\r\n\t
\r\n\t-production; advances in decline curve analysis, determining of optimal well spacing, parent-child wells relation, frat hit, stress shadowing, well interference,
\r\n\t-completion; determining optimal fracture spacing, optimal pad volume, optimal proppant volume, size and type, fiber optics,
\r\n\t-environmental aspects; produced water management, environmentally sustainable operation, footprint, and water consumption,
\r\n\t-improved oil recovery; Huff and Puff gas injection, surfactant injection, pilot tests, upscaling of lab-results to pilot-scale and field-scale,
\r\n\t-economics; integration of gas utilization, reducing operational costs, and water treatment.
The PID (Proportional Integral Differential) algorithm is the most popular feedback controller used within the process industries. It has been successfully used for over 50 years. It is a robust easily understood algorithm that can provide excellent control performance despite the varied dynamic characteristics of process plant. It is designed to generate an output that causes some corrective effort to be applied to a process so as to drive a measurable process variable towards a desired value, known as the set point. The concept is based (as shown in Figure 1) on the re-input of the system own output according to certain laws (hence the name “feedback”). It is desired for the system output to follow the set point. All feedback controllers determine their output by observing the difference, called error, between the set point and the actual process variable measurement. The PID looks at (a) the current value of the error, (b) the integral of the error over a recent time interval, and (c) the current derivative of the error signal to determine not only how much of a correction to apply, but for how long. Each of those three quantities are multiplied by a (tuning constant) and added together. Thus the PID output is a weighted sum. Depending on the application one may want a faster convergence speed or a lower overshoot. By adjusting the weighting constants, Kp, Ki, and Kd, the PID is set to give the most desired performance.
Typical closed loop control system.
As a result of enormous development in microcomputer technology, analog controllers have been replaced by digital controllers either in small or large industry. It is now a common practice to implement PID controllers in its digital version, which means that they operate in discrete time domain and deal with analog signals quantized in a limited number of levels. The trend toward digital rather than analog control is mainly due to: (1) versatility where programs can be easily modified or completely changed, (2) sophistication where advanced control laws could be implemented, (3) cost effectiveness where microcontrollers are available at very low costs compared to PLCs, industrial computers, RTUs or DCS. A typical digital feedback control system is shown in Figure 2. In digital feedback systems, the controller input and output are digital (sampled) rather than continuous signals. Thus, the continuous signal from the measurement device (sensor/transmitter) is sampled and converted periodically to a digital signal by an analog-to-digital converter (ADC). A digital control algorithm is then used to calculate the controller output as a digital signal. Because most final control elements are analog devices, the digital output signal is usually converted to a corresponding analog signal by a digital-to-analog converter (DAC).
Digital closed loop based on a microcontroller.
In feedback control, the objective is to reduce the error signal to zero where
where
The three-term PID controller.
where
A straightforward way of deriving a digital version of the parallel form of the PID controller is to replace the integral and derivative terms by finite difference approximations,
where
There are two alternative forms of the digital PID control equation, the position form and the velocity form. Substituting Eqs. (3) and (4) into (2) gives the position form:
where Pk is the controller output at the Kth sampling instant. Eq. (5) is referred to as the position form of the PID control algorithm because the actual value of the controller output is calculated [3, 4].
In the velocity form, the change in controller output is calculated. The velocity form can be derived by writing the position form of Eq. (5) for the (k − 1) sampling instant:
Note that the summation still begins at j = 1 because it is assumed that the process is at the desired steady state for j ≤ 0, and thus ej = 0 for j ≤ 0. Subtracting Eq. (6) from (5) gives the velocity form of the digital PID algorithm:
In this study, velocity form is chosen because of the following advantages:
It does not need initialization. The position form requires the initial value of the controller output
It is protected against integral windup. The integral mode of a controller causes its output to continue changing as long as there is a nonzero error. Often the errors cannot be eliminated quickly enough and given enough time they produce larger and larger values for the integral term, which in turn keeps increasing the control action until it is “saturated” (e.g., the valve completely opens or closes). This condition is called integral windup. Then, even if the error returns to zero, the control action will remain saturated. The position form with its continuous summation of errors will produce integral windup and special attention will be required. The velocity form, on the other hand, is protected from integral windup for the following reason: The control action changes continuously until it becomes saturated. But then as soon as the error changes sign, the control action can return within the control range in one sampling period.
It protects the process against computer failure. With the velocity algorithm one can send out a signal which is used to drive an integrating amplifier or a stepper motor. These devices will retain the last calculated position of the control valve (or other final control element) in case the computer fails, thus avoiding total loss of control of the process.
As mentioned earlier, the implementation is based on a Microchip PIC18F452 microcontroller, where the controller plays the role of the brain of the control system [5]. The right choice of the microcontroller is essential, as it will be the core of the final design. The PIC18F452 from Microchip has been chosen for the following advantages:
Speed: with its maximum internal clock rate of 20 MHz and its 16-bit-wide instruction bus, the CPU can execute most of its instructions at a single machine cycle of four clocks which is equivalent to a 0.2 μs.
Math support: unlike classical microprocessors, the controller in hand has got a hardware multiplier and divider for multiple-bytes, fixed-point numbers and for floating-point numbers so multiplication is carried out in a single instruction.
Flexible timer resources: four independent timers modules support timing measurements and output interval control with a timing resolution as fine as 0.1 μs. Those timers could be used to produce up to three pulse width modulations which could be used for electrical motor control.
Free software tools: Microchip’s Development Package MPLAB® (consisting of assembler, simulator, and user interface) as well as all manuals and application notes are available at no cost from their Web site (
Development tool versatility: it supports in-circuit debugger which permits the loading and execution of a user program as well as the use of breakpoints, memory/ register modification, and single stepping.
Build-in ADCs: it has analogue-to-digital converters with 10 bits resolution.
Built-in serial peripheral interface: it has a variety of serial bus interfaces like USART, I2C & SPI.
C programmable: it could be programmed using C language with the use of a variety of built in C libraries developed by microchip.
The PIC18F452 microcontroller is a 40 or 44-pin depending on the package, where in the 40 pins configuration, a dual inline package is used; whereas in the 44 pins configuration, either thin quad flat package or dual flat no leads package is used. Its design is based on Harvard technology where the program and data have different buses. This type of microcontrollers is very cheap, small in size, and could be customized. It could be easily programmed on-line using either assembly language, BASIC or C language. In fact, it is ideal for small application such as the one in hand. The controller has a 24 kbytes of flash memory and 2048 bytes of SDRAM. It also has a 8 × 10 bits analog to digital channels. It also has 5 bidirectional digital ports with 33 inputs/outputs, configured as follows: 3 × 8 digital I/O ports (PORTB, PORTC and PORTD), one six digital I/O port (PORTA) and one three digital I/O port (PORTE). Unfortunately, one of the drawbacks of microcontrollers, it is very seldom to find one with a digital to analog converter. Luckily, they are few manufacturers around including microchip, which make serial DACs which could be programmed through Serial Port Interface (SPI) using only three wires. The PIC18F452 has four timer/counters which could be programmed either as 8 or 16 bit timers/counters. It also has two ports which could be configured either as capture, compare or pulse width modulation (PWM). It has two serial peripheral interfaces: (SPI) and an inter-integrated circuit (I2C). An asynchronous port (USART) is also provided. For the microcontroller to output analogue data, an MCP4921 device is used. The device is a 12-bit buffered single voltage output Digital-to-Analog Converter (DAC). The device operates from a single 2.7 V to 5.5 V supply with an SPI compatible Serial Peripheral Interface. The user can configure the full-scale range of the device to be VREF or 2*VREF by setting the gain selection option bit (gain of 1 of 2). The user can shut down the device by setting the Configuration Register bit. In Shutdown mode, most of the internal circuits are turned off for power savings, and the output amplifier is configured to present a known high resistance output load (500 kΩ, typical). The device includes double-buffered registers, allowing synchronous updates of the DAC output using the LDAC pin. The device also incorporates a Power-on Reset (POR) circuit to ensure reliable powerup. The device utilizes a resistive string architecture, with its inherent advantages of low Differential Non-Linearity (DNL) error and fast settling time. The device is specified over the extended temperature range (+125°C). It provides high accuracy and low noise performance for consumer and industrial applications where calibration or compensation of signals (such as temperature, pressure and humidity) is required. The MCP4921 device is available in the PDIP, SOIC, MSOP and DFN packages. Figure 4 shows the chip pin configuration. The MCP4921 device is designed to interface directly with the Serial Peripheral Interface (SPI) port, which is available on the PIC18F452 microcontroller and supports Mode 0,0 and Mode 1,1. Commands and data are sent to the device via the SDI pin, with data being clocked-in on the rising edge of SCK. The communication is unidirectional; this means the data cannot be read out of the MCP4921. The CS (chip select active low) pin must be held low for the duration of a write command. The write command consists of 16 bits and is used to configure the DAC’s control and data latches. Register shown in Figure 5, details the write command which is loaded into the input register that is used to configure and load the DAC register [6].
