\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"4535",leadTitle:null,fullTitle:"Superconductors - New Developments",title:"Superconductors",subtitle:"New Developments",reviewType:"peer-reviewed",abstract:"The chapters included in the book describe recent developments in the field of superconductivity. The book deals with both the experiment and the theory. Superconducting and normal-state properties are studied by various methods. The authors presented investigations of traditional and new materials. In particular, studies of oxides, pnictides, chalcogenides and intermetallic compounds are included. The superconducting order parameter symmetry is discussed and consequences of its actual non-conventional symmetry are studied. Impurity and tunneling effects (both quasiparticle and Josephson ones) are among topics covered in the chapters. Special attention is paid to the competition between superconductivity and other instabilities, which lead to the Fermi surface gapping.",isbn:null,printIsbn:"978-953-51-2133-6",pdfIsbn:"978-953-51-6382-4",doi:"10.5772/58655",price:119,priceEur:129,priceUsd:155,slug:"superconductors-new-developments",numberOfPages:280,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"76b077f4e902ec5e2f51692ed7ff5222",bookSignature:"Alexander Gabovich",publishedDate:"August 24th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4535.jpg",numberOfDownloads:18809,numberOfWosCitations:4,numberOfCrossrefCitations:3,numberOfCrossrefCitationsByBook:4,numberOfDimensionsCitations:3,numberOfDimensionsCitationsByBook:4,hasAltmetrics:0,numberOfTotalCitations:10,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 19th 2014",dateEndSecondStepPublish:"June 16th 2014",dateEndThirdStepPublish:"September 13th 2014",dateEndFourthStepPublish:"December 12th 2014",dateEndFifthStepPublish:"January 11th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"142100",title:"Dr.",name:"Alexander",middleName:null,surname:"Gabovich",slug:"alexander-gabovich",fullName:"Alexander Gabovich",profilePictureURL:"https://mts.intechopen.com/storage/users/142100/images/3739_n.jpg",biography:"Alexander M. Gabovich, borne in 1946, Kiev, Ukraine. Graduated cum laude from the Physical Department of Kiev State University in 1969. Majored in theoretical physics, with emphasis on the nuclear physics. Received the PhD in Physics and Mathematics from the Institute of Physics of the Ukrainian National Academy of Sciences (Kiev) in 1976. Received the Doctor\\'s degree in Physics and Mathematics from the Institute of Low Temperature Physics and Engineering of the Ukrainian National Academy of Sciences in 1990 (Kharkov). Leading Research Associate of Crystal Physics Department, Institute of Physics of the Ukrainian National Academy of Sciences (Kiev). Research interests: Superconductivity, phase transitions, electronic properties of surfaces, biophysics, history of sciences, poetry. More than 300 scientific and tutorial publications.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Institute of Physics",institutionURL:null,country:{name:"Ukraine"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"741",title:"Electronic Engineering",slug:"electronic-engineering"}],chapters:[{id:"47965",title:"Superconductivity and Physical Properties in the KxMoO2-δ",doi:"10.5772/59672",slug:"superconductivity-and-physical-properties-in-the-kxmoo2-",totalDownloads:1595,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"L. M. S. Alves, B. S. de Lima, M. S. da Luz and C. A. M. dos Santos",downloadPdfUrl:"/chapter/pdf-download/47965",previewPdfUrl:"/chapter/pdf-preview/47965",authors:[{id:"172541",title:"Dr.",name:"Leandro",surname:"Alves",slug:"leandro-alves",fullName:"Leandro Alves"}],corrections:null},{id:"47862",title:"Characterization of the Electronic Structure of Spinel Superconductor LiTi2O4 using Synchrotron X-ray Spectroscopy",doi:"10.5772/59601",slug:"characterization-of-the-electronic-structure-of-spinel-superconductor-liti2o4-using-synchrotron-x-ra",totalDownloads:1940,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Chi-Liang Chen and Chung-Li Dong",downloadPdfUrl:"/chapter/pdf-download/47862",previewPdfUrl:"/chapter/pdf-preview/47862",authors:[{id:"146575",title:"Dr.",name:"Chi-Liang",surname:"Chen",slug:"chi-liang-chen",fullName:"Chi-Liang Chen"},{id:"146584",title:"Dr.",name:"Chung-Li",surname:"Dong",slug:"chung-li-dong",fullName:"Chung-Li Dong"}],corrections:null},{id:"47838",title:"A Fluorine-Free Oxalate Route for the Chemical Solution Deposition of YBa2Cu3O7 Films",doi:"10.5772/59359",slug:"a-fluorine-free-oxalate-route-for-the-chemical-solution-deposition-of-yba2cu3o7-films",totalDownloads:1518,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Luis De Los Santos Valladares, Juan Carlos González, Angel\nBustamante Domínguez, Ana Maria Osorio Anaya, Henry Sanchez\nCornejo, Stuart Holmes, J. Albino Aguiar and Crispin H.W. Barnes",downloadPdfUrl:"/chapter/pdf-download/47838",previewPdfUrl:"/chapter/pdf-preview/47838",authors:[{id:"171849",title:"Dr.",name:"Luis",surname:"De Los Santos Valladares",slug:"luis-de-los-santos-valladares",fullName:"Luis De Los Santos Valladares"}],corrections:null},{id:"47783",title:"Gap Structures of A-15 Alloys from the Superconducting and Normal-State Break-Junction Tunnelling",doi:"10.5772/59338",slug:"gap-structures-of-a-15-alloys-from-the-superconducting-and-normal-state-break-junction-tunnelling",totalDownloads:1753,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Toshikazu Ekino, Alexander M. Gabovich, Akira Sugimoto, Yuta\nSakai and Jun Akimitsu",downloadPdfUrl:"/chapter/pdf-download/47783",previewPdfUrl:"/chapter/pdf-preview/47783",authors:[{id:"142100",title:"Dr.",name:"Alexander",surname:"Gabovich",slug:"alexander-gabovich",fullName:"Alexander Gabovich"},{id:"162395",title:"Prof.",name:"Toshikazu",surname:"Ekino",slug:"toshikazu-ekino",fullName:"Toshikazu Ekino"},{id:"172280",title:"Dr.",name:"Akira",surname:"Sugimoto",slug:"akira-sugimoto",fullName:"Akira Sugimoto"},{id:"172281",title:"Mr.",name:"Yuta",surname:"Sakai",slug:"yuta-sakai",fullName:"Yuta Sakai"},{id:"172282",title:"Prof.",name:"Jun",surname:"Akimitsu",slug:"jun-akimitsu",fullName:"Jun Akimitsu"}],corrections:null},{id:"47744",title:"New Prospective Applications of Heterostructures with YBa2Cu3O7-x",doi:"10.5772/59364",slug:"new-prospective-applications-of-heterostructures-with-yba2cu3o7-x",totalDownloads:1579,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"M. I. Faley, O. M. Faley, U. Poppe, U. Klemradt and R. E. Dunin-\nBorkowski",downloadPdfUrl:"/chapter/pdf-download/47744",previewPdfUrl:"/chapter/pdf-preview/47744",authors:[{id:"24663",title:"Prof.",name:"Michael",surname:"Faley",slug:"michael-faley",fullName:"Michael Faley"}],corrections:null},{id:"47785",title:"High Critical Current Density MgB2",doi:"10.5772/59492",slug:"high-critical-current-density-mgb2",totalDownloads:1853,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Wenxian Li and Shi-Xue Dou",downloadPdfUrl:"/chapter/pdf-download/47785",previewPdfUrl:"/chapter/pdf-preview/47785",authors:[{id:"10861",title:"Prof.",name:"Shi-Xue",surname:"Dou",slug:"shi-xue-dou",fullName:"Shi-Xue Dou"},{id:"171918",title:"Dr.",name:"Wenxian",surname:"Li",slug:"wenxian-li",fullName:"Wenxian Li"}],corrections:null},{id:"48107",title:"Spintronics Driven by Superconducting Proximity Effect",doi:"10.5772/59942",slug:"spintronics-driven-by-superconducting-proximity-effect",totalDownloads:2117,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Guoxing Miao",downloadPdfUrl:"/chapter/pdf-download/48107",previewPdfUrl:"/chapter/pdf-preview/48107",authors:[{id:"172545",title:"Prof.",name:"Guoxing",surname:"Miao",slug:"guoxing-miao",fullName:"Guoxing Miao"}],corrections:null},{id:"48065",title:"The Superconducting Order Parameter in High-Tc Superconductors – A Point-Contact Spectroscopy Viewpoint",doi:"10.5772/59587",slug:"the-superconducting-order-parameter-in-high-tc-superconductors-a-point-contact-spectroscopy-viewpoin",totalDownloads:1283,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"M. Tortello and D. Daghero",downloadPdfUrl:"/chapter/pdf-download/48065",previewPdfUrl:"/chapter/pdf-preview/48065",authors:[{id:"172497",title:"Dr.",name:"Mauro",surname:"Tortello",slug:"mauro-tortello",fullName:"Mauro Tortello"},{id:"173092",title:"Dr.",name:"Dario",surname:"Daghero",slug:"dario-daghero",fullName:"Dario Daghero"}],corrections:null},{id:"48041",title:"How to Distinguish the Mixture of Two D-wave States from Pure D-wave State of HTSC",doi:"10.5772/59180",slug:"how-to-distinguish-the-mixture-of-two-d-wave-states-from-pure-d-wave-state-of-htsc",totalDownloads:1348,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Peter Brusov and Tatiana Filatova",downloadPdfUrl:"/chapter/pdf-download/48041",previewPdfUrl:"/chapter/pdf-preview/48041",authors:[{id:"171973",title:"Prof.",name:"Peter",surname:"Brusov",slug:"peter-brusov",fullName:"Peter Brusov"}],corrections:null},{id:"47925",title:"Measurements of Stationary Josephson Current between High- Tc Oxides as a Tool to Detect Charge Density Waves",doi:"10.5772/59590",slug:"measurements-of-stationary-josephson-current-between-high-tc-oxides-as-a-tool-to-detect-charge-densi",totalDownloads:1349,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Alexander M. Gabovich, Mai Suan Li, Henryk Szymczak and\nAlexander I. Voitenko",downloadPdfUrl:"/chapter/pdf-download/47925",previewPdfUrl:"/chapter/pdf-preview/47925",authors:[{id:"142100",title:"Dr.",name:"Alexander",surname:"Gabovich",slug:"alexander-gabovich",fullName:"Alexander Gabovich"}],corrections:null},{id:"48262",title:"Impurity Effects in Iron Pnictide Superconductors",doi:"10.5772/59629",slug:"impurity-effects-in-iron-pnictide-superconductors",totalDownloads:1304,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Yuriy G. Pogorelov, Mario C. Santos and Vadim M. Loktev",downloadPdfUrl:"/chapter/pdf-download/48262",previewPdfUrl:"/chapter/pdf-preview/48262",authors:[{id:"172456",title:"Dr.",name:"Yuriy",surname:"Pogorelov",slug:"yuriy-pogorelov",fullName:"Yuriy Pogorelov"},{id:"172471",title:"Prof.",name:"Vadim",surname:"Loktev",slug:"vadim-loktev",fullName:"Vadim Loktev"},{id:"172472",title:"MSc.",name:"Mario",surname:"Santos",slug:"mario-santos",fullName:"Mario Santos"}],corrections:null},{id:"48044",title:"Theory of Flux Cutting for Type-II Superconducting Plates at Critical State",doi:"10.5772/59512",slug:"theory-of-flux-cutting-for-type-ii-superconducting-plates-at-critical-state",totalDownloads:1176,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Carolina Romero-Salazar and Omar Augusto Hernández-Flores",downloadPdfUrl:"/chapter/pdf-download/48044",previewPdfUrl:"/chapter/pdf-preview/48044",authors:[{id:"172449",title:"Dr.",name:"Carolina",surname:"Romero-Salazar",slug:"carolina-romero-salazar",fullName:"Carolina Romero-Salazar"},{id:"172453",title:"Dr.",name:"Omar Augusto",surname:"Hernández-Flores",slug:"omar-augusto-hernandez-flores",fullName:"Omar Augusto Hernández-Flores"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"65",label:"highly cited contributor"}]},relatedBooks:[{type:"book",id:"2184",title:"Superconductors",subtitle:"Materials, Properties and Applications",isOpenForSubmission:!1,hash:"7f461cfafd2559bdba19a2189359a046",slug:"superconductors-materials-properties-and-applications",bookSignature:"Alexander Gabovich",coverURL:"https://cdn.intechopen.com/books/images_new/2184.jpg",editedByType:"Edited by",editors:[{id:"142100",title:"Dr.",name:"Alexander",surname:"Gabovich",slug:"alexander-gabovich",fullName:"Alexander Gabovich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3333",title:"Micro Electronic and Mechanical Systems",subtitle:null,isOpenForSubmission:!1,hash:"587c603004cde573fc9fca7baef0c060",slug:"micro-electronic-and-mechanical-systems",bookSignature:"Kenichi Takahata",coverURL:"https://cdn.intechopen.com/books/images_new/3333.jpg",editedByType:"Edited by",editors:[{id:"4541",title:"Prof.",name:"Kenichi",surname:"Takahata",slug:"kenichi-takahata",fullName:"Kenichi Takahata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4598",title:"Ferroelectric Materials",subtitle:"Synthesis and Characterization",isOpenForSubmission:!1,hash:"0a1b887e8f700fddbf9686538317a660",slug:"ferroelectric-materials-synthesis-and-characterization",bookSignature:"Aime