Chemical composition and creep rupture strength at 600°C of the 9-12Cr heat-resistant steels from 1950 to 2005 [19].
\r\n\t
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8b3c5c4439c736e81433536f7a5447eb",bookSignature:"Prof. Prof Nasser S Awwad and Dr. Ali Abdullah Shati",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9936.jpg",keywords:"Gadolinium Enhancement, Diagnostic Tool, Alloys, Salts, Magnetic Cooling, E. Coli, Bacillus Subtillis, Gadolinium as Burnable, Selective Separation, F-Block Elements, Adsorption, Kinetics",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 16th 2020",dateEndSecondStepPublish:"October 14th 2020",dateEndThirdStepPublish:"December 13th 2020",dateEndFourthStepPublish:"March 3rd 2021",dateEndFifthStepPublish:"May 2nd 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Awwad edited a book for Lanthanides and published more than 25 papers about the elements at f blook, especially Gadolinium. He is a supervisor for 5 Master thesis in the field of Adsorption, removal, purification, kinetics, and modeling of Gadolinium.",coeditorOneBiosketch:"Dr. Shati has a lot of applications about the utilization of gadolinium enhancement. He has published papers about the inhibition of Gadolinium ion for the giant stretch‐activated channels of E. coli and Bacillus subtillis and in use for Kupffer cell depletion ( inactivation).",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"145209",title:"Prof.",name:"Prof Nasser",middleName:"S",surname:"Awwad",slug:"prof-nasser-awwad",fullName:"Prof Nasser Awwad",profilePictureURL:"https://mts.intechopen.com/storage/users/145209/images/system/145209.jpg",biography:"Dr. Nasser S. Awwad has a PhD in inorganic and radiochemistry (2000) from Ain Shams University and a post-doctorate degree at Sandia National Labs, New Mexico, USA, 2004. Nasser Awwad was an Associate Professor of radiochemistry in 2006 and Professor of inorganic and radiochemistry in 2011 at the Egyptian Atomic Energy Authority. He has been a Professor at King Khalid University, Abha, KSA from 2011 to now. He has published two chapters in the following books ”Natural Gas - Extraction to End Use” and 'Advances in Petrochemicals”. He has been the editor for six books about: uranium, new trends in nuclear sciences, dyes in industry and lanthanides, and nuclear power plants. In addition, he has published 94 papers in ISI journals. He supervised 4 PhD and 16 MSc students in the field of radioactive and wastewater treatment. He participated in 25 international conferences in South Korea, USA, Lebanon, KSA, Egypt and India. He participated in 6 large projects with KACST at KSA and Sandia National Labs at USA on the conditioning of radioactive sealed sources and wastewater treatment. He has been the leader of many research groups about the utilization of nanomaterials for treatment of inorganic and organic pollutants and has also been a member of some research groups. He is a member of the Arab Society of Forensic Sciences and Forensic Medicine and is a member of the Egyptian Society for Nuclear Sciences and its applications. He is on the editorial board of the Journal of Energy and Environmental Research and Technology. He is a rapporteur of the Permanent Committee for Nuclear and Radiological Protection at King Khalid University and a member of the Committee for the Development of International Cooperation Management at KKU.",institutionString:"King Khalid University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"King Khalid University",institutionURL:null,country:{name:"Saudi Arabia"}}}],coeditorOne:{id:"330586",title:"Dr.",name:"Ali",middleName:"Abdullah",surname:"Shati",slug:"ali-shati",fullName:"Ali Shati",profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000cA8q1QAC/Co2_Profile_Picture-1599648357298",biography:"Prof. Dr. Ali Abdullah Shati, a Saudi Biologist, graduated with BSc in Biology from King Saud University, Kingdom of Saudi Arabia in 1998, and MSc in Environmental Sciences from Essex University, the United Kingdom in 2004. He received his Ph.D. in Biology of Vertebrates in 2007 from Aberdeen University, United Kingdom. Since 2000, he has been working at King Khalid University in the Kingdom of Saudi Arabia, where he was promoted to Associate Professor in 2013, Professor in 2017 in the major of Vertebrate Physiology and Toxicology. He has held several positions at King Khalid University, including the head of Research Center at College of Science in 2012, Vice Dean of Scientific Research in 2012, Vice Dean of Academic Affairs in the college of science in 2014, and he is currently the Dean of College of Science. His research interests focus on studying the physiological and molecular changes invertebrates as a result of various environmental impacts, in addition to the cytotoxicity of Nano-materials, the therapeutic and protective effect of different bio-extracts, and antioxidant research, He has published more than eighty-seven online papers in international journals indexed in Clarivate Analytics and Scopus, with high impact factor. He has supervised MSc students specialized in the Physiological and Molecular effects of various components on vertebrate's functions. He participated in fourteen international conferences in the United States, United Kingdom, Canada, Australia, New Zealand, and Brazil. In the last ten years, he has awarded several research grants from the deanship of scientific researches at King Khalid University, as a principal investigator. He is also a member of the American Society of Toxicology, the Association of Arab Biologists, and the Saudi Biological Society.",institutionString:"King Khalid University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"King Khalid University",institutionURL:null,country:{name:"Saudi Arabia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7287",title:"New Trends in Nuclear Science",subtitle:null,isOpenForSubmission:!1,hash:"2156d3fb99aa1fd640aabf95d1ca9f4c",slug:"new-trends-in-nuclear-science",bookSignature:"Nasser Sayed Awwad and Salem A. AlFaify",coverURL:"https://cdn.intechopen.com/books/images_new/7287.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Prof Nasser",surname:"Awwad",slug:"prof-nasser-awwad",fullName:"Prof Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7512",title:"Lanthanides",subtitle:null,isOpenForSubmission:!1,hash:"f7bcbda594eacb5a3bd7149e94628753",slug:"lanthanides",bookSignature:"Nasser S. Awwad and Ahmed T. Mubarak",coverURL:"https://cdn.intechopen.com/books/images_new/7512.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Prof Nasser",surname:"Awwad",slug:"prof-nasser-awwad",fullName:"Prof Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6303",title:"Uranium",subtitle:"Safety, Resources, Separation and Thermodynamic Calculation",isOpenForSubmission:!1,hash:"4812c0bc91279bd79f03418aca6d17c5",slug:"uranium-safety-resources-separation-and-thermodynamic-calculation",bookSignature:"Nasser S. Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/6303.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Prof Nasser",surname:"Awwad",slug:"prof-nasser-awwad",fullName:"Prof Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61398",title:"Introductory Chapter: Scientometrics",doi:"10.5772/intechopen.78027",slug:"introductory-chapter-scientometrics",body:'Scientometrics has been defined as the “quantitative study of science, communication in science, and science policy” [1]. Over 20 years have passed since Hess’s definition and now it has been used in many different fields. As representative works in the field of scientometrics, we can refer the Science Citation Index (SCI) [2, 3], the first Academic Ranking of World Universities (ARWU) of the Shanghai Jiao Tong University in 2004 [4], the h-index [5], g-index [6], and so on. Among these indicators, the h-index provides a simple impact metric for individual authors that can readily be used in online searching, for example, with Google Scholar, but is also incorporated into the major citation databases such as the Web of Science and Scopus.