MCP4921 pin configuration.
Write command register for MCP4921 (12-bit DAC).
The write command is initiated by driving the CS pin low, followed by clocking the four Configuration bits and the 12 data bits into the SDI pin on the rising edge of SCK. The CS pin is then raised, causing the data to be latched into the DAC’s input register. The MCP4921 utilizes a double-buffered latch structure to allow the analog output to be synchronized with the LDAC pin, if desired. By bringing the LDAC pin down to a low state, the content stored in the DAC’s input register is transferred into the DAC’s output register (VOUT), and VOUT is updated. The write to the MCP4921 device is 16-bit words. Any clocks past the 16th clock will be ignored. The Most Significant 4 bits are Configuration bits. The remaining 12 bits are data bits. No data can be transferred into the device with CS high. This transfer will only occur if 16 clocks have been transferred into the device. If the rising edge of CS occurs prior to that, shifting of data into the input register will be aborted. The most four significant bits are defined as follows:
bit 15 0 = Write to DAC register
1 = Ignore this command
bit 14 BUF: VREF Input Buffer Control bit
1 = Buffered
0 = Unbuffered
bit 13
1 = 1x (VOUT = VREF * D/4096)
0 = 2x (VOUT = 2 * VREF * D/4096)
bit 12
1= Active mode operation. VOUT is available.
0 = Shutdown the device. Analog output is not available.
VOUT pin is connected to 500 kΩ (typical).
This module is designed to display the value of the temperature detected by the temperature sensor and to guide the user in changing the parameters of the controller. The LCD is a 16 × 2 alphanumeric display with the built-in Hitachi 44780 controller and LED backlighting. It works with an 8-bit data bus, which means it will require a total of 11 data lines. Three control lines (connected to port E) plus the 8 lines for the data bus (connected to port D) [7].
The system is design around a stand-alone PIC18F452 controller, where the measured variable (MV) is read through channel0 (pin 2). The MV is subtracted from the set point automatically by the controller. The error is treated by the PIC PID and produces a digital control variable. This control variable is outputted through PIC serial data output pin (SDO pin 24) together with serial clock pin (SCK pin 18) to synchronize the conversion process. For the conversion to take place, the serial DAC chip select (CS) has to be pulled low. The CS is connected to pin RC0. The positive reference voltage is connected to +5 V (pin 6) and the negative reference voltage (pin 7) is tied to zero volt. The analog output is read through pin8 (Vout). This voltage is small to drive an electric motor. This voltage is pulled up to +12 V through the non-inverting operational amplifier (LM358). The Darlington transistor 2SD1409 is used to bust the current. The motor is connected to the emitter follower so that the driving current is sufficient enough to drive the motor. Needless to say that the diode 1N4148 is used to protect the Darlington transistor against any spike due to the change of current. Figure 6 shows the schematic of the system. The LCD is used to display the measured temperature. To manipulate the setting of different parameters, six push buttons are used as follows:
System schematic circuit showing all the connection to the microcontroller, as well as the liquid crystal display and the final control element.
Six push buttons were used in the project to allow the user to change the setting and the controller parameters. Their functions are as follows:
Reset: To reset the microcontroller.
Stop: interrupt the program to allow the user to change the controller settings
Run: To run the program
Mode: To allow the user to change between setting modes.
Increment: To increment the controller variables by 1 or 0.1.
Decrement: To decrement the controller variables by 1 or 0.1.
These switches are connected to PIC PORTB to allow the user to use the internal build-in pull up resistors to prevent floating instead of using external pull-down resistors. The reset has got a separate button connected to MCLR pin. A buzzer is used as an alarm to indicate that the temperature is more than what the user specifies. Three LEDs were used to show the user the status of the microcontroller program. The three colors green, yellow, and orange were used as follows:
Green: means that the PID controller is working properly.
Yellow: means that the program is interrupted by (STOP) push button.
Red: means that the alarm is triggered.
To implement the control program, three major routines are used; the main routine along with the timer and external interrupts. The program starts with the main routine which contains all the configurations of the external pins whether outputs or inputs. It also contains the configurations of timer and external interrupts, so when one of these interrupts is triggered, the microcontroller will stop its current execution and perform another action. The trigger will be caused by either an overflow in timer register or a change on an external pin (RB0/INT0).
Because the time is a crucial element in digital control, the PID algorithm is controlled through a timer interrupt. This choice allows the user the ability to calculate the sampling time accurately. On the other hand, an external interrupt (INT0) is used to interrupt the program in order to allow the user a chance to modify the controller parameters. In the following we discuss in some details about the functions of each routine.
This routine, as mentioned earlier, is dedicated to configure the direction of external pins as well as interrupt sources. It also allows the user to choose the measured variable (temperature, flow, level or others). The flow chart of this routine is shown in Figure 7.
Main routine.
First PORTA (pin RA0) is configured as an analog input channel0 and PORTB as input digital port which is connected to the push button switches; while all other pins are configured as outputs.
The configuration of the LCD was performed by separate software from Microchip called Application Maestro [8]. With the aid of this software, a configuration code was produced after modifying the module parameters. It was then incorporated into the project. Once incorporated, the LCD is configured and ready to work. One feature of using Application Maestro is its ability to use the prewritten code that this software provides to initialize or to write to the LCD.
Timer0 can operate as a timer or as a counter. In Timer mode, the Timer0 module will increment with every instruction cycle (without prescaler). It is configured by setting a special function register called T0CON (timer0 control byte). This register is a readable and writable register that controls all the aspects of Timer0, including the prescale selection. In the design in hand, T0CON register is set to 0x85 (0b10000101) as shown below [9, 10].
This value will configure the timer0 as follows:
● | TMR0ON | = 1 | : Timer0 is enabled | ||
● | T08BIT | = 0 | : Timer0 is configured as a 16-bit timer | ||
● | T0CS | = 0 | : Internal instruction cycle clock | ||
● | T0SE | = 0 | : This bit is used only with external clock | ||
● | PSA | = 0 | : Timer0 prescaler is assigned | ||
● | T0PS2 | = 1 | : Bit2: T0PS2 =1: | } | 1:64 prescaler value |
● | T0PS1 | = 0 | : Bit1: T0PS1 =0: | ||
● | T0PS0 | = 1 | : Bit0: T0PS0 =1: |
There are ten registers which are used to control internal and external interrupt operations to accommodate a variety of interrupts [11]. In the project in hand, only two interrupts are required INT0 and timer0 interrupt. To do so, only three control registers are required. These registers are INTCON, INTCON2, and RCON. INTCON register contains various enable bits as well as several interrupt flags. RCON is the Reset Control register which contains flag bits that allow differentiation between the sources RESET. Timer0 interrupt is enabled by setting TMR0IE bit (<5>) while external interrupt is enabled by setting INT0IE (INTCON<4>). Note that the interrupt flags are reset before enabling the interrupt in order to avoid unwanted interruptions.
To start the interrupt, the global interrupt bit GIE/GIEH (INTCON<7>) must be set. If set, it enables all unmasked interrupts, so if more than one interrupt source is used (as in our case) the Interrupt Priority Enable bit IPEN (RCON<7>) must be set and the interrupt sources should be specified either as high or low priority interrupt. The interrupt priority bit TMR0IP (INTCON2<2>) is used to specify the interrupt priority for Timer0. This bit is reset so timer0 interrupt is set to low priority. On the other hand, no need to specify the priority of the external interrupt (INT0), because it is already set to high priority by default.
After configuring the interrupts, the program will enter an infinite loop until one of the interrupt sources is triggered.
The main purpose of this routine is to calculate the controller output and send it to the DAC serially through the synchronous SPI module [12]. Figure 8 shows the routine function.
Timer interrupt routine.