Pelaiz Barranco",coverURL:"https://cdn.intechopen.com/books/images_new/4598.jpg",editedByType:"Edited by",editors:[{id:"14679",title:"Dr.",name:"Aimé",surname:"Peláiz-Barranco",slug:"aime-pelaiz-barranco",fullName:"Aimé Peláiz-Barranco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6765",title:"Flexible Electronics",subtitle:null,isOpenForSubmission:!1,hash:"cff79f8bf37b0651dec3f20a936fd498",slug:"flexible-electronics",bookSignature:"Simas Rackauskas",coverURL:"https://cdn.intechopen.com/books/images_new/6765.jpg",editedByType:"Edited by",editors:[{id:"195783",title:"Dr.",name:"Simas",surname:"Rackauskas",slug:"simas-rackauskas",fullName:"Simas Rackauskas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6592",title:"Green Electronics",subtitle:null,isOpenForSubmission:!1,hash:"9e9601377edfbf1502eab5f0c7baba86",slug:"green-electronics",bookSignature:"Cristian Ravariu and Dan Mihaiescu",coverURL:"https://cdn.intechopen.com/books/images_new/6592.jpg",editedByType:"Edited by",editors:[{id:"43121",title:"Dr.",name:"Cristian",surname:"Ravariu",slug:"cristian-ravariu",fullName:"Cristian Ravariu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10287",title:"Smart Metering Technologies",subtitle:null,isOpenForSubmission:!1,hash:"2029b52e42ce6444e122153824296a6f",slug:"smart-metering-technologies",bookSignature:"Inderpreet Kaur",coverURL:"https://cdn.intechopen.com/books/images_new/10287.jpg",editedByType:"Edited by",editors:[{id:"94572",title:"Dr.",name:"Inderpreet",surname:"Kaur",slug:"inderpreet-kaur",fullName:"Inderpreet Kaur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64875",slug:"erratum-introductory-chapter-primary-concept-of-hypoxia-and-anoxia",title:"Erratum - Introductory Chapter: Primary Concept of Hypoxia and Anoxia",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64875.pdf",downloadPdfUrl:"/chapter/pdf-download/64875",previewPdfUrl:"/chapter/pdf-preview/64875",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64875",risUrl:"/chapter/ris/64875",chapter:{id:"62932",slug:"introductory-chapter-primary-concept-of-hypoxia-and-anoxia",signatures:"Shrilaxmi Bagali, Gavishsidappa A. Hadimani, Mallanagouda S. Biradar and Kusal K. Das",dateSubmitted:"June 18th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"December 12th 2018",book:{id:"7009",title:"Hypoxia and Anoxia",subtitle:null,fullTitle:"Hypoxia and Anoxia",slug:"hypoxia-and-anoxia",publishedDate:"December 12th 2018",bookSignature:"Kusal K. Das and Mallanagouda Shivanagouda Biradar",coverURL:"https://cdn.intechopen.com/books/images_new/7009.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",fullName:"Kusal Das",slug:"kusal-das",email:"kusaldas@yahoo.com",position:null,institution:null},{id:"188854",title:"Prof.",name:"M.S.",middleName:null,surname:"Biradar",fullName:"M.S. Biradar",slug:"m.s.-biradar",email:"editor.bjhs@bldeuniversity.ac.in",position:null,institution:null},{id:"263841",title:"Dr.",name:"Shrilaxmi",middleName:null,surname:"Bagali",fullName:"Shrilaxmi Bagali",slug:"shrilaxmi-bagali",email:"shrikots@yahoo.in",position:null,institution:null},{id:"265434",title:"Dr.",name:"Gavishiddappa A.",middleName:null,surname:"Hadimani",fullName:"Gavishiddappa A. Hadimani",slug:"gavishiddappa-a.-hadimani",email:"gavish.hadimani@yahoo.com",position:null,institution:null}]}},chapter:{id:"62932",slug:"introductory-chapter-primary-concept-of-hypoxia-and-anoxia",signatures:"Shrilaxmi Bagali, Gavishsidappa A. Hadimani, Mallanagouda S. Biradar and Kusal K. Das",dateSubmitted:"June 18th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"December 12th 2018",book:{id:"7009",title:"Hypoxia and Anoxia",subtitle:null,fullTitle:"Hypoxia and Anoxia",slug:"hypoxia-and-anoxia",publishedDate:"December 12th 2018",bookSignature:"Kusal K. Das and Mallanagouda Shivanagouda Biradar",coverURL:"https://cdn.intechopen.com/books/images_new/7009.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",fullName:"Kusal Das",slug:"kusal-das",email:"kusaldas@yahoo.com",position:null,institution:null},{id:"188854",title:"Prof.",name:"M.S.",middleName:null,surname:"Biradar",fullName:"M.S. Biradar",slug:"m.s.-biradar",email:"editor.bjhs@bldeuniversity.ac.in",position:null,institution:null},{id:"263841",title:"Dr.",name:"Shrilaxmi",middleName:null,surname:"Bagali",fullName:"Shrilaxmi Bagali",slug:"shrilaxmi-bagali",email:"shrikots@yahoo.in",position:null,institution:null},{id:"265434",title:"Dr.",name:"Gavishiddappa A.",middleName:null,surname:"Hadimani",fullName:"Gavishiddappa A. Hadimani",slug:"gavishiddappa-a.-hadimani",email:"gavish.hadimani@yahoo.com",position:null,institution:null}]},book:{id:"7009",title:"Hypoxia and Anoxia",subtitle:null,fullTitle:"Hypoxia and Anoxia",slug:"hypoxia-and-anoxia",publishedDate:"December 12th 2018",bookSignature:"Kusal K. Das and Mallanagouda Shivanagouda Biradar",coverURL:"https://cdn.intechopen.com/books/images_new/7009.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11253",leadTitle:null,title:"Sustainable Rural Development",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe quest to ensure sustainable rural development is at the human well-being in rural areas, peace and justice, good governance, and international partnership the decades-long quest to improve new development methods and sustainable approaches continues in our sustainability systems. Beginning with the UN and EU reports, most local Institutes of researches have set ambitious agendas for the rural community to increase the number of rural families saved by agriculture-related errors and preventable adverse events.
\r\n\tTo viable rural development has a vital role for rural communities. In the design of policies to be successful that affect them rural people have to decide and implement. According to this, it is a critical point to involve the poor and disadvantaged, along with related stakeholders, agricultural and rural development. Hence, for the sustainable development by international initiatives and all other institutions were searched and to be present the agricultural and related research results. To help support the effort, various governmental and non-governmental agencies established fundings for sustainable rural development research and fostered the development of human well-being goals in rural areas via national and international initiatives. In this context, most efforts resulted in successful cases. This book will intend to provide the reader with a comprehensive overview of the theory, approaches, strategies, and cases, and key elements and challenges of sustainable development, and Bioeconomy, Green and Circular economy for sustainability, and UN SDGs-Agenda 2030 and EU Green Deal.
\r\n\tI believe that this work will be fundamental in the field of SDG, and it will be a guiding, idea-generating key for researchers, practitioners, rural community, and policy decision-makers, and I hope that together we will establish sustainable rural life and development around the world.
\r\n\t
A
A ferroelectric transition is usually associated with the condensation of a soft (or low-frequency) mode of lattice motion at the Brillouin-zone centre. Structural transitions triggered by zone-centre soft modes are generally termed ferrodistortive, and in this sense ferroelectrics constitute a subgroup of the class of ferrodistortive transitions. This subgroup involves the condensation of a polar or optically active mode whose condensation causes the appearance of a long rage polar order. If the transition is strongly first order then mode softening may not occur to a significant degree, and in this situation, there is also a possibility that the large polarization which sets in discontinuously at T
Although most ferroelectrics are ferrodistortive (common examples being barium titanate, sodium nitrite, and triglycine sulphate) some are not. To understand this it is necessary to recognize that, because of the existence of coupling between modes, it is not a necessary condition for ferroelectricity that a zone centre polar mode should be driving the instability. Sometimes a driving antidistortive mode can couple directly or indirectly to a zone centre polar mode and upon condensation induce a small spontaneous polarization in an indirect fashion. In this case the primary order parameter is antidistortive in character while the spontaneous polarization is said to be a secondary order parameter of the transition. There can of course be only one primary order parameter (at least for a continuous or near continuous transition), but there may be many induced or secondary order parameters resulting from couplings to the primary order parameter. All the known antiferroelectrics (examples: lead zirconate, ammonium dihydrogen phosphate etc.) are intrinsically antidistortive, although one can conceive of a ferrodistortive antiferroelectric as one having an antiparallel arrangement of electric dipoles occurring within a primitive cell of the higher-symmetry phase. Such a phase is characterized by the condensation of an antipolar zone-centre soft mode.
Once the importance of coupling between polar modes and other modes has been recognized it is clear that, via the piezoelectric interaction (or coupling to acoustic modes), a spontaneous strain will be virtually a universal characteristic of ferroelectrics since all ferroelectrics are piezoelectric. If this strain can be switched by application of stress then an obvious parallel in elastic terms exists with ferroelectricity. This property is termed ferroelasticity, and a crystal is said to be ferroelastic when it has two or more orientation states in the absence of mechanical stress (and electric field) and can be shifted from one to another of these states by mechanical stress. Intrinsic ferroelastic transitions are associated with the condensation of long-wavelength acoustic phonons and many are known.
The optical and acoustic phonon modes involved in ferroelectric and ferroelastic phase transitions can be probed with Brillouin light scattering and ultrasonic techniques. When phonon modes soften, the involved elastic constants undergo anomalous variations which get reflected in ultrasound velocity and attenuation. Elaborate reviews on these subjects have appeared in literature (Luthi & Rehwald, 1980; Cummins, 1990). Other popular techniques used to probe modes in ferroelectrics are dielectric spectroscopy (Grigas, 1996) and neutron scattering (Dorner, 1981). A number of books and reviews on these subjects have appeared in literature (Lines & Glass, 1977). Though technique like measurement of thermal conductivity across phase transition can reveal information about the coupling between ferroelectric soft modes and thermal phonons, not many measurements have appeared in literature on this. The few measurements that have appeared in literature have used the well established steady-state methods of measuring thermal conductivity (Dettmer et al., 1989).
There are several ferroelectrics that undergo successive phase transitions with incommensurate phases (I-phase) from a symmetrical paraelectric to an incommensurate phase at Ti and then from the incommensurate phase to a commensurate polar phase at T
where C,
In the few measurements of the variations of thermal conductivity near ferroelectric phase transitions reported in literature, steady state methods have been employed. One of the first measurements was on BaTiO3 by Mante & Volger (1967). Their results show dips in thermal conductivity at temperatures corresponding to phase transition points. The results are explained in terms of mode conversion near the transition points. The low lying temperature dependant optical phonon branches can get zero energy at zero wave-vector, which causes permanent polarization of the crystal. Near the transition temperature the optical branches have energies comparable to those of the acoustic branches which usually transport the heat. This influences the number of scattering processes in which optical phonons participate, resulting in a reduction of the conductivity due to acoustic branches. In case transverse optical phonon branch shows enough dispersion and is not scattered too much, one can expect additional conductivity which might compensate for the effect of decreased conduction by the acoustic phonons.
