Sellmeier dispersion relation constants for stoichiometric a-SiN1.33 from Eq. (3).
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"6275",leadTitle:null,fullTitle:"Supercapacitors - Theoretical and Practical Solutions",title:"Supercapacitors",subtitle:"Theoretical and Practical Solutions",reviewType:"peer-reviewed",abstract:"This edited volume Supercapacitors: Theoretical and Practical Solutions is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of electronic devices and materials. The book comprises single chapters authored by various researchers and is edited by a group of experts. Each chapter is complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on electronic devices and materials and opens new possible research paths for further novel developments.",isbn:"978-1-78923-353-7",printIsbn:"978-1-78923-352-0",pdfIsbn:"978-1-83881-372-7",doi:"10.5772/intechopen.69087",price:119,priceEur:129,priceUsd:155,slug:"supercapacitors-theoretical-and-practical-solutions",numberOfPages:166,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"94a2398d62d5bcefd79ae73a0003ad7a",bookSignature:"Lionginas Liudvinavičius",publishedDate:"June 27th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6275.jpg",numberOfDownloads:10704,numberOfWosCitations:23,numberOfCrossrefCitations:24,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:48,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:95,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 11th 2017",dateEndSecondStepPublish:"June 1st 2017",dateEndThirdStepPublish:"November 26th 2017",dateEndFourthStepPublish:"December 26th 2017",dateEndFifthStepPublish:"February 26th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"32614",title:"Dr.",name:"Lionginas",middleName:null,surname:"Liudvinavičius",slug:"lionginas-liudvinavicius",fullName:"Lionginas Liudvinavičius",profilePictureURL:"https://mts.intechopen.com/storage/users/32614/images/5340_n.jpg",biography:"Assoc. Prof. Dr. Lionginas Liudvinavičius received qualification of Electrics Engineer in Kaunas University Technology and studied in St. Petersburg Railway Institute (1970-1975). Received Ph.D. degree of Technical Sciences at Vilnius Gediminas Technical University (VGTU) in 2012 and title of Association Professor in 2016. Currently he is working at Department of Railway Transport of VGTU. From 1975 to 2000 he worked as head of various departments of Lithuanian Railways. Transport Minister awarded him 'Honored Railwayman Name” (1998) and the second grade awards for contribution to Lithuanian Railways (2010). He is reviewer for IEEE journals. He has authored/coauthored many papers in journals, conference proceedings and he is coauthor of study manuals. His research interests are Railway Electrification, Electric Traction, Modern Electric Drive parameters automatic control, Locomotive Traction Converters, Electrical Machinery, Theoretical and Practical Aspects of Use Electrodynamic Braking, Hybrids vehicles, Energy Saving and Storage Systems using Supercapacitors.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"740",title:"Electronic Devices and Materials",slug:"electronic-devices-and-materials"}],chapters:[{id:"58877",title:"Supercapacitor-Based Hybrid Energy Harvesting for Low-Voltage System",doi:"10.5772/intechopen.71565",slug:"supercapacitor-based-hybrid-energy-harvesting-for-low-voltage-system",totalDownloads:1148,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This research provides a platform for a novel innovative approach toward an off-grid energy harvesting system for Maglev VAWT. This stand-alone system can make a difference for using small-scale electronic devices. The configuration presents a 200 W 12 V 16 Pole AFPMSG attached to Maglev VAWT of 14.5 cm radius and 60 cm of height. The energy harvesting circuit shows better efficiency in charging battery in all aspects compared to direct charging of battery regardless with or without converter. Based on analysis and results carried out in this research, all feasibility studies and information are provided for the next barrier.",signatures:"MD Shahrukh Adnan Khan, Rajprasad Kumar Rajkumar, Wong Yee\nWan and Anas Syed",downloadPdfUrl:"/chapter/pdf-download/58877",previewPdfUrl:"/chapter/pdf-preview/58877",authors:[{id:"210576",title:"Dr.",name:"Md Shahrukh Adnan",surname:"Khan",slug:"md-shahrukh-adnan-khan",fullName:"Md Shahrukh Adnan Khan"},{id:"210579",title:"Dr.",name:"Rajprasad Kumar",surname:"Rajkumar",slug:"rajprasad-kumar-rajkumar",fullName:"Rajprasad Kumar Rajkumar"},{id:"224612",title:"Dr.",name:"Yee Wan",surname:"Wong",slug:"yee-wan-wong",fullName:"Yee Wan Wong"},{id:"224613",title:"Mr.",name:"Anas",surname:"Syed",slug:"anas-syed",fullName:"Anas Syed"}],corrections:null},{id:"58814",title:"Ionic Liquid for High Voltage Supercapacitor",doi:"10.5772/intechopen.73053",slug:"ionic-liquid-for-high-voltage-supercapacitor",totalDownloads:1683,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Pure ionic liquids (ILs) and IL mixtures in organic solvents have been investigated for higher operating voltages around 3.0–4.0 V. ILs have design flexibility due to the numerous possible combinations of anions and cations. Current research on ILs as electrolytes has focused on several ILs, including imidazolium and pyrrolidinium. At early stages, various ILs have been studied as salts of electrolyte with organic solvents like acetonitrile and propylene carbonate. Neat ILs have been applied for high-performance electrolyte, and some of them have been used as electrolyte (1-ethyl 3-methylimidazolium tetrafluoroborate). These liquid electrolytes need additional encapsulation; therefore, SCs applied ILs face difficulty in integration and manufacturing flexible devices. These drawbacks can be solved by adopting a polymer electrolyte because the ILs maintain the conductivity even when solidified, unlike a typical organic electrolyte. Common polymer matrixes such as PVdF, PMMA, and PVA have been suggested to embed ILs. Poly(ionic liquid) (PIL) is also studied. PIL is a polymer electrolyte containing a polymer backbone and an IL species in the monomer repeat unit. PIL-based polymer electrolytes have high ionic conductivity, wide electrochemical windows, and high thermal stability.",signatures:"Jeeyoung Yoo",downloadPdfUrl:"/chapter/pdf-download/58814",previewPdfUrl:"/chapter/pdf-preview/58814",authors:[{id:"211423",title:"Dr.",name:"Jeeyoung",surname:"Yoo",slug:"jeeyoung-yoo",fullName:"Jeeyoung Yoo"}],corrections:null},{id:"56956",title:"Electrochemical Capacitor Performance: Influence of Aqueous Electrolytes",doi:"10.5772/intechopen.70694",slug:"electrochemical-capacitor-performance-influence-of-aqueous-electrolytes",totalDownloads:2066,totalCrossrefCites:16,totalDimensionsCites:32,hasAltmetrics:0,abstract:"Due to low energy characteristics such as energy density and cyclic life, it is mandatory to enhance the energy characteristics of the supercapacitors (ESs). Electrolytes have been recognized as the most prominent ingredients in electrochemical supercapacitor performance. Most commercially available ESs use organic electrolytes and have some advantage like wide operating voltage. However, compared with aqueous alternatives, organic electrolytes are expensive, flammable, and, in some cases, toxic. It is reliable to assert that even though aqueous electrolytes examined by a cramped working voltage, the ions present in them are yet capable of incredibly faster carrier rates than organic electrolytes and can achieve better performance of ESs. Thus, efforts turned toward enlarging the working voltage window of aqueous electrolytes to increase overall operating potential and energy density of supercapacitor devices. This book chapter comprises the latest accomplishments in this area and provides an insight into the aqueous electrolyte advancement.",signatures:"Rajendran Ramachandran and Fei Wang",downloadPdfUrl:"/chapter/pdf-download/56956",previewPdfUrl:"/chapter/pdf-preview/56956",authors:[{id:"212251",title:"Dr.",name:"Fei",surname:"Wang",slug:"fei-wang",fullName:"Fei Wang"},{id:"212284",title:"Dr.",name:"Rajendran",surname:"Ramachandran",slug:"rajendran-ramachandran",fullName:"Rajendran Ramachandran"}],corrections:null},{id:"57168",title:"Performance of Aqueous Ion Solution/Tube-Super Dielectric Material-Based Capacitors as a Function of Discharge Time",doi:"10.5772/intechopen.71003",slug:"performance-of-aqueous-ion-solution-tube-super-dielectric-material-based-capacitors-as-a-function-of",totalDownloads:1060,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The discharge time dependence of key parameters of electrostatic capacitors employing a dielectric composed of the oxide film formed on titanium via anodization, saturated with various aqueous ion solutions, that is tube-super dielectric materials (T-SDM), was thoroughly documented for the first time. The capacitance, dielectric constant, and energy density of novel paradigm supercapacitors (NPS) based on T-SDM saturated with various concentrations of NaNO3, NH4Cl, or KOH were all found to roll-off with decreasing discharge time in a fashion well described by simple power law relations. In contrast, power density, also well described by a simple power law, was found to increase with decreasing discharge time, in fact nearly reaching 100 W/cm3 for both 30 wt% KOH and NaNO3 solution-based capacitors at 0.01 s, excellent performance for pulsed power. For all capacitors, the dielectric constant was tested, which was greater than 105 for discharge times >0.01 s, confirming the materials are in fact T-SDM. The energy density for most of the capacitors was greater than 80 J/cm3 of dielectric at a discharge time of 100 s, once again demonstrating that these capacitors are competitive for energy storage not only with existing commercial supercapacitors but also with the best prototype carbon-based supercapacitors.",signatures:"Steven M. Lombardo and Jonathan Phillips",downloadPdfUrl:"/chapter/pdf-download/57168",previewPdfUrl:"/chapter/pdf-preview/57168",authors:[{id:"218394",title:"Prof.",name:"Jonathan",surname:"Phillips",slug:"jonathan-phillips",fullName:"Jonathan Phillips"},{id:"218396",title:"MSc.",name:"Steven",surname:"Lombardo",slug:"steven-lombardo",fullName:"Steven Lombardo"}],corrections:null},{id:"59872",title:"Enhancing Pseudocapacitive Process for Energy Storage Devices: Analyzing the Charge Transport Using Electro-kinetic Study and Numerical Modeling",doi:"10.5772/intechopen.73680",slug:"enhancing-pseudocapacitive-process-for-energy-storage-devices-analyzing-the-charge-transport-using-e",totalDownloads:1513,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Supercapacitors are a class of energy storage devices that store energy by either ionic adsorption via an electrochemical double layer capacitive process or fast surface redox reaction via a pseudocapacitive process. Supercapacitors display fast charging and discharging performance and excellent chemical stability, which fill the gap between high energy density batteries and high-power-density electrostatic capacitors. In this book chapter, the authors have presented the current studies on improving the capacitive storage capacity of various electrode materials for supercapacitors, mainly focusing on the metal oxide electrode materials. In particular, the approaches that mathematically simulate the behavior of interaction between electrode materials and charge carriers subject to potentiodynamic conditions (e.g., cyclic voltammetry) have been described. These include a general relationship between current and voltage to describe overall electrokinetics during the charge transfer process and a more comprehensive numerical modeling that studies ionic transport and electrokinetics within a spherical solid particle. The two aforementioned types of mathematical analyses can provide fundamental understanding of the parameters governing the electrode reaction and mass transfer in the electrode material, and thus shed light on how to improve the storage capacity of supercapacitors.",signatures:"Fenghua Guo, Nivedita Gupta and Xiaowei Teng",downloadPdfUrl:"/chapter/pdf-download/59872",previewPdfUrl:"/chapter/pdf-preview/59872",authors:[{id:"24478",title:"Prof.",name:"Xiaowei",surname:"Teng",slug:"xiaowei-teng",fullName:"Xiaowei Teng"},{id:"240109",title:"Mr.",name:"Fenghua",surname:"Guo",slug:"fenghua-guo",fullName:"Fenghua Guo"},{id:"240110",title:"Prof.",name:"Nivedita",surname:"Gupta",slug:"nivedita-gupta",fullName:"Nivedita Gupta"}],corrections:null},{id:"58793",title:"Direct Laser Writing of Supercapacitors",doi:"10.5772/intechopen.73000",slug:"direct-laser-writing-of-supercapacitors",totalDownloads:1084,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Direct laser writing is a single-step fabrication technique for the micro and nanostructures even below the sub-diffraction limits. In recent times, the technique is adapted to the fabrication of on-chip energy storages with additional features of flexibility and stretchability. The major category of the energy storages taken into consideration for laser writing belongs to the family of supercapacitors which is known for the high rate of charge transfer, longer life spans and lesser charging times in comparison with traditional batteries. The technology explores the possibilities of non-explosive all solid-state energy storage integration with portable and wearable applications. These features can enable the development of self-powered autonomous devices, vehicles and self-reliant infrastructures. In this chapter, we discuss the progress, challenges and perspectives of micro-supercapacitors fabricated using direct laser writing.",signatures:"Litty V. Thekkekara",downloadPdfUrl:"/chapter/pdf-download/58793",previewPdfUrl:"/chapter/pdf-preview/58793",authors:[{id:"227543",title:"Dr.",name:"Litty",surname:"Thekkekara",slug:"litty-thekkekara",fullName:"Litty Thekkekara"}],corrections:null},{id:"58845",title:"Toward High-Voltage/Energy Symmetric Supercapacitors via Interface Engineering",doi:"10.5772/intechopen.73131",slug:"toward-high-voltage-energy-symmetric-supercapacitors-via-interface-engineering",totalDownloads:1029,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"This chapter includes elaborately selected recent literatures on electrochemical energy storing in symmetric supercapacitors (SSCs) with high operating voltages (voltage >1.6 V) and high specific energy. SSCs are a typical sort of electrochemical capacitors with larger energy density than conventional capacitors; by involving electrode materials with stable interfaces (for instance, nitrogen-doped carbon materials) and electrolytes with wide safe potential window (for instance, ionic liquids), they can supply competitive energy relative to batteries. Fundamentals of SSCs are first introduced, aiming at clarifying some critical interfacial phenomena that are critical to enhance overall capacitive performance. State-of-the-art SSCs are included as demonstrations from the aspects of both enhanced capacitances and expanded voltages. We also provide a few feasible strategies for the design high-voltage/energy SSCs such as using inactive electrode materials.",signatures:"Yaqun Wang and Guoxin Zhang",downloadPdfUrl:"/chapter/pdf-download/58845",previewPdfUrl:"/chapter/pdf-preview/58845",authors:[{id:"228334",title:"Prof.",name:"Guoxin",surname:"Zhang",slug:"guoxin-zhang",fullName:"Guoxin Zhang"},{id:"228336",title:"Prof.",name:"Yaqun",surname:"Wang",slug:"yaqun-wang",fullName:"Yaqun Wang"}],corrections:null},{id:"60803",title:"Classical Density Functional Theory Insights for Supercapacitors",doi:"10.5772/intechopen.76339",slug:"classical-density-functional-theory-insights-for-supercapacitors",totalDownloads:1125,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:"The most urgent issue for supercapacitor is to improve their energy density so that they can better compete with batteries. To design materials and interfaces for supercapacitor with higher energy density requires a deeper understanding of the factors and contributions affecting the total capacitance. In our recent works, the classical density functional theory (CDFT) was developed and applied to study the electrode/electrolyte interface behaviors, to understand capacitive energy storage. For porous electrode materials, we studied the pore size effect, curvature effect, and the surface modification of porous materials on the capacitance. Thought CDFT, we have found that the curvature effects on convex and concave EDLs are drastically different and that materials with extensive convex surfaces will lead to maximized capacitance; CDFT also predicts oscillatory variation of capacitance with pore size, but the oscillatory behavior is magnified as the curvature increases; an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage, and a pore-like impurity can enter the pore, makes the pore ionophobic and storage more energy. We also find the mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance.",signatures:"Cheng Lian and Honglai Liu",downloadPdfUrl:"/chapter/pdf-download/60803",previewPdfUrl:"/chapter/pdf-preview/60803",authors:[{id:"182639",title:"Dr.",name:"Honglai",surname:"Liu",slug:"honglai-liu",fullName:"Honglai Liu"},{id:"228687",title:"Dr.",name:"Cheng",surname:"Lian",slug:"cheng-lian",fullName:"Cheng Lian"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3645",title:"Passive Microwave Components and Antennas",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"passive-microwave-components-and-antennas",bookSignature:"Vitaliy Zhurbenko",coverURL:"https://cdn.intechopen.com/books/images_new/3645.jpg",editedByType:"Edited by",editors:[{id:"3721",title:"Prof.",name:"Vitaliy",surname:"Zhurbenko",slug:"vitaliy-zhurbenko",fullName:"Vitaliy Zhurbenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"253",title:"Organic Light Emitting Diode",subtitle:"Material, Process and Devices",isOpenForSubmission:!1,hash:"bf0742adef8e8ae73b12780081eeb1d7",slug:"organic-light-emitting-diode-material-process-and-devices",bookSignature:"Seung Hwan Ko",coverURL:"https://cdn.intechopen.com/books/images_new/253.jpg",editedByType:"Edited by",editors:[{id:"33170",title:"Prof.",name:"Seung Hwan",surname:"Ko",slug:"seung-hwan-ko",fullName:"Seung Hwan Ko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3644",title:"Semiconductor Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"semiconductor-technologies",bookSignature:"Jan Grym",coverURL:"https://cdn.intechopen.com/books/images_new/3644.jpg",editedByType:"Edited by",editors:[{id:"4283",title:"Ph.D.",name:"Jan",surname:"Grym",slug:"jan-grym",fullName:"Jan Grym"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6489",title:"Light-Emitting Diode",subtitle:"An Outlook On the Empirical Features and Its Recent Technological Advancements",isOpenForSubmission:!1,hash:"20818f168134f1af35547e807d839463",slug:"light-emitting-diode-an-outlook-on-the-empirical-features-and-its-recent-technological-advancements",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6489.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7567",title:"Science, Technology and Advanced Application of Supercapacitors",subtitle:null,isOpenForSubmission:!1,hash:"6f3c82213ad65bc6260c0164da9319f4",slug:"science-technology-and-advanced-application-of-supercapacitors",bookSignature:"Takaya Sato",coverURL:"https://cdn.intechopen.com/books/images_new/7567.jpg",editedByType:"Edited by",editors:[{id:"51962",title:"Prof.",name:"Takaya",surname:"Sato",slug:"takaya-sato",fullName:"Takaya Sato"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6509",title:"Energy Harvesting",subtitle:null,isOpenForSubmission:!1,hash:"9665f0b76c3e7d51613f12f86efc3767",slug:"energy-harvesting",bookSignature:"Reccab Manyala",coverURL:"https://cdn.intechopen.com/books/images_new/6509.jpg",editedByType:"Edited by",editors:[{id:"12002",title:"Associate Prof.",name:"Reccab",surname:"Manyala",slug:"reccab-manyala",fullName:"Reccab Manyala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8724",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!1,hash:"bc4be4b954b559709aaace45f70adcd0",slug:"gas-sensors",bookSignature:"Sher Bahadar Khan, Abdullah M. Asiri and Kalsoom Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/8724.jpg",editedByType:"Edited by",editors:[{id:"245468",title:"Dr.",name:"Sher Bahadar",surname:"Khan",slug:"sher-bahadar-khan",fullName:"Sher Bahadar Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6511",title:"Complementary Metal Oxide Semiconductor",subtitle:null,isOpenForSubmission:!1,hash:"96b2d63df3822f48468050aa7a44a44c",slug:"complementary-metal-oxide-semiconductor",bookSignature:"Kim Ho Yeap and Humaira Nisar",coverURL:"https://cdn.intechopen.com/books/images_new/6511.jpg",editedByType:"Edited by",editors:[{id:"24699",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10769",title:"Supercapacitors for the Next Generation",subtitle:null,isOpenForSubmission:!1,hash:"dda2f53b2c9ee308fe5f3e0d1638ff5c",slug:"supercapacitors-for-the-next-generation",bookSignature:"Daisuke Tashima and Aneeya Kumar Samantara",coverURL:"https://cdn.intechopen.com/books/images_new/10769.jpg",editedByType:"Edited by",editors:[{id:"254915",title:"Prof.",name:"Daisuke",surname:"Tashima",slug:"daisuke-tashima",fullName:"Daisuke Tashima"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10501",title:"Memristor",subtitle:"An Emerging Device for Post-Moore’s Computing and Applications",isOpenForSubmission:!1,hash:"9d679b7df63b5aa45462dcaeab4511ae",slug:"memristor-an-emerging-device-for-post-moore-s-computing-and-applications",bookSignature:"Yao-Feng Chang",coverURL:"https://cdn.intechopen.com/books/images_new/10501.jpg",editedByType:"Edited by",editors:[{id:"201955",title:"Dr.",name:"Yao-Feng",surname:"Chang",slug:"yao-feng-chang",fullName:"Yao-Feng Chang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68989",slug:"erratum-public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-inter",title:"Erratum - Public Perceptions of Values Associated with Wildfire Protection at the Wildland-Urban Interface: A Synthesis of National Findings",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68989.pdf",downloadPdfUrl:"/chapter/pdf-download/68989",previewPdfUrl:"/chapter/pdf-preview/68989",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68989",risUrl:"/chapter/ris/68989",chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11454",leadTitle:null,title:"Contemporary Issues in Land Use Planning",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tRapid urbanization is one of the most important global change problems that land-use planners are facing worldwide. With increased population growth and urbanization, cities around the world are becoming more affluent and putting even greater pressures on various land uses. The greatest challenges include managing traffic and transportation, the urban sprawl of cities, and affordable housing in ways that can improve people’s health and social well-being in a city-based framework, keeping in mind qualitative principles of equity, public participation, and sustainability. The proposed book hopes to bring together leading scholars in the field of transportation or engineering, land use planning, affordable housing, and smart cities growth, to discuss contemporary land use issues and challenges facing cities in both developed and developing countries. The book is also intended to serve as important reference material for academics, land use planning professionals, and students around the globe seeking to understand contemporary land-use problems and innovative solutions.
