeed, skewing the immune response towards either end of the continuum leads to significant medical consequences. As shown in Figure 1, an immunosuppressive state (increased Treg and/or decreased Teff) may facilitate the growth and spread of abnormal (i.e., cancer) cells, or in the context of transplantation medicine enhance engraftment, while a proinflammatory state (decreased Tregs and/or increased Teff) that may give rise to an autoimmune disease, graft rejection or, in the case of cancer, enhance tumor cell elimination. Indeed, modern clinical approaches attempt to pharmacologically modulate the Treg:Teff ratio in the treatment of autoimmune disease, tissue transplantation and cancer therapy.
The yin and yang of the cellular immune response. A key aspect of immune regulation is the dualism of the tolerogenic (Treg; e.g., Foxp3+, IL-10+, TGF-β+ and IL-4+) and effector (Teff; e.g., Th17+, IL-2+, INF-γ+ IL-12+, and TNF-β+) CD4+ T cells. Effector T cells also include cytotoxic CD8+ T cells (CTL). These seemingly disparate cellular subpopulations are actually complementary, interconnected, and interdependent in regulating the immunological response. As such, the immune response is a continuum that may be best reflected by the Treg:Teff ratio. Indeed, the skewing of the Treg:Teff ratio towards either the left or right influences the immunological risks/benefits of an animal. As shown, a skewed response towards the Treg cells may prevent T1D or could be used to prevent rejection of transplanted islets. In contrast, skewing towards the Teff populations increases the risk of autoimmune diseases such as type 1 diabetes (T1D) consequent to the development of insulitis of the islet cells.
Autoimmune diseases affect virtually all tissues and organs and encompass such diverse diseases as Type 1 Diabetes (T1D), Crohn’s disease (CD), Multiple Sclerosis (MS), Rheumatoid Arthritis (RA) and immune thrombocytopenia (ITP). Despite the diversity of tissues affected, extensive research has demonstrated the central role for T cells with Treg being downregulated and Teff upregulated leading to a reduced Treg:Teff ratio and a chronic pro-inflammatory state (Figure 1). Current clinical approaches to regulating the Treg:Teff ratio are almost entirely focused on reducing the Teff component. Most commonly, treatments for chronic autoimmune diseases include administration of systemic steroids (e.g., dexamethasone), cytotoxic anti-proliferative/activation agents (e.g., cyclosporine), and interruption of proinflammatory cytokine signaling cascades (e.g., Enbrel) resulting in the induction of a general immunosuppressive state in the individual (Figure 2). While these pharmacological approaches are often highly effective in controlling the autoimmune disease, they also pose significant risks to the individual including increased risks of opportunistic infections, cancer and organ injury. Perhaps surprisingly, very few clinical tools exist to increase the Treg component of the Treg:Teff ratio. Importantly, an increase in the functional Treg component would be very effective at reducing the damage induced by the Teff subsets in autoimmune diseases and decreasing the risk of Host versus graft disease in tissue/organ transplantation.
Current pharmacologic therapies almost exclusively targets T cell activation and the Teff subpopulations. The proliferation of pro-inflammatory T cells (e.g., CTL, Th17, Th1 populations) and decrease in regulatory T cells (Treg) are commonly observed in both autoimmune and allorecognition immune responses. The majority of current therapeutic agents are primarily cytotoxic agents preventing T cell activation (e.g., cyclosporine and rapamycin) or T cell proliferation (e.g., methotrexate, corticosteroids and azathioprine). Additionally, some blocking antibodies have been investigated. In contrast, very limited, if any, pharmaceutical approaches are effective at increasing the Treg populations.
