InTech uses cookies to offer you the best online experience. By continuing to use our site, you agree to our Privacy Policy.

Medicine » Oncology » "Melanoma in the Clinic - Diagnosis, Management and Complications of Malignancy", book edited by Prof. Mandi Murph, ISBN 978-953-307-571-6, Published: August 23, 2011 under CC BY-NC-SA 3.0 license. © The Author(s).

Chapter 5

Modern Techniques for Computer-Aided Melanoma Diagnosis

By Maciej Ogorzałek, Leszek Nowak, Grzegorz Surówka and Ana Alekseenko
DOI: 10.5772/23388

  1. G. Argenziano, G. Fabbrocini, P. Carli, V. De Giorgi, P. Sammarco, M. Delfino, 1998Epiluminescence Microscopy for the Diagnosis of Doubtful Melanocytic Skin Lesions. Arch. Dermatl. 13415631570

  2. P. Baim, 1982The PROMISE Method For Selecting Most Relevant Attributes For Inductive Learning Systems, Reports of the Intelligent Systems Group, ISG 821UIUCDCS-F-82-898, Department of Computer Science, University of Illinois, Urbana, September

  3. M. Burroni, R. Corona, G. Dell’Eva, F. Sera, R. Bono, P. Puddu, R. Perotti, F. Nobile, L. Andreassi, P. Rubegni, 2004Melanoma Computer-Aided Diagnosis: Reliability and Feasibility Study. Clin. Cancer Res. 1018811886

  4. P. Carli, V. De Giorgi, D. Massi, B. Giannotti, 2000The Role of Pattern Analysis and the ABCD rule of dermoscopy in the detection of histological atypia in Melanocytic Naevi. British J. Dematol. 143290297

  5. H. P. Chan, B. Sahiner, R. F. Wagner, N. Petrick, 1999Classifier Design for Computer-Aided Diagnosis: Effects of Finite Sample Size and on Mean Performance of Classical and Neural Network Classifiers. Med. Phys. 2626542668

  6. Chang C.C., Lin C.J., LIBSVM: a library for support vector machines, Available from: http://www.csie.ntu.edu.tw/cjlin/libsvm

  7. C. C. Chang, C. J. Lin, 1998Training- support vector classifiers: theory and algorithms, Receiver operating characteristic (ROC) analysis in Basic principles and applications in radiology, European Journal of Radiology 278894

  8. T. Chang, C. C. J. Kuo, 1993Texture Analysis and Classification with Tree-Structured Wavelet Transform, IEEE Transactions on Image Processing, 2

  9. I. Daubechies, 1992Ten Lectures on Wavelets, S.I.A.M., Philadelphia, Numerical Recipes in C, The art of scientific computing, PWN 1999, 591606

  10. Y. Deng, B. S. Manjunat, 2001Unsupervised segmentation of color-texture regions in images and video, IEEE Transactions on Pattern Analysis and Machine Intelligence

  11. T. L. Diepgen, G. Eysenbach, 1998Digital Images in Dermatology and the Dermatology Online Atlas on the World Wide Web. J. Dermatol. 25(12), 782-787

  12. S. Dreiseitl, L. Ohno-Machado, H. Kittler, S. Vinterbo, H. Billhards, M. A. Binder, 2001Comparison of Machine Learning Methods for the Diagnosis of Pigmented Skin Lesions. J. Biomed. Inform. 342836

  13. European Consensus-based Interdisciplinary Guideline2009Developed by the Guideline Subcommittee of the European Dermatology Forum, Available from: http://www.euroderm.org/download/guideline_on_malignant_melanoma-aktuell-2.pdf

  14. T. Fikrle, K. Pizinger, 2006Digital analysis of dermatoscopical images of 260 melanocytic skin lesions; perimeter/area ratio for the differentiation between malignant melanomas and melanocytic nevi, Eur. Acad. Derm.Vener., 21.

  15. P. Grzymala-Busse, J. W. Grzymala-Busse, Z. S. Hippe, 2001Melanoma prediction using data mining system LERS. In: Computer Software and Applications Conference, COMPSAC 2001, 615620

  16. P. N. Hall, E. Claridge, J. D. Smith, 1995Computer Screening for Early Detection of Melanoma: Is there a Future? British J. Dermatol. 132325328

  17. H. Iyatomi, H. Oka, M. Hasimoto, M. Tanaka, K. Ogawa, 2005An Internet-based Melanoma Diagnostic System- Toward the Practical Application, Proceedings CIBCB ‘05, 14

  18. R. H. Johr, 2002Dermoscopy: Alternative Melanocytic Algorithms- The ABCD Rule of Dermatoscopy, Menzies Scoring Method, and 7-Point Checklist, Clinics in Dermatology (Elsevier), 20240247

  19. M. Kadiyala, V. De Brunner, 1999Effect of wavelet bases in texture classification using a tree structured wavelet transform, 33 Asilomar Conference on Signals, Systems, and Computers, 212921296

  20. R. Kerber, 1992Chimerge: Discretization for Numeric Attributes”, Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI Press, 123128

  21. Y. Liu, D. Zhang, G. Lu, Y. , 2005Region-based image retrieval with high-level semantic color names, IEEE Proceedings of the Multimedia Modeling Conference, 180187

  22. S. G. Mallat, 1989A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Transactions on pattern analysis and machine intelligence, 11

  23. Menzies S.W.1999Automated Epiluminescence Microscopy: Human vs Machine in the Diagnosis of Melanoma. Arch. Dermatol. 13515381540

  24. Menzies S.W., Leanne Bischof, Hugues Talbot, et al.2005The Performance of SolarScan. An Automated Dermoscopy Image Analysis Instrument for the Diagnosis of Primary Melanome. Archive of Dermatology, 13881396

