InTech uses cookies to offer you the best online experience. By continuing to use our site, you agree to our Privacy Policy.

Engineering » Energy Engineering » "Liquid, Gaseous and Solid Biofuels - Conversion Techniques", book edited by Zhen Fang, ISBN 978-953-51-1050-7, Published: March 20, 2013 under CC BY 3.0 license. © The Author(s).

Chapter 8

Metabolic Engineering of Hydrocarbon Biosynthesis for Biofuel Production

By Anne M. Ruffing
DOI: 10.5772/52050

  1. Williams JL. (2011) Oil Price History and Analysis. WTRG Economics. Available: http://www.wtrg.com/prices.htm. Accessed 2012 April 16.

  2. Sawin JL, Martinot E, Barnes D, McCrone A, Roussell J, Sims R, et al. (2011) Renewables 2011 Global Status Report. Renewable Energy Policy Network for the 21st Century.

  3. Rittmann BE. (2008) Opportunities for Renewable Bioenergy Using Microorganisms. Biotechnol. Bioeng. 100(2):203-212.

  4. Christi Y. (2008) Biodiesel from Microalgae Beats Bioethanol. Trends Biotechnol. 26(3):126-131.

  5. Davis MS, Solbiati J, Cronan JE. (2000) Overproduction of Acetyl-CoA Carboxylase Activity Increases the Rate of Fatty Acid Biosynthesis in Escherichia coli. J. Biol. Chem. 275(37):28593-28598.

  6. Lee S, Jeon E, Yun H, Lee J. (2011) Improvement of Fatty Acid Biosynthesis by Engineered Recombinant Escherichia coli. Biotech. Biopro. Eng. 16(4):706-713.

  7. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á. (2009) Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties. Bioresour. Technol. 100(1):261-268.

  8. Dehesh K, Jones A, Knutzon DS, Voelker TA. (1996) Production of High Levels of 8:0 and 10:0 Fatty Acids in Transgenic Canola by Overexpression of Ch FatB2, a Thioesterase cDNA from Cuphea hookeriana. Plant J. 9(2):167-172.

  9. Jiang P, Cronan JE. (1994) Inhibition of Fatty Acid Synthesis in Escherichia coli in the Absence of Phospholipid Synthesis and Release of Inhibition by Thioesterase Action. J. Bacteriol. 176(10):2814-2821.

  10. Voelker TA, Davies HM. (1994) Alteration of the Specificity and Regulation of Fatty Acid Synthesis of Escherichia coli by Expression of a Plant Medium-Chain Acyl-Acyl Carrier Protein Thioesterase. J. Bacteriol. 176(23):7320-7327.

  11. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG. (2005) Synthesis of Biodiesel via Acid Catalysis. Ind. Eng. Chem. Res. 44(14):5353-5363.

  12. Liu T, Khosla C. (2010) Genetic Engineering of Escherichia coli for Biofuel Production. Annu. Rev. Genet. 44(1):53-69.

  13. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. (2011) Engineered Reversal of the β-Oxidation Cycle for the Synthesis of Fuels and Chemicals. Nature. 476(7360):355-359.

  14. Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, et al. (2001) Seed-Specific Over-Expression of an Arabidopsis cDNA Encoding a Diacylglycerol Acyltransferase Enhances Seed Oil Content and Seed Weight. Plant Physiol. 126(2):861-874.

  15. Dunahay T, Jarvis E, Dais S, Roessler P. (1996) Manipulation of Microalgal Lipid Production Using Genetic Engineering. Appl. Biochem. Biotechnol. 57-58(1):223-231.

  16. Nguyen HTT, Dieterich A, Athenstaedt K, Truong NH, Stahl U, Nevoigt E. (2004) Engineering of Saccharomyces cerevisiae for the Production of L-Glycerol 3-Phosphate. Metab. Eng. 6(2):155-163.

  17. Kalscheuer R, Luftmann H, Steinbüchel A. (2004) Synthesis of Novel Lipids in Saccharomyces cerevisiae by Heterologous Expression of an Unspecific Bacterial Acyltransferase. Appl. Environ. Microbiol. 70(12):7119-7125.