In contrast to autoimmune diseases, immunosuppressive states (i.e., increased Treg:Teff ratio) exist resulting in a failure to appropriately respond to abnormal cells (e.g., cancer) or infective agents (e.g., viruses and bacteria). This immunosuppressive state is most commonly exemplified by the progression and metastases of cancers arising from a poor or impaired cellular immune response to abnormal cells. Indeed, cancer progression is most often characterized by an impaired Teff response; either due to failure in recognizing abnormal cells (i.e.,
Pharmacologic immunoactivation approaches have proven problematic due to their induction of poorly controlled inflammatory responses. A common cause of toxicity to these approaches has been the induction of the cytokine release syndrome (i.e., cytokine storm) [
While pharmacologic agents remain the mainstay of modern medicine in treating both autoimmune diseases and cancers, a more direct ability to biologically modulate the Treg:Teff ratio could, potentially, be a safer and more effective tool in treating disease. It is worth noting that the biological modulation of the immune response is not a new concept. Indeed, the theory and practice of proinflammatory (
Today, ∼130 years after
However, of significant clinical importance, few studies/approaches to date have elucidated effective biological immunotherapeutic approaches for modulating the Treg:Teff ratio (Figures 2 and 3). The ability to biologically manipulate the Treg:Teff ratio in a controllable manner would be of significant benefit in the treatment of cancer as well as the treatment of autoimmune diseases and the prevention of graft rejection.
As described in the preceding sections, pharmacologic agents, the current mainstay of clinical medicine, are, relatively speaking, non-specific agents beset with often significant adverse side effects. Hence, over the last decade increasing research has been done on biologically modifying the innate Treg:Teff immune response. In this chapter we will discuss a novel biomodulatory approach that more effectively, and directly, target the Treg:Teff ratio by increasing or decreasing Treg cells while simultaneously, and inversely, decreasing of increasing Teff subsets (Figure 4). This approach, derived from our work on the polymer-based bioengineering of allogeneic T cells and their use directly, or via the production of acellular microRNA (miRNA), to induce a tolerogenic or proinflammatory state characterized by significant changes in the Treg:Teff ratio [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].
Biomanufacturing immunomodulatory secretomes and purified miRNA. Panel A: Immunocamouflage of donor cells by the covalent grafting of methoxy(polyethylene) glycol (mPEG) to one donor population in a mixed lymphocyte reaction (MLR) results in the disruption of the essential cell–cell interactions (blue test) decreasing T cell proliferation and altered subset differentiation patterns. As shown, Treg cells are vastly increased while Teff subsets (CTL, Th1 and Th17 shown) are decreased resulting in an increase in the Treg:Teff ratio. Importantly, the secretome from the mPEG-MLR exerts a tolerogenic response when used either in vitro or in vivo. The key component of the secretome are miRNA. Panel B: Current pharmacologic therapy almost exclusively targets T cell activation and proliferation consequent to allorecognition. Response to non-self is in large part mediated by cell–cell interactions between antigen presenting cells (APC; e.g., dendritic cells) and naive T cells. This cell–cell interaction is characterized by essential adhesion, allorecognition and co-stimulation events. Consequent to allorecognition, a proliferation of proinflammatory T cells (e.g., cytotoxic T lymphocyte, CTL; Th17, IL-17+; Th1, IFN-γ+; and IL-2+ populations) and decrease in regulatory T cells (Treg, Foxp3+ and CD25+) is observed. Panel C: As shown in photomicrographs, in a control MLR, significant and persistent interactions (black arrows) occur between allogeneic lymphocytes (LYM) and dendritic cells (APC). The lymphocyte adhesion and antigen presentation interactions typically occur at pseudopodal extensions from the APC (white arrows). PEGylation of either allogeneic PBMC population decreases the stability and duration of initial cell:cell interactions between lymphocytes due to the global charge and steric camouflage of membrane proteins. Panel D: Importantly, the secretomes/miRNA bioproduction is both simple and rapid. As shown, allogeneic leukocytes (a, b) are incubated for 5 days and the secretome is collected. The secretome itself can be used or the miRNA component of the secretome can be further isolated for use. Both the secretome and miRNA can be stored frozen as they are stable under freeze–thaw conditions. The key component of the secretome are soluble (free and exosome) miRNA. Size of the T cell populations denotes increase or decrease in number. Apoptosis is indicated by blebbing. Data derived from Refs. [
Biomanufacturing of these immunomodulatory therapeutics was accomplished using a rapid and inexpensive leukocyte allorecognition-based system (Figure 4) [34, 35]. The core component of the biomanufacturing system is, in essence, a two-way mixed lymphocyte reaction (MLR) in which MHC-disparate leukocyte populations (either human PBMC or murine splenocytes) are co-incubated. Previous work from our laboratory demonstrated that the covalent grafting (PEGylation)of methoxy(polyethylene glycol) [mPEG] to one leukocyte population resulted in abrogation of the MHC-mediated proliferation of Teff cells [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Moreover, these studies demonstrated that, consequent to impaired cell:cell communication (Figure 4C), the weak allostimulation induced a tolerogenic/anergic state both in vitro and in vivo (Figure 4A) [29, 30, 31, 32, 33, 34, 41]. The PEGylated cells themselves, or the resultant purified Treg cells, can be adoptively transferred to induce systemic tolerance in the recipient. Importantly, our studies demonstrated that the secretome of PEGylated-MLR also exerted a tolerogenic effect in vitro and in vivo [25, 26, 27, 29, 30, 31, 32, 33, 34]. In parallel to the PEGylated cells, the control MLR (Figure 4B) was used to generate a proinflammatory secretome, or with further purification, miRNA preparation that could induce a controlled inflammatory response in unactivated T cells [25, 26, 27, 29, 30, 31, 32, 33, 34]. Most importantly, the process is rapid (5 days), inexpensive and can be accomplished using stand tissue culture facilities—though also suitable for larger scale bioreactor systems (Figure 4D).
