IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\n
By listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
All three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n
"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n
"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\n
In conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n
“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\n
We invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\n
Feel free to share this news on social media and help us mark this memorable moment!
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\n
By listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
All three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n
"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n
"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\n
In conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n
“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\n
We invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\n
Feel free to share this news on social media and help us mark this memorable moment!
\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"3639",leadTitle:null,fullTitle:"New Advanced Technologies",title:"New Advanced Technologies",subtitle:null,reviewType:"peer-reviewed",abstract:"This book collects original and innovative research studies concerning advanced technologies\r\nin a very wide range of applications.\r\nThe book is compiled of 22 chapters written by researchers from different areas and different\r\nparts of the world. The book will therefore have an international readership of a wide spectrum.",isbn:null,printIsbn:"978-953-307-067-4",pdfIsbn:"978-953-51-5907-0",doi:"10.5772/227",price:139,priceEur:155,priceUsd:179,slug:"new-advanced-technologies",numberOfPages:352,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:null,bookSignature:"Aleksandar Lazinica",publishedDate:"March 1st 2010",coverURL:"https://cdn.intechopen.com/books/images_new/3639.jpg",numberOfDownloads:73672,numberOfWosCitations:43,numberOfCrossrefCitations:43,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:69,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:155,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:null,dateEndSecondStepPublish:null,dateEndThirdStepPublish:null,dateEndFourthStepPublish:null,dateEndFifthStepPublish:null,currentStepOfPublishingProcess:1,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"TU Wien",institutionURL:null,country:{name:"Austria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1368",title:"Telecommunication",slug:"information-and-communication-telecommunication"}],chapters:[{id:"10735",title:"A Simplified Deterministic Approach to accurate Modeling of Transfer Function for the Broadband Power Line Communication",doi:"10.5772/9426",slug:"a-simplified-deterministic-approach-to-accurate-modeling-of-transfer-function-for-the-broadband-powe",totalDownloads:3089,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Abdelali Rennane, Christophe Konate and Mohamed Machmoum",downloadPdfUrl:"/chapter/pdf-download/10735",previewPdfUrl:"/chapter/pdf-preview/10735",authors:[null],corrections:null},{id:"10745",title:"A Study of Protein Structure Using Amino Acid Interaction Networks",doi:"10.5772/9436",slug:"a-study-of-protein-structure-using-amino-acid-interaction-networks",totalDownloads:1888,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Omar Gaci and Stefan Balev",downloadPdfUrl:"/chapter/pdf-download/10745",previewPdfUrl:"/chapter/pdf-preview/10745",authors:[null],corrections:null},{id:"10743",title:"Abstraction Hierarchies for Conceptual Engineering Design",doi:"10.5772/9434",slug:"abstraction-hierarchies-for-conceptual-engineering-design",totalDownloads:2295,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Esra Aleisa Ph.D.",downloadPdfUrl:"/chapter/pdf-download/10743",previewPdfUrl:"/chapter/pdf-preview/10743",authors:[null],corrections:null},{id:"10734",title:"An Ant Colony Optimization Algorithm for Flexible Job Shop Scheduling Problem",doi:"10.5772/9425",slug:"an-ant-colony-optimization-algorithm-for-flexible-job-shop-scheduling-problem",totalDownloads:5207,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"S. G. Ponnambalam, N. Jawahar and B. S. Girish",downloadPdfUrl:"/chapter/pdf-download/10734",previewPdfUrl:"/chapter/pdf-preview/10734",authors:[null],corrections:null},{id:"10730",title:"Analytical Model of Current Sheath Path Based upon Shock Wave Trajectory of Plasma Layer in a Plasma Focus Device",doi:"10.5772/9421",slug:"analytical-model-of-current-sheath-path-based-upon-shock-wave-trajectory-of-plasma-layer-in-a-plasma",totalDownloads:2303,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Reza Amrollahi and Morteza Habibi",downloadPdfUrl:"/chapter/pdf-download/10730",previewPdfUrl:"/chapter/pdf-preview/10730",authors:[null],corrections:null},{id:"10748",title:"Authentication with RIPEMD-160 and Other Alternatives: A Hardware Design Perspective",doi:"10.5772/9439",slug:"authentication-with-ripemd-160-and-other-alternatives-a-hardware-design-perspective",totalDownloads:3022,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"H. Michail , A. Gregoriades, V. Kelefouras, G. Athanasiou, A. Kritikakou and C. Goutis",downloadPdfUrl:"/chapter/pdf-download/10748",previewPdfUrl:"/chapter/pdf-preview/10748",authors:[null],corrections:null},{id:"10750",title:"Bioinformatics: Strategies, Trends, and Perspectives",doi:"10.5772/9441",slug:"bioinformatics-strategies-trends-and-perspectives",totalDownloads:2357,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Carlos Norberto Fischer and Adriane Beatriz de Souza Serapião",downloadPdfUrl:"/chapter/pdf-download/10750",previewPdfUrl:"/chapter/pdf-preview/10750",authors:[null],corrections:null},{id:"10738",title:"Comparative Performance Assessment In EU Pre-Accession Funds",doi:"10.5772/9429",slug:"comparative-performance-assessment-in-eu-pre-accession-funds",totalDownloads:2246,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Arzu Tektas and Asli Deniz Helvacioglu Kuyucu",downloadPdfUrl:"/chapter/pdf-download/10738",previewPdfUrl:"/chapter/pdf-preview/10738",authors:[null],corrections:null},{id:"10736",title:"Design and Construction Transceiver Module Using Polymer PLC Hybrid Integration Technology",doi:"10.5772/9427",slug:"design-and-construction-transceiver-module-using-polymer-plc-hybrid-integration-technology",totalDownloads:2891,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Vitezslav Jerabek, Ivan Huttel, Vaclav Prajzler and Karel Busek",downloadPdfUrl:"/chapter/pdf-download/10736",previewPdfUrl:"/chapter/pdf-preview/10736",authors:[null],corrections:null},{id:"10742",title:"Design of a Self-Assembling, Repairing and Reconfiguring Arithmetic Logic Unit",doi:"10.5772/9433",slug:"design-of-a-self-assembling-repairing-and-reconfiguring-arithmetic-logic-unit",totalDownloads:2124,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"David Huw Jones, Richard McWilliam and Alan Purvis",downloadPdfUrl:"/chapter/pdf-download/10742",previewPdfUrl:"/chapter/pdf-preview/10742",authors:[null],corrections:null},{id:"10747",title:"Discovering Web Server Logs Patterns Using Generalized Association Rules Algorithm",doi:"10.5772/9438",slug:"discovering-web-server-logs-patterns-using-generalized-association-rules-algorithm",totalDownloads:4131,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Mohd Helmy Abd Wahab, Mohd Norzali Haji Mohd and Mohamad Farhan Mohamad Mohsin",downloadPdfUrl:"/chapter/pdf-download/10747",previewPdfUrl:"/chapter/pdf-preview/10747",authors:[null],corrections:null},{id:"10740",title:"Fuzzy Modeling by Active Learning Method",doi:"10.5772/9431",slug:"fuzzy-modeling-by-active-learning-method",totalDownloads:2515,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Hamid Taheri Shahraiyni",downloadPdfUrl:"/chapter/pdf-download/10740",previewPdfUrl:"/chapter/pdf-preview/10740",authors:[null],corrections:null},{id:"10749",title:"Generic Framework for Collaborative Work Environments",doi:"10.5772/9440",slug:"generic-framework-for-collaborative-work-environments",totalDownloads:2014,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Cosmin Porumb, Sanda Porumb, Bogdan Orza and Aurel Vlaicu",downloadPdfUrl:"/chapter/pdf-download/10749",previewPdfUrl:"/chapter/pdf-preview/10749",authors:[null],corrections:null},{id:"10729",title:"Integrated Medical System Using DICOM and HL7 Standards",doi:"10.5772/9420",slug:"integrated-medical-system-using-dicom-and-hl7-standards",totalDownloads:8911,totalCrossrefCites:3,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Orza Bogdan, Cordos Alin, Vlaicu Aurel and Meza Serban",downloadPdfUrl:"/chapter/pdf-download/10729",previewPdfUrl:"/chapter/pdf-preview/10729",authors:[null],corrections:null},{id:"10732",title:"Modelling Embedded Systems with AADL: A Practical Study",doi:"10.5772/9423",slug:"modelling-embedded-systems-with-aadl-a-practical-study",totalDownloads:3209,totalCrossrefCites:6,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Naeem Muhammad, Yves Vandewoude, Yolande Berbers and Sjir van Loo",downloadPdfUrl:"/chapter/pdf-download/10732",previewPdfUrl:"/chapter/pdf-preview/10732",authors:[null],corrections:null},{id:"10739",title:"QuadR-Tree Indexing Selection Engine for Tuning Spatial Database System using Mobile Geographical Information System Technology",doi:"10.5772/9430",slug:"quadr-tree-indexing-selection-engine-for-tuning-spatial-database-system-using-mobile-geographical-in",totalDownloads:2738,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Maruto Masserie Sardadi, Daut Daman, Mohd Shafry and Zahabidin Jupri",downloadPdfUrl:"/chapter/pdf-download/10739",previewPdfUrl:"/chapter/pdf-preview/10739",authors:[null],corrections:null},{id:"10744",title:"Quran Vibrations in Braille Codes Using the Finite State Machine Technique",doi:"10.5772/9435",slug:"quran-vibrations-in-braille-codes-using-the-finite-state-machine-technique",totalDownloads:3931,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Abdallah M Abualkishik and Khairuddin Omar",downloadPdfUrl:"/chapter/pdf-download/10744",previewPdfUrl:"/chapter/pdf-preview/10744",authors:[null],corrections:null},{id:"10737",title:"Residential Noise Control Requirements for Powerline Communications Channel",doi:"10.5772/9428",slug:"residential-noise-control-requirements-for-powerline-communications-channel",totalDownloads:3210,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Edward Guillen, Julian Lopez and Daniel Padilla",downloadPdfUrl:"/chapter/pdf-download/10737",previewPdfUrl:"/chapter/pdf-preview/10737",authors:[null],corrections:null},{id:"10741",title:"Robot Navigation with Speech Commands",doi:"10.5772/9432",slug:"robot-navigation-with-speech-commands",totalDownloads:2595,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Anupam Shukla and Ritu Tiwari",downloadPdfUrl:"/chapter/pdf-download/10741",previewPdfUrl:"/chapter/pdf-preview/10741",authors:[null],corrections:null},{id:"10731",title:"Ti indiffused Lithium Niobate (Ti: LiNbO3) Mach-Zehnder interferometer all optical switches: A review",doi:"10.5772/9422",slug:"ti-indiffused-lithium-niobate-ti-linbo3-mach-zehnder-interferometer-all-optical-switches-a-review",totalDownloads:7636,totalCrossrefCites:18,totalDimensionsCites:20,hasAltmetrics:0,abstract:null,signatures:"G.Singh, R.P.Yadav and V.Janyani",downloadPdfUrl:"/chapter/pdf-download/10731",previewPdfUrl:"/chapter/pdf-preview/10731",authors:[null],corrections:null},{id:"10733",title:"An Interval Metric",doi:"10.5772/9424",slug:"an-interval-metric",totalDownloads:2230,totalCrossrefCites:5,totalDimensionsCites:12,hasAltmetrics:0,abstract:null,signatures:"Roque Mendes Prado Trindade, Benjamin Rene Callejas Bedregal, Adriao Duarte Doria Neto and Benedito Melo Acioly",downloadPdfUrl:"/chapter/pdf-download/10733",previewPdfUrl:"/chapter/pdf-preview/10733",authors:[null],corrections:null},{id:"10746",title:"Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation",doi:"10.5772/9437",slug:"walking-hexapod-robot-in-disaster-recovery-developing-algorithm-for-terrain-negotiation-and-navigati",totalDownloads:3135,totalCrossrefCites:4,totalDimensionsCites:15,hasAltmetrics:0,abstract:null,signatures:"Mohiuddin Ahmed, M. R. Khan, Masum Billah and Soheli Farhana",downloadPdfUrl:"/chapter/pdf-download/10746",previewPdfUrl:"/chapter/pdf-preview/10746",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3759",title:"Particle Swarm Optimization",subtitle:null,isOpenForSubmission:!1,hash:"85447c3d76565043803bbf8de76e5729",slug:"particle_swarm_optimization",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/3759.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6111",title:"Mobile Robots",subtitle:"towards New Applications",isOpenForSubmission:!1,hash:"75544814a08a51504dd52ee155eff99d",slug:"mobile_robots_towards_new_applications",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/6111.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3649",title:"Robot Manipulators",subtitle:"New Achievements",isOpenForSubmission:!1,hash:null,slug:"robot-manipulators-new-achievements",bookSignature:"Aleksandar Lazinica and Hiroyuki Kawai",coverURL:"https://cdn.intechopen.com/books/images_new/3649.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3611",title:"Technology",subtitle:"Education and Development",isOpenForSubmission:!1,hash:null,slug:"technology-education-and-development",bookSignature:"Aleksandar Lazinica and Carlos Calafate",coverURL:"https://cdn.intechopen.com/books/images_new/3611.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3604",title:"Recent Advances in Multi Robot Systems",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"recent_advances_in_multi_robot_systems",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/3604.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3694",title:"New Developments in Robotics Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new_developments_in_robotics_automation_and_control",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/3694.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3720",title:"New Trends in Technologies",subtitle:"Devices, Computer, Communication and Industrial Systems",isOpenForSubmission:!1,hash:null,slug:"new-trends-in-technologies--devices--computer--communication-and-industrial-systems",bookSignature:"Meng Joo Er",coverURL:"https://cdn.intechopen.com/books/images_new/3720.jpg",editedByType:"Edited by",editors:[{id:"121366",title:"Dr.",name:"Zhichao",surname:"Lian",slug:"zhichao-lian",fullName:"Zhichao Lian"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3617",title:"Recent Advances in Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"recent-advances-in-technologies",bookSignature:"Maurizio A Strangio",coverURL:"https://cdn.intechopen.com/books/images_new/3617.jpg",editedByType:"Edited by",editors:[{id:"2466",title:"Dr.",name:"Maurizio Adriano",surname:"Strangio",slug:"maurizio-adriano-strangio",fullName:"Maurizio Adriano Strangio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5740",title:"Smartphones from an Applied Research Perspective",subtitle:null,isOpenForSubmission:!1,hash:"10f605202aae0cd293bfc2b4e5027e5c",slug:"smartphones-from-an-applied-research-perspective",bookSignature:"Nawaz Mohamudally",coverURL:"https://cdn.intechopen.com/books/images_new/5740.jpg",editedByType:"Edited by",editors:[{id:"119486",title:"Dr.",name:"Nawaz",surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6321",title:"Broadband Communications Networks",subtitle:"Recent Advances and Lessons from Practice",isOpenForSubmission:!1,hash:"6e29995cd9dd6193bd198112d9549f32",slug:"broadband-communications-networks-recent-advances-and-lessons-from-practice",bookSignature:"Abdelfatteh Haidine and Abdelhak Aqqal",coverURL:"https://cdn.intechopen.com/books/images_new/6321.jpg",editedByType:"Edited by",editors:[{id:"187242",title:"Dr.",name:"Abdelfatteh",surname:"Haidine",slug:"abdelfatteh-haidine",fullName:"Abdelfatteh Haidine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65667",slug:"erratum-the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",title:"Erratum - The Roll of the Entrepreneur in the Establishment of Economic Equilibria",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65667.pdf",downloadPdfUrl:"/chapter/pdf-download/65667",previewPdfUrl:"/chapter/pdf-preview/65667",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65667",risUrl:"/chapter/ris/65667",chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]}},chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]},book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10062",leadTitle:null,title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",reviewType:"peer-reviewed",abstract:"Mathematical probability and statistics are an attractive, thriving, and respectable part of mathematics. Some mathematicians and philosophers of science say they are the gateway to mathematics’ deepest mysteries. Moreover, mathematical statistics denotes an accumulation of mathematical discussions connected with efforts to most efficiently collect and use numerical data subject to random or deterministic variations. Currently, the concept of probability and mathematical statistics has become one of the fundamental notions of modern science and the philosophy of nature. This book is an illustration of the use of mathematics to solve specific problems in engineering, statistics, and science in general.",isbn:"978-1-83880-827-3",printIsbn:"978-1-83880-825-9",pdfIsbn:"978-1-83880-828-0",doi:"10.5772/intechopen.87892",price:119,priceEur:129,priceUsd:155,slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",numberOfPages:154,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",bookSignature:"Abdo Abou Jaoude",publishedDate:"January 27th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",keywords:null,numberOfDownloads:4576,numberOfWosCitations:1,numberOfCrossrefCitations:4,numberOfDimensionsCitations:6,numberOfTotalCitations:11,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 7th 2020",dateEndSecondStepPublish:"May 28th 2020",dateEndThirdStepPublish:"July 27th 2020",dateEndFourthStepPublish:"October 15th 2020",dateEndFifthStepPublish:"December 14th 2020",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"Holder of two PhDs in Mathematics and Prognostics from the Lebanese University and Aix-Marseille University, developer of a novel branch of pure and applied mathematics known as 'the complex probability paradigm' which joins probability theory with complex variables and analysis.