Thermal conductivities and specific heat capacities of a wide spectrum of ferroelectrics, BaTiO3, PbTiO3, KNbO3, KTaO3, NaNbO3 and Pb(Mg1/3Nb2/3)O3 (PMN) single crystals have been measured from 2 to 390 K (Tachibana et al., 2008). Pronounced jumps are found at structural transitions in BaTiO3 and KNbO3. A low-temperature anomaly from soft optical phonons is observed in KTaO3. For PMN and NaNbO3, glass-like behaviour is observed in both thermal conductivity and heat capacity measurements. The glass-like behaviour in NaNbO3 is associated with the phase separation phenomena which have been reported in earlier studies. Thermal analysis techniques such as differential scanning calorimetry (DSC) have been employed by several researchers to probe ferroelectric phase transitions (Setter & Cross, 1980, Podlojenov et al., 2006).
Belov & Jeong (1998) have reported thermal conductivity measurements for two ferroelectric crystals, (NH4)2BeF4 and Rb2ZnCl4, with incommensurate phases. It is found that anomalies exist in the thermal conductivities of these crystals in the I-phases. I-modulation waves cause anomalies in the heat transport processes by scattering of heat carrying phonons rather than by their direct participation as heat carriers. They have employed the steady-state technique for their measurements. Comparatively large samples, of size typically greater than 5 mm3, are needed for these techniques in order to avoid boundary effects. Moreover, comparatively large rises in temperature are often necessary to obtain a reasonably high signal to-noise ratio, which lead to considerable temperature gradients being set up in the sample. These drawbacks make these techniques unsuitable for studying critical thermal conductivity behaviour near phase transitions.
Thermal wave measurements based on a photothermal effect, such as the photothermal deflection technique, photoacoustic method and photopyroelectric measurement do not disturb the thermal equilibrium of the sample during transitions. In these techniques one measures the thermal diffusivity, rather than thermal conductivity. Thermal diffusivity measurements do not suffer from heat losses from the sample during measurements and hence are more accurate than a direct measurement of thermal conductivity by the steady state method. With a proper choice of boundary conditions, photothermal techniques make a simultaneous measurement of thermal diffusivity and thermal effusivity possible, from which the thermal conductivity and specific heat capacity can be extracted. The photopyroelectric technique has been used earlier to measure the variations of thermal conductivity and heat capacity of a few crystalline solids as they undergo phase transitions with temperature (Marinelli et al., 1990; Zammit et al., 1988; Mandelis et al., 1985).
Complete characterization of the thermal properties of a material requires the determination of the thermal transport properties such as the thermal conductivity as well as the specific heat capacity. Techniques for high resolution measurement of specific heat capacity are well established (Kasting et al., 1980; Thoen et al., 1982). It has been shown that photothermal techniques allow simultaneous measurement of specific heat capacity c
A photothermal technique for the simultaneous determination of the thermal conductivity and specific heat capacity near solid state phase transitions using a pyroelectric detector kept in contact with a thermally thick backing medium has been developed by Menon & Philip (2000). The PPE technique has some distinct advantages, such as its simplicity, good sensitivity and ability to perform nondestructive probing, over other photothermal methods. In this measurement the sample is heated by a modulated light source on one side and the temperature oscillations on the opposite side of the sample are detected with a pyroelectric detector, supported on a thermally thick conductive backing. Since the PPE signal depends on properties of the detector which are also temperature dependent, an accurate temperature calibration of the system must be carried out. The advantage of a thermally thick backing is that there will be sufficient heat exchange between the heated pyroelectric detector and the backing, so that signal fluctuations are reduced to a minimum. This method can, in principle, be adapted to all temperature ranges for all samples and is not limited by the thermal properties of the sample.
The PPE effect is based on the use of a pyroelectric transducer to detect the temperature rise due to periodic heating of a sample by induced light. The temperature variations in the detector give rise to an electrical current, which is proportional to the rate of change of the average heat content, given by (Mandelis & Zver, 1985)
where P is the pyroelectric coefficient of the detector, A is the area of the detector and
is the spatially averaged temperature variation over the thickness of the detector, L
For a thermally thick sample with
where T is the temperature and c
A temperature calibration of the PPE detector is necessary here as all the parameters in equations (Eq. 4.a) and (Eq. 4.b) are temperature dependent. All the thermal parameters can be calculated as functions of the sample temperature, provided that the temperature dependences of the parameters of the pyroelectric detector are known.
A sample set-up of the type shown in Fig. 1 is generally used for these measurements (Menon & Philip, 2000). A 120 mW He - Cd laser of λ = 442 nm, modulated by a mechanical chopper, has been used as the optical heating source. A 28 μm thick film of PVDF with pyroelectric coefficient P = 0.25 ×10−8 V cm−1 K−1 at room temperature has been used as the pyroelectric detector. The sample is attached to the pyroelectric detector with a thermally very thin layer of a heat sink compound whose contribution to the signal is negligible. The pyroelectric detector attached to the sample is placed on a thermally thick backing medium (copper) which satisfies the boundary condition specified above. The frequency of modulation of the light is kept high enough to ensure that the PVDF film, the sample and the backing medium are all thermally thick. The signal output is measured with a lock-in amplifier. The sample-detector-backing assembly is enclosed in a chamber whose temperature can be varied and controlled as desired. Measurements as a function of temperature have been made at a low heating rate with special care near transition points. A block diagram of the experimental set up is shown in Fig. 2 for illustration.
The experimental set up and procedure should be calibrated and tested to ensure that even minor variations in heat capacity and thermal conductivity do get reflected in the measurements. Practically one measures the PPE amplitude and phase as function of modulation frequency, limiting the frequency to low values so that the sample, detector and backing are all thermally thick. From the amplitude and phase variations one can determine the thermal effusivity and thermal diffusivity following equations (Eq. 4.a) and (Eq. 4.b) respectively. From the values of thermal diffusivity and thermal effusivity, the values of thermal conductivity and specific heat capacity can be determined following equations (Eq. 5.a) and (Eq. 5.b).
The sample configuration for the photopyroelectric set-up
Block diagram of the experimental set-up used for PPE measurements
Practically one measures the photopyroelectric signal amplitude and phase as function of modulation frequency. One will have inverse frequency dependence for the amplitude and phase beyond the critical frequency when the boundary conditions assumed are satisfied. A fitting of the variations of PPE amplitude and phase with the relations connecting thermal diffusivity and effusivity with phase and amplitude respectively enables one to determine the thermal diffusivity and effusivity. Typical variations of PPE amplitude and phase with modulation frequency obtained during PPE measurements in K2SeO4 are shown in figures 3 a and 3b respectively. The peaks in the curves correspond to characteristic modulation frequency for the sample.
The variations in the thermal properties of the ferroelectric crystal Triglycine sulphate (TGS) were reported by Menon & Philip (2000). TGS crystals undergo a para–ferroelectric phase transition at 49.4 °C. This crystal has a monoclinic structure at room temperature. Platelets of the crystal of sub-millimeter thickness were cut with faces normal to a, b and c axes so that the direction of propagation of thermal waves was along one of the axes. A very thin layer of carbon black was coated onto the illuminated surface of the sample to enhance its optical absorption. Measurements were carried out as a function of temperature from room temperature (26 °C) to 55 °C. The thermal thickness of the sample in these experiments was verified by plotting the PPE amplitude and phase against modulation frequency at a number of temperatures between room temperature and 55 °C. The variations of the PPE amplitude and phase as functions of temperature were measured keeping the modulation frequency fixed at 40 Hz. From these, the thermal diffusivity (α
Frequency dependence of the photo-pyroelectric amplitudes along the three principal axes of K2SeO4 at room temperature (
Frequency dependence of the photopyroelectric phases along the three principal axes of K2SeO4 at room temperature (
Ferroelectric crystals, which exhibit incommensurate phase transitions include ammonium fluroberrylate (Iizumi & Gesi, 1977), potassium selenate (Iizumi et al., 1977), sodium nitrite (Yamada et al., 1963), thiourea (Goldsmith & White, 1959) etc. Thiourea, with the chemical formula SC (NH2)2, undergoes successive phase transitions at 169 K (T1), 176 K (T2), 180 K (T3) and 202 K (T4). Among the five phases (called I, II, III, IV and V) in the order of increasing temperature, two of them (I and III) are ferroelectric and a superlattice structure appears in the II, III and IV phases (Elcombe & Tayler, 1968). The crystal structure in the room temperature phase V above T4 is orthorhombic and belongs to the space group D162
In the three intermediate phases, II, III and IV between T1 and T4, Shiozaki (1971) analyzed X-ray reflection spectra and concluded that the crystal has an in-commensurate structure. According to his analysis, just above T4 the crystal has a superstructure along the c-axis with a period about eight times as large as that of phase IV. The period of the super structure increases as temperature decreases. So in the vicinity of T1, the period is about ten times as large and at T1 the crystal transforms to the ferroelectric phase I, where the period of the unit cell of the prototype is restored. More elaborate descriptions of the properties of thiourea are available in literature (Wada et al., 1978, Moudden et al., 1978, Mc Kenzie, 1975a, Mc Kenzie, 1975b, Delahaigue et al., 1975, Chapelle & Benoit, 1977).
The thermal properties described above during the incommensurate-commensurate phase transition in thiourea were measured employing PPE technique (Menon & Philip, 2003). Measurements have been done along the three principal directions of thiourea and the observed anisotropy in thermal transport is discussed. The crystals were cut with their faces normal to the [100], [010] and [001] directions of the crystallographic a-, b- and c-axes respectively. Measurements were carried out illuminating the three cut sample faces so that the propagation of the thermal wave is along one of the symmetry directions. The variations of thermal conductivity and heat capacity as functions of temperature across the transition temperatures were measured as outlined above.
Variations of the thermal diffusivity (inverted triangles) and thermal effusivity (triangles) with temperature for TGS along the b axis (
It was seen that both PPE amplitude and phase clearly reflect the three successive phase transitions in thiourea. The maximum anomaly was at T1, the temperature at which transition to an in-commensurate phase took place. Anomalies were measured along a, b
Variations of the thermal conductivity (inverted triangles) and heat capacity (triangles) with temperature along the b-axis (
and c directions at the same temperatures. The maximum variation was seen along the b-direction, the direction in which the crystal possesses spontaneous polarization in the ferroelectric phase. Fig. 5a shows the variations of thermal diffusivity and thermal effusivity with temperature along the b-axis of thiourea single crystal. As can be seen in this figure, thermal diffusivity shows a decrease with temperature, with distinct minima at the three phase transition points at T1 ≈169 K, T3 ≈176K and T4 ≈ 202 K, in agreement with the already reported values of transition temperatures. Thermal effusivity exhibits an inverse behaviour. It increases with temperature, with sharp peaks occurring at the transition temperatures. Taking into account the various uncertainties of the measurement, the overall uncertainty in the values of α and e are estimated to be less than 5%. Similar anomalies with smaller magnitudes have been obtained for the a- and c-directions as well.
Figure 5b shows the variation of heat capacity of thiourea with temperature. As can be seen in this figure, the three transitions get clearly reflected in the temperature variation of heat capacity as clear anomalies at the transition points. These heat capacity values agree with the values reported by earlier workers (Hellwege & Hellwege, 1969). As can be seen, there is no direction dependence for heat capacity. Figure 5c shows the temperature variation of thermal conductivity along the three symmetry directions (a, b and c) of thiourea. The thermal conductivity exhibits significant anisotropy, as is evident from Fig. 5 c. The three transitions get clearly reflected in the thermal conductivity variations as well. The maximum anomaly at the transition temperatures is seen along the b-axis. The maximum thermal conduction occurs in the direction of predominant covalent bonding, which is along the b-axis in thiourea. This is the direction of spontaneous polarization in this crystal.