The two biomanufactured miRNA-enrich therapeutics, denoted as TA1 for the tolerogenic preparation and IA1 for the proinflammatory preparation, exert potent immunomodulatory effects on T cells differentiation (Figure 5). TA1 drives the differentiation of CD3+CD4−CD8− T cells towards Treg cells (CD4+Foxp3+CD25+) while IA1 drives T cell proliferation towards both CD4+ Th17 and Th1 cells and also towards CD3+CD8+ cytotoxic T lymphocytes (CTL). Thus, stable and storable (freeze–thaw stable) tolerogenic and proinflammatory biologics can be rapidly (5 days) and reproducibly biomanufactured.
In vitro and in vivo flow cytometric and functional analyses of T cells demonstrates that the TA1 and IA1 therapeutics differentially skew the differentiation pattern of naive CD3+CD4−CD8− T cells. As shown diagrammatically, TA1 favors tolerogenic/anergic T cell subsets while significantly inhibiting proinflammatory Teff populations. Conversely, as shown by the skewing of the Treg:Teff ratio, IA1 induces differentiation and proliferation of both CD4+ and CD8+ Teff subsets while reducing Treg populations.
Importantly, the active component of the TA1 and IA1 therapeutics are miRNAs—not cytokines or other potential immunomodulatory effectors [31, 34, 35]. The role of miRNA can be seen by the loss of immunomodulatory activity of TA1 and IA1 conditioned murine plasma upon treatment with RNase (Figure 6). As shown, naïve control mice (N) have high levels of Treg cells relative to Th17 cell. However, when challenged with a transfusion of allogeneic cells (AC), by day 5 Treg cells have decreased significantly with a concomitant increase in Th17. However, if naïve mice are pretreated with TA1 or IA1, the immune response to the allogeneic cells is dramatically altered. TA1 pre-treatment resulted in a maintenance, and slight elevation, of normal murine Treg levels and prevention of the Th17 upregulation upon allogeneic challenge. In contrast, IA1 pre-treatment enhanced the inflammatory response to the allogenic cells; i.e., significantly decreased Treg and increased Th17 cells relative to both naïve mice and control AC challenged mice. Importantly, RNase treatment of the TA1 or IA1 samples to degrade the miRNA component resulted in the attenuation of their respective immunomodulatory activity resulting in a T cell response virtually identical to the AC treated control mice.
The active component of TA1 and IA1 are miRNA as evidenced loss of immunomodulatory activity consequent to RNase treatment. A microRNA (miRNA) specific preparation made from mice previously treated (5 days prior) with mPEG-allogeneic leukocytes yielded a systemic immunomodulation (increased Tregs, decreased Th17 T cells) very similar to the mPEG-cellular product within the spleen of mice 5 days post treatment with the miRNA preparation. As shown, the immunomodulatory effect is lost by treatment with RNase enzymes. N = naïve mice; AC = allogeneic cells; miRNA alloplasma fraction ± RNase; and mPEG-alloplasma ± RNase.