Because of the importance of time in calculating the timed controller output, timer0 is used as an accurate hardware timer. The source clock of the timer is the crystal oscillator which is fed to the clock pin of Timer0 internally. The clock used is a 20 MHz derived from a stable crystal oscillator. This frequency is automatically divided by 4 because the controller machine cycle is 4 clocks to give a 5 MHz which is fed to the timer. The timer is exactly clocked every 0.2 μs and takes 13107.2 μs (16-bit mode) to count from zero to zero again. However, by loading the timer with a suitable value, a smaller time interval could be obtained. For example, by loading the timer with the value 4095 (0xFFF), the overflow would occur after 12288.2 μs. Alternatively, the time period can be extended by using a prescaler as was done in the main routine. If a divide by 64 prescaler is selected, timer0 only overflows after 838.848 ms. This is obtained as follows:
This time period is less than one second, while a one second sampling time is required for the design in hand. To obtain a one second sampling time, the timer should count 78,125 pulses.
Because timer0 register is only 16 bit wide, it is only limited to count up to 65,535 pulses. The interruption is trigged several times to obtain one second timing, after which the controller computes the control action and sends it to the DAC. By using MPLAP simulator, it was found that 5362 cycles are required to calculate the controller output and send it to the DAC besides 51 extra cycles needed to reload the timer with time constant. If the interruption is required to repeat itself five times before calculating the controller output, one needs 5362 + 51 × 5 = 5617 cycles (1.1234 ms). Thus, in order to get exactly one second sampling time, the timer register (TMR0) has to be reloaded with a value that interrupts the program every 998.8766 ms (1 s–1.1234 ms). The following shows how this value is obtained:
By using a timer with 64 prescaler:
When we repeat the interrupt for 5 times:
But because the timer counts in ascending order (from 0x0000 to 0xFFFF):
However, the timer register accepts only integer numbers, thus the final value that should be added to the timer register is 49918. Because we omitted the numbers after the decimal point, our error will be ± 1 count which is equal to 64 cycles. Therefore, our error in calculating the sampling time will be:
This calculation is for getting 1 s sampling time. To expand the calculation in order to enable the user to change the sampling time, one defines two integer variables (repeat and cycle). The first variable repeat is to determine how many times we need to repeat the interrupt, while the second one cycle is the final value that should be added to the timer register. The following pseudo code shows the general formula used to reload the timer register.
The ADC module normally operates at 10-bits resolution, giving output digital values 0–1024 [13]. It needs a reference voltage to set the maximum and minimum values for the input conversion. This reference can be provided internally as Vdd and Vss (supply values) or externally through Vref+ and Vref− pins. To configure this module, OpenADC function from Microchip C library is used. This function performs a bitwise AND operation (“&”) between its arguments which are defined in the file adc.h. The parameters of this function along with their meaning of each argument are discussed below [1]
ADC_FOSC_32: FOSC/32.
A clock divider to allow the minimum specified conversion time (about 20 μs). A 32 prescaler was chosen because the clock source is 20 MHz
ADC_RIGHT_JUST: Right justified.
Because the ADRES register pair (where the converted values are loaded) is 16-bit wide. But the ADC is only 10bit wide. The ADC module could either be configured as right or left justified. In this project, right justified is chosen as shown in Figure 9. This sets the 6 most significant bits of register ADRES to zeros.
ADC_8ANA_0REF: VREF+ = VDD, VREF− = VSS
The supply values are chosen as the voltage references to the ADC.
ADC_CH0: Channel0 (AN0) is selected
ADC_INT_OFF: Interrupts of ADC interrupts are disabled.
Once the A/D conversion is completed, the result is stored in an integer variable called result. After reading the analog value by the ADC module, the result will be compared with the variable alarm-trigger which was previously specified. If the result is greater than this value, the microcontroller triggers the buzzer and lights the red LED.
Choosing right justified for data input.
Due to the limitation in the microcontroller’s memory, the PID equation is divided into three terms (term_1, term_2, and term_3) and after calculating each term separately, they are added together along with the previous output to give the controller output which will be sent to the DAC. The following code shows how to calculate the controller output
To send the control variable to the final control element, the serial DAC, which is interfaced to the Serial Peripheral Interface (SPI) port, is used. The SPI is initiated using Microchip C library called OpenSPI. This function also performs a bitwise AND operation between its arguments which are defined in the file SPI.h according to the following formula.
SPI_FOSC_16: Master mode and the clock = FOSC/16
MODE_00: Mode 0,0 (change takes place on the rising edge)
SMPEND: Input data sample at end of data out
After configuring the module, it is time to write a command to the DAC in order to convert it into analog signal. The write command is initiated by driving the CS pin low, followed by clocking the four configuration bits and the 12 data bits into the SDI pin on the rising edge of SCK. The CS pin is then raised, causing the data to be latched into the DAC’s input registers and when the LDAC pin is pulled down through RC1, the values held in the DAC’s input registers are transferred into the DAC’s output registers to provide the analog signal. It is important to mention here that we wrote the write command in two steps (as shown in the following code) because the SPI module send only 8 bit at a time.
To write characters to the LCD, required prewritten functions are provided by Application Maestro. Some of These functions are listed in following table:
It is used to initialize the LCD module according to the Application Maestro options | |
It sends the clocking signal and data to be displayed to the LCD | |
Points to the first address location of line one of the LCD | |
Points to the first address location of line two of the LCD | |
Clears the DDRAM content of the LCD and points to the 00 address location | |
Displays String in Program memory | |
Displays String in Data memory | |
It sends clocking signal and instructions to the LCD |
For numbers to be displayed, they are first converted into strings (characters) before being sent to the LCD, since the latter only accepts strings. To do so a C function called sprintf is called upon. This function saves the number in an array after converting it into string. The subroutine to do so is shown below [4]:
The main function of this routine is to allow the user to change the controller parameters. The routine is initiated by pressing the push button (STOP) which is connected to the external interrupt pin (RB0/INT0). Once initiated, the user is able to change all the parameters of the controller (KC, τI, τD, sampling time, alarm trigger and sensitivity) by using three push buttons (MODE, INCREMENT and DECREMENT [11].
To determine which action the microcontroller should take if any push button is pressed, we defined two integer variables (present_button and present_mode) to be used as statuses. That is, each bit of them has specific meaning as described below:
present_button
Np | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | dec | inc | Mod |
bit15 | bit0 |
● | Np: set if there are no push buttons pressed |
● | Unimplemented |
● | dec: set if the DECREMENT push button pressed |
● | inc: set if the INCREMENT push button pressed |
● | mod: set if the MODE push button pressed |
present_mode
____ | Srt | Spt | KC | TI | TD | Stm | Sen | Alm | Tun | Dp | Tp | Kp | ____ | ____ | ____ |
bit15 | bit0 |
● | Unimplemented |
● | Srt: set in the starting mode |
● | Spt: set in the set point mode |
● | KC: set in the controller gain mode |
● | TI: set in the integral time mode |
● | TD: set in the derivative time mode |
● | Stm: set in the sampling time mode |
● | Sen: set in the sensitivity mode |
● | Alm: set in the alarm mode |
● | Tun: set in the tuning mode |
● | Dp: set in the process delay mode |
● | Tp: set in the process time constant mode |
● | Kp: set in the process gain mode |
● | Unimplemented |
Initially, before pressing any push button, present_button variable is loaded with 0x8000 (no push button pressed), and present_mode with 0x2000 (starting mode).Then if any push button is pressed, the corresponding bit of that push button will be set, giving a specific value of present_button which indicates the push button that was pressed by the user. So by performing a bitwise OR operation between the two variables (present_button and present_mode) we will come up with a number indicates the push button pressed and the present mode and based on that number we can decide the proper action to be taken by the microcontroller. The following code shows how to perform the OR operation after checking which of the push buttons was pressed. Beside changing the controller variables, this routine has another feature, it gives the user preliminary values of the controller parameters after entering the process variables. The result is derived based on Cohen-Koon tuning method. However, this feature is impractical if the sampling time is big [14].
To test the system, a first order system given by the equation below was used. To run the control action, the system was converted into a difference equation given by Eq. (10).
The process transfer function is first order, thus the discrete transfer function obtained using Zero-Order Hold will be:
where:
If kp = 10, τp = 5, and Ts = 1, The discrete transfer function will be:
Therefore the difference equation of the output is:
After getting the difference equation, the control scheme was tested and the output of Figure 10 was obtained with the parameters set to: Kc = 0.2, Ti = 4.0 and Td = 0.0. The parameters were then changed to: Kc = 0.1, Ti = 3.0 and Td = 0.2. The response is shown in Figure 11.
Controller response with Kc = 0.2, Ti = 4.0 and Td = 0.
Controller response with Kc = 0.1, Ti = 3.0 and Td = 0.2.
By referring to the previous graphs, it could be concluded that the response tracks the set point as expected. In addition, the increase in controller gain (Kc) does speed up the response but at the expense of the overshoot. Based on these results, it could be concluded that the three-term controller is working according to plan. Because of the flexibility of the microcontroller and its programming, any control scheme could be developed and implemented in the manner as described in this chapter. Not only that, the scheme could be transferred to several high range microcontrollers from the same company such as 16 or 32 bits with the use of the benefits those types of controllers offer.
The PID (Proportional Integral Differential) algorithm is the most popular feedback controller used within the process industries. It has been successfully used for over 50 years. It is a robust easily understood algorithm that can provide excellent control performance despite the varied dynamic characteristics of process plant. It is designed to generate an output that causes some corrective effort to be applied to a process so as to drive a measurable process variable towards a desired value, known as the set point. The concept is based (as shown in Figure 1) on the re-input of the system own output according to certain laws (hence the name “feedback”). It is desired for the system output to follow the set point. All feedback controllers determine their output by observing the difference, called error, between the set point and the actual process variable measurement. The PID looks at (a) the current value of the error, (b) the integral of the error over a recent time interval, and (c) the current derivative of the error signal to determine not only how much of a correction to apply, but for how long. Each of those three quantities are multiplied by a (tuning constant) and added together. Thus the PID output is a weighted sum. Depending on the application one may want a faster convergence speed or a lower overshoot. By adjusting the weighting constants, Kp, Ki, and Kd, the PID is set to give the most desired performance.
Typical closed loop control system.
As a result of enormous development in microcomputer technology, analog controllers have been replaced by digital controllers either in small or large industry. It is now a common practice to implement PID controllers in its digital version, which means that they operate in discrete time domain and deal with analog signals quantized in a limited number of levels. The trend toward digital rather than analog control is mainly due to: (1) versatility where programs can be easily modified or completely changed, (2) sophistication where advanced control laws could be implemented, (3) cost effectiveness where microcontrollers are available at very low costs compared to PLCs, industrial computers, RTUs or DCS. A typical digital feedback control system is shown in Figure 2. In digital feedback systems, the controller input and output are digital (sampled) rather than continuous signals. Thus, the continuous signal from the measurement device (sensor/transmitter) is sampled and converted periodically to a digital signal by an analog-to-digital converter (ADC). A digital control algorithm is then used to calculate the controller output as a digital signal. Because most final control elements are analog devices, the digital output signal is usually converted to a corresponding analog signal by a digital-to-analog converter (DAC).
Digital closed loop based on a microcontroller.
In feedback control, the objective is to reduce the error signal to zero where
where
The three-term PID controller.
where
A straightforward way of deriving a digital version of the parallel form of the PID controller is to replace the integral and derivative terms by finite difference approximations,
where
There are two alternative forms of the digital PID control equation, the position form and the velocity form. Substituting Eqs. (3) and (4) into (2) gives the position form:
where Pk is the controller output at the Kth sampling instant. Eq. (5) is referred to as the position form of the PID control algorithm because the actual value of the controller output is calculated [3, 4].
In the velocity form, the change in controller output is calculated. The velocity form can be derived by writing the position form of Eq. (5) for the (k − 1) sampling instant:
Note that the summation still begins at j = 1 because it is assumed that the process is at the desired steady state for j ≤ 0, and thus ej = 0 for j ≤ 0. Subtracting Eq. (6) from (5) gives the velocity form of the digital PID algorithm:
In this study, velocity form is chosen because of the following advantages:
It does not need initialization. The position form requires the initial value of the controller output
It is protected against integral windup. The integral mode of a controller causes its output to continue changing as long as there is a nonzero error. Often the errors cannot be eliminated quickly enough and given enough time they produce larger and larger values for the integral term, which in turn keeps increasing the control action until it is “saturated” (e.g., the valve completely opens or closes). This condition is called integral windup. Then, even if the error returns to zero, the control action will remain saturated. The position form with its continuous summation of errors will produce integral windup and special attention will be required. The velocity form, on the other hand, is protected from integral windup for the following reason: The control action changes continuously until it becomes saturated. But then as soon as the error changes sign, the control action can return within the control range in one sampling period.
It protects the process against computer failure. With the velocity algorithm one can send out a signal which is used to drive an integrating amplifier or a stepper motor. These devices will retain the last calculated position of the control valve (or other final control element) in case the computer fails, thus avoiding total loss of control of the process.
As mentioned earlier, the implementation is based on a Microchip PIC18F452 microcontroller, where the controller plays the role of the brain of the control system [5]. The right choice of the microcontroller is essential, as it will be the core of the final design. The PIC18F452 from Microchip has been chosen for the following advantages:
Speed: with its maximum internal clock rate of 20 MHz and its 16-bit-wide instruction bus, the CPU can execute most of its instructions at a single machine cycle of four clocks which is equivalent to a 0.2 μs.
Math support: unlike classical microprocessors, the controller in hand has got a hardware multiplier and divider for multiple-bytes, fixed-point numbers and for floating-point numbers so multiplication is carried out in a single instruction.
Flexible timer resources: four independent timers modules support timing measurements and output interval control with a timing resolution as fine as 0.1 μs. Those timers could be used to produce up to three pulse width modulations which could be used for electrical motor control.
Free software tools: Microchip’s Development Package MPLAB® (consisting of assembler, simulator, and user interface) as well as all manuals and application notes are available at no cost from their Web site (
Development tool versatility: it supports in-circuit debugger which permits the loading and execution of a user program as well as the use of breakpoints, memory/ register modification, and single stepping.
Build-in ADCs: it has analogue-to-digital converters with 10 bits resolution.
Built-in serial peripheral interface: it has a variety of serial bus interfaces like USART, I2C & SPI.
C programmable: it could be programmed using C language with the use of a variety of built in C libraries developed by microchip.
The PIC18F452 microcontroller is a 40 or 44-pin depending on the package, where in the 40 pins configuration, a dual inline package is used; whereas in the 44 pins configuration, either thin quad flat package or dual flat no leads package is used. Its design is based on Harvard technology where the program and data have different buses. This type of microcontrollers is very cheap, small in size, and could be customized. It could be easily programmed on-line using either assembly language, BASIC or C language. In fact, it is ideal for small application such as the one in hand. The controller has a 24 kbytes of flash memory and 2048 bytes of SDRAM. It also has a 8 × 10 bits analog to digital channels. It also has 5 bidirectional digital ports with 33 inputs/outputs, configured as follows: 3 × 8 digital I/O ports (PORTB, PORTC and PORTD), one six digital I/O port (PORTA) and one three digital I/O port (PORTE). Unfortunately, one of the drawbacks of microcontrollers, it is very seldom to find one with a digital to analog converter. Luckily, they are few manufacturers around including microchip, which make serial DACs which could be programmed through Serial Port Interface (SPI) using only three wires. The PIC18F452 has four timer/counters which could be programmed either as 8 or 16 bit timers/counters. It also has two ports which could be configured either as capture, compare or pulse width modulation (PWM). It has two serial peripheral interfaces: (SPI) and an inter-integrated circuit (I2C). An asynchronous port (USART) is also provided. For the microcontroller to output analogue data, an MCP4921 device is used. The device is a 12-bit buffered single voltage output Digital-to-Analog Converter (DAC). The device operates from a single 2.7 V to 5.5 V supply with an SPI compatible Serial Peripheral Interface. The user can configure the full-scale range of the device to be VREF or 2*VREF by setting the gain selection option bit (gain of 1 of 2). The user can shut down the device by setting the Configuration Register bit. In Shutdown mode, most of the internal circuits are turned off for power savings, and the output amplifier is configured to present a known high resistance output load (500 kΩ, typical). The device includes double-buffered registers, allowing synchronous updates of the DAC output using the LDAC pin. The device also incorporates a Power-on Reset (POR) circuit to ensure reliable powerup. The device utilizes a resistive string architecture, with its inherent advantages of low Differential Non-Linearity (DNL) error and fast settling time. The device is specified over the extended temperature range (+125°C). It provides high accuracy and low noise performance for consumer and industrial applications where calibration or compensation of signals (such as temperature, pressure and humidity) is required. The MCP4921 device is available in the PDIP, SOIC, MSOP and DFN packages. Figure 4 shows the chip pin configuration. The MCP4921 device is designed to interface directly with the Serial Peripheral Interface (SPI) port, which is available on the PIC18F452 microcontroller and supports Mode 0,0 and Mode 1,1. Commands and data are sent to the device via the SDI pin, with data being clocked-in on the rising edge of SCK. The communication is unidirectional; this means the data cannot be read out of the MCP4921. The CS (chip select active low) pin must be held low for the duration of a write command. The write command consists of 16 bits and is used to configure the DAC’s control and data latches. Register shown in Figure 5, details the write command which is loaded into the input register that is used to configure and load the DAC register [6].
MCP4921 pin configuration.
Write command register for MCP4921 (12-bit DAC).
The write command is initiated by driving the CS pin low, followed by clocking the four Configuration bits and the 12 data bits into the SDI pin on the rising edge of SCK. The CS pin is then raised, causing the data to be latched into the DAC’s input register. The MCP4921 utilizes a double-buffered latch structure to allow the analog output to be synchronized with the LDAC pin, if desired. By bringing the LDAC pin down to a low state, the content stored in the DAC’s input register is transferred into the DAC’s output register (VOUT), and VOUT is updated. The write to the MCP4921 device is 16-bit words. Any clocks past the 16th clock will be ignored. The Most Significant 4 bits are Configuration bits. The remaining 12 bits are data bits. No data can be transferred into the device with CS high. This transfer will only occur if 16 clocks have been transferred into the device. If the rising edge of CS occurs prior to that, shifting of data into the input register will be aborted. The most four significant bits are defined as follows:
bit 15 0 = Write to DAC register
1 = Ignore this command
bit 14 BUF: VREF Input Buffer Control bit
1 = Buffered
0 = Unbuffered
bit 13
1 = 1x (VOUT = VREF * D/4096)
0 = 2x (VOUT = 2 * VREF * D/4096)
bit 12
1= Active mode operation. VOUT is available.
0 = Shutdown the device. Analog output is not available.
VOUT pin is connected to 500 kΩ (typical).
This module is designed to display the value of the temperature detected by the temperature sensor and to guide the user in changing the parameters of the controller. The LCD is a 16 × 2 alphanumeric display with the built-in Hitachi 44780 controller and LED backlighting. It works with an 8-bit data bus, which means it will require a total of 11 data lines. Three control lines (connected to port E) plus the 8 lines for the data bus (connected to port D) [7].
The system is design around a stand-alone PIC18F452 controller, where the measured variable (MV) is read through channel0 (pin 2). The MV is subtracted from the set point automatically by the controller. The error is treated by the PIC PID and produces a digital control variable. This control variable is outputted through PIC serial data output pin (SDO pin 24) together with serial clock pin (SCK pin 18) to synchronize the conversion process. For the conversion to take place, the serial DAC chip select (CS) has to be pulled low. The CS is connected to pin RC0. The positive reference voltage is connected to +5 V (pin 6) and the negative reference voltage (pin 7) is tied to zero volt. The analog output is read through pin8 (Vout). This voltage is small to drive an electric motor. This voltage is pulled up to +12 V through the non-inverting operational amplifier (LM358). The Darlington transistor 2SD1409 is used to bust the current. The motor is connected to the emitter follower so that the driving current is sufficient enough to drive the motor. Needless to say that the diode 1N4148 is used to protect the Darlington transistor against any spike due to the change of current. Figure 6 shows the schematic of the system. The LCD is used to display the measured temperature. To manipulate the setting of different parameters, six push buttons are used as follows:
System schematic circuit showing all the connection to the microcontroller, as well as the liquid crystal display and the final control element.
Six push buttons were used in the project to allow the user to change the setting and the controller parameters. Their functions are as follows:
Reset: To reset the microcontroller.
Stop: interrupt the program to allow the user to change the controller settings
Run: To run the program
Mode: To allow the user to change between setting modes.
Increment: To increment the controller variables by 1 or 0.1.
Decrement: To decrement the controller variables by 1 or 0.1.
These switches are connected to PIC PORTB to allow the user to use the internal build-in pull up resistors to prevent floating instead of using external pull-down resistors. The reset has got a separate button connected to MCLR pin. A buzzer is used as an alarm to indicate that the temperature is more than what the user specifies. Three LEDs were used to show the user the status of the microcontroller program. The three colors green, yellow, and orange were used as follows:
Green: means that the PID controller is working properly.
Yellow: means that the program is interrupted by (STOP) push button.
Red: means that the alarm is triggered.
To implement the control program, three major routines are used; the main routine along with the timer and external interrupts. The program starts with the main routine which contains all the configurations of the external pins whether outputs or inputs. It also contains the configurations of timer and external interrupts, so when one of these interrupts is triggered, the microcontroller will stop its current execution and perform another action. The trigger will be caused by either an overflow in timer register or a change on an external pin (RB0/INT0).
Because the time is a crucial element in digital control, the PID algorithm is controlled through a timer interrupt. This choice allows the user the ability to calculate the sampling time accurately. On the other hand, an external interrupt (INT0) is used to interrupt the program in order to allow the user a chance to modify the controller parameters. In the following we discuss in some details about the functions of each routine.
This routine, as mentioned earlier, is dedicated to configure the direction of external pins as well as interrupt sources. It also allows the user to choose the measured variable (temperature, flow, level or others). The flow chart of this routine is shown in Figure 7.
Main routine.
First PORTA (pin RA0) is configured as an analog input channel0 and PORTB as input digital port which is connected to the push button switches; while all other pins are configured as outputs.
The configuration of the LCD was performed by separate software from Microchip called Application Maestro [8]. With the aid of this software, a configuration code was produced after modifying the module parameters. It was then incorporated into the project. Once incorporated, the LCD is configured and ready to work. One feature of using Application Maestro is its ability to use the prewritten code that this software provides to initialize or to write to the LCD.
Timer0 can operate as a timer or as a counter. In Timer mode, the Timer0 module will increment with every instruction cycle (without prescaler). It is configured by setting a special function register called T0CON (timer0 control byte). This register is a readable and writable register that controls all the aspects of Timer0, including the prescale selection. In the design in hand, T0CON register is set to 0x85 (0b10000101) as shown below [9, 10].
This value will configure the timer0 as follows:
● | TMR0ON | = 1 | : Timer0 is enabled | ||
● | T08BIT | = 0 | : Timer0 is configured as a 16-bit timer | ||
● | T0CS | = 0 | : Internal instruction cycle clock | ||
● | T0SE | = 0 | : This bit is used only with external clock | ||
● | PSA | = 0 | : Timer0 prescaler is assigned | ||
● | T0PS2 | = 1 | : Bit2: T0PS2 =1: | } | 1:64 prescaler value |
● | T0PS1 | = 0 | : Bit1: T0PS1 =0: | ||
● | T0PS0 | = 1 | : Bit0: T0PS0 =1: |
There are ten registers which are used to control internal and external interrupt operations to accommodate a variety of interrupts [11]. In the project in hand, only two interrupts are required INT0 and timer0 interrupt. To do so, only three control registers are required. These registers are INTCON, INTCON2, and RCON. INTCON register contains various enable bits as well as several interrupt flags. RCON is the Reset Control register which contains flag bits that allow differentiation between the sources RESET. Timer0 interrupt is enabled by setting TMR0IE bit (<5>) while external interrupt is enabled by setting INT0IE (INTCON<4>). Note that the interrupt flags are reset before enabling the interrupt in order to avoid unwanted interruptions.
To start the interrupt, the global interrupt bit GIE/GIEH (INTCON<7>) must be set. If set, it enables all unmasked interrupts, so if more than one interrupt source is used (as in our case) the Interrupt Priority Enable bit IPEN (RCON<7>) must be set and the interrupt sources should be specified either as high or low priority interrupt. The interrupt priority bit TMR0IP (INTCON2<2>) is used to specify the interrupt priority for Timer0. This bit is reset so timer0 interrupt is set to low priority. On the other hand, no need to specify the priority of the external interrupt (INT0), because it is already set to high priority by default.
After configuring the interrupts, the program will enter an infinite loop until one of the interrupt sources is triggered.
The main purpose of this routine is to calculate the controller output and send it to the DAC serially through the synchronous SPI module [12]. Figure 8 shows the routine function.
Timer interrupt routine.
