\r\n\tComputational fluid dynamics is composed of turbulence and modeling, turbulent heat transfer, fluid-solid interaction, chemical reactions and combustion, the finite volume method for unsteady flows, sports engineering problem and simulations - Aerodynamics, fluid dynamics, biomechanics, blood flow.
",isbn:"978-1-83968-248-3",printIsbn:"978-1-83968-247-6",pdfIsbn:"978-1-83968-321-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"1f8fd29e4b72dbfe632f47840b369b11",bookSignature:"Dr. Suvanjan Bhattacharyya",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10695.jpg",keywords:"Free Turbulent Flow, Discretisation Methods, Aerodynamics, Phase Flow, Bluff-Body, Complex Geometries, Drag Force, Flow Separation, Laminar Diffusion Flame, Non-Premixed Combustion, Fluid Dynamics, Biomechanics",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 28th 2021",dateEndSecondStepPublish:"February 25th 2021",dateEndThirdStepPublish:"April 26th 2021",dateEndFourthStepPublish:"July 15th 2021",dateEndFifthStepPublish:"September 13th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Suvanjan Bhattacharyya is currently working as an Assistant Professor in the Department of Mechanical Engineering of BITS Pilani, Pilani Campus. His research interest lies in computational fluid dynamics, experimental heat transfer enhancement, solar energy, renewable energy, etc.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"233630",title:"Dr.",name:"Suvanjan",middleName:null,surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya",profilePictureURL:"https://mts.intechopen.com/storage/users/233630/images/system/233630.png",biography:"Dr. Suvanjan Bhattacharyya is currently working as an Assistant Professor in the Department of Mechanical Engineering of BITS Pilani, Pilani Campus, India. Dr. Bhattacharyya completed his post-doctoral research at the Department of Mechanical and Aeronautical Engineering, University of Pretoria, South Africa. Dr. Bhattacharyya completed his Ph.D. in Mechanical Engineering from Jadavpur University, Kolkata, India and with the collaboration of Duesseldorf University of Applied Sciences, Germany. He received his Master’s degree from the Indian Institute of Engineering, Science and Technology, India (Formerly known as Bengal Engineering and Science University), on Heat-Power Engineering.\nHis research interest lies in computational fluid dynamics in fluid flow and heat transfer, specializing on laminar, turbulent, transition, steady, unsteady separated flows and convective heat transfer, experimental heat transfer enhancement, solar energy and renewable energy. He is the author and co-author of 107 papers in high ranked journals and prestigious conference proceedings. He has bagged the best paper award in a number of international conferences as well. He is also in editorial boards of 15 Journals and reviewers of more than 40 prestigious Journals.",institutionString:"Birla Institute of Technology and Science, Pilani",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Birla Institute of Technology and Science, Pilani",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8679",title:"Inverse Heat Conduction and Heat Exchangers",subtitle:null,isOpenForSubmission:!1,hash:"a994b17ac471c6d414d63c74a7ab74de",slug:"inverse-heat-conduction-and-heat-exchangers",bookSignature:"Suvanjan Bhattacharya, Mohammad Moghimi Ardekani, Ranjib Biswas and R. C. Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/8679.jpg",editedByType:"Edited by",editors:[{id:"233630",title:"Dr.",name:"Suvanjan",surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"74054",title:"The Art of Physical Hydraulic Modeling and Its Impact on the Water Resources of Pakistan",doi:"10.5772/intechopen.94653",slug:"the-art-of-physical-hydraulic-modeling-and-its-impact-on-the-water-resources-of-pakistan",body:'\nThe study of physical hydraulic models plays a role which is vital in the planning and designing of almost all hydraulic and hydrologic structures. May it be the stilling basins, spillways of barrages, river training works, hydraulic siphons, or even simple bridges, they are generally designed, evaluated, refined, and improved on the basis of physical hydraulic model studies. Physical model studies are comparatively expensive, costly, consume lots of time and resources to build and operate, and require technical labor and expertise in developing and testing the model. The selection of appropriate scale ratios between prototype and model plays a very significant and imperative role for the reliability and rationality of the results obtained.
\nResearchers and engineers working in the field, face a real challenge once they have to finalize on the basis of physical and/or numerical models, the rehabilitation and modernization works for any already constructed and operational hydraulic structure. The success of any rehabilitation work depends upon the precise and accurate identification of hydraulic and hydrologic problems on the prototype structure, because any failure may lead to partial or complete wastage of huge investments.
\nThe laws of similitude enable a researcher to predict the likely performance of prototype hydraulic structures from tests made with far less expensive models. We need not use the same fluid for the model as the prototype. We may obtain valuable results at a minimum cost from the tests conducted on the small scale hydraulic models. Any textbook on hydraulic physical modeling will tell us that the following similarities have to be ensured between the model and the prototype hydraulic structure [1, 2].
\nModel and prototype should have identical shapes but differ only in size as per the defined scale ratio. This would ensure geometrically similar flows. Under certain conditions, distorted models are resorted to by having different scale ratios for the lateral, longitudinal, and vertical directions, but then the same has to be incorporated during the interpretation of results.
\nRatios of the velocities on all corresponding points on the model and prototype hydraulic structure should be the same to ensure the same kinematics of flow.
\nThe quantum and direction of all forces acting on the corresponding points on the model and prototype should be in the same ratio, to ensure the same dynamics of the flow. Dynamic similarity can also be ensured by ensuring similarity of the combination of forces, by following the Froude Law, Reynolds Law, Mach Law, etc., for modeling.
\nPhysical modeling of hydraulic structures has been in use since the times of Leonardo Da Vinci. However, since then this art and science have gone manifold changes, developments, and positive improvements. Such models provide a visual insight into the hydraulic phenomena of water and fluid flows. These models also provide technical flow data through the elaborate system of instrumentation provided. The data and flow visuals can be recorded for future reference, computations, training materials, and records.
\nThe role of hydrological modeling has been well described in [3], wherein the authors reiterate that hydrological models are in fact basic, theoretical, and physical representations of the hydrologic cycle, and these are often used for the understanding and prediction of hydrological processes. They categorize the hydrological models as (a) models which are based on data collection, and (b) black-box models which are based on process description.