The international organizations like OECD and the National Governments have also followed the activity related to scientometrics. For example, the Organization of Economic Cooperation and Development (OECD) has published “Science, Technology and Industry Scoreboard” once every 2 years. In terms of an example of National Government activities, the National Science Board (NSB) in US also publishes “Science & Engineering Indicators” once every 2 years. In these publications, scientometrics indicators contribute to OECD and NSB efforts, especially in terms of standardization of calculations, collection of data, and analysis of a wide range of science, technology, and innovation activities by providing evidence on a selected set of Science and Technology (S&T) output.
Therefore, the concept of scientometrics has already disseminated to our society and has become essential for evidence-based policy makings, especially in the fields of S&T and Innovation.
Technological change is one of the greatest issues in the modern world. As the world faces societal challenges, for example, climate challenges, aging problem, and energy security, technology will contribute to new or better solutions for those problems. New technologies take longer to develop and mature; moreover which tend to be born in the interconnection of multiple technology fields, therefore early detection of emerging technological concepts across multiple disciplines will be a very important issue.
Our goal is to seek to develop automated methods that aid the systematic, continuous and comprehensive assessment of technological emergence using one of the major foresight exercises, scientometrics. There is now a huge flood of scientific and technical information, especially scientific publications and patent information. Using the information patterns of emergence for technological concepts have been discovered and theories of technical emergence have also been developed in several years. We have been developing visualization tools that thousands of technical areas have been interacted with each other and evolved in time. Several indicators of technical emergence have been improved by universities, international organizations, and funding agencies.
This book intends to provide readers a comprehensive overview of the current state-of-the-art in scientometrics, focusing on the systematic, continuous and comprehensive assessment of technological emergence. This book is composed of 12 chapters by cutting-of-edge authors of many different nationalities from Europe to Asia.
Especially the chapter “Mapping Science based on research content similarity” by Dr Kawamura shows an interesting methodology for analyzing publications based on an adaptation of word embedding and paragraph embedding with an entropy-based word clustering methodology. The proposed combination of word embedding and entropy-based approach is very useful for the scientometrics community.
Last but not least, we would like to mention an expected future landscape of this field. Now it is evolutionary time from basic research phase to implementation phase and scientometrics will be expected to be applied to the fields below at the implementation level.
Recently “IP landscape” has been referred in the field of intangible assets. IP landscape provides not only a snapshot but also a strategic analysis of the IP trends of a specific technology field within either a given company or a given country. It is said that the techniques or tools in scientometrics are very useful for the needs of IP landscape as following:
understanding of IP for products and technologies,
building a simple model,
identification of key technology players,
discover of white areas where no one achieves a field yet, and
understanding of stakeholders (e.g., competitors, upstream and downstream partners, potential acquisition target).
Recently, creating a new business and solving social problems utilizing big data have been expected to increase. The Ministry of Economy, Trade and Industry in Japan is supporting business creation through data utilization, and enterprises are developing advanced measures in the fields such as agriculture and medical care. On the other hand, new cooperation beyond industrial barriers between a present entity and a new entity created sharing data is still limited. For the economic development in near future, so-called “Data-Driven Innovation” will be necessary for firms: for example firms will utilize data sharing beyond entities, creating new added value. Since companies, especially SMEs, have rarely data scientists who deal with big data, scientometrics indicator or tools thereof can contribute to enhancement of the data-driven innovation.
Although “scientometrics” is mainly a study of relations between text of articles or patents and their authors/institutions, it is also highly corresponded to “science of sociology” which is mainly a study of relations between authors/institutions and text networking, or AI-related fields like “semantic search” and “machine translation.” Interdisciplinary research with other fields is expected.
A reconstruction or remodeling of S&T fields above mentioned reinforces the knowledge-based development in terms of society and economy. Scientometrics will be able to foster a development of science, technology, and innovation by a quantitative perception and evidence-based policy making. Further study and development of scientometrics are expected in future.
There is a worldwide need for the sustainability of current energy sources in order to ensure the viability of future generations, as long as these sources are environmentally friendly. In this sense, power plant designs for the future should ensure a cost-efficient reduction of CO2 emissions and improvements in efficiency of fuel consumption.
The essential function of a power station is to convert energy from fuel (fossil or nuclear) into electrical energy. In the steam power plant, this conversion involves consuming the fuel to produce heat which is then used to produce steam to drive a turbine. The mechanical energy of the turbine is then converted to electrical energy by an alternator. The steam temperature on the entrance of the turbine is essential to increase the efficiency of the conventional steam cycle.
The maximum steam temperature and pressure are limited by the performance of certain components. The main components which are critical are steam headers, superheater and reheater tubing in boilers, turbine valve chest, rotors and casings, main steam and reheat pipework, generator rotors, and bolts used for high-temperature applications. The boiler components are limited by corrosion and creep. Pipework also suffers creep as well as weld cracking and thermal fatigue. Turbine components are subjected to creep and fatigue (both thermal and mechanical).
Therefore, the development of improved structural materials to increase in thermal efficiency has been the driving force to develop new generations of 9-12Cr ferritic/martensitic (FM) steels [1, 2, 3]. The most relevant in-use properties that heat-resistant steels employed to manufacture components in power plants should fulfill are good mechanical properties, fabricability, corrosion resistance, and creep strength. As indicated above, creep strength has been the most studied and has led to innumerable research activities, aiming at improving the creep strength in 9-12Cr FM steel developments [4, 5, 6]. The disadvantage of these steels is their loss of strength beyond 600°C, so they need to be optimized to guarantee their use in the future power plants. In this chapter one of the most promising ideas described is applying a thermomechanical treatment (TMT) instead of a conventional treatment. The main contribution of the TMT is the ausforming, which, as other authors have reported, allows increasing considerably the number density of the thermally stable precipitates, i.e., MX nanoprecipitates. Consequently, the creep strength has improved greatly.
As it has been reviewed by Klueh in his seminal work on high-chromium FM steels [7], the design and production of 9-12Cr FM steels began in 1912 when Krupp and Mannesmann produced a 12 wt. % Cr steel containing 2–5 wt. % Mo. This type of steel was used for steam turbine blades, and it is still in use under the designation of X22CrMoV12. The 2¼Cr-1Mo bainitic steel grade normally known as ASTM Grade 221 (with nominal composition of Fe-2.25Cr-1.0 Mo-0.3Si-0.45Mn-0.12C) was firstly introduced in fossil fuel power plants in the 1940s and is nowadays widely used. The 9Cr-1Mo FM steel grade (known as Grade 9) is a natural evolution from Grade 22, seeking a better corrosion resistance and, hence, increasing the chromium addition. These two steel grades are the reference steels for heat-resistant application in power plants. Since then, the steady need of pushing up the operating conditions in conventional fossil-fired power-generation systems led to the development of several “generations” of steels with improved elevated-temperature strengths. The evolution of steel compositions (Figure 1), which began with G22 and G9 (zeroth generation) with 100,000 h creep rupture strengths at 600°C of about 40 MPa, has allowed for increased operating steam temperatures and pressures [1, 2, 3, 8, 9, 10, 11, 12]. Three generations of steels have been introduced since the introduction of G22 and G9, and a fourth generation is in development.