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé",profilePictureURL:"https://mts.intechopen.com/storage/users/248271/images/system/248271.jpg",biography:"Abdo Abou Jaoudé has been teaching for many years and has a passion for researching and teaching mathematics. He is currently an Associate Professor of Mathematics and Statistics at Notre Dame University-Louaizé (NDU), Lebanon. He holds a BSc and an MSc in Computer Science from NDU, and three PhDs in Applied Mathematics, Computer Science, and Applied Statistics and Probability, all from Bircham International University through a distance learning program. He also holds two PhDs in Mathematics and Prognostics from the Lebanese University, Lebanon, and Aix-Marseille University, France. Dr. Abou Jaoudé's broad research interests are in the field of applied mathematics. He has published twenty-three international journal articles and six contributions to conference proceedings, in addition to seven books on prognostics, pure and applied mathematics, and computer science.",institutionString:"Notre Dame University - Louaize",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Notre Dame University – Louaize",institutionURL:null,country:{name:"Lebanon"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1407",title:"Applied Mathematics",slug:"numerical-analysis-and-scientific-computing-applied-mathematics"}],chapters:[{id:"72663",title:"The Monte Carlo Techniques and the Complex Probability Paradigm",slug:"the-monte-carlo-techniques-and-the-complex-probability-paradigm",totalDownloads:1801,totalCrossrefCites:2,authors:[{id:"248271",title:"Dr.",name:"Abdo",surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}]},{id:"72956",title:"ANFIS TVA Power Plants Availability Modeling Development",slug:"anfis-tva-power-plants-availability-modeling-development",totalDownloads:361,totalCrossrefCites:0,authors:[{id:"321529",title:"Prof.",name:"Isa",surname:"Qamber",slug:"isa-qamber",fullName:"Isa Qamber"},{id:"321821",title:"Dr.",name:"Mohamed",surname:"Al-Hamad",slug:"mohamed-al-hamad",fullName:"Mohamed Al-Hamad"}]},{id:"74059",title:"A Layered Recurrent Neural Network for Imputing Air Pollutants Missing Data and Prediction of NO2, O3, PM10, and PM2.5",slug:"a-layered-recurrent-neural-network-for-imputing-air-pollutants-missing-data-and-prediction-of-em-no-",totalDownloads:339,totalCrossrefCites:2,authors:[{id:"322375",title:"Dr.",name:"Hamza",surname:"Turabieh",slug:"hamza-turabieh",fullName:"Hamza Turabieh"},{id:"322376",title:"Dr.",name:"Alaa",surname:"Sheta",slug:"alaa-sheta",fullName:"Alaa Sheta"},{id:"322378",title:"Dr.",name:"Elvira",surname:"Kovač-Andrić",slug:"elvira-kovac-andric",fullName:"Elvira Kovač-Andrić"},{id:"328822",title:"Dr.",name:"Malik",surname:"Braik",slug:"malik-braik",fullName:"Malik Braik"}]},{id:"74076",title:"Wind Power Forecasting",slug:"wind-power-forecasting",totalDownloads:467,totalCrossrefCites:0,authors:[{id:"321579",title:"Dr.",name:"Sumit",surname:"Saroha",slug:"sumit-saroha",fullName:"Sumit Saroha"},{id:"341428",title:"Dr.",name:"S. K.",surname:"Aggarwal",slug:"s.-k.-aggarwal",fullName:"S. K. Aggarwal"},{id:"341429",title:"Dr.",name:"Preeti",surname:"Rana",slug:"preeti-rana",fullName:"Preeti Rana"}]},{id:"74027",title:"Stock Market Trend Prediction Using Hidden Markov Model",slug:"stock-market-trend-prediction-using-hidden-markov-model",totalDownloads:820,totalCrossrefCites:0,authors:[{id:"321744",title:"Dr.",name:"Deneshkumar",surname:"Venegopal",slug:"deneshkumar-venegopal",fullName:"Deneshkumar Venegopal"},{id:"330060",title:"Prof.",name:"Senthamarai Kannan",surname:"Kaliyaperumal",slug:"senthamarai-kannan-kaliyaperumal",fullName:"Senthamarai Kannan Kaliyaperumal"},{id:"338936",title:"Dr.",name:"Sonai Muthu",surname:"Niraikulathan",slug:"sonai-muthu-niraikulathan",fullName:"Sonai Muthu Niraikulathan"}]},{id:"73635",title:"Electric Load Forecasting an Application of Cluster Models Based on Double Seasonal Pattern Time Series Analysis",slug:"electric-load-forecasting-an-application-of-cluster-models-based-on-double-seasonal-pattern-time-ser",totalDownloads:438,totalCrossrefCites:0,authors:[{id:"321882",title:"Dr.",name:"Ismit",surname:"Mado",slug:"ismit-mado",fullName:"Ismit Mado"}]},{id:"73061",title:"Seeking Accuracy in Forecasting Demand and Selling Prices: Comparison of Various Methods",slug:"seeking-accuracy-in-forecasting-demand-and-selling-prices-comparison-of-various-methods",totalDownloads:355,totalCrossrefCites:0,authors:[{id:"268248",title:"Ph.D.",name:"Zineb",surname:"Aman",slug:"zineb-aman",fullName:"Zineb Aman"},{id:"317080",title:"Dr.",name:"Latifa",surname:"Ezzine",slug:"latifa-ezzine",fullName:"Latifa Ezzine"},{id:"317081",title:"Dr.",name:"Haj",surname:"El Moussami",slug:"haj-el-moussami",fullName:"Haj El Moussami"},{id:"322885",title:"Mr.",name:"Younes Fakhradine",surname:"El Bahi",slug:"younes-fakhradine-el-bahi",fullName:"Younes Fakhradine El Bahi"},{id:"325233",title:"Dr.",name:"Yassine",surname:"Erraoui",slug:"yassine-erraoui",fullName:"Yassine Erraoui"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"11066",title:"The Monte Carlo Methods",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"d1488c96b5b4d4909e963b9a91b1632f",slug:"the-monte-carlo-methods-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoudé",coverURL:"https://cdn.intechopen.com/books/images_new/11066.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6138",title:"Time Series Analysis and Applications",subtitle:null,isOpenForSubmission:!1,hash:"d33ee38578b81585416062fea4979bbf",slug:"time-series-analysis-and-applications",bookSignature:"Nawaz Mohamudally",coverURL:"https://cdn.intechopen.com/books/images_new/6138.jpg",editedByType:"Edited by",editors:[{id:"119486",title:"Dr.",name:"Nawaz",surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9966",title:"Dynamic Data Assimilation",subtitle:"Beating the Uncertainties",isOpenForSubmission:!1,hash:"e7fde2a36354a2f5a4282fdf9c743380",slug:"dynamic-data-assimilation-beating-the-uncertainties",bookSignature:"Dinesh G. Harkut",coverURL:"https://cdn.intechopen.com/books/images_new/9966.jpg",editedByType:"Edited by",editors:[{id:"216122",title:"Dr.",name:"Dinesh G.",surname:"Harkut",slug:"dinesh-g.-harkut",fullName:"Dinesh G. Harkut"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editedByType:"Edited by",editors:[{id:"23261",title:"Prof.",name:"Goran",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6230",title:"Topics in Splines and Applications",subtitle:null,isOpenForSubmission:!1,hash:"93059c7907be129c419e4f9960b4e9c3",slug:"topics-in-splines-and-applications",bookSignature:"Young Kinh-Nhue Truong and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/6230.jpg",editedByType:"Edited by",editors:[{id:"207517",title:"Dr.",name:"Young Kinh-Nhue",surname:"Truong",slug:"young-kinh-nhue-truong",fullName:"Young Kinh-Nhue Truong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10402",title:"MATLAB Applications in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"52f37e72f4007a3248a3658dbaeb1172",slug:"matlab-applications-in-engineering",bookSignature:"Constantin Voloşencu",coverURL:"https://cdn.intechopen.com/books/images_new/10402.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9273",title:"Finite Element Methods and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"c47b5859ea7385f3c879918fd3b08a22",slug:"finite-element-methods-and-their-applications",bookSignature:"Mahboub Baccouch",coverURL:"https://cdn.intechopen.com/books/images_new/9273.jpg",editedByType:"Edited by",editors:[{id:"186635",title:"Prof.",name:"Mahboub",surname:"Baccouch",slug:"mahboub-baccouch",fullName:"Mahboub Baccouch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9927",title:"Real Perspective of Fourier Transforms and Current Developments in Superconductivity",subtitle:null,isOpenForSubmission:!1,hash:"89f437eae592f8f3730b6c9ec8426e43",slug:"real-perspective-of-fourier-transforms-and-current-developments-in-superconductivity",bookSignature:"Juan Manuel Velazquez Arcos",coverURL:"https://cdn.intechopen.com/books/images_new/9927.jpg",editedByType:"Edited by",editors:[{id:"114776",title:"Dr.",name:"Juan Manuel",surname:"Velazquez Arcos",slug:"juan-manuel-velazquez-arcos",fullName:"Juan Manuel Velazquez Arcos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9237",title:"Theory of Complexity",subtitle:"Definitions, Models, and Applications",isOpenForSubmission:!1,hash:"70d2fce88be4f0c3bf7daeea322926e8",slug:"theory-of-complexity-definitions-models-and-applications",bookSignature:"Ricardo López-Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/9237.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",surname:"López-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo López-Ruiz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8655",title:"Advances in Complex Analysis and Applications",subtitle:null,isOpenForSubmission:!1,hash:"6abcaa5b5cf98a51a769d1bce7e5ebe5",slug:"advances-in-complex-analysis-and-applications",bookSignature:"Francisco Bulnes and Olga Hachay",coverURL:"https://cdn.intechopen.com/books/images_new/8655.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"12024",title:"Application and Exploration of Fast Gas Chromatography - Surface Acoustic Wave Sensor to the Analysis of Thymus Species",doi:"10.5772/9708",slug:"application-and-exploration-of-fast-gas-chromatography-surface-acoustic-wave-sensor-to-the-analysis-",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/12024.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/12024",previewPdfUrl:"/chapter/pdf-preview/12024",totalDownloads:2152,totalViews:82,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:29,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"September 28th 2010",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/12024",risUrl:"/chapter/ris/12024",book:{id:"3661",slug:"acoustic-waves"},signatures:"Se Yeon Oh, Sung-Sun Park and Jongki Hong",authors:null,sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"3661",type:"book",title:"Acoustic Waves",subtitle:null,fullTitle:"Acoustic Waves",slug:"acoustic-waves",publishedDate:"September 28th 2010",bookSignature:"Don Dissanayake",coverURL:"https://cdn.intechopen.com/books/images_new/3661.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-111-4",pdfIsbn:"978-953-51-4543-1",reviewType:"peer-reviewed",numberOfWosCitations:127,isAvailableForWebshopOrdering:!0,editors:[{id:"125705",title:"Dr.",name:"Don",middleName:null,surname:"Dissanayake",slug:"don-dissanayake",fullName:"Don Dissanayake"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"810"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"12012",type:"chapter",title:"The Eigen Theory of Waves in Piezoelectric Solids",slug:"the-eigen-theory-of-waves-in-piezoelectric-solids",totalDownloads:2884,totalCrossrefCites:0,signatures:"Shaohua Guo",reviewType:"peer-reviewed",authors:[null]},{id:"12013",type:"chapter",title:"Reverberation-Ray Matrix Analysis of Acoustic Waves in Multilayered Anisotropic Structures",slug:"reverberation-ray-matrix-analysis-of-acoustic-waves-in-multilayered-anisotropic-structures",totalDownloads:2432,totalCrossrefCites:0,signatures:"Yongqiang Guo and Weiqiu Chen",reviewType:"peer-reviewed",authors:[null]},{id:"12014",type:"chapter",title:"Rectifying Acoustic Waves",slug:"rectification-of-acoustic-waves",totalDownloads:3192,totalCrossrefCites:1,signatures:"Norihiko Nishiguchi, Yukihiro Tanaka and Takahiro Murai",reviewType:"peer-reviewed",authors:[null]},{id:"12015",type:"chapter",title:"Dispersion Properties of Co-Existing Low Frequency Modes in Quantum Plasmas",slug:"dispersion-properties-of-co-existing-low-frequency-modes-in-quantum-plasmas",totalDownloads:2531,totalCrossrefCites:0,signatures:"Shabbir Ahmad Khan and Hamid Saleem",reviewType:"peer-reviewed",authors:[null]},{id:"12016",type:"chapter",title:"Research of the Scattering of Non-Linearly Interacting Plane Acoustic Waves by an Elongated Spheroid",slug:"research-of-the-scattering-of-non-linearly-interacting-plane-waves-by-an-elongated-spheroid",totalDownloads:1702,totalCrossrefCites:0,signatures:"Iftikhar Abbasov",reviewType:"peer-reviewed",authors:[null]},{id:"12017",type:"chapter",title:"Acoustic Waves in Phononic Crystal Plates",slug:"acoustic-waves-in-phononic-crystal-plates",totalDownloads:3735,totalCrossrefCites:1,signatures:"Xin-Ye Zou, Xue-Feng Zhu, Bin Liang and Jian-Chun Cheng",reviewType:"peer-reviewed",authors:[null]},{id:"12018",type:"chapter",title:"Frequency-Domain Numerical Modelling of Visco-Acoustic Waves Based on Finite-Difference and Finite-Element Discontinuous Galerkin Methods",slug:"frequency-domain-numerical-modelling-of-visco-acoustic-waves-based-on-finite-difference-and-finite-e",totalDownloads:4301,totalCrossrefCites:13,signatures:"Romain Brossier, Vincent Etienne, Stephane Operto and Jean Virieux",reviewType:"peer-reviewed",authors:[null]},{id:"12019",type:"chapter",title:"Shear Elastic Wave Refraction on a Gap between Piezoelectric Crystals with Uniform Relative Motion",slug:"shear-elastic-wave-refraction-on-a-gap-between-piezoelectric-crystals-with-uniform-relative-motion",totalDownloads:1724,totalCrossrefCites:0,signatures:"Nick Shevyakhov and Sergey Maryshev",reviewType:"peer-reviewed",authors:[null]},{id:"12020",type:"chapter",title:"Surface Acoustic Wave Based Wireless MEMS Actuators for Biomedical Applications",slug:"surface-acoustic-wave-based-wireless-mems-actuators-for-biomedical-applications",totalDownloads:3472,totalCrossrefCites:0,signatures:"Don Dissanayake, Said Al-Sarawi and Derek Abbott",reviewType:"peer-reviewed",authors:[null]},{id:"12021",type:"chapter",title:"Surface Acoustic Wave Motors and Actuators: Structure, Mechanism, Characteristic and Application",slug:"surface-acoustic-wave-motors-and-actuators-structure-mechanism-characteristic-and-application",totalDownloads:2677,totalCrossrefCites:0,signatures:"Shu-yi Zhang and Li-ping Cheng",reviewType:"peer-reviewed",authors:[null]},{id:"12022",type:"chapter",title:"Real Time Methods for Wideband Data Processing Based on Surface Acoustic Waves",slug:"real-time-methods-for-wideband-data-processing-based-on-surface-acoustic-waves",totalDownloads:1593,totalCrossrefCites:0,signatures:"Nikolae Masalsky",reviewType:"peer-reviewed",authors:[null]},{id:"12023",type:"chapter",title:"Thin Film Based Acoustic Wave Devices for Microfludicis and Bisensing Applications",slug:"thin-film-based-acoustic-wave-devices-for-microfludicis-and-bisensing-applications",totalDownloads:5476,totalCrossrefCites:0,signatures:"Stuart Brodie and Richard Fu",reviewType:"peer-reviewed",authors:[null]},{id:"12024",type:"chapter",title:"Application and Exploration of Fast Gas Chromatography - Surface Acoustic Wave Sensor to the Analysis of Thymus Species",slug:"application-and-exploration-of-fast-gas-chromatography-surface-acoustic-wave-sensor-to-the-analysis-",totalDownloads:2152,totalCrossrefCites:0,signatures:"Se Yeon Oh, Sung-Sun Park and Jongki Hong",reviewType:"peer-reviewed",authors:[null]},{id:"12025",type:"chapter",title:"Application of Acoustic Waves to Investigate the Physical Properties of Liquids at High Pressure",slug:"application-of-acoustic-waves-to-investigate-the-physical-properties-of-liquids-at-high-pressure",totalDownloads:3435,totalCrossrefCites:1,signatures:"Piotr Kielczynski",reviewType:"peer-reviewed",authors:[null]},{id:"12026",type:"chapter",title:"Pressure and Temperature Microsensor Based on Surface Acoustic Wave in TPMS",slug:"pressure-and-temperature-microsensor-based-on-surface-acoustic-wave-in-tpms",totalDownloads:5976,totalCrossrefCites:3,signatures:"Tianli Li, Hong Hu, Gang Xu, Kemin Zhu and Licun Fang",reviewType:"peer-reviewed",authors:[null]},{id:"12027",type:"chapter",title:"Analysis and Modeling of Surface Acoustic Wave Chemical Vapor Sensors",slug:"analysis-and-modeling-of-surface-acoustic-wave-chemical-vapor-sensors",totalDownloads:4066,totalCrossrefCites:0,signatures:"Marija Hribsek and Dejan Tosic",reviewType:"peer-reviewed",authors:[null]},{id:"12028",type:"chapter",title:"Laser-based Determination of Decohesion and Fracture Strength of Interfaces and Solids by Nonlinear Stress Pulses",slug:"laser-based-determination-of-decohesion-and-fracture-strength-of-interfaces-and-solids-by-nonlinear-",totalDownloads:1983,totalCrossrefCites:1,signatures:"Peter Hess",reviewType:"peer-reviewed",authors:[null]},{id:"12029",type:"chapter",title:"Ultrasonics: A Technique of Material Characterization",slug:"ultrasonics-a-technique-of-material-characterization",totalDownloads:4295,totalCrossrefCites:5,signatures:"Dharmendra Pandey and Shri Pandey",reviewType:"peer-reviewed",authors:[null]},{id:"12030",type:"chapter",title:"Dissipation of Acoustic Waves in Barium Monochalcogenides",slug:"dissipation-of-acoustic-waves-in-barium-monochalcogenides-",totalDownloads:1923,totalCrossrefCites:1,signatures:"Rajendra Singh",reviewType:"peer-reviewed",authors:[null]},{id:"12031",type:"chapter",title:"Statistical Errors in Remote Passive Wireless SAW Sensing Employing Phase Differences",slug:"statistical-errors-in-remote-passive-wireless-surface-acoustic-wave-sensing-employing-phase-differen",totalDownloads:1680,totalCrossrefCites:0,signatures:"Yuriy Shmaliy, Oleksandr Shmaliy, Oscar Ibarra-Manzano, Jose Andrade-Lucio and Gustavo Cerda-Villafana",reviewType:"peer-reviewed",authors:[null]}]},relatedBooks:[{type:"book",id:"903",title:"Ultrasonic Waves",subtitle:null,isOpenForSubmission:!1,hash:"647c5e74bfd1e31a69e95758a9995206",slug:"ultrasonic-waves",bookSignature:"Auteliano Antunes dos Santos Júnior",coverURL:"https://cdn.intechopen.com/books/images_new/903.jpg",editedByType:"Edited by",editors:[{id:"106405",title:"Dr.",name:"Auteliano",surname:"Santos Jr.",slug:"auteliano-santos-jr.",fullName:"Auteliano Santos Jr."