Dicalcium Lead Propionate (DLP, with chemical formula Ca2Pb (C2H5COO) 6, belonging to the family of double propionates, is ferroelectric below 333K along the c- axis (Nakamura et al 1965). It undergoes a para to ferro electric phase transition at 333K (Tc1), which is a second
Temperature variations of thermal diffusivity and thermal effusivity along the b-axis of thiourea single crystal. Similar variations to a lesser extend were exhibited by a- and c-directions (
Temperature variation of heat capacity along three principal directions of thiourea single crystal. The inset shows the variation of heat capacity between 160 K and 220 K along the b-axis (
order one. Upon decreasing the temperature further, it undergoes another phase transition at 191K (Tc2), which is first order. The transition at Tc1 is associated with the movement of the ethyl group (C2H5) (Nakamura et al., 1978), but the one at Tc2 is still not understood
Temperature variations of thermal conductivity along three principal directions of thiourea single crystal. (
well. Even below this transition temperature the material continues to remain ferroelectric. Based on the measurement of the hydrostatic pressure dependence of the crystal structure of DLP above and below the respective phase transitions, Gesi & Ozawa (1975) have proposed that the phases above and below Tc2 are isomorphous to each other. However, on the basis of polarizing microscopic observations and dielectric constant measurements, Gesi (1984) has concluded that the two phases above and below Tc2 are not isostructural.
The crystal structure of DLP is tetragonal at room temperature (Ferroni & Orioli, 1959). The lead atoms are located at 4a positions and calcium atoms at 8b positions. Studies on the pyroelectric properties of DLP associated with its phase transitions have led to the conclusion that DLP crystal between Tc1 and Tc2 is tetragonal and polar, the point group in this phase being C
Even though the specific heat of DLP was reported way back in 1965 (Nakamura et al., 1965), other thermal properties such as thermal conductivity were not. Moreover, systematic thermal analysis following thermogravimetry or scanning calorimetry through Tc1 and Tc2 have not been reported. These measurements in DLP through the transition temperatures have been reported by Manjusha & Philip (2008). These authors have reported thermal transport properties of the sample, thermal diffusivity, effusivity, conductivity and specific heat capacity as a function of temperature following PPE technique. The anisotropy in thermal diffusivity/conductivity along the principal axes as well as their variation through these transition temperatures was measured.
The variations of thermal properties, shown in figures 6 a and 6b, clearly indicate that the thermal properties undergo anomalous variations during phase transitions at 191 K and 333 K. In general, the thermal diffusivity and thermal conductivity show an anomalous decrease during transitions, whereas the heat capacity shows a corresponding anomalous increase. Being an electrical insulator crystal, the major contribution to the heat capacity of DLP is from lattice phonons and the electronic contribution to heat capacity is very small. As the phonon modes undergo variations due to mode instability at the transition points, they absorb excess energy giving rise to enhancement in heat capacity. This is found to get reflected in the DSC curve as well. Again, during the transitions, the phonon mean-free path increases, resulting in a decrease in thermal resistance or a corresponding increase in thermal diffusivity and thermal conductivity. The anisotropy in thermal conductivity is not very high for this crystal. The maximum thermal conduction occurs along the c-axis, which is the direction of spontaneous polarization.
Variation of thermal diffusivity and thermal effusivity for DLP crystal, cut with faces normal to the c-axis (
Many experimental and theoretical studies have been carried out by different workers to understand the mechanisms of phase transitions in potassium selenate (K2SeO4) single crystals, ever since the discovery of ferroelectricity and successive phase transitions in this crystal (Aiki et al., 1969). With the occurrence of ferroelectric phase, this material undergoes an incommensurate phase (IC phase) transition. Potassium selenate undergoes three successive phase transitions at temperatures T1 = 745 K, T2 = 129.5 K and T3 = 93 K (Aiki et al 1969). The crystal exhibits hexagonal structure in phase I, with space group D
Variation of thermal conductivity and specific heat capacity for DLP crystal, cut with faces normal to the c-axis (
group D16 2h (Pnam) at T1 (Kalman et al 1970). Then, phase II changes into an incommensurate one (phase III) at T2 (Iizumi et al., 1977); this is a second order phase transition. It undergoes an IC phase transition at T3, below which the crystal is commensurate and ferroelectric with a small spontaneous polarization along the c direction.
Many experimental studies such as dielectric measurements (Aiki et al., 1969, Aiki et al., 1970), X-ray and neutron diffraction (Iizumi et al., 1977; Ohama, 1974; Terauchi et al., 1975), ESR (Aiki, 1970), Raman and Brillouin scattering (Wada et al., 1977a; Wada et al., 1977b; Yagi et al., 1979), ultrasound velocity, attenuation and dispersion studies (Hoshizaki et al., 1980; Shiozaki, 1977) etc have been reported near T2 and T3. The variations in specific heat capacity and thermal expansion of K2SeO4 in the low temperature phase have also been reported before (Aiki et al., 1970; Gupta et al., 1979). Thermal expansion along the c-axis exhibits a discontinuity at the incommensurate to commensurate transition. Specific heat measurements show anomalies at T2 and T3, indicating that the transition at T2 is second order and that the one at T3 is first order (Aiki et al., 1970). In spite of all these measurements reported at temperatures T3 and T2, only very few experimental results have been reported near T1 ( Unruh et al., 1979; Inoue et al., 1979; Cho & Yagi, 1980; Gupta et al., 1979) because of the inherent difficulties involved in carrying out precision experiments at high temperatures. The variation of the specific heat capacity across the structural transition at T1 has not been reported so far for this material. More experimental data are still required for a better understanding of the high temperature phase of this material.
The thermal diffusivity, thermal conductivity and heat capacity of K2SeO4 as it goes through the IC phase between 129.5 and 93 K have been measured by Philip & Manjusha (2009). The anisotropy in thermal conductivity along the three principal directions of this crystal and its variation with temperature are brought out and discussed by these authors. Differential scanning calorimetric (DSC) measurements across the high temperature phases have been carried out to determine anomalies in enthalpy during transition from phase I to phase II, and the calorimetric ratio method adopted to determine the variation of specific heat capacity with temperature across the high temperature transition point T1. The results from PPE and calorimetric measurements have been combined to plot the variation of specific heat with temperature through all the four phases of K2SeO4, and the results discussed below.
PPE measurements were done at temperatures between 85 and 300 K. Thermal diffusivity and effusivity along the c axis, plotted against temperature are shown in Fig. 7 a. From the diffusivity and effusivity values, the values of the thermal conductivity and specific heat capacity have been computed, and these are plotted in Fig 7 b. Since the values of these thermal parameters for a and b axes are not very different from the corresponding values obtained for the c-axis, they are not reproduced. It can be noticed that the thermal conductivity along the c axis, which is the direction of spontaneous polarization for this crystal, is slightly more than that along a- or b-axis at all temperatures. The anisotropy in thermal conductivity is small and decreases as the temperature is lowered. The variations along the c axis clearly indicate that the thermal properties undergo anomalous variation during phase transitions at 93 and 129.5 K. Thermal conductivity and heat capacity exhibit maxima at the phase transition temperatures 93 and 129.5 K. Moreover, there is an overall enhancement in thermal conductivity in the IC phase of K2SeO4 between 93 and 129.5 K. The maxima in thermal conductivity at the phase transition temperatures can be explained in terms of the increase in phonon mean free path or decrease in phonon–phonon and phonon–defect collision rates. Again, the anomalous variation in specific heat capacity is due to softening of phonon modes and the corresponding enhanced contribution of phonon modes to the specific heat capacity.
The IC phase in K2SeO4 has been observed experimentally as satellite peaks in the x-ray and neutron diffraction patterns (Iizumi et al., 1977). In the IC phase of K2SeO4 at temperatures close to T2, the incommensurate modulation wave is pure harmonic. But as the temperature approaches T3, nonlinear phase modes, which are equally spaced commensurate constant phase domains separated by narrow phase varying regions called phase solitons, emerge. The presence of these modulation waves or phase solitons can influence heat conduction in ferroelectric crystals in two different ways, as outlined below.
The phase solitons can affect the mean free path of thermal phonons via scattering and hence can cause anomalous variation of thermal conductivity in the IC phase. Another possibility is that the modulation waves themselves can act as heat carriers, resulting in an enhancement in thermal conductivity. Whether the thermal conductivity increases or decreases during an IC phase transition depends on which factor dominates in the process. One can isolate thermal conductivity enhancement in the IC phase by computing the value of (λ − λbg) where λ is the total thermal conductivity and λbg is the background thermal conductivity in the absence of occurrence of IC modulation. In general, for an insulating crystal, λbg follows an inverse temperature (T) variation.
The theory of heat conduction in a ferroelectric crystal with a two-component order parameter has been developed by Levanyuk and co-workers (Levanyuk et al., 1992). The theory considers heat conduction along the modulation axis of a system that undergoes IC phase transition. According to this, the thermal conductivity due to phase solitons is given by
where c0 and γ are constants and ρ is the magnitude of the order parameter. One can see that the phase solitons enhance the thermal conductivity of K2SeO4 in the IC phase. It has also been shown that the enhancement in thermal conductivity is related to the excess specific heat ce due to order parameter fluctuation as
Variation of the thermal diffusivity and thermal effusivity along the c- axis of K2SeO4 (
Variations of the thermal conductivity along the c axis and specific heat capacity of K2SeO4 (
This explains the enhancement in specific heat in the modulation phase of the crystal. Even without the effects expressed in equations (Eq. 6) and (Eq. 7), the modulation waves can cause anomalies in (λ − λbg) by strongly scattering the heat carrying phonons. In the IC phase between 93 and 129.5 K, one can note that the background thermal conductivity and the specific heat decrease gradually as the temperature increases. This variation of thermal conductivity is normal for a solid, but the variation of the specific heat is just opposite to the normal behaviour for solids. This can be attributed to the increase in the heat capacity of the modulation waves with decrease in temperature. As the system approaches the low temperature commensurate phase, it becomes more and more ordered, resulting in a decrease in entropy or increase in heat capacity. The modulation waves are so strong in the IC phase that the contribution of modulation waves to the overall heat capacity of the system is much more than the contribution of normal phonon modes to heat capacity. This results in an overall increase in heat capacity as the temperature decreases in the IC phase. The DSC curve during the heating cycle shows a clear peak occurring at 745 K, indicating that the phase transition at this temperature is endothermic. The variation of specific heat capacity with temperature up to a temperature well above 745 K has been determined by the DSC ratio method. These results have been combined with the results shown in figure 7b to plot the variation of heat capacity with temperature encompassing all the four phases of K2SeO4. This is shown in Fig. 8. So figure 8 contain the variation of specific heat of K2SeO4 through all the three transition temperatures T1, T2 and T3 (and through all the four phases). The anomalous variation of heat capacity during transitions can be understood as due to softening of the phonon modes and the corresponding enhanced contribution of phonon modes to the specific heat capacity of the system.
In order to estimate the quantity of excess heat capacity due to the structural phase transition at 745 K, the contribution of the normal heat capacity shall be subtracted from the measured molar heat capacity. The background lattice heat capacity was approximated by a third-order polynomial. The excess of the molar heat capacity Δ Cp was plotted against (T − Tc) and it is found to have a shape typical for a continuous phase transition. At T = Tc, Δ Cp is found to be 0.112 ± 0.003 J K−1 mol−1. The specific heat critical exponent α was obtained from the slope of log (Δ Cp) versus log (T − Tc). The value of α is found to be −0.0853 ± 0.0002, which is close to zero. This value for α is typical for a mean field model of a phase transition (Strukov & Levanyuk, 1998). The Landau theory gives a simple relation between the excess entropy and the order parameter P
One can acquire more information about the nature of the phase transition from the excess entropy Δ S. The most direct way to determine Δ S is from a measurement of the excess heat capacity as a function of temperature:
The transition entropy has been calculated from the above equation, and is obtained as Δ S = 0.49 ± 0.03 J K−1 mol−1. This is typical of a structural phase transition. However, this is much smaller than the transition entropy predicted by the order-disorder model in the mean field theory. Other mechanisms such as tunnelling may have to be taken into account to reduce this discrepancy with experiment.
Variation of the specific heat capacity with temperature through all the four phases of K2SeO4. The inset shows the variation close to the high temperature transition point (
The results presented in the above section show that a photothermal technique such as the photopyroelectric technique is a convenient and sensitive one to measure thermal conductivity and specific heat capacity of ferroelectric crystals as they undergo phase transitions. Photothermal techniques do not suffer from the disadvantages of steady state techniques. In a photothermal technique one actually measures the thermal diffusivity which is independent of heat losses from the sample. With a careful control of the sample boundary conditions the PPE technique has proven to be a sensitive and convenient one to measure thermal transport properties of solids that undergo ferroelectric phase transitions.