",isbn:"978-1-80356-237-7",printIsbn:"978-1-80356-236-0",pdfIsbn:"978-1-80356-238-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"e669f527567e12a187e61b3dbb18155f",bookSignature:"Dr. Seth Appiah-Opoku",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11454.jpg",keywords:"Land Use, Transportation Interaction, Smart City, Housing, City Typology, Urbanization, Urban Sprawl, Affordable Housing, Transit Management, Squatter Settlement, Manufactured Home, Sustainability",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 9th 2022",dateEndSecondStepPublish:"March 9th 2022",dateEndThirdStepPublish:"May 8th 2022",dateEndFourthStepPublish:"July 27th 2022",dateEndFifthStepPublish:"September 25th 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Seth Appiah-Opoku is a member of the American Institute of Certified Planners. He also served on the Technical Advisory Team that advised the government of Ghana on the preparation of a 40-year development plan for the country.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"137858",title:"Dr.",name:"Seth",middleName:null,surname:"Appiah-Opoku",slug:"seth-appiah-opoku",fullName:"Seth Appiah-Opoku",profilePictureURL:"https://mts.intechopen.com/storage/users/137858/images/system/137858.jpg",biography:"Dr. Seth Appiah-Opoku is a Professor of Geography at the University of Alabama, Tuscaloosa, AL, USA. He teaches World Regional Geography, Regional Geography of Africa, Environmental Management, Land Use Regulation, Principles of Planning, Regional Planning and Analysis, and also the Ghana Summer Abroad course. He is a member of the American Institute of Certified Planners and the editor of three books - The Need for Indigenous Knowledge in Environmental Impact Assessment: The Case of Ghana (Edwin Mellen Press, NY, June 2005), Environmental Land Use Planning (IntechOpen, 2012), and International Development (IntechOpen, 2017). His research focuses on international development, urban planning, ecotourism, environmental impact assessment, and resource development. He serves on the Editorial Boards of the Journal of Environmental Impact Assessment Review and the Environment and Social Psychology Journal. He also served as the editor of the Journal of African Geographical Review from 2016 to 2018. He has published scholarly articles in several renowned journals including Environmental Management, Society and Natural Resources, Environmental Impact Assessment Review, Journal of Cultural Geography, and Plan Canada. He served on the Technical Advisory Team that advised the government of Ghana on the preparation of a 40-year development plan for the country.",institutionString:"University of Alabama, Tuscaloosa",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Alabama, Tuscaloosa",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2358",title:"Environmental Land Use Planning",subtitle:null,isOpenForSubmission:!1,hash:"45c4591d49ed3ff918fe563a30203cb2",slug:"environmental-land-use-planning",bookSignature:"Seth Appiah-Opoku",coverURL:"https://cdn.intechopen.com/books/images_new/2358.jpg",editedByType:"Edited by",editors:[{id:"137858",title:"Dr.",name:"Seth",surname:"Appiah-Opoku",slug:"seth-appiah-opoku",fullName:"Seth Appiah-Opoku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5468",title:"International Development",subtitle:null,isOpenForSubmission:!1,hash:"df06431aaa20f810b8d187e0db9b807d",slug:"international-development",bookSignature:"Seth Appiah-Opoku",coverURL:"https://cdn.intechopen.com/books/images_new/5468.jpg",editedByType:"Edited by",editors:[{id:"137858",title:"Dr.",name:"Seth",surname:"Appiah-Opoku",slug:"seth-appiah-opoku",fullName:"Seth Appiah-Opoku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8013",title:"Land Use Change and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"6b3aee3b93d95ecd84c41753486f7a83",slug:"land-use-change-and-sustainability",bookSignature:"Seth Appiah-Opoku",coverURL:"https://cdn.intechopen.com/books/images_new/8013.jpg",editedByType:"Edited by",editors:[{id:"137858",title:"Dr.",name:"Seth",surname:"Appiah-Opoku",slug:"seth-appiah-opoku",fullName:"Seth Appiah-Opoku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17228",title:"Design of High Quantum Efficiency and High Resolution, Si/SiGe Avalanche Photodiode Focal Plane Arrays Using Novel, Back-Illuminated, Silicon-on-Sapphire Substrates",doi:"10.5772/18516",slug:"design-of-high-quantum-efficiency-and-high-resolution-si-sige-avalanche-photodiode-focal-plane-array",body:'\n\t\tThe design and development of large scale, high quantum efficiency and high resolution silicon and silicon-germanium (Si/SiGe) avalanche photodiode (APD) focal plane arrays (FPAs) is an active topic of research due to the wide range of scientific, medical and industrial applications for such high sensitivity imagers. Avalanche photodiodes can attain single photon sensitive operation due the large internal device gain that compensates and can fully eliminate the electronic readout noise normally limiting the sensitivity of solid-state detector devices, hence their importance in electronic imaging. Large, wafer scale arrays of ultra sensitive, high resolution silicon and silicon-germanium avalanche photodiodes have not been developed yet, primarily due to the increased fabrication complexity of such detector devices and arrays compared to the more common, non-avalanching detectors such as CCDs and CMOS-APS devices. One major fabrication challenge for avalanche type detectors is the requirement of providing effective optical isolation between adjacent detectors in an array since the avalanche gain process produces photons that could create false detection events in neighboring pixels and thereby increase the noise. Providing effective optical crosstalk isolation becomes more difficult for higher resolution arrays. While it is common for CCD arrays to have a pixel pitch between 12-30 µm and for CMOS-APS devices to have pixel pitch below 10 µm, it becomes more challenging to architect arrays of avalanche photodiodes for example, having such a small pitch due to optical crosstalk. The second major fabrication challenge for linear mode avalanche type detectors, especially critical in arrays is the detector gain uniformity. Detector gain uniformity is a critical performance parameter since an increase in gain excess noise will make the detector arrays unsuitable for precision metrology applications. As solid-state avalanche detectors are made smaller, it becomes more difficult to control the gain excess noise due to smaller area multiplication regions where the effects from slight variations in doping profiles and electric fields produce greater gain variability compared to larger area detectors.
\n\t\t\tIn this chapter, design aspects of a novel, back-illuminated silicon-on-sapphire material system are presented and compared to present substrate technologies to illustrate the capability of the novel substrates in solving optical crosstalk and detector gain uniformity fabrication challenges for producing high quantum efficiency and high resolution wafer scale arrays of Si/SiGe APD detector arrays. The novel substrate design incorporates a single crystal, epitaxially grown aluminum nitride antireflective layer between sapphire and silicon to improve optical transmittance into the silicon from sapphire. A /4-MgF2 antireflective layer deposited on the backside of the sapphire improves optical transmittance from the ambient into the sapphire. The high transmittance, back-illuminated silicon-(AlN)-sapphire substrates represent an enabling technology for producing radiation tolerant, high resolution, wafer scale arrays of solid-state light detectors. (Stern & Cole, 2008) The Si and SiGe solid-state avalanche photodiodes for example, could be produced in highly uniform wafer scale arrays by liquid crystallographic etching of mesa pixels due to sapphire acting as a natural etch stopping layer. Mesa detectors and arrays would retain high quantum efficiency and sensitive-area-fill-factor respectively, due to light focusing monolithic sapphire microlenses beneath each pixel. The space between mesa detectors could be filled with metal to form a low-resistance contact across the array and also block direct pixel-to-pixel optical crosstalk. The closely integrated monolithic sapphire microlenses also help to address detector gain uniformity by focusing optical k-vectors directly into the active multiplication region of the avalanche photodiodes, thereby helping to improve the gain uniformity of the detectors and arrays. Coupled with recent advances in dual linear and Geiger-mode avalanche detector design, the novel substrates will enable wide dynamic range focal plane arrays operating near room temperature, capable of imaging over the full range of natural illumination conditions from AM 0 in space to a cloudy moonless night. (Stern & Cole, 2010)
\n\t\t\tThe novel, back-illuminated silicon-on-(AlN)-sapphire substrates offer the possibility of solving the fabrication challenges currently limiting the low cost availability of highly sensitive, wide dynamic range Si and SiGe avalanche photodiode arrays, including direct pixel-to-pixel optical crosstalk and detector gain uniformity. There still exists however, the phenomenon of indirect optical crosstalk by multiple reflections in the finite thickness, 50 µm thick sapphire substrate. It will be shown through detailed calculations and analysis means that indirect optical crosstalk through the 50 µm thick sapphire substrate although present, will not prevent high resolution, 27 µm pixel pitch Si/SiGe APD detector arrays operating in the highest (Geiger-mode) gain regimes with low noise across the full 1024x1024 pixel FPA for a
The present approaches to fabricating solid-state Si/SiGe avalanche photodiode (APD) arrays have been constrained by the less than optimal substrates available for fabricating such specialized light detector arrays. Two prevailing approaches have been used in fabricating such APD detector device arrays and both approaches borrow heavily from the fabrication and substrate technology used in more common CCD and CMOS-APS sensor arrays. The first approach shown in Fig. 1 is the simplest and uses conventional CMOS foundry processing for electronic circuits that is also ordinarily used to fabricate low cost, front-illuminated CMOS-APS sensor arrays, to fabricate front-illuminated avalanche photodiode arrays. The silicon APD focal plane array design approach in Fig. 1 is known as planar CMOS technology because the detector array is fabricated in the same silicon substrate as the integrated pixel control readout electronics. The planar CMOS approach is cost effective because new substrate technology is not needed and existing silicon IC fabrication technology can be leveraged. Planar CMOS technology has been adapted in novel ways for silicon APD arrays by researchers in Italy and Switzerland. (Charbon, 2008; Guerrieri et al., 2009; Niclass et al., 2005) The usual limitations for solid-state detector arrays apply in using the planar silicon CMOS approach including reduced quantum efficiency inherent for front-illuminated devices and less than optimal array sensitive-area-fill-factor due to the space taken up by the pixel electronics.
\n\t\t\tPlanar CMOS technology approach for fabricating cost effective silicon APD focal plane arrays.
Hybrid approach for fabricating high performance Si/SiGe APD focal plane arrays.
The second approach shown in Fig. 2, uses a hybridized focal plane array that consists of a back-illuminated detector array chip which is flip-chip bump-bonded or otherwise electrically mated to CMOS readout electronics. (Stern et al., 2003) The hybrid approach offers greater flexibility than the planar CMOS approach because the detector array can be designed in a different substrate material system from the CMOS control electronics. For example, the APD detector array could be fabricated from silicon, silicon-germanium, indium phosphide, indium gallium arsenide or mercury cadmium telluride. Moreover, back-illumination inherently supports higher detector quantum efficiency and array sensitive-area-fill-factor compared to front-illuminated planar arrays. The planar CMOS APD-FPA approach in Fig. 1 and the hybrid approach in Fig. 2 can both support integration of light focusing microlens arrays to increase the effective sensitive-area-fill-factor of the APD-FPAs, however, the planar CMOS approach is less amenable to microlens integration for the APDs since they would need to be epoxied to the CMOS chip and it is difficult to control epoxy thickness uniformity and refractive index matching. The hybrid APD-FPA approach however, supports microlenses to be monolithically integrated to the detectors without epoxy. The hybrid fabrication approach for silicon APD arrays has been implemented in the United States and is the preferred fabrication method resulting in higher performance arrays, albeit at increased cost. The hybrid approach shown in Fig. 2, has been used to fabricate focal plane arrays of silicon APD detectors using conventional silicon substrates that are back-thinned and either epoxied or oxide bonded to optically transparent quartz substrates followed by flip-chip bump-bonding to silicon CMOS readout ICs as shown in Figs. 3-4 respectively.
\n\t\t\tBack-illuminated APD detector array silicon is thinned and epoxied to a quartz support wafer.
Back-illuminated APD detector array silicon is thinned and oxide bonded to a quartz support wafer.
The approaches for manufacturing hybrid Si/SiGe APD-FPAs shown in Figs. 3-4 are still non-optimal because the quartz substrate does not provide optimal light transmittance into the device silicon and also because quartz is not resistant to the common hydrofluoric acid (HF) etchant, used in silicon device processing. This may constrain silicon detector devices to be processed in the bulk silicon wafer prior to silicon thinning and subsequent oxide bonding or epoxying to the quartz substrate. As a result, the ultra sensitive detector devices might become damaged during the epoxying or oxide bonding process.
\n\t\t\tThe silicon-on-sapphire material system is particularly well adapted for fabricating back-illuminated, hybrid Si/SiGe APD-FPAs. Silicon-on-sapphire was discovered in 1963 by researchers working at the Boeing Corporation. Workers experimented with thermal decomposition of silane gas on a sapphire crystal polished into the shape of a sphere, thereby exposing all possible crystal planes, and discovered that (100) Si resulted from epitaxial growth on the R-plane surface of sapphire. (Manasevit & Simpson, 1964) The advantages of (100) silicon-on-(R-plane)-sapphire (SOS) substrates soon became apparent in fabricating high speed, radiation resistant SOS-CMOS circuits for space electronics including the microprocessor of the Voyager I spacecraft launched in 1977. The problem of high defect densities due to lattice mismatch in the silicon close to the sapphire interface where FETs are fabricated, caused device reliability problems and kept integrated circuit production yields low. The resulting increased cost of production prevented the technology from gaining a wide market share for consumer electronics. In 1979, Lau discovered a method to improve the epitaxial growth of (100) silicon on R-plane sapphire, resulting in lower defect densities in the silicon near the sapphire interface. (Lau et al., 1979) In 1991, Imthurn developed a method of directly bonding a silicon wafer to the sapphire R-plane followed by thinning the silicon using chemical mechanical polishing to proper device thickness. He subsequently fabricated silicon test diodes that exhibited reverse dark currents one order of magnitude lower than similar devices fabricated in heteroepitaxially grown SOS. (Imthurn et al., 1992)
\n\t\t\t\tAlthough silicon-on-sapphire was originally developed for integrated circuit applications, it also has many ideal attributes for use as a substrate material, supporting back-illuminated, solid-state, Si/SiGe detector arrays. Sapphire is an anisotropic, dielectric crystal of the negative uniaxial type that is weakly birefringent (
Back-illuminated, hybrid, silicon-on-sapphire APD-FPA with /4-AlN and /4-MgF2 antireflective layers.