Flowchart showing the evolution of 9-12Cr FM steels [7].
The strategy adopted for improved corrosion and oxidation resistance for elevated-temperature operating conditions was the addition of carbide formers such as vanadium and niobium to add precipitate strengthening. Hence, the zeroth generation containing mainly 9-12Cr evolved to the 12Cr-MoV steels introduced in the power plants in the mid-1960s for thin- and thick-walled power station components. Their creep strength is based on solution hardening and on the precipitation of M23C6 carbides. These steels have been applied successfully in power stations over several decades [10]. These steels had increased 105 h rupture strengths at 600°C of up to 60 MPa (Table 1).
Chemical composition and creep rupture strength at 600°C of the 9-12Cr heat-resistant steels from 1950 to 2005 [19].
The second generation, developed in the late 1970s, is based on the modified 9Cr-1Mo, designated as G91 and HCM12 (see Table 1), which were developed for manufacturing of pipes and vessels for fast breeder reactors [10]. In this steel class, C, Nb, and V contents were optimized, N (0.03–0.05 wt. %) was added, and the maximum operating temperature increased to 593°C. The new steels have a duplex structure (tempered martensite and δ-ferrite). These steels have 105 h rupture strengths at 600°C of about 100 MPa. Of these latter steels, G91 has been used most extensively in the power-generation industry in all new power plants with operational temperatures up to 600°C [7]. The responsible mechanism for this substantial increment of creep strength as compared with 12Cr-MoV steels is the formation of thermally stable V and Nb carbonitrides. Besides lowering the Cr content down to 9 wt. %, tempered martensite microstructure also contributes to the higher creep strength [13, 14].
The Japanese steel development program led by Nippon Steel achieved the development of the P92 steel (NF616). This steel grade, designated as Grade 92, presents a further increases in stress rupture by the addition of 0.003 wt. % B and 1.8 wt. % W and reducing the Mo content from 1 to 0.5 wt. % [15, 16]. The addition of B ensures thermally stable M23(C,B)6 precipitates, whereas the higher W content leads to a higher amount of precipitated Laves phase [17, 18]. Grade 92, firstly introduced in the 1990s along with equivalent steel such as E911, fulfills the niche of steam operational temperature of 620°C for 104 h creep rupture strengths at 140 MPa.
Finally, the goal for the next steel generation being developed at present is pushing the limit of operation temperature above 650°C. This so-called fourth generation differs from the previous ones mainly by the addition of 3.0 wt. % Co as an austenite stabilizer because of the adverse effect of nickel on creep. They have projected 105 h creep rupture strengths at 600°C of 180 MPa [7]. In these steels with about 0.1 wt. % carbon, molybdenum has been further reduced or eliminated, and tungsten (2.6–3.0 wt. %) has been increased compared to third-generation compositions. In Table 1, an overview of the historical development of the 9-12Cr heat-resistant steels from 1950 to 2005 is shown.
Creep deformation is a thermally activated process, and the rate of deformation (creep rate) is extremely temperature sensitive. In metals, creep deformation becomes important at temperatures greater than about 0.4TM, where TM is the absolute melting temperature [20]. In the case of 9-12Cr FM steels, this temperature is approximately 450°C. Clearly, power plant materials operate in the temperature regime where creep process is significant. The creep properties of the material used limit the operating temperature of many power plant components, such as the turbines. Development of materials with an increased creep resistance is central to the use of power plants with higher steam temperatures.
Creep deformation can occur by a variety of different mechanisms. The mechanism that dominates depends on the stress and temperature conditions as well as the microstructure of the material.
In the case of power plant steels, the stress levels are relatively high, and the temperatures (compared with melting point) are relatively low. In the case of creep deformation, it is controlled primarily by dislocation movement and the thermal energy available for dislocations to overcome obstacles. A deformation mechanism map gives information about which mechanism will dominate for a particular set of conditions. Such a diagram for a G91 steel is shown in Figure 2. For the exposure conditions, for this material, a power law creep (dislocation creep) is expected to dominate.
Deformation mechanism map (D-MAP) of T91 steel calculated from experimental reported values [22, 23]. The red line indicates the experimental conditions considered in this work.
Power law creep involves the movement of dislocations, and the creep rate is a result of the balance between work hardening and recovery. Work hardening results in an increase in the dislocation density, while recovery leads to a reduction in the dislocation density. If the dislocation density remains constant, then the creep rate is given by Norton’s law [21]:
In this equation
A study of the possible creep mechanisms suggests microstructures would be expected to have good creep resistance under conditions used in power plant. In general, creep-resistant alloys are based on a matrix which is a solid solution. The presence of misfitting solute atoms in solid solution makes the passage of dislocations through the matrix more difficult. However, the majority of the creep resistance, at least in the early stages of service, is derived from precipitate particles. Ideally these particles should be small, and they should be widely and homogeneously distributed in large numbers through the matrix. The particles need to be stable at operating temperatures for which the alloy is designated, and they should be resistant to coarsening, as this will reduce their effectiveness as strengtheners. In general, excessive work hardening and very fine grain sizes, which provide strengthening at ambient temperatures, are considered detrimental in high-temperature alloys. This is because both of them provide easy diffusion paths and therefore lead to an increase in the creep rate.
The new environmental regulations and commercial needs of the industry are the driving force for the development of new heat-resistant steels that push forward the operational limits of current steels. In this framework, the high-Cr FM steels applied as structural materials in fossil-fired and in nuclear power plants need to implement the operating temperatures above 650°C [1, 2, 3, 8, 9, 10, 11, 12]. The mechanism responsible for creep strengthening in these steels is the solid-solution and dispersion strengthening.
In the particular case of the so-called 9Cr FM steels, the creep degradation is a consequence of the thermal evolution of their hierarchal martensitic microstructure constituted by prior austenite grains, martensitic packets, blocks, and laths [24]. The microstructural degradation during creep consists of the coarsening of the lath structure [12, 24]. Such coarsening is governed by the subgrain boundary formation and evolution inside the laths, which can be prevented at high temperatures, and virtually frozen, by the dispersion of proper precipitates. The precipitates pin boundary migration and dislocation motion, slowing down the degradation of the martensitic microstructure and hence reducing creep rates [25, 26].
There are two main actors for the microstructural stability driven by precipitation in 9Cr FM steels: The first one is the coarse M23C6 carbides located mainly at the grain boundaries either from the prior austenitic grains or from the blocks or martensite lath boundaries. The second one is the V- and Nb-rich MX carbonitrides. Contrary to M23C6, those MX precipitates are homogeneously distributed within martensite laths. Therefore, the ideal situation would consist of reducing the presence of the M23C6 carbides to the minimum since their fast coarsening induces crack formation at the particle-matrix interface and promoting the formation of MX carbonitrides (nanometric in size), since they will delay the lath coarsening as mentioned above; it has been studied extensively [27, 28, 29].
Thermomechanical processing of 9Cr FM steels has been revealed as a promising tool to promote a high number density of MX carbonitrides [30, 31, 32, 33, 34, 35, 36, 37, 38]. TMT involves different steps that need to be optimized to produce the most favorable precipitate microstructure for elevated-temperature strength.
