\r\n\tFrom the definition of Massive MIMO, the Book covers the important aspects of channel estimation, different efficiency parameters, and various practical deployment considerations. From the beginning, a very general, yet tractable, canonical system model with spatial channel correlation is required. This model is used to realistically assess the Spectral Efficiency and Energy Efficiency and is later extended to also include the impact of hardware impairments.
\r\n\r\n\tAs an overall framework, the authors and researchers who are working in the Area of Massive MIMO and 5G are expected to submit chapters covering these areas to give insight into research about MIMO.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"f6e96802bc79d6b8b0bab9ad24980cbc",bookSignature:"Dr. Sudhakar Radhakrishnan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7638.jpg",keywords:"Multi Antenna Systems, Diversity, Space-time Codes, Rake Receiver, MIMO Wireless Communication, SVD, Equalising MIMO Systems, Predistortion, Beam Forming Principles, Increased Spectrum Efficiency, Interference Cancellation, Beam Former",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 18th 2019",dateEndSecondStepPublish:"March 6th 2020",dateEndThirdStepPublish:"May 5th 2020",dateEndFourthStepPublish:"July 24th 2020",dateEndFifthStepPublish:"September 22nd 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan",profilePictureURL:"https://mts.intechopen.com/storage/users/26327/images/system/26327.jpg",biography:"Dr. Sudhakar Radhakrishnan is a researcher in the field of Image processing and contributed a lot to the society. He is an editorial board member for 3 International journals namely International Journal of Computer Theory and Engineering, International Journal of Computer and Electrical Engineering and International Arab Journal of Information technology. He is currently an Associate editor of IEEE-Access a multidisciplinary Journal published by IEEE. He is a reviewer of 16 international journals namely IEEE Transactions on Systems, Man, and Cybernetics: Systems by IEEE, International Arab Journal of Information Technology coming from Zarqa University, International Journal of Computer and Electrical Engineering published by International Association of Computer Science and Information Technology Press (IACSIT),International Journal of Computer Theory and Engineering published by International Association of Computer Science and Information Technology Press (IACSIT), Journal of Electrical and Electronics Engineering Research, Iranian Journal of Electrical and Computer Engineering, Journal of Optical Engineering, Journal of Electronic Imaging, Imaging Science Journal, International Journal of Computational Science and Engineering (IJCSE), International journal of Image mining(IJIM), Int. J. of Biomedical Engineering and Technology (IJBET) , Journal for Image Analysis & Stereology from International Society for Stereology, ETRI journal from Korea,\tAEUE- International journal of Electronics and Communications and IET Image Processing. He wrote 2 books titled 'Research issues in Image compression using Wavelet variants” .'Practicing Signals and Systems Laboratory using MATLAB” and two Book chapters titled 'Wavelet based image compression” in book titled 'Computational Intelligence Techniques in Handling Image Processing and Pattern Recognition” 'Analysis of Hand Vein image s using hybrid techniques” in Hybrid Intelligence techniques for Image Analysis and Understanding”. He edited three books titled 'Effective video coding for Multimedia applications”, 'Applications of Digital Signal Processing through practical approach” 'Recent Advances in Image and Video Coding” Wavelet theory and its applications all published by IntechOpen.He has published 100 papers in international, national journals and conference proceedings. His areas of research include Digital Image Processing, Image Analysis, Wavelet Transforms, Communication Engineering, and Digital Signal Processing",institutionString:"Dr. Mahalingam College of Engineering and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"5",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"112",title:"Effective Video Coding for Multimedia Applications",subtitle:null,isOpenForSubmission:!1,hash:"09a9826a6f8e7d58cf8516c609b4fa05",slug:"effective-video-coding-for-multimedia-applications",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/112.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5364",title:"Recent Advances in Image and Video Coding",subtitle:null,isOpenForSubmission:!1,hash:"fda66fbfe658c4c51b5c45c7cd5f3f59",slug:"recent-advances-in-image-and-video-coding",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5364.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7623",title:"Coding Theory",subtitle:null,isOpenForSubmission:!1,hash:"db1156342e3a1a46ff74cad035a3886b",slug:"coding-theory",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6547",title:"Wavelet Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"18c8eeba76232a47936f09f42fc739e6",slug:"wavelet-theory-and-its-applications",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/6547.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70253",title:"Ion Channels and Transporters as Cancer Biomarkers and Targets for Diagnostics with Antibodies",doi:"10.5772/intechopen.90401",slug:"ion-channels-and-transporters-as-cancer-biomarkers-and-targets-for-diagnostics-with-antibodies",body:'Ion channels and transporters (ICTs) are emerging as potential cancer biomarkers. Indeed, ICTs are aberrantly expressed in several types of human cancers, and exert a relevant role in mediating interactions between tumor cells and tumor microenvironment. Such interactions drive different functions which in turn regulate neoplastic progression, such as cell proliferation and survival, cell invasiveness and pro-angiogenetic programs [1, 2, 3]. Moreover, due to their prevalent expression at the cell surface, ICTs represent good targets for antibodies, to be exploited for diagnostic purposes. Finally, being highly druggable molecules, ICTs may represent novel molecular targets for antineoplastic therapy [4, 5].
The expression and role of different ion channels in tumor cells and their different contribution to tumor progression has been thoroughly described elsewhere [6]. In this chapter, we will focus on the possibility of exploiting ICTs as cancer biomarkers, for diagnostic, prognostic or predictive purposes. Some examples, relative to either solid cancers or hematologic malignancies are provided. We will analyze the possibility of using ICT-targeting antibodies for either in vitro or in vivo cancer diagnosis.
The technologies available to help physicians to detect and diagnose cancer has changed dramatically in recent years. In particular, the use of biomarkers has greatly improved diagnosis through their application for either in vitro diagnosis (on tumor specimens or in blood samples) or in vivo molecular imaging. According to the National Cancer Institute (NCI) definition (NCI Dictionary of Cancer Terms,
For the purposes of this chapter, we will briefly summarize the main techniques, either in vitro or in vivo, which take advantage of the use of biomarkers to obtain diagnostic, prognostic and predictive data on the cancer under study. Notably, most, although not all, of these techniques are based on the use of antibodies, targeting specific cancer-related biomarkers.
IHC represents an indispensable diagnostic tool to assess the presence or absence, as well as the amount, of a specific molecular tumor marker in a tissue. After appropriate assessment of categorical scoring system and proper validation of the immunohistochemical assay, a given marker can be proposed as a potential diagnostic or prognostic factor. Indeed, many of the cancer biomarkers routinely used in cancer diagnostics are based on this technique.
Using a multiparametric approach, FC immunophenotyping plays an indispensable role in the diagnosis and subclassification of leukemias, as well as for minimal residual disease detection. FC, in fact, provides a rapid and detailed determination of antigen expression profiles; these information along with morphologic assessment, allow to diagnose a particular type of leukemia and/or help in distinguishing from other subtypes. Also, the identification of specific antigens has prognostic and therapeutic relevance in acute leukemias. Moreover, FC immunophenotyping is useful to monitor response to therapy, recurrence and minimal residual disease.
While IHC and FC represent the standard of care in solid cancers and hematologic malignancies, respectively, some remarkable technological breakthroughs of the last 10 years have greatly contributed to improve cancer diagnostics through either the definition of “Omics profile” or the assessment of plasma-based cancer biomarkers:
The study of tumor genomes using high throughput profiling strategies including (but not limited to) DNA copy number, DNA methylation, and transcriptome and whole-genome sequencing—technologies that may collectively be defined as “omics”—has led to identifying genes and pathways deregulated in cancer, hence revealing those that may be useful for the detection and management of disease. In the near future, such discoveries will lead to the discovery of novel diagnostic, prognostic and predictive markers that will ultimately improve patient outcomes.
Besides ex vivo procedures (either on surgical/bioptic samples or blood), cancer diagnosis is mainly based on imaging procedures, such as computed tomography,magnetic resonance imaging and positron emission tomography. The advent of molecular imaging techniques has progressively allowed more accurate in vivo visualization of cancer, based on specific biological and pathological processes. Antibody-based imaging is of great utility since the combination of tumor specificity and different imaging methodologies might improve cancer diagnosis, monitoring and follow up [7, 8, 9, 10, 11]. The diagnostic imaging approaches currently used in cancer has been improved by the application of antibodies, thanks to the accuracy that allows antibodies to precisely identifying their targets. Some practical examples of mAbs recognizing cancer-specific biomarkers that are approved by the FDA and/or EMA and are currently used in the clinical setting have been described elsewhere [12]. Monoclonal antibodies (mAbs) have several features (big size, slow pharmacokinetics and blood clearance, not complete penetration and accumulation in tumor tissue) that can delay the time point for imaging. A different class of antibodies (single chain Fragment variable, scFv) might be useful to overcome such limitations and due to the possibility of conjugating the recombinant proteins with fluorescent dyes, scFv antibodies have been proposed for use in imaging applications, especially for cancer diagnostics [8, 11, 13].
An overview of the main ion channels and transporters expressed in different solid tumors is reported in Figure 1.
Schematic representation of the main ICTs expressed in solid tumors.