Back-illuminated, hybrid, silicon-on-sapphire APD-FPA with AlN, SiNX and /4-MgF2 antireflective layers.
In contrast to silicon on quartz shown in Fig. 4, the Si-(AlN)-sapphire and Si-(AlN/a-SiNX)-sapphire substrates shown in Figs. 5-6 can be prepared prior to detector device fabrication because the sapphire, AlN and a-SiNX material layers are not affected by hydrofluoric acid (HF) or other etchants used in silicon device processing. Moreover, Si-(AlN/a-SiNX)-sapphire substrates with /4-MgF2 provide nearly optimal back-illuminated light transmittance into silicon as will be shown in Sec. 2.2, and in addition, microlenses can be directly fabricated in sapphire. (Park et al., 2000) Figure 7 shows a back-illuminated, crystallographically etched silicon mesa APD pixel with monolithically integrated sapphire microlens. Fig. 8 shows a crystallographically etched silicon mesa APD-FPA with monolithic, light focusing sapphire microlenses.
\n\t\t\t\tBack-illuminated, silicon-on-sapphire mesa APD detector pixel with monolithic sapphire microlens.
Back-illuminated, hybrid, silicon-on-sapphire APD-FPA with monolithic sapphire microlenses.
The sapphire substrate shown in Fig. 7 incorporates an antireflective bilayer between sapphire and silicon consisting of single crystal AlN and amorphous or a-SiNX to improve optical transmittance into the device silicon. The space between mesa APD detector pixels is filled by a low resistance Al or Cu metal anode grid that provides low resistance anode contact at the base of each device mesa and also functions to block direct pixel-to-pixel optical crosstalk by line of sight light propagation. The monolithic sapphire microlens aligned beneath the mesa APD focuses light under the full height of the silicon mesa and away from the reduced height sidewalls. (Stern & Cole, 2008)
\n\t\t\tA variation on the back-illuminated Si-(AlN)-sapphire substrate described in Sec. 2.1, provides improved optical transmittance into the device silicon by using an advanced antireflective bilayer design between sapphire and silicon consisting of single crystal AlN and non-stoichiometric, silicon rich, amorphous (a-SiNX) with x < 1.33 as shown in Fig. 6.
\n\t\t\t\tStoichiometric, fully dense, silicon nitride (Si3N4 or SiN1.33) is an amorphous dielectric having a high optical bandgap, Eg = 5.3 eV and low optical absorption coefficient from UV to infrared. (Sze, 1981) Amorphous silicon nitride or a-SiNX thin films have many applications in silicon processing and device fabrication including surface and bulk passivation of silicon, antireflective layers for silicon solar cells, barrier layers against Na and K ion diffusion and CMOS transistor device isolation using the LOCOS method. (Plummer et al., 2000) In addition, silicon rich a-SiNX<1.33 that has a higher refractive index and lower tensile strain than stoichiometric a-SiN1.33 has important applications for high speed optical interconnects in silicon nanophotonics and for silicon micromachining in MEMS and MOEMS applications. (Gardeniers at al., 1996)
\n\t\t\t\tDue to the ubiquity and importance of a-SiNX thin films, much effort has been expended in developing optimized, application specific deposition methods for such films. Deposition of a-SiNX is most readily achieved using low pressure (< 1 Atm.) gaseous precursors reacting either at low or high temperatures. High temperature, stoichiometric a-SiN1.33 films are most commonly deposited on substrates in a low pressure chemical vapor deposition (LPCVD) reactor according to the chemical reaction in Eq. (1). (Rosler, 1977)
\n\t\t\t\tIn Eq. (1), dichlorosilane (DCS) is shown as the silicon containing reactant species however, silane (SiH4) can also be used as shown in Eq. (2). The advantage of DCS over silane is that the HCl byproduct can help remove metallic impurities from substrate surfaces by reacting to form volatile metal halides. Recently, much effort has been placed in developing low substrate temperature a-SiNX deposition methods using plasma enhanced chemical vapor deposition (PECVD) and hot filament chemical vapor deposition (HFCVD), as such methods can be used to conserve valuable thermal budget during silicon device processing. In PECVD, a plasma reactor is used to enhance the chemical deposition while allowing substrate temperatures to remain in the low 200 – 450º C temperature range. (Lowe et al., 1986) In HFCVD, an energized tungsten or tantalum filament heats the reactant gases while allowing low substrate temperatures to be used. (Verlaan et al., 2007)
\n\t\t\t\tFor the present application however, conservation of thermal budget is not a concern because the Si-(AlN/a-SiNX)-sapphire substrate can be fabricated before the mesa APD detector device. The a-SiNX antireflective layer shown in Fig. 6, can be fabricated by direct deposition using LPCVD at elevated temperature, on a full thickness (100) silicon wafer according to the chemical reaction in Eq. (1). The sought after a-SiNX antireflective layer characteristics listed in order from greatest to least in importance include, (1) refractive index, (2) optical bandgap Eg, (3) tensile strain in the layer and (4) surface and bulk passivation properties for silicon. Each of the four characteristics of the a-SiNX antireflective layer will be analyzed and/or discussed in order of importance for the present application.
\n\t\t\t\tThe primary role of the a-SiNX is to function as an antireflective layer in conjunction with AlN as shown in Fig. 6, therefore, it is critical to design the layer to have a refractive index meeting the condition, na-SiN = (nAlNnSi)0.5 over most of the wavelength range of interest, to yield maximum optical transmittance from sapphire into the device silicon. The Sellmeier dispersion relation for stoichiometric a-SiN1.33 is given in Eq. (3), with constants for the equation listed in Table 1.
\n\t\t\t\tParameter | \n\t\t\t\t\t\t\tValue | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t2.8939 | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t139.67 x 10-3\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Sellmeier dispersion relation constants for stoichiometric a-SiN1.33 from Eq. (3).
The real refractive index of a-SiN1.33 is plotted in Fig. 9 according to Eq. (3), using the parameters in Table 1. The real refractive indices for MgF2, sapphire, AlN and Si are also plotted for reference.
\n\t\t\t\tReal refractive indices for MgF2, sapphire, AlN, stoichiometric a-SiN1.33 and Si are shown as a function of optical wavelength.
The Sellmeier relation given by Eq. (3) and plotted in Fig. 9, shows that stoichiometric a-SiN1.33 has a refractive index that is too low to provide refractive index matching between sapphire and silicon in conjunction with AlN as shown in Fig. 6, and the arrow in Fig. 9, represents the direction of vertical shift of the refractive index as a function of wavelength curve that would be required to provide refractive index matching. The Si content in a-SiN1.33 therefore should be raised (x<1.33), to increase the refractive index of the layer, by increasing the DCS:NH3 gas flow ratio in Eq. (1). (Gardeniers et al., 1996)
\n\t\t\t\tThe statistical experiments performed by Gardeniers, studied the properties of silicon rich a-SiNX<1.33 films deposited according to Eq. (1), by varying the primary process parameters including (1) temperature, (2) total pressure, (3) total gas flow, (4) DCS:NH3 gas flow ratio. Although their goal was to optimize the a-SiNX thin films for micromechanical or MEMS applications requiring low tensile strain, their results also confirmed an important theoretical model described by Makino, predicting the a-SiNX thin film refractive index as a function of the nitrogen to silicon ratio (x = N:Si) in the film. The model assumes that the refractive index of a-SiNX≤1.33 films is a “bond-density-weighted linear combination” of a-Si and a-SiN1.33 reference refractive indices and is given by Eq. (4). (Makino, 1983)
\n\t\t\t\tIn Eq. (4), the quantity n0 represents the refractive index of a-Si and n1.33 represents the refractive index of stoichiometric a-SiN1.33. Although the refractive index model in Eq. (4) does not consider the presence of residual hydrogen in the a-SiNX thin film in the form of Si-H and N-H bonds, this only becomes a problem when applying the model to low temperature deposited films that usually contain larger amounts of residual hydrogen than films deposited at high temperature. The a-SiNX≤1.33 thin films deposited according to Eq. (1) contain negligible amounts of hydrogen due to high temperature deposition and therefore, the model given by Eq. (4) is valid for the proposed fabrication approach. The experiments by Gardeniers, verified Eq. (4) using a value for the refractive index of a-Si equal to that of crystalline silicon or n0 = 3.9 (at 0 = 633 nm), by measuring the values of N:Si = x, in the films they grew, measuring the refractive indices of those films and correlating the measured refractive indices to the calculated ones from Eq. (4) using the measured values of x as input to Eq. (4). Using the results from Gardeniers together with Eqs. (3-4), it becomes possible to calculate the N:Si ratio value x, in the silicon rich a-SiNX<1.33, that yields the nearly optimal refractive index as a function of wavelength curve shown in Fig. 10, for achieving refractive index matching with AlN between the sapphire substrate and device silicon.
\n\t\t\t\tThe N:Si ratio value in the nearly optimal thin film that yields the curve in Fig. 10 is given as N:Si = 0.62, corresponding to a-SiN0.62. The nearly optimal refractive index as a function of wavelength needed for refractive index matching between sapphire and silicon will be provided by a-SiN0.62, however, it is also necessary to consider the extinction coefficient of the antireflective layer now having a reduced optical bandgap compared to stoichiometric a-
\n\t\t\t\tReal refractive indices for MgF2, sapphire, AlN, a-SiN0.62 and silicon are shown as a function of the optical wavelength.
SiN1.33, before calculating the back-illuminated optical transmittance of the novel Si-(AlN/a-SiN0.62)-sapphire substrate.
\n\t\t\t\tData for the extinction coefficient as a function of wavelength was not collected in the a-SiNX samples deposited by high temperature LPCVD according to Eq. (1) by Gardeniers, however, it is still possible to infer the absorbance of the a-SiN0.62 antireflective layer from Fig. 10, using data collected by Verlaan, who used HFCVD to deposit a-SiN0.62 with identical stoichiometry to the nearly optimal antireflective layer in Fig. 10, and measured the extinction coefficient of the sample over the visible wavelength range from 400–650 nm. (Verlaan et al., 2007) Although HFCVD used by Verlaan maintains the substrate at a lower temperature of 230º C during deposition compared to high temperature LPCVD used by Gardeniers, the resulting a-SiNX from HFCVD has a density approaching the density of material deposited by high temperature LPCVD while retaining more hydrogen. Despite these differences between LPCVD and HFCVD deposited thin films, the a-SiN0.62 sample data from Verlaan may be used to infer the expected absorbance as a function of wavelength of the LPCVD deposited a-SiN0.62 antireflective layer from Fig. 10. To calculate the expected absorbance as a function of wavelength for the a-SiN0.62 antireflective layer in the Tauc absorption region from 250 nm to Eg, from Verlaan’s data, the optical bandgap Eg-opt, of the HFCVD deposited a-SiN0.62 must first be calculated using the Tauc equation given in Eq. (5). (Tauc, 1974)
\n\t\t\t\tIn Eq. (5), ħ is the reduced Planck constant, = 2 is the angular frequency, Eg-opt is the optical bandgap in eV and B is a slope parameter with units of [cm-1eV-1]. Table 2 lists the measured extinction coefficient as a function of the optical wavelength from 400-650 nm for HFCVD deposited a-SiN0.62 and substrate temperature of 230º C.
\n\t\t\t\tWavelength (nm) | \n\t\t\t\t\t\t\tExtinction coefficient | \n\t\t\t\t\t\t\tWavelength (nm) | \n\t\t\t\t\t\t\tExtinction coefficient | \n\t\t\t\t\t\t
400 | \n\t\t\t\t\t\t\t0.12 | \n\t\t\t\t\t\t\t550 | \n\t\t\t\t\t\t\t0.012 | \n\t\t\t\t\t\t
425 | \n\t\t\t\t\t\t\t0.09 | \n\t\t\t\t\t\t\t575 | \n\t\t\t\t\t\t\t0.007 | \n\t\t\t\t\t\t
450 | \n\t\t\t\t\t\t\t0.064 | \n\t\t\t\t\t\t\t600 | \n\t\t\t\t\t\t\t0.005 | \n\t\t\t\t\t\t
475 | \n\t\t\t\t\t\t\t0.043 | \n\t\t\t\t\t\t\t625 | \n\t\t\t\t\t\t\t0.003 | \n\t\t\t\t\t\t
500 | \n\t\t\t\t\t\t\t0.030 | \n\t\t\t\t\t\t\t650 | \n\t\t\t\t\t\t\t0.002 | \n\t\t\t\t\t\t
525 | \n\t\t\t\t\t\t\t0.018 | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t |
Extinction coefficient of HFCVD deposited a-SiN0.62 (Verlaan et al., 2007)
Using the measured data for a-SiN0.62 from Table 2 and knowing that the extinction coefficient of a material is related to its absorption coefficient as 0.5(/k0), it is possible to plot the left side of Eq. (5) as a function of energy as shown in Fig. 11. Fitting a straight line to the linear part of the scatter plot of points in Fig. 11 and extrapolating to the x-axis yields the optical bandgap Eg-opt = 2.1 eV for the HFCVD deposited a-SiN0.62 from Verlaan. Using the optical bandgap value Eg-opt = 2.1 eV for a-SiN0.62 and corresponding wavelength Eg= 590 nm, the absorption coefficient as a function of wavelength for the Tauc absorption region is calculated using Eq. (5) and plotted from 250 nm to Eg= 590 nm in Fig. 12 by fitting to the measured data from Table 2.
\n\t\t\t\tDetermination of the optical bandgap Eg-opt using Tauc plot for a-SiN0.62 deposited by HFCVD.
Tauc absorbance of a-SiN0.62 calculated using the optical bandgap Eg-opt = 2.1 eV from
It will be assumed that the high temperature LPCVD deposited a-SiN0.62 antireflective layer from Fig. 10 is characterized by a similar absorption coefficient over the Tauc absorption region from 250 nm to Eg= 590 nm as calculated in Fig. 12 for low temperature HFCVD deposited material, where 1105 cm-1 at 250 nm. In practice, the absorption coefficient in the Tauc absorption region for high temperature LPCVD deposited a-SiN0.62 should be lower than the calculation in Fig. 12, which represents a worst case scenario. Assuming the worst case of high absorption as calculated in Fig. 12, entails that for an a-SiN0.62 antireflective layer thickness below 50 nm, the absorbance may still be considered negligible for wavelengths between 250 nm to Eg= 590 nm and the layer can therefore be modeled as a lossless dielectric. Equation (6) expresses the impedance of a material as a function of the real refractive index n(), and the absorption coefficient ().
\n\t\t\t\tTo calculate the optical power transmittance of TE and TM waves into silicon for the back-illuminated (MgF2)-sapphire-(AlN/a-SiN0.62)-Si substrate, the full wave transfer matrix MSTACK for the material layers in the substrate has to be obtained. This result needs to be put into a scattering matrix form that yields the reflection coefficients for the incident waves which in turn allow the reflected and transmitted optical power to be calculated. The wave transfer-scattering matrix theory is described in the text by Saleh & Teich. (Saleh & Teich, 2007) The matrix MSTACK for air-(MgF2)-sapphire-(AlN/a-SiN0.62)-Si results from multiplying together nine wave transfer matrices including four for propagation through MgF2, sapphire, AlN, SiNX and five matrices for the material interfaces as shown in Eq. (7).
\n\t\t\t\tThe matrices M1, M3, M5, M7 and M9 represent wave transfer matrices at the air-MgF2, MgF2-sapphire, sapphire-AlN, AlN-a-SiN0.62 and a-SiN0.62-silicon interfaces while matrices M2, M4, M6 and M8 are propagation matrices through MgF2, sapphire, AlN and a-SiN0.62. All nine matrices are expressed in terms of the complex impedances of the materials given by Eq. (6). Using a Monte Carlo integration approach, it is possible to calculate the back-illuminated optical transmittance into the APD device silicon as a function of wavelength, for TE waves normally incident to the sapphire substrate plane of the mesa APD pixel from Fig. 7, as shown in Fig. 13.
\n\t\t\t\tOptical power transmittance into silicon of a TE wave normally incident from air to the back-illuminated APD substrate.
From the calculation in Fig. 13, it is evident that using silicon rich a-SiN0.62 prepared by high temperature LPCVD as an antireflective layer together with AlN, provides the required refractive index matching to enable very high transmittance, back-illuminated silicon-on-sapphire wafer substrates, while retaining a sufficiently high optical bandgap to be treated as a lossless dielectric in this application, as calculated in Figs. 11-12. The silicon-on-sapphire substrate represented by the thick solid curve in Fig. 13, having an AlN/a-SiN0.62 antireflective bilayer of 52/30 nm thickness respectively between sapphire and silicon and 120 nm thick MgF2 antireflective layer between air and sapphire, provides significantly improved back-illuminated transmittance into silicon as compared to the silicon-on-sapphire substrate represented by the dashed curved in Fig. 13, having only an 82 nm thick /4-AlN antireflective layer between sapphire and silicon and an 82 nm thick /4-MgF2 antireflective layer between air and sapphire. Other advantages of using silicon rich a-SiNX<1.33 films include lower tensile strain than stoichiometric films which is important for reducing the injection of vacancy and interstitial defects in silicon. High temperature LPCVD a-SiNX films unfortunately contain only a trace amount of hydrogen compared to PECVD and HFCVD films, and hydrogen is very useful for bulk and surface passivation of silicon defects and the lengthening of carrier lifetimes in silicon. It is particularly challenging to optimize a-SiNX films for high transmittance antireflective layers, that are better prepared using high temperature LPCVD and also for bulk and surface silicon passivation with hydrogen, which require low temperature deposition using PECVD or HFCVD. Such novel substrates however, represent an enabling technology for the next generation of high performance Si/SiGe APD focal plane array imagers.