  25. Merkwirth Ch., ENTOOL Statistical classification toolbox for MATLAB, Available from: http://zti.if.uj.edu.pl/~merkwirth/entool.htm

  26. A. L. Meyrowitz, S. Chipman, (ed., 1993Fundations of knowledge acquisition, Kluwer Academic Publishers.

  27. R. S. Michalski, K. Kaufman, J. Pietrzykowski, J. Wojtusiak, S. Mitchell, W. D. Seeman, 2006Natural Induction and Conceptual Clustering: A Review of Applications, Reports of the Machine Learning and Inference Laboratory, MLI 063George Mason University, Fairfax, VA

  28. R. S. Michalski, 2004Attributional Calculus: A Logic and Representation Language for Natural Induction, Reports of the Machine Learning and Inference Laboratory, MLI 042George Mason University, Fairfax, VA, 2004.

  29. A. Mojsilovic, M. V. Popovic, D. M. Rackov, 2000On the selection of an optimal wavelet basis for texture characterization, IEEE Transactions on Image Processing, 920432050

  30. F. Nachbar, W. Stolz, T. Merkle, A. B. Cognetta, T. Vogt, M. Landthaler, P. Bilek, O. Braun-Falco, G. Plewig, 1994The ABCD rule of dermatoscopy. High prospective value in the diagnosis of doubtful melanocytic skin lesions, Journal of the American Academy of Dermatology, 30551559

  31. M. Ogorzałek, G. Surówka, L. Nowak, Ch. Merkwirth, 2010Computational intelligence and image processing methods for applications in skin cancer diagnosis, in Biomedical Engineering Systems and Technologies, Communications in Computer and Information Science, 52320

  32. M. Ogorzałek, G. Surówka, L. Nowak, Ch. Merkwirth, 2009Computational intelligence and image processing methods for applications in skin cancer diagnosis, Lect. Notes, Comp. Sci.,

  33. S. B. Park, J. W. Lee, S. K. Kim, 2004Content-based image classification using neural network, 287300Pattern Recognition

  34. 287296Patwardhan S. V., Dai S., Dhawan A. P., (2005), Multi-spectral image analysis and classification of melanoma using fuzzy membership based partitions, Computerized Medical Imaging and Graphics, vol. 29, 2005, pp. 287-296

  35. S. V. Patwardhan, A. P. Dhawan, P. A. Relue, 2003Classification of melanoma using tree structured wavelet transforms, Computer Methods and Programs in Biomedicine, 72223239

  36. R. Porter, N. Canagarajah, 1996A Robust Automatic Clustering Scheme for Image Segmentation Using Wavelets, IEEE Transactions on Image Processing, 5662665

  37. D. S. Rigel, R. J. Friedman, A. W. Kopf, D. Polsky, 2005ABCDE--an evolving concept in the early detection of melanoma, Archives of Dermatology, 141810321034

  38. A. Sboner, et al.2003A multiple classifier for early melanoma diagnosis, Artificial Intelligence in Medicine, 272944

  39. P. Schmid-Saugeon, J. Guillod, J. Thiran, P. , 2003Towards a Computer-aided diagnosis System for Pigmented Skin Lesions. Computerized Medical Imaging and Graphics, 6578

  40. G. Surówka, Ch. Merkwirth, E. Żabińska-Płazak, A. Graca, 2006Wavelet based classification of skin lesion images, Bio-Algorithms and Med Systems, 244350

  41. G. Surówka, K. Grzesiak-Kopeć, 2007Different Learning Paradigms for the Classification of Melanoid Skin Lesions Using Wavelets, Proc. of. EMBC07, Lyon

  42. H. Talbot, L. Bischof, An overview of the Polartechnics SolarScan melanoma diagnosis algorithms, http://itee.uq.edu.au/~aprs/wdic2003/CDROM/33.pdf

  43. L. Thomas, P. Tranchand, F. Berard, T. Secchi, C. Colin, G. Moulin, 1998Semiological Value of ABCDE Criteria in the Diagnosis of Cutaneous Pigmented Tumors, Dermatology 1971117

  44. J. Wojtusiak, 2005AQ21 User’s Guide, Reports of the Machine Learning and Inference Laboratory, MLI 043George Mason University, Fairfax, VA

  45. Y. C. Wu, S. Y. Lee, C. J. Yang, 2008Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition, 28742889

  46. V. Vapnik, 1998Statistical Learning Theory, New York, NY: Springer-Verlag

  47. V. Vapnik, S. Golowich, A. Smola, 1997Support vector method for function approximation, regression estimation, and signal processing, in M. Mozer, M. Jordan and T. Petsche, Advances in Neural Information Processing Systems 9, Cambridge, MA, MIT Press, 1997, 281287

  48. E. Żabińska-Płazak, A. Wojas-Pelc, G. Dyduch, 2005Videodermatoscopy in the diagnosis of melanocytic skin lesions, Bio-Algorithms and Med-Systems, 1333338

  49. Dermatoscopes descriptions e.g. available from : DermLite http://www.dermlite.com/cms/en/products/handheld-products.html DermLite connection for iPhone 4 http://www.dermlite.com/cms/

  50. Dermatoscopic system descriptions e.g. available from : http://moleexpert.com/; http://www.dermamedicalsystems.com/index.php?menu_id=1; http://www.fotofinder.de/dermatoskopie.htmlhttp://www.fotofinder.de/dermatoskopie/software.html; http://www.moleanalyzer.com/; MoleMAX/PhotoMAX http://www.dermamedicalsystems.com/derma/MoleMaxII%20engl_.pdfDBDermo-Mips/DDAXSoftware http://www.ddax3.com/eng/index.html