The creep behavior of a material may be characterized by a number of different parameters which can be measured by performing the appropriate creep test. For metallic materials most creep tests are conducted in uniaxial tension with a dumbbell-shaped specimen similar to that used for tensile testing. The tests are carried out at a constant temperature and under either a constant load or stress. Applying a constant stress is more useful if the test is being employed to provide information about a creep mechanism.
The conventional treatments (AR) and TMT considered in this work were carried out on 10 mm in length and 5 mm in diameter cylindrical samples using a DIL 805A/D plastodilatometer (TA instruments) as described elsewhere [39, 40]. Due to the limited amount of material available after the TMT is carried out in the plastodilatometer, the creep properties were investigated by means of the small punch creep test (SPCT) performed at 700°C as it has been previously reported [41, 42]. The SPCT samples were cut transversally, from cylindrical specimens, with a thickness of 600 μm and a diameter of 8 mm. Then, the disks were ground on both sides down to a final thickness of 500 μm. In the setup of the SPCT, the lower and upper dice are connected via a thread to ensure the clamping of the sample. The load is applied by a ceramic punch ball which is in contact with the sample. A plunger rod is used to transmit the dead weight load to the punch ball. All these components are made of Al2O3 ceramics. The clamping device is surrounded by an electrical heater and a thermal insulation. The upper plate carrying the additional dead weight is guided by two pillars with ball bearings. The temperature is measured in the lower die directly under the sample. The displacement is measured by a capacitive sensor between the upper plate and the thermal insulation with an accuracy of ±1 μm. A load cell is placed between the upper plate and the plunger rod.
The disk deflection vs. time resulting from the SPCTs might be divided into three different regions similarly to conventional strain vs. time creep curves obtained from uniaxial testing. However, the failure in SPCTs occurs away from the load line with cracks propagating in a circumferential direction due to membrane stretching. Therefore, the first part of the disk deflection vs. time curve corresponds to the loading region where the spherical indenter loads on a very small contact area of the sample are. Since the stresses will be higher than the yield stress of the material, local plasticity and an initial large deformation are produced. This large deformation is accumulated in a short period of time. The second stage corresponds to the steady-state region, which coincides with most of the sample life, where the disk deflection rate reached almost a minimum. Finally, the third stage consists of an acceleration of disk deflection and fracture region. The interpretation of this behavior is that once a crack propagates to a critical length, the sample is no longer in balance, leading to an increase in deflection rate and to a reduction in the structure stiffness in the tertiary region. Another explanation might be due to the localized necking without crack presence. The deformation mechanism in the tertiary region is a mixture among accumulation of creep damage, geometric softening, and crack growth effect.
As it has been introduced in previous sections, the pioneer commercial 9-12Cr steels present an upper service temperature of 540°C, which was successfully increased in the late 1970s up to 595°C with the introduction of vanadium and niobium microalloying in the composition of the steel. This steel was used as a benchmark for the development of steels with upper-use temperatures of 600–620°C.
However, it is difficult keep pushing the higher operating temperature too much. Therefore, to continue to exploit the advantages of ferritic steels, oxide dispersion-strengthened (ODS) steels [43, 44, 45, 46] were introduced. The first successful alloy was presented in the 1960s, and, since then, it has been an active research field. ODS steels are strengthened by small oxide particles, but the complicated and expensive manufacturing route avoided the full implantation as structural material in the current power plants.
Despite being around for about 40 years, the ODS steels are still in the development stage because of having mechanical property anisotropy [43, 45, 47, 48, 49]. Therefore, an alternative strategy to achieve a high number density of precipitates is needed. In this section, we present preliminary results that allow us to conclude that conventional thermomechanical control processing strategy is adequate to achieve dispersion-strengthened steels.
Lath martensite is a particular microstructure that ensures microstructural stability. Furuhara and Miyamoto [50] described the variety of crystalline size in lath martensite structures. A hierarchy of lath martensite structure is clearly identified particularly in low-carbon steels. A prior austenite (γ) grain is divided into “packets,” each of which consists of a group of martensite laths with the same parallel close-packed plane relationship in the Kurdjumov-Sachs (K-S) orientation relationship, denoted as “CP group” recently. In general, a packet is partitioned into several blocks, each of which contains laths of a single variant of the K-S relationship. Blocks and packets are mostly surrounded by high-angle boundaries, whereas lath boundaries inside a block are of low-angle type.
The microstructure resulting from conventional industrial heat treatment consists of tempered martensite, which presents elongated subgrains with an average size of 0.25–0.5 μ m (Figure 3). Two types of precipitates, M23C6 carbides rich in chromium and MX carbonitrides rich in V or Nb, are present in the microstructure. The size of M23C6 carbides is around 100–200 nm, and they are precipitated on subgrain boundaries and prior austenitic grain boundaries. The size of MX carbonitrides is much smaller than M23C6 carbides, 20–50 nm, and they are in the matrix [51]. The purpose of this work is to produce a dispersion of nanosized precipitates by a controlled TMT, bearing in mind that a high number density of fine MX precipitates (Nb-MX and V-MX) should display superior high-temperature performance.
(a) Resulting hierarchy microstructure achieved by conventional heat treatment; (b) and (c) SEM micrographs of the as-received state; (d) and (e) TEM micrographs. Arrow heads point out the location of the M23C6 carbides on lath boundaries and MX carbonitrides within the laths [37].
The effect of austenitization temperature on the temper microstructure of G91 steel is analyzed in this section. Figure 4 schematically illustrates the two alternative processing routes considered:
High austenitization temperature (HAT): In order to achieve an almost complete solid solution in austenite of most of the potential MX precipitate formers, the austenitization condition set will imply an elevated temperature.
Thermomechanical treatment: The combined effect of the elevated austenitization temperature and a subsequent deformation will be studied with the aim of optimizing the MX-nanoprecipitate distribution during tempering of the martensitic microstructure.
Thermomechanical treatments investigated in this study [40].
For the sake of comparison, Figure 4 also includes the industrial manufacturing conditions for G91 steel named as-received (AR) condition. The goal of exploring the effect of austenitization temperature on the microstructure is to enhance the precipitation of nanoparticles during the subsequent tempering stage indicated in Figure 4. As it was mentioned above, the main cause for creep softening in conventional G91 is due to the recovery of the martensitic lath microstructure because of mechanisms, such as the dislocation movement, controlled by diffusion [12, 27]. The dislocation pinning by nanosized MX precipitates can delay this phenomenon, since they present an enhanced ripening resistance [8, 52, 53, 54]. The goal of undergoing such elevated temperatures in the HAT treatment as compared to conventional austenitization heat treatment (AR treatment) is to dissolve all the primary carbides in the microstructure and drive to solid solution all the potential carbide former elements. Therefore, the martensite formed after quenching from such elevated austenitization temperature keeps in solid solution most of the precursor elements of MX carbides (M = Nb, V; X = C, N) that might precipitate during the subsequent tempering.
It is important to consider that the austenitization temperature has to be high enough to eliminate as much as possible the primary carbides formed during the casting process, but lower than the delta ferrite formation temperature, in order to avoid the detrimental effect of this phase from a long-term creep property point of view. Computational thermodynamic calculations by means of Thermocalc® determine the optimum austenitization temperature in 1225°C (Figure 5).