Autoimmunity arises consequent to an animal/individual’s immune system recognizing their own tissues as
As demonstrated in Figure 7A, the onset and incidence of diabetes was assessed and correlated with the Treg:Teff ratio of the mice [31, 32, 33, 34, 35]. As shown, 75% of the untreated NOD mice, but only 40% of the TA1 treated mice, developed T1D. The onset of T1D was correlated with the Treg:Teff ratios of the individual mouse (Panel A). As shown, the TA1 treated mice exhibited significantly increased Treg:Teff ratio which correlated with significantly delayed onset of the disease in the mice that became diabetic. Mice with very high Treg:Teff ratios (average > 250) in either the control or TA1 treated mice remained normoglycemic. Moreover, TA-treatment was associated with improved islet histology (Figure 7B) as reflected by the lower incidence of overt insulitis and peri-insulitis. Indeed, no normal islets were observed in the control diabetic NOD mice. In contrast, in TA1 treated mice that became diabetic, almost 20% of their islets exhibited normal morphology—more than that observed in normoglycemic NOD mice at 30 weeks. In the normoglycemic TA1 treated mice > 40% of the islets exhibited normal histology.
Inhibition of T1D in the NOD mouse via induction of immunosuppression by the administration of immunomodulatory miRNA. Panel A: Age of onset for T1D versus the Treg:Teff ratio in the control and TA1-treated NOD mouse. Note that TA1 therapy dramatically increased the Treg:Teff ratio and delayed both onset and incidence of T1D. In contrast, in control NOD mice the Treg:Teff ratio shifted left towards the expansion of Teff cells and disease progression. Panel B: Shown are the percentages of pancreatic islets exhibiting normal morphology or evidence of insulitis or peri-insulitis. Also shown are photomicrographs of islets exhibiting (left to right) normal morphology, peri-insulitis and insulitis. Data from Wang et al. [
Mechanistically, the changes noted in the Treg:Teff ratio (using Foxp3+ and Th17+ lymphocytes as surrogates for Treg and Teff, respectively) correlating with the changes noted in multiple T cell subsets [31]. As shown in Figure 8, analysis of the pancreatic lymph node demonstrated that TA1 induced multiple tolerogenic T cell subpopulations (e.g., Foxp3+, IL-10+, TGF-β+ and IL-4+ CD4+ T cells) and down regulated multiple Teff subgroups (Th17+, IL-2+, INF-γ+ and TNF-β+ CD4+ cells). Hence, TA1 effectively skewed the Treg:Teff ratio towards a tolerogenic-immunosuppressive environment within the pancreas that consequently inhibited the effector T cell dependent autoimmune disease process. Importantly, the TA1 induced immunomodulation was not limited to the pancreas as T cell subtyping of multiple lymphoid tissues, as well and the blood, demonstrated that the induced tolerogenic environment was systemic in nature [31]. These systemic findings suggest that TA1 could be used to treat a broad range of T cell mediated autoimmune diseases.
Effect of TA1 therapy on T CD4+ T cell populations. As shown, TA1 therapy significantly increased multiple Treg populations in comparison to the control NOD mice. Concurrent with the increase in Treg subsets, TA1 very dramatically reduced the Teff subpopulations. The net consequence of TA1 therapy was a significant shift in the Treg:Teff ratio towards a tolerogenic state. Data from Wang et al. [
In contrast to autoimmune diseases, systemic immunosuppressive states can be highly problematic in the context of infectious agents (e.g., bacteria and viruses) and cancer. Indeed, this lack of immune response to cancer was the problem that Coley attempted to address with his immunomodulatory preparations. By injecting a toxic mixture, a broad immune response would be induced that, it was HOPED, would exert a non-specific bystander effect on cancer cells. This was, in fact, a relatively viable clinical approach as cancer cells tend to be more sensitive to metabolic (e.g., high fever, energy starvation) and immunological (e.g., T cell and complement activation) extremes. Indeed,
In contrast to these expensive and time-extensive cellular therapies, the bioproduction of IA1 (as well as TA1) is rapid and inexpensive. Moreover, minimal time (24 hours) is required to skew the Treg:Teff ratio of resting PBMC towards an inflammatory response arising from the simultaneous decrease of Treg and increase in Teff [34]. Hence IA1 could be used to enhance the immune response of autologous leukocytes thus obviating the risks associated with the adoptive transfer of allogenic T cells. Moreover, the strength of the inflammatory response is substantially less than that observed with other activation strategies (e.g., mitogens, anti-CD3, of allogeneic stimulation) reducing the risk of cytokine release syndrome [34]. Also, of potential value, the strength of the IA1 stimulation can, if necessary, be titrated using TA1.