\nBecause of the importance and special role of physical hydraulic modeling, various renowned organizations have developed their physical hydraulic research centers. The most common and well-known are the Waterways Experiment Station (WES) of the US Army Corps of Engineers and Hydraulic Research Station (HRS) of Punjab Irrigation Department, Pakistan.
\nThe US Army Corps of Engineers Waterways Experiment Station (WES) was created in 1929 to provide support for the vast flood control plan for the entire lower Mississippi valley after the tragedy of the 1927 most horrific river flood. The WES laboratory complex located at Vicksburg, Mississippi is now the principle research, testing, and development facility, which supports studies in many other fields in addition to its primary field of hydraulic engineering. WES provides services for training, and technical assistance, research, and also software development, which reflects the state-of-the-art expertise of WES in hydrologic engineering and closely associated fields of planning analysis. In its research and development work, WES uses more application of model experiments employing the principles of hydraulics. WES has made a significant contribution through the publication and distribution of its research reports.
\nHydraulic Research Station, located at Nandipur near Gujranwala, in Pakistan is one of the largest research laboratories in the world. This field research station was established in 1926 and is under the administrative control of the Irrigation Research Institute, Lahore being its field station. The Nandipur station has 40 hectares of land divided into 22 research bays commonly called as research trays. Through a small irrigation channel, the water availability of 15 cumecs and a gravity head of 4 meters is provided, however for higher heads pumping facility is also available. The Nandipur Hydraulic Research Station meets the requirement of the study of numerous problems that are related to planning, operation, and management of water resources. Physical models for almost all the major irrigation and hydraulic structures now present in the country have been run, tested, and optimized at this station.
\nHydraulic Research Station at Nandipur has carried out model studies of almost all major hydraulic engineering projects undertaken in Pakistan and India in the pre-partition as well as the post-partition era. The major projects of Mangla Dam and Tarbela Dam which were constructed as part of the Indus Basin Treaty were also modeled in this facility. Many other barrages, weirs, link canals, and river training works have been modeled and approved prior to the finalization of their designs. A sample of the physical hydraulic modeling projects undertaken by the Hydraulic Research Station is displayed in Figures 1 and 2.
\nFlow from Flip Bucket Energy Dissipater.
Model of a Typical Barrage.
In the recent past, the rationality of the massive hydraulic structure of Jinnah Barrage [4, 5] was questioned as a model study indicated that at existing conditions of water levels the formed hydraulic jump was located on the glacis only up to a discharge of 400,000 cusecs. The hydraulic performance of the barrage, under-sluices, silt excluders, and also the subsidiary weir was yet not tested at higher discharges. Mahboob [6, 7] reviewed the design of Kalabagh Barrage and he found it acceptable only after the physical hydraulic model study because the hydraulic modeling study for energy dissipation under the conditions of existing water levels pointed out that hydraulic jump over the horizontal floor was repelled by the excessive lowering of the channel bed at the downstream (retrogression) (Figure 3).
\nModel Study of Taunsa Hydro Power Project.
The hydraulic modeling study cited here targets to examine sedimentation aspects of two cascade reservoirs on Poonch River; with the help of physical modeling and numerical simulation. A physical model of Poonch River was prepared at Nandipur Research Institute to study the sediment transport behavior [8]. After the base test, the model was used to get data for various scenarios of sediment flushing in the cascade reservoir system. The River geometry, riverbanks, hydraulic structures, cross-sections, and other physical attributes of the river were prepared from a topographic survey using AutoCAD. These files were used in HEC-RAS and BASEMENT for simulations (Figure 4).
\nModel Study of Poonch River Sedimentation Project.
Delta profile and flushing were modeled by HEC-RAS 5.0. The simulation showed that the life of the un-sluiced Gulpur HPP is about 14–15 years and that of Rajdhani is about 35 years. To enhance the life of the project, annually 4–5 days are required for flushing with an optimized discharge of about 250 m3/s. Model verification was performed by calculating the bed topography and flushing efficiency. The results obtained through the model were consistent with bed changes, demonstrating its suitability for the regeneration of regression channels and lateral erosion (Figure 5).
\nModel Study of Poonch River Sedimentation Project.
Other techniques in addition to physical hydraulic modeling available to a researcher are mathematical modeling, statistical modeling, and numerical modeling. With the advent of modern computers having speedy and fast processors, massive data storage, better data management software, and intelligent computational techniques the statistical modeling and numerical modeling have become the favorites of every researcher and engineer. The cutting edge graphics cards and attractive presentation techniques have also added to the magnetism of such indoor modeling. However, despite all this, the value and importance of physical hydraulic modeling cannot be overshadowed by these. The natural intricacies, physical behavior, the kinematics and dynamics of all fluids and especially large mass flows of water can only be studied through physical modeling.
\nWith the innovation of new materials of construction including the nano-materials, the physical hydraulic modeling has been revived. Now very intricate designs can be created and manufactured using new and modern materials. The same is true for hybrid and very strong epoxies and sealing materials which now help in making watertight models. Fabrication of models and their miniature parts has also been revolutionized by laser cutting, computerized numerical machines that can make precision model parts.
\nRevolution in measuring instruments for all hydraulic parameters has also provided a quantum jump to physical hydraulic modeling. Doppler velocimetry, very sensitive and accurate probes and pressure transducers, laser leveling gauges, and other such instrumentation can now be used to obtain and collect very sophisticated data for physical hydraulic models.
\nThe latest techniques in flow visualization have done wonders in fluid mechanics and hydraulic modeling. Modern electronics and advancement in graphics, optics, and sensors has revitalized the hydraulic modeling and made it an advanced and modern field of science and technology.
\nOn the other hand, the models based on process description also called deterministic models are rather complicated as compared to the stochastic hydrological models representing surface runoff, channel flow, subsurface flow, and evapotranspiration. Such models cannot by physically modeled, and therefore these have to be computer modeled [3].
\nThe art, science, and technique of planning, construction, and operation of physical hydraulic modeling are losing the race against numerical and computer modeling. However, there is a dire need that due to its very special place in research and investigation, this modeling technique should remain in vogue. For this very purpose its education, teaching, and engineering practice may be included in the curricula of various universities, colleges, and other technical training institutes.
\nFor very important and significant hydraulic structures, the failure of which cannot be afforded due to various reasons, it may be made mandatory that physical hydraulic modeling is carried out prior to the finalization of designs of construction and rehabilitation.
\nSoil carbon (C) sequestration implies the removal of atmospheric CO2, by plants and storage of the fixed C through incorporation into soil organic matter [1]. Carbon exists in a variety of forms, mainly as plant biomass, soil organic matter, and gas carbon dioxide (CO2) in atmosphere and dissolved in sea water. Soil organic carbon (SOC), which is a main component of SOM, can be separated into stable and labile fraction [2], and soil organic matter and its contribution play a very vital role during its humification formation of stable humus fraction and in the management of fertilization [3]. Worldwide, about 1417 Pg of soil carbon is stored in first meter soil depth, while 456-Pg soil carbon is stored in above–below ground vegetation and dead organic matter. The Earth’s soils include approximately 1500 Pg of C, which is about 2–3 times larger than the amount of C stored in Earth’s vegetation [4, 5]. The atmospheric carbon pool contains ~800 Pg of CO2-C and is escalating at the rate of 4.2 Pg C per year, 0.54 percent per year. Over the past 150 years, the amount of carbon in the atmosphere has enlarged by 30%. An increase in the atmospheric concentration of CO2 from 280 ppm from the pre-industrial era to 390 ppm in 2010 (an enrichment of 39%) and other greenhouse gases (GHGs) has changed the Earth’s mean temperature and precipitation [6]. There is much interaction among the terrestrial and atmospheric C pools through the processes of photosynthesis and respiration. Due to land use, conversion factors, and deforestation, biotic pool also contributes in the rise of atmospheric CO2 concentration at the rate of ~1.6 Pg C per year. Different anthropogenic sources include the combustion of fossil fuel, deforestation, land use conversion, soil tillage, animal husbandry, cement manufacturing, etc. According to an estimate, 8.3 Pg C year−1 is emitted by combustion of fossil fuel [6, 7], and 1.6 Pg C per year is emitted by deforestation, land-use change, and soil cultivation. It is anticipated that terrestrial ecosystems have contributed as much as half of increases in CO2 emissions from human activity in the past two centuries [4, 8], and about 50 Pg CO2 additions to the atmosphere has been contributed by cultivated soils [9], through the process of mineralization of soil organic carbon (SOC). Terrestrial C pool is estimated approximately 3120 Pg, which is the combination of both pedologic and biotic C pools.
\nHistorically, agricultural soils have lost more than 50 Gt (1 Gt = 1 billion tons) of carbon and agriculture is responsible for soil carbon reductions up to 60–75% [9].Total anthropogenic emission of CO2 is 9.9 Pg C per year, of which 4.2 Pg C per year is absorbed by atmosphere and 2.3 Pg C per year by the ocean while remaining may be absorbed by unidentified terrestrial sinks.
\nIn 1-m soil depth, estimated carbon pool is 2500 Pg, in two diverse forms including soil organic C (SOC) pool which is likely about 1550 Pg and soil inorganic C (SIC) pool at 950 Pg [10]. Soil inorganic C pool mostly consists of elemental C and carbonate minerals, i.e., calcite, dolomite, and likewise primary and secondary carbonates, whereas soil organic C (SOC) pool contains highly active humus and relatively inert charcoal C. According to United Nations Framework Convention on Climate Change (UNFCCC), carbon sequestration is the process of removing C from atmosphere and depositing it in a reservoir. It entails the transfer of atmospheric CO2 and its secure storage in long-lived pools [11].
\nThe estimation of global carbon sequestration potential of agricultural soils is typically made for sequestration on annual basis, and its range is from 0.4 to 1.2 gigatons per year [1]. Land use, land use change, and forestry (LULUCF) activities can be a relatively cost-effective ways to offset emissions through increasing removals of greenhouse gases from the atmosphere (e.g., by planting trees or managing forests) or through dropping emissions (e.g., by deforestation) [12]. Likewise, emissions of CO2 from soil can be reduced by the adoption of such practices that can increase C input in soils and similarly can lessen the decomposition potential of soil organic matter. These kinds of practices have a vital role in storage and in release of C within terrestrial C cycle [13]. Nowadays, intensive agriculture usually results in a considerable soil degradation and soil carbon depletion [14], because in present agriculture and human’s food chain, intensive soil utilization is very essential but it is very imperative so it should be followed and coupled with appropriate conservation practices [15]. Agriculture sector is responsible for the emissions of about 30% global greenhouse gases emissions, and primarily, inappropriate soil and crop management practices have resulted in the loss of soil carbon. In agricultural soils, C sequestration means the increase of soil C storage.
\nMain agronomic and related practices that can be helpful in SOC sequestration include:
adoption of no-tillage (NT) or minimum tillage;
adoption of environmental and soil health friendly farming systems;
incorporation of cover crops;
use of mulch either in the form of crop residues or synthetic materials;
minimization of soil and water losses by surface runoff and erosion;
adoption of integrated nutrient management practices for the increase of soil fertility;
use of organic amendments; and
promotion of farm forestry.
Benefits of soil carbon sequestration include the following:
It can be helpful in the reduction of CO2 emissions.
It can reduce the emissions of different GHGs.
It can be helpful in the reduction of atmospheric temperatures.
It helps in maintaining suitable biotic habitat.
It decreases nutrients losses.
It can improve soil health and productivity.
It can increase water conservation.
It can promote and sustain root growth.
It can reduce soil erosion.
Agriculture sector can be supportive in the lessening of emissions of GHGs, and if suitable agronomic practices are to be adopted, then agricultural soils have the potential to act as a sink for CO2 sequestration. Healthy soils can be supportive in combating the climate change because soils having high organic matter can have higher CO2 sequestration potential.
\nDifferent agronomic and related practices that can be supportive in CO2 sequestration are given below.
\nThe main aim of tillage is the physical disturbance of upper soil layers for the preparation of soil bed, incorporation of fertilizers, crop residues, and similarly to control weeds. Tillage methods in world vary depending upon the soil, climate, crop management, and availability of technology. The relationship between tillage, soil structure, and soil organic matter dynamics is essential to C sequestration ability of agricultural soils. Tillage effects on soil carbon dynamics are complex and often variable [16]. Global reductions in natural SOC due to cultivation by humans are obvious, and it is estimated to cause a loss of 60 (temperate regions) to 75% (temporal regions) of the original SOC [17]. Conventional tillage practices led to decline in soil carbon from 30 to 50% globally [18] to low as 20% [19]. Plowing is the basic cause of SOC oxidation and emissions of CO2 to the atmosphere [20], and when NT, CP, and MP are under a nonsteady state, all these types of tillage systems may fail in the sequestration of significant amount of soil organic carbon [21]. The large losses of C typically follow initial cultivation [22, 23]. Moldboard plow, followed by secondary tillage operations, is commonly used in world, which is basically intensive tillage practice, but over the several years, intensive tillage has replaced by less intensive tillage in which soil is minimum disturbed. No tillage often increases the stability and numbers of soil aggregates, but conventional tillage is detrimental to soil structure, which increases the decomposition of soil organic matter. Conservation tillage systems keep more crop residues on the soil surface and have a higher SOC concentration in surface layer than conventional tillage [24, 25].
\nTillage and cropping systems can influence microbial activity, which ultimately affects SOC dynamics and stability [26, 27], and soil mineralization can be decreased by reducing or eliminating soil tillage and increasing cropping intensity and plant production efficiency. In case of no-tillage as litter accumulates at the soil surface, which reduces evaporation from the soil because surface residues [28] and similarly standing stubbles [29] decrease wind speed at the soil surface, which ultimately results in less turbulent exchange of water and heat. Reduction in soil temperature through the use of surface mulches and no-till practices is important for maintaining stocks of soil organic matter especially in tropical soils [30].
\nSOC is a prime determinant of biological activity and soil macro fauna, which controls most of the different soil functions, i.e., organic matter dynamics, nutrient release, soil structure, and its different associated physical properties [31, 32]. In no-tilled soils, there are generally higher densities of biota and especially microorganisms. A large number of studies have shown that no-tillage can increase soil carbon rapidly, particularly at the soil surface [33], and this increase is linked to increases in aggregation [34, 35]. Compared to the PT and RT systems, strong SOC gradients have been observed under NT systems in the surface to subsurface layers in paddy soil. Moreover, it has been observed that the impacts of tillage on SOC concentration are dependent on crop species and soil depth in paddy soil [36]. However, according to Grandy and Robertson [37], tilling a previously untilled soil quickly losses the previously reserved carbon gains by exposing carbon molecules to microbial attack due to the disruption of aggregates. This accelerated turnover also reduces the formation and stabilization of more recalcitrant organic matter fractions within micro aggregates that have a longer residence time in soil [38]. The results of a study, which was conducted to find out the influence of conservation tillage, land configuration, and residue management practices on soil health in a Pigeon pea+ Soybean intercropping system. The study consisted of six tillage systems, i.e., CT1: conservation tillage with BBF and crop residue retained on the surface, CT2: conservation tillage with BBF and the incorporation of crop residue, CT3: conservation tillage with flatbed with crop residue retained on the surface, CT4: conservation tillage with the incorporation of crop residue, CT5: conventional tillage with the incorporation of crop residue, and CT6: conventional tillage without crop residue. The conservation treatments significantly improved soil health. The pooled data of the study showed that all the conservation tillage systems, i.e., CT1, CT2, CT3, and CT4, had significantly higher soil organic carbon at 0–15 cm depth (0.62, 0.64, 0.60, and 0.62%, respectively) and at 15–30 cm depth (0.56, 0.56, 0.54, and 0.55%, respectively) in higher soil carbon sequestrations (15.07, 15.39, 14.58, and 14.72 t ha−1, respectively), over conventional systems. The study also revealed that however biological soil quality, such as soil microbial biomass carbon and nitrogen, was significantly higher in all the tillage systems except conventional tillage without crop residue [39]. It is estimated that the adoption of conservation tillage globally can sequester 25 Gt C over the next 50 years, which can be helpful in the stabilization of atmospheric carbon [40].
\nAll this indicates that the adoption of conservation tillage practices can be helpful in the reductions of emissions of CO2 into the atmosphere and similarly can be supportive in the sequestration of carbon in the soil.
\nChemical fertilizers are a source of emission of GHGs, especially N2O. In addition to it, fertilizer production and its transportation are also associated with the emissions of GHGs. Judicious use of fertilizers increases crop yields and profitability, and about 50 Pg CO2 additions to the atmosphere has been contributed by the cultivated soils [9], through the process of mineralization of soil organic carbon (SOC). The use of fertilizers has dramatically increased agricultural productivity, but studies reveal that the chronic use of nitrogen fertilization decreases soil microbial activity [41, 42, 43, 44]. Continuous use of balanced fertilizers is necessary for sustainable soil fertility and productivity of crops [45]. Crop residues and nutrients, especially N, help in carbon sequestration up to 21.3–32.5% [46]. However, ultimate effects of continuous nitrogen fertilization on soils are complicated and remain unclear. For example, in the long-term experiments in Canada, SOC sequestration were 50–75 g cm−2 per year in well-fertilized soils with optimum cropping systems [47]. Research in the Great Plains shows that SOC sequestration is improved by the application of N fertilization [48, 49, 50, 51, 52], but opposite to it, long-term experiments in the Northern Great Plains (ND) have also shown that N fertilizer increased crop residue returns but generally did not increase SOC sequestration [53]. Liu Enke et al. [54] reported the results of a long-term study which was initiated in Northwest China in 1979, to find out the effects of fertilization on SOC and SOC fractions for the whole soil profile such as (0–100 cm) soil depth. The experiment included six treatments, i.e., unfertilized (control), N fertilizer (N), nitrogen and phosphorous fertilizer (NP), straw plus N and P fertilizers (NP + S), Farmyard manure (FYM), and Farmyard manure (FYM) plus N and P fertilizers (NP+ FYM). Results showed that SOC storage in 0–60 cm in NP + FYM, NP + S, FYM, and NP treatments increased by 41.5, 32.9, 28.1, and 17.9%, respectively, as compared to control treatment. Application of organic manure plus inorganic fertilizer also enlarged labile pool in 0–60 cm soil depth. These results show that long-term applications of organic manure have the most beneficial effects in building carbon pools among the investigated types of fertilization.
\nThe results of Morrow plots, which is the world’s oldest experimental site under continuous corn (
It can be concluded that the appropriate use of fertilizers according to the soil condition can be helpful in the maximum sequestration of carbon along with maximum crops production and in the reductions of emissions of different GHGs.
\nAnimal manure is animal’s excreta which is collected from livestock farms and barnyards and is used to enrich the soil, while compost is the material which largely consists of decayed organic matter and is used for fertilizing and conditioning of agricultural soil. Application of manures is important for the maintenance of soil health [58, 59] and is the source of C, and its application to different crops fields has effects on C contents [60]. As compared with the application of only NPK, application of FYM along with NPK increased C sequestration in the rice-wheat cropping system [61], while green manuring, as compared with the application of FYM along with green manure, sequestered more C in a Maize-Wheat cropping system [62]. Composting not only increases the net primary production but also enhances the C contents of the soil [63]. It has been reported that decreasing of manures and organic fertilizers application influences not only stable organic compounds but also soil microorganisms and nutrient regimes [64, 65]. Liu et al. [53] supported the positive effect of incorporation of mineral fertilizers with organic manures. Similarly, application of different organic wastes, i.e., municipal solid waste (MSW), farm yard manure (FYM), sugar industry waste (filter cake), and maize cropping residues, at 3 t C ha−1 alone and with a full or half dose of NPK mineral fertilizer showed that the addition of organic wastes (filter cake or MSW) has the best potential for improving SOC retention, WUE, and wheat yield in an irrigated maize-wheat cropping system [66].
\nThis all indicates that the use of animal manure, compost, etc. along with other inorganic fertilizers is beneficial for both soil health and environment.
\nCrop rotations mean the sequence of crops grown in regularly recurring successions on the same area of land. The succeeding crops may be for 2 or more years. Differences in crop rotations, climates, soils, and different crop-related management practices also affect carbon sequestration. Intensive cropping systems result in the depletion of SOM, but the use of balanced fertilization with NPK, application of organic amendments, and similarly application of crop residues can increase carbon sequestration levels to 5–10 Mg ha−1 per year because these amendments contain 10.7–18% C, which can also be helpful in the sequestration of carbon [67]. Different legume crops, such as peas, lentils, alfalfa, chickpea, sesbania, etc., can serve as substitute sources for nitrogen. Applications of crop rotations especially by using legume cover crops, which contain carbon compounds that are likely more resistant to microbial metabolism, can make soil carbon more stable [68]. Syswerda et al. [69] reported the results of a long-term study (over a 12-year period) of an organic management system that involved various crop rotations. According to them despite of extensive tillage for weed control, increase in soil carbon sequestration was recorded. The results of a long-term study, which was conducted in Dingxi, Northwest China, during 2013–2015, were shown in-spring wheat-field pea rotation in a rain-fed semi-arid environment. The treatments were: conventional tillage with stubble removed (T); no tillage with stubble removed (NT); no-till with stubble retained (NTS), and conventional tillage with stubble incorporation (TS). The SOC, microbial biomass carbon, and root biomass in NTS increased over T and NT, and similarly, average grain yield across the 3 years in NTS was better than T and NT [70]. Recently, much attention has been given to alternate tillage and cropping systems as a means to mitigate the agricultural emissions of CO2 [27, 71]. Different types of cropping systems, i.e., cover cropping, ratoon cropping, and companion cropping, can be helpful in carbon sequestration. Intercropping which includes row inter cropping, strip inter cropping, mixed cropping, and relay intercropping can increase the income and can also raise soil fertility [72]. Some of the examples of inter cropping are wheat and mustard, cotton and peanut, peanut and sunflower, wheat and chickpea, etc. [73]. Organic farming can also improve soil organic carbon as compared with the conventional farming [68, 74]. Research regarding the restoration of grassland also shows that through their biotic and biotic effects, legume species have more positive effects on the restoration of grasslands as compared with the application of mineral fertilizers [75].
\nThis above shows that keeping in view the economic considerations, selection of appropriate crop rotations according to the soil and environmental conditions can be helpful in the sequestration of carbon, which not only improve soil fertility but also reduce the emissions of CO2 into the atmosphere and increase farmer’s income.
\nCrop residues are detached vegetative parts of crop plants that are intentionally left to decay in agricultural fields after crop harvesting. Worldwide, the annual production of crop residues is about 3.4 × 109 tones, and if 15% of these total residues are applied to the soil, it can increase the C contents of the soil, because, for example, one ton of cereal residue contains 12–20 kg N, 1–4 kg P, 7–30 kg K, 4–8 kg Ca, and 2–4 kg Mg. Mulching is detached vegetation, which includes wheat straw, compost, or may be plastic sheets, which are spread around plants to protect them from excessive evaporation and cold stress and similarly to promote SOM contents in soil.
\nCrop residues play an important role in the SOC management and improvement of soil quality [76]. Mulching improves soil moisture, reduces soil erosion, and similarly reduces the loss of carbon from the soil and crop residues, which are incorporated into the soil to enhance the soil organic matter. A direct seedling mulch-based cropping system increases soil organic matter, as a result of increased carbon inputs and decreased soil disturbance [27]. Mulch can increase soil organic matter (SOM) and carbon sequestration in the top 0–5 cm soil depth. It improves soil’s physical and chemical properties and can increase carbon sequestration in agricultural soils up to 8–16 Mg ha−1 per year. Mulch-based cropping systems enhance the buildup of soil organic matter, principally as a result of increased carbon inputs and decreased soil disturbance [27]. Direct seedling straw mulch has the potential to ameliorate the heat stress, and it improves the infiltration rate, reduces evaporation [77, 78], and similarly increases soil organic carbon and N efficiency [79]. Increasing residues inputs to soils entails increasing net primary productivity (NPP). Many agricultural soils, which have been significantly reduced from their original C levels through cultivation, will show C gains in proportion to increases in C inputs. Soil C levels are governed by the balance between the inputs of C through plant residues and the losses of C basically through decomposition. Therefore, C can be increased in soil by increasing residues inputs and or reducing decomposition rates (i.e., heterotrophic soil respiration). Litter quality also affects rates of its decomposition [80]. The results of a 4-month study, which was conducted in a greenhouse controlled condition and in three rates of straw residue and farm yard manure, were added to uncultivated and cropland soils. Two treatments of straw residue and farm yard manure incorporation were used into: a soil surface layer and a 0–20 cm soil depth revealed that the application of organic matter, especially the incorporation of farm yard manure, led to significant increase in the final soil organic carbon content, and higher amount of soil organic carbon were stored in the cropland soil than in the uncultivated soil. The results showed that carbon sequestration ranged farm yard manure > straw residue and cropland soil > uncultivated soil. The results revealed paying more attention to the role of organic residue management in carbon sequestration [81].
\nThis all shows that the application of mulch and the use of crop residues can improve soil microbial activity, ameliorate the heat stress, and help in water storage and improvement of soil organic carbon.
\nCover crop is grown for the benefit of soil rather than the crop yield. Cover crops improve soil quality by increasing soil organic carbon through biomass, by improving soil aggregates and stability, and by protecting the soil from surface runoff. Similarly, green manuring increases the biomass returned to the soil, which results in the form of enlarged soil carbon sink. Studies reveal that the adoption of cover crops is an efficient measure to mitigate climate change [82]. According to Olson 2010 [83], the use of cover crops in intensive row crop rotations with different tillage treatments has been found to sequester soil organic carbon (SOC). Kenneth et al. [84] reported the results of a study which included different kinds of tillages, i.e., no-till (NT), Chisel plow (CP), and moldboard plow (MP) with and without cover crops. The average annual corn and soybean yields were statistically same with or without cover crops. The average annual corn and soybean yields were statistically same for NT, CP, and MP systems with or without cover crops for the same soil depth layer and for tillage treatments. However, all tillage treatments, i.e., NT, CP, and MP, sequestered SOC with cover crops.
\nKeeping in view the cropping systems, suitable selection and planting of cover crops can be helpful in improving the soil organic carbon.
\nSelection of improved varieties of different crops, which can improve both above and below ground biomass, can also improve the soil organic carbon. Machado et al. [85] reported that crop species that have massive rooting systems have the potential to improve SOC in soils under NT. Similarly, according to Kell [86, 87] by improving root growth in agricultural crops, soil carbon storage can match anthropogenic emissions for the next 40 years. This all indicates that the use of improved crop varieties having extensive root systems and better yields can increase both yields and soil fertility.
\nSoil microbial activities can be helpful in the biological carbon sequestration because microbes improve the soil physical, chemical, and biological properties. The soil biota consists of a large number and a range of micro- and macro-organisms and is the living part of soils. They interact with each other and with plants, directly providing nutrition and other benefits. Their physical structure and products help a large to soil structure. They are also responsible for organic matter decomposition and for the transformations of organically bound nitrogen and minerals that are available to plants. Through biological control mechanisms, these organisms regulate their own populations and as well as those of incoming microorganisms. Micro- and macro-organisms are very crucial in maintaining ecosystem function, and their populations are significantly affected by the different crop management practices. Microorganisms include bacteria, fungi, fungi, protozoa, and some nematodes. These also include a range of invertebrates such as micro- and macro-arthropods, termites, and earthworms. According to an estimate, micro-organisms constitute about one quarter of the total biomass on the Earth [88]. These organisms are affected by the management of soils in the agricultural and forest ecosystems. Soils also differ in their ability to support the survival and growth of different groups of micro- and macro-organisms. Research findings show that carbon sequestration was higher up to 49.9 g C kg−1 in soils which were rich in soil microbes such as soil bacteria and fungi [89]. Therefore, the use of different kinds of microbes, which are beneficial both for soil and environment, will increase soil carbon sequestration and improve the crops yields.
\nBio char is carbonized biomass, which is obtained from sustainable sources and sequestered in soils. It can also be obtained by pyrolysis synthetically. Application of Bio char can also improve the soil health through carbon sequestration, because it improves the crop yield and maintains the cation exchange capacity, water holding, and nutrient retention capacity of the soil. It remains stable for thousands of years and thus reduces the release of terrestrial C to the atmosphere in the form of CO2 [90]. It has been reported that Bio char can improve carbon sequestration in soil due to prolonged residence time [91]. Another study also reveals that the application of Bio char reduces the co-localization of polysaccharides-carbon and aromatic carbon by reducing the carbon metabolism due to carbon stabilization in Bio char-activated soil [92]. It has also been reported that soil management by using different kinds of organic amendments and their incorporation by earthworms can also support micro-aggregates formation, C, and N retention in agricultural soils [93].
\nAgroforestry is the combination of agriculture and forestry in which perennial trees and shrubs are grown in combination with agricultural crops. Planting of different kinds of trees, including orchards, fruit plants, and woodlands into the croplands, can improve soil carbon sequestration. Agroforestry has an enormous potential for carbon sequestration in croplands [94] because agroforestry practices accumulate more C than forests and pastures because they have both forest and grassland sequestration and storage patterns active [95, 96, 97]. Young [98] have also reported the estimated potential of C gains from agroforestry. Agricultural soils can sequester more quantities of carbon by the adoption of agroforestry. The carbon sequestrations potential of agroforestry systems is estimated between 12 and 228 Mg ha−1, so on the Earth’s total suitable area for crop production, a total of about 1.1–2.2 Pg C can be sequestered in the agricultural soils in the next 50 years [99]. The results of a meta-analysis from 53 published studies, regarding changes in soil organic carbon (SOC) stocks at 0–15, 0–30, 0–60, 0–100, and 0 ≥ 100 cm, after land conversion to agroforestry, revealed a significant decline in the SOC stocks of 26 and 24% in land-use changes from forest to agroforestry at 0–15 and 0–30 cm, respectively. The transition from agriculture to agroforestry significantly enhanced the SOC stock of 26, 40, and 34% at 0–15, 0–30, and 0–100 cm, respectively. The results also showed that conversion from pasture/grassland to agroforestry produced significant SOC stock increases at 0–30 cm (9%) and 0–30 cm (10%). Switching from uncultivated/other land-uses to agroforestry increased SOC by 25% at 0–30 cm, while a decrease was observed at 0–60 cm (23%) [100].
\nThe carbon sequestration potential by agroforestry is estimated up to 9, 21, 50, and 63 Mg Cha−1 in semiarid, subhumid, humid, and temperate regions, respectively; however, it has been reported that intensively managed agroforestry practice in combination with annual crops is like conventional agriculture, which does not contribute in carbon sequestration [101].
\nAgroforestry also helps in the optimization of water use, and similarly, it improves the farmer’s income. So, the promotion of agroforestry keeping in view the soil condition, climate, and along with crops production is beneficial for soil, environment, as well as the farmers.
\nCO2 is increasing at the rate of 2.3 ppm per year, which is resulting in the increase of global warming and environmental pollution. Agriculture sector is responsible for up to 30% emission of GHGs. Sustainable agriculture is essential for the survival of humankind. Adoption of different agronomic management practices can be helpful in the sequestration of carbon. Such practices include no-tillage or reduced tillage, nutrient management, cover crops, crop rotations, green manuring, application of animal manures, agroforestry, etc. Adoption of these different agronomic practices will not only improve the crops yields but will also improve farmer’s income.
\n"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5822},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15938}],offset:12,limit:12,total:119319},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasnoeditors:"0"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9667",title:"Neuroimmunology",subtitle:null,isOpenForSubmission:!0,hash:"9cf0e8203ce088c0b84add014fd8d382",slug:null,bookSignature:"Prof. Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/9667.jpg",editedByType:null,editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10223",title:"Obesity and Health",subtitle:null,isOpenForSubmission:!0,hash:"c202a2b74cd9a2c44b1c385f103ac65d",slug:null,bookSignature:"Dr. Venketeshwer Rao and Dr. Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/10223.jpg",editedByType:null,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:10},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:26},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:49},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:218},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5330},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"401",title:"Bioinformatics",slug:"immunology-bioinformatics",parent:{title:"Immunology",slug:"immunology"},numberOfBooks:1,numberOfAuthorsAndEditors:24,numberOfWosCitations:5,numberOfCrossrefCitations:6,numberOfDimensionsCitations:8,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"immunology-bioinformatics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5300",title:"Advanced Biosignal Processing and Diagnostic Methods",subtitle:null,isOpenForSubmission:!1,hash:"6ff0e362b66214cde5c72df4c671f32c",slug:"advanced-biosignal-processing-and-diagnostic-methods",bookSignature:"Christoph Hintermüller",coverURL:"https://cdn.intechopen.com/books/images_new/5300.jpg",editedByType:"Edited by",editors:[{id:"180972",title:"Dr.",name:"Christoph",middleName:null,surname:"Hintermüller",slug:"christoph-hintermuller",fullName:"Christoph Hintermüller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"51325",doi:"10.5772/64068",title:"Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography",slug:"nonlinear-adaptive-signal-processing-improves-the-diagnostic-quality-of-transabdominal-fetal-electro",totalDownloads:1107,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Radek Martinek, Radana Kahankova, Hana Skukova, Jaromir\nKonecny, Petr Bilik, Jan Zidek and Homer Nazeran",authors:[{id:"149251",title:"Dr.",name:"Homer",middleName:null,surname:"Nazeran",slug:"homer-nazeran",fullName:"Homer Nazeran"},{id:"182946",title:"Dr.",name:"Radek",middleName:null,surname:"Martinek",slug:"radek-martinek",fullName:"Radek Martinek"},{id:"187874",title:"Dr.",name:"Radana",middleName:null,surname:"Kahankova",slug:"radana-kahankova",fullName:"Radana Kahankova"},{id:"187887",title:"Ms.",name:"Hana",middleName:null,surname:"Skutova",slug:"hana-skutova",fullName:"Hana Skutova"},{id:"187888",title:"Dr.",name:"Jaromir",middleName:null,surname:"Konecny",slug:"jaromir-konecny",fullName:"Jaromir Konecny"},{id:"187889",title:"Dr.",name:"Petr",middleName:null,surname:"Bilik",slug:"petr-bilik",fullName:"Petr Bilik"},{id:"187890",title:"Dr.",name:"Jan",middleName:null,surname:"Zidek",slug:"jan-zidek",fullName:"Jan Zidek"}]},{id:"51657",doi:"10.5772/63914",title:"Network Theoretical Approach to Describe Epileptic Processes",slug:"network-theoretical-approach-to-describe-epileptic-processes",totalDownloads:1005,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Ancor Sanz-García, Rafael G. de Sola, Lorena Vega-Zelaya, Jesús\nPastor and Guillermo J. Ortega",authors:[{id:"36503",title:"Dr.",name:"Rafael G",middleName:null,surname:"Sola",slug:"rafael-g-sola",fullName:"Rafael G Sola"},{id:"85177",title:"Dr.",name:"Guillermo",middleName:null,surname:"Ortega",slug:"guillermo-ortega",fullName:"Guillermo Ortega"},{id:"170195",title:"Dr.",name:"Jesus",middleName:null,surname:"Pastor",slug:"jesus-pastor",fullName:"Jesus Pastor"},{id:"183726",title:"Dr.",name:"Ancor",middleName:null,surname:"Sanz",slug:"ancor-sanz",fullName:"Ancor Sanz"},{id:"183728",title:"MSc.",name:"Lorena",middleName:null,surname:"Vega-Zelaya",slug:"lorena-vega-zelaya",fullName:"Lorena Vega-Zelaya"}]},{id:"51273",doi:"10.5772/63915",title:"Position-Free Vital Sign Monitoring: Measurements and Processing",slug:"position-free-vital-sign-monitoring-measurements-and-processing",totalDownloads:1586,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Dany Obeid, Sarah Samad, Sawsan Sadek, Gheorghe Zaharia and\nGhaïs El Zein",authors:[{id:"19505",title:"Prof.",name:"Ghaïs",middleName:null,surname:"El Zein",slug:"ghais-el-zein",fullName:"Ghaïs El Zein"},{id:"21472",title:"Prof.",name:"Gheorghe",middleName:null,surname:"Zaharia",slug:"gheorghe-zaharia",fullName:"Gheorghe Zaharia"},{id:"183137",title:"Dr.",name:"Dany",middleName:null,surname:"Obeid",slug:"dany-obeid",fullName:"Dany Obeid"},{id:"188319",title:"Ms.",name:"Sarah",middleName:null,surname:"Samad",slug:"sarah-samad",fullName:"Sarah Samad"},{id:"188320",title:"Prof.",name:"Sawsan",middleName:null,surname:"Sadek",slug:"sawsan-sadek",fullName:"Sawsan Sadek"}]}],mostDownloadedChaptersLast30Days:[{id:"51273",title:"Position-Free Vital Sign Monitoring: Measurements and Processing",slug:"position-free-vital-sign-monitoring-measurements-and-processing",totalDownloads:1586,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Dany Obeid, Sarah Samad, Sawsan Sadek, Gheorghe Zaharia and\nGhaïs El Zein",authors:[{id:"19505",title:"Prof.",name:"Ghaïs",middleName:null,surname:"El Zein",slug:"ghais-el-zein",fullName:"Ghaïs El Zein"},{id:"21472",title:"Prof.",name:"Gheorghe",middleName:null,surname:"Zaharia",slug:"gheorghe-zaharia",fullName:"Gheorghe Zaharia"},{id:"183137",title:"Dr.",name:"Dany",middleName:null,surname:"Obeid",slug:"dany-obeid",fullName:"Dany Obeid"},{id:"188319",title:"Ms.",name:"Sarah",middleName:null,surname:"Samad",slug:"sarah-samad",fullName:"Sarah Samad"},{id:"188320",title:"Prof.",name:"Sawsan",middleName:null,surname:"Sadek",slug:"sawsan-sadek",fullName:"Sawsan Sadek"}]},{id:"51657",title:"Network Theoretical Approach to Describe Epileptic Processes",slug:"network-theoretical-approach-to-describe-epileptic-processes",totalDownloads:1005,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Ancor Sanz-García, Rafael G. de Sola, Lorena Vega-Zelaya, Jesús\nPastor and Guillermo J. Ortega",authors:[{id:"36503",title:"Dr.",name:"Rafael G",middleName:null,surname:"Sola",slug:"rafael-g-sola",fullName:"Rafael G Sola"},{id:"85177",title:"Dr.",name:"Guillermo",middleName:null,surname:"Ortega",slug:"guillermo-ortega",fullName:"Guillermo Ortega"},{id:"170195",title:"Dr.",name:"Jesus",middleName:null,surname:"Pastor",slug:"jesus-pastor",fullName:"Jesus Pastor"},{id:"183726",title:"Dr.",name:"Ancor",middleName:null,surname:"Sanz",slug:"ancor-sanz",fullName:"Ancor Sanz"},{id:"183728",title:"MSc.",name:"Lorena",middleName:null,surname:"Vega-Zelaya",slug:"lorena-vega-zelaya",fullName:"Lorena Vega-Zelaya"}]},{id:"51538",title:"Enhancing Estimates of Breakpoints in Genome Copy Number Alteration using Confidence Masks",slug:"enhancing-estimates-of-breakpoints-in-genome-copy-number-alteration-using-confidence-masks",totalDownloads:814,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Jorge Muñoz‐Minjares, Yuriy Shmaliy and Oscar Ibarra‐Manzano",authors:[{id:"162535",title:"Prof.",name:"Oscar",middleName:null,surname:"Ibarra Manzano",slug:"oscar-ibarra-manzano",fullName:"Oscar Ibarra Manzano"},{id:"182490",title:"Ph.D. Student",name:"Jorge",middleName:null,surname:"Muñoz-Minjares",slug:"jorge-munoz-minjares",fullName:"Jorge Muñoz-Minjares"},{id:"182941",title:"Dr.",name:"Yuriy",middleName:null,surname:"S. Shmaliy",slug:"yuriy-s.-shmaliy",fullName:"Yuriy S. Shmaliy"}]},{id:"51325",title:"Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography",slug:"nonlinear-adaptive-signal-processing-improves-the-diagnostic-quality-of-transabdominal-fetal-electro",totalDownloads:1107,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Radek Martinek, Radana Kahankova, Hana Skukova, Jaromir\nKonecny, Petr Bilik, Jan Zidek and Homer Nazeran",authors:[{id:"149251",title:"Dr.",name:"Homer",middleName:null,surname:"Nazeran",slug:"homer-nazeran",fullName:"Homer Nazeran"},{id:"182946",title:"Dr.",name:"Radek",middleName:null,surname:"Martinek",slug:"radek-martinek",fullName:"Radek Martinek"},{id:"187874",title:"Dr.",name:"Radana",middleName:null,surname:"Kahankova",slug:"radana-kahankova",fullName:"Radana Kahankova"},{id:"187887",title:"Ms.",name:"Hana",middleName:null,surname:"Skutova",slug:"hana-skutova",fullName:"Hana Skutova"},{id:"187888",title:"Dr.",name:"Jaromir",middleName:null,surname:"Konecny",slug:"jaromir-konecny",fullName:"Jaromir Konecny"},{id:"187889",title:"Dr.",name:"Petr",middleName:null,surname:"Bilik",slug:"petr-bilik",fullName:"Petr Bilik"},{id:"187890",title:"Dr.",name:"Jan",middleName:null,surname:"Zidek",slug:"jan-zidek",fullName:"Jan Zidek"}]},{id:"51454",title:"Classifying and Predicting Respiratory Function Based on Gait Analysis",slug:"classifying-and-predicting-respiratory-function-based-on-gait-analysis",totalDownloads:858,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Yu Sheng Chan, Wen Te Liu and Ching Te Chiu",authors:[{id:"183749",title:"Prof.",name:"Ching Te",middleName:null,surname:"Chiu",slug:"ching-te-chiu",fullName:"Ching Te Chiu"},{id:"186690",title:"Mr.",name:"Yu Sheng",middleName:null,surname:"Chan",slug:"yu-sheng-chan",fullName:"Yu Sheng Chan"},{id:"193669",title:"Dr.",name:"Wen Te",middleName:null,surname:"Liu",slug:"wen-te-liu",fullName:"Wen Te Liu"}]}],onlineFirstChaptersFilter:{topicSlug:"immunology-bioinformatics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/resources-of-water/the-art-of-physical-hydraulic-modeling-and-its-impact-on-the-water-resources-of-pakistan",hash:"",query:{},params:{book:"resources-of-water",chapter:"the-art-of-physical-hydraulic-modeling-and-its-impact-on-the-water-resources-of-pakistan"},fullPath:"/books/resources-of-water/the-art-of-physical-hydraulic-modeling-and-its-impact-on-the-water-resources-of-pakistan",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()