Temperature evolution of phase mole fraction in G91 calculated by Thermocalc® [38].
The interest of TMT relies on the role that austenite deformation has on refining the martensitic microstructure [55, 56]. Depending on the deformation temperature, several are the mechanisms that affect the austenite microstructure, and hence, that could be transferred to the martensite upon quenching. If deformation temperature is above the non-recrystallization temperature, the freshly formed austenite microstructure will present a significantly reduced grain size that would induce the concomitant martensitic microstructural refinement. Similarly, by applying plastic deformation to the austenite at temperatures below the non-recrystallization temperature, which is the so-called ausforming processing [57], an austenitic microstructure with a high population of deformation bands will be formed. This would directly induce the preferential formation of some specific martensitic variants upon austenite transformation (martensite variant selection), leading to the development of strong transformation texture.
Figure 6 illustrates the IPF maps, SEM and TEM micrographs after HAT and TMT processing routes, and the reference (AR) condition. The first conclusion obtained is the coarsening of the block size (white arrows in Figure 6) in HAT and TMT conditions as compared with AR condition, because of the high austenitization temperature. Block widths of 2.7 ± 0.2 μm for AR condition were obtained; meanwhile, values of 4.12 ± 0.37 μm for HAT and 3.21 ± 0.27 μm for TMT were measured. The coarser the prior austenite grain, the coarser the block size. However, it is worth noting that finer block size is observed after TMT than with HAT, which is consistent with the fact that thermomechanical processing increases the low-angle substructure and decreases the block size of as-quenched martensite.
Martensite matrix, M23C6 precipitate, and MX-nanoprecipitate distributions after the different thermomechanical and heat [40].
The dislocation density after HAT and TMT was measured by XRD [40]. The results show a dislocation density of (14 ± 0.1) × 1014 m−2 and (28 ± 0.1) × 1014 m−2 after austenitization and ausforming, respectively. One might conclude from these results that the dislocation density in the as-quenched martensite after the TMT is substantially increased as compared with conventional treatment. A similar effect of the ausforming on the dislocation density was reported by other authors [58, 59]. Finally, TEM examination of the microstructure allowed us to determine the lath width of the martensitic microstructure. Values of 360 ± 35 nm for AR condition, 350 ± 20 nm for HAT condition, and 318 ± 32 nm for TMT condition were obtained, which are significantly finer than those reported after conventional treatments, i.e., lath size ranging from 300 to 500 nm [60].
The distribution of M23C6 precipitates in the tempered martensitic microstructure is also worth analyzing. Figure 6 illustrates the distribution of M23C6 carbides after AR, HAT, and TMT processing routes. Coarse and closely spaced M23C6 carbides, about 70 to 500 nm, were observed. The number density and average particle size of these carbides were determined by studying several SEM micrographs to determine values of 6.19 × 1019 m−3 and 141 ± 3 nm for AR condition, 8.24 × 1019 m−3and 124 ± 3 nm for HAT condition, and 4.11 × 1019 m−3 and 143 ± 5 nm for TMT steel. These values are very similar to those reported by Klueh et al. for the steel after conventional heat treatment [35].
On the contrary, the finely dispersed MX nanoprecipitates present inside the martensitic laths and associated with dislocations are also observed in Figure 6. Therefore, this result suggests the role of dislocations as potential nucleation sites for MX nanoprecipitates. Hence, the importance of ausforming in generating a homogeneous distribution of nanosized MX particles in the microstructure might be also foreseen. These spherical MX nanoprecipitates had a mean particle size of 12 ± 1 nm with a number density of 7.20 × 1021 m−3 for HAT steel and 9 ± 1 nm with a number density of 1.86 × 1022 m−3 for TMT steel. The MX precipitates are, in both cases, significantly smaller than those measured after AR condition, i.e., particle size of 25 ± 5 nm with a number density of 8.14 × 1019 m−3. The size values obtained after HAT and TMT are smaller, and the number density higher, than measurements reported in the literature after conventional heat treatments [61].
Figure 7 shows the disk deflection versus time curves obtained for the three conditions studied (AR, HAT, and TMT) at 700°C with a load of 200 N. The curves exhibit the three stages of creep that were described in previous sections. The first stage corresponds to the loading region where the spherical indenter loads the sample, and the mode of deformation is by bending. The second stage is characterized by a decrease in deflection rate and corresponds to the steady-state region with a minimum disk deflection rate. Finally, the third stage consists of an acceleration of disk deflection and fracture region. In the secondary and tertiary stages, stretching is the prominent deformation mode. Once a crack propagates to a critical length, the sample is no longer in balance, leading to an increase in deflection rate and to a reduction in the structure stiffness in the tertiary region until the final fracture.
(a) SPCT curves measured for the samples after the different thermomechanical and heat treatments and the creep fracture micrographs for the (a) AR, (b) HAT, and (c) TMT [40].
As indicated above, the minimum disk deflection rate (δd ) is an important parameter that can be evaluated by SPCT. The evolution of disk deflection rate with the applied load might be described by an equivalent expression to the conventional Norton’s power law for creep, which is similar to the expression used in Eq. (1):
where A is a temperature-dependent constant, F is the force applied on the specimen, and n is the force exponent. One might conclude, therefore, from Figure 7 that the creep strength has significantly improved after the TMT condition. The time to rupture was 2.5 and 1.24 times greater than AR condition, from 38 to 95 h and 48 h for the TMT and HAT, respectively. The δd was 2.9 μm·h−1 for the TMT sample, while for the HAT sample, it was 3.7 μm·h−1. These minimum disk deflection rates were significantly slower than the minimum disk deflection rate measured for the G91 in the AR condition, which was 9.5 μm·h−1.
The results obtained suggest that the increase in the number density of MX precipitates enhances the strengthening capability at high temperature, since they are able to pin more effectively the dislocations. Hence minimum creep rate is reduced and the onset of tertiary creep is retarded. The differences in minimum disk deflection rate and time to rupture between the sample after TMT and HAT support the importance of ausforming on improving creep resistance.
The next stage in the TMT after austenitization is the ausforming as shown in Figure 4. The effect of ausforming on low-carbon lath martensitic microstructure has been already described by Miyamoto et al. [62]. The authors reported that martensite variants with habit planes that are nearly parallel to the close-packed primary and secondary slip planes in austenite transform preferentially, i.e., martensite habit planes such as (575)γ that are nearly parallel to (111)γ and (−111)γ in asutenite [63]. Since strain is accumulated preferentially in (111)γ and (−111)γ slip planes during ausforming, this results in an increasing number of dislocation that might be transferred to martensite (011)M planes. Therefore, ausforming might increase the dislocation density in the resulting martensitic microstructure.
On the other hand, Takahashi et al. [64] reported recently the formation of Nb-cottrell atmospheres in low-carbon Nb-microalloyed steels. The authors explained that this mechanism is based on the fact that segregation energy of Nb to edge dislocation core was almost the same as the energy for grain boundary segregation. Besides, the large attractive interaction between Nb and dislocation core was due to its large atomic size. Therefore, such interaction between Nb atoms and dislocations retards the recovery of dislocation at high temperatures and, hence, stabilizes the microstructure at high temperatures. It might be expected that Nb presents the same behavior in the studied steel, preventing recovery after ausforming and promoting the fine and homogeneous MX carbonitride precipitation during tempering accordingly.