K+ channels are the class of ion channels mostly de-regulated in cancers. Among them, KCa 1.1 channels (also known as BK channels, encoded by the KCNMA1 gene) have shown a clinical relevance in breast (BC) and prostate cancer (PCa). In both tumor types, BK overexpression can be traced back to the amplification of the KCNMA1 gene located in 10q22: in BC, the amplification is restricted to invasive ductal tumors, and is associated with high stage, high grade and unfavorable prognosis [14]. In BC, KCa 1.1 positively correlates with the expression of estrogen receptors [15] and their levels are higher in BC metastatizing to brain [16]. In PCa, the KCNMA1 gene is frequently amplified in late-stage tumors [17] and can be considered a potential biomarker [18]. Another Ca2+-dependent K+ channel often overexpressed in human cancers is KCa3.1 (encoded by the KCNN4 gene). KCa3.1 channels are upregulated in BC, especially in high grade tumors [19], in pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) [20], in colorectal cancer (CRC) [21] as well as in small cell lung cancer (SCLC) [22]. While the clinical relevance of KCa3.1 was hypothesized in CRC [23], although not validated [24], KCNN4 hypomethylation turned out to be a negative prognostic factor in SCLC [22]. Kv channels are voltage-dependent K+ channels whose expression is often increased in cancer tissues [25]. For example, the expression of Kv 1.3 (KCNA3), markedly increased in PCa in samples with Gleason score of 5–6 (GS5–6), but significantly decreased in the GS8–9 group. This malignancy grade-dependent K+-channel expression pattern may provide a convenient marker to understand PCa progression level [26]. In PCa, Kv1.3 is mainly expressed in early stages of progression and down-regulated in high grade cancers [27]. Kv1.3 expression is lower in cancer compared with healthy pancreas. Kv1.3 downregulation could be traced back to promoter’s methylation and was associated with the presence of metastases [28]. K2P9.1 (KCNK9) belongs to the K2P family and genomic amplification of the gene was shown in a small fraction of BC [29]. K2P5.1 (KCNK5) is a member of the same family and it was shown to be induced by estrogens in ER-positive BC cells; for this reason, it might represent a therapeutic target for ER-positive BCs [30]. The amplification of the KCNK9 gene at the 8q23.4 locus justifies the over expression of K2P9.1 channels in BC. The overexpression of another K2p channel K2p 2.1 has been demonstrated in PCa and it was shown that it regulates cell proliferation [31]. The expression of inward rectifiers K+ channels, in particular Kir3.1 (KCNJ3) channels positively correlated with lymph node metastases in BC [32]. The voltage-gated K+ channels (VGKC) appear to exert a pleiotropic role in colorectal cancer. In primary human samples, the transcripts of KCNA3, KCNA5, KCNC1, KCNH1 [33, 34, 35], KCNH2 [36] and KCNK9 [37] have been detected. A relevant family of VGKC, whose most important members are Kv 10.1 and Kv 11.1 was shown to be highly represented in human cancers. Kv10.1 (KCNH1) was expressed in esophageal squamous cell carcinoma (ESCC) compared with the corresponding normal tissue, it was associated with depth of invasion and represented an independent negative prognostic factor [38].
Kv11.1 (KCNH2) channels are expressed in gastric cancer (GC) cell lines and primary GCs. In GC cell lines, they regulate tumor proliferation [39]. Consistently, treatment with Kv11.1 blockers, like cisapride, and siRNA impairs tumor growth [40, 41]. It was also shown that the mean survival time was shorter in Kv11.1 positive patients thus Kv11.1 expression was proposed as an independent prognostic factor. We also showed that Kv11.1 regulates VEGF-A secretion, with a pathway similar to the one described in CRC [42]. In vivo analyses of xenografts obtained with GC cells demonstrated that the treatment with Bevacizumab and Kv11.1 blockers dramatically reduces greatly tumor growth. Kv11.1 is highly expressed in primary CRC and is associated with invasive phenotype [36]; moreover, along with Glut-1 absence, it represents a negative prognostic factor in TNM I and II CRC [43]. Kv11.1 expression is associated with chemosensitivity for several anti-tumor agents (such as vincristine, paclitaxel and hydroxy-camptothecin, doxorubicin). Such chemosensitivity is modulated by erythromycin that is also capable which, to inhibit Kv11.1 current [44]. Kv11.1 also regulates lung cancer (LC) cell proliferation [45]. Kv11.1 is expressed in precancerous and neoplastic lesions of the esophagus and it is associated with malignant progression [46]. Kv11.1 channel expression represents a negative prognostic factor in terms of ESCC patients’ survival [47]. Kv11.1 are also expressed in PDAC cell lines and primary samples and it negatively affects patients’ prognosis [48].
Voltage-gated sodium channels (VGSC) were among the first channels to be demonstrated mis-expressed in BC and PCa. In particular, the predominant VGSC in BC is the “neonatal” splice variant of SCN5A (nNaV1.5), whose activity promotes metastatization [49, 50, 51]; consistently, the nNAv1.5 was up-regulated in metastatic BC samples [49, 50, 52]. On the whole, VGSC and in particular nNav1.5 could represent a good specific target for BC treatment. In CRC [53, 54, 55], the clinical relevance of Nav 1.5 expression was established by IHC in CRC samples with respect to healthy colon. VGSC regulates invasiveness and it was shown that SCNA5 gene modulates genes mediating, among others, cell migration and cell cycle control. Both nNav 1.5 and its “adult” counterpart are expressed in CRC and the local anesthetic Ropivacaine, blocks Nav 1.5 variants [56]. PCa show an aberrant expression of Nav1.7 (SCN9A), associated with a strong metastatic potential and its activity potentiates cell migration, crucial for the metastatic cascade [57]. Hence, Nav1.7 could represent a useful diagnostic marker [58]. A recent paper [59] showed that EGFR and Nav1.7 are expressed in NSCLC cells and that EGFR-mediated upregulation of SCN9A is necessary for the invasiveness of such cells. Nav1.7 has clinical relevance and might represent a novel target for therapy and/or a prognostic biomarker in NSCLC [59]. A recent multicenter study identified two single nucleotide polymorphisms of VGSC genes (SCN4A-rs2302237 and SCN10A-rs12632942) that were associated with oxaliplatin-induced peripheral neuropathy development [60].
Calcium signal remodeling is one of the common features of proliferating cells, including cancer. Indeed many functional studies have provided different calcium signaling that can modulate cell proliferation and resistance to apoptosis [61, 62, 63]. Voltage-gated calcium channels (VGCC) that are involved in the regulation of BC cell proliferation. CACNA2D3 gene (encoding the α2δ3 subunit of the voltage gated Ca2+ channel) is frequently up-regulated in BC, but in some metastatic cases, its expression is reduced [64]. The mechanisms of CACNA2D3 contribution to the metastatic process has not being clarified yet. One possible mechanism for the overexpression of some calcium permeable ion channels is through the involvement of hormone receptors, such as ERα. Examples are ORAI3 [65]. CACNA2D3, is frequently downregulated in primary BCs, as a result of methylation in CpG islands [64]. The influence of calcium channels in PCa has been known for over 30 years. Later research identified additional classes of channel proteins having an important regulatory role and affecting malignant transformation (reviewed in [66]). The expression of VGCC (mainly L-type) has been detected in the androgen-responsive LNCaP cells. In these cells Ca2+ currents are activated by androgens and mediate the androgen-induced effects [67]. Part of the Ca2+ effects depend on K+ channels stimulation, for example, KCa3.1 blocking inhibits the proliferation of PCa cells [67]. An aberrant methylation of CACNA2D1/3 gene (encoding the voltage-dependent calcium channel 2 subunit) was demonstrated in GC samples. CACNA2D3 methylation is associated with diffuse type GC and shorter survival [68]. ORAI1 and STIM1, belonging to the store operated calcium channels (SOC) family, are up-regulated in BC of the basal-like molecular subtype [69]. Moreover, another member of the same family, STIM2, is expressed at low levels in BC. Patients with high STIM1 and low STIM2 have unfavorable prognosis, suggesting that the SOC family has a role in aggressiveness and in the metastatic process [69]. ORAI3 has recently been associated with ER-positive BC [65] and could represent a novel target for ER-positive BCs [70].