\n\t\t\tThe phenomenon of optical crosstalk in high resolution avalanche photodiode arrays is well known and has been the subject of extensive theoretical and experimental study. (Akil et al., 1998, 1999; Lahbabi et al., 2000; Rech et al., 2008) Optical crosstalk in APD arrays results primarily from photon emission that occurs during impact ionization in the avalanche carrier multiplication process, erroneously triggering neighboring APD pixels and thereby producing noise. The increased APD-FPA noise from optical crosstalk might prevent high sensitivity imaging. Past scientific literature has mainly addressed the phenomenon of direct pixel-to-pixel optical crosstalk which occurs between immediately adjacent detector pixels by line of sight light propagation, however, indirect optical crosstalk might also be present. Indirect optical crosstalk is more difficult to block and occurs from light undergoing multiple reflections in the planar sapphire substrate waveguide. Two forms of indirect optical crosstalk exist in the silicon-on-sapphire APD-FPA due to multiple reflections and they include reflected light generated in the multiplication region of the APD during a detection event as well as reflected incident ambient illumination as shown in Figs. 14-15 respectively.
\n\t\t\tThe back-illuminated silicon-on-sapphire material system readily enables the design of Si/SiGe APD focal plane arrays with zero direct pixel-to-pixel optical crosstalk by line of sight propagation as understood from Fig. 14, where the Al or Cu metal anode grid across the mesa APD detector array performs the important secondary function of blocking direct
\n\t\t\tIndirect optical crosstalk from APD emitted light coupled into the sapphire substrate waveguide.
Indirect optical crosstalk from ambient incident illumination coupled into the sapphire substrate waveguide.
line of sight light propagation between adjacent detectors. In Fig. 14, the mesa APD is shown by approximation to emit light isotropically from a central point in the high electric field avalanche multiplication region. A fraction of the emitted photons are coupled into the planar sapphire substrate waveguide where they might undergo multiple reflections and subsequent transmission into the neighboring silicon mesa APD pixels. In Sec. 3.1-3.2, the fraction of APD emitted light during linear or Geiger-mode detection events transmitted into neighboring 27 µm mesa APD pixels is calculated for planar Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire substrates with back-side /4-MgF2 antireflective layer. In Sec. 4, the fraction of incident light on a 27 µm mesa APD from an isotropic point source at infinity, transmitted into neighboring detectors as shown in Fig. 15, is calculated for planar Si-(AlN)-sapphire and Si-(AlN/SiN0.62)-sapphire substrates with back-side /4-MgF2 antireflective layer.
\n\t\t\tIndirect optical crosstalk through the planar sapphire substrate can be reduced by thinning the sapphire substrate and fabricating microlenses beneath each APD detector pixel as shown in Fig. 7. Although microlenses increase APD-FPA performance as described in Sec. 2.1, they also increase the cost and fabrication complexity of the detector arrays. (Stern & Cole, 2008) It will be shown in detailed analysis and calculations in Sec. 5, that indirect optical crosstalk through the planar sapphire substrate waveguide from light generated by impact ionization or from ambient illumination will not increase detector noise to levels that prevent high sensitivity imaging and therefore, fabricating sapphire microlenses is not an imperative for achieving low noise, high resolution Si/SiGe APD-FPAs using back-illuminated silicon-on-sapphire.
\n\t\t\tThe fraction of light emitted by an APD during detection events, coupled into the sapphire substrate waveguide and transmitted to neighboring detectors thereby contributing to indirect optical crosstalk, can be calculated by modeling and simulation of the mesa APD detector pixel. Using the Monte Carlo method, it is possible to calculate how photons are emitted from the APD multiplication region and transmitted into adjacent mesa APD detector pixels as shown in Fig. 16, for Si-(AlN)-sapphire substrates with back-side /4-MgF2 antireflective layer. The thickness for both the AlN and MgF2 antireflective layers is taken to be 82 nm as indicated in Fig. 16. The high electric field mesa APD multiplication region shown in Fig. 16 is 300-500 nm thick and consists of more highly doped p-type silicon formed by boron impurity diffusion. (Stern & Cole, 2008) Although impact ionization resulting in avalanche multiplication of charge carriers as well as photon emission, occurs throughout the volume of the high electric field region, for modeling purposes, it will be assumed that photons are only emitted isotropically from a single point in the center of the multiplication region located at a height hM = 9 m, above the silicon pixel base plane as shown in Fig. 16.
\n\t\t\t\tUsing the Monte Carlo simulation approach, points are randomly generated in the silicon base plane area of the 27 µm mesa APD. Trajectories of light propagation or optical k-vectors are created by connecting straight lines from the isotropic point source in the multiplication region to the randomly generated points in the silicon base plane area of the 27 µm mesa APD as shown in Fig. 17.
\n\t\t\t\tIndirect optical crosstalk from APD emitted light coupled into the (AlN)-sapphire substrate waveguide.
D ray tracing shows the optical k-vector transmission cone for 280<\n\t\t\t\t\t\t\t\t
In Fig. 17, 3-D ray tracing is used to calculate paths of light propagation for the randomly generated optical k-vectors over a 250 < 0< 1100 nm wavelength range, emitted from the APD multiplication region, transmitted into the sapphire substrate and undergoing multiple reflections. The calculation in Fig. 17 shows that light between the wavelengths of 280-1100 nm (left pixel in Fig. 17) emitted from the isotropic point source in the multiplication region, can only exit the mesa APD through the sapphire substrate waveguide if the optical k-vector from the point source is emitted into a cone characterized by a wavelength dependent solid angle (), subtended by a corresponding circular base area and having height hM = 9 m of the isotropic point source. The calculation also shows that for 250 < 0< 280 nm wavelengths (right pixel in Fig. 17) light can be transmitted into the sapphire substrate through the major part of the 27 m mesa APD base area because the refractive index of Si is smaller than AlN as shown in Fig. 10, and the incidence angle at the AlN-sapphire interface does not exceed the critical angle C except when optical k-vectors with 270 < 0< 280 nm, are incident near the corners of the mesa APD base area. For 280 < 0< 1100 nm wavelengths, the refractive index of silicon is larger than AlN as well as sapphire and total internal reflection (TIR) occurs if the incidence angle of the optical k-vector at the silicon-AlN or AlN-sapphire interface exceeds the critical angle C. The critical angles C for light emission out of the silicon mesa into the AlN and from AlN into the sapphire substrate, depend on the refractive indices of the silicon, AlN and sapphire material layers, that in turn depend on the optical wavelength as shown in Eq. (8).
\n\t\t\t\tIn Eq. (8), the light propagates from a material with refractive index n1 to a material with refractive index n2 where n1> n2. Using Eq. (8), the critical angle C() is calculated in Fig. 18 as a function of wavelength at the Si-AlN (dashed line) and AlN-sapphire (thin solid line) material interfaces. The effective critical angle C-eff(), (thick solid line) shown in Fig. 18, for light transmission from Si into sapphire through AlN, is equal to the critical angle for light transmission directly from Si into sapphire. The corresponding effective, fractional solid angle F for light transmission from Si into sapphire through AlN, as a function of wavelength is calculated as the effective light transmission cone solid angle eff = (C-eff())2 divided by 4 sr solid angle of the sphere into which the isotropic point source emits, as shown in Fig. 19.
\n\t\t\t\tCritical angle for Si-AlN, AlN-Sapphire, Si-Sapphire.
Fractional solid angle of the light transmission cone.
Reducing the fractional solid angle of the light transmission cone calculated in Fig. 19, would help to prevent optical k-vectors with large incidence angle at the Si-AlN and AlN-sapphire interfaces from propagating into the sapphire substrate where they can undergo multiple reflections and transmission into distant APD detectors in the array to produce optical crosstalk at a distance. Reducing the effective fractional solid angle of the light transmission cone requires a large refractive index contrast ratio between the Si semiconductor device layer and the optically transparent supporting substrate and does not depend on the thin antireflective layers such as AlN between the Si and sapphire where nSi> nAlN> nSAPPHIRE.
\n\t\t\t\tIt will be assumed that any optical k-vectors reflected back into the silicon APD by TIR will not have a second pass, or opportunity to escape the mesa pixel by transmission into the sapphire substrate waveguide and even if such TIR optical k-vectors might be transmitted through the (111) sidewalls of the mesa, the light will subsequently be blocked by the anode metal grid and will not contribute to optical crosstalk. Thus, only the optical k-vectors emanating from the isotropic point source in the APD multiplication region and contained by the light transmission cone calculated in Fig. 19 for 280 < 0< 1100 nm wavelengths or contained by the solid angle subtended by most of the silicon mesa base area for 250 < 0< 280 nm wavelengths, will couple into the sapphire substrate and therefore contribute to the indirect optical crosstalk. Using the result from Fig. 19, it is possible to calculate the fraction of light emitted by the isotropic point source in the mesa APD multiplication region that is transmitted through the sapphire substrate to other APD detectors in the array as a function of wavelength. Multiple reflections may occur in the sapphire substrate for the APD emitted light, and such reflections might not necessarily be bounded by the areas of the eight numbered and immediately adjacent 27 m mesa APD detector pixels shown in Fig. 20.
\n\t\t\t\tarray showing eight immediately adjacent APDs.
D ray tracing shows simulated multiple reflections.
The optical transmittance into adjacent detectors numbered 1-8 as well as other detectors outside of the immediately adjacent numbered pixels shown in Fig. 20, is obtained by calculating the fraction of light transmitted into silicon after each successive reflection cycle in the sapphire substrate for an optical k-vector as shown in Fig. 21. The first reflection cycle in the sapphire substrate is indexed as T1 followed by the second and third cycles with index T2, T3 …. TN where TN is the highest calculated reflection in the substrate. The results from Fig. 19 and Fig. 21, are used to calculate the fraction of light emitted by the isotropic point source in the mesa APD multiplication region, that will be transmitted through the sapphire substrate to other APD detectors in the array as a function of wavelength as shown in Figs. 22-23.
\n\t\t\t\tAverage crosstalk distance for 50 m thick sapphire.
Indirect APD optical crosstalk in 50 m thick sapphire.
The average distance of light transmittance points T1, T2 and T3 into the neighboring APD pixels, from the avalanching center mesa APD (shown in Fig. 20) is calculated in Fig. 22 for a 50 m thick sapphire substrate. In Fig. 23, the fraction of light emitted by the isotropic point source in the mesa APD multiplication region and transmitted to neighboring APD pixels is calculated for a maximum of three reflection cycles, T1, T2 and T3, with and without light absorption in the silicon. (Lahbabi et al., 2000) On the first reflection cycle represented by T1 (shown in Figs. 21-23), between 1-5% of the isotropically emitted light from the APD multiplication region having wavelength 280-1100 nm, is transmitted into neighboring pixels while the second reflection cycle T2, transmits 0.1-0.5% and the third reflection cycle T3, transmits 0.05-0.1% of emitted light into the neighboring pixels. The results in Fig. 24 show that the average distance of T1 for a 10 m thick sapphire substrate corresponds to a radius of a circle contained by the eight adjacent pixels of the avalanching center APD shown in Fig. 20.
\n\t\t\t\tAverage crosstalk distance for 10 m thick sapphire.
Indirect APD optical crosstalk in 10 m thick sapphire.
The results in Figs. 22-25 will be analyzed in Sec. 5 for their effect on the signal-to-noise ratio of APD detectors in an array.
\n\t\t\tThe fraction of light emitted by a 27 m mesa APD during detection events, coupled into the sapphire substrate waveguide and transmitted to neighboring detectors thereby contributing to indirect optical crosstalk, can be calculated for very high transmittance Si-(AlN/a-SiN0.62)-sapphire substrates with back-side /4-MgF2 antireflective layer described in Sec. 2.2, by following an approach similar to that in Sec. 3.1 for Si-(AlN)-sapphire substrates. Using the Monte Carlo method, it is possible to calculate how photons are emitted from the APD multiplication region and transmitted into adjacent mesa APD detector pixels as shown in Fig. 26, for silicon-(AlN/a-SiN0.62)-sapphire substrates with back-side /4-MgF2 antireflective layer. The thickness of the AlN, a-SiN0.62 and MgF2 layers is dAlN = 52 nm, da-SiN_0.62 = 30 nm and dMgF2 = 120 nm as indicated in Fig. 26. The high electric field mesa APD multiplication region shown in Fig. 26 is 300-500 nm thick and consists of more highly doped p-type silicon formed by boron impurity diffusion. (Stern & Cole, 2008) Although impact ionization resulting in avalanche multiplication of charge carriers as well as photon emission, occurs throughout the volume of the high electric field region, for modeling purposes it will be assumed that photons are only emitted isotropically from a single point in the center of the multiplication region located at a height hM = 9 m, above the silicon pixel base plane as shown in Fig. 26.
\n\t\t\t\tUsing the Monte Carlo simulation approach, points are randomly generated in the silicon base plane area of the 27 µm mesa APD. Trajectories of light propagation or optical k-vectors are created by connecting straight lines from the isotropic point source in the multiplication region to the randomly generated points in the silicon base plane area of the 27 µm mesa APD as shown in Fig. 27.
\n\t\t\t\tIndirect optical crosstalk from APD emitted light coupled into the (AlN/a-SiN0.62)-sapphire substrate waveguide.
D ray tracing shows the optical k-vector transmission cone for 280<\n\t\t\t\t\t\t\t\t
As in Sec. 3.1, 3-D ray tracing is used in Fig. 27 to calculate paths of light propagation for the randomly generated optical k-vectors over a 250 < 0< 1100 nm wavelength range, emitted from the APD multiplication region, transmitted into the sapphire substrate and undergoing multiple reflections. The calculation in Fig. 27 shows that light between the wavelengths of 280-1100 nm (left pixel in Fig. 27) emitted from the isotropic point source in the multiplication region, can only exit the mesa APD through the sapphire substrate waveguide if the optical k-vector from the point source is emitted into a cone characterized by a wavelength dependent solid angle (), subtended by a corresponding circular base area and having height hM = 9 m of the isotropic point source. The calculation also shows that for 250 < 0< 280 nm wavelengths (right pixel in Fig. 27) light can be transmitted into the sapphire substrate through the major part of the 27 m mesa APD base area because the refractive index of Si is smaller than a-SiN0.62 and AlN as shown in Fig. 10, and the incidence angle at the AlN-sapphire interface does not exceed the critical angle C except when optical k-vectors with 270 < 0< 280 nm, are incident near the corners of the mesa APD base area. For 280 < 0< 1100 nm wavelengths, the refractive index of silicon is larger than a-SiN0.62, AlN as well as sapphire and total internal reflection (TIR) occurs if the incidence angle of the optical k-vector at the silicon-a-SiN0.62, silicon-AlN or AlN-sapphire interface exceeds the critical angle C. The critical angles C for light emission out of the silicon mesa into the a-SiN0.62, from a-SiN0.62 into AlN and from AlN into the sapphire substrate, depend on the refractive indices of the silicon, a-SiN0.62, AlN and sapphire material layers, that in turn depend on the optical wavelength as given by Eq. (8). In Eq. (8) the light propagates from a material with refractive index n1 to a material with refractive index n2 with n1> n2.
\n\t\t\t\tUsing Eq. (8), the critical angle C() is calculated in Fig. 28 as a function of wavelength at the different material interfaces. The effective critical angle C-eff(), (thick solid line) shown in Fig. 28, for light transmission from Si into sapphire through a-SiN0.62 and AlN, is equal to the critical angle for light transmission directly from Si into sapphire. The corresponding effective, fractional solid angle F for light transmission from Si into sapphire through AlN, as a function of wavelength is calculated as the effective light transmission cone solid angle eff = (C-eff())2 divided by 4 sr solid angle of the sphere into which the isotropic point source emits, as shown in Fig. 29.
\n\t\t\t\tCritical angles for material interfaces in the substrate.
Fractional solid angle of the light transmission cone.
Reducing the fractional solid angle of the light transmission cone calculated in Fig. 29, would help to prevent optical k-vectors with large incidence angle at the silicon-a-SiN0.62, a-SiN0.62-AlN and AlN-sapphire interfaces from propagating into the sapphire substrate where they can undergo multiple reflections and transmission into distant APD detectors in the array to produce optical crosstalk at a distance. Reducing the effective fractional solid angle of the light transmission cone requires a large refractive index contrast ratio between the Si semiconductor device layer and the optically transparent supporting substrate and does not depend on the thin antireflective layers such as a-SiN0.62 and AlN between the Si and sapphire where nSi> na-SiN_0.62> nAlN> nSAPPHIRE.
\n\t\t\t\tIt will be assumed as in Sec 3.1 that any optical k-vectors reflected back into the silicon APD by TIR will not have a second pass, or opportunity to escape the mesa pixel by transmission into the sapphire substrate waveguide and even if such TIR optical k-vectors might be transmitted through the (111) sidewalls of the mesa, the light will subsequently be blocked by the anode metal grid and will not contribute to optical crosstalk. Thus, only the optical k-vectors emanating from the isotropic point source in the APD multiplication region and contained by the light transmission cone calculated in Fig. 29 for 280 < 0< 1100 nm wavelengths or contained by the solid angle subtended by most of the silicon mesa base area for 250 < 0< 280 nm wavelengths, will couple into the sapphire substrate and therefore contribute to the indirect optical crosstalk. Using the result from Fig. 29, it is possible to calculate the fraction of light emitted by the isotropic point source in the mesa APD multiplication region that is transmitted through the sapphire substrate to other APD detectors in the array as a function of wavelength. Multiple reflections may occur in the sapphire substrate for the APD emitted light, and such reflections might not necessarily be bounded by the areas of the eight numbered and immediately adjacent 27 m mesa APD detector pixels shown in Fig. 30.
\n\t\t\t\tarray showing eight immediately adjacent APDs.
D ray tracing shows simulated multiple reflections.