To evaluate the potential anti-cancer efficacy of IA1 activated leukocytes, in vitro studies were conducted using HeLa and SH-4 melanoma cell lines (Figure 9) [34]. The direct toxicity and anti-proliferative effects of control and the SYN (prepared from resting cells) or IA1 treated PBMC against the HeLa (epithelial) and SH-4 (melanoma) human cancer cell lines were assessed using an ACEA iCELLigence (ACEA Biosciences, Inc., San Diego, CA). The iCELLigence provides a continuous, real-time, measurement of cell proliferation using changes in the electrical impedance within tissue culture wells. The change in impedance is induced by the increase in adherent cells and is unaffected by cells (e.g., PBMC) that remain non-adherent. All studies were done with an initial seeding density of 5000 HeLa, or 20,000 SH-4, cells per well. To assess the ability of SYN- or IA1-activation to enhance the anti-cancer efficacy of naïve lymphocytes, donor PBMC were pretreated with SYN or IA1 for 24 hours and then overlaid on seeded cancer cells at a ratio of 50 PBMC per cancer cell.
IA1 enhances the anti-cancer efficacy of resting PBMC. Panel A: IA1 exhibits no direct toxicity to HeLa cells (shown) or PBMC (not shown). Panel B: IA-1 pre-treatment, but not SYN-pre-treatment, exhibited a greatly enhanced anti-cancer effect on HeLa cells. Panel C: Similarly to HeLa cells, IA1, but not SYN, pre-treated PBMC exhibited significant anti-SH-4 (melanoma) activity. Panel D: The enhanced efficacy of treated PBMC is supported by photomicrographs of allogenic PBMC responding to HeLa cells. As shown, after 72 hours incubation, resting unactivated PBMC show limited interaction when overlaid on HeLa cells. In contrast, the same PBMC, when treated for 24 hours with IA1, show a robust enhanced interaction with the HeLa cell monolayer. Cell proliferation was measured by changes in electrical impedance. SYN (derived from the secretome of resting PBMC) or IA1-pretreated utilized PBMC from the same donor. Modified from Yang et al. [
As shown, direct addition of IA1 to HeLa cells demonstrated that the IA1 therapeutic itself exhibited no direct effects on cancer cell proliferation (Figure 9A). However, when HeLa cells were overlaid with unactivated or SYN-activated allogenic donor PBMC, the T cells eventually recognized the allogenic HeLa cells and, after ∼90 hours, inhibited cell proliferation and, ultimately, killed the HeLa cells as reflected by the decrease in the impedance index. In contrast, when IA1-activated PBMC were overlaid, the inhibition of HeLa cell proliferation was noted within the first 8–12 hours (versus ∼90 hours) dramatically reducing the overall proliferation of the HeLa cells (Figure 9B). The anti-cancer efficacy of IA-activated PBMC was not limited to HeLa cells. Further studies using SH-4 melanoma cells also demonstrated that IA1-activation of naïve PBMC induced a potent anti-cancer effect (Figure 9C). As noted, control SH-4 melanoma cells showed rapid proliferation over 96 hours. However, when untreated SYN-pretreated PBMC (50 PBMC per SH-4 cell) were overlaid onto the seeded SH-4 cells at 0 hours, a significant, but modest, inhibition of SH-4 growth occurred. However, when IA1-pretreated (24 hours) PBMC from the same donor are overlaid on the SH-4 cells, a greatly enhanced anti-cancer effect was noted relative to untreated PBMC. The enhanced efficacy of treated PBMC was supported by photomicrographs of allogenic PBMC responding to HeLa cells (Figure 9D). As shown, after 72 hours incubation, SYN-activated PBMC exhibited limited interaction with the HeLa cells. In contrast, the same PBMC, when pre-treated for 24 hours with IA1, demonstrated a significantly enhanced interaction with the HeLa cell monolayer. Hence, in vitro, IA1 is capable of significantly enhancing the anti-cancer efficacy of resting PBMC. As such the secretome generated IA1 proved to be a potent adjuvant therapy for the activation of autologous lymphocytes in cancer patients. This approach could be done either by collection of PBMC with ex vivo activation for 24 hours, or as shown in Figures 6–8, direct systemic administration of the IA1-therapeutic to the patient. Moreover, this methodology could be used in conjunction with other ACT approaches.