In this work the role of ausforming temperature by selecting 600 and 900°C, at a constant deformation of 20% (Figure 4), is explored. As mentioned above, the dislocation densities were estimated by XRD in fresh martensite after each ausforming condition studied [41]. Values of (2.8 ± 0.1) × 1015 m−2 and (1.9 ± 0.1) × 1015 m−2 were obtained for the ausforming at 600 and 900°C, respectively. These results show that the lower the ausforming temperature, the higher the dislocation density introduced in austenite is, which might be due to the fact that some of the dislocations in fresh martensite are inherited from deformed austenite as it was mentioned above.
On the other hand, Bhadeshia and Takahashi reported [65] an expression that allows to estimate the dislocation density (ρd):
This expression is valid only when the martensite start temperature (T) is between the range 297 and 647°C.
Extracting the data of the martensite start temperature from a previous work [38], the estimation of the dislocation density obtained after the different ausforming conditions can be estimated. In this sense, ausformed samples at 600°C present a martensite start temperature of 338°C; introducing this value in Eq. (3), a dislocation density of 5.97 × 1015 m−2 is calculated. Similarly, for the material ausformed at 900°C with a martensite start temperature of 374°C, the dislocation density calculated is 4.62 × 1015 m−2. These results are in the same order of magnitude than those measured by X-ray diffraction, which demonstrate that the ausforming increases the dislocation density in the martensite.
During the final stage (tempering), MX carbonitrides and M23C6 carbides precipitate, and the recovery of dislocations takes place. Because of the higher dislocation density of ausformed samples, the number density of finer MX increases, and these precipitates are found homogeneously distributed within laths, as it can be seen in Figure 8(a) pointed out by white arrows.
(a) MX carbonitrides (white arrows) within laths after thermomechanical treatment ausformed (20%) at 900°C; (b) size distribution of MX precipitates in the TMT samples for the two ausforming temperatures: 600 and 900°C [41].
The number density of MX precipitates (N) was determined through the direct measurements of spacing (λ) between MX carbonitrides from several TEM micrographs as indicated by Eq. (4):
Figure 8(b) shows the size distribution of the precipitates in ausformed material. In the material ausformed at 600 and 900°C, the average size of MX carbonitrides was 5.6 nm and 7.4 nm, respectively. The number density of MX carbonitrides was 9.39 × 1022 m−3 for the material ausformed at 600°C and 6.4 × 1022 m−3 for the material ausformed at 900°C. On the other hand, the reported values of the size and number density of MX carbonitrides after the conventional processing were 30 nm and 1020 m−3, respectively [61]. It might be concluded that ausforming promotes a refining of precipitates, up to five times as compared with conventional processing, as well as an increase in number density up to two orders of magnitude. In fact, these number densities and precipitate sizes are very similar compared to those corresponding to oxides present in oxide dispersion-strengthened (ODS) steels [66, 67].
The elevated number density of nanosized MX precipitates has a direct impact on creep response of this material as it can be clearly observed in Figure 9. This figure shows characteristic SPCT curves at 200 N, exhibiting the variation of specimen deflection with time. It might be concluded from this figure that introducing an ausforming step improves the δd significantly, and most precisely, the lower the ausforming temperature, the lower the δd is, and, hence, the better the creep resistance is.
SPCT curves for all samples tested at 700°C with a load of 200 N [39].
Scanning electron microscopy (SEM) images of fractured SPCT specimens for different conditions are shown in Figure 10. Radial cracks can be observed in all the TMT samples (Figure 10a–c). This is an evidence of the loss of ductility and indicates a brittle fracture, which is a change in rupture ductility in comparison to the conventionally treated sample. Those samples do not show radial cracks (Figure 10d). Besides, a higher reduction in thickness is evident in the conventionally treated sample in comparison to the TMT ones, suggesting a ductile fracture behavior.
Scanning electron microscopy images of the SPCT fracture surfaces for samples tested at 700°C with a load of 200 N: (a) G91-TMT 900_20; (b) G91-TMT 600_20; (c) G91-TMT 900_40; and (d) G91-AR [39].
To clarify the failure mechanisms, the fractured samples were cut and prepared adequately. Figure 11(a) and (b) shows the SEM images for the TMT samples ausformed at 600°C with a deformation of 20% and ausformed at 900°C with a deformation of 40%. It is worth noting in those images the existence of cavities nearby coarse particles, which are located at the vicinity of PAGBs. The EDS spectrum shown in Figure 11(c) allows us to conclude that these particles are M23C6 carbides with M = (Fe, Cr, Mo).
Scanning electron microscopy images: (a) M23C6 precipitates located at a prior austenite grain boundary in sample G91-TMT 600_20. The prior austenite grain boundary in this image has been highlighted with a dash line as a guide to the eye; (b) cavities associated with coarse M23C6 precipitates have nucleated at a prior austenite grain boundary in sample G91-TMT 900_40. Cavities have been pinpointed with arrows and (c) EDS analysis of the particle marked with a red arrow in image (a), close to a cavity [39].
The greater size of the M23C6 carbides at the vicinity of PAGB contributes to the inhomogeneous and localized deformation experienced by the TMT samples at these locations during creep. The local creep concentration close to PAGB would be promoting the nucleation of cavities that lead to the intergranular fracture with the brittle behavior.
Figure 12 shows different inverse pole figure (IPF) maps for all the samples under study before and after SPCT. It should be pointed out that, contrary to the lath boundaries that are not correctly indexed due to the step size used for the EBSD mapping, the block boundaries before and after SPCT are clearly disclosed. It is observed that the microstructures of the samples exhibit the characteristic lath-like morphology of the martensitic microstructure. However, such morphology is blurred in samples ausformed at 600°C because of the high deformation accumulated in the austenite during ausforming [38]. After the SPCT, it is observed that the original lath-like morphology has partially disappeared, and it has evolved towards a fine-grained equiaxed ferritic matrix. One might conclude from the microstructural observations made after SPCT that newly formed equiaxed grains are distributed homogeneously in the conventionally treated sample (AR), while these grains are located mainly nearby the prior austenite grain boundaries in the TMT samples, which is consistent with the fact that it is in these samples where the deformation accumulated is larger during creep.
Representative inverse pole figure (IPF) maps of the initial and after SPCT microstructures: (a) G91-AR; (b) G91-TMT 900_20; (c) G91-TMT 600_20; and (d) G91-TMT 900_40. Cavities are in white in post-SPCT microstructures [39].
Therefore, taking into account the results shown previously in the SEM micrographs (Figure 11(a) and (b)), the microstructural degradation would be a combined consequence of the accumulation of dislocations at the low-angle boundaries and the stress concentration close to the coarse M23C6 carbides, which lead to the progressive loss of the lath-like martensitic microstructure, which evolves to an equiaxed ferritic matrix. As it has been discussed above in the case of the TMT samples, the nucleation of cavities takes place close to M23C6 precipitates located at the prior austenite grain boundaries. The coalescence of the cavities formed surrounding the M23C6 carbides would initiate the cracks, and they will propagate along the prior austenite grain boundaries.