TRP channels are non-selective cation channels that can be activated by different stimuli such as pH variations, temperature and pressure among others [71, 72]. Since TRP channels are involved in migration and invasiveness, they contribute to the metastatic process in different tumors [73]. Ca2+ influx through TRPCs also occurs and promotes either cell proliferation or apoptosis, depending on TRPC subtype. TRPC1 whose levels are high in BCs with low proliferation capacity, may not be the optimal target for therapies against aggressive BCs [74]. Significantly elevated (up to 200-fold) mRNA levels of TRPC6 were shown in BC samples compared with paired control samples [74, 75], but no correlations with clinico-pathological features emerged [74]. A similar behavior characterizes TRPC1, whose expression levels decrease during the progression of PCa from androgen-dependent to androgen-independent phase [75]. TRPC6 is overexpressed in ESCC with respect to normal esophageal tissue at both protein and mRNA levels [76]. A recent report evidenced correlations of TRPC6 with T and staging and an association between TRPC6 mRNA and poor prognosis [77]. TRPV6 is up-regulated in PgR and ER-negative BCs [78]. Basal-like BCs with high TRPV6 mRNA levels are associated with poor survival [79]. In vitro data suggest that TRPV6 may be a potential therapeutic target [79]. TRPV6 is highly expressed in PCa and are associated with the Gleason score and metastatisation [80]. The expression of TRPV4 is decreased by progesterone [81]. TRPM7 is highly expressed in BC, and such over expression is associated with poor prognosis in terms of distant metastasis- and recurrence-free survival [82]. In accordance with these observation, TRPM7 mRNA levels are higher in BC metastases with respect to primary tumors. Also, TRPM7 are overexpressed in pancreatic ductal adenocarcinomas and are associated with lymph node metastases [83]. TRPM7 mRNA and protein are also overexpressed in bladder cancer with respect to normal tissue and are associated with poor prognosis [84]. TRPA1 is overexpressed also in SCLC patients compared with NSCLC and since it is associated with SCLC patients’ survival representing a potential therapeutic target [85].
Anoctamin 1 (ANO1), the calcium-activated chloride channel, is highly expressed in BC cell lines and primary BCs [86] and the 11q13 region is frequently amplified in BC and it is associated with grading and unfavorable outcome [86].
ANO1 was also shown to play an important role in controlling PDAC cell proliferation [87]. It has been shown that chloride channel accessory 1 and 2 genes (CLCA1 and CLCA2) transcripts show widespread downregulation in CRC patients [88]. Therefore CLCA proteins could be tumor suppressors in CRC in analogy with what occurs in BC. CLC1 is expressed in GC cells where it impairs cell proliferation and stimulates apoptosis, invasion and migration in vitro [89]. CLC1 overexpression in primary GC correlates with clinico-pathological parameters (lymph node involvement, stage, lymphatic and perineural invasion) as well as with poor prognosis [90]. CLIC3 is not expressed in healthy pancreas while it is expressed in PanIN lesions [91] and in PDAC where it has a negative impact on patient survival.
The ligand-gated nicotinic acethylcholine receptors (nAChRs) are the channel type mostly studied in LC [92]. NSCLC shows altered expression of nicotinic subunits (mainly α1, α5 ανδ α7) compared with normal tissue. Moreover in NSCLC cells, nicotine has mitogenic effects of nicotine, mediated by α7-containing nAChRs [93]. Multiple genome-wide association studies (GWAS) have implicated the 15q25 nAChR gene cluster CHRNA5-A3-B4 in nicotine dependence and LC [94]. The expression of the CHRNA5 gene which encodes the α5-nAchR was increased in LC tissue and that the p.Asp398Asn polymorphism in the CHRNA5 gene is associated with LC risk [92] and altered receptor function [95]. Additionally, the p.Asp398Asn polymorphism may influence α5 (CHRNA5) expression as well [92]. A α5-nAChR/HIF-1α/VEGF axis exists in LC and is involved in nicotine-induced tumor cell proliferation. This fact suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated LC [96].
AQP1 is expressed in BC and positively correlates with grading, histology, CK14 expression, smooth muscle actin expression, basal-like group and poor outcome, whereas it has significant negative correlation with ER status [97]. AQP1, AQP3 and AQP5 are expressed in CRC cell lines. AQP1 and AQP5 are expressed the early steps of CRC progression but also in liver metastases [98]. Moreover, AQP5 expression is associated with grading, nodal involvement and TNM stage [99]. AQP5 is expressed at significant levels in Lauren’s intestinal type-GC, where it shows an apical localization [100], whereas AQP3 and AQP4 are not overexpressed in GC. Shen et al. [101] showed that both AQP3 and AQP5 were overexpressed in GC and were associated with lymph node involvement. Moreover, AQP3 expression was higher in well differentiated tumors. AQP3 is also over-expressed in primary CRC with respect to healthy tissue, and its expression is positively regulated by EGF and is associated with lymph node involvement, metastasis and differentiation [102]. AQP3 and AQP5 are expressed in ESCC, while absent in healthy esophagus [103, 104]: the presence of the two aquaporins is associated with clinico-pathological features and their co-expression represents an independent negative prognostic factor. A recent microarray-based study demonstrated that reduced AQP9 gene expression is related to absence of adjuvant chemotherapy response in CRC patients [38].
The monocarboxylate transporter SLC16A1 (encoded by the SLC16A1 gene) is associated to basal-like BC, high histological grade, CK5, CK14, vimentin and Ki67. AQP1 along with SLC16A1 were shown to be associated with tumor aggressiveness of BC [105]. The voltage-gated proton channel Hv1 (HVCN1) overexpression in metastatic BC is associated with progression and unfavorable outcome [106]. The same occurs in CRC in which it is associated also with tumor size, lymph node involvement and stage [107]. In stage CRC, a low expression of SLC7A1 (cationic amino-acid transporters-1, encoded by SLC7A1 gene) is associated with shorter metastases-free survival [108].
The sodium proton exchanger 1 (NHE1, SLC9A1) interacts with EGFR and is involved in PDAC cell invasiveness [109]. It was shown that the Glucose Transporter 1 (SLC2A1, GLUT1) is expressed in BE-derived tumors in the late events of tumor progression [110]. SLC2A1 expression described also occurs in ESCC, where it represents a marker of poor prognosis [111]. Moreover, SLC2A1 expression increased after radiotherapy in ESCC patients [112]. The apical sodium-dependent bile acid transporters (SLC10A2), which mediate bile acid transport [113], are not expressed in the normal squamous epithelium of the esophagus [114], whereas their expression increases in Barrett’s Esophagus, to decline in EA [115]. Divalent metal transporter1 (DMT1, SLC11A2) overexpression was associated with metastatization in EC [116]. One of the main causes of chemotherapy failure is drug efflux mediated by ATP-binding cassette transporters (ABC) [117]. It was recently shown that ABCG2 together with V-ATPase are overexpressed in ESCC and are associated with grading, TNM stage and metastatization. ABCB1 and ABCG2 are expressed in primary GC and GC cell lines [118] in which their expression is associated with tumor differentiation. ABCB1 expression is higher in diffuse type GC [119]. ABCG2 represents a target for a several chemotherapy drugs [120]: for example, cisplatin increases ABCG2 mRNA in vitro and this is associated with patients’ outcome [121]. In PDAC, ABCB4, ABCB11, ABCC1, ABCC3, ABCC5, ABCC10 and ABCG2 are up-regulated, while ABCA3, ABCC6, CFTR (ABCC7) and ABCC8 are down-regulated: such deregulation contributes to PDAC poor response to therapy [122]. The Solute Carrier transporters (SLC) is a family of transporters frequently deregulated in PDAC. SLC7A5 (the L-type aminoacid transporter 1) are overexpressed in PDAC and are associated with molecular and clinico-pathological features (such as Ki-67, p53, CD34, CD98, VEGF size, stage) and prognosis [122]. SLC22A3 and SLC22A18 are up-regulated in PDAC with respect to healthy pancreas while SLC22A1, SLC22A2, SLC22A11, SLC28A1, SLC28A3 and SLC29A1 are down-regulated [122]. In particular, SLC28A1 overexpression was associated with poor overall survival whereas SLC22A3 and SLC29A3 overexpression was observed in patients treated with Gemcitabine with longer overall survival. PC patients with low expression of SMCT1 (SLC5A8) have poorer survival with respect to patients with high SLC5A8 levels [123]. The human equilibrative nucleoside transporter 1 (SLC29A1) is associated to longer time to progression and it was shown that it could predict gemcitabine effects in non-resectable PDAC patients, if evaluated in samples obtained by fine-needle aspiration [124]. Different conclusions were drawn when analyzing SLC29A1 expression in patients treated with chemo-radiotherapy [125]. In GC, SLC7A5 overexpression was detected and it was found to be associated with clinico-pathological features such as size, lymph node involvement, TNM stage and local invasion [126]. SLC16A1 was found to be expressed both in healthy stomach and GC, and it could be hypothesized a role in gastric physiology for this transporter [119]. In metastatic GC, SLC16A3 is down-regulated [119] and is associated with intestinal type. 4F2hc (SLC3A2) was found to be over-expressed in GC cell lines and in primary GC, with no significant correlation with clinico-pathological features. Since the study was conducted on a small number of samples, it could not allow definitive conclusions [127].