Importantly, treatment of mice or cells with mPEG-splenocytes or the TA1 and IA1 (see Figure 9A) secretome products exerted no evidence of direct acute toxicity [27, 31, 34, 35]. Indeed, the safety of allogenic mPEG-splenocytes was demonstrated in a murine model of transfusion associated graft versus host disease in which it was shown that transfusion of mPEG-splenocytes were incapable of inducing graft versus host disease in immunocompromise (irradiated) mice [25]. This is not to say that these approaches may not be prone to chronic side effects. Immunosuppressive therapy, i.e., tolerization, is known to increase the risk of cancer. Thus, the long-term persistence of the effects of mPEG-leukocytes or TA1 [35] could pose a similar risk. Indeed, our previous studies have demonstrated that the immunomodulatory effects of both the PEGylated allogenic splenocytes and the TA1 and IA1 secretome products extend well beyond the circulation time of donor lymphocytes and exhibit functional activity both in vitro and in vivo [27, 31, 33, 34, 35]. For example, in mice treated with allogenic mPEG-splenocytes, the Tregs remained significantly elevated at 30 days post treatment and, when challenged with a secondary transfusion of unmodified allogenic splenocytes, prevented the expected (decreased Treg and increased Teff) proinflammatory effects of the allogenic splenocyte transfusion. Indeed, the Treg remained high and no Th17 cells were induced [27]. Long-term studies of mice treated once with TA1 also demonstrated a persistent, and significant, elevation in their Treg cells for ≥270 days [35]. Hence, the potent immunomodulatory effects of this approach could be of concern.
As noted above, the persistence of the Treg response, even upon allogenic challenge, while beneficial in the treatment of autoimmune diseases could pose immunological risks. However, TA1 and IA1 target the same miRNA-based bioregulatory pathway governing lymphocyte differentiation and proliferation. Because of this, TA1 and IA1 are capable of counter-acting the activity of the other. This
Ping-pong immunology of TA1 and IA1. Panel A: Shown are the Treg (Foxp3+) and Teff (Th17) CD4+ cells in the spleen of mice treated with a primary (1°) infusion of either TA1 or IA1. A subset of mice were subsequently received a secondary (2°) infusion with the opposing therapeutic (IA1 or TA1) at day 9. Lymphoid organs (spleen shown) were harvested at day 40. As noted by the absolute percentage of CD4+ T cells and the delta (△) d/d’ from naïve mice, primary (1°) treatment with TA1 and IA1 alone gave the expected Treg and Teff response. The 2° treatment with the opposite miRNA preparation was able to significantly counterbalance the effect of the 1° treatment. This is reflected by the △d2 and △d2’ bars and the regression of the Treg and Th17 values towards the mean of naïve mice. As expected based on the magnitude of the 1° treatment, the △d2 and △d2’ bars were greater than the initial △d/d’ values. This is most obvious with the Th17 cells where both the magnitude and actual decrease in the 2° △d2 (∼1.5%) for TA1 was significantly greater than 1° △d (∼0.15%). Panel B: PD-1+ (CD279+) CD4+ T cells are important in downregulating the immune response and promoting self-tolerance via suppression of Teff cell populations. As shown, transfusion of allogeneic splenocytes downregulated, while mPEG-allogenic splenocytes upregulated, PD-1+ cells relative to naïve, saline treated, mice. Shown are the PD-1+ cells in the spleen of mice treated with a primary (1°) infusion of either allogenic or mPEG-allogenic at day 0 (denoted as 1) or a total of 3 injections given at days 0, 2 and 4 (denoted as 3). Spleens were harvested at either day 5 or 10 for determination of T cell subpopulations. N ≥ 5 for all samples shown. Significance: * p < 0.01 from naïve mice; # p < 0.01 from primary TA1 or IA1 (panel a) or; panel B from 1 or 3 doses.