  18. Kalscheuer R, Stölting T, Steinbüchel A. (2006) Microdiesel: Escherichia coli Engineered for Fuel Production. Microbiol. 152(9):2529-2536.

  19. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, et al. (2010) Microbial Production of Fatty-Acid-Derived Fuels and Chemicals from Plant Biomass. Nature. 463(7280):559-562.

  20. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO. (1991) Genetic Improvement of Escherichia coli for Ethanol Production: Chromosomal Integration of Zymomonas mobilis Genes Encoding Pyruvate Decarboxylase and Alcohol Dehydrogenase II. Appl. Environ. Microbiol. 57(4):893-900.

  21. Hofvander P, Doan TTP, Hamberg M. (2011) A Prokaryotic Acyl-CoA Reductase Performing Reduction of Fatty Acyl-CoA to Fatty Alcohol. FEBS Lett. 585(22):3538-3543.

  22. Doan TTP, Carlsson AS, Hamberg M, Bülow L, Stymne S, Olsson P. (2009) Functional Expression of Five Arabidopsis Fatty Acyl-CoA Reductase Genes in Escherichia coli. J. Plant Physiol. 166(8):787-796.

  23. Tan X, Yao L, Gao Q, Wang W, Qi F, Lu X. (2011) Photosynthesis Driven Conversion of Carbon Dioxide to Fatty Alcohols and Hydrocarbons in Cyanobacteria. Metab. Eng. 13(2):169-176.

  24. Willis RM, Wahlen BD, Seefeldt LC, Barney BM. (2011) Characterization of a Fatty Acyl-CoA Reductase from Marinobacter aquaeolei VT8: A Bacterial Enzyme Catalyzing the Reduction of Fatty Acyl-CoA to Fatty Alcohol. Biochem. 50(48):10550-10558.

  25. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB. (2010) Microbial Biosynthesis of Alkanes. Science. 329(5991):559-562.

  26. Reppas NB, Ridley CP, inventors; Joule Unlimited, Inc., assignee. (2010) Methods and Compositions for the Recombinant Biosynthesis of n-Alkanes. patent US 7794969.

  27. Schirmer A, Rude MA, Brubaker S, inventors; LS9, Inc., assignee. (2010) Methods and Compositions for Producing Hydrocarbons. patent US 2010/0249470.

  28. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. (2008) Metabolic Engineering of Microorganisms for Biofuels Production: From Bugs to Synthetic Biology to Fuels. Curr. Opin. Biotechnol. 19(6):556-563.

  29. Chandran SS, Kealey JT, Reeves CD. (2011) Microbial Production of Isoprenoids. Process Biochem. 46(9):1703-1710.

  30. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, et al. (2008) Biofuel Alternatives to Ethanol: Pumping the Microbial Well. Trends Biotechnol. 26(7):375-381.

  31. Rude MA, Schirmer A. (2009) New Microbial Fuels: A Biotech Perspective. Curr. Opin. Microbiol. 12(3):274-281.

  32. Rilling H, K B. (1959) On the Mechanism of Sqalene Biogenesis from Mevalonic Acid. J. Biol. Chem. 234(6):1424-1432.

  33. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. (1993) Isoprenoid Biosynthesis in Bacteria: A Novel Pathway for the Early Steps Leading to Isopentenyl Diphosphate. Biochem. J. 295:517-524.

  34. Muntendam R, Melillo E, Ryden A, Kayser O. (2009) Perspectives and Limits of Engineering the Isoprenoid Metabolism in Heterologous Hosts. Appl. Microbiol. Biotechnol. 84(6):1003-1019.

  35. Yoon S-H, Lee S-H, Das A, Ryu H-K, Jang H-J, Kim J-Y, et al. (2009) Combinatorial Expression of Bacterial Whole Mevalonate Pathway for the Production of β-Carotene in E. coli. J. Biotechnol. 140(3–4):218-226.

  36. Pitera DJ, Paddon CJ, Newman JD, Keasling JD. (2007) Balancing a Heterologous Mevalonate Pathway for Improved Isoprenoid Production in Escherichia coli. Metab. Eng. 9(2):193-207.