The more homogeneous distribution of the M23C6 precipitates in the conventionally treated sample favors the apparition of equiaxed grains in the whole martensitic matrix and develops the nucleation of cavities intragranularly, which provokes the transgranular fracture. Besides, in the TMT samples, the high austenitization temperature produces an enormous prior austenite grain sizes with concomitant large grain boundary surfaces, facilitating an earlier formation of the critical crack length that causes the brittle fracture [68, 69].
Effect of austenitization temperature: compared to the conventional heat treatments, the use of a higher austenitization temperature (1225°C rather than 1040°C), combined with an ausforming processing step at 900°C, allows the increase of the number density of MX precipitates up to three orders of magnitude after the tempering step, which raises the strengthening capability of the MX at 700°C up to 6.5 times. These microstructures have reduced considerably the minimum disk deflection rate and showed greater time to rupture during the SPCT carried out at 700°C. By contrast, such elevated austenitization temperature induces an important drop in ductility.
Effect of ausforming: the SPCT was applied to evaluate the creep behavior of G91 steel after different TMT and heat treatments. The minimum disk deflection rate was lower, and the time to rupture was longer for G91 after the TMT than with the conventional G91 heat treatment (AR). The improvement in creep rupture strength is attributed to the fine and homogeneous distribution of MX carbonitrides. The number density and average precipitate size of MX carbonitrides after the TMT are similar to the oxide particles in ODS steels. These latter steels possess high creep strength due to the high number density of oxides distributed in the matrix. Considering the MX carbonitrides as a substitute for oxides, 9Cr FM steels after the TMT are a potential replacement of ODS steels, which are fabricated by expensive powder metallurgy and mechanical alloying processing routes.
Creep failure: based on the results presented above and taking into account the different stages of the TMT, the loss of creep ductility that enhances the change in fracture mechanism would be promoted by the coarsening of M23C6 carbides at the vicinity of the prior austenite grains. The coarse M23C6 carbides located on prior austenite grain boundaries favor the nucleation of the cavities at the vicinity of the prior austenite grains. Besides, in the TMT samples, the high austenitization temperature produces an enormous prior austenite grain sizes with concomitant large grain boundary surfaces, facilitating an earlier formation of the critical crack length that causes the brittle fracture.
We acknowledge support for the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10645",title:"TEST Luka EV",subtitle:null,isOpenForSubmission:!0,hash:"34c7613d332b05758ea87b460199db54",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10646",title:"Rozmari - Test Book - Luka 13102020",subtitle:null,isOpenForSubmission:!0,hash:"b96ff714b24bc695b8dceba914430b85",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10651",title:"Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"5806b4efae3bd91c3f56e64e0442df35",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage",subtitle:null,isOpenForSubmission:!0,hash:"14096773aa1e3635ec6ceec6dd5b47a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:8},{group:"topic",caption:"Chemistry",value:8,count:4},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:13},{group:"topic",caption:"Environmental Sciences",value:12,count:6},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:2},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:45},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:6},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:154},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"615",title:"Grid Computing",slug:"grid-computing",parent:{title:"Theory of Computation",slug:"theory-of-computation"},numberOfBooks:1,numberOfAuthorsAndEditors:34,numberOfWosCitations:22,numberOfCrossrefCitations:15,numberOfDimensionsCitations:22,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"grid-computing",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"65",title:"Advances in Grid Computing",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-grid-computing",bookSignature:"Zoran Constantinescu",coverURL:"https://cdn.intechopen.com/books/images_new/65.jpg",editedByType:"Edited by",editors:[{id:"17194",title:"Dr.",name:"Zoran",middleName:null,surname:"Constantinescu",slug:"zoran-constantinescu",fullName:"Zoran Constantinescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"13946",doi:"10.5772/14594",title:"A GPU Accelerated High Performance Cloud Computing Infrastructure for Grid Computing Based Virtual Environmental Laboratory",slug:"a-gpu-accelerated-high-performance-cloud-computing-infrastructure-for-grid-computing-based-virtual-e",totalDownloads:3794,totalCrossrefCites:12,totalDimensionsCites:16,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Giulio Giunta, Raffaele Montella, Giuliano Laccetti, Florin Isaila and Francisco Javier García Blas",authors:[{id:"18274",title:"Prof.",name:"Giulio",middleName:null,surname:"Giunta",slug:"giulio-giunta",fullName:"Giulio Giunta"},{id:"20639",title:"Dr.",name:"Raffaele",middleName:null,surname:"Montella",slug:"raffaele-montella",fullName:"Raffaele Montella"},{id:"20858",title:"Dr.",name:"Florin",middleName:null,surname:"Isaila",slug:"florin-isaila",fullName:"Florin Isaila"},{id:"21151",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"García Blas",slug:"francisco-javier-garcia-blas",fullName:"Francisco Javier García Blas"},{id:"28062",title:"Prof.",name:"Giuliano",middleName:null,surname:"Laccetti",slug:"giuliano-laccetti",fullName:"Giuliano Laccetti"}]},{id:"13940",doi:"10.5772/13950",title:"Application of Discrete Particle Swarm Optimization for Grid Task Scheduling Problem",slug:"application-of-discrete-particle-swarm-optimization-for-grid-task-scheduling-problem",totalDownloads:2511,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Ruey-Maw Chen",authors:[{id:"16362",title:"Dr.",name:"Ruey-Maw",middleName:null,surname:"Chen",slug:"ruey-maw-chen",fullName:"Ruey-Maw Chen"}]},{id:"13943",doi:"10.5772/14087",title:"Autonomic Network-Aware Metascheduling for Grids: A Comprehensive Evaluation",slug:"autonomic-network-aware-metascheduling-for-grids-a-comprehensive-evaluation",totalDownloads:1826,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Agustín C. Caminero, Omer Rana, Blanca Caminero and Carmen Carrión",authors:[{id:"16744",title:"Prof.",name:"Maria Blanca",middleName:null,surname:"Caminero Herraez",slug:"maria-blanca-caminero-herraez",fullName:"Maria Blanca Caminero Herraez"},{id:"16747",title:"Dr.",name:"Agustin C.",middleName:null,surname:"Caminero",slug:"agustin-c.