The optical transmittance into adjacent detectors numbered 1-8 as well as other detectors outside of the immediately adjacent numbered pixels shown in Fig. 30, is obtained by calculating the fraction of light transmitted into silicon after each successive reflection cycle in the sapphire substrate for an optical k-vector as shown in Fig. 31, using the wave transfer matrix-scattering matrix method discussed in Sec. 2.2. The first reflection cycle in the sapphire substrate is indexed as T1 followed by the second and third cycles with index T2, T3 …. TN where TN is the highest calculated reflection in the substrate. The results from Fig. 29 and Fig. 31, are used to calculate the fraction of light emitted by the isotropic point source in the mesa APD multiplication region, that will be transmitted through the sapphire substrate to other APD detectors in the array as a function of wavelength as shown in Figs. 32-33.
\n\t\t\t\tAverage crosstalk distance for 50 m thick sapphire.
Indirect APD optical crosstalk in 50 m thick sapphire.
The average distance of light transmittance points T1, T2 and T3 into the neighboring APD pixels, from the avalanching center mesa APD (shown in Fig. 30) is calculated in Fig. 32 for a 50 m thick sapphire substrate. In Fig. 33, the fraction of light emitted by the isotropic point source in the mesa APD multiplication region and transmitted to neighboring APD pixels is calculated for a maximum of three reflection cycles, T1, T2 and T3, with and without light self-absorption in the silicon. (Lahbabi et al., 2000) On the first reflection cycle represented by T1 (shown in Figs. 31-33), between 1-5% of the isotropically emitted light from the APD multiplication region having wavelength 280-1100 nm, is transmitted into neighboring pixels while the second reflection cycle T2, transmits 0.1-0.5% and the third reflection cycle T3, transmits 0.05-0.1% of emitted light into the neighboring pixels. The results in Fig. 34 show that the average distance of T1 for a 10 m thick sapphire substrate corresponds to a radius of a circle contained by the eight adjacent pixels of the avalanching center APD shown in Fig. 30.
\n\t\t\t\tAverage crosstalk distance for 10 m thick sapphire.
Indirect APD optical crosstalk in 10 m thick sapphire.
The results in Fig. 34 show that the average distance of T1 for a 10 m thick sapphire substrate corresponds to a crosstalk radius C1CT 40 m of a circle fully inscribed into the square area formed by the eight adjacent pixels of the avalanching center APD shown in Fig. 30, where C1CT< C8-APDs = 40.5 m. Comparing the calculated results obtained in Sec. 3.1-3.2 for indirect optical crosstalk resulting from light emission during impact ionization in 27 m mesa APDs, respectively in Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire substrates with back-side /4-MgF2 antireflective layer, it is evident that the higher transmittance substrate with (AlN/a-SiN0.62) antireflective bilayer, also exhibits higher levels of indirect optical crosstalk. This result is expected since a larger fraction of light at points T1, T2 and T3 will be transmitted from sapphire into neighboring silicon mesa APDs due to the more efficient antireflective (AlN/a-SiN0.62) bilayer between sapphire and silicon compared to the /4-AlN monolayer. In Sec. 3.3, a figure of merit is introduced for comparing the performance of the two different silicon-on-sapphire substrates analyzed in Sec. 3.1-3.2, based on the level of noise increase in the APD detector array resulting from indirect optical crosstalk from light emitted by the avalanche process. The results in Sec. 3.1-3.2 will be analyzed in Sec. 5 to assess their effect on the signal-to-noise ratio of the APD detectors in an array.
\n\t\t\tThe results from the analysis of indirect optical crosstalk for 27 m mesa APDs fabricated in Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire substrates with /4-MgF2 back-side antireflective layer in Sec. 3.1 and 3.2 respectively, show that the latter substrate with more efficient (AlN/a-SiN0.62) antireflective bilayer between sapphire and silicon also produces greater levels of indirect optical crosstalk due to light emitted by the avalanche process. It is useful to be able to describe the levels of indirect optical crosstalk in 27 m mesa APD arrays using silicon-on-sapphire substrates from light emitted by the avalanche process, in terms of a figure of merit that allows comparison of the detector noise performance for the different back-illuminated substrates including Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire.
\n\t\t\t\tFundamentally, optical crosstalk between closely spaced APD detectors in a high resolution array due to light emitted by the avalanche process, produces an increase in the detector noise in the array above the noise level of a standalone detector. To understand how the enhancement or increase in detector noise in an array occurs due to indirect optical crosstalk, it is helpful to consider the examples presented in Figs. 24 and 34, where indirect optical crosstalk from APD emitted light occurs primarily between an APD detector and its eight nearest neighbors, resulting from thinning of the sapphire substrate to dSAPPHIRE = 10 m. Assuming that the APDs are operating either in linear mode with gain or in non-linear Geiger-mode so that impact ionization and avalanche multiplication of charge carriers can occur, then the APD emitted photon flux resulting from impact ionization and avalanche gain will be given by Eq. (9). (Stern & Cole, 2010)
\n\t\t\t\tIn Eq. (9), e describes the average number of thermally generated dark electrons per second and Tabs describes the average number of photogenerated electrons per second where T (shown in Fig. 13) represents the optical power transmittance into the device, abs represents the absorption efficiency of light in the silicon and represents the incident photon flux. In Eq. (9) it is assumed that both photogenerated and thermally generated electrons traversing the multiplication region of the APD produce secondary electrons through avalanche multiplication with an efficiency and a respectively. (Stern & Cole, 2010) The electrons traversing the multiplication region of the APD produce photons with an efficiency P for each traversing electron. A higher average APD gain <G> produces more photons since greater numbers of electrons traverse the multiplication region and the light generating efficiency P(E), depends on the electric field E, in the multiplication region which is greater at higher detector gain. The APD emitted photon flux in Eq. (9) has a wavelength range of 350 < 0< 1100 nm and therefore can be written as APD(). (Akil et al., 1998, 1999)
\n\t\t\t\tIn the 27 m mesa APD arrays analyzed in Secs. 3.1-3.2, the photons generated in the multiplication region and emitted isotropically, can only be transmitted to the eight nearest neighboring pixels through the wafer substrate. An increase in APD detector noise in an array occurs when a fraction of the APD emitted photon flux APD0 from Eq. (9) is transmitted to the neighboring pixels, thereby increasing the multiplied electron flux (Tabs + a\n\t\t\t\t\te), in those devices that in turn increases their emitted photon flux APD, creating a positive feedback effect. The crosstalk generated multiplied electron flux is defined according to Eq. (10).
\n\t\t\t\tIn Eq. (10), CT0 represents the multiplied electron flux generated in neighboring APD detectors as a result of the APD emitted photon flux APD0 given by Eq. (9). The quantity T1 >> T2 >> T3 was calculated in Sec. 3.1-3.2 for Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire substrates with /4-MgF2 back-side antireflective layer and represents the fraction of the isotropically emitted APD light that is transmitted into neighboring APD detectors as shown in Figs. 23 and 33. Since the sapphire substrate dSAPPHIRE = 10 m, the multiplied electron flux CT0 from Eq. (10) is produced in the eight adjacent detectors as shown in Figs. 20 and 30. The eight adjacent APD detectors however, each produce the same multiplied electron flux CT0, in their respective eight adjacent pixels and therefore, the total multiplied electron flux in the APD will increase in a first approximation to (Tabs + a\n\t\t\t\t\te + CT0). Positive feedback will further increase CT and to calculate the increase, an indirect crosstalk parameter D is defined according to Eq. (11).
\n\t\t\t\tThe indirect optical crosstalk parameter D in Eq. (11) represents the ratio between the multiplied electron flux generated in neighboring APD detectors as given by Eq. (10), with respect to the multiplied electron flux in the APD (Tabs + a\n\t\t\t\t\te), due to dark electrons and non-crosstalk, photogenerated electrons shown in Eq. (9). The indirect optical crosstalk parameter D, represents a useful figure of merit for the APD array design, describing the degree of indirect optical crosstalk that occurs through the substrate for different mean gain <G> in the APD. The normal range of values for D should be 0.0 < D < 1.0. A lower D value for a given mean gain <G>, represents a higher performing substrate characterized by lower levels of indirect optical crosstalk. The total multiplied electron flux CT-TOT in the APD due to indirect optical crosstalk can be calculated as shown in Eq. (12), using the indirect optical crosstalk parameter D.
\n\t\t\t\tIn Eq. (12), k takes on integer values from 0 to . It is evident from Eq. (12) that if the value of the indirect optical crosstalk parameter D, is between 0.0 < D < 1.0, then CT-TOT converges, however, if D > 1, then the noise current in the array will increase without bound. In practice, APD quench times in the Geiger-mode will limit the noise current growth, however, the imaging array will become dominated by noise and effectively rendered unusable. The total electron flux in an APD due to indirect optical crosstalk as given by Eq. (12), represents a mean value and should be independent of the distance of indirect optical crosstalk in the sapphire substrate, remaining valid whether the substrate has a thickness dSAPPHIRE = 10 or 50 m.
\n\t\t\t\tThe optical crosstalk parameter D can be calculated using Eqs. (9-11), as a function of the mean detector gain <G>, and different illumination conditions, for imaging arrays comprised of 27 m mesa APDs fabricated using Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire substrates with /4-MgF2 back-side antireflective layer. The values of parameters used to calculate D are given in Table 3.
\n\t\t\t\tParameter | \n\t\t\t\t\t\t\tValue | \n\t\t\t\t\t\t
Pixel size | \n\t\t\t\t\t\t\t27 m | \n\t\t\t\t\t\t
Pixel area, | \n\t\t\t\t\t\t\t72910-8 cm2\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Pixel height | \n\t\t\t\t\t\t\t10 m | \n\t\t\t\t\t\t
Focal plane array size | \n\t\t\t\t\t\t\t1024 x 1024 | \n\t\t\t\t\t\t
FPA side length | \n\t\t\t\t\t\t\t2.7648 cm | \n\t\t\t\t\t\t
FPA area, | \n\t\t\t\t\t\t\t7.644 cm2\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Camera lens focal length | \n\t\t\t\t\t\t\t21 cm | \n\t\t\t\t\t\t
Focal ratio setting, | \n\t\t\t\t\t\t\t5.6 | \n\t\t\t\t\t\t
Camera entrance aperture area, | \n\t\t\t\t\t\t\t11.04 cm2\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Area of the sun’s image projected onto the FPA, | \n\t\t\t\t\t\t\t0.0309 cm2\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Total number of pixels that record the sun’s projected image | \n\t\t\t\t\t\t\t4238 pixels | \n\t\t\t\t\t\t
APD focal plane array temperature | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Photon generation efficiency in APD multiplication region | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Indirect optical crosstalk calculation parameters.
The total unmultiplied electron flux due to photogenerated and dark electrons is calculated for the 27 m mesa APD in Figs. 36-37.
\n\t\t\t\tTotal unmultiplied electron flux (Tabs + e) in APD.
Total unmultiplied electron flux (Tabs + e) in APD.
In Figs. 36 and 37, the unmultiplied total electron flux in the 27 m mesa APD detector fabricated on Si-(AlN)-sapphire or Si-(AlN/a-SiN0.62)-sapphire with /4-MgF2 back-side antireflective layer, is shown to increase as the illumination level at the camera lens increases. The camera lens has focal length F = 21 cm and an aperture stop setting f/# = 5.6 as indicated in Table 3. The APD detector array operating temperature is set to T = 243 K as provided by a two stage thermoelectric cooler. Using the results from Figs. 36-37 with Eqs. (9-11), the indirect optical crosstalk parameter D for APD emitted light is calculated as a function of the average APD gain <G> in Fig. 38, for the lowest illumination condition occurring on a cloudy moonless night.
\n\t\t\t\tOptical crosstalk parameter D as a function of APD detector gain for the lowest natural illumination condition of 0.0001 lux at the camera lens, having focal length F = 21 cm and f/# = 5.6.
The calculation in Fig. 38 considers a worst case example of crosstalk in the FPA, without silicon self-absorption of APD emitted light and approximates the spectral characteristic of the APD emitted photon flux APD0 given by Eq. (9), as having a sharp emission peak at 2 eV corresponding to 0 = 620 nm, rather than a broad emission spectrum of 350 < 0< 1100 nm described by Akil. The theory of Akil assumes that light emission below 2 eV occurs due to indirect interband transitions, while bremsstrahlung generates the emission from 2.0-2.3 eV and above 2.3 eV, direct interband transitions dominate, however, the theory does not consider light self-absorption in silicon. The theory of Lahbabi assumes an indirect interband recombination model and considers self-absorption of light in the silicon which for a multiplication region located at a height h = 9 m above the silicon-sapphire interface in the 27 m mesa APD, will absorb most of the UV and visible light as shown in Figs. 23 and 33, hence the transmission of mainly red light and NIR radiation into the sapphire substrate. Therefore, approximating that APD0 given by Eq. (9) occurs at a monochromatic wavelength 0 = 620 nm corresponding to a photon energy of 2 eV, is consistent with the results of Akil, Lahbabi and Rech, for the 27 m mesa APD design presented here. (Akil et al., 1998, 1999; Lahbabi et al., 2000; Rech et al., 2008)
\n\t\t\t\tThe important result from Fig. 38 confirms that both Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire wafer substrates with /4-MgF2 back-side antireflective layer will support stable APD detector array operation at T = 243 K in both the linear mode and Geiger-mode gain regimes, for the lowest levels of natural illumination of 0.0001 lux at the camera lens. The 27 m mesa APD detector must have an average gain <G> 4 x 106 or <G> 3 x 106 for Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire wafer substrates respectively, to preserve an optical crosstalk parameter D < 1, necessary for stable array operation. Such a value of the gain is three times in magnitude above the commonly recognized <G> = 1 x 106 gain threshold for Geiger-mode operation. The APD detector must therefore be designed and operated in a manner as to prevent the average gain from exceeding the limits for stable array operation. The result from Fig. 38 shows that the planar, high transmittance, back-illuminated, silicon-on-sapphire wafer substrates described, will indeed support stable operation of high quantum efficiency and high resolution 27 m mesa APD detector arrays operating at the lowest level of natural illumination of 0.0001 lux at the camera lens in dual linear and Geiger-mode. Calculations in fact, confirm stable, wide dynamic range operation of the APD array over the full range of natural illumination conditions (shown in Figs. 36-37) from AM 0 in space to the example in Fig. 38 of a cloudy moonless night. In Sec. 4, the indirect optical crosstalk from ambient incident illumination is calculated for the planar, back-illuminated, silicon-on-sapphire wafer substrates supporting high resolution, 27 m mesa APD detector arrays. The contribution of indirect optical crosstalk to the APD detector signal-to-noise ratio (SNR) will be analyzed in Sec. 5.
\n\t\t\tIt has been demonstrated in Sec. 3 that only a relatively small fraction of the photons generated by impact ionization in a 27 µm mesa APD and emitted isotropically, are coupled into the planar sapphire substrate waveguide and transmitted to neighboring detectors, thereby contributing to an overall increase in noise levels in the array. In this section, a similar analysis considers indirect detector array optical crosstalk due to ambient light from a point source at infinity, incident on the back-illuminated, sapphire substrate waveguide undergoing multiple reflections and transmission into adjacent mesa APD detectors as shown in Fig. 15 and Fig. 39.
\n\t\t\tIsotropic point source at infinity illuminates 27 µm mesa APD in 1024x1024 FPA with f/# = 5.6 camera lens.
In Fig. 39, an ideal, isotropic point source of light is assumed to be located at an infinity distance, illuminating a 27 µm mesa APD detector in a 1024x1024 pixel FPA through a camera lens with focal ratio setting f/# = 5.6. The camera lens and aperture stop or iris are circular, therefore, the Airy formula predicts a central disk or spot radius in the image plane for the ideal point source given approximately by Eq. (13).
\n\t\t\tIn Eq. (13), F and D are the camera lens focal length and diameter respectively and 0 is the optical wavelength given in micrometers. The diameter of the central Airy disk will therefore be approximately 5.6 µm as calculated from Eq. (13) with 0 = 0.41 m and f/# = 5.6, which is significantly smaller than the mesa APD detector pixel size of 27 µm. The subsequent analysis and calculation of indirect optical crosstalk will therefore assume that the point source of light at infinity is focused to an infinitesimal rather than a finite diameter point in the image plane, located directly at the center of the 27 µm mesa APD base area as shown in Fig. 39. The optical k-vectors from the infinite distance point source of light arrive at various incidence angles at the image plane after focusing by the camera lens and are transmitted into the sapphire waveguide where they can undergo multiple reflections.
\n\t\t\tA numerical or Monte Carlo simulation approach is used to calculate the fraction of light incident on a pixel which is transmitted to neighboring detectors by multiple reflections in the sapphire substrate. The simulation is performed on a 27 m mesa APD pixel located in the center of the 1024x1024 FPA, aligned with the optical axis of the imaging system shown in Fig. 39. Selecting the center pixel in the FPA for analysis as opposed to selecting a corner pixel, simplifies the indirect optical crosstalk calculation by ensuring that all of the optical k-vectors emanating from the camera lens toward the center point of the pixel in the image plane are meridional rays contained in the same plane as the optical axis, hence there are no skew rays present. In a 1024x1024 APD-FPA with 27 µm pixels and camera lens focal ratio f/# = 5.6 as shown in Fig. 39, the optical crosstalk from light incident at pixels near the corners of the FPA will be greater than for pixels near the optic axis, due to larger optical k-vector incidence angles at corner pixels. The following Sec. 4.1-4.2, analyze and calculate the indirect optical crosstalk from ambient light incident on 27 m mesa APDs fabricated using respectively, Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire substrates with /4-MgF2 back-side antireflective layer.
\n\t\t\tTo study the nature of indirect optical crosstalk in APD-FPAs fabricated on planar, back-illuminated, Si-(AlN)-sapphire substrates with /4-MgF2 back-side antireflective layer without microlenses, due to incident illumination from a point source located at infinity as shown in Fig. 39, a Monte Carlo modeling and simulation approach is used. A 3-D Cartesian coordinate system can be defined where the z-axis represents the optic axis of the camera system as shown Fig. 39, and the camera lens with focal length F = 21 cm is located in the x-y plane at z = -(F + dSAPPHIRE + dAlN + dMgF2). The 1024x1024 APD-FPA with 27 µm mesa pixels is located at z = 0 cm. Figure 40 shows a 3x3 array of 27 m mesa APD detectors and Fig. 41 shows the points of light transmittance T1, T2 and T3 in the sapphire substrate due to multiple reflections, for an optical k-vector incident to the F = 21 cm camera lens with focal ratio setting f/# = 5.6, from a point source located at infinity.