  37. Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J. (2010) Enhancement of Farnesyl Diphosphate Pool as Direct Precursor of Sesquiterpenes Through Metabolic Engineering of the Mevalonate Pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 106(1):86-96.

  38. Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S. (2009) Overexpression of the Gene Encoding HMG-CoA Reductase in Saccharomyces cerevisiae for Production of Prenyl Alcohols. Appl. Microbiol. Biotechnol. 82(5):837-845.

  39. Kim S-W, Keasling JD. (2001) Metabolic Engineering of the Nonmevalonate Isopentenyl Diphosphate Synthesis Pathway in Escherichia coli Enhances Lycopene Production. Biotechnol. Bioeng. 72(4):408-415.

  40. Matthews PD, Wurtzel ET. (2000) Metabolic Engineering of Carotenoid Accumulation in Escherichia coli by Modulation of the Isoprenoid Precursor Pool with Expression of Deoxyxylulose Phosphate Synthase. Appl. Microbiol. Biotechnol. 53(4):396-400.

  41. Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S, et al. (2011) Biosynthesis of Isoprene in Escherichia coli via Methylerythritol Phosphate (MEP) Pathway. Appl. Microbiol. Biotechnol. 90(6):1915-1922.

  42. Kajiwara S, Fraser P, Kondo K, Misawa N. (1997) Expression of an Exogenous Isopentenyl Diphosphate Isomerase Gene Enhances Isoprenoid Biosynthesis in Escherichia coli. Biochem. J. 324:421-426.

  43. Ghimire GP, Lee HC, Sohng JK. (2009) Improved Squalene Production via Modulation of the Methylerythritol 4-Phosphate Pathway and Heterologous Expression of Genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl. Environ. Microbiol. 75(22):7291-7293.

  44. Morrone D, Lowry L, Determan M, Hershey D, Xu M, Peters R. (2010) Increasing Diterpene Yield with a Modular Metabolic Engineering System in E. coli Comparison of MEV and MEP Isoprenoid Precursor Pathway Engineering. Appl. Microbiol. Biotechnol. 85(6):1893-1906.

  45. Leonard E, Ajikumar PK, Thayer K, Xiao W-H, Mo JD, Tidor B, et al. (2010) Combining Metabolic and Protein Engineering of a Terpenoid Biosynthetic Pathway for Overproduction and Selectivity Control. Proceedings of the National Academy of Sciences.

  46. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. (2003) Engineering a Mevalonate Pathway in Escherichia coli for Production of Terpenoids. Nat Biotech. 21(7):796-802.

  47. Wang C, Yoon S-H, Jang H-J, Chung Y-R, Kim J-Y, Choi E-S, et al. (2011) Metabolic Engineering of Escherichia coli for α-Farnesene Production. Metab. Eng. 13(6):648-655.

  48. Wang C, Yoon S-H, Shah AA, Chung Y-R, Kim J-Y, Choi E-S, et al. (2010) Farnesol Production from Escherichia coli by Harnessing the Exogenous Mevalonate Pathway. Biotechnol. Bioeng. 107(3):421-429.

  49. Yang J, Zhao G, Sun Y, Zheng Y, Jiang X, Liu W, et al. (2012) Bio-Isoprene Production Using Exogenous MVA Pathway and Isoprene Synthase in Escherichia coli. Bioresour. Technol. 104(0):642-647.

  50. Yoon S-H, Lee Y-M, Kim J-E, Lee S-H, Lee J-H, Kim J-Y, et al. (2006) Enhanced Lycopene Production in Escherichia coli Engineered to Synthesize Isopentenyl Diphosphate and Dimethylallyl Diphosphate from Mevalonate. Biotechnol. Bioeng. 94(6):1025-1032.

  51. Farmer WR, Liao JC. (2000) Improving Lycopene Production in Escherichia coli by Engineering Metabolic Control. Nat Biotech. 18(5):533-537.

  52. Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD. (2007) Engineering of the Pyruvate Dehydrogenase Bypass in Saccharomyces cerevisiae for High-Level Production of Isoprenoids. Metab. Eng. 9(2):160-168.

  53. Farmer WR, Liao JC. (2001) Precursor Balancing for Metabolic Engineering of Lycopene Production in Escherichia coli. Biotechnol. Prog. 17(1):57-61.