Immunosuppression and immunoactivation represent the divergent ends of the Treg:Teff ratio continuum (Figure 1). While pharmacologic agents have historically been the primary tools for modulating the Teff response, few options have existed for modulating (especially upregulating) the Treg response. However, the direct immunomodulation of the endogenous immune system may have significant clinical benefit in treating a broad range of clinical conditions ranging from autoimmune diseases, tissue/organ engraftment, and cancer. Extensive in vitro and in vivo studies in our laboratory have demonstrated that PEGylated lymphocytes as well as the biomanufactured TA1 and IA1 exhibited significant immunomodulatory activity [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 52]. Indeed, these agents directly altered the Treg:Teff ratio by simultaneously modulating both regulatory and effector T cell subsets. Consequent to their immunomodulatory activity, the immunosuppressive TA1 therapeutic significantly delayed the onset and overall incidence of autoimmune diabetes in the NOD mouse [31]. Conversely, the proinflammatory IA1 therapeutic directly activated T cells overcoming their inherent immunological inertia resulting in enhanced recognition and killing of cancer cells [34]. The immunomodulatory effects of these agents were highly persistent [35]. The TA1 and IA1 agents showed dose dependency and could be used to counteract the effect of on another [31, 32, 33, 34, 35]. The successful development of these immunomodulatory therapeutics may prove useful in facilitating organ engraftment, treating autoimmune disease and enhancing the endogenous anti-cancer response.
The authors would like to thank Wendy Toyofuku and Drs. Duncheng Wang and Ning Kang for their past contributions to the work presented in this chapter. This work was supported by grants from the Canadian Institutes of Health Research (Grant No. 123317; MDS), Canadian Blood Services (MDS) and Health Canada (MDS). The views expressed herein do not necessarily represent the view of the federal government of Canada. We thank the Canada Foundation for Innovation and the Michael Smith Foundation for Health Research for infrastructure funding at the University of British Columbia Centre for Blood Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Canadian Blood Services is pursuing patents related to the production and utilization of the described acellular immunomodulatory agents. Canadian Blood Services, a not-for-profit organization responsible for collecting, manufacturing and distributing blood and blood products to all Canadians (except Quebec), is the assignee for relevant patents. MDS is an inventor on these patents. XY has no conflicts of interests.
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\\n\\n9. Types of advertisments:
\\n\\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\\n\\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\\n\\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\\n\\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\\n\\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\\n\\nPolicy last updated: 2021-04-28
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\n\n9. Types of advertisments:
\n\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\n\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\n\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\n\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\n\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\n\nPolicy last updated: 2021-04-28
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"12"},books:[{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12222",title:"Microplastics",subtitle:null,isOpenForSubmission:!0,hash:"b9e8b19ba1ae8e03753638b27ff1efdc",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12224",title:"Mangrove Ecosystem",subtitle:null,isOpenForSubmission:!0,hash:"de7cd5453d6177a68cfd1c3bcc073bc7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12224.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:100},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:7},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4380},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:725,numberOfDimensionsCitations:1699,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5886,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2564,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9671,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7157,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1439,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192666,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4558,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3478,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3601,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1331,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:14,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:22,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81488",title:"Aggression and Sexual Behavior: Overlapping or Distinct Roles of 5-HT1A and 5-HT1B Receptors",slug:"aggression-and-sexual-behavior-overlapping-or-distinct-roles-of-5-ht1a-and-5-ht1b-receptors",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.104872",abstract:"Distinct brain mechanisms for male aggressive and sexual behavior are present in mammalian species, including man. However, recent evidence suggests a strong connection and even