\n\t\t\t\tarray showing eight immediately adjacent APDs.
D ray tracing shows multiple reflections for f/# = 5.6.
In Fig. 42, 3-D ray tracing is used to calculate paths of light propagation for the randomly generated optical k-vectors from a point source at infinity over a 250 < 0< 1100 nm wavelength range, transmitted into the sapphire substrate and undergoing multiple reflections for a camera focal ratio f/# = 5.6. In Fig. 42, even after three reflection cycles, the points of transmittance at T3 occur inside the 27 m mesa pixel base area for the APD aligned with the camera optic axis and located in the center of the 1024x1024 FPA. Therefore, a camera focal ratio setting f/# = 5.6 produces negligible indirect optical crosstalk due to ambient incident light from a point source at infinity that is spatially conjugated to a 27 m mesa APD pixel aligned with the camera optic axis and located in the center of the 1024x1024 FPA. The results from Figs. 41-42, are used to calculate in Fig. 43, the fraction of the light incident at the APD aligned with the camera optic axis and located in the center of the 1024x1024 FPA, that is transmitted at points T1, T2 and T3 following reflections in the sapphire substrate, when the focal ratio setting f/# = 5.6.
\n\t\t\t\tD ray tracing shows minimal crosstalk for f/# = 5.6.
Indirect crosstalk for 50 m thick sapphire and f/# = 5.6.
The Figs. 44-45 show light propagation paths for randomly generated optical k-vectors emitted by a point source at infinity over a 250 < 0< 1100 nm wavelength range, transmitted into the sapphire substrate and undergoing multiple reflections, for camera focal ratios f/# = 16 and f/# = 2.0 respectively.
\n\t\t\t\tD ray tracing shows minimal crosstalk for f/# = 16.
D ray tracing reveals indirect crosstalk for f/# = 2.0.
The indirect optical crosstalk due to incident illumination from a point source at infinity of a 27 m mesa APD pixel coincident with the camera optic axis and located in the center of the 1024x1024 FPA, has been shown to be negligible in planar Si-(AlN)-sapphire substrates with /4-MgF2 back-side antireflective layer, 50 m thick sapphire and no microlenses. Although multiple reflections in the sapphire substrate occur for both the APD emitted light and the ambient incident illumination from a point source at infinity, the effect of the latter can be minimized by setting a higher camera focal ratio of f/# = 5.6 for example, to ensure that the multiple points of transmittance T1, T2 and T3 occur within the area of the illuminated 27 m mesa APD. The same spatial confinement of multiply reflected optical k-vectors cannot be implemented as readily for the APD emitted light.
\n\t\t\tTo study the nature of indirect optical crosstalk in APD-FPAs fabricated on planar, back-illuminated, Si-(AlN/a-SiN0.62)-sapphire substrates with /4-MgF2 back-side antireflective layer without microlenses, due to incident illumination from a point source located at infinity as shown in Fig. 39, a Monte Carlo modeling and simulation approach is used similar to Sec. 4.1. A 3-D Cartesian coordinate system can be defined where the z-axis represents the optic axis of the camera system as shown Fig. 39, and the camera lens with focal length F = 21 cm is located in the x-y plane at z = -(F + dSAPPHIRE + da-SiN_0.62 + dAlN + dMgF2). The 1024x1024 APD-FPA with 27 µm mesa pixels is located at z = 0 cm. Figure 46 shows a 3x3 array of 27 m mesa APD detectors and Fig. 47 shows the points of light transmittance T1, T2 and T3 in the sapphire substrate due to multiple reflections, for an optical k-vector incident to the F = 21 cm camera lens with focal ratio setting f/# = 5.6, from a point source located at infinity.
\n\t\t\t\tarray showing eight immediately adjacent APDs.
D ray tracing shows multiple reflections for f/# = 5.6.
In Fig. 48, 3-D ray tracing is used to calculate paths of light propagation for the randomly generated optical k-vectors from a point source at infinity over a 250 < 0< 1100 nm wavelength range, transmitted into the sapphire substrate and undergoing multiple reflections, for a camera focal ratio f/# = 5.6. In Fig. 48, even after three reflection cycles, the points of transmittance at T3 occur inside the 27 m mesa pixel base area for the APD, which is aligned with the camera optic axis and located in the center of the 1024x1024 FPA. Therefore, a camera focal ratio setting f/# = 5.6 produces negligible indirect optical crosstalk due to ambient incident light from a point source at infinity, that is spatially conjugated to a 27 m mesa APD pixel aligned with the camera optic axis and located in the center of the 1024x1024 FPA. The results from Figs. 47-48, are used to calculate in Fig. 49, the fraction of the light incident at the APD aligned with the camera optic axis and located in the center of the 1024x1024 FPA, that is transmitted at points T1, T2 and T3 following reflections in the sapphire substrate, when the focal ratio setting f/# = 5.6.
\n\t\t\t\tD ray tracing shows minimal crosstalk for f/# = 5.6.
Indirect crosstalk for 50 m thick sapphire and f/# = 5.6.
The Figs. 50-51 show light propagation paths for randomly generated optical k-vectors emitted by a point source at infinity over a 250 < 0< 1100 nm wavelength range, transmitted into the sapphire substrate and undergoing multiple reflections, for camera focal ratios f/# = 16 and f/# = 2.0 respectively.
\n\t\t\t\tD ray tracing shows minimal crosstalk for f/# = 16.
D ray tracing reveals indirect crosstalk for f/# = 2.0.
The focal ratio setting f/# = 2.0 in Fig. 51 produces some, although minimal indirect optical crosstalk due to multiple reflections in the sapphire substrate since the points of transmittance at T1 occur inside the 27 m mesa pixel base area for the APD aligned with the camera optic axis and located in the center of the 1024x1024 FPA.
\n\t\t\tThe sensitivity or signal-to-noise ratio (SNR) of a back-illuminated, wide dynamic range 27 µm mesa APD detector comprising a 1024x1024 pixel focal plane array (FPA), fabricated using Si-(AlN)-sapphire or Si-(AlN/a-SiN0.62)-sapphire substrates with /4-MgF2 back-side antireflective layer, can be degraded by indirect optical crosstalk. Previous calculations have shown that the back-illuminated, 27 m mesa APD detector fabricated on Si-(AlN)-sapphire substrate with /4-MgF2 back-side antireflective layer without a microlens and unaffected by optical crosstalk, will be capable of imaging with high sensitivity and wide dynamic range using dual linear and Geiger-mode, over the full range of natural illumination conditions from AM 0 in space to a cloudy moonless night. (Stern & Cole, 2010) In this section, the sensitivity of the back-illuminated, 27 m mesa APD fabricated without a microlens, is calculated for the lowest level of natural illumination of 0.0001 lux at the camera lens, occurring on a cloudy moonless night. The sensitivity calculation considers the increased noise level in the detector due to indirect optical crosstalk from APD emitted light described in Sec. 3. The indirect optical crosstalk from ambient illumination of pixels described in Sec. 4, however, will not be considered in the detector sensitivity calculation due primarily to improved spatial confinement of optical k-vectors for f/# 5.6, compared to the APD emitted light in Sec. 3. The expressions in Eqs. (14-15) yield the wide dynamic range, 27 m mesa APD detector signal-to-noise ratio with optical crosstalk for the linear and Geiger-mode optical receivers respectively, assuming the optical crosstalk current is independent from the detector photocurrent and dark current.
\n\t\t\tIn Eqs. (14-15), the signal is given by the square of the mean detector photocurrent ip(t), and the noise is given by the sum of the variances of the photocurrent, dark current, optical crosstalk current and electronic readout circuit current, which are all assumed to be independent. The signal-to-noise ratios given by Eqs. (14-15) were previously calculated by Stern for the wide dynamic range 27 m mesa APD without a microlens using Si-(AlN)-sapphire substrate with /4-MgF2 back-side antireflective layer in the absence of optical crosstalk. (Stern & Cole, 2010) The expressions for the photoelectron current variance, dark current variance and electronic readout circuit noise were also derived. (Stern & Cole, 2010) After late dusk, the wide dynamic range 27 m mesa APD can be operated in the non-linear Geiger-mode without saturating the maximum count rate of the detector, for a 50 ns quench time. (Kumar et al., 2004) In the Geiger-mode, the optical receiver sensitivity is calculated according to Eq. (15) where the contribution of the electronic circuit noise has been eliminated by direct photon-to-digital conversion in the detector pixel. (Ghioni et al., 1996)
\n\t\t\tIn Eqs. (14-15), it is assumed that the indirect optical crosstalk current due to APD emitted light iCT is independent from the photocurrent ip and from the dark current iD in the 27 m mesa APD detector, thereby allowing the variances i_p\n\t\t\t\t2, i_D\n\t\t\t\t2 and i_CT\n\t\t\t\t2 to be added as shown. The assumption of independence for ip, iD and iCT in the 27 m mesa APD detector is valid if the total multiplied electron flux CT-TOT given by Eq. (12), due to optical crosstalk from the neighboring pixels is given by the sum of even k terms (k = 0, 2, 4 …). The variance of the crosstalk current i_CT\n\t\t\t\t2 in Eqs. (14-15), due solely to even k term contribution to the total multiplied crosstalk electron flux CT-TOT, has a similar form to the photocurrent variance i_p\n\t\t\t\t2. (Stern & Cole, 2010) The inclusion of odd higher order k terms (k = 1, 3, 5 …) in calculating Eq. (12), would require Eqs. (14-15) to be modified, to account for correlations between the photoelectron current and dark current with the crosstalk current in the 27 m mesa APD. Figure 52 shows the SNR of 27 m mesa APD detectors fabricated on Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire substrates with /4-MgF2 back-side antireflective layer, calculated according to Eq. (15), using a fixed Geiger-mode gain <G> = 1 x 106 and including only the k = 0 term also given by Eq. (10), for calculating the total multiplied electron flux CT-TOT, as given by Eq. (12).
\n\t\t\tSNR of the Geiger-mode APD imager on a cloudy moonless night and 0.0001 lux illumination. The Geiger-mode APD has 8-bit resolution and a quench time of 50 ns.
It is evident in Fig. 52, that indirect optical crosstalk in back-illuminated, high resolution, 27 m mesa APD arrays fabricated on Si-(AlN)-sapphire and Si-(AlN/a-SiN0.62)-sapphire substrates with /4-MgF2 back-side antireflective layer without microlenses, reduces the detector sensitivity from SNR 6 to SNR 4 and from SNR 8 to SNR 5 respectively. Despite indirect optical crosstalk, the Geiger-mode APD-FPA will be capable of imaging at the lowest level of natural illumination of 0.0001 lux at the camera lens at 50 frames per second with 8-bit resolution.
\n\t\tThe detailed analysis in this chapter has confirmed an important result, namely, that the sensitivities of the 27 µm mesa APD detectors comprising back-illuminated, silicon-on-sapphire FPAs without monolithic microlenses, are not degraded by indirect optical crosstalk phenomena to the level that would prevent high sensitivity imaging, even for the highest (Geiger-mode) gain regime of operation. Thus, for all but the most demanding imaging applications, monolithic sapphire microlenses are not required. This result is important because sapphire microlens fabrication and in general any fabrication step adds to the complexity and cost of manufacturing. The calculations and analysis in this chapter have referred primarily to silicon APD detector arrays fabricated using novel, back-illuminated silicon-on-sapphire substrates, however, the substrate technology will inherently support not only silicon, but also epitaxially grown Si(1-X)GeX APD detector arrays. The family of high transmittance silicon-on-sapphire substrates represents a key enabling technology for the next generation of ultrasensitive, solid-state, high quantum efficiency and high resolution avalanche detector arrays. As the novel substrate technology is developed commercially, new as yet to be defined and designed imager concepts will emerge with it.
\n\t\tGranite is one of the most widespread types of a stone in architecture of northern Russian cities such as Saint Petersburg, Vyborg, Priozersk, Primorsk as well as Finish cities such as Helsinki, Lappeenranta, Kotka, Hamina, Kuopio (Finland). The destruction of granite in the northern cities is a result of interrelated physical, chemical, and biological processes [1]. Biogenic weathering is connected with the impact on the rock surface by microorganisms (bacteria, microfungi, and microalgae) as well as lichens and mosses. They form lithobiotic communities which have a noticeable effect on the state of the stone.
The study of this problem seems to be an interdisciplinary task, the solution of which is possible only on the basis of an integrated scientific approach and the use of modern research methods. Organisms of lithobiotic communities are able to actively influence on the mineral substance chemically and physically. They catalyze the destruction of rocks, contributing to the extraction of minerals from them. Microbial activity in combination with atmospheric pollution is one of the features of urban ecosystems that determine the rate of weathering of granite and other types of stone.
Most microorganisms on stone surface exist in the form of biofilms, which are composed of microbial cells and metabolites. Primary biofilms on granite most often consist of cyanobacteria and green algae. Aerophilic green algae are less resistant to adverse conditions than cyanobacteria and need more moisture. Green biofilm usually can be indicator of increased periodic or constant moisture of a stone [2, 3]. As organic matter accumulates on the surface of the stone, the participation of heterotrophic bacteria and fungi in the microbial community increases [4]. The close cooperation in microbial communities contributes to the successful growth and development of biofilms on stony substrates including granite. Biofilms can penetrate into cracks and pores. As a result, the absorption and retention of water in the rock mass increases, the intensity of diffusion and evaporation of water changes, and the processes of dissolution of the stone take place. The growth of biofilms causes pressure on the structural elements of the rock, acts on individual crystals and grains of stone.
Biochemical activity of microbial communities has a strong influence on mineral substance due to producing chemically active compounds such as polysaccharides, lipopolysaccharides, proteins, glycoproteins, lipids, glycolipids, fatty acids, and enzymes [5, 6]. Biomineral interaction leads to the leaching, formation of secondary minerals, primary soil formation, and thus, prepares the conditions for the further biological colonization of the stone.
The state of the stone surface has a particular importance for the biological colonization. A rough (uneven) surface is colonized much better than a smooth one [7]. Rough surface provides more opportunities for attachment and development of microorganisms (local humidity, microcracking, delay of various contaminants that serve as sources of nutrition for microorganisms, etc.). The bio-susceptibility of natural stone may vary depending on the duration and conditions of its exposure in the open air [8].
Thus, natural stone together with biofouling is a peculiar and very complex lithobiotic system, the development of which depends on the properties of the stone, the composition of biological community, and environmental conditions. The aim of our investigation is the analysis of granite biological colonization peculiarities in different environment as well as the estimation of granite changes under the biofouling influence.
The objects of research were selected in urban environment as well as in natural outcrops. Peter and Paul Fortress and monuments of the Museum Necropolises were studied in Saint Petersburg. Vyborg castle, fountain, tunnels, and outcrops in the Monrepos park were observed in Vyborg.
Granite outcrops were examined in the natural park Ristijärvi and on the Owl Mountain (Karelia). Also, four old quarries in the south part of Finland were examined: quarry I – (N 60° 34.207′ E 027° 43.835′); quarry II (N 60° 31.855′ E 027° 39.698′); quarry III (N 60° 32.101′ E 027° 39.823′); quarry IV (N 60° 44.413′ E 028° 00.564′). Granite mining at these quarries has long been discontinued. Currently, they undergo a process of natural overgrowth and are ideal model for studying of natural stone biofouling in low anthropogenic influence. More than 500 samples of destroyed rapakivi granite were investigated from 2013 to 2019. Rapakivi granite, as a rule, had its own unique image: large egg-shaped clusters of feldspar with a diameter of 3–6 cm, surrounded by an edge of greenish-gray plagioclase, placed in a fine-grained matrix of feldspars, quartz, and biotite.
Primary attention was paid to the structure of granite, the presence of cracks, holes, and other surface irregularities, which can serve as a shelter for microorganisms. Traditional cultural methods of mycology and microbiology have been applied for isolation and identification of microorganisms in biofilms on the surface of the granite [9]. Also, metagenomic analysis was used to determine a wide range of microorganisms in biofilms. The work was carried out in the resource center of Saint Petersburg State University “Development of cellular and molecular technologies.” Diversity of bacteria in biofilms on granite was carried out on the basis of the 16S rRNA genes analysis. Metagenomic study of fungal diversity in biofilms on granite was carried out with primers for site amplification ITS1-5.8S–ITS2. For the identification of cyanobacteria, direct microscopy of the samples was used. Cumulative cultures were also obtained in distilled water and in the Gromov 6 medium (period cultivation from week to month). Verification of species in accordance with the current nomenclature was carried out using the electronic database AlgaeBase (http://www.algaebase.org/).
For analysis of small organic molecules in several types of biofilms samples were extracted with 15 mL methanol vigorously mixed and centrifuged (10 min, 400 × g) at room temperature. The supernatant was transferred to a new vial and dryed by a rotary evaporator at 40°C.
The dried extracts were soluble in pyridine (30 μL) and BSTFA (N,O-bis—3-methyl-silyl-3-F-acetamide) (30 μL), incubated at 100°C for 15 minutes. The derivatized samples were analyzed by gas chromatography-mass spectrometry (GC-MS) by Agilent MSD 597, column HP-5MS, 30m × 0.25 mm. Chromatography was carried out with linear temperature programming from 70 to 320° at a speed of 4°C/min. Data were collected using Agilent ChemStation software. Mass spectrometric information was processed and interpreted using AMDIS program (http://www.amdis.net/index.html), standard NIST2005 library, and the library of standard compounds of BIN RAS. Quantitative interpretation of chromatograms was carried out with hydrocarbon using UniChrom program http://www.unichrom.com/unichrome.shtml.