As reported for solid tumors, a schematic overview of ion channels and transporters expressed in hematologic tumors is reported in Figure 2. Early evidence for the implication of K+ channels in leukemia cell proliferation was obtained in the myeloblastic leukemia cell line ML-1 [128]. In leukemias, it was shown that KCa3.1 might represent a useful target since its blockade impairs leukemic cells proliferation [129] while KCNN4 overexpression was detected in follicular lymphomas [130]. A significant Kv10.1 expression was detected in myelodysplastic syndromes, CML and almost half of a cohort of AML samples and blocking the channel results in the inhibition of both cell proliferation and migration. Smith and colleagues [131] carried out an extensive study of the K+ channel transcripts in primary lymphocytes, leukemias (B-cell CLL) and several leukemic cell lines and they found only Kv11.1 was significantly up-regulated. In AML cell lines (FLG 29.1, HL-60 and K562), it was shown that specific block of IKv11.1 led to G1 arrest and impaired their migration on fibronectin-containing ECM [132]. Kv11.1 was also overexpressed in circulating blasts from human AML, in which the block of the channel significantly decreased cell growth [132]. The hsloBK splice variant of gBK has been detected in gliomas [133] and the herg1b alternative transcript of Kv11.1 is overexpressed in human leukemias and neuroblastomas [134, 135]. TWIK-related spinal cord K+ (TRESK) channels, members of the double-pore domain K+ channel family, are expressed in Jurkat cells [136] that also express TRPV5 and TRPV6, which were also detected in K562 cells. TRP channels control Ca2+ homeostasis in the context of malignant transformation [137] and it was shown that of TRPV5/TRPV6-like channels’ activation mediate Ca2+ entry and the activation of Ca2+/Calmodulin-dependent kinase II in irradiated K562 cells [138].
Cartoon showing the main ICTs expressed in leukemias and lymphomas.
During the oxidative burst following activation of K562 cells non-selective cation channel TRPM2 are activated, thus activating SK4 KCa channels. In parallel, the voltage-gated Cl-channel ClC-3 is also activated. The overall effect is cell shrinkage because of the osmotic water loss determined KCl outflow [139, 140]. A similar volume-dependent regulation of leukemia cell apoptosis can be operated by volume-regulated chloride currents (VRCC). The volume-dependent regulatory mechanisms are accompanied by control of water levels suggesting it could represent an additional modulatory mechanism in the apoptotic cascade [141]. AQPs control osmotic fluxes in a variety of physiological conditions. For instance, AQP5 is overexpressed in CML cells, where it promotes cell proliferation and inhibits apoptosis, perhaps through an effect on cell volume control [142]. Expression of AQP5 increases in parallel with the development of resistance to imatinib mesylate [142].
Recently, an antibody directed to a cancer-related ion channel (the purinergic receptor P2X7) was introduced into the clinical settings: it is a polyclonal antibody targeting a conformational epitope of the non-functional channel and it is likely to be approved as a first-generation therapy. Antibodies targeting ORAI1 were obtained using U2OS cells overexpressing human ORAI1 as immunogens. One of such antibodies impaired cell proliferation of T lymphocytes in peripheral blood [143, 144]. In 2014, a method for the isolation of functional antibodies against Nav1.7 was published [145].
In a recent paper [146], an ICT molecular profile was defined for BC thus opening interesting perspectives in this field. In particular, the expression of 30 ion channel genes was shown to be associated with tumor grade. The authors were able of identifying a “IC30 gene signature” composed of 30 ion channel genes and demonstrated that IC30 might represent a prognostic biomarker predicting clinical outcome in BC, independently from clinical and pathological prognostic factors. The same approach was applied to LC and 37 ion channels genes were identified as differentially expressed in LC in comparison to healthy lung [147]. Moreover, 31 ion channel genes were identified as differentially expressed between lung adenocarcinoma and squamous-cell carcinoma samples, therefore the expression of such genes could be used for NSCLC molecular classification [147]. In NSCLC, it was shown that VDAC1 is an independent prognostic factor and it is associated with shorter overall survival [147]. VDAC1 was also found to be up-regulated in different types of carcinomas [148]. More recently, a paper describing gene expression profile in lymphomas demonstrated that KCNN4 and SLC2A1 genes are overexpressed in follicular lymphomas (FL) [130]. In particular, SLC2A1 was proposed to be the hub of a functional network, connecting channels and transporters in FL. Moreover, relapsed FL had 38 differentially expressed ICT genes, among which ATP9A, SLC2A1 and KCNN4 were under-expressed. In the same paper, it was shown that diffuse large B Cell lymphoma (DLBCL) have a completely different pattern of K+ channel encoding genes expression along with the overexpression of the fatty acid transporter-encoding gene SLC27A1.
The authors declare no conflict of interest.
Ion channels and transporters (ICTs) are emerging as potential cancer biomarkers. Indeed, ICTs are aberrantly expressed in several types of human cancers, and exert a relevant role in mediating interactions between tumor cells and tumor microenvironment. Such interactions drive different functions which in turn regulate neoplastic progression, such as cell proliferation and survival, cell invasiveness and pro-angiogenetic programs [1, 2, 3]. Moreover, due to their prevalent expression at the cell surface, ICTs represent good targets for antibodies, to be exploited for diagnostic purposes. Finally, being highly druggable molecules, ICTs may represent novel molecular targets for antineoplastic therapy [4, 5].
The expression and role of different ion channels in tumor cells and their different contribution to tumor progression has been thoroughly described elsewhere [6]. In this chapter, we will focus on the possibility of exploiting ICTs as cancer biomarkers, for diagnostic, prognostic or predictive purposes. Some examples, relative to either solid cancers or hematologic malignancies are provided. We will analyze the possibility of using ICT-targeting antibodies for either in vitro or in vivo cancer diagnosis.
The technologies available to help physicians to detect and diagnose cancer has changed dramatically in recent years. In particular, the use of biomarkers has greatly improved diagnosis through their application for either in vitro diagnosis (on tumor specimens or in blood samples) or in vivo molecular imaging. According to the National Cancer Institute (NCI) definition (NCI Dictionary of Cancer Terms,
For the purposes of this chapter, we will briefly summarize the main techniques, either in vitro or in vivo, which take advantage of the use of biomarkers to obtain diagnostic, prognostic and predictive data on the cancer under study. Notably, most, although not all, of these techniques are based on the use of antibodies, targeting specific cancer-related biomarkers.
IHC represents an indispensable diagnostic tool to assess the presence or absence, as well as the amount, of a specific molecular tumor marker in a tissue. After appropriate assessment of categorical scoring system and proper validation of the immunohistochemical assay, a given marker can be proposed as a potential diagnostic or prognostic factor. Indeed, many of the cancer biomarkers routinely used in cancer diagnostics are based on this technique.
Using a multiparametric approach, FC immunophenotyping plays an indispensable role in the diagnosis and subclassification of leukemias, as well as for minimal residual disease detection. FC, in fact, provides a rapid and detailed determination of antigen expression profiles; these information along with morphologic assessment, allow to diagnose a particular type of leukemia and/or help in distinguishing from other subtypes. Also, the identification of specific antigens has prognostic and therapeutic relevance in acute leukemias. Moreover, FC immunophenotyping is useful to monitor response to therapy, recurrence and minimal residual disease.
While IHC and FC represent the standard of care in solid cancers and hematologic malignancies, respectively, some remarkable technological breakthroughs of the last 10 years have greatly contributed to improve cancer diagnostics through either the definition of “Omics profile” or the assessment of plasma-based cancer biomarkers:
The study of tumor genomes using high throughput profiling strategies including (but not limited to) DNA copy number, DNA methylation, and transcriptome and whole-genome sequencing—technologies that may collectively be defined as “omics”—has led to identifying genes and pathways deregulated in cancer, hence revealing those that may be useful for the detection and management of disease. In the near future, such discoveries will lead to the discovery of novel diagnostic, prognostic and predictive markers that will ultimately improve patient outcomes.
Besides ex vivo procedures (either on surgical/bioptic samples or blood), cancer diagnosis is mainly based on imaging procedures, such as computed tomography,magnetic resonance imaging and positron emission tomography. The advent of molecular imaging techniques has progressively allowed more accurate in vivo visualization of cancer, based on specific biological and pathological processes. Antibody-based imaging is of great utility since the combination of tumor specificity and different imaging methodologies might improve cancer diagnosis, monitoring and follow up [7, 8, 9, 10, 11]. The diagnostic imaging approaches currently used in cancer has been improved by the application of antibodies, thanks to the accuracy that allows antibodies to precisely identifying their targets. Some practical examples of mAbs recognizing cancer-specific biomarkers that are approved by the FDA and/or EMA and are currently used in the clinical setting have been described elsewhere [12]. Monoclonal antibodies (mAbs) have several features (big size, slow pharmacokinetics and blood clearance, not complete penetration and accumulation in tumor tissue) that can delay the time point for imaging. A different class of antibodies (single chain Fragment variable, scFv) might be useful to overcome such limitations and due to the possibility of conjugating the recombinant proteins with fluorescent dyes, scFv antibodies have been proposed for use in imaging applications, especially for cancer diagnostics [8, 11, 13].
An overview of the main ion channels and transporters expressed in different solid tumors is reported in Figure 1.
Schematic representation of the main ICTs expressed in solid tumors.