Even though not much attention has been paid to the measurement of thermal properties for probing phase transitions in solids, it is now more and more obvious that thermal transport measurements yield critical information to throw more light on fine features of ferroelectric transitions, particularly those involving incommensurate modulation of the lattice. Measurement of fine features of the variations of thermal conductivity and specific heat capacity with temperature, without disturbing the system, provides valuable information about the interactions involved in the processes.
The author thanks University Grants Commission (New Delhi) and Cochin University of Science and Technology for financial support provided for the publication of this article.
Oxygen is a potentially toxic molecule, although the aerobic organisms must survive. During biochemical reactions vital to living organisms, oxygen reduced, resulting in intermediate metabolic products known as reactive oxygen species (ROS), which cause oxidative damage to many tissues. ROS is called “oxidant” or “free radical” due to the oxidative destruction they create and form in all living organisms that metabolize molecular oxygen [1]. Free radicals are very short-lived reagents, separating other electrons around high-energy electrons and disrupting their structure. Therefore, free radicals are dangerous to the organism [2, 3].
There are many defense mechanisms in the organism to prevent ROS formation and the damage caused by them. These mechanisms are generally called “antioxidant defence systems” or “antioxidants” for shortly [4]. Antioxidants serve in the body by controlling the metabolization and levels of free radicals formed as a result of normal metabolism or pathological conditions and preventing or repairing the damage that may occur by these radicals [5, 6]. In the living organism, there is a balance between the rate of formation and elimination of free radicals. This balance is called the “oxidative balance” that prevents the body from being affected by free radicals. If the oxidative balance is disturbed in favor of free radicals, oxidative stress occurs, which is one of the factors that ultimately causes damage to cells and tissues [7, 8].
All biomolecules are subject to free radical attack. But among them, lipids are the most easily affected [9]. The membranes and cell organelles that surround the cells contain a large amount of unsaturated fatty acids (PUFA). Due to the high affinity of the oxygen molecule to PUFA in the cell membrane, there is a close relationship between the two. Oxygen binds to double ligaments in PUFA found in tissues, causing lipid peroxidation [10, 11]. Lipid peroxidation is a harmful chain reaction. It can directly damage the membrane structure or damages by producing reactive aldehydes. These compounds are either metabolized at the cell or diffuse damage from initial domains to other parts. Thus, the structure of lipids in the cell membrane is disturbed, permeability for ions increases and cell death occurs [12].
Reactive nitrogen species (RNS) are another reactive species group that is as important as ROS. Nitric oxide (NO), a free radical, is the most substantial member of this group. It has the ability to directly or indirectly affect cells and tissues. As it can directly affect itself, while indirect are mediated RNS produced the interaction of NO with superoxide radicals (O2−•) or oxygen (O2). Most of its direct physiological effects are cyclic guanosine 3′,5’monophosphate-mediated (cGMP). It can also interact with proteins containing iron and zinc or create S-nitrosothiols through nitrosylation [2, 13, 14, 15, 16, 17]. Many antioxidants work in the organism to prevent damage caused by ROS and RNS. Antioxidants, present in considerably lower concentrations than the substrate, are substances that can protect an oxidation-sensitive substrate from peroxidative damage. Biological antioxidants contain all compounds that protect cellular lipids, proteins and nucleic acids from peroxidative damage. One of these compounds is thiols. Thiols play a crucial biologic role among these compounds due to their capacity to react with free radicals and their strong reducing capabilities [18].
Thiols are a member of the class of organic compounds containing sulfhydryl group (-SH). They consist of a hydrogen atom and a sulfur atom attached to a carbon atom [19]. In the organism, in the oxidation created by ROS, excess electrons pass to thiols and disulphide bonds are formed. Due to the oxidative balance, electrons in these reversible bonds can return to thiols. The antioxidant ability of thiol-disulphide homeostasis is important in enzymatic reactions, signal transduction, detoxification, transcription, regulation of enzymatic activation, cellular signaling mechanisms and apoptosis reaction [20, 21, 22]. With these in mind, in this chapter, reactive oxygen species, nitric oxide, lipid peroxidation, oxidative stress and the role of thiols in antioxidant defense is summarized and has been explained how thiol status changes in conditions associated with oxidative stress.
Free radicals and non-radical intermediates are commonly referred to as ROS. Species that contain unpaired electrons are free radicals. Species with unpaired electrons in their structure are free radicals, and because of this unpaired electron shell, free radicals have high reactivity. The most important sources of free radicals in biological systems are oxygen and nitrogen [23]. In the electron transfer chain, cells constantly convert small amounts of O2 to ROS. ROS can be produced in many ways in the organism, including the respiratory burst that occurs in active phagocytes [24]. Respiratory burst, also known as “oxidative burst”, is the event of a rapid release of ROS such as O2−• and hydrogen peroxide (H2O2) from different cell types. Generally, these chemicals are produced by immune system cells such as neutrophils and macrophages as a result of infection of the organism by bacteria and fungi [25, 26]. In phagocytes, the respiratory burst that occurs to break down bacteria plays an important role in the immune system. O2−• is produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a family of enzymes commonly found in many cells. In neutrophils and monocytes, myeloperoxidase is involved in combining H2O2 with CI-to produce hypochlorite, which plays a role in destroying bacteria [25].
Reactive oxygen species formation, as natural result of aerobic metabolism, has an important role in maintaining tissue oxygen homeostasis. O2−•, H2O2 and hydroxyl (•OH) radicals are produced in mitochondria as normal metabolic by-products. Other important intracellular sources of ROS are peroxisomal enzymes, flavoprotein oxidases and microsomal cytochrome P450 enzymes [27]. ROS also play an important role in various physiological processes such as the functioning of normal vascular cells and maintenance of vessel diameter regulation [28]. It is stated that in biological systems, ROS participate in differentiation, proliferation, growth, apoptosis, cytoskeleton, migration and contraction regulation and play a role in the control of inflammatory response by stimulation of growth factor [29, 30].
Mitochondria are the main source of the O2−• anion most commonly found under physiological conditions [31]. The O2−• anion is formed by adding an electron to dioxygen. However, it is unstable because it can react spontaneously in aqueous solutions and convert into H2O2 and O2 [32]. In the respiratory chain, in particular, the O2−• anion is formed by the leakage of electrons from complex I and III into O2. The rate of formation depends on the number of electrons and increases with hyperoxia and high glucose concentration. The decrease in oxygen availability, acting as the final electron acceptor for complex IV, causes the accumulation of electrons. Because the O2−• anion is charged, it cannot pass through the membrane and remains in the mitochondrial matrix [23]. O2−• anion can convert to O2 by reducing Fe3+ ion to Fe2+. O2−• is detoxified with superoxide dismutase (SOD) enzymes and converted into H2O2 [32, 33].
Hydrogen peroxide is not a free radical, but it is mentioned in ROS because it is closely related to the detoxification or generation of free radicals [32]. It is not polar, so it can easily pass through the membranes of cells and organelles and therefore acts as a secondary messenger in a wide range of signal transduction pathways. It is detoxified into the water by catalase (CAT) and glutathione peroxidase (GPx). Imbalances in O2−• and H2O2 levels can result in the formation of •OH radicals, which are far more dangerous than them [4]. The main source of the •OH radical is metal-catalyzed Haber-weiss reaction [34] and the second source is the Fenton-type reaction [35]. It has been reported that the •OH radical can react with any biological molecule in its immediate vicinity and there is no known scavenger because it is very reactive [23].
Nitric oxide is produced during the reaction which arginine is converted to citrulline catalyzed by nitric oxide synthase (NOS) which is NADPH-dependent enzyme [36, 37]. There are three isoforms of NOS: neuronal (nNOS) endothelial (eNOS) and inducible (iNOS) and it is known to be present in every cell component [17, 38]. NO is an uncharged lipophilic molecule containing unpaired electron. Although NO is not a highly reactive radical, it is important in that it can form other reactive intermediates that have an impact on protein function and the function of all organisms, as well as trigger nitrosative damage in biomolecules [39]. Therefore; it can function as an antioxidant or as an oxidant. NO, blood pressure regulator and a neurotransmitter, can produce powerful oxidants during pathological conditions [28].
The interaction of excessive amounts of O2−• anion with NO leads to the formation of the peroxynitrite anion (ONOO−). ONOO−, a cytotoxic radical, causes tissue damage and oxidizes low-density lipoproteins (LDL) [4, 40, 41]. It can also directly cause protein oxidation and DNA oxidation. ONOO− can form prooxidant nitrogen dioxide (NO2) and •OH by self-decomposition [42]. It is suggested that NO can increase the production of reactive oxygen and nitrogen species and inhibit cytochrome C oxidase in mitochondria, which can alter the activity of various processes such as respiration, mitochondrial biogenesis and oxidative stress [37]. It plays a critical role in inflammation-related carcinogenesis by activating the redox-sensitive transcription factor with nitrosative stress caused by NO, which has an important regulatory role for cellular functions. It is stated that by increasing the level of NO in plasma, it can reduce the concentration of uric acid and ascorbic acid and cause lipid peroxidation [28].
Reactive oxygen species, produced in mitochondria and extramitochondrial regions, react with polyunsaturated fatty acids (PUFA) found in complex lipids and lipoproteins, such as phospholipids found in cellular membranes, which are highly sensitive to oxidative changes. The process that causes degradation of PUFAs by chemically modified by ROS is called lipid peroxidation [43].
Lipid peroxidation in membranes is initiated by the contribution of ROS or separation of the hydrogen atom by ROS from the methylene group located between two double bonds in the PUFA. Conjugated dienes made up of PUFA react with oxygen present in the membranes at a very high rate and form a peroxyl radical (ROO•). Since ROO• radicals are particularly highly reactive to neighboring PUFA chains, they spread the lipid peroxidation process by removing hydrogen from them. In this reaction, carbon centred radicals and lipid hydroperoxide are formed. Lipid peroxides can react with transition metal ions (iron, copper ions) to form alkoxyl radicals (RO•) [4, 44]. Metal ions can cause the lipid peroxide molecule to become unstable, leading to its degradation into smaller products. These products range from simple hydrocarbons to various ketones and aldehydes. The decomposition products of lipid peroxides are aldehydes such as malondialdehyde (MDA), acrolein, 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) [43, 45]. Commonly used lipid peroxidation markers are MDA and HNE. HNE is formed as a peroxidation product of omega-6 unsaturated fatty acids, while MDA is essentially a PUFA peroxidation product with more than two double bonds such as arachidonic acid [4].
Biomolecules undergo a lipoxidation reaction by lipid peroxidation end products such as MDA, 4-HNE and acrolein. Irreversible nonenzymatic modifications occur when these products react with lysyl (ε-NH2), histidyl (imidazole) and cysteinyl (-SH) groups in the polypeptide chain. MDA-lysine and HNE-protein compounds formed by lipoxidation are called advanced lipoxidation end-products (ALE) [46, 47, 48].
Antioxidants, when present in low concentrations, are generally defined as substances that significantly inhibit or delay oxidative processes while they oxidize themselves, in relation to oxidizable substrates [49]. They neutralize free radicals and oxidize themselves by accepting highly reactive unpaired electrons [4]. Various transcription factors in the human body are activated or inhibited depending on the relative oxidant/antioxidant ratio. Thus, many signal paths are controlled by redox balance. The endogenous defense system consists of antioxidant compounds and specific enzymes that catalyze their antioxidant activities. There are a wide variety of powerful antioxidants that cells use, such as vitamins (C, E, A) and enzymes (CAT, GPx, SOD and thioredoxin reductase). Other non-enzymatic antioxidants available to cells include GSH, α-lipoic acid, taurine and coenzyme Q10, carotenoids and polyphenols. Especially GSH and taurine, which are thiol antioxidants, are of great importance in maintaining the redox balance [50, 51, 52, 53].