Scanning electron microscopy was used in order to study peculiarities of localization of microorganisms in the surface layer of the stone and to characterize the relationship between lithobiotic organisms during colonization of the granite. Samples of the damaged stone (0.5–1.0 cm × 0.5–1.0 cm) were initially examined under binocular loupe. The criterion of selection for SEM analysis was the presence of structures of microorganisms on the stone surface as well as transformation of the granite surface. The material was examined (after fixation) under the scanning electron microscope in the range of magnification from 100× to 10000×. SEM studies were performed on electron microscope ABT-55 (Japan) and TM 3000 (HITACHI, Japan, 2010) with an attachment of an energy-dispersive microanalysis OXFORD in SPbU Resource Center “Microscopy and Microanalysis.”
The determination of elemental composition in fresh granite and various types of crusts was carried out using inductively coupled plasma (ICP MS, Agilent 7700) in the chemical laboratory of the All-Russian Geological Institute.
For the experiment on the dynamics of granite bioleaching, we took three types of samples from the surface of granite rapakivi from the Monrepos Park (Vyborg): surface layer of granite without biofilms, granite with black (lichens + fungi + cyanobacteria), and with gray (lichens + alga) biofilms. There are no local sources of pollutions in this area. Previously, the samples were powdered. Samples part (2 g) were diluted with 10 mL of bidistilled water each (in a ratio of 1:5) and mounted on a vibration panel for constant mixing of the sample and placed in a thermostat. The experiment lasted about a month. During this period, the temperature in the thermostat was 250C at normal pressure. Aliquots of the solution were taken from the upper part of the flasks in the following time intervals: 1, 3, 6 hours from the beginning of the experiment; then after 1, 3, 8, 11, 14, 18, 22, 28, 32 days. The solution was analyzed with the following parameters: pH, particle size (HORIBA LA-950 nano-sizer), and composition of elements (ICP-MS, Agilent 7700).
There are different types of granite destruction in St. Petersburg, Vyborg, and quarries in Finland: fissuring, granular disintegration, flaking, exfoliation, loss of color, crusts, biofilms of different composition, ovoid weathering, and macrofouling. Primary biological colonization usually connected with the formation of pigmented biofilms. The color and structure of biofilms usually depends on the dominance of certain groups of microorganisms (cyanobacteria, algae, microscopic fungi, and lichens).
Cyanobacteria typically prevailed in primary biofilms, especially in natural outcrops of granite. They formed the basis of lithobiotic communities in most of the studied habitats. Both mono-species and multi-species communities dominated by cyanobacteria were noted. The dominance of specific species often determined the morphology of the whole biofilm. So, on granite in quarry I, a rich biofilm with a dominance of
Lighting also plays an important role in the formation of biofilms on the granite surface. Thus, it was shown by comparative studies of the species composition of cyanobacteria in the Vyborg granite tunnels (with scarce of light) and open areas of granite near tunnels. Under natural lighting, six species of cyanobacteria were identified (for 1 sample):
Dark green to black biofilm is represented by the dominant species
Green algae predominate in the green biofilm; cyanobacteria
White deposits represent a mineral layer and contain neither cyanobacteria nor microalgae;
Cyanobacteria
Different types of biofilms and deposits in the Vyborg tunnels.
It is interesting to note that only five taxa were found in Monrepos Park (Vyborg). This is due to the super dominance of certain species of cyanobacteria in biofilms on the surface of granite (Figures 3–5).
Biofilm formed by the cyanobacteria
Biofilm formed by the cyanobacteria
Biofilm formed by the cyanobacteria from the genera
In total, 78 cyanobacteria taxa belonging to 5 orders, 18 families, and 29 genera were identified in the studied habitats. Quarry IV was the richest in the number of species (Figure 6).
The number of cyanobacterial taxa revealed on the granite in study areas.
The largest number of families (4), genera (8), and species (29) was noted for the order Synechococcales, followed by the order Chroococcales (25 species). The most diverse is the genus
Number of species in the richest genera.
The most common in the studied areas are
The presence of common taxa of cyanobacteria in biofilms on granites in the studied places.
Organotrophic bacteria were also characterized by significant diversity at various granite sites in the city of Vyborg, including Monrepos Park. Their number reached 107 cells per 1 gram of material. A similar picture was observed in St. Petersburg (on the granite monuments of Museum Necropolises). The results of metagenomic analysis show that two main bacterial phyla dominate in biofilms on the granite rapakivi in city environment: Bacteroidetes and Proteobacteria. The Bacteroidetes phyla were characterized by a large presence in black biofilms. A significant part of the lithobiotic communities in all samples of granite was represented by actinomycetes. Acidobacteria were also isolated in a significant amount from black biofilms (Table 1).
Bacteria phyla | Green biofilm | Black biofilm |
---|---|---|
0.2 | 6.6 | |
15.2 | 7.5 | |
13.3 | 40.5 | |
2.7 | 0.0 | |
48.7 | 33.4 |
The dominant groups of organotrophic bacteria in biofilms on granite at the monuments of the Museum Necropolises in St. Petersburg (share according to the results of metagenomic analysis).
In the heterotrophic block of biofilms on the surface of granite, a significant diversity of micromycetes was noted. In total, 64 species of micromycetes were isolated and identified (47 – St. Petersburg, 42 – granite outcrops, and 25 – common species). The domination of dark-colored fungi in biofilms on the granite surface was typical for the urban environment. It is interesting to note that some microfungi were superdominants in biofilms on granite in an urban environment (
Fungal microcolonies on the border of mica (Quarry I).
Fungal microcolonies and short hyphae located on the K-feldspar (Quarry I).
Fungal hyphae in the granite surface of Stasov monument (Museum Necropolis of Saint Petersburg).
As a result of biochemical studies, more than 200 different compounds were found in biofilms samples from granite quarries. Among them were identified: mono, di, and trisaccharides, aliphatic carboxylic acids, amino acids, sugar alcohols, phenolic compounds, diterpenes, sterols, ethanolamine, phosphate, glycerol-3-P, and urea. In samples of biofilms taken in an urban environment only about 100 different low molecular weight organic compounds were identified. In general, the biofilm samples from granite in urban environment had a significantly lower molecular diversity of metabolites than the samples taken in the quarries in Finland. At the same time, the quantitative content of some compounds, primarily sugar alcohols, was significantly higher in biofilms in the urban environment. Most likely, the revealed differences are associated with the species composition of microorganisms in biofilms.
The general patterns of the distribution of small organic molecules depending on the type of biofilms were similar for samples taken in the quarries and in Museum Necropolises (Saint Petersburg). In biofilms with a predominance of algae and cyanobacteria, the amount of mono- and disaccharides, amino acids and organic acids in free form was significantly higher in comparison with other types of biofilms. In samples dominated by fungi, the amount of free-form organic acids was lower and concentration of polyols was higher compared to algae.
Sugar alcohols and phenolic compounds predominated in the fouling formed by lichens. In samples of primary soil with a moss cover, the greatest variety of low molecular weight metabolites was observed; however, their quantitative content was lower than in other samples. The data obtained show the possibility of applying the metabolomic approach to the study of lithobiotic communities in different environment.
To assess the effect of biofouling on the behavior of chemical elements during granite weathering, samples of granite rapakivi were taken in natural outcrops (granite wall) in Monrepos Park (Vyborg neighborhood) where the influence of the urban environment on natural ecosystem is insignificant. This type of granite is commonly called Wiborgite. Wiborgite is a porphyritic, coarse-grained granite with a typical rapakivi texture composed of round 1–3 cm potassium feldspar ovoids with a plagioclase mantle. The color of this rock can be brown, brownish red, red or green. The essential minerals are potassium feldspar, quartz, plagioclase, biotite, and hornblende (Figure 12a and b, Table 2).
Thin skin of rapakivi granite: (a) plagioclase, microcline and biotite with pyrite and zircon; (b) quartz, plagioclase and microcline. XPL (a), PPL (b).
Mineral | Mass % | Mineral | Mass % | Mineral | Mass % |
---|---|---|---|---|---|
Quartz | 24–42% | Muscovite | 0–0.1% | Ilmenite | 0–0.5% |
K-feldspar | 28–42% | Allanite | 0–0.2% | Rutile | 0–0.1% |
Albite | 7–13.7% | Tourmaline | 0–0.2% | Apatite | 0–0.3% |
Andesine | 3–27% | Zircon | 0.1–0.2% | Pyrite | 0.0 |
Amphibole | 0.2–11% | Kaolinite | 0–0.1% | Calcite | 0.0 |
Chlorite | 0.0–0.2% | Thorite | 0-0.1% | Bastnasite | 0–0.9% |
Biotite | 2.9–7.5% | Magnetite | 0–0.1% | Fluorite | 0.2–1.9% |
Mineral composition of rapakivi granite (Wiborgite).
Three types of samples were taken for comparative study: fresh granite, crust without biofilm (3 mm) and crust with biofilm (3 mm). The results of the analysis are presented in Tables 3 and 4.
Samples | SiO | Al | Fe | K | Na | CaO | MgO | TiO | P | MnO | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|
Granite (n = 7) | 70.78 | 13.51 | 3.38 | 5.57 | 3.39 | 2.32 | 0.22 | 0.33 | 0.07 | 0.04 | 0.38 |
Granite crust (n = 7) | 72.19 | 13.05 | 3.19 | 5.29 | 3.11 | 2.06 | 0.20 | 0.34 | 0.08 | 0.04 | 0.46 |
Granite crust with biofilm (n = 7) | 69.51 | 14.50 | 3.54 | 5.41 | 3.34 | 2.29 | 0.23 | 0.36 | 0.06 | 0.03 | 0.76 |
Content of pertogenic oxides in fresh granite and two types of crust (mass%).
Elements | Granite (n = 7) | Crust (n = 7) | Crust with biofilm (n = 7) | CC1 = crust /granite | CC2 = crust with biofilm/granite |
---|---|---|---|---|---|
Ba | 119 | 126 | 121 | 1.06 | 1.02 |
Sr | 12.8 | 8.1 | 15.8 | 0.63 | 1.18 |
Li | 38.3 | 34 | 40.2 | 0.89 | 1.05 |
Sc | 4.88 | 4.36 | 5.1 | 0.89 | 1.05 |
U | 7.37 | 2.37 | 12.4 | 0.32 | 1.68 |
Se | 3.19 | 1.89 | 6.45 | 0.59 | 2.02 |
Mo | 1.66 | 0.22 | 2.83 | 0.13 | 1.70 |
Cd | 0.24 | 0.11 | 0.25 | 0.46 | 1.08 |
Sb | 0.09 | 0.05 | 0.09 | 0.56 | 1.00 |
Ni | 12.6 | 14.6 | 15.5 | 1.16 | 1.23 |
Co | 3.3 | 3.09 | 3.79 | 0.94 | 1.15 |
Cu | 6.28 | 6.1 | 7.98 | 0.97 | 1.27 |
Zn | 65.3 | 72.2 | 79.1 | 1.11 | 1.21 |
As | 11.7 | 10.3 | 11.1 | 0.88 | 0.95 |
Content of trace elements in fresh granite and two types of crust (ppm) and coefficient concentration (CC).
It is shown that the content of almost all petrogenic oxides (except SiO2), decreases in the crust without a biofilm (Table 3). This fact can be explained by the destruction of the granite structure and leaching of the most mobile chemical elements and particles of minerals under the influence of rain and wind. The crust is relatively enriched with the most stable mineral quartz. The organic matter content LOI (loss on ignition) increases slightly in comparison with fresh granite. In the crust with biofilm the situation is different. Particles of weathered granite can be accumulated in a biofilm. This probably explains the fact that the content of almost all basic elements in the crust with biofilm is close to the composition of unaltered granite. The organic matter content in the crust with biofilm is naturally the highest in comparison with other variants.
A similar situation is observed in the behavior of trace elements. It is shown using the concentration coefficient (CC) calculated as the ratio of the content of the element in the crust to its content in not weathered granite. In the weathered crust, in comparison with fresh granite, the removal of most chemical elements is observed (Table 4). The concentration coefficient in this case is less than 1. At the same time, trace elements (Se, Mo, U, Cu, Ni, Zn, and Sr) are accumulated in the crust with the biofilm (concentration coefficient is more than 1).
It is well known that the main environment of migration of chemical elements in the nature is water. Migration of elements in the liquid phase occurs in the form of ions, molecules, and colloidal particles. The chemical composition of water in the hypergenesis zone is formed primarily due to the dissolution of solid phases interacting with water. Granite biofouling may affect this process. For the experiment on the dynamics of granite bioleaching, we took three types of samples from the surface of granite rapakivi from the Monrepos Park (Vyborg): surface layer of granite without biofilms, with black (lichens + fungi + cyanobacteria), and with gray (lichens + alga) biofilms.
As a result, it was shown that the particle size changes over time that reflects the periods of their dissolution and coagulation. On the first day no changes are observed. Further until the 22nd day changes in particles size are observed and then alignment occurs (about 380 nm in size). The curves for the studied variants differ markedly. Largest particle size during the experiment is observed for granite with black biofilm a compared to granite with gray biofilm (Figure 13).
Particles size changes in time for granite, granite with black, and gray biofilms (nm). h – hours; d – days.
A comparison of the graphs of pH changes (Figure 14) shows that at the beginning of the experiment, the pH of solutions for the granite without biofilms and granite with biofilms is different. Amplitude of the pH values changes varies from 6.3 to 7.6 and does not connect with the changes in particles size. Correlation analysis confirmed the absence of any linear dependence of the change in the size of nanoparticle in solution on the pH of the solutions.
pH values changes of solutions (granite, granite with black, and gray biofilms). h – hours; d – days.
The results show the periodic variation of the acid-alkaline properties of the solutions. As a whole, the variant with the black biofilm are characterized by a more alkaline medium; the variant with gray biofilm has a relatively more acidic medium.
In selected aliquots of solutions, the content of chemical elements was determined by the ICP MS method. The highest concentrations of elements in the solutions were observed for K, Na, Mg, and Ca (an example for calcium is shown in Figure 15). This indicates a fairly rapid leaching of these elements from the minerals of the rock, where they are in water-soluble form. Lower contents are typical for a group of elements: Al, Fe, Ba, and Li. Hundreds of mg per liter were found for: Mn, Rb, Sr, and Cs. Thousands of mg were found for the following elements: Sc, V, Ni, Pb, Cu, Zn, Mo, U, Th, Y, La, and Ce. An increased concentration of various groups of elements is observed on the 8th day (K, Na, Ni, As, Cd, and Mo) that can be associated with an increase in the pH of the solution.
Dynamics of the calcium content changes in solutions (mg/L) during the dissolution of granite, granite with gray and black biofilms. h – hours; d – days.
The experimental results demonstrate the different behavior of chemical elements in the absence and presence of biofilms on granite. There is also a different behavior of chemical elements in variants with different types of biofilms. The dissolution of granite with a black biofilm is the least intense, which is especially noticeable on the example of Na, Ca, and Mo. The content of these elements in granite with black biofilm practically does not change in solutions over time. Since fungi dominate in the black biofilm, it can be assumed that the migration of elements into the solution may be limited due to the immobilization of elements by fungal biomass. Due to metabolic processes (the release of organic acids and the binding of metals by specific proteins) as well as the physicochemical properties of the cell wall, fungi can efficiently bind metals and significantly reduce their mobility in solution [6].
Biogenic weathering of granite is connected with the impact on the rock surface by microorganisms of lithobiotic communities (bacteria, microfungi, microalgae, lichens, and mosses). The biological colonization of granite is a multifactorial process. It depends on the composition of the microbiota, the state of the stone, as well as external conditions. The ecological aspect of the problem is determined by the difference between granite biofouling in the anthropogenic (urban) and natural environment. The biofilms on granite are characterized by a wide diversity of cyanobacteria, micromycetes, and organotrophic bacteria. The species composition often determines the features of the appearance of a biofilm, the features of its development on granite, as well as the biochemical composition and degree of impact on granite. Behavior of chemical elements during the bioweathering of granite depends on the type of biofilm in which some elements can be accumulated. This problem seems as an interdisciplinary task and requires the collaboration of biologists and geologists.
The work was carried out in the resource centers of Saint Petersburg State University: “Chemical Analysis and Materials Research Center,” “Development of cellular and molecular technologies,” and “Microscopy and Microanalysis.”
Researches are supported by the European Union, Russia, and Finland (KS 1528 project).
The authors declare no conflict of interest.