-caminero",fullName:"Agustin C. Caminero"},{id:"16749",title:"Dr.",name:"Omer",middleName:null,surname:"Rana",slug:"omer-rana",fullName:"Omer Rana"},{id:"16750",title:"Dr.",name:"Carmen",middleName:null,surname:"Carrión",slug:"carmen-carrion",fullName:"Carmen Carrión"}]}],mostDownloadedChaptersLast30Days:[{id:"13946",title:"A GPU Accelerated High Performance Cloud Computing Infrastructure for Grid Computing Based Virtual Environmental Laboratory",slug:"a-gpu-accelerated-high-performance-cloud-computing-infrastructure-for-grid-computing-based-virtual-e",totalDownloads:3794,totalCrossrefCites:12,totalDimensionsCites:16,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Giulio Giunta, Raffaele Montella, Giuliano Laccetti, Florin Isaila and Francisco Javier García Blas",authors:[{id:"18274",title:"Prof.",name:"Giulio",middleName:null,surname:"Giunta",slug:"giulio-giunta",fullName:"Giulio Giunta"},{id:"20639",title:"Dr.",name:"Raffaele",middleName:null,surname:"Montella",slug:"raffaele-montella",fullName:"Raffaele Montella"},{id:"20858",title:"Dr.",name:"Florin",middleName:null,surname:"Isaila",slug:"florin-isaila",fullName:"Florin Isaila"},{id:"21151",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"García Blas",slug:"francisco-javier-garcia-blas",fullName:"Francisco Javier García Blas"},{id:"28062",title:"Prof.",name:"Giuliano",middleName:null,surname:"Laccetti",slug:"giuliano-laccetti",fullName:"Giuliano Laccetti"}]},{id:"13947",title:"Using Open Source Desktop Grids in Scientific Computing and Visualization",slug:"using-open-source-desktop-grids-in-scientific-computing-and-visualization",totalDownloads:2265,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Zoran Constantinescu and Monica Vladoiu",authors:[{id:"17194",title:"Dr.",name:"Zoran",middleName:null,surname:"Constantinescu",slug:"zoran-constantinescu",fullName:"Zoran Constantinescu"},{id:"21351",title:"Dr.",name:"Monica",middleName:null,surname:"Vladoiu",slug:"monica-vladoiu",fullName:"Monica Vladoiu"}]},{id:"13942",title:"Grid-JQA: A QoS Guided Scheduling Algorithm for Grid Computing",slug:"grid-jqa-a-qos-guided-scheduling-algorithm-for-grid-computing",totalDownloads:2072,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Leyli Mohammad Khanli and Saeed Kargar",authors:[{id:"16562",title:"Prof.",name:"Leyli",middleName:null,surname:"Mohammad Khanli",slug:"leyli-mohammad-khanli",fullName:"Leyli Mohammad Khanli"}]},{id:"13951",title:"A Grid Enabled Framework for Ubiquitous Healthcare Service Provisioning",slug:"a-grid-enabled-framework-for-ubiquitous-healthcare-service-provisioning",totalDownloads:2919,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Oludayo, O., Olugbara, Sunday, O. Ojo, and Mathew, O. Adigun",authors:[{id:"19677",title:"Dr.",name:"Oludayo O.",middleName:null,surname:"Olugbara",slug:"oludayo-o.-olugbara",fullName:"Oludayo O. Olugbara"},{id:"19685",title:"Prof.",name:"Sunday O.",middleName:null,surname:"Ojo",slug:"sunday-o.-ojo",fullName:"Sunday O. Ojo"},{id:"19686",title:"Prof.",name:"Mathew O.",middleName:null,surname:"Adigun",slug:"mathew-o.-adigun",fullName:"Mathew O. Adigun"}]},{id:"13944",title:"Quantum Encrypted Data Transfers in GRID",slug:"quantum-encrypted-data-transfers-in-grid",totalDownloads:1698,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"M. Dima, M. Dulea, A. Dima, M. Stoica and M. Udrea",authors:[{id:"17587",title:"Dr.",name:"Mihai-Octavian",middleName:null,surname:"Dima",slug:"mihai-octavian-dima",fullName:"Mihai-Octavian Dima"},{id:"24459",title:"Dr.",name:"Mihnea",middleName:null,surname:"Dulea",slug:"mihnea-dulea",fullName:"Mihnea Dulea"},{id:"24460",title:"Dr.",name:"Antonela",middleName:null,surname:"Dima",slug:"antonela-dima",fullName:"Antonela Dima"},{id:"24461",title:"Dr.",name:"Mihaela",middleName:null,surname:"Stoica",slug:"mihaela-stoica",fullName:"Mihaela Stoica"},{id:"24462",title:"Dr.",name:"Mihai",middleName:null,surname:"Udrea",slug:"mihai-udrea",fullName:"Mihai Udrea"}]},{id:"13945",title:"Data Consolidation and Information Aggregation in Grid Networks",slug:"data-consolidation-and-information-aggregation-in-grid-networks",totalDownloads:1617,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Panagiotis Kokkinos and Emmanouel Varvarigos",authors:[{id:"16341",title:"Dr.",name:"Panagiotis",middleName:null,surname:"Kokkinos",slug:"panagiotis-kokkinos",fullName:"Panagiotis Kokkinos"},{id:"20786",title:"Dr.",name:"Emmanouel",middleName:null,surname:"Varvarigos",slug:"emmanouel-varvarigos",fullName:"Emmanouel Varvarigos"}]},{id:"13940",title:"Application of Discrete Particle Swarm Optimization for Grid Task Scheduling Problem",slug:"application-of-discrete-particle-swarm-optimization-for-grid-task-scheduling-problem",totalDownloads:2511,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Ruey-Maw Chen",authors:[{id:"16362",title:"Dr.",name:"Ruey-Maw",middleName:null,surname:"Chen",slug:"ruey-maw-chen",fullName:"Ruey-Maw Chen"}]},{id:"13943",title:"Autonomic Network-Aware Metascheduling for Grids: A Comprehensive Evaluation",slug:"autonomic-network-aware-metascheduling-for-grids-a-comprehensive-evaluation",totalDownloads:1826,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Agustín C. Caminero, Omer Rana, Blanca Caminero and Carmen Carrión",authors:[{id:"16744",title:"Prof.",name:"Maria Blanca",middleName:null,surname:"Caminero Herraez",slug:"maria-blanca-caminero-herraez",fullName:"Maria Blanca Caminero Herraez"},{id:"16747",title:"Dr.",name:"Agustin C.",middleName:null,surname:"Caminero",slug:"agustin-c.-caminero",fullName:"Agustin C. Caminero"},{id:"16749",title:"Dr.",name:"Omer",middleName:null,surname:"Rana",slug:"omer-rana",fullName:"Omer Rana"},{id:"16750",title:"Dr.",name:"Carmen",middleName:null,surname:"Carrión",slug:"carmen-carrion",fullName:"Carmen Carrión"}]},{id:"13949",title:"Grid Computing for Artificial Intelligence",slug:"grid-computing-for-artificial-intelligence",totalDownloads:1924,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Yuya Dan",authors:[{id:"17737",title:"Dr.",name:"Yuya",middleName:null,surname:"Dan",slug:"yuya-dan",fullName:"Yuya Dan"}]},{id:"13950",title:"Grid Computing for Fusion Research",slug:"grid-computing-for-fusion-research",totalDownloads:1628,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Francisco Castejón and Antonio Gómez-Iglesias",authors:[{id:"17427",title:"Dr.",name:"Francisco",middleName:null,surname:"Castejón",slug:"francisco-castejon",fullName:"Francisco Castejón"}]}],onlineFirstChaptersFilter:{topicSlug:"grid-computing",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/scientometrics/introductory-chapter-scientometrics",hash:"",query:{},params:{book:"scientometrics",chapter:"introductory-chapter-scientometrics"},fullPath:"/books/scientometrics/introductory-chapter-scientometrics",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()