Thiols are biological mercaptans (R-SH), while biological mercaptans are called biothiols. Biothiols can be classified as low molecular weight free thiols and large molecular weight protein thiols. Thiols found in biological systems play a role in the coordination of antioxidant defense systems [54]. It contains protein thiols in plasma, protein sulfhydryl groups and protein mix disulphides consisting of cysteine, cysteinylglycine, homocysteine and GSH. These thiols are also available in the form of low molecular mass disulphides, homocystine, cystinylglycine, cystine and GSSG [19]. While GSH/GSSG, especially in reduced form, consists of the low molecular weight sulfhydryl/disulphide pool inside the cell, cysteine/cystine in the form of disulphide in plasma and outside the cell as a whole [55]. It has been reported that dynamic thiol disulphide balance plays a crucial role in antioxidant system [20]. Total thiol (TT), especially protein thiol (-SH) groups in the body are considered as the main plasma antioxidants of the living organism. Most of these thiol (-SH) groups are found in albumin and constitute the major reducing groups found in body fluids [56].
Thiols play important physiological roles in processes requiring sulfur and are highly reactive, the -SH groups are readily oxidized or reduced in the presence of a catalyst [57, 58, 59]. Thiols can act as electron acceptors, reducing unstable free radicals by oxidizing, so they are powerful antioxidants. Despite their high reactivity, thiols’ antioxidant potential depends on environmental, structural and catalytic factors [60, 61, 62].
Cysteine can be synthesized endogenously from methionine. Methionine, an essential amino acid in the diet, is endogenously metabolized to homocysteine and then to cysteine; Its conversion is rate limited by a few enzymes [63]. As an amino acid, cysteine has important structural roles and can bind thiol side chains to metals such as zinc, copper and iron, which are crucial for enzymatic functions. The thiol side chain of cysteine also allows it to be included in the tri-peptide thiol antioxidant GSH. Besides, cysteine metabolism through the cysteine-sulfinic acid pathway can generate taurine, although enzymatically the rate is limited, this pathway is much more complex than that of GSH [64, 65]. Both GSH and taurine are formed from cysteine with bioactive thiol groups. Although intermediate levels of cysteine are important for cellular signaling pathways, high plasma levels have been associated with cardiovascular and neurological diseases [66, 67, 68]. Additionally, high intracellular levels can increase oxidative DNA damage through the Fenton reaction [69].
Thioredoxin (Trx) was first discovered in E.coli in 1964 [70]. Trx’s are proteins that act as regulators in redox reactions and are found in all eukaryotic and prokaryotic organisms [71]. The Cys-Gly-Pro-Cys division is located in its active region [72]. Cytosolic thioredoxin-1 (Trx1) and mitochondrial thioredoxin-2 (Trx2) are part of the thioredoxin system, an essential and important antioxidant system for the maintenance of intracellular redox state, and play an important role in cellular redox balance and normal cell and tumor cell signaling [73, 74]. Trx exerts its antioxidant effects primarily by acting as an electron donor for peroxiredoxins. Trx is a small molecular weight protein that functions as an antioxidant by facilitating the reduction of other proteins containing the thiol (-SH) group via cysteine thiol-disulphide (-S-S-) exchange, and ribonucleotide reductase, an essential enzyme in the replication of deoxyribonucleic acid (DNA) for a hydrogen donor [75].
Thioredoxin reductases (TrxR) is a member of the flavoprotein family of pyridine nucleotide-disulphide oxidoreductases such as glutathione reductase (GSR), lipoamide dehydrogenase, mercury ion reductases [75, 76]. Members of this family include the active site in each monomer comprising the FAD, NADPH binding site and redox-active disulphide. It has a selenocysteine residue in its active site [73]. The disulphides in the active part of the TrxR reduce the substrate by catalyzing the electron transfer from NADPH to FAD. TrxRs reduce the thioredoxin protein containing two different cysteine amino acids (Trx1; Cys32 and Cys35, Trx2; Cys31 and Cys34) in its catalytic region. TrxRs have been reported to be associated with lipoic acid, lipid hydroperoxidase, cytotoxic and antibacterial polypeptide NK-lysin, dehydroascorbic acid, vitamin K, ascorbyl free radical, tumor suppressor protein p53 as well as Trx protein [71, 76, 77, 78, 79, 80]. It has been stated that mammalian thioredoxin reductase has three different isoenzymes, cytosolic TrxR1, mitochondrial TrxR2 and TrxR3, which is specific to testicles containing glutaredoxin region in the N terminal region [81].
Thioredoxin system has various roles in organisms and reflects the importance of the -SH group together with disulphide (-S-S-) in many reactions that are crucial in cell regulation [82]. It was previously thought that Trx was mainly involved in protecting against oxidative stress, scavenging ROS through its interaction with peroxiredoxin and working to control cellular redox balance. As a result of the studies, it has been shown that Trx contributes to redox-dependent cellular processes such as signal transduction, gene expression, apoptosis and cell growth [83, 84]. The reduced Trx binds apoptosis signal kinase-1 (ASK-1) and stops apoptosis [85]. Trx is released in response to oxidative stress and extracellular Trx exerts cytoprotective effects in inflammatory and oxidative conditions [86].
Glutathione (GSH = γ-glutamylcysteinylglycine) is abundant in the human body. It is a tripeptide synthesized from three amino acids (cysteine, glycine and glutamate). It is a low molecular weight intracellular thiol compound and is mostly synthesized in the liver and is found in all cell types. As the regulator of intracellular redox homeostasis, most of it is stored in reduced form in the nucleus, endoplasmic reticulum, and mitochondria. The thiol group (-SH) of glutathione reduces the number of free radicals by binding to the un-shared electrons of free radicals formed as a result of oxidative stress. There are two forms in the organism: reduced (GSH) and oxidized (GSSG). The thiol-containing cysteine molecule in GSH, which is predominantly in the cell, allows ROS to take part in antioxidant roles by taking part in both degradation and removal [87, 88, 89].
The glutathione system acts as a leading cellular defense mechanism against oxidants. GSH is not only a direct ROS scavenger but also an antioxidant that has an important act in the regulation of intracellular redox status. The system consists of GPx, GSR and GSH. GSH retains its antioxidant ability in its reduced form. GPx catalyzes the reduction of H2O2 to water using GSH as a cosubstrate. GSSG is then reduced to GSH by GSR using NADPH. The cycle between these two states aids in free radical and toxic substance metabolism. The GSH/GSSG ratio is considered a sign of the redox state and relative oxidative stress level. The capability of organisms to regenerate GSH (through the synthesis of GSH or through reduction of GSSG) means the cell’s success to withstand oxidative stress [90, 91].
The ability of GSH to act as an antioxidant is due to the thiol-containing cysteine part. GSH is located on both the first and second lines of ROS defense and requires GPx enzymes to catalyze the breakdown of H2O2 through the reduction of GSH to GSSG. GPx (GPx1), selenium-dependent, is found in the kidneys and mitochondria [92, 93]. Four other GSH peroxidases (GPx2-GPx5) have also been discovered, along with evidence of antioxidant properties in vivo [94]. Detoxified metabolites resulting from GPx defense are excreted from the cell via a glutathione S-conjugate transporter [87]. It has been reported that administration of a GSH enzyme inhibitor in rats reduces vitamin C levels in the kidney, liver, brain and lung [95]. It has been noted that GSH administration increases both vitamins C and E [96]. It is stated that vitamin C deficiency significantly decreases GSH levels in the blood [97], while vitamin C supplementation contributes to the formation of GSH [98].
Cysteine can be metabolized to taurine, intracellular sulfonic acid, via cysteine-sulfinic acid. Taurine or 2-aminoethanesulfonic acid is abundant in the human body. Since there is not a carboxyl group in its structure, it is not an amino acid in theory, but it is usually referred to as proteins [99, 100]. As a result of this condition, it is released in the plasma of mammals and inside the cell [101]. Taurine is most often found where reduced O2 molecules are produced and in locations where potentially toxic substances such as xenobiotics, retinoids and bile acids are found [102]. It is also found in high levels in white blood cells and platelets [103].
Although the mechanisms of taurine’s antioxidant effects are not fully explained, possible mechanisms include regeneration of thiol groups, interfering with ROS activity and scavenging ROS [104]. It has been reported that Taurine suppresses superoxide production in mitochondria [105]. In general, taurine causes a significant reduction in ROS formation through its stimulatory effect on SOD, CAT and GPx enzyme activity [106, 107, 108]. Besides, taurine also contributes to the regulation of GSH concentrations [109]. It is thought that taurine has limited or no direct scavenging and reaction ability with ROS, and shows its antioxidant effect by increasing the activities of antioxidant enzymes such as GPx and SOD [110, 111]. It has been recorded that taurine indirectly increases endogenous GSH levels [112]. Studies have shown that taurine supplementation reduces lipid peroxidation and maintains GSH levels [113, 114].
Taurine can also inhibit free radical generation. Taurine’s amino group is the direct scavenger of hypochlorous acid (HOCl) [105]. In the presence of myeloperoxidase, taurine reacts with the acid to form a less toxic oxidant, taurine chloramine (TauCl). Since neutrophils contain high levels of taurine, TauCl formation can continue as long as there is enough taurine [115]. TauCl not only plays a role in antioxidant systems by lowering HOCl levels but also inhibits O2 production and proinflammatory mediators in neutrophils and macrophages [115, 116].
Thiol state and thiol-disulphide balance, which is an antioxidant defense system, may change due to oxidative stress in some diseases that may occur in various systems, organs and tissues in the organism.
In diseases of the digestive system, significant changes are observed in thiol state. For example, ROS formation in the liver increases due to alcohol intake. In this situation, serum protein thiol levels of alcohol drinkers decrease [117, 118]. It has also been determined that the level of thiol in the gallbladder increases in various gastrointestinal diseases [119]. A study showed that serum -SH levels of patients with helicobacter pylorus were significantly decreased [120]. Some studies have shown that native thiol (NT) and total thiol (TT) levels decrease and disulphide levels increase in celiac disease, acute pancreatitis, and inflammatory bowel disease [121, 122, 123]. In addition, the serum free thiol level has determined that non - alcoholic fatty liver disease (NAFLD) is associated with death from all causes in people with suspected NAFLD [124]. Impaired thiol-disulphide homeostasis has been reported in patients with hepatitis-B-induced chronic hepatitis and liver cirrhosis [125]. Again, in liver damage caused by pesticides, the thiol level was decreased, whereas black tea extract was found to improve thiol level in the liver tissue [126]. In experimental gastric damage induced by indomethacin, a non-steroidal anti-inflammatory drug, it was observed that ellagic acid treatment increased GSH levels and played a role in protecting against the harmful effects of indomethacin by reducing oxidative stress [127].
Another situation in which thiol status changes is cardiovascular diseases. For example, in a study in preeclamptic patients characterized by high blood pressure, it was determined that the buffering function of SNO-albumin was impaired in patients in which the thiol of albumin acts as a scavenger for NO [128]. It was also observed that serum NT and TT levels of patients who had a heart attack decreased [129, 130]. In a study, it was determined that the level of mitochondria-specific thioredoxin increased, which increases NO bioavailability and reduces oxidative stress, thus protecting vascular endothelial cell function and preventing the development of atherosclerosis [131]. In rabbits, after experimental ischemia–reperfusion, it has been reported that thiol redox balance is impaired in myocardial cells and this causes abnormalities in cell function [132]. It has been reported that in case of cardiac damage caused by cyclophosphamide, thiol level decreases, but lupeol and its esters increase thiol level [133]. In sheep babesiosis, a tick-borne hemiparasitic disease, the parasite settles in the erythrocytes and causes a decrease in GSH levels in the blood. Therefore, the decrease in GSH levels indicates that excessive amounts of ROS are formed in cells [134].
In Parkinson’s disease, oxidative stress plays an important role in the degeneration of dopaminergic neurons in the substantia nigra (SN) of patients. It was determined that the thiol antioxidant glutathione (GSH) significantly decreased in the neurons present in Substantia nigra and mitochondrial damage occurred as a result of this decrease [135, 136]. It has been observed that plasma GSH, C-SH and CG-SH levels decrease in patients with schizophrenia. However, it has been observed that Curcumin administration caused a significant increase in GSH level [137, 138]. It has been determined that TT and NT concentrations are decreased in Alzheimer’s patients [139]. In the experimental Parkinson model with 6-hydroxydopamine, it was observed that the thiol level in the brain tissue decreased and the application of biarum carduchrum extract increased the thiol level [140]. In another study, hesperidin administration in 6-hydroxydopamine-induced Parkinson’s model was reported to improve thiol level in brain tissue [141].
Studies have shown that thiol status changes in excretory system diseases. A decrease in thiol status has been reported in chronic kidney disease [142, 143]. There was a negative correlation between serum creatine level and protein thiol level. This is an indicator that serum protein thiol level will decrease in case of renal failure [144]. It has been reported that plasma protein thiol level decreases in nephrotic syndrome [145]. In another study, it was revealed that the thiol-sulphide balance decreased and this balance shifted towards disulphide in patients with acute renal failure, and the decrease in total and native thiol concentrations was associated with the severity of the disease [146]. In renal damage induced by dimethylnitrosamine, thiol level in kidney tissue decreased, whereas Simvastatin (SMN) administration improved thiol level in kidney tissue, while Thymoquinone administration was found to have no effect on thiol level [147].
In polycystic ovary syndrome study, it has been observed that native thiol, total thiol, disulphide levels in the ovary tissues of patients with polycystic ovary syndrome do not change compared to the control group [148]. It has been determined that arsenic and imidocarb reduce the total thiol level in the testicular tissue of rats with testicular damage [149]. In a study, it was concluded that chemotherapeutic agents cause ovarian damage in women and that the reduction of thiol level is very important in the mechanism of this damage [150].
In gestational diabetes, it was determined that pregnant women with gestational diabetes have higher disulphide/natural thiol and disulphide/total thiol levels compared to healthy pregnant women [151]. In addition, in a study, in the case of diabetic nephropathy, natural thiol and total thiol levels decreased [152]. In the pathogenesis of diabetic ketoacidosis, thiol/disulphide balance changed in favor of thiol and significant decreases in disulphide level were observed [153]. Diabetic cats have been reported to have lower erythrocyte membrane thiol level than control [154]. It has been determined that thiol/disulphide homeostasis is impaired in obesity [155].
In experimental asthma disease, it was determined that inflammation in the lung tissue of rats with experimental asthma increased and thiol level decreased, On the other hand, it was determined that the application of Hydro-Ethanolic Extract of
A study in Norway shows that thiols play a preventive role against the development of the most common breast, lung, colorectal and prostate cancers [158]. It has been determined that thiol/disulphide homeostasis plays a crucial role in the pathogenesis of cervical cancer [159]. In one study, it was reported that disruption of thiol disulphide balance is likely to contribute to the etiopathogenesis of endometrial cancer [160]. In addition, it has been stated that irregularities in thiol/disulphide homeostasis may act a part in the pathogenesis of gastric cancer, and a higher oxidative stress level may cause advanced disease to become widespread and aggressive [161].
As a result, oxidative stress can cause serious damage to the cell. Thiol is a very important antioxidant in preventing oxidative stress-induced damage and protects the cell against oxidative stress. Glutathione and taurine are among the important thiols. It is observed that thiol status changes in various diseases and thiol/disulphide homeostasis is very important in the pathogenesis of various diseases such as digestive system, respiratory system, reproductive system, urinary system, metabolic diseases and cancer. This also shows that thiol state is very important in the pathogenesis of oxidative stress-mediated diseases. Therefore, it is thought that interventions that can improve thiol status may contribute to the prevention or treatment of oxidative stress-related diseases.
As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review. To maintain these principles IntechOpen has developed basic guidelines to facilitate the avoidance of Conflicts of Interest.
",metaTitle:"Conflicts of Interest Policy",metaDescription:"As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review.",metaKeywords:null,canonicalURL:"/page/conflicts-of-interest-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\\n\\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\\n\\nA Conflict of Interest can be identified at different phases of the publishing process.
\\n\\nIntechOpen requires:
\\n\\nCONFLICT OF INTEREST - AUTHOR
\\n\\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\\n\\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\\n\\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\\n\\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\\n\\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\\n\\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\\n\\nCONFLICT OF INTEREST - REVIEWER
\\n\\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\\n\\nEXAMPLES OF CONFLICTS OF INTEREST:
\\n\\nFINANCIAL AND MATERIAL
\\n\\nNON-FINANCIAL
\\n\\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\\n\\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\\n\\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\\n\\nEXAMPLES:
\\n\\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\\n\\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\\n\\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\\n\\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\n\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\n\nA Conflict of Interest can be identified at different phases of the publishing process.
\n\nIntechOpen requires:
\n\nCONFLICT OF INTEREST - AUTHOR
\n\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\n\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\n\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\n\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\n\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\n\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\n\nCONFLICT OF INTEREST - REVIEWER
\n\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\n\nEXAMPLES OF CONFLICTS OF INTEREST:
\n\nFINANCIAL AND MATERIAL
\n\nNON-FINANCIAL
\n\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\n\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\n\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\n\nEXAMPLES:
\n\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\n\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\n\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\n\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\n\nPolicy last updated: 2016-06-09
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11566",title:"Periodontology - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"75ef2eae3087ec0c7f2076cc64e2cfc3",slug:null,bookSignature:"Dr. Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",editedByType:null,editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"92c881664d1921c7f2d0fee34b78cd08",slug:null,bookSignature:"Dr. Jaime Bustos-Martínez and Dr. Juan José Valdez-Alarcón",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",editedByType:null,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",subtitle:null,isOpenForSubmission:!0,hash:"069d6142ecb0d46d14920102d48c0e9d",slug:null,bookSignature:"Dr. Mihaela Laura Vica",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",editedByType:null,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11570",title:"Influenza - New Approaches",subtitle:null,isOpenForSubmission:!0,hash:"157b379b9d7a4bf5e2cc7a742f155a44",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11583",title:"Parkinson’s Disease - Animal Models, Current Therapies and Clinical Trials",subtitle:null,isOpenForSubmission:!0,hash:"99788a4a7f9ee0b4de55de293a2ed3d0",slug:null,bookSignature:"Prof. Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/11583.jpg",editedByType:null,editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11584",title:"Recent Advances in Distinctive Migraine Syndromes",subtitle:null,isOpenForSubmission:!0,hash:"44a6090845f971a215ddf013f1dc2027",slug:null,bookSignature:"Dr. Theodoros Mavridis, Dr. Georgios Vavougios and Associate Prof. Dimos-Dimitrios Mitsikostas",coverURL:"https://cdn.intechopen.com/books/images_new/11584.jpg",editedByType:null,editors:[{id:"320230",title:"Dr.",name:"Theodoros",surname:"Mavridis",slug:"theodoros-mavridis",fullName:"Theodoros Mavridis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11587",title:"Updates on ADHD - New Approaches to Assessment and Intervention",subtitle:null,isOpenForSubmission:!0,hash:"e0718a84e5fda7ed4287095c3ef27dae",slug:null,bookSignature:"Dr. Celestino Rodríguez Pérez and Mrs. Debora Areces",coverURL:"https://cdn.intechopen.com/books/images_new/11587.jpg",editedByType:null,editors:[{id:"85114",title:"Dr.",name:"Celestino",surname:"Rodríguez Pérez",slug:"celestino-rodriguez-perez",fullName:"Celestino Rodríguez Pérez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism Spectrum Disorders - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"934f063be3eacb5dd0902ae8bc622392",slug:null,bookSignature:"Associate Prof. Marco Carotenuto",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:[{id:"305627",title:"Associate Prof.",name:"Marco",surname:"Carotenuto",slug:"marco-carotenuto",fullName:"Marco Carotenuto"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11590",title:"Updates in Anorexia and Bulimia Nervosa",subtitle:null,isOpenForSubmission:!0,hash:"c8f5d69fff84a3687e5511bade9cc261",slug:null,bookSignature:"Prof. Ignacio Jáuregui-Lobera and Dr. José V Martínez Quiñones",coverURL:"https://cdn.intechopen.com/books/images_new/11590.jpg",editedByType:null,editors:[{id:"323887",title:"Prof.",name:"Ignacio",surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:199},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"998",title:"Oral Implantology",slug:"oral-implantology",parent:{id:"174",title:"Dentistry",slug:"dentistry"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:179,numberOfWosCitations:307,numberOfCrossrefCitations:147,numberOfDimensionsCitations:385,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"998",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7056",title:"An Update of Dental Implantology and Biomaterial",subtitle:null,isOpenForSubmission:!1,hash:"fab27916553ca6427ec1be823a6d81f2",slug:"an-update-of-dental-implantology-and-biomaterial",bookSignature:"Mazen Ahmad Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/7056.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5185",title:"Dental Implantology and Biomaterial",subtitle:null,isOpenForSubmission:!1,hash:"9b6bdd65b23207e491dd8a3c1edc41dc",slug:"dental-implantology-and-biomaterial",bookSignature:"Mazen Ahmad Jawad Amin Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/5185.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4548",title:"Current Concepts in Dental Implantology",subtitle:null,isOpenForSubmission:!1,hash:"f375fecfc0c281e814ac8bcec7faf6f1",slug:"current-concepts-in-dental-implantology",bookSignature:"Ilser Turkyilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/4548.jpg",editedByType:"Edited by",editors:[{id:"171984",title:"Associate Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"451",title:"Implant Dentistry",subtitle:"The Most Promising Discipline of Dentistry",isOpenForSubmission:!1,hash:"af264376cc47bfd447ff2a0c2cf1bdc7",slug:"implant-dentistry-the-most-promising-discipline-of-dentistry",bookSignature:"Ilser Turkyilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/451.jpg",editedByType:"Edited by",editors:[{id:"26024",title:"Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"179",title:"Implant Dentistry",subtitle:"A Rapidly Evolving Practice",isOpenForSubmission:!1,hash:"a02b0b58e53fa2f96f1ca450e8ec3ad3",slug:"implant-dentistry-a-rapidly-evolving-practice",bookSignature:"Ilser Turkyilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/179.jpg",editedByType:"Edited by",editors:[{id:"26024",title:"Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"18416",doi:"10.5772/16475",title:"Dental Implant Surface Enhancement and Osseointegration",slug:"dental-implant-surface-enhancement-and-osseointegration",totalDownloads:18676,totalCrossrefCites:38,totalDimensionsCites:99,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"S.Anil, P.S. Anand, H. Alghamdi and J.A. Jansen",authors:[{id:"25232",title:"Prof.",name:"Sukumaran",middleName:null,surname:"Anil",slug:"sukumaran-anil",fullName:"Sukumaran Anil"},{id:"28373",title:"Prof.",name:"John",middleName:null,surname:"Jansen",slug:"john-jansen",fullName:"John Jansen"},{id:"77058",title:"Dr.",name:"Seham",middleName:null,surname:"Alyafei",slug:"seham-alyafei",fullName:"Seham Alyafei"},{id:"82073",title:"Dr.",name:"Subhash",middleName:null,surname:"Narayanan",slug:"subhash-narayanan",fullName:"Subhash Narayanan"}]},{id:"18415",doi:"10.5772/16936",title:"Osseointegration and Bioscience of Implant Surfaces - Current Concepts at Bone-Implant Interface",slug:"osseointegration-and-bioscience-of-implant-surfaces-current-concepts-at-bone-implant-interface",totalDownloads:12502,totalCrossrefCites:16,totalDimensionsCites:42,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Mustafa Ramazanoglu and Yoshiki Oshida",authors:[{id:"26726",title:"Prof.",name:"Yoshiki",middleName:null,surname:"Oshida",slug:"yoshiki-oshida",fullName:"Yoshiki Oshida"},{id:"29841",title:"Prof.",name:"Mustafa",middleName:null,surname:"Ramazanoglu",slug:"mustafa-ramazanoglu",fullName:"Mustafa Ramazanoglu"}]},{id:"18426",doi:"10.5772/18746",title:"Factors Affecting the Success of Dental Implants",slug:"factors-affecting-the-success-of-dental-implants",totalDownloads:17474,totalCrossrefCites:9,totalDimensionsCites:35,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Carlos Nelson Elias",authors:[{id:"32438",title:"Prof.",name:"Carlos",middleName:null,surname:"Elias",slug:"carlos-elias",fullName:"Carlos Elias"}]},{id:"18414",doi:"10.5772/17512",title:"Dental Implant Surfaces – Physicochemical Properties, Biological Performance, and Trends",slug:"dental-implant-surfaces-physicochemical-properties-biological-performance-and-trends",totalDownloads:13080,totalCrossrefCites:5,totalDimensionsCites:30,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Ahmed M. Ballo, Omar Omar, Wei Xia and Anders Palmquist",authors:[{id:"19042",title:"Dr.",name:"Wei",middleName:null,surname:"Xia",slug:"wei-xia",fullName:"Wei