  54. Asadollahi MA, Maury J, Patil KR, Schalk M, Clark A, Nielsen J. (2009) Enhancing Sesquiterpene Production in Saccharomyces cerevisiae Through in Silico Driven Metabolic Engineering. Metab. Eng. 11(6):328-334.

  55. Xue J, Ahring BK. (2011) Enhancing Isoprene Production by Genetic Modification of the 1-Deoxy-d-Xylulose-5-Phosphate Pathway in Bacillus subtilis. Appl. Environ. Microbiol. 77(7):2399-2405.

  56. Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, et al. (2010) Chlamydomonas Starchless Mutant Defective in ADP-Glucose Pyrophosphorylase Hyper-Accumulates Triacylglycerol. Metab. Eng. 12(4):387-391.

  57. Li Y, Han D, Hu G, Sommerfeld M, Hu Q. (2010) Inhibition of Starch Synthesis Results in Overproduction of Lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 107(2):258-268.

  58. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, et al. (2010) Increased Lipid Accumulation in the Chlamydomonas reinhardtii sta7-10 Starchless Isoamylase Mutant and Increased Carbohydrate Synthesis in Complemented Strains. Eukaryot. Cell. 9(8):1251-1261.

  59. Hu Z, Valle F, inventors; LS9, Inc, assignee. (2011) Enhanced Production of Fatty Acid Derivatives. patent US 2011/0256599.

  60. Lu X, Vora H, Khosla C. (2008) Overproduction of Free Fatty Acids in E. coli: Implications for Biodiesel Production. Metab. Eng. 10(6):333-339.

  61. Michinaka Y, Shimauchi T, Aki T, Nakajima T, Kawamoto S, Shigeta S, et al. (2003) Extracellular Secretion of Free Fatty Acids by Disruption of a Fatty Acyl-CoA Synthetase Gene in Saccharomyces cerevisiae. J. Biosci. Bioeng. 95(5):435-440.

  62. Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M. (2008) Mutants of Saccharomyces cerevisiae Deficient in Acyl-CoA Synthetases Secrete Fatty Acids due to Interrupted Fatty Acid Recycling. FEBS J. 275(11):2765-2778.

  63. Kamisaka Y, Tomita N, Kimura K, Kainou K, Uemura H. (2007) DGA1 (Diacylglycerol Acyltransferase Gene) Overexpression and Leucine Biosynthesis Significantly Increase Lipid Accumulation in the Δsnf2 disruptant of Saccharomyces cerevisiae. Biochem. J. 408:61-68.

  64. Nojima Y, Kibayashi A, Matsuzaki H, Hatano T, Fukui S. (1999) Isolation and Characterization of Triacylglycerol-Secreting Mutant Strain from Yeast, Saccharomyces cerevisiae. The Journal of General and Applied Microbiology. 45(1):1-6.

  65. del Cardayre SB, Milner Cockrem MC, inventors; LS9, Inc., assignee. (2009) Systems and Methods for the Production of Fatty Esters. patent WO/2009/009391.

  66. Keasling JD, Hu Z, Somerville C, Church G, Berry D, Friedman L, et al., inventors; LS9, Inc., assignee. (2007) Production of Fatty Acids and Derivatives Thereof. patent WO/2007/136762.

  67. Zhang F, Carothers JM, Keasling JD. (2012) Design of a Dynamic Sensor-Regulator System for Production of Chemicals and Fuels Derived from Fatty Acids. Nat Biotech. 30(4):354-359.

  68. Roessler PG, Watts K, Liu B, inventors; Synthetic Genomics, Inc., assignee. (2011) Microbial Production of Fatty Alcohols. patent US 2011/0195469.

  69. Alper H, Miyaoku K, Stephanopoulos G. (2005) Construction of Lycopene-Overproducing E. coli Strains by Combining Systematic and Combinatorial Gene Knockout Targets. Nat Biotech. 23(5):612-616.

  70. Muramatsu M, Ohto C, Obata S, Sakuradani E, Shimizu S. (2008) Various Oils and Detergents Enhance the Microbial Production of Farnesol and Related Prenyl Alcohols. J. Biosci. Bioeng. 106(3):263-267.

  71. Takahashi S, Yeo Y, Greenhagen BT, McMullin T, Song L, Maurina-Brunker J, et al. (2007) Metabolic Engineering of Sesquiterpene Metabolism in Yeast. Biotechnol. Bioeng. 97(1):170-181.

  72. Renninger NS, McPhee DJ, inventors; Amyris Biotechnologies, Inc., assignee. (2008) Fuel Compositions Comprising Farnesane and Farnesane Derivatives and Methods of Making and Using Same. patent WO/2008/045555.

  73. Kaczmarzyk D, Fulda M. (2010) Fatty Acid Activation in Cyanobacteria Mediated by Acyl-Acyl Carrier Protein Synthetase Enables Fatty Acid Recycling. Plant Physiol. 152(3):1598-1610.

  74. Liu X, Sheng J, Curtiss III R. (2011) Fatty Acid Production in Genetically Modified Cyanobacteria. Proceedings of the National Academy of Sciences. Epub April 11, 2011.

  75. Roessler PG, Chen Y, Liu B, Dodge CN, inventors; Synthetic Genomics, Inc., assignee. (2009) Secretion of Fatty Acids by Photosynthetic Microorganisms. patent US 2009/0298143.

  76. Ruffing AM, Jones HDT. (2012) Physiological Effects of Free Fatty Acid Production in Genetically Engineered Synechococcus elongatus PCC 7942. Biotechnol. Bioeng. 109(9):2190-2199.

  77. Berry DA, Afeyan NB, Skraly FA, Ridley CP, Robertson DE, Wilpiszeski R, et al., inventors; Joule Unlimited, Inc., assignee. (2011) Methods and Compositions for the Recombinant Biosynthesis of Fatty Acids and Esters. patent US 2011/0111470.

  78. Lindberg P, Park S, Melis A. (2010) Engineering a Platform for Photosynthetic Isoprene Production in Cyanobacteria, Using Synechocystis as the Model Organism. Metab. Eng. 12(1):70-79.

  79. Hahn-Hägerdal B. (1996) Ethanolic Fermentation of Lignocellulose Hydrolysates. Appl. Biochem. Biotechnol. 57-58(1):195-199.

  80. Dellomonaco C, Fava F, Gonzalez R. (2010) The Path to Next Generation Biofuels: Successes and Challenges in the Era of Synthetic Biology. Microb. Cell Fact. 9(1):3.

  81. Jin Y, Lee T, Choi Y, Ryu Y, Seo J. (2000) Conversion of Xylose to Ethanol by Recombinant Saccharomyces cerevisiae Containing Genes for Xylose Reductase and Xylitol Dehydrogenase from Pichia stipitis. J. Microbiol. Biotech. 10(4):564-567.

  82. van Maris A, Winkler A, Kuyper M, de Laat W, van Dijken J, Pronk J. (2007) Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a Key Component Biofuels. Adv Biochem Eng Biotechnol. 108:179-204.

  83. Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B. (1997) Expression of Different Levels of Enzymes from the Pichia stipitis XYL1 and XYL2 Genes in Saccharomyces cerevisiae and its Effects on Product Formation During Xylose Utilisation. Appl. Microbiol. Biotechnol. 48(2):218-224.

  84. Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, et al. (2005) Metabolic Engineering of a Xylose-Isomerase-Expressing Saccharomyces cerevisiae Strain for Rapid Anaerobic Xylose Fermentation. FEMS Yeast Res. 5(4-5):399-409.

  85. Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B. (1995) Xylose-Metabolizing Saccharomyces cerevisiae Strains Overexpressing the TKL1 and TAL1 Genes Encoding the Pentose Phosphate Pathway Enzymes Transketolase and Transaldolase. Appl. Environ. Microbiol. 61(12):4184-4190.

  86. Becker J, Boles E. (2003) A Modified Saccharomyces cerevisiae Strain That Consumes l-Arabinose and Produces Ethanol. Appl. Environ. Microbiol. 69(7):4144-4150.

  87. Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M. (2003) Production of Ethanol from L-Arabinose by Saccharomyces cerevisiae Containing a Fungal L-Arabinose Pathway. FEMS Yeast Res. 3(2):185-189.

  88. Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, et al. (2007) Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of L-Arabinose. Appl. Environ. Microbiol. 73(15):4881-4891.

  89. Stülke J, Hillen W. (1999) Carbon Catabolite Repression in Bacteria. Curr. Opin. Microbiol. 2(2):195-201.

  90. Nichols NN, Dien BS, Bothast RJ. (2001) Use of Catabolite Repression Mutants for Fermentation of Sugar Mixtures to Ethanol. Appl. Microbiol. Biotechnol. 56(1):120-125.

  91. Hernández-Montalvo VH-M, Valle FV, Bolivar FB, Gosset GG. (2001) Characterization of Sugar Mixtures Utilization by an Escherichia coli Mutant Devoid of the Phosphotransferase System. Appl. Microbiol. Biotechnol. 57(1):186-191.

  92. Yomano L, York S, Shanmugam K, Ingram L. (2009) Deletion of Methylglyoxal Synthase Gene (mgsA) Increased Sugar Co-Metabolism in Ethanol-Producing Escherichia coli. Biotechnol. Lett. 31(9):1389-1398.

  93. da Silva GP, Mack M, Contiero J. (2009) Glycerol: A Promising and Abundant Carbon Source for Industrial Microbiology. Biotechnol. Adv. 27(1):30-39.

  94. Houghton J, Weatherwax S, Ferrell J. (2006) Breaking the Biological Barriers to Cellulosic Ethanol. Rockville, Maryland: Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, U.S. Department of Energy.

  95. NSF. (2008) Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries. Washington, D.C.: University of Massachusetts Amerst. National Science Foundation. Chemical, Bioengineering, Environmental, and Transport Systems Division.

  96. Sheehan J, Dunahay T, Benemann J, Roessler P. (1998) A Look Back at the U.S. Department of Energy's Aquatic Species Program - Biodiesel from Algae. National Renewable Energy Laboratory.

  97. Deng M-D, Coleman JR. (1999) Ethanol Synthesis by Genetic Engineering in Cyanobacteria. Appl. Environ. Microbiol. 65(2):523-528.

  98. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. (2004) The Evolution of Modern Eukaryotic Phytoplankton. Science. 305(5682):354-360.

  99. Seckbach J, Oren A, Pattanaik B, Reisser W, Klaveness D, Lovhoiden F, et al. (2007) Algae and Cyanobacteria in Extreme Environments. Seckbach J, editor. The Netherlands: Springer.

  100. Singh J, Gu S. (2010) Commercialization Potential of Microalgae for Biofuels Production. Renew. Sustain. Ener. Rev. 14(9):2596-2610.

  101. León R, Fernández E. (2007) Nuclear Transformation of Eukaryotic Microalgae: Historical Overview, Achievements and Problems. In: León R, Galván A, Fernández E, editors.: Springer New York; p. 1-11.

  102. León-Bañares R, González-Ballester D, Galván A, Fernández E. (2004) Transgenic Microalgae as Green Cell-Factories. Trends Biotechnol. 22(1):45-52.

  103. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. (2009) Algal Lipid Bodies: Stress Induction, Purification, and Biochemical Characterization in Wild-Type and Starchless Chlamydomonas reinhardtii. Eukaryot. Cell. 8(12):1856-1868.

  104. Radakovits R, Eduafo PM, Posewitz MC. (2011) Genetic Engineering of Fatty Acid Chain Length in Phaeodactylum tricornutum. Metab. Eng. 13(1):89-95.

  105. Yu W-L, Ansari W, Schoepp N, Hannon M, Mayfield S, Burkart M. (2011) Modifications of the Metabolic Pathways of Lipid and Triacylglycerol Production in Microalgae. Microb. Cell Fact. 10(1):91.

  106. Stevens DR, Purton S. (1997) Genetic Engineering of Eukaryotic Algae: Progress and Prospects. J. Phycol. 33(5):713-722.

  107. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. (2008) A Green Light for Engineered Algae: Redirecting Metabolism to Fuel a Biotechnology Revolution. Curr. Opin. Biotechnol. 19(5):430-436.