K+ channels are the class of ion channels mostly de-regulated in cancers. Among them, KCa 1.1 channels (also known as BK channels, encoded by the KCNMA1 gene) have shown a clinical relevance in breast (BC) and prostate cancer (PCa). In both tumor types, BK overexpression can be traced back to the amplification of the KCNMA1 gene located in 10q22: in BC, the amplification is restricted to invasive ductal tumors, and is associated with high stage, high grade and unfavorable prognosis [14]. In BC, KCa 1.1 positively correlates with the expression of estrogen receptors [15] and their levels are higher in BC metastatizing to brain [16]. In PCa, the KCNMA1 gene is frequently amplified in late-stage tumors [17] and can be considered a potential biomarker [18]. Another Ca2+-dependent K+ channel often overexpressed in human cancers is KCa3.1 (encoded by the KCNN4 gene). KCa3.1 channels are upregulated in BC, especially in high grade tumors [19], in pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) [20], in colorectal cancer (CRC) [21] as well as in small cell lung cancer (SCLC) [22]. While the clinical relevance of KCa3.1 was hypothesized in CRC [23], although not validated [24], KCNN4 hypomethylation turned out to be a negative prognostic factor in SCLC [22]. Kv channels are voltage-dependent K+ channels whose expression is often increased in cancer tissues [25]. For example, the expression of Kv 1.3 (KCNA3), markedly increased in PCa in samples with Gleason score of 5–6 (GS5–6), but significantly decreased in the GS8–9 group. This malignancy grade-dependent K+-channel expression pattern may provide a convenient marker to understand PCa progression level [26]. In PCa, Kv1.3 is mainly expressed in early stages of progression and down-regulated in high grade cancers [27]. Kv1.3 expression is lower in cancer compared with healthy pancreas. Kv1.3 downregulation could be traced back to promoter’s methylation and was associated with the presence of metastases [28]. K2P9.1 (KCNK9) belongs to the K2P family and genomic amplification of the gene was shown in a small fraction of BC [29]. K2P5.1 (KCNK5) is a member of the same family and it was shown to be induced by estrogens in ER-positive BC cells; for this reason, it might represent a therapeutic target for ER-positive BCs [30]. The amplification of the KCNK9 gene at the 8q23.4 locus justifies the over expression of K2P9.1 channels in BC. The overexpression of another K2p channel K2p 2.1 has been demonstrated in PCa and it was shown that it regulates cell proliferation [31]. The expression of inward rectifiers K+ channels, in particular Kir3.1 (KCNJ3) channels positively correlated with lymph node metastases in BC [32]. The voltage-gated K+ channels (VGKC) appear to exert a pleiotropic role in colorectal cancer. In primary human samples, the transcripts of KCNA3, KCNA5, KCNC1, KCNH1 [33, 34, 35], KCNH2 [36] and KCNK9 [37] have been detected. A relevant family of VGKC, whose most important members are Kv 10.1 and Kv 11.1 was shown to be highly represented in human cancers. Kv10.1 (KCNH1) was expressed in esophageal squamous cell carcinoma (ESCC) compared with the corresponding normal tissue, it was associated with depth of invasion and represented an independent negative prognostic factor [38].
Kv11.1 (KCNH2) channels are expressed in gastric cancer (GC) cell lines and primary GCs. In GC cell lines, they regulate tumor proliferation [39]. Consistently, treatment with Kv11.1 blockers, like cisapride, and siRNA impairs tumor growth [40, 41]. It was also shown that the mean survival time was shorter in Kv11.1 positive patients thus Kv11.1 expression was proposed as an independent prognostic factor. We also showed that Kv11.1 regulates VEGF-A secretion, with a pathway similar to the one described in CRC [42]. In vivo analyses of xenografts obtained with GC cells demonstrated that the treatment with Bevacizumab and Kv11.1 blockers dramatically reduces greatly tumor growth. Kv11.1 is highly expressed in primary CRC and is associated with invasive phenotype [36]; moreover, along with Glut-1 absence, it represents a negative prognostic factor in TNM I and II CRC [43]. Kv11.1 expression is associated with chemosensitivity for several anti-tumor agents (such as vincristine, paclitaxel and hydroxy-camptothecin, doxorubicin). Such chemosensitivity is modulated by erythromycin that is also capable which, to inhibit Kv11.1 current [44]. Kv11.1 also regulates lung cancer (LC) cell proliferation [45]. Kv11.1 is expressed in precancerous and neoplastic lesions of the esophagus and it is associated with malignant progression [46]. Kv11.1 channel expression represents a negative prognostic factor in terms of ESCC patients’ survival [47]. Kv11.1 are also expressed in PDAC cell lines and primary samples and it negatively affects patients’ prognosis [48].
Voltage-gated sodium channels (VGSC) were among the first channels to be demonstrated mis-expressed in BC and PCa. In particular, the predominant VGSC in BC is the “neonatal” splice variant of SCN5A (nNaV1.5), whose activity promotes metastatization [49, 50, 51]; consistently, the nNAv1.5 was up-regulated in metastatic BC samples [49, 50, 52]. On the whole, VGSC and in particular nNav1.5 could represent a good specific target for BC treatment. In CRC [53, 54, 55], the clinical relevance of Nav 1.5 expression was established by IHC in CRC samples with respect to healthy colon. VGSC regulates invasiveness and it was shown that SCNA5 gene modulates genes mediating, among others, cell migration and cell cycle control. Both nNav 1.5 and its “adult” counterpart are expressed in CRC and the local anesthetic Ropivacaine, blocks Nav 1.5 variants [56]. PCa show an aberrant expression of Nav1.7 (SCN9A), associated with a strong metastatic potential and its activity potentiates cell migration, crucial for the metastatic cascade [57]. Hence, Nav1.7 could represent a useful diagnostic marker [58]. A recent paper [59] showed that EGFR and Nav1.7 are expressed in NSCLC cells and that EGFR-mediated upregulation of SCN9A is necessary for the invasiveness of such cells. Nav1.7 has clinical relevance and might represent a novel target for therapy and/or a prognostic biomarker in NSCLC [59]. A recent multicenter study identified two single nucleotide polymorphisms of VGSC genes (SCN4A-rs2302237 and SCN10A-rs12632942) that were associated with oxaliplatin-induced peripheral neuropathy development [60].
Calcium signal remodeling is one of the common features of proliferating cells, including cancer. Indeed many functional studies have provided different calcium signaling that can modulate cell proliferation and resistance to apoptosis [61, 62, 63]. Voltage-gated calcium channels (VGCC) that are involved in the regulation of BC cell proliferation. CACNA2D3 gene (encoding the α2δ3 subunit of the voltage gated Ca2+ channel) is frequently up-regulated in BC, but in some metastatic cases, its expression is reduced [64]. The mechanisms of CACNA2D3 contribution to the metastatic process has not being clarified yet. One possible mechanism for the overexpression of some calcium permeable ion channels is through the involvement of hormone receptors, such as ERα. Examples are ORAI3 [65]. CACNA2D3, is frequently downregulated in primary BCs, as a result of methylation in CpG islands [64]. The influence of calcium channels in PCa has been known for over 30 years. Later research identified additional classes of channel proteins having an important regulatory role and affecting malignant transformation (reviewed in [66]). The expression of VGCC (mainly L-type) has been detected in the androgen-responsive LNCaP cells. In these cells Ca2+ currents are activated by androgens and mediate the androgen-induced effects [67]. Part of the Ca2+ effects depend on K+ channels stimulation, for example, KCa3.1 blocking inhibits the proliferation of PCa cells [67]. An aberrant methylation of CACNA2D1/3 gene (encoding the voltage-dependent calcium channel 2 subunit) was demonstrated in GC samples. CACNA2D3 methylation is associated with diffuse type GC and shorter survival [68]. ORAI1 and STIM1, belonging to the store operated calcium channels (SOC) family, are up-regulated in BC of the basal-like molecular subtype [69]. Moreover, another member of the same family, STIM2, is expressed at low levels in BC. Patients with high STIM1 and low STIM2 have unfavorable prognosis, suggesting that the SOC family has a role in aggressiveness and in the metastatic process [69]. ORAI3 has recently been associated with ER-positive BC [65] and could represent a novel target for ER-positive BCs [70].
TRP channels are non-selective cation channels that can be activated by different stimuli such as pH variations, temperature and pressure among others [71, 72]. Since TRP channels are involved in migration and invasiveness, they contribute to the metastatic process in different tumors [73]. Ca2+ influx through TRPCs also occurs and promotes either cell proliferation or apoptosis, depending on TRPC subtype. TRPC1 whose levels are high in BCs with low proliferation capacity, may not be the optimal target for therapies against aggressive BCs [74]. Significantly elevated (up to 200-fold) mRNA levels of TRPC6 were shown in BC samples compared with paired control samples [74, 75], but no correlations with clinico-pathological features emerged [74]. A similar behavior characterizes TRPC1, whose expression levels decrease during the progression of PCa from androgen-dependent to androgen-independent phase [75]. TRPC6 is overexpressed in ESCC with respect to normal esophageal tissue at both protein and mRNA levels [76]. A recent report evidenced correlations of TRPC6 with T and staging and an association between TRPC6 mRNA and poor prognosis [77]. TRPV6 is up-regulated in PgR and ER-negative BCs [78]. Basal-like BCs with high TRPV6 mRNA levels are associated with poor survival [79]. In vitro data suggest that TRPV6 may be a potential therapeutic target [79]. TRPV6 is highly expressed in PCa and are associated with the Gleason score and metastatisation [80]. The expression of TRPV4 is decreased by progesterone [81]. TRPM7 is highly expressed in BC, and such over expression is associated with poor prognosis in terms of distant metastasis- and recurrence-free survival [82]. In accordance with these observation, TRPM7 mRNA levels are higher in BC metastases with respect to primary tumors. Also, TRPM7 are overexpressed in pancreatic ductal adenocarcinomas and are associated with lymph node metastases [83]. TRPM7 mRNA and protein are also overexpressed in bladder cancer with respect to normal tissue and are associated with poor prognosis [84]. TRPA1 is overexpressed also in SCLC patients compared with NSCLC and since it is associated with SCLC patients’ survival representing a potential therapeutic target [85].