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"31676",title:"Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides",slug:"modelling-the-generation-and-propagation-of-ultrasonic-signals-in-cylindrical-waveguides",signatures:"Fernando Seco and Antonio R. Jiménez",authors:[{id:"79391",title:"Dr.",name:"Fernando",middleName:null,surname:"Seco",fullName:"Fernando Seco",slug:"fernando-seco"},{id:"129814",title:"Dr.",name:"Antonio Ramón",middleName:null,surname:"Jiménez Ruiz",fullName:"Antonio Ramón Jiménez Ruiz",slug:"antonio-ramon-jimenez-ruiz"}]},{id:"31677",title:"Ultrasonic Projection",slug:"ultrasonic-projection",signatures:"Krzysztof J. Opieliński",authors:[{id:"88561",title:"Dr.",name:"Krzysztof",middleName:null,surname:"Opieliński",fullName:"Krzysztof Opieliński",slug:"krzysztof-opielinski"}]},{id:"31678",title:"3-D Modelings of an Ultrasonic Phased Array Transducer and Its Radiation Properties in Solid",slug:"3-d-modelings-of-an-ultrasonic-phased-array-transducer-and-its-radiation-properties-in-solid",signatures:"Kazuyuki Nakahata and Naoyuki Kono",authors:[{id:"80063",title:"Dr.",name:"Kazuyuki",middleName:null,surname:"Nakahata",fullName:"Kazuyuki Nakahata",slug:"kazuyuki-nakahata"},{id:"89163",title:"Dr",name:"Naoyuki",middleName:null,surname:"Kono",fullName:"Naoyuki Kono",slug:"naoyuki-kono"}]},{id:"31679",title:"Goldberg’s Number Influence on the Validity Domain of the Quasi-Linear Approximation of Finite Amplitude Acoustic Waves",slug:"goldberg-s-number-influence-on-the-validity-domain-of-the-quasi-linear-approximation-of-finite-ampli",signatures:"Hassina Khelladi",authors:[{id:"85511",title:"Dr.",name:"Hassina",middleName:null,surname:"Khelladi",fullName:"Hassina Khelladi",slug:"hassina-khelladi"}]},{id:"31680",title:"Ultrasonic Waves on Gas Hydrates Experiments",slug:"ultrasonic-waves-on-gas-hydrates-experiments",signatures:"Gaowei Hu and Yuguang Ye",authors:[{id:"81351",title:"Prof.",name:"Yuguang",middleName:null,surname:"Ye",fullName:"Yuguang Ye",slug:"yuguang-ye"},{id:"88523",title:"Dr.",name:"Gaowei",middleName:null,surname:"Hu",fullName:"Gaowei Hu",slug:"gaowei-hu"}]},{id:"31681",title:"Intense Aerial Ultrasonic Source and Removal of Unnecessary Gas by the Source",slug:"intense-aerial-ultrasonic-source-and-removal-of-unnecessary-gas-by-the-source",signatures:"Hikaru Miura",authors:[{id:"84798",title:"Prof.",name:"Hikaru",middleName:null,surname:"Miura",fullName:"Hikaru Miura",slug:"hikaru-miura"}]},{id:"31682",title:"Application of Pulsed Ultrasonic Doppler Velocimetry to the Simultaneous Measurement of Velocity and Concentration Profiles in Two Phase Flow",slug:"application-of-pulsed-ultrasonic-doppler-velocimetry-to-the-simultaneous-measurement-of-velocity-and",signatures:"N. Sad Chemloul, K. Chaib and K. Mostefa",authors:[{id:"79948",title:"Dr.",name:"Sad Chemloul",middleName:null,surname:"Nord_Edine",fullName:"Sad Chemloul Nord_Edine",slug:"sad-chemloul-nord_edine"}]},{id:"31683",title:"Ultrasonic Thruster",slug:"ultrasonic-thruster",signatures:"Alfred C. H. Tan and Franz S. Hover",authors:[{id:"77875",title:"Dr.",name:"Alfred",middleName:null,surname:"Tan",fullName:"Alfred Tan",slug:"alfred-tan"},{id:"123052",title:"Prof.",name:"Franz",middleName:null,surname:"Hover",fullName:"Franz Hover",slug:"franz-hover"}]},{id:"31684",title:"Real-Time Distance Measurement for Indoor Positioning System Using Spread Spectrum Ultrasonic Waves",slug:"real-time-distance-measurement-for-indoor-positioning-systems-using-spread-spectrum-ultrasonic-waves",signatures:"Akimasa Suzuki, Taketoshi Iyota and Kazuhiro Watanabe",authors:[{id:"81406",title:"Dr.",name:"Akimasa",middleName:null,surname:"Suzuki",fullName:"Akimasa Suzuki",slug:"akimasa-suzuki"},{id:"81439",title:"Prof.",name:"Taketoshi",middleName:null,surname:"Iyota",fullName:"Taketoshi Iyota",slug:"taketoshi-iyota"},{id:"89802",title:"Prof.",name:"Kazuhiro",middleName:null,surname:"Watanabe",fullName:"Kazuhiro Watanabe",slug:"kazuhiro-watanabe"}]},{id:"31685",title:"Ultrasonic Waves in Mining Application",slug:"ultrasonic-waves-in-mining-applications",signatures:"Ahmet Hakan Onur, Safa Bakraç and Doğan Karakuş",authors:[{id:"78394",title:"Prof.",name:"Ahmet Hakan",middleName:null,surname:"Onur",fullName:"Ahmet Hakan Onur",slug:"ahmet-hakan-onur"}]},{id:"31686",title:"Design and Development of Ultrasonic Process Tomography",slug:"design-and-development-of-ultrasonic-process-tomography",signatures:"Mohd Hafiz Fazalul Rahiman, Ruzairi Abdul Rahim, Herlina Abdul Rahim and Nor Muzakkir Nor Ayob",authors:[{id:"79078",title:"Dr.",name:"Mohd Hafiz",middleName:null,surname:"Fazalul Rahiman",fullName:"Mohd Hafiz Fazalul Rahiman",slug:"mohd-hafiz-fazalul-rahiman"},{id:"85884",title:"Prof.",name:"Abdul Rahim",middleName:null,surname:"Ruzairi",fullName:"Abdul Rahim Ruzairi",slug:"abdul-rahim-ruzairi"},{id:"85887",title:"Dr.",name:"Herlina",middleName:null,surname:"Abdul Rahim",fullName:"Herlina Abdul Rahim",slug:"herlina-abdul-rahim"},{id:"141931",title:"MSc.",name:"Nor Muzakkir",middleName:null,surname:"Nor Ayob",fullName:"Nor Muzakkir Nor Ayob",slug:"nor-muzakkir-nor-ayob"}]},{id:"31687",title:"Suppression of Corrosion Growth of Stainless Steel by Ultrasound",slug:"suppression-of-corrosion-growth-of-stainless-steel-by-ultrasound",signatures:"Rongguang Wang",authors:[{id:"81500",title:"Prof.",name:"Rongguang",middleName:null,surname:"Wang",fullName:"Rongguang Wang",slug:"rongguang-wang"}]},{id:"31688",title:"New Trends in Materials Nondestructive Characterization Using Surface Acoustic Wave Methodologies",slug:"new-trends-in-materials-nondestructive-characterization-using-surface-acoustic-wave-methodologies",signatures:"T. E. Matikas and D. G. Aggelis",authors:[{id:"88829",title:"Dr",name:null,middleName:null,surname:"Matikas",fullName:"Matikas",slug:"matikas"}]}]}],publishedBooks:[{type:"book",id:"66",title:"Advances in Sound Localization",subtitle:null,isOpenForSubmission:!1,hash:"3d2ef1f3f506c287ecd134041c20952c",slug:"advances-in-sound-localization",bookSignature:"Pawel Strumillo",coverURL:"https://cdn.intechopen.com/books/images_new/66.jpg",editedByType:"Edited by",editors:[{id:"20143",title:"Prof.",name:"Pawel",surname:"Strumillo",slug:"pawel-strumillo",fullName:"Pawel Strumillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"866",title:"Noise Control, Reduction and Cancellation Solutions in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7219da94d49d88629388cfcd200075ae",slug:"noise-control-reduction-and-cancellation-solutions-in-engineering",bookSignature:"Daniela Siano",coverURL:"https://cdn.intechopen.com/books/images_new/866.jpg",editedByType:"Edited by",editors:[{id:"9960",title:"Dr.",name:"Daniela",surname:"Siano",slug:"daniela-siano",fullName:"Daniela Siano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"903",title:"Ultrasonic Waves",subtitle:null,isOpenForSubmission:!1,hash:"647c5e74bfd1e31a69e95758a9995206",slug:"ultrasonic-waves",bookSignature:"Auteliano Antunes dos Santos Júnior",coverURL:"https://cdn.intechopen.com/books/images_new/903.jpg",editedByType:"Edited by",editors:[{id:"106405",title:"Dr.",name:"Auteliano",surname:"Santos Jr.",slug:"auteliano-santos-jr.",fullName:"Auteliano Santos Jr."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1606",title:"Acoustic Emission",subtitle:null,isOpenForSubmission:!1,hash:"cc8b94f6002f9f928cb9224f7da17a0a",slug:"acoustic-emission",bookSignature:"Wojciech Sikorski",coverURL:"https://cdn.intechopen.com/books/images_new/1606.jpg",editedByType:"Edited by",editors:[{id:"86930",title:"Dr.",name:"Wojciech",surname:"Sikorski",slug:"wojciech-sikorski",fullName:"Wojciech Sikorski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2188",title:"Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices",subtitle:null,isOpenForSubmission:!1,hash:"ae0f011b5180f0cc414a30ec559cb421",slug:"modeling-and-measurement-methods-for-acoustic-waves-and-for-acoustic-microdevices",bookSignature:"Marco G. Beghi",coverURL:"https://cdn.intechopen.com/books/images_new/2188.jpg",editedByType:"Edited by",editors:[{id:"41947",title:"Prof.",name:"Marco G.",surname:"Beghi",slug:"marco-g.-beghi",fullName:"Marco G. Beghi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"68108",title:"Analytical Methods of Isolation and Identification",doi:"10.5772/intechopen.88122",slug:"analytical-methods-of-isolation-and-identification",body:'
1. Introduction
The phytochemicals rich in plants have shown to be beneficial for prevention of diseases as well as long-term health. Plants are generally consumed as sources of essential compounds such as saccharides, coumarins, lignans, flavonoids, terpenoids, and steroids. The health benefits and the composition from plant have been described more and more in the literature. Because of the complexity of plant chemical constituents, pure phytochemicals must to be obtained via extraction and isolation before structure identification, bioactivity screening, and so on. In recent years, new technologies and methods of extraction occurred, which accelerate the extraction and analysis of phytochemicals.
Extraction is the first step of phytochemistry research, which is also the necessary work before the isolation of effective constituents. The purpose of extraction is to get the objective chemical constituents to the utmost extent and avoid or reduce the solution of unwanted constituents.
The separation of phytochemicals is a process of isolating the constituents of plant extracts or effective parts one by one and purifying them into monomer compounds by physical and chemical methods. Classical isolation methods, including solvent extraction, precipitation, crystallization, fractional distillation, salting-out, and dialysis, are still used commonly at present. On the other hand, modern separation technologies such as column chromatography, high performance liquid chromatography, ultrafiltration, and high performance liquid drop countercurrent chromatography also play an important role in the separation of phytochemicals [1, 2, 3].
The chemical structures of plant compounds must be identified, which may provide the necessary basis for further study on the bioactivities, structure-activity relationships, metabolisms in vivo, structural modification, and synthesis of the active phytochemicals.
The structural studies are often difficult to carry out with classical chemical methods, such as chemical degradation and derivative synthesis, because of the minute amount of compound isolated from plants. Therefore, spectral analysis is mainly used. That is, consuming sample as little as possible to obtained structural information as much as possible by measuring and analyzing various spectra [4].
2. Extraction of phytochemicals
2.1 Solvent extraction methods
2.1.1 Principles
Solvent extraction is the commonest method to extract plant material. The main purpose is to select the suitable solvent to extract target plant materials efficiently. During the extraction, the solvent has to diffuse into the cell membrane in the first instance, in the following step it has to dissolve the solutes, then intracellular and extracellular concentration difference is formed, and finally it has to diffuse out of the cells enriched in the extracted solutes [5].
Selecting suitable solvents is the key of the solvent extraction method. Using a solvent of an appropriate polarity according to the principle of “like dissolves like” is the main point to select solvent. Thus, hydrophilic solvents are used to solubilize hydrophilic chemical constituents and vice versa. The hydrophilicity or lipophilicity of solvents and chemical constituents could be predicted by polarity. The plant compounds, such as terpenoids and steroids, possess low polarity, and could be dissolved into lipophilic solvents such as chloroform and ether, while chemical constituents, such as carbohydrates and amino acids, possess rather high polarity and could be dissolved into water and aqueous ethanol.
Solvents commonly used for extracting chemical constituents of plants are in the order of weak to strong polarity as follows: petroleum ether < carbon tetrachloride < benzene < dichloromethane < chloroform < ether < ethyl acetate < n-butanol < acetone < ethanol < methanol < water.
Water is a cheap, easy to get, and nontoxic solvent with strong polarity. It could be used to extract phytochemicals with strong polarity, such as inorganic salts, saccharides, amino acids, tannins, proteins, organic acid salts, alkaloid salts, and glycosides. Acid or alkaline water is applied sometimes to increase the solubility of certain specific components. Acid water could extract alkaline materials, such as alkaloids, via the formation of salts. Similarly, organic acids, anthraquinoids, flavonoids, coumarinoids, phenols, and other acidic materials could be extracted via the formation of salts. The disadvantage to extract chemical constituents with water is that the aqueous extract is easy to go moldy, so difficult to preserve. Additionally, water possesses high boiling point, and the water extract needs to be concentrated for a rather long time. Furthermore, the water extract contains many impurities such as proteins, pectins, tannins, mucilages, and inorganic salts, which make the extraction of target components difficult.
Hydrophilic organic solvents are strong-polarity and water miscible, such as methanol, ethanol, and acetone. Ethanol is the most commonly used hydrophilic organic solvent. Chemical constituents could be extracted by ethanol of different concentrations according to their properties. Furthermore, ethanol is inexpensive, safe, and concentrated easily. Additionally, ethanol extract is not readily moldy and glycosides are hard to be hydrolyzed in ethanol extract. Thus, ethanol is one of the most commonly used solvents in laboratories and industrial production. Methanol possesses similar property to ethanol and lower boiling point. However, methanol has rather strong toxicity, so we have to pay attention to safety when it has to be used. Acetone is a good solvent to extract lipid-soluble chemical constituents. However, acetone is easy to volatilize and flame, and it possesses certain toxicity.
Petroleum ether, benzene, chloroform, ether, ethyl acetate, dichloroform, and so on are lipophilic organic solvents and are not miscible with water. They could be applied to extract lipophilic components, such as volatile oils, fats, chlorophyll, lactones, phytosterols, some alkaloids and some aglycones (aglycones of flavonoids, anthraquinoids, steroids, and so on). These solvents possess low boiling points and are easy to concentrate. However, strong-volatility, large loss, flammability, toxicity, and high price are their disadvantages. Additionally, they are difficult to permeate into plant cell tissues.
Solvent extraction methods could be classified as cold extraction and hot extraction roughly by whether heating or not.
2.1.2 Immersion method
It is a method to dissolve out phytochemicals with appropriate solvents at room or low temperatures (<80°C). It is suitable to extract phytochemicals easily to be destroyed at high temperature. The plants with abundant starches, pectins, gums, or mucilages could also be extracted with this method. Firstly, plant powder or pieces should be loaded in the adequate container, and then the suitable solvents (water, ethanol, aqueous ethanol, and so on) are added into it to immerse the material for the given length of time. Discontinuous stirring or shaking during the process could accelerate dissolution rate. The immersion method is simple but inefficient, and the extraction ratio is also low. Furthermore, aqueous extract is easy to go moldy, so addition of appropriate preservatives is necessary.
2.1.3 Percolation method
The coarse particles of plants should be loaded in percolation apparatus and immersed with suitable solvent for 24–48 h, then collect the percolates at the bottom of percolation apparatus. New solvent should be added at the top of percolation apparatus constantly during the percolation process. It possesses higher efficiency than the immersion method because of the sustained concentration difference during the process. However, this procedure is complex and consumes rather much solvent and long time.
2.1.4 Decoction method
Load short segments, thin pieces, or coarse powder into an appropriate container, add water, and heat it to boiling; the components are then extracted. It is easy to operate; most of the constituents could be extracted in various degrees. Nevertheless, rather much nontargeted components could also be extracted, and it is not suitable to the extraction of volatile compounds and thermal unstable compounds. Furthermore, it is not suitable to extract plants with lots of starches [6].
2.1.5 Refluxing method
It is a method to extract plant chemical constituents by organic solvent using heating and refluxing. Refluxing apparatus is necessary so as not to waste solvents, and the toxicity to operators or ruin the environment is deduced. It is applicable to extraction of lipophilic phytochemicals, such as steroids, anthraquinoids, and terpenoids. It is an extraction method of high efficiency but complex, and consumes much more solvent. This method is not applicable to extract thermal unstable chemical constituents because of long time heating.