Xia"},{id:"28549",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Ballo",slug:"ahmed-ballo",fullName:"Ahmed Ballo"},{id:"81291",title:"Dr.",name:"Omar",middleName:null,surname:"Omar",slug:"omar-omar",fullName:"Omar Omar"},{id:"81292",title:"Dr.",name:"Anders",middleName:null,surname:"Palmquist",slug:"anders-palmquist",fullName:"Anders Palmquist"}]},{id:"18417",doi:"10.5772/18309",title:"Implant Stability - Measuring Devices and Randomized Clinical Trial for ISQ Value Change Pattern Measured from Two Different Directions by Magnetic RFA",slug:"implant-stability-measuring-devices-and-randomized-clinical-trial-for-isq-value-change-pattern-measu",totalDownloads:13176,totalCrossrefCites:8,totalDimensionsCites:19,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Jong-Chul Park, Jung-Woo Lee, Soung-Min Kim and Jong-Ho Lee",authors:[{id:"31057",title:"Prof.",name:"Jong-Ho",middleName:null,surname:"Lee",slug:"jong-ho-lee",fullName:"Jong-Ho Lee"},{id:"48351",title:"Prof.",name:"Jong-Chul",middleName:null,surname:"Park",slug:"jong-chul-park",fullName:"Jong-Chul Park"},{id:"83313",title:"Dr.",name:"JungWoo",middleName:null,surname:"Lee",slug:"jungwoo-lee",fullName:"JungWoo Lee"}]}],mostDownloadedChaptersLast30Days:[{id:"18432",title:"Clinical Complications of Dental Implants",slug:"clinical-complications-of-dental-implants",totalDownloads:56478,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Su-Gwan Kim",authors:[{id:"27797",title:"Prof.",name:"Su-Gwan",middleName:null,surname:"Kim",slug:"su-gwan-kim",fullName:"Su-Gwan Kim"}]},{id:"47927",title:"Miniscrew Applications in Orthodontics",slug:"miniscrew-applications-in-orthodontics",totalDownloads:4697,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"4548",slug:"current-concepts-in-dental-implantology",title:"Current Concepts in Dental Implantology",fullTitle:"Current Concepts in Dental Implantology"},signatures:"Fatma Deniz Uzuner and Belma Işık Aslan",authors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan"},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner"}]},{id:"50308",title:"Antibiotics in Implant Dentistry",slug:"antibiotics-in-implant-dentistry",totalDownloads:2369,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Antibiotics have been recommended either as an extended treatment for several days or as a single antibiotic prophylaxis dose since the development of dental implant osseointegration technique in the 1970s. It is also performed as part of surgical protocol during the peri-operative phase in the treatment of peri-implantitis. To date, there is a lack of scientific evidence regarding the additive effect of antibiotics in the treatment of dental implant. This has thus left the clinician with inconclusive recommendations, leading to increase antibiotic prescription. With this increase, the development of antibiotic resistance is becoming a threat to modern healthcare that requires revisiting of current indications and implementation of rational treatment strategies. Therefore, more studies are needed to assess the benefit of antibiotic prescription and whether it is safe to refrain from its use.",book:{id:"5185",slug:"dental-implantology-and-biomaterial",title:"Dental Implantology and Biomaterial",fullTitle:"Dental Implantology and Biomaterial"},signatures:"Dalia Khalil, Bodil Lund and Margareta Hultin",authors:[{id:"179031",title:"Dr.",name:"Dalia",middleName:null,surname:"Khalil",slug:"dalia-khalil",fullName:"Dalia Khalil"},{id:"185113",title:"Dr.",name:"Bodil",middleName:null,surname:"Lund",slug:"bodil-lund",fullName:"Bodil Lund"},{id:"185114",title:"Dr.",name:"Margareta",middleName:null,surname:"Hultin",slug:"margareta-hultin",fullName:"Margareta Hultin"}]},{id:"47915",title:"Rationale for Dental Implants",slug:"rationale-for-dental-implants",totalDownloads:3076,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"4548",slug:"current-concepts-in-dental-implantology",title:"Current Concepts in Dental Implantology",fullTitle:"Current Concepts in Dental Implantology"},signatures:"Ilser Turkyilmaz and Gokce Soganci",authors:[{id:"171984",title:"Associate Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}]},{id:"18430",title:"An Important Dilemma in Treatment Planning: Implant or Endodontic Therapy?",slug:"an-important-dilemma-in-treatment-planning-implant-or-endodontic-therapy-",totalDownloads:6264,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Funda Kont Cobankara and Sema Belli",authors:[{id:"28846",title:"Dr.",name:"Funda",middleName:null,surname:"Kont Çobankara",slug:"funda-kont-cobankara",fullName:"Funda Kont Çobankara"},{id:"75862",title:"Prof.",name:"Sema",middleName:null,surname:"Belli",slug:"sema-belli",fullName:"Sema Belli"}]}],onlineFirstChaptersFilter:{topicId:"998",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:25,totalDimensionsCites:0,doi:"10.5772/intechopen.104725",abstract:"This chapter will address evidence-based prosthetic concepts in dental implantology as well as clinical evidence with focus on appropriate logic and technical skills. Those prosthetic factors are as just important as surgical factors, and long-term success can only be achieved if both of those factors are considered, respected, and strictly followed from planning to prosthetic phase of treatment. This chapter will deal with materials selection for prosthetic part, shape, size, and design of supracrestal parts of abutments and their influence on soft tissue and bone stability around dental implants. Furthermore, one of most important decisions is about choosing the proper way of retention: screw- vs. cement-retained restorations, and it will be discussed in detail. Additionally, emergence profile and its function in soft tissues adaptation and adhesion to different prosthetic materials also have important role in long-term success of dental implant restorations.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Ivica Pelivan"},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.101489",abstract:"Missing a permanent tooth is a miserable condition faced by a common man. A tooth decay, periodontitis, mechanical trauma, or any systemic complications lead to such a complication. These bone defects when left untreated lead to severe resorption of the alveolar bone. A proper dental filling with an appropriate bone substitute material could prevent such resorption and paves a way for subsequent implant placement. Dental implants are considered as the prime option by dentists to replace a single tooth or prevent bone resorption. A variety of bone substitutes are available differ in origin, consistency, particle size, porosity, and resorption characteristics. Herbal composites in dentistry fabricated using biphospho-calcium phosphate, casein, chitosan, and certain herbal extracts of Cassia occidentalis, Terminalia arjuna bark, Myristica fragans also were reported to possess a higher ossification property, osteogenic property and were able to repair bone defects. C. occidentalis was reported to stimulate mineralization of the bone and osteoblastic differentiation through the activation of the PI3K-Akt/MAPKs pathway in MC3T3-E1 cells of mice. This implant proved better osteoconductivity and bioactivity compared to pure HAP and other BCP ratios. Terminalia Arjuna was also worked in the incorporation in the graft to enhance the osteogenic property of the implant and gave good results. Another implant bone graft was synthesized containing BCP, biocompatible casein, and the extracts of Myristica fragans and subjected to in vitro investigations and the results revealed the deposition of apatite on the graft after immersing in SBF and also the ALP activity was high when treated with MG-63 cells, NIH-3 T3, and Saos 2 cell lines. This study indicates that the inclusion of plant extract enhances the osteogenic property of the graft. Thus, these novel dental implants incorporated with herbal composites evaluated by researchers revealed an enhanced bone healing, accelerates osseointegration, inhibits osteopenia, and inhibits inflammation. This application of herbal composite inclusion in dentistry and its applications has a greater potential to improve the success rate of dental implants and allows the implications of biotechnology in implant dentistry.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Gopathy Sridevi and Seshadri Srividya"},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:66,totalDimensionsCites:0,doi:"10.5772/intechopen.99575",abstract:"The main goal of modern removable prosthodontics is to restore the normal appearance, function, esthetics and speech in each completely edentulous patient. However, if all teeth are missing in a patient, it becomes very complicated to achieve it using traditional protocols. Therefore, implants were introduced into removable prosthodontics to ensure better retention and stability of the conventional dentures. In case of a large amount of bone missing in the jaw it is necessary to ensure the functioning of the dentures constructing various additional stabilizing and retentive prosthodontic solutions on the osseointegrated implants. Numerous types of attachment systems have been used recently for relating implant-retained overdentures to underlying implants: basically splinting (various bar shape designs) and non-splinting attachments (various ball type attachment, magnet attachment, telescopic coping systems). Indications for their use depend on the surgical and prosthodontic factors such as the number and position of the implants, the amount of free intermaxillary space and the type and size of the overdentures. Different indications, types of the overdentures and the attachment systems will be discussed in this chapter.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo"},{id:"79724",title:"Implant Stability Quotient (ISQ): A Reliable Guide for Implant Treatment",slug:"implant-stability-quotient-isq-a-reliable-guide-for-implant-treatment",totalDownloads:60,totalDimensionsCites:0,doi:"10.5772/intechopen.101359",abstract:"Implant stability is a prerequisite for successful dental implants and osseointegration. To determine the status of implant stability, continuous monitoring in an objective and qualitative manner is important. To measure implant stability two different stages are there: Primary and secondary. Primary implant stability at placement is a mechanical phenomenon that is related to the local bone quality and quantity, the type of implant and placement technique used. Primary stability is checked from mechanical engagement with cortical bone. Secondary stability is developed from regeneration and remodeling of the bone and tissue around the implant after insertion and affected by the primary stability, bone formation and remodeling. Implant stability is essential for the time of functional loading. Classical benchmark methods to measure implant stability were radiographs or microscopic analysis, removal torque, push-through and pull-through but due to lack of feasibility, time consumption and ethical reasons other methods have been propounded over period of time like measurement of implant torque, model analysis and most important ISQ which has the ability to monitor osseointegration and the life expectancy of an implant. ISQ is a valuable diagnostic and clinical tool that has far-reaching consequences on implant dentistry and this article throws light on advanced and reliable methods of assessing ISQ.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Gaurav Gupta"},{id:"79817",title:"Peri-Implant Soft Tissue Augmentation",slug:"peri-implant-soft-tissue-augmentation",totalDownloads:128,totalDimensionsCites:0,doi:"10.5772/intechopen.101336",abstract:"The peri-implant soft tissue (PIS) augmentation procedure has become an integral part of implant-prosthetic rehabilitation. Minimal width of keratinized mucosa (KM) of 2 mm is deemed necessary to facilitate oral hygiene maintenance around the implant and provide hard and soft peri-implant tissue stability. PIS thickness of at least 2 mm is recommended to achieve the esthetic appearance and prevent recessions around implant prosthetic rehabilitation. The autogenous soft tissue grafts can be divided into two groups based on their histological composition—free gingival graft (FGG) and connective tissue graft (CTG). FGG graft is used mainly to increase the width of keratinized mucosa while CTG augment the thickness of PIS. Both grafts are harvested from the same anatomical region—the palate. Alternatively, they can be harvested from the maxillary tuberosity. Soft tissue grafts can be also harvested as pedicle grafts, in case when the soft tissue graft remains attached to the donor site by one side preserving the blood supply from the donor region. Clinically this will result in less shrinkage of the graft postoperatively, improving the outcome of the augmentation procedure. To bypass the drawback connected with FGG or CTG harvesting, substitutional soft tissue grafts have been developed.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Marko Blašković and Dorotea Blašković"},{id:"79611",title:"Growth Factors and Dental Implantology",slug:"growth-factors-and-dental-implantology",totalDownloads:103,totalDimensionsCites:0,doi:"10.5772/intechopen.101082",abstract:"Normal healing procedure of bone involves various sequential events to develop bone and bridge the bone -to- bone gap. When this healing occurs with a metal (titanium) fixture on one side, it is called as osseointegration. After extensive studies on this topic, it is found that this procedure occurs in presence of various biologic constituents that are spontaneously released at the site. Thus, to accelerate normal healing after implant placement and make results more predictable, it has been proposed to use these autologous factors in the osteotomy site. Since it is the beginning of a new revolution in dental implantology, right now it is essential to analyze all possible combinations of host conditions, bone quality and quantity and bio factors being used. This can definitely be a boon for the patients with compromised systemic or local conditions.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Deeksha Gupta"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:397,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/16753",hash:"",query:{},params:{id:"16753"},fullPath:"/chapters/16753",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()