Anoctamin 1 (ANO1), the calcium-activated chloride channel, is highly expressed in BC cell lines and primary BCs [86] and the 11q13 region is frequently amplified in BC and it is associated with grading and unfavorable outcome [86].
ANO1 was also shown to play an important role in controlling PDAC cell proliferation [87]. It has been shown that chloride channel accessory 1 and 2 genes (CLCA1 and CLCA2) transcripts show widespread downregulation in CRC patients [88]. Therefore CLCA proteins could be tumor suppressors in CRC in analogy with what occurs in BC. CLC1 is expressed in GC cells where it impairs cell proliferation and stimulates apoptosis, invasion and migration in vitro [89]. CLC1 overexpression in primary GC correlates with clinico-pathological parameters (lymph node involvement, stage, lymphatic and perineural invasion) as well as with poor prognosis [90]. CLIC3 is not expressed in healthy pancreas while it is expressed in PanIN lesions [91] and in PDAC where it has a negative impact on patient survival.
The ligand-gated nicotinic acethylcholine receptors (nAChRs) are the channel type mostly studied in LC [92]. NSCLC shows altered expression of nicotinic subunits (mainly α1, α5 ανδ α7) compared with normal tissue. Moreover in NSCLC cells, nicotine has mitogenic effects of nicotine, mediated by α7-containing nAChRs [93]. Multiple genome-wide association studies (GWAS) have implicated the 15q25 nAChR gene cluster CHRNA5-A3-B4 in nicotine dependence and LC [94]. The expression of the CHRNA5 gene which encodes the α5-nAchR was increased in LC tissue and that the p.Asp398Asn polymorphism in the CHRNA5 gene is associated with LC risk [92] and altered receptor function [95]. Additionally, the p.Asp398Asn polymorphism may influence α5 (CHRNA5) expression as well [92]. A α5-nAChR/HIF-1α/VEGF axis exists in LC and is involved in nicotine-induced tumor cell proliferation. This fact suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated LC [96].
AQP1 is expressed in BC and positively correlates with grading, histology, CK14 expression, smooth muscle actin expression, basal-like group and poor outcome, whereas it has significant negative correlation with ER status [97]. AQP1, AQP3 and AQP5 are expressed in CRC cell lines. AQP1 and AQP5 are expressed the early steps of CRC progression but also in liver metastases [98]. Moreover, AQP5 expression is associated with grading, nodal involvement and TNM stage [99]. AQP5 is expressed at significant levels in Lauren’s intestinal type-GC, where it shows an apical localization [100], whereas AQP3 and AQP4 are not overexpressed in GC. Shen et al. [101] showed that both AQP3 and AQP5 were overexpressed in GC and were associated with lymph node involvement. Moreover, AQP3 expression was higher in well differentiated tumors. AQP3 is also over-expressed in primary CRC with respect to healthy tissue, and its expression is positively regulated by EGF and is associated with lymph node involvement, metastasis and differentiation [102]. AQP3 and AQP5 are expressed in ESCC, while absent in healthy esophagus [103, 104]: the presence of the two aquaporins is associated with clinico-pathological features and their co-expression represents an independent negative prognostic factor. A recent microarray-based study demonstrated that reduced AQP9 gene expression is related to absence of adjuvant chemotherapy response in CRC patients [38].
The monocarboxylate transporter SLC16A1 (encoded by the SLC16A1 gene) is associated to basal-like BC, high histological grade, CK5, CK14, vimentin and Ki67. AQP1 along with SLC16A1 were shown to be associated with tumor aggressiveness of BC [105]. The voltage-gated proton channel Hv1 (HVCN1) overexpression in metastatic BC is associated with progression and unfavorable outcome [106]. The same occurs in CRC in which it is associated also with tumor size, lymph node involvement and stage [107]. In stage CRC, a low expression of SLC7A1 (cationic amino-acid transporters-1, encoded by SLC7A1 gene) is associated with shorter metastases-free survival [108].
The sodium proton exchanger 1 (NHE1, SLC9A1) interacts with EGFR and is involved in PDAC cell invasiveness [109]. It was shown that the Glucose Transporter 1 (SLC2A1, GLUT1) is expressed in BE-derived tumors in the late events of tumor progression [110]. SLC2A1 expression described also occurs in ESCC, where it represents a marker of poor prognosis [111]. Moreover, SLC2A1 expression increased after radiotherapy in ESCC patients [112]. The apical sodium-dependent bile acid transporters (SLC10A2), which mediate bile acid transport [113], are not expressed in the normal squamous epithelium of the esophagus [114], whereas their expression increases in Barrett’s Esophagus, to decline in EA [115]. Divalent metal transporter1 (DMT1, SLC11A2) overexpression was associated with metastatization in EC [116]. One of the main causes of chemotherapy failure is drug efflux mediated by ATP-binding cassette transporters (ABC) [117]. It was recently shown that ABCG2 together with V-ATPase are overexpressed in ESCC and are associated with grading, TNM stage and metastatization. ABCB1 and ABCG2 are expressed in primary GC and GC cell lines [118] in which their expression is associated with tumor differentiation. ABCB1 expression is higher in diffuse type GC [119]. ABCG2 represents a target for a several chemotherapy drugs [120]: for example, cisplatin increases ABCG2 mRNA in vitro and this is associated with patients’ outcome [121]. In PDAC, ABCB4, ABCB11, ABCC1, ABCC3, ABCC5, ABCC10 and ABCG2 are up-regulated, while ABCA3, ABCC6, CFTR (ABCC7) and ABCC8 are down-regulated: such deregulation contributes to PDAC poor response to therapy [122]. The Solute Carrier transporters (SLC) is a family of transporters frequently deregulated in PDAC. SLC7A5 (the L-type aminoacid transporter 1) are overexpressed in PDAC and are associated with molecular and clinico-pathological features (such as Ki-67, p53, CD34, CD98, VEGF size, stage) and prognosis [122]. SLC22A3 and SLC22A18 are up-regulated in PDAC with respect to healthy pancreas while SLC22A1, SLC22A2, SLC22A11, SLC28A1, SLC28A3 and SLC29A1 are down-regulated [122]. In particular, SLC28A1 overexpression was associated with poor overall survival whereas SLC22A3 and SLC29A3 overexpression was observed in patients treated with Gemcitabine with longer overall survival. PC patients with low expression of SMCT1 (SLC5A8) have poorer survival with respect to patients with high SLC5A8 levels [123]. The human equilibrative nucleoside transporter 1 (SLC29A1) is associated to longer time to progression and it was shown that it could predict gemcitabine effects in non-resectable PDAC patients, if evaluated in samples obtained by fine-needle aspiration [124]. Different conclusions were drawn when analyzing SLC29A1 expression in patients treated with chemo-radiotherapy [125]. In GC, SLC7A5 overexpression was detected and it was found to be associated with clinico-pathological features such as size, lymph node involvement, TNM stage and local invasion [126]. SLC16A1 was found to be expressed both in healthy stomach and GC, and it could be hypothesized a role in gastric physiology for this transporter [119]. In metastatic GC, SLC16A3 is down-regulated [119] and is associated with intestinal type. 4F2hc (SLC3A2) was found to be over-expressed in GC cell lines and in primary GC, with no significant correlation with clinico-pathological features. Since the study was conducted on a small number of samples, it could not allow definitive conclusions [127].
As reported for solid tumors, a schematic overview of ion channels and transporters expressed in hematologic tumors is reported in Figure 2. Early evidence for the implication of K+ channels in leukemia cell proliferation was obtained in the myeloblastic leukemia cell line ML-1 [128]. In leukemias, it was shown that KCa3.1 might represent a useful target since its blockade impairs leukemic cells proliferation [129] while KCNN4 overexpression was detected in follicular lymphomas [130]. A significant Kv10.1 expression was detected in myelodysplastic syndromes, CML and almost half of a cohort of AML samples and blocking the channel results in the inhibition of both cell proliferation and migration. Smith and colleagues [131] carried out an extensive study of the K+ channel transcripts in primary lymphocytes, leukemias (B-cell CLL) and several leukemic cell lines and they found only Kv11.1 was significantly up-regulated. In AML cell lines (FLG 29.1, HL-60 and K562), it was shown that specific block of IKv11.1 led to G1 arrest and impaired their migration on fibronectin-containing ECM [132]. Kv11.1 was also overexpressed in circulating blasts from human AML, in which the block of the channel significantly decreased cell growth [132]. The hsloBK splice variant of gBK has been detected in gliomas [133] and the herg1b alternative transcript of Kv11.1 is overexpressed in human leukemias and neuroblastomas [134, 135]. TWIK-related spinal cord K+ (TRESK) channels, members of the double-pore domain K+ channel family, are expressed in Jurkat cells [136] that also express TRPV5 and TRPV6, which were also detected in K562 cells. TRP channels control Ca2+ homeostasis in the context of malignant transformation [137] and it was shown that of TRPV5/TRPV6-like channels’ activation mediate Ca2+ entry and the activation of Ca2+/Calmodulin-dependent kinase II in irradiated K562 cells [138].
Cartoon showing the main ICTs expressed in leukemias and lymphomas.
During the oxidative burst following activation of K562 cells non-selective cation channel TRPM2 are activated, thus activating SK4 KCa channels. In parallel, the voltage-gated Cl-channel ClC-3 is also activated. The overall effect is cell shrinkage because of the osmotic water loss determined KCl outflow [139, 140]. A similar volume-dependent regulation of leukemia cell apoptosis can be operated by volume-regulated chloride currents (VRCC). The volume-dependent regulatory mechanisms are accompanied by control of water levels suggesting it could represent an additional modulatory mechanism in the apoptotic cascade [141]. AQPs control osmotic fluxes in a variety of physiological conditions. For instance, AQP5 is overexpressed in CML cells, where it promotes cell proliferation and inhibits apoptosis, perhaps through an effect on cell volume control [142]. Expression of AQP5 increases in parallel with the development of resistance to imatinib mesylate [142].
Recently, an antibody directed to a cancer-related ion channel (the purinergic receptor P2X7) was introduced into the clinical settings: it is a polyclonal antibody targeting a conformational epitope of the non-functional channel and it is likely to be approved as a first-generation therapy. Antibodies targeting ORAI1 were obtained using U2OS cells overexpressing human ORAI1 as immunogens. One of such antibodies impaired cell proliferation of T lymphocytes in peripheral blood [143, 144]. In 2014, a method for the isolation of functional antibodies against Nav1.7 was published [145].
In a recent paper [146], an ICT molecular profile was defined for BC thus opening interesting perspectives in this field. In particular, the expression of 30 ion channel genes was shown to be associated with tumor grade. The authors were able of identifying a “IC30 gene signature” composed of 30 ion channel genes and demonstrated that IC30 might represent a prognostic biomarker predicting clinical outcome in BC, independently from clinical and pathological prognostic factors. The same approach was applied to LC and 37 ion channels genes were identified as differentially expressed in LC in comparison to healthy lung [147]. Moreover, 31 ion channel genes were identified as differentially expressed between lung adenocarcinoma and squamous-cell carcinoma samples, therefore the expression of such genes could be used for NSCLC molecular classification [147]. In NSCLC, it was shown that VDAC1 is an independent prognostic factor and it is associated with shorter overall survival [147]. VDAC1 was also found to be up-regulated in different types of carcinomas [148]. More recently, a paper describing gene expression profile in lymphomas demonstrated that KCNN4 and SLC2A1 genes are overexpressed in follicular lymphomas (FL) [130]. In particular, SLC2A1 was proposed to be the hub of a functional network, connecting channels and transporters in FL. Moreover, relapsed FL had 38 differentially expressed ICT genes, among which ATP9A, SLC2A1 and KCNN4 were under-expressed. In the same paper, it was shown that diffuse large B Cell lymphoma (DLBCL) have a completely different pattern of K+ channel encoding genes expression along with the overexpression of the fatty acid transporter-encoding gene SLC27A1.
The authors declare no conflict of interest.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"18"},books:[{type:"book",id:"9667",title:"Neuroimmunology",subtitle:null,isOpenForSubmission:!0,hash:"9cf0e8203ce088c0b84add014fd8d382",slug:null,bookSignature:"Prof. Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/9667.jpg",editedByType:null,editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10744",title:"Astrocyte",subtitle:null,isOpenForSubmission:!0,hash:"b770f09e3f87daa5d8525fa78f771405",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5221},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1130",title:"Euthenics",slug:"euthenics",parent:{title:"Public Health",slug:"medicine-public-health"},numberOfBooks:4,numberOfAuthorsAndEditors:102,numberOfWosCitations:177,numberOfCrossrefCitations:125,numberOfDimensionsCitations:335,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"euthenics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6013",title:"Well-being and Quality of Life",subtitle:"Medical Perspective",isOpenForSubmission:!1,hash:"8ce9412b0c4cf7532a3ed3269e5a8ebf",slug:"well-being-and-quality-of-life-medical-perspective",bookSignature:"Mukadder Mollaoglu",coverURL:"https://cdn.intechopen.com/books/images_new/6013.jpg",editedByType:"Edited by",editors:[{id:"43900",title:"Prof.",name:"Mukadder",middleName:null,surname:"Mollaoğlu",slug:"mukadder-mollaoglu",fullName:"Mukadder Mollaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5963",title:"Functional Food",subtitle:"Improve Health through Adequate Food",isOpenForSubmission:!1,hash:"a7e56600bbbb1d3ed63d334cc575dc14",slug:"functional-food-improve-health-through-adequate-food",bookSignature:"Maria Chavarri Hueda",coverURL:"https://cdn.intechopen.com/books/images_new/5963.jpg",editedByType:"Edited by",editors:[{id:"150285",title:"Dr.",name:"María",middleName:null,surname:"Chávarri Hueda",slug:"maria-chavarri-hueda",fullName:"María Chávarri Hueda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5176",title:"Nutritional Deficiency",subtitle:null,isOpenForSubmission:!1,hash:"a2e20dabc8ed6fbaef3686be8c6fce99",slug:"nutritional-deficiency",bookSignature:"Pınar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/5176.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1419",title:"Nutrition, Well-Being and Health",subtitle:null,isOpenForSubmission:!1,hash:"cb4a765eccac4539851ea572efb58806",slug:"nutrition-well-being-and-health",bookSignature:"Jaouad Bouayed and Torsten Bohn",coverURL:"https://cdn.intechopen.com/books/images_new/1419.jpg",editedByType:"Edited by",editors:[{id:"34084",title:"Dr.",name:"Jaouad",middleName:null,surname:"Bouayed",slug:"jaouad-bouayed",fullName:"Jaouad Bouayed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"29979",doi:"10.5772/25344",title:"The Therapeutic Benefits of Essential Oils",slug:"the-therapeutic-benefits-of-essential-oils",totalDownloads:23380,totalCrossrefCites:30,totalDimensionsCites:84,book:{slug:"nutrition-well-being-and-health",title:"Nutrition, Well-Being and Health",fullTitle:"Nutrition, Well-Being and Health"},signatures:"Abdelouaheb Djilani and Amadou Dicko",authors:[{id:"63044",title:"Prof.",name:"Jilani",middleName:null,surname:"AbdelWahab",slug:"jilani-abdelwahab",fullName:"Jilani AbdelWahab"},{id:"116762",title:"Prof.",name:"Amadou",middleName:null,surname:"Dicko",slug:"amadou-dicko",fullName:"Amadou Dicko"}]},{id:"29974",doi:"10.5772/29471",title:"Antioxidant and Pro-Oxidant Effects of Polyphenolic Compounds and Structure-Activity Relationship Evidence",slug:"antioxidant-and-prooxidant-effect-of-polyphenol-compounds-and-structure-activity-relationship-eviden",totalDownloads:8158,totalCrossrefCites:4,totalDimensionsCites:60,book:{slug:"nutrition-well-being-and-health",title:"Nutrition, Well-Being and Health",fullTitle:"Nutrition, Well-Being and Health"},signatures:"Estela Guardado Yordi, Enrique Molina Pérez, Maria João Matos and Eugenio Uriarte Villares",authors:[{id:"78010",title:"MSc.",name:"Estela",middleName:null,surname:"Guardado Yordi",slug:"estela-guardado-yordi",fullName:"Estela Guardado Yordi"},{id:"79173",title:"Dr.",name:"Enrique",middleName:null,surname:"Molina Perez",slug:"enrique-molina-perez",fullName:"Enrique Molina Perez"},{id:"97576",title:"Dr.",name:"Eugenio",middleName:null,surname:"Uriarte Villares",slug:"eugenio-uriarte-villares",fullName:"Eugenio Uriarte Villares"},{id:"120476",title:"Dr.",name:"Maria",middleName:null,surname:"Joao Matos",slug:"maria-joao-matos",fullName:"Maria Joao Matos"}]},{id:"55808",doi:"10.5772/intechopen.69127",title:"The Role of Legumes in Human Nutrition",slug:"the-role-of-legumes-in-human-nutrition",totalDownloads:3863,totalCrossrefCites:20,totalDimensionsCites:37,book:{slug:"functional-food-improve-health-through-adequate-food",title:"Functional Food",fullTitle:"Functional Food - Improve Health through Adequate Food"},signatures:"Yvonne Maphosa and Victoria A. Jideani",authors:[{id:"201151",title:"Ph.D. Student",name:"Yvonne",middleName:null,surname:"Maphosa",slug:"yvonne-maphosa",fullName:"Yvonne Maphosa"}]}],mostDownloadedChaptersLast30Days:[{id:"55808",title:"The Role of Legumes in Human Nutrition",slug:"the-role-of-legumes-in-human-nutrition",totalDownloads:3850,totalCrossrefCites:20,totalDimensionsCites:37,book:{slug:"functional-food-improve-health-through-adequate-food",title:"Functional Food",fullTitle:"Functional Food - Improve Health through Adequate Food"},signatures:"Yvonne Maphosa and Victoria A. Jideani",authors:[{id:"201151",title:"Ph.D. Student",name:"Yvonne",middleName:null,surname:"Maphosa",slug:"yvonne-maphosa",fullName:"Yvonne Maphosa"}]},{id:"56224",title:"Diet Quality Indices for Nutrition Assessment: Types and Applications",slug:"diet-quality-indices-for-nutrition-assessment-types-and-applications",totalDownloads:3697,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"functional-food-improve-health-through-adequate-food",title:"Functional Food",fullTitle:"Functional Food - Improve Health through Adequate Food"},signatures:"Maria Luisa Poyatos Guerrero and Fernando Pérez-Rodríguez",authors:[{id:"82252",title:"Dr.",name:"Fernando",middleName:null,surname:"Pérez-Rodríguez",slug:"fernando-perez-rodriguez",fullName:"Fernando Pérez-Rodríguez"},{id:"207713",title:"MSc.",name:"Maria Luisa",middleName:null,surname:"Poyatos-Guerrero",slug:"maria-luisa-poyatos-guerrero",fullName:"Maria Luisa Poyatos-Guerrero"}]},{id:"50716",title:"Anemia During Pregnancy",slug:"anemia-during-pregnancy",totalDownloads:2935,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"nutritional-deficiency",title:"Nutritional Deficiency",fullTitle:"Nutritional Deficiency"},signatures:"Ishag Adam and Abdelaziem A. Ali",authors:[{id:"180747",title:"Prof.",name:"Ishag",middleName:null,surname:"Adam",slug:"ishag-adam",fullName:"Ishag Adam"}]},{id:"54593",title:"How Air Pollution Affects Subjective Well-Being",slug:"how-air-pollution-affects-subjective-well-being",totalDownloads:1416,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"well-being-and-quality-of-life-medical-perspective",title:"Well-being and Quality of Life",fullTitle:"Well-being and Quality of Life - Medical Perspective"},signatures:"Murat Darçın",authors:[{id:"196869",title:"Dr.",name:"Murat",middleName:null,surname:"Darçın",slug:"murat-darcin",fullName:"Murat Darçın"}]},{id:"29980",title:"Functional Foods Based on Traditional Chinese Medicine",slug:"the-functional-foods-based-on-traditional-chinese-medicine",totalDownloads:7692,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"nutrition-well-being-and-health",title:"Nutrition, Well-Being and Health",fullTitle:"Nutrition, Well-Being and Health"},signatures:"Chunyan Yao, Ruiwen Hao, Shengli Pan and Yin Wang",authors:[{id:"70931",title:"Dr.",name:"Chunyan",middleName:null,surname:"Yao",slug:"chunyan-yao",fullName:"Chunyan Yao"}]},{id:"29979",title:"The Therapeutic Benefits of Essential Oils",slug:"the-therapeutic-benefits-of-essential-oils",totalDownloads:23374,totalCrossrefCites:30,totalDimensionsCites:84,book:{slug:"nutrition-well-being-and-health",title:"Nutrition, Well-Being and Health",fullTitle:"Nutrition, Well-Being and Health"},signatures:"Abdelouaheb Djilani and Amadou Dicko",authors:[{id:"63044",title:"Prof.",name:"Jilani",middleName:null,surname:"AbdelWahab",slug:"jilani-abdelwahab",fullName:"Jilani AbdelWahab"},{id:"116762",title:"Prof.",name:"Amadou",middleName:null,surname:"Dicko",slug:"amadou-dicko",fullName:"Amadou Dicko"}]},{id:"51143",title:"Vitamin D Deficiency",slug:"vitamin-d-deficiency",totalDownloads:1230,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nutritional-deficiency",title:"Nutritional Deficiency",fullTitle:"Nutritional Deficiency"},signatures:"Naji J. Aljohani",authors:[{id:"178866",title:"Dr.",name:"Naji",middleName:null,surname:"Aljohani",slug:"naji-aljohani",fullName:"Naji Aljohani"}]},{id:"55567",title:"Meat Product Reformulation: Nutritional Benefits and Effects on Human Health",slug:"meat-product-reformulation-nutritional-benefits-and-effects-on-human-health",totalDownloads:1219,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"functional-food-improve-health-through-adequate-food",title:"Functional Food",fullTitle:"Functional Food - Improve Health through Adequate Food"},signatures:"Elisabeta Botez, Oana V. Nistor, Doina G. Andronoiu, Gabriel D.\nMocanu and Ioana O. Ghinea",authors:[{id:"150208",title:"Dr.",name:"Gabriel - Danut",middleName:null,surname:"Mocanu",slug:"gabriel-danut-mocanu",fullName:"Gabriel - Danut Mocanu"},{id:"150936",title:"Prof.",name:"Elisabeta",middleName:null,surname:"Botez",slug:"elisabeta-botez",fullName:"Elisabeta Botez"},{id:"177240",title:"Dr.",name:"Ioana Otilia",middleName:null,surname:"Ghinea",slug:"ioana-otilia-ghinea",fullName:"Ioana Otilia Ghinea"},{id:"202904",title:"Dr.",name:"Oana-Viorela",middleName:null,surname:"Nistor",slug:"oana-viorela-nistor",fullName:"Oana-Viorela Nistor"},{id:"202905",title:"Dr.",name:"Georgeta Doina",middleName:null,surname:"Andronoiu",slug:"georgeta-doina-andronoiu",fullName:"Georgeta Doina Andronoiu"}]},{id:"55684",title:"Models to Evaluate the Prebiotic Potential of Foods",slug:"models-to-evaluate-the-prebiotic-potential-of-foods",totalDownloads:1547,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"functional-food-improve-health-through-adequate-food",title:"Functional Food",fullTitle:"Functional Food - Improve Health through Adequate Food"},signatures:"Jailane de Souza Aquino, Kamila Sabino Batista, Francisca Nayara\nDantas Duarte Menezes, Priscilla Paulo Lins, Jessyca Alencar de\nSousa Gomes and Laiane Alves da Silva",authors:[{id:"200932",title:"Ph.D.",name:"Jailane",middleName:null,surname:"De Souza Aquino",slug:"jailane-de-souza-aquino",fullName:"Jailane De Souza Aquino"},{id:"202942",title:"MSc.",name:"Francisca Nayara",middleName:null,surname:"Menezes",slug:"francisca-nayara-menezes",fullName:"Francisca Nayara Menezes"},{id:"202943",title:"Ph.D. Student",name:"Kamila",middleName:"Sabino",surname:"Batista",slug:"kamila-batista",fullName:"Kamila Batista"},{id:"202944",title:"Ms.",name:"Priscilla",middleName:null,surname:"Lins",slug:"priscilla-lins",fullName:"Priscilla Lins"},{id:"202945",title:"Ms.",name:"Jessyca",middleName:null,surname:"Gomes",slug:"jessyca-gomes",fullName:"Jessyca Gomes"},{id:"202946",title:"Ms.",name:"Laiane",middleName:null,surname:"Da Silva",slug:"laiane-da-silva",fullName:"Laiane Da Silva"}]},{id:"51098",title:"Zinc Deficiency",slug:"zinc-deficiency",totalDownloads:1529,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"nutritional-deficiency",title:"Nutritional Deficiency",fullTitle:"Nutritional Deficiency"},signatures:"Ann Katrin Sauer, Simone Hagmeyer and Andreas M. Grabrucker",authors:[{id:"178792",title:"Dr.",name:"Andreas",middleName:null,surname:"Grabrucker",slug:"andreas-grabrucker",fullName:"Andreas Grabrucker"},{id:"184915",title:"MSc.",name:"Ann Katrin",middleName:null,surname:"Sauer",slug:"ann-katrin-sauer",fullName:"Ann Katrin Sauer"},{id:"184916",title:"MSc.",name:"Simone",middleName:null,surname:"Hagmeyer",slug:"simone-hagmeyer",fullName:"Simone Hagmeyer"}]}],onlineFirstChaptersFilter:{topicSlug:"euthenics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/translational-research-in-cancer/ion-channels-and-transporters-as-cancer-biomarkers-and-targets-for-diagnostics-with-antibodies",hash:"",query:{},params:{book:"translational-research-in-cancer",chapter:"ion-channels-and-transporters-as-cancer-biomarkers-and-targets-for-diagnostics-with-antibodies"},fullPath:"/books/translational-research-in-cancer/ion-channels-and-transporters-as-cancer-biomarkers-and-targets-for-diagnostics-with-antibodies",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()