overlap in the central nervous system (CNS) circuitry involved in aggressive and sexual behavior. The serotonergic system in the CNS is strongly involved in male aggressive and sexual behavior. In particular, 5-HT1A and 5-HT1B receptors seem to play a critical role in the modulation of these behaviors. The present chapter focuses on the effects of 5-HT1A- and 5-HT1B-receptor ligands in male rodent aggression and sexual behavior. Results indicate that 5-HT1B-heteroreceptors play a critical role in the modulation of male offensive behavior, although a definite role of 5-HT1A-auto- or heteroreceptors cannot be ruled out. 5-HT1A receptors are clearly involved in male sexual behavior, although it has to be yet unraveled whether 5-HT1A-auto- or heteroreceptors are important. Although several key nodes in the complex circuitry of aggression and sexual behavior are known, in particular in the medial hypothalamus, a clear link or connection to these critical structures and the serotonergic key receptors is yet to be determined. This information is urgently needed to detect and develop new selective anti-aggressive (serenic) and pro-sexual drugs for human applications.",book:{id:"10195",title:"Serotonin and the CNS - New Developments in Pharmacology and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg"},signatures:"Berend Olivier and Jocelien D.A. Olivier"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"},{id:"80821",title:"Neuroimmunology and Neurological Manifestations of COVID-19",slug:"neuroimmunology-and-neurological-manifestations-of-covid-19",totalDownloads:41,totalDimensionsCites:0,doi:"10.5772/intechopen.103026",abstract:"Infection with SARS-CoV-2 is causing coronavirus disease in 2019 (COVID-19). Besides respiratory symptoms due to an attack on the broncho-alveolar system, COVID-19, among others, can be accompanied by neurological symptoms because of the affection of the nervous system. These can be caused by intrusion by SARS-CoV-2 of the central nervous system (CNS) and peripheral nervous system (PNS) and direct infection of local cells. In addition, neurological deterioration mediated by molecular mimicry to virus antigens or bystander activation in the context of immunological anti-virus defense can lead to tissue damage in the CNS and PNS. In addition, cytokine storm caused by SARS-CoV-2 infection in COVID-19 can lead to nervous system related symptoms. Endotheliitis of CNS vessels can lead to vessel occlusion and stroke. COVID-19 can also result in cerebral hemorrhage and sinus thrombosis possibly related to changes in clotting behavior. Vaccination is most important to prevent COVID-19 in the nervous system. There are symptomatic or/and curative therapeutic approaches to combat COVID-19 related nervous system damage that are partly still under study.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Robert Weissert"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 19th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Dr.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:null}]}]},overviewPageOFChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Parasitic Infectious Diseases",value:5,count:1,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:2,group:"subseries"}],publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80484",title:"The Use of Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) to Study Ivermectin-Mediated Molecular Pathway Changes in Human Ovarian Cancer Cells",doi:"10.5772/intechopen.102092",signatures:"Na Li and Xianquan Zhan",slug:"the-use-of-stable-isotope-labeling-with-amino-acids-in-cell-culture-silac-to-study-ivermectin-mediat",totalDownloads:83,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:85,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79031",title:"Isolation and Expansion of Mesenchymal Stem/Stromal Cells, Functional Assays and Long-Term Culture Associated Alterations of Cellular Properties",doi:"10.5772/intechopen.100286",signatures:"Chenghai Li",slug:"isolation-and-expansion-of-mesenchymal-stem-stromal-cells-functional-assays-and-long-term-culture-as",totalDownloads:80,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78960",title:"Two-Dimensional and Three-Dimensional Cell Culture and Their Applications",doi:"10.5772/intechopen.100382",signatures:"Sangeeta Ballav, Ankita Jaywant Deshmukh, Shafina Siddiqui, Jyotirmoi Aich and Soumya Basu",slug:"two-dimensional-and-three-dimensional-cell-culture-and-their-applications",totalDownloads:251,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78812",title:"Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture",doi:"10.5772/intechopen.99146",signatures:"Harikrishnareddy Rachamalla, Anubhab Mukherjee and Manash K. Paul",slug:"nanotechnology-application-and-intellectual-property-right-prospects-of-mammalian-cell-culture",totalDownloads:122,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78274",title:"A Brief Concept of Cell Culture: Challenges, Prospects and Applications",doi:"10.5772/intechopen.99387",signatures:"Md. Salauddin",slug:"a-brief-concept-of-cell-culture-challenges-prospects-and-applications",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:186,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:199,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:190,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/17645",hash:"",query:{},params:{id:"17645"},fullPath:"/chapters/17645",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()