2.1.6 Constant refluxing method
It is a method developed based on the refluxing method. Soxhlet extractor is the most frequently used constant refluxing apparatus. This method avoids disadvantages of consuming too much solvent and complex operation. However, as a refluxing method, constant refluxing method is not applicable to extract thermally unstable compound either because of long time heating.
2.1.7 Supercritical fluid extraction method
In the supercritical state, the supercritical fluid is contacted with the plant tissues. By controlling different temperatures, pressures and different kinds and contents of entrainers, the supercritical fluid can selectively extract the components of different polarities, boiling points, and molecular weights successively. This method is called the supercritical fluid extraction (SFE) method [7].
The critical point of a pure substance is defined as the highest temperature and pressure at which the substance can exist in vapor-liquid equilibrium. At temperatures and pressures above this point, a single homogeneous fluid is formed, which is known as supercritical fluid (SF). SF is heavy like liquid and has low viscosity like gas meanwhile. SF possesses rather large diffusion coefficient and could dissolve many compounds well. A number of materials could be used as SFs, such as ammonia, ethane, difluoro-dichloromethane, heptane, and so on, while the most widely used SF is CO2. The critical temperature of CO2 (Tc = 31.26°C) is close to room temperature, and the critical pressure (Pc = 7.2 MPa) is not too high. CO2 also has a series of other advantages, such as nontoxicity, odorless, nonflammable, chemical stability, and low cost, which allowed it to be the most commonly used solvent in SFE. CO2 is a nonpolar substance and applicable to extract lipophilic compounds. However, its dissolvability is weak compared to strong polar substances. Hence, entrainers are always added to improve the solubility of SF CO2 during the extraction of polar compounds. Entrainers, which are added into SF little, could enhance solubility of SF significantly. The commonly used entrainers are methanol, ethanol, water, acetone, ethyl acetate, acetonitrile, and so on.
The extraction of nonpolar and medium-polar components by SFE can avoid the sample loss and environmental pollution caused by solvent recovery in traditional extraction methods, especially for the extraction of volatile compounds with thermal instability.
The biggest advantage of SFE is that it can be performed at near-room temperature, and almost all the active ingredients in the product can be retained. There is no residual organic solvent in the process. The product has high purity and high yield. Additionally, the operation is simple and energy saving.
Compared with other conventional separation methods, SFE possesses the following advantages: (1) No residual organic solvents, fast extraction speed, simple process, high yield, and easy operation; (2) no flammable and explosive dangers, no environmental pollution. Low extraction temperature, suitable for the extraction of thermal unstable components; (3) the dissolution properties of SF are easy to improve, only the pressure needs to be changed at a certain temperature; (4) entrainers can be added to change the polarity of the extraction medium to extract polar substances; extraction medium can be recycled with low cost; (5) it could be applied combined with other chromatographic techniques, such as GC, IR, GC–MS, and HPLC, to extract, separate, and determine phytochemicals efficiently and quickly, so as to achieve the integration of extraction and quality analysis. However, supercritical extraction has some limitations: strong solubility of fat-soluble components, weak solubility of water-soluble components, high cost of equipment, resulting in higher product costs, and cleaning equipment is difficult.
Supercritical fluid extraction (SFE) technology has achieved gratifying results in the fields of medicine, chemical, food, light industry, and environmental protection. Especially, it has been widely used in phytochemical extraction field, such as the extraction of alkaloids, volatile oils, phenylpropanoids, flavonoids, organic acids, glycosides, terpenoids, and so on.
2.1.8 Ultrasonic extraction method
It is a method of solvent extraction assisted by ultrasound. Ultrasonic wave is a kind of elastic mechanical vibration wave. The vibration frequency is as high as 20 KHz in elastic medium. The ultrasonic wave could vibrate the liquid medium. When the vibration is sparse, many small holes are formed in the medium. The instantaneous closure of these small holes can cause a pressure of up to thousands of atmospheric pressures. At the same time, the local temperature can rise to 1000°C. It can cause instantaneous rupture of the cell wall of plants and the whole organism, and make the solvent permeate into the cells of plants. This accelerates the dissolution of active ingredients in plants into solvents. Ultrasonic wave extraction could shorten the extraction time and improve the extraction efficiency, but could not change the structures of chemical constituents meanwhile.
Ultrasonic extraction technology has been widely used in the extraction of natural products in recent years, for example, extraction of soy isoflavones; see [8].
2.1.9 Microwave-assisted extraction method
Microwave refers to the electromagnetic wave whose wavelength is in the range of 0.1–100 cm (the corresponding frequency is 300–300,000 MHz), which is between infrared and radio waves. Polar molecules can absorb microwave energy, then release energy in the form of thermal energy, which makes the temperature inside the medium rise rapidly, causes the rather high pressure inside, and then the components flow out and dissolve in the solvent. On the other hand, the electromagnetic field produced by microwave can make some components diffuse to the interface of the extraction solvent, accelerating their thermal movement, which not only improves the extraction efficiency but also reduces the extraction temperature [9].
Microwave-assisted extraction has the advantages of less decomposition of chemical constituents, shorter time, lower energy consumption and less environmental pollution. Microwave-assisted extraction has been widely used in a series of fields of perfume, condiments, natural pigments, herbal medicine, cosmetics, soil and environmental analysis, and so on. In China, microwave-assisted extraction technology has been used in hundreds of Chinese herbal medicine extraction, such as Pueraria lobata, Panax notoginseng, Ginkgo, and so on, for example, the extraction of tea polyphenols and tea caffeine from green tea leaves; see [10].
2.2 Steam distillation method
Steam distillation is suitable for the extraction of volatile components which can be distilled with steam without being destroyed and are insoluble in water. These compounds’ boiling points of are mostly higher than 100°C, and they possess certain vapor pressures at about 100°C. The principle of steam distillation is that the vapor pressure of each component is equal to that of their pure state, while the existence of another liquid does not affect their vapor pressure. The total vapor pressure of the mixing system is equal to the sum of the vapor pressures of the two components. Because the total vapor pressure of the system is higher than that of any single component, so the boiling point of the mixture is lower than that of any component. It is mainly used to extract volatile oils, some alkaloids, and phenolic substances of small molecules from plants.
2.3 Sublimation method
The process that solid material converts into steam directly without melting after heating is called sublimation. The phenomenon that steam condenses into solid after cooling is called deposition. Some natural chemicals have sublimation properties, which can be extracted directly with the sublimation method, for example, the extraction of camphor from camphor wood and caffeine from tea. In addition, some small molecular alkaloids, coumarins, organic acids, and other components also have sublimation properties, such as aesculetin and benzoic acid. However, it is easy to carbonize natural products because of long heating time. The volatile tar-like substances often adhere to sublimates, which are difficult to remove and often accompanied with thermal decomposition. The yield of this method is often low, and it is not suitable for large-scale production.
2.4 Pressing method
When the content of active ingredients is relatively high and exists in the juice of plants, the juice can be extracted directly from fresh raw materials. Volatile oils can also be extracted from plant tissues by mechanical pressing, such as orange peel oil and lemon oil. It is performed at room temperature, so its components will not be decomposed by heat. However, the products obtained are impure and often contain impurities such as water, mucoid substances, and cell tissues, so they are often turbid, and it is not easy to press the volatile oil in plants entirely. Therefore, the crushed residue is often distilled by steam to extract volatile oils completely. For example, the black soybean oil from black soybean is often extracted with the low-temperature pressing method.
3. Isolation and purification of phytochemicals
The separation of phytochemicals is a process of isolating the constituents of plant extracts or effective parts one by one and purifying them into monomer compounds by physical and chemical methods. Classical isolation methods, including solvent extraction, precipitation, crystallization, fractional distillation, salting-out, and dialysis, are still used commonly at present. On the other hand, modern separation technologies such as column chromatography, high performance liquid chromatography, ultrafiltration, and high performance liquid drop countercurrent chromatography also play an important role in the separation of phytochemicals. This section describes the common methods and their specific applications in isolation of phytochemicals.
3.1 Solvent method
3.1.1 Acid and basic solvent method
It is carried out according to the different acidity and alkalinity of each component in the mixture. Water-insoluble alkaline organic components, such as alkaloids, could react with inorganic acids and form salts, which can be separated from nonalkaline and water-insoluble components. Acid components with carboxyl or phenolic hydroxyl groups can be salted by bases and dissolved in water. Components with lactone or lactam substructures can be saponified and dissolved in water and then isolated from other water-insoluble components. The total extract can be dissolved in lipophilic organic solvents (ethyl acetate is commonly used) and extracted respectively with acid water and alkali water, and then the total extract would be divided into acidic, alkaline, and neutral parts. Of course, the total extract can also be dissolved in water and extracted with organic solvents after adjusting the pH value. The alkalinity or acidity of the fractions are different and can be separated further by pH gradient extraction.
When using the acid and basic solvent method, attention should be paid to the strength of acidity or alkalinity, the contact time with the separated components, heating temperature, and time, so as to avoid the structural changes of some compounds under severe conditions or the chemical structures cannot be restored to the original states.
3.1.2 Polarity gradient extraction method
This method is to achieve the separation aim based on the different polarity of each component in plant extracts and the different partition coefficients in two-phase solvents. Generally, different two-phase solvent systems are selected according to the polarity of components in plant extracts. For example, the components with strong polarity can be separated by n-butanol-water system, the components with medium polarity can be separated by ethyl acetate-water system, and the components with weak polarity can be separated by chloroform (or ether)-water system. During the operation, the plant extract should be dissolved by water firstly, and then the solution or suspension is extracted in a separating funnel with different organic solvent which is not miscible with water based on the polarity difference. Usually, the extract was extracted with petroleum ether (or cyclohexane) firstly, then ethyl acetate (or chloroform), and finally with water saturated n-butanol, as shown in Figure 1. Petroleum ether layer contains lipid-soluble compounds with low polarity. Ethyl acetate layer contains medium polar compounds such as monoglycosides, flavonoids, and compounds with more polar functional groups. N-butanol layer contains compounds with strong polarity, such as oligoglycosides and other water-soluble components. Compounds in water layer possess strongest polarity, such as glycosides with more glycosyl groups, carbohydrates, amino acids, proteins, and other water-soluble compounds.
Figure 1.
Flow charts of common polarity gradient extraction method.
3.2 Precipitation method
It is a method based on the formation of precipitation of some phytochemicals by reaction with specific reagents, or the precipitation of some components from the solution by adding specific reagents, which can reduce the solubility of some components in the solution. The precipitation reaction must be reversible if the target components are required to form precipitation. While if the components are nontarget, the precipitation generated will be removed, so the precipitation reaction can be irreversible. According the addition of reagents or solvents, this method could be classified as follows [11].
3.2.1 Solvent precipitation method
The solubility of some components in the mixed component solution can be changed by adding a specific solvent that can be mutually soluble with the solution, so it can be precipitated from the solution. The gradual precipitation by changing the polarity or amount of solvent added is called fractional precipitation. For example, using water as an extracting solvent to extract phytochemicals, ethanol is added to the water extracting concentrate to make its alcohol content more than 80%, and then polysaccharides, proteins, starch, gum, and so on will be precipitated and removed after filtration. The preceding procedure is called water extraction and ethanol precipitation. Crude polysaccharides from plants are often separated with this method. For example, see [12].
3.2.2 Exclusive reagent precipitation method
Some reagents could react selectively with certain chemical constituents to produce reversible precipitation, and the separation aims are achieved, which is called the exclusive reagent precipitation method. For example, alkaloid precipitation reagents such as Reynolds ammonium salt can precipitate after reacting with alkaloids, which can be used to separate alkaloids and nonalkaloids, or water-soluble alkaloids and other alkaloids. As another example, reactions of cholesterol and sterol saponins could form precipitation, which can separate them from triterpene saponins. Additionally, gelatin can precipitate tannins, which can be used to separate or remove tannins. In practical application, appropriate precipitation reagents should be selected according to the properties of target constituents and impurities in plants.
3.2.3 Salting out method
Adding inorganic salts to a certain concentration or saturated state in the water extract of plants can reduce the solubility of some components in water, thus they could be separated from water-soluble compounds. The inorganic salts commonly used for salting out are sodium chloride, sodium sulfate, magnesium sulfate, ferric sulfate, etc. For example, extractions of tetrandrine from Daemonorops margaritae and berberine from Berberis poiretii could be achieved by salting out with sodium chloride or ammonium sulfate. Some water-soluble substances, such as proto-anemone, ephedrine, and matrine, are often extracted with organic solvents after adding a certain amount of salt to the water extract. For example, see [13].
3.3 Dialysis method
It is a method to let substances selectively penetrate through natural or synthetic semi-permeable membranes (or dialysis bags) under the action of concentration difference, pressure difference, or potential difference, so as to achieve the purpose of separation, classification, purification, or concentration. For example, when saponins, proteins, polypeptides, polysaccharides, and other substances in plants are separated and purified, dialysis can be used to remove inorganic salts, monosaccharides, and other impurities. On the contrary, large molecular impurities can also be left in the semi-permeable membrane, while small molecular substances can be separated and purified through the semi-permeable membrane into the solution outside the membrane [14].
3.4 Fractional distillation method
Fractional distillation is a method of separating components in liquid mixtures based on their different boiling points. It is usually categorized into atmospheric, vacuum, molecular distillation, and so on. It is mainly used for the separation of volatile oils and some liquid alkaloids in plants. For example, the boiling points of the two alkaloids in total alkaloids of Cicuta virosa, coniine, and conhydrine are 166–167°C for the former and 226°C for the latter, which are quite different from each other, and then they can be separated by the fractional distillation method. Generally, if the boiling point difference of compounds in liquid mixtures is above 100°C, the separation can be achieved by repeated distillation of the solution. If the boiling point difference of compounds is below 25°C, the fractionation column is needed. The smaller the boiling point difference is, the finer the fractionation device is needed [15].
3.5 Crystallization method
Crystallization is the process of solute precipitation from mother liquor with complex components, and it is an effective method to prepare pure substances. The initial crystallization is often impure and needs to crystallize again, which is called recrystallization. It is a method to separate compounds from the mixture by using the difference of solubility of each component in the solvent. Crystallization is one of the important technologies for plant chemists to prepare pure compounds.
When the content of a phytochemical is very high in one plant, crystals can be obtained by cooling or slightly concentrating the extract after extraction with appropriate solvent. For example, see [16].
Selecting suitable crystallization solvent is the key of the crystallization method. The ideal solvents for crystallization should possess the following characteristics: high solubility for the components to be purified at high temperature, low solubility at low temperature, insoluble for the impurities at high and low temperature, or soluble for the impurities at high and low temperature, moderate boiling point, no chemical reaction with the components to be crystallized, safe, low price, easy to obtain, and so on. Solvents commonly used for crystallization are methanol, ethanol, acetone, ethyl acetate, acetic acid, pyridine, etc. When crystals cannot be obtained with a single solvent, the crystallization operation can be carried out with a mixture of two or more solvents. Mixed solvents generally consist of two miscible solvents, one of which has high solubility for the component to be crystallized, and the other has low solubility. Firstly, the sample to be crystallized is heated and dissolved in as few solvents as possible with high solubility. Then the second solvent with low solubility is added to the hot solution to make it turbid. Then the first solvent is added to dissolve the sample. The solution reaches saturation at this point and crystallizes when it is cooled. The purity of crystallization can be preliminarily identified by the crystal form, color, melting point, melting range, thin layer chromatography, paper chromatography, etc.
3.6 Classical chromatographic methods
Chromatography is the most commonly used method for the separation of chemical constituents of natural products. It possesses advantages of high separation efficiency, rapidity, and simplicity. By choosing different separation principles, different operation modes, different chromatographic packings, or applying various chromatographic methods jointly, the separation and purification of various types of phytochemicals could be achieved. It can also be used for the identification of compounds.
3.6.1 Adsorption chromatography
It is a kind of chromatography based on the difference of adsorptive capacity of adsorbents to different compounds. The commonly used adsorbents include silica gel, alumina, activated carbon, polyamide, and so on. Silica gel adsorption chromatography is widely used, and it is suitable to the separation of most of the plant chemical constituents. Alumina adsorption chromatography is mainly used for the separation of alkaline or neutral lipophilic components, such as alkaloids, steroids, and terpenoids. Activated carbon is mainly used for the separation of water-soluble substances, such as amino acids, carbohydrates and some kinds of glycosides. Polyamide, which allows the separation to take place based on the formation of kinds of hydrogen bonds, is mainly used for the separation of phenols, quinones, flavonoids, anthraquinones, tannins, etc. [17].
3.6.2 Gel chromatography (exclusion chromatography, molecular sieve chromatography)
Molecular sieve is the main principle of gel chromatography, which can separate mixture compounds according to the pore size of the gel and the molecular size of the compounds. Gel is a kind of solid material with a porous network structure. The molecules of the separated substances are different in size, so their ability to enter the gel is different. When the mixture solution passes through the gel column, the molecules smaller than the gel pores can enter the gel interior freely, while the molecules with larger size than the gel pores cannot enter the gel, and only pass through the gel particle gaps. Therefore, different movement rates are emerged. The molecules with large sizes are not excluded, and the retention time is shorter. The molecules with small sizes are detained because of its diffusion into the pores, thus the retention time is longer. There are many kinds of commercial gels, dextran gel and hydroxypropyl dextran gel are used most commonly [18].
3.6.3 Ion exchange chromatography
It is to separate chemical constituents according to the difference of dissociation degrees. In this method, ion exchange resin is applied as stationary phase and water or solvent mixed with water as mobile phase. The ionic components existing in the mobile phase are absorbed by ion exchange resin after ion exchange reaction. Ion exchange chromatography is suitable for the separation of ionic compounds, such as alkaloids, amino acids, organic acids, peptides, and flavonoids. The ability of ion exchange reaction between compounds and ion exchange resins mainly depends on the compounds’ dissociation degree and the amount of electric charges. If the dissociation degree of a compound is high (acidic or alkaline), it is easily exchanged on resins and difficult to elute. Therefore, when the compounds with different degree of dissociation are exchanged on the resin, the compounds with lower degree of dissociation are eluted before those with higher degree of dissociation [19].
3.6.4 Macroporous adsorption resin chromatography
It is a chromatographic method which combines the principle of adsorption and molecular sieve. Its chromatographic behavior possesses reversed-phase properties. Macroporous resin is a kind of solid macromolecule material with no dissociable group and porous structure and is insoluble in water. It is widely used in the separation and enrichment of natural compounds because of its stable physical and chemical properties (insoluble in acids, bases, and organic solvents).
In practical work, the water solution of the mixture to be separated is usually washed by water, water-containing alcohol solution with low to high concentration. The mixture can be separated into several components. The regeneration of macroporous adsorbent resin is convenient. It is often washed by 1 mol/L hydrochloric acid and 1 mol/L sodium hydroxide solution, respectively, first, then washed by distilled water to neutral, and stored in methanol or ethanol. The alcohol should be washed out with distilled water before using.
3.6.5 Partition chromatography
It is a kind of chromatography method to separate components by using different partition coefficients between stationary phase and mobile phase, which are immiscible liquids. Partition chromatography could be divided into normal phase chromatography and reverse phase chromatography. The polarity of stationary phase is stronger than that of mobile phase in normal phase partition chromatography, which is mainly used to separate polar and moderately polar molecular compounds. Carriers commonly used in normal phase distribution chromatography include silica gel, diatomite, cellulose powder, etc. Silica gel with water content of more than 17% can be used as a carrier for partition chromatography because of its loss of adsorption. It is the most widely used carrier for partition chromatography. In reverse phase partition chromatography, the polarity of mobile phase is stronger than that of stationary phase. The commonly used stationary phase is octadecyl-silylated silica (ODS). The mobile phase is usually methanol-water or acetonitrile-water system, which is mainly used for the separation of nonpolar and moderately polar molecular compounds.
3.7 New technologies and methods
3.7.1 High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC) is a rapid separation and analysis technology developed on the basis of conventional column chromatography. Its separation principle is the same as regular column chromatography, including adsorption chromatography, gel chromatography, partition chromatography, ion exchange chromatography, and other methods. HPLC columns are produced with particle fillers (particle diameter 5–20 μm) and high pressure homogenate column loading technology. The eluents are pressed into the column by a high pressure infusion pump and equipped with high sensitive detectors and automatic recording and collection devices. As a result, it is far superior to conventional column chromatography in separation speed and efficiency. It has the characteristics of high efficiency, high speed, and automation. Preparative HPLC can be used to prepare a large amount of samples of high purity. HPLC has played an increasingly important role in the separation, qualitative identification, and quantitative analysis of plant chemical constituents. During the separation of many plant chemical constituents, it is necessary to separate trace constituents from a large amount of crude extracts. Usually, in the final stage of separation, samples with high purity are prepared by high or medium pressure liquid chromatography. Constant concentration eluents are mostly used in preparative HPLC. However, gradient elution is sometimes applied for samples that are difficult to be separated. Moreover, HPLC retains the advantages of liquid chromatography, such as a wide range of application and flexibility of mobile phase change. It can be applied to chemical constituents of difficult gasification, high molecular weight, or thermal instability.
The detectors commonly used in HPLC are ultraviolet detectors and differential refractive index detectors, but both have limitations. Differential refractive index detectors are sensitive to temperature change, the detection of a small amount of substances is often not ideal, and gradient elution cannot be used. As for ultraviolet detectors, they cannot detect samples without ultraviolet absorption. In recent years, a kind of mass detector, called evaporative light scattering detector (ELSD), has been applied in HPLC. It can not only detect samples without ultraviolet absorption, but also use gradient elution. It is suitable for most nonvolatile components [20].
DCCC is an improved liquid-liquid partition chromatography based on the counter-current partition method. The formation of droplets is required when the mobile phase passes through a liquid stationary phase column. Droplets of mobile phase contact with stationary phase effectively, and form new surfaces in thin partition extraction tubes constantly, which promote the partition of solutes in two-phase solvents, and the chemical components of mixtures are isolated in immiscible two-phase droplets due to different partition coefficients. This method is suitable for the separation of phytochemicals with strong polarity. The separation effect is usually better than counter-current partition chromatography, and there is no emulsification phenomenon. Furthermore, nitrogen is used to drive the mobile phase, so the separated substance will not be oxidized by oxygen in the atmosphere. However, the solvent system which can generate droplets must be selected in this method, the amount of sample treated is small, and special equipment is needed.
DCCC possesses good reproducibility, and can handle crude extract samples of milligram to gram grade. It can be used in either acidic or basic conditions. Because no solid separation carriers are used, the phenomenon of irreversible adsorption and band broadening of chromatographic peaks can be avoided. Compared with preparative HPLC, DCCC consumes less solvent, but the separation time is longer and the resolution is lower. For example, see [21].
3.7.3 High speed counter-current chromatography (HSCCC)
HSCCC is also a liquid-liquid partition chromatography. It is another mild form of chromatography with no solid support and hence no chance of loss of substrate by binding to the column. The only media encountered by the sample are solvent and Teflon tubing. The former is common to all forms of chromatography and the latter to most. The chemical constituents with higher partition coefficient in mobile phase are eluted first, whereas those with higher partition coefficient in stationary phase are eluted later.
HSCCC chromatography could avoid the shortcomings of irreversible adsorption and abnormal tailing of chromatographic peaks caused by solid carriers in liquid chromatography because it does not need solid carriers. The sample recovery is near 100% from a chromatography. It also has advantages of good reproducibility, high purity of separated compounds, and fast speed. It is suitable for the isolation and purification of wide kinds of phytochemicals, such as saponins, alkaloids, flavonoids, anthraquinoids, lignans, triterpenes, proteins, and carbohydrates. For example, see [22].
3.7.4 High performance capillary electrophoresis (HPCE)
It is an instrumental analysis method developed in the late 1980s combining classical electrophoresis with modern microcolumn separation technologies. In pharmaceutical analysis, the most commonly used separation modes are capillary zone electrophoresis, micellar electrokinetic capillary chromatography, and capillary gel electrophoresis. It is an efficient separation technology of large and small molecules in a hollow and thin inner diameter capillary (10–200 μm). The two ends of the capillary are immersed in a buffer solution and electrodes connected with a high voltage power supply are inserted separately. The voltage makes samples migrate along the capillary. According to the charge and volume of the separated substances, various molecules are separated under high voltage. In zone capillary electrophoresis, separation could be achieved by the movement of electrophoresis and electroosmotic flow. The strength of electroosmotic flow depends on the strength of electric field, PH value of electrolyte, composition of buffer solution, ionic strength, internal friction, and so on. Sample injection could be accomplished by pressing the sample into a capillary tube by atmospheric pressure or voltage.
HPCE has the advantages of high efficiency, microamount, economy, high automation, and wide application. However, it has the disadvantages of poor preparation ability, low sensitivity, and poor separation reproducibility. For example, see [23].
3.7.5 Affinity chromatography (AC)
Affinity chromatography is a unique chromatographic separation method based on the principle of reversible combination of high affinity and specificity between molecules. By simulating the reversible and specific interaction between biological molecules, affinity chromatography uses the adsorption medium coupled with affinity ligands as the stationary phase to adsorb target compounds. It is a development of adsorption chromatography. This method can selectively separate and analyze specific chemical constituents from complex samples. Firstly, ligands that can specifically bind to the target compounds are fixed on the filler carrier to make the chromatographic column. Then the mixture containing the target compounds is passed through the column. Only the target compounds which show affinity with the ligands can bind to the ligands and remain in the column. Finally, the adsorbed target compounds are eluted by changing the composition of the mobile phase and are separated from other chemical constituents. AC is mainly used for the separation and purification of proteins, especially enzymes, antigens, and antibodies. Its application range has been expanding along with the continuous development of technology in recent years. For example, see [24].
4. Structural identification of phytochemicals
The chemical structures of plant compounds must be identified or elucidated, which may provide the necessary basis for further study on the bioactivities, structure-activity relationships, metabolisms in vivo, structural modification, and synthesis of the active phytochemicals.
The quality of physiological active substances isolated from plants is often small, sometimes only a few milligrams, and the structural studies are often difficult to carry out with classical chemical methods, such as chemical degradation, derivative synthesis, etc. Therefore, spectral analysis is mainly used, that is, consuming sample as little as possible to obtain structural information as much as possible by measuring various spectra. Then comprehensive analysis is carried out with the assistance of literature data. If necessary, chemical means would be integrated into the former methods to determine the planar- and even the stereo-structures of the compounds.
4.1 Determination of the purity of the compounds
Before the structural investigation of an active compound, the purity must be determined, which is a prerequisite for the structural identification.
4.1.1 Measurement of physical properties
The crystals of each compound have certain shape, color, and melting point, which can be used as the basis for the preliminary determination of the purity. Generally, the crystal shape of a specific compound under the same solvent is consistent, the color is pure, and has a short melting range (generally at 1~2°C). But for compounds with double melting points or amorphous substances, the purity cannot be determined by this method.
4.1.2 Thin layer chromatography (TLC)
TLC, such as silica gel and paper chromatography, is the most commonly used method to determine the purity of compounds. Generally, a specific sample, showing an only spot (Rf value at 0.2~0.8) in three different developing agents, could be considered as a pure compound. In some cases, both normal and reverse phase chromatographic methods are needed.
4.1.3 Gas chromatography (GC) and high performance liquid chromatography (HPLC)
GC and HPLC are important methods in the purity determination of phytochemicals. GC is widely used in the analysis of volatile compounds. Both volatile and nonvolatile substances could be analyzed with HPLC, which possesses various advantages of high speed, high efficiency, sensitivity, and accuracy.
4.2 Major procedures of structural determination
The general procedures of structural determination of phytochemicals are shown roughly in Figure 2.
Figure 2.
The main procedures for studying the structures of phytochemicals.
The structural identification of phytochemicals can be greatly simplified according to the researchers’ habits, experiences, and skill levels of different technologies. However, the literature search almost runs through the whole process of structural research, no matter for known or new compounds. A large number of facts have been proved that taxonomically related plants, that is to say, plants of same or similar genus often contain chemical constituents of similar or even same chemical structures. Therefore, it is necessary to investigate literatures of chemical studies of the study object and the plants of its same and similar genera. It is necessary to understand not only the components from different plants of similar genera, but also their extraction methods, physicochemical properties, spectral data, and biosynthesis pathways before the extraction and separation of one specific plant. The SciFinder Scholar database is used most widely to quickly determine whether the compound was “known” or “unknown”.
4.3 Spectral technologies
At present, spectrum analyses have become the main means to determine the chemical structures of plant chemicals. Particularly, with the developing of the superconducting nuclear magnetic resonance (NMR) and mass spectroscopic (MS) technologies, the speed of structural determination is greatly accelerated and the accuracy is improved. Here, the applications of infrared (IR), ultraviolet (UV), nuclear magnetic resonance (NMR), and mass (MS) spectra in the structural identification of phytochemicals are introduced briefly.
4.3.1 Ultraviolet-visible spectra (UV-Vis)
UV-vis spectrum is a kind of electron transition spectrum, which is generated after the molecules absorbing the electromagnetic waves with wavelength at the range of 200–800 nm. The valence electrons in the molecules absorb light of certain wavelengths and jump to the excited state from the ground state, and then UV spectra are recorded.
Compounds containing conjugated double bonds, α,β-unsaturated carbonyl groups (aldehydes, ketones, acids, and esters), and aromatic compounds could show strong absorption in UV spectra because of n → π* or π → π* transitions. Therefore, UV spectrum is mainly used to identify the presence of conjugated systems in the structures.
UV spectra could provide the following information: (1) the compounds show no UV absorption at 220–800 nm, indicating the compounds were aliphatic hydrocarbons, aliphatic cyclic hydrocarbons, or their simple derivatives. (2) The compounds show strong absorption at 220–250 nm, indicating that the compounds possess conjugated diene, α,β-unsaturated aldehyde, or ketone substructures. (3) The absorption at 250–290 nm is moderately strong, indicating that the compounds possess benzene rings or aromatic heterocycles. (4) Weak absorption at 250–350 nm indicates the presence of carbonyl or conjugated carbonyl groups. (5) Strong absorptions at above 300 nm indicate that the structures possess long conjugated chains.
Generally, UV spectrum can only provide part of the structural information, rather than the whole structural information of a compound, so it can only be used as an auxiliary method to identify the structures. It possesses practical value to determine the structures of phytochemicals with conjugated substructures.
4.3.2 Infrared spectra (IR)
IR is caused by the vibration-rotational energy level transition of the molecule, ranging from 4000 to 625 cm−1. The region above 1250 cm−1 is functional group region, and the absorption of characteristic functional groups such as hydroxyl, amino, carbonyl, and aromatic rings occurs in this region. The region of 1250 to 625 cm−1 is fingerprint region, and the peaks appear mainly due to the stretching vibrations of C-X (X = C, O, N) single bonds, and various bending vibrations. IR is mainly used for the determination of functional groups and the types of aromatic ring substitution. In some cases, IR can also be used to determine the configuration of plant chemical constituents. For example, there is a significant difference between 960 and 900 cm−1 for 25R and 25S spirostanol saponins.
4.3.3 Mass spectrometry (MS)
In a mass spectrometer, mass and strength information of molecular and fragment ions is recorded after the molecules are ionized and enter into the collector under the action of electric and magnetic fields. The abscissa represents the mass-to-charge ratio (m/z) and the ordinate represents the relative intensity in a MS spectrum. Unlike IR, UV, and NMR spectra, MS is mass spectrum, which characterizes fragment ions, not an absorption spectrum. Its role is to determine weights, formulas, and fragment structures of molecules.
With the rapid development of modern techniques, new ion sources have emerged in recent years, which make MS play more important role in determining the molecular weights, elemental composition, detecting functional groups by cleavage fragments, identifying compound types, and determining carbon skeletons [25]. In the structural analysis, the information of molecular weights could be obtained on the basis of molecular ion peaks, and the molecular formula could be obtained by high-resolution mass spectrometry (HR-MS). Fragment ion peaks, combined with molecular ion peak, could be applied to conjecture chemical structures. Tandem mass spectrometry even can isolate and analyze the mixed ions again. According to the types of ion sources, common mass spectrometry could classified as electron impact mass spectrometry (EI-MS), chemical ionization mass spectrometry (CI-MS), field desorption mass spectrometry (FD-MS), fast atom bombardment mass spectrometry (FAB-MS), matrix-assisted laser desorption mass spectrometry (MALDI-MS), electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS–MS), and so on.
4.3.4 Nuclear magnetic resonance (NMR)
With the birth of Fourier transform spectrometer, the great progress of radionuclide research such as 1H, 13C, 15N, 19F, 31P, and the advancement of two-dimensional and three-dimensional nuclear magnetic technology, NMR has become the most important spectroscopic method to determine chemical structures. Particularly, hydrogen spectrum and carbon spectrum are most widely used. During the operation of nuclear magnetic resonance spectrometer, compound molecules are irradiated by electromagnetic waves in a magnetic field, energy level transitions occur after the atomic nuclei with magnetic distance absorb a certain amount of energy, and then NMR spectrum is obtained by mapping the absorption strength with the frequencies of the absorption peaks. It can provide structural information about the type and number of hydrogen and carbon atoms in the molecule, the modes they are connected, the surrounding chemical environment, configuration, and conformation [26].
4.3.4.1 Commonly used deuterated reagents
Samples used to measure NMR spectra include solids, liquids, and gases. Liquid high-resolution NMR is most widely used. The solvent used in the measurement of NMR must be deuterated. The commonly used deuterated reagents to dissolve samples and their chemical shifts of their residual proton and carbon signals are shown in Table 1.
Solvent
δC
δH
CDCl3
77.0
7.24
CD2Cl2
53.8
5.32
CD3OD
49.0
3.3
Acetone-d6
29.8, 206.0
2.04
D2O
—
4.7
DMSO-d6
39.5
2.49
C6D6
128.0
7.16
C5D5N
123.6135.6149.9
7.2, 7.6, 8.7
Table 1.
Chemical shifts of common deuterated solvents (TMS is an internal standard).
4.3.4.2 Proton nuclear magnetic resonance spectroscopy (1H-NMR)
Resonance absorption peaks are generated after hydrogen protons absorb electromagnetic waves of different frequencies in an external magnetic field. 1H-NMR possesses high sensitivity, easy measurement, and wide application. 1H-NMR spectrum can provide structural information of chemical shifts (δ), coupling constants (J) that indicate the coupling relationships between different hydrogen nucleus, and the number of protons (the peak area is proportional to the number of protons that cause the absorption).
Because of the different surrounding chemical environment, the 1H nuclei possess different magnetic cloud densities and magnetic shielding effects caused by the rotation around the nucleus, and then different types of 1H nuclear resonance signals appear in different regions. Tetramethylsilane (TMS) is usually used as a reference compound. Compared with the general compounds, the shielding effect of protons and carbons on the methyl groups is stronger in TMS. Therefore, regardless of the hydrogen spectrum or the carbon spectrum, the absorption peaks generated by the general compounds appear in the lower field than TMS, that is to say, δ values generated by common compounds is positive. The chemical shifts of the 1H-NMR spectrum is mostly in the range of δ0–20. Some typical chemical shifts of 1H nuclei are shown in Figure 3 [4].
Figure 3.
1H-NMR chemical shift range of common hydrogen protons.
In addition to the normal 1H-NMR spectrum technique, there are some auxiliary techniques that assist in structural analysis, such as selective decoupling, heavy hydrogen exchange, addition of reaction reagents, and dual irradiations.
4.3.4.3 Carbon nuclear magnetic resonance spectroscopy (13C-NMR)
13C-NMR spectra can provide structural information of organic compounds, including the number, types, and chemical environment of carbon atoms [27]. It is one of the important means for the structural identification of organic compounds. Especially, where there are serious signal peak overlaps in the 1H-NMR spectrum, or the molecules contain several quaternary carbon atoms, 13C-NMR spectra will provide crucial information for the structure identification. The chemical shifts of common carbon signals are shown in Figure 4 [4].
Figure 4.
13C-NMR chemical shifts of common carbon signals.
Common 13C-NMR techniques include proton broadband decoupling, off resonance decoupling (OFR), insensitive nuclei enhanced by polarization transfer (INEPT), and distortionless enhancement by polarization transfer (DEPT). Proton broadband decoupling and DEPT spectra are most commonly used at present.
4.3.4.3.1 Proton broadband decoupling
Proton broadband decoupling spectrum is measured after 1H nuclei are saturated with broadband electromagnetic radiation. At this point, the couplings between 1H and 13C are completely eliminated, and all 13C signals are shown as singlets, so it is very convenient to determine the chemical shift of 13C signals. In addition, because of the NOE effect of 1H after irradiation, the signal of 13C signal connected with 1H will be increased, while the quarterly carbon signal will show weak absorption peaks.
4.3.4.3.2 Distortionless enhancement by polarization transfer (DEPT)
It is an improved method of INEPT, in which a J-modulation is accompanied by a polarization transfer from the protons to coupled carbons, leading to significant improvement in sensitivity. In DEPT spectrum, by changing the pulse width (θ), which could be designed as 45o, 90o, and 135o, during irradiation of 1H, different carbons could show different strengths and signs. The results are similar with INEPT spectrum. When θ = 45o, all CH, CH2, and CH3 groups display positive signals; when θ = 45o, only CH groups show positive signals; when θ = 135o, both CH and CH3 groups show positive signals, while CH2 groups show negative signals. Quarterly carbons show no signal peaks in DEPT spectra. An example of DEPT spectra is shown in Figure 5.
Figure 5.
The DEPT spectrum of Arctiin (CD3OD).
4.3.4.4 Two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR)
Two-dimensional correlation spectroscopy (2D-COSY) is the most important and widely used in 2D-NMR spectroscopy. 2D-COSY spectra can be divided into homonuclear and heteronuclear correlation spectra. Both abscissa and ordinate represent chemical shifts in 2D-COSY. Common correlation spectrum types are show as follows.
4.3.4.4.1 1H-1H COSY spectrum
It is a kind of chemical shift correlation spectrum between 1H and 1H. It is the coupling correlation spectrum between protons in the same coupling system. The adjacent hydrogen groups could be determined by their coupling relationships (3J) shown in 1H-1H COSY spectra.
In addition, for compounds of aromatic systems, double bond systems, and some particular configuration systems, 1H-1H COSY spectra can show 4J coupling or longer coupling relationships of hydrogen groups. It is very important for the elucidation of an unknown structure.
4.3.4.4.2 HSQC (HMQC) spectrum
1H detected heteronuclear single quantum coherence (HSQC) and 1H detected heteronuclear multiple quantum coherence (HMQC) can display the correlations between 1H and 13C. HSQC possesses higher sensitivity and wider application than HMQC. In the HMQC or HSQC spectrum, the signals occurred at the crosses of chemical shifts generated by corresponding carbons and protons (Figure 6).
Figure 6.
Schematic diagram of correlations between 1H and 13C in the HSQC or HMQC spectrum.
4.3.4.4.3 HMBC spectrum
HMBC spectrum is short for 1H detected heteronuclear multiple bond correlation, which associates the 1H nucleus with 13C nucleus of long-range coupling. HMBC could detect the long-range coupling of 1H-13C sensitively (nJCH, n≧2). Moreover, the correlation signal peaks between protons and quaternary carbons that are two or three bonds apart could also be shown in HMBC spectra, as shown in Figure 7. From the HBMC spectrum, we can get the connection information of the carbon chain skeletons, the structure information of the quaternary carbons, and the structural information of the coupling systems that are cut off by heteroatoms.
Figure 7.
Schematic diagram of correlations between 1H and 13C in the HMBC spectrum.
4.3.4.4.4 NOESY spectrum
When two groups of protons are located at rather close spatial distances, irradiation of one group will enhance the signal strength of another, which is known as nuclear Overhauser enhancement (NOE). The NOE spectrum can determine the spatial relative position, stereoscopic configuration, and dominant conformation of some groups in the molecule, which is very important for the study of the stereostructures of organic compounds.
2D-NOE (NOESY) spectra could show the NOE correlations of protons. The greatest advantage of NOESY is that all the NOE information between protons of a compound could be shown in one spectrum. However, not all the cross peaks are NOE correlation signals, the residual correlation signals of COSY are often shown in NOESY spectrum as well, which should be paid attention during spectroscopic analysis.
4.3.4.4.5 Total correlation spectroscopy (TOCSY) spectrum
The TOCSY spectrum shows the correlation of the entire spin system, which is different from the ordinary 1H-1H COSY. The relationships between the nuclei that generated the correlation peaks are shown in Figure 8. Not only the correlation signals of a proton with protons connected to the adjacent carbons, but also its correlation signals with other protons in a whole spin system could be shown in the TOCSY spectrum, which provides important basis for the connection of structural fragments.
Figure 8.
Schematic diagram of correlations between 1H and 13C in the TOCSY spectrum.
4.3.4.4.6 HSQC-TOCSY spectrum
HSQC-TOCSY is a kind of combined 2D-NMR spectrum. Comprehensive results of HSQC and HMBC are obtained by using a long pulse sequence. The correlation is shown in Figure 9. It is very useful for the assignment of carbon and proton signals in complex chemical structures. For example, for saponins with a series of glycosyl groups, the signals generated by glycosyl groups are often overlapped seriously in common NMR spectra, which causes difficulty to assign signals of glycosyls. HSQC-TOCSY spectrum will play an important role in this case. The spectrum includes the information of HSQC, HMBC, and 1H-1H COSY.
Figure 9.
Schematic diagram of correlations between 1H and 13C in the HSQC-TOCSY spectrum.
4.3.5 Optical rotary dispersion (ORD) and circular dichroism (CD)
Polarimetry is an optical method used widely in the studies of asymmetric structures, which appeared very early. The progress of the sensitive method such as ORD and CD made it possible to study stereostructures of chiral compounds more deeply. Both of them are spectra related to the optical activity of compounds, and could provide information of absolute configurations, dominant conformations, and reaction mechanisms of chiral compounds, that cannot be replaced by any other spectroscopic methods [28].
4.3.5.1 Optical rotary dispersion (ORD) spectrum
The specific rotation [α] of a chiral compound depends upon the wavelength of the monochromatic light wave. The measurement of specific rotation as a function of wavelength is called optical rotator dispersion (ORD). The common types of ORD curves are as follows.
4.3.5.1.1 Plain curves
The ORD spectrum of an optically active compound with no chromophores is plain without peaks and troughs. An ORD curve of specific rotation increases with decrease of wavelength which is called positive plain curve, while in the case of negative plain curve, negative rotation increases with decrease of wavelength (see Figure 10).
If there is a simple chromophore in the molecule, the ORD curve is very different from plain curve. Near the absorption wavelength region of chromophore, a peak and a trough are exhibited, which is called the Cotton effect, and the spectrum drawn is called the Cotton effect curve. The spectrum with only one peak and one trough is called pure Cotton effect curve, while the spectrum with several peaks and troughs is called complex Cotton effect curve. The Cotton effect is called positive when the trough is observed at a shorter wavelength then peak. Conversely, the Cotton effect is called negative if the trough is observed at a longer wavelength than the peak. Cotton curves of △5-cholestenone are shown in Figure 11, which shows A and B possess the same structural formula, while different opposite configurations.
Figure 11.
The Cotton effect curves of △5-cholestenone (A) natural cholesterone (+) cotton; (B) Cholesterone in the opposite absolute configuration (−) cotton.
4.3.5.1.3 Complex Cotton effect curve
For compound with two or more different chromophores, its ORD curve may possess multiple peaks and troughs, which is called complex Cotton effect curve. Each ORD curve is the average effect of each chromophore in the molecule, and the contribution of each orientation and conformation of the molecule. Hence the Cotton effect curve is often complex.
4.3.5.2 Circular dichroism (CD) spectrum
Optically active compounds have different molar absorption coefficients for left-circularly and right-circularly polarized light that make up plane polarized light, which is called circular dichroism (CD). The difference value between the two molar absorption coefficients (Δє = єL−єR) changes with the wavelength of the incident polarized light. With Δє as the ordinate, the wavelength as the abscissa, the spectrum obtained is called circular dichroism spectrum. Because the absolute value of Δє is very small, it is often replaced by molar ellipticity [θ]. The relationship between [θ] and Δє is as follows.
θ=3300Δє.E1
Because Δє could be positive or negative, the circular dichroism curve also could be classified as positive and negative. In the CD spectrum showing positive Cotton effect, only a peak appears near the λmax of the chromophore in the molecule. Conversely, a trough appears in the CD spectrum showing negative Cotton effect. Therefore, CD spectra are simpler and easier to analyze than ORD spectra. For example, the ORD and CD spectra of (+)-camphor are shown in Figure 12. CD is more widely used than ORD in the study of chiral compounds.
Figure 12.
The ORD and CD spectrum of (+)-camphor.
4.3.6 Single crystal X-ray diffraction method
Single crystal X-ray diffraction could be applied independently to analyze the structures, components, contents, configurations, conformations, solvents, and crystal forms of samples. It is widely used in the stereostructural study of natural compounds, synthetic compounds, peptides, proteins, etc. Therefore, X-ray diffraction analysis is a necessary physical method in the field of structure and function research of modern natural drugs.
Single crystal X-ray diffraction is a kind of quantitative analysis technology, which can provide three-dimensional structural information of molecules, including atomic coordinates, bond length, bond angles, dihedral angles, hydrogen bonds, salt bonds, coordinate bonds, and so on. In addition, it is also a reliable method to determine the absolute configuration of chiral drug molecules and the epimers in the stereochemical structures. For example, see [29].
5. Conclusions and future directions
In recent years, study on phytochemicals from plants becomes more and more popular due to their demonstrated health benefits. A number of plants having high contents of phytochemicals (particularly phenolic acids and flavonoids) with associated antioxidant activities have been increasingly utilized. Complementary research is also needed to enhance the potential functionalities of the phytochemicals in future, where such plants have shown to contain numerous phytochemicals that may be beneficial to human health. The compiled results indicated that many of their bioactive compounds remain to be fully isolated, identified, and characterized (alkaloids, diterpenoids, and so on).
Therefore, phytochemicals can be considered as the source of natural medicines. The compounds of plants are bioaccessible and bioavailable in humans with some demonstrated health benefits, including antioxidant, anti-inflammatory, anti-cancer, anti-microbial, hypoglycemic action, etc. Additional well-designed human intervention studies and clinical trials are needed to validate the health benefits of phytochemicals.
\n',keywords:"extraction, isolation, structure elucidation, spectroscopic methods",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/68108.pdf",chapterXML:"https://mts.intechopen.com/source/xml/68108.xml",downloadPdfUrl:"/chapter/pdf-download/68108",previewPdfUrl:"/chapter/pdf-preview/68108",totalDownloads:2799,totalViews:0,totalCrossrefCites:7,dateSubmitted:"March 25th 2019",dateReviewed:"June 18th 2019",datePrePublished:"July 15th 2019",datePublished:"February 12th 2020",dateFinished:"July 15th 2019",readingETA:"0",abstract:"The chemical constituents of plants are complicated, and monomeric compounds must be obtained via extraction and isolation before structure identification, bioactivity screening, and so on. In recent years, the new technologies and methods of the extraction, isolation, and structural identification have come forth, which promote the speed of extraction and analysis of phytochemicals. The chemical structures of compounds from plants must be identified or elucidated, which may provide the necessary basis for further study on the bioactivities, structure-activity relationships, metabolisms in vivo, structural modification, and synthesis of the active compounds. The amount of chemical constituents isolated from plants is often minor, so the structural studies are often difficult to carry out with classical methods. Therefore, spectral analysis is mainly used. This chapter describes the isolation and identification methods during the study of phytochemicals.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/68108",risUrl:"/chapter/ris/68108",signatures:"Weisheng Feng, Meng Li, Zhiyou Hao and Jingke Zhang",book:{id:"8077",type:"book",title:"Phytochemicals in Human Health",subtitle:null,fullTitle:"Phytochemicals in Human Health",slug:"phytochemicals-in-human-health",publishedDate:"February 12th 2020",bookSignature:"Venketeshwer Rao, Dennis Mans and Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/8077.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78985-588-3",printIsbn:"978-1-78985-587-6",pdfIsbn:"978-1-83968-413-5",isAvailableForWebshopOrdering:!0,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",middleName:null,surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Extraction of phytochemicals",level:"1"},{id:"sec_2_2",title:"2.1 Solvent extraction methods",level:"2"},{id:"sec_2_3",title:"2.1.1 Principles",level:"3"},{id:"sec_3_3",title:"2.1.2 Immersion method",level:"3"},{id:"sec_4_3",title:"2.1.3 Percolation method",level:"3"},{id:"sec_5_3",title:"2.1.4 Decoction method",level:"3"},{id:"sec_6_3",title:"2.1.5 Refluxing method",level:"3"},{id:"sec_7_3",title:"2.1.6 Constant refluxing method",level:"3"},{id:"sec_8_3",title:"2.1.7 Supercritical fluid extraction method",level:"3"},{id:"sec_9_3",title:"2.1.8 Ultrasonic extraction method",level:"3"},{id:"sec_10_3",title:"2.1.9 Microwave-assisted extraction method",level:"3"},{id:"sec_12_2",title:"2.2 Steam distillation method",level:"2"},{id:"sec_13_2",title:"2.3 Sublimation method",level:"2"},{id:"sec_14_2",title:"2.4 Pressing method",level:"2"},{id:"sec_16",title:"3. Isolation and purification of phytochemicals",level:"1"},{id:"sec_16_2",title:"3.1 Solvent method",level:"2"},{id:"sec_16_3",title:"3.1.1 Acid and basic solvent method",level:"3"},{id:"sec_17_3",title:"3.1.2 Polarity gradient extraction method",level:"3"},{id:"sec_19_2",title:"3.2 Precipitation method",level:"2"},{id:"sec_19_3",title:"3.2.1 Solvent precipitation method",level:"3"},{id:"sec_20_3",title:"3.2.2 Exclusive reagent precipitation method",level:"3"},{id:"sec_21_3",title:"3.2.3 Salting out method",level:"3"},{id:"sec_23_2",title:"3.3 Dialysis method",level:"2"},{id:"sec_24_2",title:"3.4 Fractional distillation method",level:"2"},{id:"sec_25_2",title:"3.5 Crystallization method",level:"2"},{id:"sec_26_2",title:"3.6 Classical chromatographic methods",level:"2"},{id:"sec_26_3",title:"3.6.1 Adsorption chromatography",level:"3"},{id:"sec_27_3",title:"3.6.2 Gel chromatography (exclusion chromatography, molecular sieve chromatography)",level:"3"},{id:"sec_28_3",title:"3.6.3 Ion exchange chromatography",level:"3"},{id:"sec_29_3",title:"3.6.4 Macroporous adsorption resin chromatography",level:"3"},{id:"sec_30_3",title:"3.6.5 Partition chromatography",level:"3"},{id:"sec_32_2",title:"3.7 New technologies and methods",level:"2"},{id:"sec_32_3",title:"3.7.1 High performance liquid chromatography (HPLC)",level:"3"},{id:"sec_33_3",title:"3.7.2 Droplet counter-current chromatography (DCCC)",level:"3"},{id:"sec_34_3",title:"3.7.3 High speed counter-current chromatography (HSCCC)",level:"3"},{id:"sec_35_3",title:"3.7.4 High performance capillary electrophoresis (HPCE)",level:"3"},{id:"sec_36_3",title:"3.7.5 Affinity chromatography (AC)",level:"3"},{id:"sec_39",title:"4. Structural identification of phytochemicals",level:"1"},{id:"sec_39_2",title:"4.1 Determination of the purity of the compounds",level:"2"},{id:"sec_39_3",title:"4.1.1 Measurement of physical properties",level:"3"},{id:"sec_40_3",title:"4.1.2 Thin layer chromatography (TLC)",level:"3"},{id:"sec_41_3",title:"4.1.3 Gas chromatography (GC) and high performance liquid chromatography (HPLC)",level:"3"},{id:"sec_43_2",title:"4.2 Major procedures of structural determination",level:"2"},{id:"sec_44_2",title:"4.3 Spectral technologies",level:"2"},{id:"sec_44_3",title:"4.3.1 Ultraviolet-visible spectra (UV-Vis)",level:"3"},{id:"sec_45_3",title:"4.3.2 Infrared spectra (IR)",level:"3"},{id:"sec_46_3",title:"4.3.3 Mass spectrometry (MS)",level:"3"},{id:"sec_47_3",title:"Table 1.",level:"3"},{id:"sec_47_4",title:"Table 1.",level:"4"},{id:"sec_48_4",title:"4.3.4.2 Proton nuclear magnetic resonance spectroscopy (1H-NMR)",level:"4"},{id:"sec_49_4",title:"4.3.4.3 Carbon nuclear magnetic resonance spectroscopy (13C-NMR)",level:"4"},{id:"sec_49_5",title:"4.3.4.3.1 Proton broadband decoupling",level:"5"},{id:"sec_50_5",title:"4.3.4.3.2 Distortionless enhancement by polarization transfer (DEPT)",level:"5"},{id:"sec_52_4",title:"4.3.4.4 Two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR)",level:"4"},{id:"sec_52_5",title:"4.3.4.4.1 1H-1H COSY spectrum",level:"5"},{id:"sec_53_5",title:"4.3.4.4.2 HSQC (HMQC) spectrum",level:"5"},{id:"sec_54_5",title:"4.3.4.4.3 HMBC spectrum",level:"5"},{id:"sec_55_5",title:"4.3.4.4.4 NOESY spectrum",level:"5"},{id:"sec_56_5",title:"4.3.4.4.5 Total correlation spectroscopy (TOCSY) spectrum",level:"5"},{id:"sec_57_5",title:"4.3.4.4.6 HSQC-TOCSY spectrum",level:"5"},{id:"sec_60_3",title:"4.3.5 Optical rotary dispersion (ORD) and circular dichroism (CD)",level:"3"},{id:"sec_60_4",title:"4.3.5.1 Optical rotary dispersion (ORD) spectrum",level:"4"},{id:"sec_60_5",title:"4.3.5.1.1 Plain curves",level:"5"},{id:"sec_61_5",title:"4.3.5.1.2 The cotton effect curve",level:"5"},{id:"sec_62_5",title:"4.3.5.1.3 Complex Cotton effect curve",level:"5"},{id:"sec_64_4",title:"4.3.5.2 Circular dichroism (CD) spectrum",level:"4"},{id:"sec_66_3",title:"4.3.6 Single crystal X-ray diffraction method",level:"3"},{id:"sec_69",title:"5. Conclusions and future directions",level:"1"}],chapterReferences:[{id:"B1",body:'Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. Journal of Pharmaceutical and Biomedical Analysis. 2014;87:218-228. DOI: 10.1016/j.jpba.2013.03.007'},{id:"B2",body:'Alberti Á, Riethmüller E, Béni S. Characterization of diarylheptanoids: An emerging class of bioactive natural products. Journal of Pharmaceutical and Biomedical Analysis. 2018;147:13-34. DOI: 10.1016/j.jpba.2017.08.051'},{id:"B3",body:'Hosler DM, Mikita MA. Ethnobotany: The chemist’s source for the identification of useful natural products. Journal of Chemical Education. 1987;64:328-332'},{id:"B4",body:'Silverstein RM, Bassler GC. Spectrometric Identification of Organic Compounds. ACS Publications; 1962'},{id:"B5",body:'Luo YM. Technology and Method of Extraction and Separation of Chemical Constituents of Traditional Chinese Medicine. Shanghai, China: Shanghai Scientific & Technical Publishers; 2016'},{id:"B6",body:'Gray AI, Igoli JO, Edrada-Ebel R. Natural products isolation in modern drug discovery programs. Natural Products Isolation. 2012;864:515-534. DOI: 10.1007/978-1-61779-624-1_20'},{id:"B7",body:'Tyśkiewicz K, Konkol M, Rój E. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules. 2018;23:2625. DOI: 10.3390/molecules23102625'},{id:"B8",body:'Rostagno MA, Palma M, Barroso CG. Ultrasound-assisted extraction of soy isoflavones. Journal of Chromatography A. 2003;1012:119-128. DOI: 10.1016/S0021-9673(03)01184-1'},{id:"B9",body:'Nayak B, Dahmoune F, Moussi K, Remini H, Dairi S, Aoun O, et al. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chemistry. 2015;187:507-516. DOI: 10.1016/j.foodchem.2015.04.081'},{id:"B10",body:'Pan XJ, Niu GG, Liu HZ. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing. 2003;42:129-133. DOI: 10.1016/S0255-2701(02)00037-5'},{id:"B11",body:'Tang ZH, Guo SY, Rao LQ , Qin JP, Xu XN, Liang YZ. Optimization of the technology of extracting water soluble polysaccharides from Morus alba L. leaves. African Journal of Biotechnology. 2011;10(59):12684-12690. DOI: 10.5897/AJB10.2203'},{id:"B12",body:'Koh GY, Chou G, Liu ZP. Purification of a water extract of Chinese sweet tea plant (Rubus suavissimus S. lee) by alcohol precipitation. Journal of Agricultural and Food Chemistry. 2009;57:5000-5006. DOI: 10.1021/jf900269r'},{id:"B13",body:'Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, et al. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering. 2013;117:426-436. DOI: 10.1016/j.jfoodeng.2013.01.014'},{id:"B14",body:'Tahara S, Yamamoto S, Yamajima Y, Miyakawa H, Uematsu Y, Monma K. A rapid dialysis method for analysis of artificial sweeteners in foods (2nd report). Shokuhin Eiseigaku Zasshi. 2017;58(3):124-131. DOI: 10.3358/shokueishi.58.124'},{id:"B15",body:'Hanif MA, Nawaz H, Naz S, Mukhtar R, Rashid N, Bhatti IA, et al. Raman spectroscopy for the characterization of different fractions of hemp essential oil extracted at 130°C using steam distillation method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017;182:168-174. DOI: 10.1016/j.saa.2017.03.072'},{id:"B16",body:'Escribà-Gelonch M, Hessel V, Maier MC, Noël T, Neira d’Angelo MF, Gruber-Woelfler H. Continuous-flow in-line solvent-swap crystallization of vitamin D3. Organic Process Research and Development. 2018;22:178-189. DOI: 10.1021/acs.oprd.7b00351'},{id:"B17",body:'Poole CF. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography. Journal of Chromatography B. 2018;1092:207-219. DOI: 10.1016/j.jchromb.2018.06.011'},{id:"B18",body:'Porath J. From gel filtration to adsorptive size exclusion. Journal of Protein Chemistry. 1997;16:463-468'},{id:"B19",body:'Gerberding SJ, Byers CH. Preparative ion-exchange chromatography of proteins from dairy whey. Journal of Chromatography. A. 1998;808:141-151'},{id:"B20",body:'Ji S, Wang S, Xu H, Su Z, Tang D, Qiao X, et al. The application of on-line two-dimensional liquid chromatography (2DLC) in the chemical analysis of herbal medicines. Journal of Pharmaceutical and Biomedical Analysis. 2018;160:301-331. DOI: 10.1016/j.jpba.2018.08.014'},{id:"B21",body:'Cardoso CAL, Wilegas W. Droplet counter-current chromatography of indole alkaloids from Tabernaemontana hilariana. Phytochemical Analasis. 1999;10:60-63. DOI: 10.1002/(SICI)1099-1565(199903/04)10:2<60:AID-PCA446>3.0.CO;2-Y'},{id:"B22",body:'Gu M, Ouyang F, Su ZG. Comparison of high-speed counter-current chromatography and high-performance liquid chromatography on fingerprinting of Chinese traditional medicine. Journal of Chromatography. A. 2004;1022:139-144. DOI: 10.1016/j.chroma.2003.09.038'},{id:"B23",body:'Horie H, Kohata K. Analysis of tea components by high-performance liquid chromatography and high-performance capillary electrophoresis. Journal of Chromatography. A. 2000;881(1-2):425-438. DOI: 10.1016/S0021-9673(99)01345-X'},{id:"B24",body:'Cao H, Liu XJ, Ulrihc NP, Senguptad PK, Xiao JB. Plasma protein binding of dietary polyphenols to human serum albumin: A high performance affinity chromatography approach. Food Chemistry. 2019;270:257-263. DOI: 10.1016/j.foodchem.2018.07.111'},{id:"B25",body:'Kumar K, Siva B, Rama Rao N, Suresh Babu K. Rapid identification of limonoids from Cipadessa baccifera and Xylocarpus granatum using ESI-Q-ToF-MS/MS and their structure-fragmentation study. Journal of Pharmaceutical and Biomedical Analysis. 2018;152:224-233. DOI: 10.1016/j.jpba'},{id:"B26",body:'Monakhova YB, Kuballa T, Lachenmeier DW. Chemometric methods in NMR spectroscopic analysis of food products. Journal of Analytical Chemistry. 2013;68:755-766'},{id:"B27",body:'Bakiri A, Hubert J, Reynaud R, Lanthony S, Harakat D, Renault JH, et al. Computer-aided 13C NMR chemical profiling of crude natural extracts without fractionation. Journal of Natural Products. 2017;80:1387-1396. DOI: 10.1021/acs.jnatprod.6b01063'},{id:"B28",body:'Wang J, Yang XD. Determination of absolute configuration of chiral compounds based on chiroptical spectroscopic methods: From instrument characterization to computational chemistry. University Chemistry. 2016;31:37-44. DOI: 10.3866/PKU.DXHX201603022'},{id:"B29",body:'Zhang D, Guo J, Zhang M, Liu X, Ba M, Tao X, et al. Oxazole-containing diterpenoids from cell cultures of Salvia miltiorrhiza and their anti-HIV-1 activities. Journal of Natural Products. 2017;80:3241-3246. DOI: 10.1021/acs.jnatprod.7b00659'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Weisheng Feng",address:"fwsh@hactcm.edu.cn",affiliation:'
School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
'}],corrections:null},book:{id:"8077",type:"book",title:"Phytochemicals in Human Health",subtitle:null,fullTitle:"Phytochemicals in Human Health",slug:"phytochemicals-in-human-health",publishedDate:"February 12th 2020",bookSignature:"Venketeshwer Rao, Dennis Mans and Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/8077.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78985-588-3",printIsbn:"978-1-78985-587-6",pdfIsbn:"978-1-83968-413-5",isAvailableForWebshopOrdering:!0,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",middleName:null,surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"53477",title:"Prof.",name:"Samy I.",middleName:null,surname:"McFarlane",email:"samy.mcfarlane@downstate.edu",fullName:"Samy I. McFarlane",slug:"samy-i.-mcfarlane",position:null,biography:"Dr. McFarlane is Distinguished Teaching Professor of Medicine/Endocrinology and Associate Dean at SUNY-Downstate, Health Sciences University, Brooklyn, New York, USA.\n\nHe has extensive experience in clinical and translational research and served as the PI for the largest center in North America in the landmark Diabetes Reduction Assessment with ramipril and rosiglitazone Medication (DREAM) trial. \n\nHe is the author of more than 400 publications with more than 10,000 citations and an h-index of 46. He also has 270 highly influential citations to his credit, including those in major guidelines by the American Heart Association (AHA), such as stroke guidelines (2018 and 2019), the Scientific Statement from the AHA on Lifestyle and Risk Factor Modification for Reduction of Atrial Fibrillation 2020, and the 2021 SHNE/HRS/EHRA/APHRS Expert Collaborative Statement. He is also the editor of several books on diabetes, hypertension, cardiovascular disease, and related topics.\n\nDr. McFarlane is a three-term member of the National Institutes of Health’s National Institute of Diabetes and Digestive and Kidney Diseases (NIH-NIDDK) and served twice as chair of the NIH-NIDDK U01 committee. He also served as chair of the clinical sub-committee of the National Kidney Foundation (NKF) Kidney Early Evaluation Program. Locally, he held several leadership positions including Medical Director of Clinical Research and Program Director and Chief of Endocrinology. He also served as District President of the American College of Physicians. Dr. McFarlane is the recipient of numerous awards and honors including recognition from the United States Army, the US Congress, and the Gold Foundation for Humanism in Medicine.",institutionString:"State University of New York",profilePictureURL:"https://mts.intechopen.com/storage/users/53477/images/system/53477.png",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"3",totalEditedBooks:"2",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[{id:"10488",type:"book",slug:"renin-angiotensin-aldosterone-system",title:"Renin-Angiotensin Aldosterone System",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10488.jpg",abstract:"The Renin-Angiotensin Aldosterone System (RAAS) plays an important role not only in salt and water homeostasis but also in the cardiovascular system, the kidney, and the brain. While several volumes address different aspects of the RAAS function, this book provides cutting-edge information on the pathogenesis of various disorders related to RAAS overactivation. It also presents unique aspects of RAAS functioning that have not been sufficiently described in the literature. Topics covered include assessment of hypoaldosteronism in infancy, RASS and cognitive decline, and the role of RAAS in the pathogenesis of COVID-19. Written by experts in the field in an easy-to-follow and illustrated format, this volume will benefit students and practitioners, as well as clinical and basic science investigators alike.",editors:[{id:"53477",title:"Prof.",name:"Samy I.",surname:"McFarlane",slug:"samy-i.-mcfarlane",fullName:"Samy I. McFarlane"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",title:"Edited Volume"}},{id:"7556",type:"book",slug:"dyslipidemia",title:"Dyslipidemia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7556.jpg",abstract:"Dyslipidemia is a major risk factor for cardiovascular disease, which is the leading cause of morbidity and mortality around the globe, particularly among aging populations. Lipoprotein disorders, frequently encountered by clinicians, require early recognition and treatment. In this book, we assembled a group of world-renowned scholars in their field to address major areas in lipoprotein disorders that are imminently relevant to clinicians and other healthcare providers. Areas discussed include an overview of lipid metabolism, a complex topic, presented in a simplified and rational way. We also highlight recent developments in the field including dyslipidemias characterized by nontraditional lipid biomarkers. Furthermore, we discuss the pathogenesis of atherosclerosis and the role of dyslipidemia. Other chapters include the assessment of primary and secondary causes of dyslipidemia. Targets for treatment as well as the role of major therapeutic agents including statins and PCSK9 inhibitors are also discussed in light of the most recent guidelines by major international organizations. This is in addition to an overview of lifestyle and dietary modification as well as alternative options for dyslipidemia management. Furthermore, dyslipidemia in special populations is emphasized including various ethnic groups as well as those with HIV disease, chronic kidney disease, among others. The role of adiposity including brown fat together with highlights on lipidomics and dyslipidemias characterized by nontraditional lipid biomarkers is also highlighted. We believe that this volume will serve as a valuable resource, not only for clinicians and other healthcare providers, but for students and research scholars as well.",editors:[{id:"53477",title:"Prof.",name:"Samy I.",surname:"McFarlane",slug:"samy-i.-mcfarlane",fullName:"Samy I. McFarlane"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",title:"Edited Volume"}}],chaptersAuthored:[{id:"18547",title:"Anemia of Chronic Kidney Disease in Diabetic Patients: Pathophysiologic Insights and Implications of Recent Clinical Trials",slug:"anemia-of-chronic-kidney-disease-in-diabetic-patients-pathophysiologic-insights-and-implications-of-",abstract:null,signatures:"Victoria Forte, Miriam Kim, George Steuber, Salma Asad and Samy I. McFarlane",authors:[{id:"53477",title:"Prof.",name:"Samy I.",surname:"McFarlane",fullName:"Samy I. McFarlane",slug:"samy-i.-mcfarlane",email:"samy.mcfarlane@downstate.edu"},{id:"53488",title:"Dr.",name:"Victoria",surname:"Forte",fullName:"Victoria Forte",slug:"victoria-forte",email:"victoriaaforte@gmail.com"},{id:"92966",title:"Dr.",name:"Miriam",surname:"Kim",fullName:"Miriam Kim",slug:"miriam-kim",email:"miriam.kim@downstate.edu"},{id:"106599",title:"Dr.",name:"Salma",surname:"Asad",fullName:"Salma Asad",slug:"salma-asad",email:"salma.akter@downstate.edu"}],book:{id:"1037",title:"Recent Advances in the Pathogenesis, Prevention and Management of Type 2 Diabetes and its Complications",slug:"recent-advances-in-the-pathogenesis-prevention-and-management-of-type-2-diabetes-and-its-complications",productType:{id:"1",title:"Edited Volume"}}},{id:"49533",title:"Diabetes and Coronary Artery Disease – Pathophysiologic Insights and Therapeutic Implications",slug:"diabetes-and-coronary-artery-disease-pathophysiologic-insights-and-therapeutic-implications",abstract:"Cardiovascular disease is the leading cause of morbidity and mortality among people with diabetes worldwide, accounting for 60% of all deaths in diabetics. Despite advances in our pathophysiologic understanding of diabetic co-morbidities and measures to help counter these, diabetics still remain at increased risk for cardiovascular disease complicating our overall approach to management. Diabetics, in particularly type 2, are often fraught with additional risk factors contributing to their overall propensity for developing cardiovascular disease. These include, but are not limited to, obesity, dyslipidemia, poor glycemic control, lack of physical activity, and hypertension. In response to this, research driven guidelines focusing on primary prevention have continued to arise with new clinical targets and goals substantially changing our approach with the diabetic population. It is important to note early on, type 1 diabetics carry a higher risk of cardiovascular disease for which the pathophysiology is only recently being elucidated. The underlying relationship between cardiovascular events and risk factors is, however, not well understood. For this reason, management approaches to risk reduction have been extrapolated from experience in type 2 diabetes mellitus. The purpose of this chapter is to present the conclusions of current literature pertaining to blood pressure and blood glucose control, cholesterol management, aspirin therapy, and lifestyle modification. We present a synthesis of the new guidelines, and clinical targets, including preventative measures for subclinical cardiovascular disease for the contemporary management of patients with diabetes mellitus.",signatures:"David Fridman, Amgad N. Makaryus, John N. Makaryus, Amit\nBhanvadia, Erion Qaja, Alina Masters and Samy I. McFarlane",authors:[{id:"53477",title:"Prof.",name:"Samy I.",surname:"McFarlane",fullName:"Samy I. McFarlane",slug:"samy-i.-mcfarlane",email:"samy.mcfarlane@downstate.edu"},{id:"174290",title:"Prof.",name:"Samy",surname:"Mcfarlane",fullName:"Samy Mcfarlane",slug:"samy-mcfarlane",email:"smcfarlane@downstate.edu"}],book:{id:"4642",title:"Coronary Artery Disease",slug:"coronary-artery-disease-assessment-surgery-prevention",productType:{id:"1",title:"Edited Volume"}}},{id:"66265",title:"Introductory Chapter: Overview of Lipoprotein Metabolism",slug:"introductory-chapter-overview-of-lipoprotein-metabolism",abstract:null,signatures:"Angelina Zhyvotovska, Denis Yusupov and Samy I. McFarlane",authors:[{id:"53477",title:"Prof.",name:"Samy I.",surname:"McFarlane",fullName:"Samy I. McFarlane",slug:"samy-i.-mcfarlane",email:"samy.mcfarlane@downstate.edu"},{id:"298681",title:"Dr.",name:"Denis",surname:"Yusupov",fullName:"Denis Yusupov",slug:"denis-yusupov",email:"Denis.Yusupov@downstate.edu"},{id:"298682",title:"Dr.",name:"Angelina",surname:"Zhyvotovska",fullName:"Angelina Zhyvotovska",slug:"angelina-zhyvotovska",email:"Angelina.Zhyvotovska@downstate.edu"}],book:{id:"7556",title:"Dyslipidemia",slug:"dyslipidemia",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"40852",title:"Dr.",name:"Anders",surname:"Björkman",slug:"anders-bjorkman",fullName:"Anders Björkman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"42913",title:"Mr.",name:"Tsuneo",surname:"Watanabe",slug:"tsuneo-watanabe",fullName:"Tsuneo Watanabe",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"45513",title:"Dr.",name:"Ján",surname:"Staško",slug:"jan-stasko",fullName:"Ján Staško",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"48904",title:"Prof.",name:"Michel P.",surname:"Hermans",slug:"michel-p.-hermans",fullName:"Michel P. Hermans",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"52853",title:"Prof.",name:"Toshio",surname:"Matsuoka",slug:"toshio-matsuoka",fullName:"Toshio Matsuoka",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"53554",title:"Dr.",name:"Shinichi",surname:"Kawachi",slug:"shinichi-kawachi",fullName:"Shinichi Kawachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"55888",title:"Ms.",name:"Sylvie A.",surname:"Ahn",slug:"sylvie-a.-ahn",fullName:"Sylvie A. Ahn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"55889",title:"Prof.",name:"Michel F.",surname:"Rousseau",slug:"michel-f.-rousseau",fullName:"Michel F. Rousseau",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"57671",title:"Dr.",name:"Niels",surname:"Thomsen",slug:"niels-thomsen",fullName:"Niels Thomsen",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"57954",title:"Prof.",name:"Lars",surname:"Dahlin",slug:"lars-dahlin",fullName:"Lars Dahlin",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"WIS-cost",title:"What Does It Cost?",intro:"
Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.