IntechOpen books and journals are available online by accessing all published content on a chapter/article level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2022-04-14
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2022-04-14
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"OV-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11630",title:"Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules",subtitle:null,isOpenForSubmission:!0,hash:"9c39aa5fd22296ba53d87df6d761a5fc",slug:null,bookSignature:"Dr. Afef Najjari",coverURL:"https://cdn.intechopen.com/books/images_new/11630.jpg",editedByType:null,editors:[{id:"196823",title:"Dr.",name:"Afef",surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11842",title:"Altimetry - Theory, Applications and Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"b2b6e7b58333453ef7b73416d8fdfaf3",slug:null,bookSignature:"Prof. Tomislav Bašić",coverURL:"https://cdn.intechopen.com/books/images_new/11842.jpg",editedByType:null,editors:[{id:"343125",title:"Prof.",name:"Tomislav",surname:"Bašić",slug:"tomislav-basic",fullName:"Tomislav Bašić"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12104",title:"Viral Outbreaks - Global Trends and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"60828f26feed5832a47a13caac706c08",slug:null,bookSignature:"Prof. Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/12104.jpg",editedByType:null,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11804",title:"CRISPR Technology",subtitle:null,isOpenForSubmission:!0,hash:"4051570f538bd3315e051267180abe37",slug:null,bookSignature:"Dr. Yuan-Chuan Chen",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg",editedByType:null,editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12108",title:"Clinical Trials - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"79472fc7310e9655a881c6d2ad7128b0",slug:null,bookSignature:"Dr. Xianli Lv",coverURL:"https://cdn.intechopen.com/books/images_new/12108.jpg",editedByType:null,editors:[{id:"153155",title:"Dr.",name:"Xianli",surname:"Lv",slug:"xianli-lv",fullName:"Xianli Lv"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11676",title:"Recent Advances in Homeostasis",subtitle:null,isOpenForSubmission:!0,hash:"63eb775115bf2d6d88530b234a1cc4c2",slug:null,bookSignature:"Dr. Gaffar Sarwar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",editedByType:null,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11872",title:"Peripheral Arterial Disease - The Challenges of Revascularization",subtitle:null,isOpenForSubmission:!0,hash:"80be3d16e4c8f89f3501ed408729f695",slug:null,bookSignature:"Prof. Ana Terezinha Guillaumon, Dr. Daniel Emilio Dalledone Siqueira and Dr. Martin Geiger",coverURL:"https://cdn.intechopen.com/books/images_new/11872.jpg",editedByType:null,editors:[{id:"251226",title:"Prof.",name:"Ana Terezinha",surname:"Guillaumon",slug:"ana-terezinha-guillaumon",fullName:"Ana Terezinha Guillaumon"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11533",title:"Advances in Green Electronics Technologies",subtitle:null,isOpenForSubmission:!0,hash:"209fb1d781e97e58e1b2098b8976e2c3",slug:null,bookSignature:"Dr. Albert Sabban",coverURL:"https://cdn.intechopen.com/books/images_new/11533.jpg",editedByType:null,editors:[{id:"16889",title:"Dr.",name:"Albert",surname:"Sabban",slug:"albert-sabban",fullName:"Albert Sabban"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11467",title:"Bismuth-Based Nanostructured Materials",subtitle:null,isOpenForSubmission:!0,hash:"951c872d9d90e13cfe7d97c0af91845e",slug:null,bookSignature:"Dr. William Wilson Anku",coverURL:"https://cdn.intechopen.com/books/images_new/11467.jpg",editedByType:null,editors:[{id:"196465",title:"Dr.",name:"William Wilson",surname:"Anku",slug:"william-wilson-anku",fullName:"William Wilson Anku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11584",title:"Migraine Research",subtitle:null,isOpenForSubmission:!0,hash:"44a6090845f971a215ddf013f1dc2027",slug:null,bookSignature:"Dr. Theodoros Mavridis, Dr. Georgios Vavougios and Associate Prof. Dimos-Dimitrios Mitsikostas",coverURL:"https://cdn.intechopen.com/books/images_new/11584.jpg",editedByType:null,editors:[{id:"320230",title:"Dr.",name:"Theodoros",surname:"Mavridis",slug:"theodoros-mavridis",fullName:"Theodoros Mavridis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:20},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:406},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"830",title:"Railway Engineering",slug:"railway-engineering",parent:{id:"124",title:"Vehicle Engineering",slug:"vehicle-engineering"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:28,numberOfWosCitations:17,numberOfCrossrefCitations:15,numberOfDimensionsCitations:26,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"830",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6065",title:"Modern Railway Engineering",subtitle:null,isOpenForSubmission:!1,hash:"77a5fae5e9451d4e52e9f7cd8f39bdcb",slug:"modern-railway-engineering",bookSignature:"Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/6065.jpg",editedByType:"Edited by",editors:[{id:"108303",title:"Prof.",name:"Ali G.",middleName:null,surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4789",title:"Railway Research",subtitle:"Selected Topics on Development, Safety and Technology",isOpenForSubmission:!1,hash:"2dc03e93f4357a3a62292097597576ad",slug:"railway-research-selected-topics-on-development-safety-and-technology",bookSignature:"Krzysztof Zboinski",coverURL:"https://cdn.intechopen.com/books/images_new/4789.jpg",editedByType:"Edited by",editors:[{id:"174599",title:"Prof.",name:"Krzysztof",middleName:null,surname:"Zboinski",slug:"krzysztof-zboinski",fullName:"Krzysztof Zboinski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"49390",doi:"10.5772/61077",title:"Development of Track Condition Monitoring System Using Onboard Sensing Device",slug:"development-of-track-condition-monitoring-system-using-onboard-sensing-device",totalDownloads:2267,totalCrossrefCites:5,totalDimensionsCites:7,abstract:"Monitoring the conditions of railway tracks is essential for ensuring the railway safety. In-service vehicles equipped with sensors and GPS systems can act as probes to detect and analyse real-time vehicle vibration. Recently, a compact on-board sensing device has been developed. This chapter describes the track condition monitoring system that uses a compact on-board sensing device and diagnosis software. The diagnosis software provides the function of detecting track faults using the root mean square (RMS) of the car-body acceleration. It also allows analysis in the time-frequency domain using wavelet transform. A monitoring experiment in a local railway line showed that the system is effective for practical application.",book:{id:"4789",slug:"railway-research-selected-topics-on-development-safety-and-technology",title:"Railway Research",fullTitle:"Railway Research - Selected Topics on Development, Safety and Technology"},signatures:"Hitoshi Tsunashima, Hirotaka Mori, Masayuki Ogino and Akira\nAsano",authors:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima"}]},{id:"59302",doi:"10.5772/intechopen.74277",title:"Model-Based Fault Analysis for Railway Traction Systems",slug:"model-based-fault-analysis-for-railway-traction-systems",totalDownloads:1365,totalCrossrefCites:1,totalDimensionsCites:5,abstract:"Fault analysis in industrial equipment has been usually performed using classical techniques such as failure modes and effects analysis (FMEA) and fault tree analysis (FTA). Model-based fault analysis has been used during the last several years in order to overcome the limitations of classical methods when complex industrial equipment has to be analyzed. In railway and automotive sectors, the development and validation of new products are based on hardware-in-the-loop (HIL) platforms. In this chapter, a methodology to enhance classical FMEAs is presented. Based on HIL simulations, the objective is to improve the results of the fault analysis with quantitative information about the effects of each fault mode. In this way, the impact of the fault analysis in the design of the traction system, the development of new diagnostic functionalities and in the maintenance tasks will increase.",book:{id:"6065",slug:"modern-railway-engineering",title:"Modern Railway Engineering",fullTitle:"Modern Railway Engineering"},signatures:"Jon del Olmo, Fernando Garramiola, Javier Poza and Gaizka\nAlmandoz",authors:[{id:"149511",title:"Dr.",name:"Gaizka",middleName:null,surname:"Almandoz",slug:"gaizka-almandoz",fullName:"Gaizka Almandoz"},{id:"149644",title:"Dr.",name:"Javier",middleName:null,surname:"Poza",slug:"javier-poza",fullName:"Javier Poza"},{id:"235660",title:"Dr.",name:"Jon",middleName:null,surname:"Del Olmo",slug:"jon-del-olmo",fullName:"Jon Del Olmo"},{id:"241062",title:"Mr.",name:"Fernando",middleName:null,surname:"Garramiola",slug:"fernando-garramiola",fullName:"Fernando Garramiola"}]},{id:"49375",doi:"10.5772/61517",title:"Experimental and Simulation Study of the Superstructure and Its Components",slug:"experimental-and-simulation-study-of-the-superstructure-and-its-components",totalDownloads:2540,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"The issues discussed in this chapter are of interest of both the manufacturers and the experts responsible for condition of the track superstructure. In general, stress in steel elements may affect the energy state, phase changes, and corrosion. It may reduce fatigue strength and cause damage and cracks of the rails. It is one of the causes of accelerated development of standard railhead defects. Proper selection of, e.g., bending process parameters provides uniform distribution and acceptable level of residual stresses in the bent components. Residual stresses that develop during manufacturing process in the railway turnout steel components can change their strength properties. The first part of this chapter presents ultrasonic measurement method and computer simulation that allowed to develop a method to diagnose state and distribution of residual stresses in steel components of the railway turnout (wing rails and switch blades) in the production process. The second part of this chapter includes experimental and simulation studies of superstructure in operational conditions. A track substructure with a crashed stone composite is a solution of reinforced standard track substructure. The results are used to draw conclusions concerning further development and possible modifications of a proposed solution. A significant number of simulation calculations also allow to determine the duration of guaranteed functionality of a reinforced track substructure.",book:{id:"4789",slug:"railway-research-selected-topics-on-development-safety-and-technology",title:"Railway Research",fullTitle:"Railway Research - Selected Topics on Development, Safety and Technology"},signatures:"Jacek Kukulski",authors:[{id:"175842",title:"Ph.D.",name:"Jacek",middleName:null,surname:"Kukulski",slug:"jacek-kukulski",fullName:"Jacek Kukulski"}]},{id:"49716",doi:"10.5772/62080",title:"A Systems View of Railway Safety and Security",slug:"a-systems-view-of-railway-safety-and-security",totalDownloads:4083,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"This chapter approaches the concerns over safety and security of modern mainline and light railways from a systems perspective. It addresses the two key concerns from the view point of systemic emergence arising from the interaction between all the principal constituents of the railway system, namely infrastructure, rolling stock, energy and human element comprising workers, passengers and the neighbours of the railways.",book:{id:"4789",slug:"railway-research-selected-topics-on-development-safety-and-technology",title:"Railway Research",fullTitle:"Railway Research - Selected Topics on Development, Safety and Technology"},signatures:"Ali G. Hessami",authors:[{id:"108303",title:"Prof.",name:"Ali G.",middleName:null,surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}]},{id:"57840",doi:"10.5772/intechopen.71768",title:"Advanced Train Positioning/Communication System",slug:"advanced-train-positioning-communication-system",totalDownloads:1643,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"In the past, in order to ensure train positioning as well as ground-to-train information exchange, railways have adopted various technologies. Over time, each new generation of equipment enriched the global information exchange but, as a consequence, necessitated higher data rate transfers. For the positioning functionality, the existing localisation systems are still limited, since most of them require an infrastructure installation with constraints such as laying equipment between the rails or having high database maintenance requirements and computational costs. Moreover, some of them accumulate errors (odometers and inertial sensors) or offer limited coverage in shadowed areas (GNSS, etc.). Currently, in railway applications, a widely used localization system is based on proprioceptive sensors embarked in the train. This on-board system is coupled to the use of balises located at ground between the rails. These balises are kilometre markers. They are used to compensate for the drift of the localization information computed using the proprioceptive sensors alone, when the train moves. The balises provide absolute localization information whenever the train passes over them. They can also provide spot communication during the short period of time when trains are passing over them. In the first part of this chapter, techniques for achieving train positioning and data exchanges between trains and infrastructure are introduced. In the second part, a new balise is proposed. Particular attention is paid to the contribution of this new solution in terms of localization error and communication performances.",book:{id:"6065",slug:"modern-railway-engineering",title:"Modern Railway Engineering",fullTitle:"Modern Railway Engineering"},signatures:"Fouzia Elbahhar and Marc Heddebaut",authors:[{id:"140822",title:"Dr.",name:"Fouzia",middleName:null,surname:"Elbahhar",slug:"fouzia-elbahhar",fullName:"Fouzia Elbahhar"}]}],mostDownloadedChaptersLast30Days:[{id:"57056",title:"Transmission-Based Signaling Systems",slug:"transmission-based-signaling-systems",totalDownloads:3022,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, we describe the principal communication systems applied to the transmission-based signaling (TBS) systems for railways. Typical examples are communication-based train control (CBTC), European Rail Traffic Management System (ERTMS), and distance to go (DTG). Moreover, to properly address some of the challenges that need to face these systems, we will provide a deep insight on propagation issues related to all the environments (urban, suburban, rural, tunnel, etc.). We will highlight all the communication-related issues and the operational as well. Finally, a detailed survey on the directions of research on all these topics is provided, in order to properly cover this interesting subject. In this research, hot topics like virtual coupling are explained as well.",book:{id:"6065",slug:"modern-railway-engineering",title:"Modern Railway Engineering",fullTitle:"Modern Railway Engineering"},signatures:"Cesar Briso-Rodríguez, Juan Moreno García-Loygorri and Lei Zhang",authors:[{id:"171013",title:"Dr.",name:"Cesar",middleName:null,surname:"Briso",slug:"cesar-briso",fullName:"Cesar Briso"},{id:"216915",title:"Dr.",name:"Juan",middleName:null,surname:"Moreno Garcia-Loygorri",slug:"juan-moreno-garcia-loygorri",fullName:"Juan Moreno Garcia-Loygorri"},{id:"216916",title:"Dr.",name:"Lei",middleName:null,surname:"Zhang",slug:"lei-zhang",fullName:"Lei Zhang"}]},{id:"49375",title:"Experimental and Simulation Study of the Superstructure and Its Components",slug:"experimental-and-simulation-study-of-the-superstructure-and-its-components",totalDownloads:2540,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"The issues discussed in this chapter are of interest of both the manufacturers and the experts responsible for condition of the track superstructure. In general, stress in steel elements may affect the energy state, phase changes, and corrosion. It may reduce fatigue strength and cause damage and cracks of the rails. It is one of the causes of accelerated development of standard railhead defects. Proper selection of, e.g., bending process parameters provides uniform distribution and acceptable level of residual stresses in the bent components. Residual stresses that develop during manufacturing process in the railway turnout steel components can change their strength properties. The first part of this chapter presents ultrasonic measurement method and computer simulation that allowed to develop a method to diagnose state and distribution of residual stresses in steel components of the railway turnout (wing rails and switch blades) in the production process. The second part of this chapter includes experimental and simulation studies of superstructure in operational conditions. A track substructure with a crashed stone composite is a solution of reinforced standard track substructure. The results are used to draw conclusions concerning further development and possible modifications of a proposed solution. A significant number of simulation calculations also allow to determine the duration of guaranteed functionality of a reinforced track substructure.",book:{id:"4789",slug:"railway-research-selected-topics-on-development-safety-and-technology",title:"Railway Research",fullTitle:"Railway Research - Selected Topics on Development, Safety and Technology"},signatures:"Jacek Kukulski",authors:[{id:"175842",title:"Ph.D.",name:"Jacek",middleName:null,surname:"Kukulski",slug:"jacek-kukulski",fullName:"Jacek Kukulski"}]},{id:"59304",title:"Improving Feasibility of High-Speed Train Project: Creating Added Value",slug:"improving-feasibility-of-high-speed-train-project-creating-added-value",totalDownloads:1451,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Infrastructure plays a significant role in increasing economic development by providing access of transportation and improving connectivity. High-speed train (HST), one of mega infrastructure projects, has a positive impact on economic development of a nation. However, the project feasibility requires the maximum value for money and an acceptable risk to attract private investors. This study aims to improve the feasibility of the project by producing a conceptual design of Jakarta-Surabaya high-speed train in Indonesia. Value engineering will be used to evaluate both technical and financial aspects of the project. The methodology uses both qualitative and quantitative approaches through a case study, in-depth interviews, and life-cycle cost analysis. The result shows an optimum route sketching for the project and potential added value to the project. It consists of the solar cell, fiber optic, tourism, and transit-oriented development. The output also generates the division of responsibility between the government and business entity during the project lifecycle regarding the project financing. The institutional scheme will regulate the position and roles for each related stakeholder that was involved in the HST project development.",book:{id:"6065",slug:"modern-railway-engineering",title:"Modern Railway Engineering",fullTitle:"Modern Railway Engineering"},signatures:"Mohammed Ali Berawi",authors:[{id:"207251",title:"Dr.",name:"Mohammed Ali",middleName:null,surname:"Berawi",slug:"mohammed-ali-berawi",fullName:"Mohammed Ali Berawi"}]},{id:"57840",title:"Advanced Train Positioning/Communication System",slug:"advanced-train-positioning-communication-system",totalDownloads:1643,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"In the past, in order to ensure train positioning as well as ground-to-train information exchange, railways have adopted various technologies. Over time, each new generation of equipment enriched the global information exchange but, as a consequence, necessitated higher data rate transfers. For the positioning functionality, the existing localisation systems are still limited, since most of them require an infrastructure installation with constraints such as laying equipment between the rails or having high database maintenance requirements and computational costs. Moreover, some of them accumulate errors (odometers and inertial sensors) or offer limited coverage in shadowed areas (GNSS, etc.). Currently, in railway applications, a widely used localization system is based on proprioceptive sensors embarked in the train. This on-board system is coupled to the use of balises located at ground between the rails. These balises are kilometre markers. They are used to compensate for the drift of the localization information computed using the proprioceptive sensors alone, when the train moves. The balises provide absolute localization information whenever the train passes over them. They can also provide spot communication during the short period of time when trains are passing over them. In the first part of this chapter, techniques for achieving train positioning and data exchanges between trains and infrastructure are introduced. In the second part, a new balise is proposed. Particular attention is paid to the contribution of this new solution in terms of localization error and communication performances.",book:{id:"6065",slug:"modern-railway-engineering",title:"Modern Railway Engineering",fullTitle:"Modern Railway Engineering"},signatures:"Fouzia Elbahhar and Marc Heddebaut",authors:[{id:"140822",title:"Dr.",name:"Fouzia",middleName:null,surname:"Elbahhar",slug:"fouzia-elbahhar",fullName:"Fouzia Elbahhar"}]},{id:"49716",title:"A Systems View of Railway Safety and Security",slug:"a-systems-view-of-railway-safety-and-security",totalDownloads:4083,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"This chapter approaches the concerns over safety and security of modern mainline and light railways from a systems perspective. It addresses the two key concerns from the view point of systemic emergence arising from the interaction between all the principal constituents of the railway system, namely infrastructure, rolling stock, energy and human element comprising workers, passengers and the neighbours of the railways.",book:{id:"4789",slug:"railway-research-selected-topics-on-development-safety-and-technology",title:"Railway Research",fullTitle:"Railway Research - Selected Topics on Development, Safety and Technology"},signatures:"Ali G. Hessami",authors:[{id:"108303",title:"Prof.",name:"Ali G.",middleName:null,surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}]}],onlineFirstChaptersFilter:{topicId:"830",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:86,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:96,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:283,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:138,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:128,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:100,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:26,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum L