InTech uses cookies to offer you the best online experience. By continuing to use our site, you agree to our Privacy Policy.

Chemistry » "Progress and Developments in Ionic Liquids", book edited by Scott Handy, ISBN 978-953-51-2902-8, Print ISBN 978-953-51-2901-1, Published: February 22, 2017 under CC BY 3.0 license. © The Author(s).

Chapter 13

Ionic Liquid Crystals Based on Pyridinium Salts

By Viorel Cîrcu
DOI: 10.5772/65757

  1. K. V. Axenov, S. Laschat, Thermotropic ionic liquid crystals, Materials, 2011, 4, 206–259. DOI: 10.3390/ma4010206

  2. K. Binnemans, Ionic liquid crystals, Chem. Rev., 2005, 105, 4148–4204. DOI: 10.1021/cr0400919

  3. K. Goossens, K. Lava, C. W. Bielawski, K. Binnemans, Chem. Rev., 2016, 116, 4643–4807. DOI: 10.1021/cr400334b

  4. E. J. R. Sudholter, J. B. F. N. Engberts, W. H. de Jeu, Thermotropic liquid-crystalline behavior of some single- and double-chained pyrdinium amphyphiles, J. Phys. Chem., 1982, 86, 1908–1913. DOI: 10.1021/j100207a035

  5. J.-T. Lu, C.-K. Lee, I. J. B. Lin, Ionic liquid crystals derived from 4-hydroxypyridine, Soft Matter, 2011, 7, 3491–3501. DOI: 10.1039/c0sm01376e

  6. X. Yang, S. Tan, T. Liang, B. Wei, Y. Wu, Synthesis, characterization, and electrochemical properties of smectic pyridinium salts with inorganic dihydrogen phosphate ions, Ionics, 2016, 22, 85–92. DOI: 10.1007/s11581-015-1524-x

  7. X. Zhu, B. Tartsch, U. Beginn, M. Müller, Wedge-shaped molecules with a sulfonate group at the tip–a new class of self-assembling amphiphiles, Chem. Eur. J., 2004, 10, 3871–3878. DOI: 10.1002/chem.200400050

  8. U. Beginn, L. Yan, S. N. Chvalun, M. A. Shcherbina, A. Bakirov, M. Möller, Thermotropic columnar mesophases of wedge‐shaped benzenesulfonic acid mesogens, Liq. Cryst., 2008, 35, 1073–1093. DOI: 10.1080/02678290802376107

  9. M. J. Mayoral, P. Ovejero, J. A. Campo, J. V. Heras, E. Pinilla, M. R. Torres, M. Cano, Ionic liquid crystals from β-diketonyl containing pyridinium cations and tetrachlorozincate anions, Inorg. Chem. Commun., 2009, 12, 214−218. DOI: 10.1016/j.inoche. 200 8.12.016

  10. M. J. Mayoral, P. Ovejero, J. A. Campo, J. V. Heras, E. Oliveira, B. Pedras, C. Lodeiro, M. Cano, Exploring photophysical properties of new boron and palladium(II) complexes with β-diketone pyridine type ligands: from liquid crystals to metal fluorescence probes, J. Mater. Chem., 2011, 21, 1255−1263. DOI: 10.1039/c0jm02698k

  11. M. J. Mayoral, P. Cornago, R. M. Claramunt, M. Cano, Pyridyl and pyridiniumyl β-diketones as building blocks for palladium(II) and allyl-palladium(II) isomers. Multinuclear NMR structural elucidation and liquid crystal behaviour, New J. Chem., 2011, 35, 1020−1030. DOI: 10.1039/c0nj00938e

  12. C. G. Bazuin, D. Guillon, A. Skoulios, J.-F. Nicoud, The thermotropic mesophase structure of two long-chain alkyl pyridinium halides, Liq. Cryst., 1986, 1, 181–188. DOI: 10.1080/02678298608086504

  13. J. J. H. Nusselder, J. B. F. N. Engberts, H. A. Van Doren, Liquid crystalline and thermochromic behaviour of 4-substituted 1-methylpyridinium iodide surfactants, Liq. Cryst., 1993, 13, 213–225. DOI: 10.1080/02678299308026295

  14. C. J. Bowlas, D. W. Bruce, K. R. Seddon, Liquid-crystalline ionic liquids, Chem. Commun., 1996, 1625–1626. DOI: 10.1039/CC9960001625

  15. S. Ujiie, A. Mori, Cubic mesophase formed by thermotropic liquid crystalline ionic systems-effects of polymeric counter ion, Mol. Cryst. Liq. Cryst., 2005, 437, 1269−1275.

  16. C. Cruz, B. Heinrich, A. C. Ribeiro, D. W. Bruce, D. Guillon, Structural study of smectic A phases in homologous series of N-alkylpyridinium alkylsulphates, Liq. Cryst., 2000, 27, 1625–1631. DOI: 10.1080/026782900750037185

  17. D. W. Bruce, S. Estdale, D. Guillon, B. Heinrich, Mesomorphic N-alkylpyridinium dodecylsulphates, Liq. Cryst., 1995, 19, 301–305. DOI: 10.1080/02678299508031983

  18. F. Neve, O. Francescangeli, A. Crispini, J. Charmant, A2[MX4] Copper(II) pyridinium salts. From ionic liquids to layered solids to liquid crystals, Chem. Mater., 2001, 13, 2032–2041. DOI: 10.1021/cm000804d

  19. T. Mihelj, V. Tomašić, Thermal behavior of dodecylpyridinium-based surfactant salts with varied anionic constituent, J. Dispers. Sci. Technol., 2014, 35(4), 581–592. DOI: 10.1080/01932691.2013.811683

  20. G. Kohnen, M. Tosoni, S. Tussetschläger, A. Baro, S. Laschat, Counterion Effects on the mesomorphic properties of chiral imidazolium and pyridinium ionic liquid, Eur. J. Org. Chem., 2009, 5601–5609. DOI: 10.1002/ejoc.200900730

  21. M. Tosoni, S. Laschat, A. Baro synthesis of novel chiral ionic liquids and their phase behavior in mixtures with smectic and nematic liquid crystals, Helv. Chim. Acta, 2004, 87, 2742–2749. DOI: 10.1002/hlca.200490247

  22. M. Tabrizian, A. Soldera, M. Couturier, C. G. Bazuin, Pyridinium salt liquid crystals effect of mesogen extension and alkyl chain length, Liq. Cryst., 1995, 18, 475–482. DOI: 10.1080/02678299508036647

  23. D. Ster, U. Baumeister, J. Chao, C. Tschierske, G. Israel, Synthesis and mesophase behaviour of ionic liquid crystals. J. Mater. Chem., 2007, 17, 3393−3400. DOI: 10.1039/b705519f

  24. C. M. Gordon, J. D. Holbrey, A. R. Kennedya, K. R. Seddon, Ionic liquid crystals: hexafluorophosphate salts, J. Mater. Chem., 1998, 8, 2627–2636. DOI: 10.1039/A806169F

  25. Y. Haramoto, S. Ujiie, M. Nanasawa, New pyridinium type ionic liquid crystal compounds with a 1,3-dioxane ring in the principal structure, Liq. Cryst., 1996, 21, 923–925. DOI: 10.1080/02678299608032911

  26. J. Baudoux, P. Judeinstein, D. Caharda, J.-C. Plaquevent, Design and synthesis of novel ionic liquid/liquid crystals (IL2Cs) with axial chirality, Tetrahedron Lett., 2005, 46, 1137–1140. DOI: 10.1016/j.tetlet.2004.12.097

  27. Y. Z. Yousif, A. A. Othman, W. A. Al-masoudi, P. R. Alapati, Some novel cholesteric liquid crystals, Liq. Cryst., 1992, 12, 363–368. DOI: 10.1080/02678299208031053