  108. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. (2010) Genetic Engineering of Algae for Enhanced Biofuel Production. Eukaryot. Cell. 9(4):486-501.

  109. Cerutti H, Ma X, Msanne J, Repas T. (2011) RNA-Mediated Silencing in Algae: Biological Roles and Tools for Analysis of Gene Function. Eukaryot. Cell. 10(9):1164-1172.

  110. Kilian O, Benemann CSE, Niyogi KK, Vick B. (2011) High-Efficiency Homologous Recombination in the Oil-Producing Alga Nannochloropsis sp. Proceedings of the National Academy of Sciences. 108(52):21265-21269.

  111. (2012) Chlamydomonas Engineering Kits. Life Technologies Corporation. Available: https://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Protein-Expression-and-Analysis/Protein-Expression/algae-engineering-kits/chlamydomonas-engineering-kits.html. Accessed 2012 April 16.

  112. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. (2008) Reassessing the First Appearance of Eukaryotes and Cyanobacteria. Nature. 455(7216):1101-1104.

  113. Koksharova OA, Wolk CP. (2002) Genetic Tools for Cyanobacteria. Appl. Microbiol. Biotechnol. 58(2):123-137.

  114. Ogbonna JC, Soejima T, Tanaka H. (1999) An Integrated Solar and Artificial Light System for Internal Illumination of Photobioreactors. J. Biotechnol. 70(1–3):289-297.

  115. Kunjapur AM, Eldridge RB. (2010) Photobioreactor Design for Commercial Biofuel Production from Microalgae. Ind. Eng. Chem. Res. 49(8):3516-3526.

  116. Bullis K. (2012) NASA Wants to Launch Floating Algae Farms. Technology Review.

  117. Chaumont D. (1993) Biotechnology of Algal Biomass Production: A Review of Systems for Outdoor Mass Culture. J. Appl. Phycol. 5(6):593-604.

  118. Sikkema J, de Bont JA, Poolman B. (1995) Mechanisms of Membrane Toxicity of Hydrocarbons. Microbiol. Rev. 59(2):201-222.

  119. Desbois A, Smith V. (2010) Antibacterial Free Fatty Acids: Activities, Mechanisms of Action and Biotechnological Potential. Appl. Microbiol. Biotechnol. 85(6):1629-1642.

  120. León R, Garbayo I, Hernández R, Vigara J, Vilchez C. (2001) Organic Solvent Toxicity in Photoautotrophic Unicellular Microorganisms. Enzyme Microb. Technol. 29(2–3):173-180.

  121. Gill C, Ratledge C. (1972) Toxicity of n-Alkanes, n-Alk-1-enes, n-Alkan-1-ols and n-Alkyl-1-bromides Towards Yeasts. J. Gen. Microbiol. 72(1):165-172.

  122. Best CA, Laposata M. (2003) Fatty Acid Ethyl Esters: Toxic Non-Oxidative Metabolites of Ethanol and Markers of Ethanol Intake. Front. Biosci. 8:202-217.

  123. Andrews RE, Parks LW, Spence KD. (1980) Some Effects of Douglas Fir Terpenes on Certain Microorganisms. Appl. Environ. Microbiol. 40(2):301-304.

  124. Uribe S, Ramirez J, Peña A. (1985) Effects of β-Pinene on Yeast Membrane Functions. J. Bacteriol. 161(3):1195-1200.

  125. Dunlop MJ. (2011) Engineering Microbes for Tolerance to Next-Generation Biofuels. Biotech. Biofuels. 4(32).

  126. Sardessai Y, Bhosle S. (2002) Tolerance of Bacteria to Organic Solvents. Res. Microbiol. 153(5):263-268.

  127. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, et al. (2011) Engineering Microbial Biofuel Tolerance and Export Using Efflux Pumps. Mol Syst Biol. 7.

  128. Melis A. (2009) Solar Energy Conversion Efficiencies in Photosynthesis: Minimizing the Chlorophyll Antennae to Maximize Efficiency. Plant Sci. 177(4):272-280.

  129. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, et al. (2007) Engineering Photosynthetic Light Capture: Impacts on Improved Solar Energy to Biomass Conversion. Plant Biotechnol. J. 5(6):802-814.