",metaTitle:"What Does It Cost?",metaDescription:"Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\\n\\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\\n\\n
\\n\\t
European Commission
\\n\\t
Bill and Melinda Gates Foundation
\\n\\t
Wellcome Trust
\\n\\t
National Institute of Health (NIH)
\\n\\t
National Science Foundation (NSF)
\\n\\t
National Institute of Standards and Technology (NIST)
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\n\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\n\n
\n\t
European Commission
\n\t
Bill and Melinda Gates Foundation
\n\t
Wellcome Trust
\n\t
National Institute of Health (NIH)
\n\t
National Science Foundation (NSF)
\n\t
National Institute of Standards and Technology (NIST)
\n\t
Research Councils United Kingdom (RCUK)
\n\t
Foundation for Science and Technology (FCT)
\n\t
Chinese Academy of Sciences
\n\t
Natural Science Foundation of China (NSFC)
\n\t
German Research Foundation (DFG)
\n\t
Max Planck Institute
\n\t
Austrian Science Fund (FWF)
\n\t
Australian Research Council (ARC)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"7,21,23"},books:[{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11782",title:"Personality Traits - The Role in Psychopathology",subtitle:null,isOpenForSubmission:!0,hash:"d3a491e5194cad4c59b900dd57a11842",slug:null,bookSignature:" Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",editedByType:null,editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11601",title:"Econometrics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc8ab49e2cf436c217a49ca8c12a22eb",slug:null,bookSignature:"Dr. Brian Sloboda",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",editedByType:null,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12239",title:"Topics on Globalization",subtitle:null,isOpenForSubmission:!0,hash:"43443244d8385c57f1424d5d37c91788",slug:null,bookSignature:"Prof. Elsadig Musa Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/12239.jpg",editedByType:null,editors:[{id:"268621",title:"Prof.",name:"Elsadig",surname:"Ahmed",slug:"elsadig-ahmed",fullName:"Elsadig Ahmed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11779",title:"Non-government Organizations - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c109a472a9e0ea8398ae95e2d21be039",slug:null,bookSignature:"Prof. Vito Bobek and Dr. Tatjana Horvat",coverURL:"https://cdn.intechopen.com/books/images_new/11779.jpg",editedByType:null,editors:[{id:"128342",title:"Prof.",name:"Vito",surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11444",title:"Happiness - Biopsychosocial and Anthropological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fa84e7fc3611e5428e070239dcf5a93f",slug:null,bookSignature:"Dr. Floriana Irtelli and Prof. Fabio Gabrielli",coverURL:"https://cdn.intechopen.com/books/images_new/11444.jpg",editedByType:null,editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11477",title:"Public Economics - New Perspectives and Uncertainty",subtitle:null,isOpenForSubmission:!0,hash:"a8e6c515dc924146fbd2712eb4e7d118",slug:null,bookSignature:"Dr. Habtamu Alem",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",editedByType:null,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty - Evolutionary, Social and Cultural Perspectives on Attractiveness",subtitle:null,isOpenForSubmission:!0,hash:"8f2773e5d4ffe767f38dd15712258e8c",slug:null,bookSignature:"Dr. Farid Pazhoohi",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:[{id:"470837",title:"Dr.",name:"Farid",surname:"Pazhoohi",slug:"farid-pazhoohi",fullName:"Farid Pazhoohi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Associate Prof.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11443",title:"Empathy - Advanced Research and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4c1042dfe15aa9cea6019524c4cbff38",slug:null,bookSignature:"Ph.D. Sara Ventura",coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",editedByType:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11769",title:"Multiculturalism and Interculturalism",subtitle:null,isOpenForSubmission:!0,hash:"6c4bda24f278d74f943f2155f13f4d73",slug:null,bookSignature:"Dr. Muhammad Mohiuddin, Dr. Tareque Aziz and Dr. Sreenivasan Jayashree",coverURL:"https://cdn.intechopen.com/books/images_new/11769.jpg",editedByType:null,editors:[{id:"418514",title:"Dr.",name:"Muhammad",surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Identifying Occupational Stress and Coping Strategies",subtitle:null,isOpenForSubmission:!0,hash:"09a2f5fe50b90b20637b7aceccf1cfdd",slug:null,bookSignature:"Dr. Kavitha Palaniappan",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:[{id:"311189",title:"Dr.",name:"Kavitha",surname:"Palaniappan",slug:"kavitha-palaniappan",fullName:"Kavitha Palaniappan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:26},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1317",title:"Public Health",slug:"social-sciences-education-public-health",parent:{id:"265",title:"Education",slug:"social-sciences-education"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:14,numberOfWosCitations:1,numberOfCrossrefCitations:12,numberOfDimensionsCitations:17,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1317",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10191",title:"Health and Academic Achievement",subtitle:"New Findings",isOpenForSubmission:!1,hash:"7ee3f57e3911318305ac5c2eef39f8ab",slug:"health-and-academic-achievement-new-findings",bookSignature:"Blandina Bernal-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/10191.jpg",editedByType:"Edited by",editors:[{id:"174721",title:"Dr.",name:"Blandina",middleName:null,surname:"Bernal-Morales",slug:"blandina-bernal-morales",fullName:"Blandina Bernal-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8645",title:"Contemporary Topics in Graduate Medical Education",subtitle:null,isOpenForSubmission:!1,hash:"76d224ba3c158c43fda8141a61ababd6",slug:"contemporary-topics-in-graduate-medical-education",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, James P. Orlando and Thomas J. Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/8645.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"66759",doi:"10.5772/intechopen.84235",title:"Resident Autonomy",slug:"resident-autonomy",totalDownloads:913,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Autonomy in medical training is required to develop independent and competent physicians. The way in which this incremental level of independence is granted to a trainee must be thoughtful and deliberate to ensure appropriate supervision and patient safety. Theories that support the role of autonomy will be introduced and discussed in this chapter. Ethical considerations that describe the implications of balancing the necessary independence for trainees and an attending physician’s responsibility to the patient and the patient’s safety will also be considered. The level of autonomy that is granted is the responsibility of both the attending physician and trainee so that it is not only appropriate but also well-earned. There are multiple tools that may be used to objectively measure one’s competence and necessary level of autonomy based on performance that will be discussed within this chapter. Finally we will demonstrate that encouraging and striking the balance of supervision and autonomy may be done safely with appropriate patient outcomes and trainee development into independent physicians. These outcomes will help to encourage autonomy amongst medical trainees, no matter one’s specialty, to train and develop competent, independent physicians of the future.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Amanda Cooper and Steven Allen",authors:null},{id:"64635",doi:"10.5772/intechopen.82343",title:"Wellness in Residency: A Paradigm Shift",slug:"wellness-in-residency-a-paradigm-shift",totalDownloads:824,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"There has been a cultural shift in the state of residency training over the past two decades. While the traditional view of trainees heavily emphasized the service component of residency, training programs are gaining an increasing awareness of the trainees’ well-being as crucial to their functioning, the success of the training program, and ultimately, to the care of patients. To this end, work-hour limitations have been imposed universally. Additionally, some programs have established interventions that allow residents to lead balanced lives with emphasis on time away from work, sleep, and outside activities. A paradigm shift recognizing the importance of wellness in residency may reduce the risk of physician burnout in the long term.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Roderick M. Quiros and Elspeth Black",authors:null},{id:"73295",doi:"10.5772/intechopen.93886",title:"The Social Isolation Triggered by COVID-19: Effects on Mental Health and Education in Mexico",slug:"the-social-isolation-triggered-by-covid-19-effects-on-mental-health-and-education-in-mexico",totalDownloads:752,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Public health in Mexico was on alert since the World Health Organization declared a pandemic of COVID-19. This disease represents a challenge not only for the health system but also for the education system, which implement emerging measures such as online education. In Mexico online education has several limitations associated with computer and internet access, which affect the academic achievement of the students. Additionally, the main measures against the pandemic are social isolation, but this measure can generate stress and affect the academic achievement and mental health of the population. The present review was based on Mexican scientific and journalistic sources, and a thesaurus system such as Medical Subject Headings (MeSH) terms to find original articles to social isolation, mental health, and academic achievement. The contribution of this chapter is to describe the effects that social isolation has caused on mental health and scholar challenges in the Mexican student population.",book:{id:"10191",slug:"health-and-academic-achievement-new-findings",title:"Health and Academic Achievement",fullTitle:"Health and Academic Achievement - New Findings"},signatures:"Ana Karen Limón-Vázquez, Gabriel Guillén-Ruiz and Emma Virginia Herrera-Huerta",authors:[{id:"218681",title:"Dr.",name:"Gabriel",middleName:null,surname:"Guillén-Ruiz",slug:"gabriel-guillen-ruiz",fullName:"Gabriel Guillén-Ruiz"},{id:"306437",title:"Dr.",name:"Emma Virgina",middleName:null,surname:"Herrera-Huerta",slug:"emma-virgina-herrera-huerta",fullName:"Emma Virgina Herrera-Huerta"},{id:"306438",title:"MSc.",name:"Ana Karen",middleName:null,surname:"Limón-Vázquez",slug:"ana-karen-limon-vazquez",fullName:"Ana Karen Limón-Vázquez"}]},{id:"63925",doi:"10.5772/intechopen.81532",title:"Curriculum Development: Foundations and Modern Advances in Graduate Medical Education",slug:"curriculum-development-foundations-and-modern-advances-in-graduate-medical-education",totalDownloads:2308,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Curriculum development has undergone many transitions since the inception of medical education in the United States in the 1800’s. In this chapter, we briefly review the history of curriculum development in medical education. We discuss the landmark models of curriculum development including the concept of a curriculum map and Harden’s SPICES model of educational strategy, detail the six steps of Kern’s foundational framework, and provide an overview of the PRISMS strategy. We address the importance of adult learning theory and the advancing understanding of education for the millennial generation, including implementation of the flipped classroom model of education. Finally, we turn our focus on contemporary applications of curriculum design, including the application of simulation to medical education, the rise of massive open online courses (MOOC), and the implementation of free open access medical education (FOAM) within undergraduate and graduate medical curricula.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Simiao Li-Sauerwine and Andrew King",authors:null},{id:"64979",doi:"10.5772/intechopen.82618",title:"Teaching Balanced Patient Care Using Principles of Reductionism and Holism: The Example of Chronic Low Back Pain",slug:"teaching-balanced-patient-care-using-principles-of-reductionism-and-holism-the-example-of-chronic-lo",totalDownloads:1011,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"This chapter explores how integrating holistic and reductionistic approaches to care may better optimize value based care. First, we define the terms ‘Holistic,’ ‘Reductionistic’ and ‘Integrative’. Then we explore their scope in the arenas of teaching and patient care, with the advantages, disadvantages and pitfalls of each approach. We review how these styles are embedded in and interact with the cultures of medicine and western societies at large. As an example of a balanced care approach, we focus on the example of chronic low back pain (CLBP), an increasingly common and expensive medical problem. We present practical examples of teaching and practicing these different styles, Holism and Reductionism, illustrating when each may be appropriate to optimize value of patient care. Study questions are included. A list of further readings and resources is included for the interested reader.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Alan Remde, Stephen DeTurk and Thomas Wojda",authors:null}],mostDownloadedChaptersLast30Days:[{id:"74883",title:"Relation between Student Mental Health and Academic Achievement Revisited: A Meta-Analysis",slug:"relation-between-student-mental-health-and-academic-achievement-revisited-a-meta-analysis",totalDownloads:999,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In the present research, the relationship between mental health and academic achievement in adolescents was investigated. The research adopted meta-analysis model to investigate the relationship between these two phenomena. In the meta-analysis, 13 independent studies were included, and their data were combined to display effect sizes. According to the result of the research, it was indicated that there was a positive relationship between mental health and academic achievement. Also, it was revealed that there was no significant relationship within sub-group variation in the relationship between mental health and academic achievement in terms of year of publication, publication type, community, and sample size, but not the setting.",book:{id:"10191",slug:"health-and-academic-achievement-new-findings",title:"Health and Academic Achievement",fullTitle:"Health and Academic Achievement - New Findings"},signatures:"Gokhan Bas",authors:[{id:"324308",title:"Associate Prof.",name:"Gokhan",middleName:null,surname:"Bas",slug:"gokhan-bas",fullName:"Gokhan Bas"}]},{id:"66601",title:"Leadership in Graduate Medical Education",slug:"leadership-in-graduate-medical-education",totalDownloads:843,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Graduate medical education (GME) is a very complex endeavor within an even more complex healthcare system. This chapter examines many questions that need to be considered and the role of the key individual with oversight of the GME, the designated institutional official (DIO). Topics examined are the leadership theories, practices and strategies for the DIO, dealing with change when the DIO starts, using authority versus power, effective problem-solving and decision-making, adaptive leadership style, the historical function of the DIO, as well as the many tools available to the DIO including networking. The chapter concludes with several pearls of wisdom to positively help the DIO meet the many challenges of this very important role in GME.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Jay M. Yanoff",authors:null},{id:"63925",title:"Curriculum Development: Foundations and Modern Advances in Graduate Medical Education",slug:"curriculum-development-foundations-and-modern-advances-in-graduate-medical-education",totalDownloads:2308,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Curriculum development has undergone many transitions since the inception of medical education in the United States in the 1800’s. In this chapter, we briefly review the history of curriculum development in medical education. We discuss the landmark models of curriculum development including the concept of a curriculum map and Harden’s SPICES model of educational strategy, detail the six steps of Kern’s foundational framework, and provide an overview of the PRISMS strategy. We address the importance of adult learning theory and the advancing understanding of education for the millennial generation, including implementation of the flipped classroom model of education. Finally, we turn our focus on contemporary applications of curriculum design, including the application of simulation to medical education, the rise of massive open online courses (MOOC), and the implementation of free open access medical education (FOAM) within undergraduate and graduate medical curricula.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Simiao Li-Sauerwine and Andrew King",authors:null},{id:"64979",title:"Teaching Balanced Patient Care Using Principles of Reductionism and Holism: The Example of Chronic Low Back Pain",slug:"teaching-balanced-patient-care-using-principles-of-reductionism-and-holism-the-example-of-chronic-lo",totalDownloads:1011,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"This chapter explores how integrating holistic and reductionistic approaches to care may better optimize value based care. First, we define the terms ‘Holistic,’ ‘Reductionistic’ and ‘Integrative’. Then we explore their scope in the arenas of teaching and patient care, with the advantages, disadvantages and pitfalls of each approach. We review how these styles are embedded in and interact with the cultures of medicine and western societies at large. As an example of a balanced care approach, we focus on the example of chronic low back pain (CLBP), an increasingly common and expensive medical problem. We present practical examples of teaching and practicing these different styles, Holism and Reductionism, illustrating when each may be appropriate to optimize value of patient care. Study questions are included. A list of further readings and resources is included for the interested reader.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Alan Remde, Stephen DeTurk and Thomas Wojda",authors:null},{id:"66801",title:"Physician Burnout",slug:"physician-burnout",totalDownloads:891,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Burnout is pervasive among physicians and is rapidly becoming a pandemic in healthcare. It is characterized by increasing demands without adequate support and hallmarked by depersonalization, emotional exhaustion, and a reduced sense of personal accomplishment. It is essential to address burnout, as it can lead to decreased productivity, increased healthcare costs, medical errors, workforce attrition, depression, and even suicide. Many factors contribute to burnout, and it occurs at all stages of medicine: it can begin during medical school, intensify during the years of graduate medical education (GME) or residency training, and persist as residents become staff physicians. It affects both sexes, but may impact female physicians disproportionately. Impact can also vary among specialties. Recognizing the problem and intervening with unified physician and organization-directed solutions centered on well-being, efficient practice models, and goal prioritization may help to reduce the prevalence and effects of burnout.",book:{id:"8645",slug:"contemporary-topics-in-graduate-medical-education",title:"Contemporary Topics in Graduate Medical Education",fullTitle:"Contemporary Topics in Graduate Medical Education"},signatures:"Bess Connors, Charlotte Horne, Valery Vilchez and Sofya Asfaw",authors:null}],onlineFirstChaptersFilter:{topicId:"1317",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:398,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/12024",hash:"",query:{},params:{id:"12024"},fullPath:"/chapters/12024",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()