  28. J. Tao, J. Zhong, P. Liu, S. Daniels, Z. Zeng, Pyridinium-based ionic liquid crystals with terminal fluorinated pyrrolidine, J. Fluor. Chem., 2012, 144, 73–78. DOI: 10.1016/j.jfluchem.2012.07.009

  29. N. G. Filippi, D. Zambelli Mezalira, S. Ovalle, E. Westphal, Study of the mesomorphic behaviour through the structure modification of azo and acetylene pyridinium and imidazolium-based ionic liquid crystals, Liq. Cryst., 2016. DOI: 10.1080/02678292.2016.1199817

  30. Y. Kosaka, T. Kato, T. Uryu, Thermotropic liquid crystalline ionic stilbazoles and their miscible mixtures with non-ionic carbazolyl compounds, Liq. Cryst., 1995, 18, 693–698. DOI: 10.1080/02678299508036678

  31. K. Binnemans, C. Bex, R. Van Deun, Ionic liquid crystals with hemicyanine chromophores, J. Incl. Phenom. Macrocycl. Chem., 1999, 35, 63. DOI: 10.1023/A:1008146431142

  32. D. Haristoy, D. Tsiourvas, Novel ionic liquid-crystalline compounds bearing oxadiazole and pyridinium moieties as prospective materials for optoelectronic applications, Chem. Mater., 2003, 15, 2079–2083. DOI: 10.1021/cm021365g

  33. D. Haristoy, D. Tsiourvas, Effect of counterions on the thermotropic and thermochromic properties of ionic liquid crystals, Liq. Cryst., 2004, 31, 697–703. DOI: 10.1080/02678290410001675110

  34. E. Westphal, D. Henrique da Silva, F. Molin, H. Gallardo, Pyridinium and imidazolium 1,3,4-oxadiazole ionic liquid crystals: a thermal and photophysical systematic investigation, RSC Adv., 2013, 3, 6442–6454. DOI: 10.1039/C3RA23456H

  35. J. A. Pedro, J. R. Mora, E. Westphal, H. Gallardo, H. D. Fiedler, F. Nome, Photophysical study and theoretical calculations of an ionic liquid crystal bearing oxadiazole, J. Mol. Struct., 2012, 1016, 76–81. DOI: 10.1016/j.molstruc.2012.02.046

  36. F. Lo Celso, I. Pibiri, A. Triolo, R. Triolo, A. Pace, S. Buscemib, N. Vivona, Study on the thermotropic properties of highly fluorinated 1,2,4-oxadiazolylpyridinium salts and their perspective applications as ionic liquid crystals, J. Mater. Chem., 2007, 17, 1201–1208. DOI: 10.1039/b615190f

  37. A. Pana, F. L. Badea, M. Ilis, T. Staicu, M. Micutz, I. Pasuk, V. Cîrcu, Effect of counterion on the mesomorphic behavior and optical properties of columnar pyridinium ionic liquid crystals derived from 4-hydroxypyridine, J. Mol. Struct., 2015, 1083, 245−251. DOI: 10.1016/j.molstruc.2014.11.059

  38. S. Kumar, S. K. Pal, Ionic discotic liquid crystals: synthesis and characterization of pyridinium bromides containing a triphenylene core, Tetrahedron Lett., 2005, 46, 4127−4130. DOI: 10.1016/j.tetlet.2005.03.201

  39. L. Cui, V. Sapagovas, G. Lattermann, Synthesis and thermal behaviour of liquid crystalline pyridinium bromides containing a biphenyl core, Liq. Cryst., 2002, 29, 1121–1132. DOI: 10.1080/02678290210155589

  40. R. G. Santos-Martell, A. Ceniceros-Olguín, L. Larios-López, R. J. Rodríguez-González, D. Navarro- Rodríguez, B. Donnio, D. Guillon, Synthesis and thermotropic liquid-crystalline properties of N-alkylpyridinium bromides substituted with a terphenylene moiety, Liq. Cryst., 2009, 36, 787–797. DOI: 10.1080/02678290903060618

  41. M. R. Imam, M. Peterca, U. Edlund, V. S. K. Balagurusamy, V. Percec, Dendronized supramolecular polymers self-assembled from dendritic ionic liquids, J. Polym. Sci.: Part A: Polym. Chem., 2009, 47, 4165–4193. DOI: 10.1002/pola.23523

  42. A. Pană, I. Pasuk, M. Micutz, V. Cîrcu, Nematic ionic liquid crystals based on pyridinium salts derived from 4-hydroxypyridine, CrystEngComm., 2016, 18, 5066–5069. DOI: 10.1039/C6CE00618C

  43. W. Li, J. Zhang, B. Li, M. Zhang, L. Wu, Branched quaternary ammonium amphiphiles: nematic ionic liquid crystals near room temperature, Chem. Commun., 2009, 5269–5271. DOI: 10.1039/B909605A

  44. L. Lu, N. Sharma, G.A.N. Gowda, C.L. Khetrapal, R.G. Weiss, Enantiotropic nematic phases of quaternary ammonium halide salts based on trioctadecylamine, Liq. Cryst., 1997, 22, 23−28. DOI: 10.1080/026782997209630

  45. K. Goossens, P. Nockemann, K. Driesen, B. Goderis, C. Görller-Walrand, K. Van Hecke, L. Van Meervelt, E. Pouzet, K. Binnemans, T. Cardinaels, Imidazolium ionic liquid crystals with pendant mesogenic groups, Chem. Mater., 2008, 20, 157–168. DOI: 10.1021/cm702321c

  46. A. Pană, M. Ilis, M. Micutz, F. Dumitrascu, I. Pasuk, V. Cîrcu, Liquid crystals based on silver carbene complexes derived from dimeric bis(imidazolium) bromide salts, RSC Adv., 2014, 4, 59491–59497. DOI: 10.1039/C4RA11023D

  47. S. Ahn, S. Yamakawa, K. Akagi, Liquid crystallinity-embodied imidazolium-based ionic liquids and their chiral mesophases induced by axially chiral tetra-substituted binaphthyl derivatives, J. Mater. Chem. C, 2015, 3, 3960−3970. DOI: 10.1039/C4TC02968B

  48. X. H. Cheng, X. Q. Bai, S. Jing, H. Ebert, M. Prehm, Self-assembly of imidazolium-based rodlike ionic liquid crystals: transition from lamellar to micellar organization, Chem. Eur. J., 2010, 16, 4588−4601. DOI: 10.1002/chem.200903210

  49. X. Liu, J. L. Liu, B. Cai, X. M. Ren, A charge transfer salt consisted of bis(maleonitriledithiolato)zincate dianion and 1,1'-didecyl-4,4'-bipyridinium exhibiting uncommon nematic mesophase behavior, Inorg. Chem. Commun., 2011, 14, 1428−1431. DOI: 10.1016/j.inoche.2011.05.038

  50. M. Ghedini, D. Pucci, Cyclopalladation of 5-(1-hexyl)-2{[4′-(1-undecyloxy)phenyl]}-pyrimidine. Synthesis and characterization of mononuclear complexes, J. Organomet. Chem., 1990, 395, 105−112. DOI: 10.1016/0022-328X(90)85265-Z

  51. A. Liebmann, C. Mertesdorf, T. Plesnivy, H. Ringsdorf, J. H. Wendorff, Complexation of transition metal ions with substituted aza macrocycles: induction of columnar mesophases by molecular recognition, Angew. Chem. Int. Ed. Engl., 1991, 30, 1375−1377. DOI: 10.1002/anie.199113751

  52. J. W. Goodby, G. H. Mehl, I. M. Saez, R. P. Tuffin, G. Mackenzie, R. Auzely-Velty, T. Benvegnu, D. Plusquellec, Liquid crystals with restricted molecular topologies: supermolecules and supramolecular assemblies, Chem. Commun., 1998, 2057−2070. DOI: 10.1039/A802762E

  53. B. Ringstrand, A. Jankowiak, L. E. Johnson, P. Kaszynski, D. Pociecha, E. Gorecka, Anion-driven mesogenicity: a comparative study of ionic liquid crystals based on the [closo-1-CB9H10]− and [closo-1-CB11H12]−clusters, J. Mater. Chem., 2012, 22, 4874−4880. DOI: 10.1039/C2JM15448J

  54. A. Jankowiak, J. Kanazawa, P. Kaszynski, R. Takita, M. Uchiyama, [closo-1-CB11H11-1-Ph]− as a structural element for ionic liquid crystals, J. Organomet. Chem., 2013, 747, 195−200. DOI: 10.1016/j.jorganchem.2013.05.034

  55. V. Causin, G. Saielli, Effect of asymmetric substitution on the mesomorphic behaviour of low-melting viologen salts of bis(trifluoromethanesulfonyl)amide. J. Mater. Chem. 2009, 19, 9153–9162. DOI: 10.1039/b915559g

  56. V. Causin, G. Saielli, Effect of a structural modification of the bipyridinium core on the phase behaviour of viologen-based bistriflimide salts. J. Mol. Liq. 2009, 145, 41–47. DOI: 10.1016/j.molliq.2008.11.013

  57. G. Casella, V. Causin, F. Rastrelli, G. Saielli, Viologen-based ionic liquid crystals: induction of a smectic A phase by dimerisation, Phys. Chem. Chem. Phys., 2014, 16, 5048–5051. DOI: 10.1039/C3CP54628D

  58. M. Bonchio, M. Carraro, G. Casella, V. Causin, F. Rastrelli, G. Saielli, Thermal behaviour and electrochemical properties of bis(trifluoromethanesulfonyl)amide and dodecatungstosilicate viologen dimers, Phys. Chem. Chem. Phys., 2012, 14, 2710–2717. DOI: 10.1039/C2CP23580C

  59. G. Casella, V. Causin, F. Rastrelli, G. Saielli, Ionic liquid crystals based on viologen dimers: tuning the mesomorphism by varying the conformational freedom of the ionic layer, Liq. Cryst., 2016, 43, 1161–1173. DOI: 10.1080/02678292.2016.1161852

  60. J. C. Díaz-Cuadros, L. Larios-López, R. J. Rodríguez-González, B. Donnio, D. Guillon, D. Navarro-Rodríguez, Ionic liquid crystals bearing bipyridinium and pentaphenylene groups, J. Mol. Liq., 2010, 157, 133–141. DOI: 10.1016/j.molliq.2010.09.002

  61. K. Tanabe, T. Yasuda, M. Yoshio, T. Kato, Viologen-based redox-active ionic liquid crystals forming columnar phases, Org. Lett., 2007, 9(21), 4271–4274. DOI: 10.1021/ol701741e.

  62. A. Pană, M. Iliş, T. Staicu, I. Pasuk, V. Cîrcu, Columnar bis(pyridinium) ionic liquid crystals derived from 4-hydroxypyridine: synthesis, mesomorphism and emission properties. Liq. Cryst., 2016, 43, 381–392. DOI: 10.1080/02678292.2015.1116630

  63. S. Kohmoto, T. Chuko, S. Hisamatsu, Y. Okuda, H. Masu, M. Takahashi, K. Kishikawa, Piezoluminescence and liquid crystallinity of 4,4′-(9,10-anthracenediyl)bispyridinium salts crystal. Growth Des., 2015, 15 (6), 2723–2731. DOI: 10.1021/acs.cgd.5b00028

  64. K. Tanabe, Y. Suzui, M. Hasegawa, T. Kato, Full-color tunable photoluminescent ionic liquid crystals based on tripodal pyridinium, pyrimidinium, and quinolinium salts, J. Am. Chem. Soc. 2012, 134, 5652−5661. DOI: 10.1021/ja3001979

  65. K. Tanabe, T. Yasuda, T. Kato, Luminescent ionic liquid crystals based on tripodal pyridinium salts, Chem. Lett., 2008, 37, 1208–1209. DOI: 10.1246/cl.2008.1208