Because of the importance of time in calculating the timed controller output, timer0 is used as an accurate hardware timer. The source clock of the timer is the crystal oscillator which is fed to the clock pin of Timer0 internally. The clock used is a 20 MHz derived from a stable crystal oscillator. This frequency is automatically divided by 4 because the controller machine cycle is 4 clocks to give a 5 MHz which is fed to the timer. The timer is exactly clocked every 0.2 μs and takes 13107.2 μs (16-bit mode) to count from zero to zero again. However, by loading the timer with a suitable value, a smaller time interval could be obtained. For example, by loading the timer with the value 4095 (0xFFF), the overflow would occur after 12288.2 μs. Alternatively, the time period can be extended by using a prescaler as was done in the main routine. If a divide by 64 prescaler is selected, timer0 only overflows after 838.848 ms. This is obtained as follows:
This time period is less than one second, while a one second sampling time is required for the design in hand. To obtain a one second sampling time, the timer should count 78,125 pulses.
Because timer0 register is only 16 bit wide, it is only limited to count up to 65,535 pulses. The interruption is trigged several times to obtain one second timing, after which the controller computes the control action and sends it to the DAC. By using MPLAP simulator, it was found that 5362 cycles are required to calculate the controller output and send it to the DAC besides 51 extra cycles needed to reload the timer with time constant. If the interruption is required to repeat itself five times before calculating the controller output, one needs 5362 + 51 × 5 = 5617 cycles (1.1234 ms). Thus, in order to get exactly one second sampling time, the timer register (TMR0) has to be reloaded with a value that interrupts the program every 998.8766 ms (1 s–1.1234 ms). The following shows how this value is obtained:
By using a timer with 64 prescaler:
When we repeat the interrupt for 5 times:
But because the timer counts in ascending order (from 0x0000 to 0xFFFF):
However, the timer register accepts only integer numbers, thus the final value that should be added to the timer register is 49918. Because we omitted the numbers after the decimal point, our error will be ± 1 count which is equal to 64 cycles. Therefore, our error in calculating the sampling time will be:
This calculation is for getting 1 s sampling time. To expand the calculation in order to enable the user to change the sampling time, one defines two integer variables (repeat and cycle). The first variable repeat is to determine how many times we need to repeat the interrupt, while the second one cycle is the final value that should be added to the timer register. The following pseudo code shows the general formula used to reload the timer register.
The ADC module normally operates at 10-bits resolution, giving output digital values 0–1024 [13]. It needs a reference voltage to set the maximum and minimum values for the input conversion. This reference can be provided internally as Vdd and Vss (supply values) or externally through Vref+ and Vref− pins. To configure this module, OpenADC function from Microchip C library is used. This function performs a bitwise AND operation (“&”) between its arguments which are defined in the file adc.h. The parameters of this function along with their meaning of each argument are discussed below [1]
ADC_FOSC_32: FOSC/32.
A clock divider to allow the minimum specified conversion time (about 20 μs). A 32 prescaler was chosen because the clock source is 20 MHz
ADC_RIGHT_JUST: Right justified.
Because the ADRES register pair (where the converted values are loaded) is 16-bit wide. But the ADC is only 10bit wide. The ADC module could either be configured as right or left justified. In this project, right justified is chosen as shown in Figure 9. This sets the 6 most significant bits of register ADRES to zeros.
ADC_8ANA_0REF: VREF+ = VDD, VREF− = VSS
The supply values are chosen as the voltage references to the ADC.
ADC_CH0: Channel0 (AN0) is selected
ADC_INT_OFF: Interrupts of ADC interrupts are disabled.
Once the A/D conversion is completed, the result is stored in an integer variable called result. After reading the analog value by the ADC module, the result will be compared with the variable alarm-trigger which was previously specified. If the result is greater than this value, the microcontroller triggers the buzzer and lights the red LED.
Choosing right justified for data input.
Due to the limitation in the microcontroller’s memory, the PID equation is divided into three terms (term_1, term_2, and term_3) and after calculating each term separately, they are added together along with the previous output to give the controller output which will be sent to the DAC. The following code shows how to calculate the controller output
To send the control variable to the final control element, the serial DAC, which is interfaced to the Serial Peripheral Interface (SPI) port, is used. The SPI is initiated using Microchip C library called OpenSPI. This function also performs a bitwise AND operation between its arguments which are defined in the file SPI.h according to the following formula.
SPI_FOSC_16: Master mode and the clock = FOSC/16
MODE_00: Mode 0,0 (change takes place on the rising edge)
SMPEND: Input data sample at end of data out
After configuring the module, it is time to write a command to the DAC in order to convert it into analog signal. The write command is initiated by driving the CS pin low, followed by clocking the four configuration bits and the 12 data bits into the SDI pin on the rising edge of SCK. The CS pin is then raised, causing the data to be latched into the DAC’s input registers and when the LDAC pin is pulled down through RC1, the values held in the DAC’s input registers are transferred into the DAC’s output registers to provide the analog signal. It is important to mention here that we wrote the write command in two steps (as shown in the following code) because the SPI module send only 8 bit at a time.
To write characters to the LCD, required prewritten functions are provided by Application Maestro. Some of These functions are listed in following table:
It is used to initialize the LCD module according to the Application Maestro options | |
It sends the clocking signal and data to be displayed to the LCD | |
Points to the first address location of line one of the LCD | |
Points to the first address location of line two of the LCD | |
Clears the DDRAM content of the LCD and points to the 00 address location | |
Displays String in Program memory | |
Displays String in Data memory | |
It sends clocking signal and instructions to the LCD |
For numbers to be displayed, they are first converted into strings (characters) before being sent to the LCD, since the latter only accepts strings. To do so a C function called sprintf is called upon. This function saves the number in an array after converting it into string. The subroutine to do so is shown below [4]:
The main function of this routine is to allow the user to change the controller parameters. The routine is initiated by pressing the push button (STOP) which is connected to the external interrupt pin (RB0/INT0). Once initiated, the user is able to change all the parameters of the controller (KC, τI, τD, sampling time, alarm trigger and sensitivity) by using three push buttons (MODE, INCREMENT and DECREMENT [11].
To determine which action the microcontroller should take if any push button is pressed, we defined two integer variables (present_button and present_mode) to be used as statuses. That is, each bit of them has specific meaning as described below:
present_button
Np | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | dec | inc | Mod |
bit15 | bit0 |
● | Np: set if there are no push buttons pressed |
● | Unimplemented |
● | dec: set if the DECREMENT push button pressed |
● | inc: set if the INCREMENT push button pressed |
● | mod: set if the MODE push button pressed |
present_mode
____ | Srt | Spt | KC | TI | TD | Stm | Sen | Alm | Tun | Dp | Tp | Kp | ____ | ____ | ____ |
bit15 | bit0 |
● | Unimplemented |
● | Srt: set in the starting mode |
● | Spt: set in the set point mode |
● | KC: set in the controller gain mode |
● | TI: set in the integral time mode |
● | TD: set in the derivative time mode |
● | Stm: set in the sampling time mode |
● | Sen: set in the sensitivity mode |
● | Alm: set in the alarm mode |
● | Tun: set in the tuning mode |
● | Dp: set in the process delay mode |
● | Tp: set in the process time constant mode |
● | Kp: set in the process gain mode |
● | Unimplemented |
Initially, before pressing any push button, present_button variable is loaded with 0x8000 (no push button pressed), and present_mode with 0x2000 (starting mode).Then if any push button is pressed, the corresponding bit of that push button will be set, giving a specific value of present_button which indicates the push button that was pressed by the user. So by performing a bitwise OR operation between the two variables (present_button and present_mode) we will come up with a number indicates the push button pressed and the present mode and based on that number we can decide the proper action to be taken by the microcontroller. The following code shows how to perform the OR operation after checking which of the push buttons was pressed. Beside changing the controller variables, this routine has another feature, it gives the user preliminary values of the controller parameters after entering the process variables. The result is derived based on Cohen-Koon tuning method. However, this feature is impractical if the sampling time is big [14].
To test the system, a first order system given by the equation below was used. To run the control action, the system was converted into a difference equation given by Eq. (10).
The process transfer function is first order, thus the discrete transfer function obtained using Zero-Order Hold will be:
where:
If kp = 10, τp = 5, and Ts = 1, The discrete transfer function will be:
Therefore the difference equation of the output is:
After getting the difference equation, the control scheme was tested and the output of Figure 10 was obtained with the parameters set to: Kc = 0.2, Ti = 4.0 and Td = 0.0. The parameters were then changed to: Kc = 0.1, Ti = 3.0 and Td = 0.2. The response is shown in Figure 11.
Controller response with Kc = 0.2, Ti = 4.0 and Td = 0.
Controller response with Kc = 0.1, Ti = 3.0 and Td = 0.2.
By referring to the previous graphs, it could be concluded that the response tracks the set point as expected. In addition, the increase in controller gain (Kc) does speed up the response but at the expense of the overshoot. Based on these results, it could be concluded that the three-term controller is working according to plan. Because of the flexibility of the microcontroller and its programming, any control scheme could be developed and implemented in the manner as described in this chapter. Not only that, the scheme could be transferred to several high range microcontrollers from the same company such as 16 or 32 bits with the use of the benefits those types of controllers offer.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10366},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:7},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:29},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:193},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5221},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"121",title:"Mechanical Engineering",slug:"mechanical-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:100,numberOfAuthorsAndEditors:2360,numberOfWosCitations:2169,numberOfCrossrefCitations:1443,numberOfDimensionsCitations:3322,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mechanical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9865",title:"Tribology in Materials and Manufacturing",subtitle:"Wear, Friction and Lubrication",isOpenForSubmission:!1,hash:"45fdde7e24f08a4734017cfa4948ba94",slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",bookSignature:"Amar Patnaik, Tej Singh and Vikas Kukshal",coverURL:"https://cdn.intechopen.com/books/images_new/9865.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",middleName:null,surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10025",title:"Numerical and Experimental Studies on Combustion Engines and Vehicles",subtitle:null,isOpenForSubmission:!1,hash:"44d31c0f408772b0e50d89e029f4b14d",slug:"numerical-and-experimental-studies-on-combustion-engines-and-vehicles",bookSignature:"Paweł Woś and Mirosław Jakubowski",coverURL:"https://cdn.intechopen.com/books/images_new/10025.jpg",editedByType:"Edited by",editors:[{id:"119441",title:"Ph.D.",name:"Paweł",middleName:null,surname:"Woś",slug:"pawel-wos",fullName:"Paweł Woś"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9266",title:"Machine Tools",subtitle:"Design, Research, Application",isOpenForSubmission:!1,hash:"3def867e2d654b757bb101201bc6d1e6",slug:"machine-tools-design-research-application",bookSignature:"Ľubomír Šooš and Jiri Marek",coverURL:"https://cdn.intechopen.com/books/images_new/9266.jpg",editedByType:"Edited by",editors:[{id:"141212",title:"Prof.",name:"Ľubomír",middleName:null,surname:"Šooš",slug:"ubomir-soos",fullName:"Ľubomír Šooš"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7615",title:"Fracture Mechanics Applications",subtitle:null,isOpenForSubmission:!1,hash:"eadc6edddc10fbeac471e10ff7921b75",slug:"fracture-mechanics-applications",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8457",title:"New Challenges in Residual Stress Measurements and Evaluation",subtitle:null,isOpenForSubmission:!1,hash:"884c1522185476729c2eec9adfba4f86",slug:"new-challenges-in-residual-stress-measurements-and-evaluation",bookSignature:"Caterina Casavola, Claudia Barile, Vincenzo Moramarco and Giovanni Pappalettera",coverURL:"https://cdn.intechopen.com/books/images_new/8457.jpg",editedByType:"Edited by",editors:[{id:"214432",title:"Dr.",name:"Caterina",middleName:null,surname:"Casavola",slug:"caterina-casavola",fullName:"Caterina Casavola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8884",title:"Modeling of Turbomachines for Control and Diagnostic Applications",subtitle:null,isOpenForSubmission:!1,hash:"c6dbeb78336e757a9b2bd79c80df28d2",slug:"modeling-of-turbomachines-for-control-and-diagnostic-applications",bookSignature:"Igor Loboda and Sergiy Yepifanov",coverURL:"https://cdn.intechopen.com/books/images_new/8884.jpg",editedByType:"Edited by",editors:[{id:"179551",title:"Dr.",name:"Igor",middleName:null,surname:"Loboda",slug:"igor-loboda",fullName:"Igor Loboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9265",title:"Strength of Materials",subtitle:null,isOpenForSubmission:!1,hash:"1ec891200aebef4dc2b19461e0ee4068",slug:"strength-of-materials",bookSignature:"Héctor Jaramillo S., Julian Arnaldo Avila and Can Chen",coverURL:"https://cdn.intechopen.com/books/images_new/9265.jpg",editedByType:"Edited by",editors:[{id:"255849",title:"Ph.D.",name:"Hector",middleName:"Enrique",surname:"Jaramillo S.",slug:"hector-jaramillo-s.",fullName:"Hector Jaramillo S."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8756",title:"Truss and Frames",subtitle:"Recent Advances and New Perspectives",isOpenForSubmission:!1,hash:"00e7e78de5960f0ba908fa07fb641683",slug:"truss-and-frames-recent-advances-and-new-perspectives",bookSignature:"Aykut Kentli",coverURL:"https://cdn.intechopen.com/books/images_new/8756.jpg",editedByType:"Edited by",editors:[{id:"109235",title:"Associate Prof.",name:"Aykut",middleName:null,surname:"Kentli",slug:"aykut-kentli",fullName:"Aykut Kentli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8369",title:"Creep Characteristics of Engineering Materials",subtitle:null,isOpenForSubmission:!1,hash:"810e34ac2596856d53111a3b50fd2542",slug:"creep-characteristics-of-engineering-materials",bookSignature:"Tomasz Ta?ski, Marek Sroka, Adam Zieli?ski and Grzegorz Gola?ski",coverURL:"https://cdn.intechopen.com/books/images_new/8369.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",middleName:null,surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8879",title:"Emerging Trends in Mechatronics",subtitle:null,isOpenForSubmission:!1,hash:"382fa5b9568d15939b7249bd46f2d09c",slug:"emerging-trends-in-mechatronics",bookSignature:"Aydin Azizi",coverURL:"https://cdn.intechopen.com/books/images_new/8879.jpg",editedByType:"Edited by",editors:[{id:"234387",title:"Prof.",name:"Aydin",middleName:null,surname:"Azizi",slug:"aydin-azizi",fullName:"Aydin Azizi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7766",title:"Rotating Machinery",subtitle:null,isOpenForSubmission:!1,hash:"4a5842ccd2018c329ea55e152e1545fc",slug:"rotating-machinery",bookSignature:"Getu Hailu",coverURL:"https://cdn.intechopen.com/books/images_new/7766.jpg",editedByType:"Edited by",editors:[{id:"250634",title:"Ph.D.",name:"Getu",middleName:null,surname:"Hailu",slug:"getu-hailu",fullName:"Getu Hailu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:100,mostCitedChapters:[{id:"35261",doi:"10.5772/34233",title:"Anisotropic Mechanical Properties of ABS Parts Fabricated by Fused Deposition Modelling",slug:"anisotropic-mechanical-properties-of-abs-parts-fabricated-by-fused-deposition-modeling-",totalDownloads:6659,totalCrossrefCites:71,totalDimensionsCites:176,book:{slug:"mechanical-engineering",title:"Mechanical Engineering",fullTitle:"Mechanical Engineering"},signatures:"Constance Ziemian, Mala Sharma and Sophia Ziemian",authors:[{id:"89554",title:"Dr.",name:"Mala",middleName:null,surname:"Sharma",slug:"mala-sharma",fullName:"Mala Sharma"},{id:"98759",title:"Dr.",name:"Constance",middleName:null,surname:"Ziemian",slug:"constance-ziemian",fullName:"Constance Ziemian"},{id:"137165",title:"Ms.",name:"Sophia",middleName:null,surname:"Ziemian",slug:"sophia-ziemian",fullName:"Sophia Ziemian"}]},{id:"21928",doi:"10.5772/20790",title:"Tribological Aspects of Rolling Bearing Failures",slug:"tribological-aspects-of-rolling-bearing-failures",totalDownloads:17603,totalCrossrefCites:34,totalDimensionsCites:58,book:{slug:"tribology-lubricants-and-lubrication",title:"Tribology",fullTitle:"Tribology - Lubricants and Lubrication"},signatures:"Jürgen Gegner",authors:[{id:"40520",title:"Dr.",name:"Jürgen",middleName:null,surname:"Gegner",slug:"jurgen-gegner",fullName:"Jürgen