  130. Huesemann M, Hausmann T, Bartha R, Aksoy M, Weissman J, Benemann J. (2009) Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom). Appl. Biochem. Biotechnol. 157(3):507-526.

  131. Lee J, Mets L, Greenbaum E. (2002) Improvement of Photosynthetic CO2 Fixation at High Light Intensity Through Reduction of Chlorophyll Antenna Size. Appl. Biochem. Biotechnol. 98-100(1):37-48.

  132. Nakajima Y, Tsuzuki M, Ueda R. (2001) Improved Productivity by Reduction of the Content of Light-Harvesting Pigment in Chlamydomonas perigranulata. J. Appl. Phycol. 13(2):95-101.

  133. Nakajima Y, Ueda R. (1997) Improvement of Photosynthesis in Dense Microalgal Suspension by Reduction of Light Harvesting Pigments. J. Appl. Phycol. 9(6):503-510.

  134. Polle JEW, Kanakagiri S-D, Melis A. (2003) tla1; a DNA Insertional Transformant of the Green Alga Chlamydomonas reinhardtii with a Truncated Light-Harvesting Chlorophyll Antenna Size. Planta. 217(1):49-59.

  135. Gombos Z, Murata N. (2004) Genetic Engineering of the Unsaturation of Membrane Glycerolipid: Effects on the Ability of the Photosynthetic Machinery to Tolerate Temperature Stress Lipids in Photosynthesis: Structure, Function and Genetics. In: Paul-André S, Norio M, editors.: Springer Netherlands; p. 249-262.

  136. Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N. (2001) Unsaturated Fatty Acids in Membrane Lipids Protect the Photosynthetic Machinery against Salt-Induced Damage in Synechococcus. Plant Physiol. 125(4):1842-1853.

  137. Lurling M, Beekman W. (2006) Palmelloids Formation in Chlamydomonas reinhardtii: Defence Against Rotifer Predators? Ann. Limnol. - Int. J. Limnol. 42:65-72.

  138. Jin Y-S, Stephanopoulos G. (2007) Multi-Dimensional Gene Target Search for Improving Lycopene Biosynthesis in Escherichia coli. Metab. Eng. 9(4):337-347.

  139. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, et al. (2009) Programming Cells by Multiplex Genome Engineering and Accelerated Evolution. Nature. 460(7257):894-898.

  140. Friedman L, Rude MA, inventors; LS9, Inc., assignee. (2008) Process for Producing Low Molecular Weight Hydrocarbons from Renewable Resources. patent WO/2008/113041.

  141. Friedman L, da Costa B, inventors; LS9, Inc., assignee. (2008) Hydrocarbon-Producing Genes and Methods of Their Use. patent WO/2008/147781.

  142. Renninger NS, Ryder JA, Fisher KJ, inventors; Amyris Biotechnologies, Inc., assignee. (2008) Jet Fuel Compositions and Methods of Making and Using Same. patent WO/2008/140492.

  143. Trimbur DE, Im C-S, Dillon HF, Day AG, Franklin S, Coragliotti A, inventors; Solazyme, Inc., assignee. (2009) Lipid Pathway Modification in Oil-Bearing Microorganisms. patent US 2009/0061493.

  144. Trimbur D, Im C-S, Dillon HF, Day AG, Franklin S, Coragliotti A, inventors; Solazyme, Inc., assignee. (2009) Use of Cellulosic Materials for Cultivation of Microorganisms. patent US 2009/0011480.

  145. Mendez M, Fang S-C, Richard S, inventors; Sapphire Energy, Inc., assignee. (2010) Engineering Salt Tolerance in Photosynthetic Microorganisms. patent WO 2010/105095.

  146. Heaps NA, Behnke CA, Molina D, inventors; Sapphire Energy, Inc., assignee. (2010) Biofuel Production in Prokaryotes and Eukaryotes. patent WO/2010/104763.

  147. Berry DA, Robertson DE, Skraly FA, Green BD, Ridley CP, Kosuri S, et al., inventors; Joule Unlimited, Inc., assignee. (2011) Engineered CO2 Fixing Microorganisms Producing Carbon-Based Products of Interest. patent US 2011/0008861.