Gegner"}]},{id:"44858",doi:"10.5772/55860",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:5915,totalCrossrefCites:20,totalDimensionsCites:46,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]}],mostDownloadedChaptersLast30Days:[{id:"62059",title:"Types of HVAC Systems",slug:"types-of-hvac-systems",totalDownloads:8532,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"hvac-system",title:"HVAC System",fullTitle:"HVAC System"},signatures:"Shaimaa Seyam",authors:[{id:"247650",title:"M.Sc.",name:"Shaimaa",middleName:null,surname:"Seyam",slug:"shaimaa-seyam",fullName:"Shaimaa Seyam"},{id:"257733",title:"MSc.",name:"Shaimaa",middleName:null,surname:"Seyam",slug:"shaimaa-seyam",fullName:"Shaimaa Seyam"}]},{id:"51959",title:"New Processes and Technologies to Reduce the Low‐Frequency Noise of Digital and Analog Circuits",slug:"new-processes-and-technologies-to-reduce-the-low-frequency-noise-of-digital-and-analog-circuits",totalDownloads:1401,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"advances-in-noise-analysis-mitigation-and-control",title:"Advances in Noise Analysis, Mitigation and Control",fullTitle:"Advances in Noise Analysis, Mitigation and Control"},signatures:"Philippe Gaubert and Akinobu Teramoto",authors:[{id:"181697",title:"Dr.",name:"Philippe",middleName:null,surname:"Gaubert",slug:"philippe-gaubert",fullName:"Philippe Gaubert"},{id:"182487",title:"Prof.",name:"Akinobu",middleName:null,surname:"Teramoto",slug:"akinobu-teramoto",fullName:"Akinobu Teramoto"}]},{id:"53939",title:"Closure Models for Lagrangian Gas Dynamics and Elastoplasticity Equations in Multimaterial Cells",slug:"closure-models-for-lagrangian-gas-dynamics-and-elastoplasticity-equations-in-multimaterial-cells",totalDownloads:1073,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"lagrangian-mechanics",title:"Lagrangian Mechanics",fullTitle:"Lagrangian Mechanics"},signatures:"Yury Yanilkin",authors:[{id:"181004",title:"Prof.",name:"Yury",middleName:"Vasilyevich",surname:"Yanilkin",slug:"yury-yanilkin",fullName:"Yury Yanilkin"}]},{id:"54521",title:"Basic Design Methods of Heat Exchanger",slug:"basic-design-methods-of-heat-exchanger",totalDownloads:5597,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"heat-exchangers-design-experiment-and-simulation",title:"Heat Exchangers",fullTitle:"Heat Exchangers - Design, Experiment and Simulation"},signatures:"Cüneyt Ezgi",authors:[{id:"187086",title:"Associate Prof.",name:"Cüneyt",middleName:null,surname:"Ezgi",slug:"cuneyt-ezgi",fullName:"Cüneyt Ezgi"}]},{id:"48647",title:"Modeling and Design of Plate Heat Exchanger",slug:"modeling-and-design-of-plate-heat-exchanger",totalDownloads:8063,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"heat-transfer-studies-and-applications",title:"Heat Transfer",fullTitle:"Heat Transfer Studies and Applications"},signatures:"Fábio A.S. Mota, E.P. Carvalho and Mauro A.S.S. Ravagnani",authors:[{id:"35110",title:"Prof.",name:"Mauro",middleName:null,surname:"Ravagnani",slug:"mauro-ravagnani",fullName:"Mauro Ravagnani"}]},{id:"66638",title:"Alternative Fuels for Internal Combustion Engines",slug:"alternative-fuels-for-internal-combustion-engines",totalDownloads:2106,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-future-of-internal-combustion-engines",title:"The Future of Internal Combustion Engines",fullTitle:"The Future of Internal Combustion Engines"},signatures:"Mehmet Ilhan Ilhak, Selim Tangoz, Selahaddin Orhan Akansu and Nafiz Kahraman",authors:null},{id:"45114",title:"Micro Gas Turbine Engine: A Review",slug:"micro-gas-turbine-engine-a-review",totalDownloads:10024,totalCrossrefCites:26,totalDimensionsCites:43,book:{slug:"progress-in-gas-turbine-performance",title:"Progress in Gas Turbine Performance",fullTitle:"Progress in Gas Turbine Performance"},signatures:"Marco Antônio Rosa do Nascimento, Lucilene de Oliveira\nRodrigues, Eraldo Cruz dos Santos, Eli Eber Batista Gomes, Fagner\nLuis Goulart Dias, Elkin Iván Gutiérrez Velásques and Rubén Alexis\nMiranda Carrillo",authors:[{id:"47177",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Rosa Nascimento",slug:"marco-antonio-rosa-nascimento",fullName:"Marco Antonio Rosa Nascimento"},{id:"56448",title:"Dr.",name:"Eraldo",middleName:"Cruz Dos",surname:"Santos",slug:"eraldo-santos",fullName:"Eraldo Santos"},{id:"153776",title:"MSc.",name:"Rubén Alexis",middleName:null,surname:"Miranda Carrillo",slug:"ruben-alexis-miranda-carrillo",fullName:"Rubén Alexis Miranda Carrillo"},{id:"154317",title:"Dr.",name:"Lucilene De Oliveira",middleName:null,surname:"Rodrigues",slug:"lucilene-de-oliveira-rodrigues",fullName:"Lucilene De Oliveira Rodrigues"},{id:"154318",title:"MSc.",name:"Fagner Luis Goulart",middleName:null,surname:"Dias",slug:"fagner-luis-goulart-dias",fullName:"Fagner Luis Goulart Dias"},{id:"154319",title:"MSc.",name:"Elkin Iván Gutiérrez",middleName:null,surname:"Velásquez",slug:"elkin-ivan-gutierrez-velasquez",fullName:"Elkin Iván Gutiérrez Velásquez"},{id:"154572",title:"Dr.",name:"Fagner",middleName:"Luis Goulart",surname:"Dias",slug:"fagner-dias",fullName:"Fagner Dias"}]},{id:"44858",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:5917,totalCrossrefCites:20,totalDimensionsCites:46,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]},{id:"42327",title:"Design Methodology for a Quick and Low-Cost Wind Tunnel",slug:"design-methodology-for-a-quick-and-low-cost-wind-tunnel",totalDownloads:10783,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"wind-tunnel-designs-and-their-diverse-engineering-applications",title:"Wind Tunnel Designs and Their Diverse Engineering Applications",fullTitle:"Wind Tunnel Designs and Their Diverse Engineering Applications"},signatures:"Miguel A. González Hernández, Ana I. Moreno López, Artur A. Jarzabek, José M. Perales Perales, Yuliang Wu and Sun Xiaoxiao",authors:[{id:"43510",title:"Prof.",name:"Miguel",middleName:"Angel",surname:"Gonzalez",slug:"miguel-gonzalez",fullName:"Miguel Gonzalez"}]},{id:"52929",title:"Industrial Heat Exchanger: Operation and Maintenance to Minimize Fouling and Corrosion",slug:"industrial-heat-exchanger-operation-and-maintenance-to-minimize-fouling-and-corrosion",totalDownloads:2270,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"heat-exchangers-advanced-features-and-applications",title:"Heat Exchangers",fullTitle:"Heat Exchangers - Advanced Features and Applications"},signatures:"Teng Kah Hou, Salim Newaz Kazi, Abu Bakar Mahat, Chew Bee Teng,\nAhmed Al-Shamma’a and Andy Shaw",authors:[{id:"93483",title:"Dr.",name:"Salim Newaz",middleName:null,surname:"Kazi",slug:"salim-newaz-kazi",fullName:"Salim Newaz Kazi"},{id:"187135",title:"Ph.D.",name:"Kah Hou",middleName:null,surname:"Teng",slug:"kah-hou-teng",fullName:"Kah Hou Teng"},{id:"194347",title:"Prof.",name:"Abu Bakar",middleName:null,surname:"Mahat",slug:"abu-bakar-mahat",fullName:"Abu Bakar Mahat"},{id:"194348",title:"Dr.",name:"Bee Teng",middleName:null,surname:"Chew",slug:"bee-teng-chew",fullName:"Bee Teng Chew"},{id:"194349",title:"Prof.",name:"Ahmed",middleName:null,surname:"Al-Shamma'A",slug:"ahmed-al-shamma'a",fullName:"Ahmed Al-Shamma'A"},{id:"194350",title:"Prof.",name:"Andy",middleName:null,surname:"Shaw",slug:"andy-shaw",fullName:"Andy Shaw"}]}],onlineFirstChaptersFilter:{topicSlug:"mechanical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/renewable-energy-technologies-and-applications/design-of-three-term-controller-using-a-pic18f452-microcontroller",hash:"",query:{},params:{book:"renewable-energy-technologies-and-applications",chapter:"design-of-three-term-controller-using-a-pic18f452-microcontroller"},fullPath:"/books/renewable-energy-technologies-and-applications/design-of-three-term-controller-using-a-pic18f452-microcontroller",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()