Open access peer-reviewed chapter

# A Numerical Investigation on the Structure of the Zeros of the Q-Tangent Polynomials

By Jung Yoog Kang and Cheon Seoung Ryoo

Submitted: July 27th 2018Reviewed: December 12th 2018Published: January 23rd 2019

DOI: 10.5772/intechopen.83497

## Abstract

We introduce q-tangent polynomials and their basic properties including q-derivative and q-integral. By using Mathematica, we find approximate roots of q-tangent polynomials. We also investigate relations of zeros between q-tangent polynomials and classical tangent polynomials.

### Keywords

• q-tangent polynomials
• q-derivative
• q-integral
• Newton dynamical system
• fixed point
• 2000 Mathematics Subject Classification: 11B68
• 11B75
• 12D10

## 1. Introduction

For a long time, studies on q-difference equations appeared in intensive works especially by F. H. Jackson [1, 2], R. D. Carmichael [3], T. E. Mason [4], and other authors [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. An intensive and somewhat surprising interest in q-numbers appeared in many areas of mathematics and applications including q-difference equations, special functions, q-combinatorics, q-integrable systems, variational q-calculus, q-series, and so on. In this paper, we introduce some basic definitions and theorems (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]).

For any nC, the q-number is defined by

nq=1qn1q,q<1.E1

Definition 1.1.[1, 2, 9, 13] The q-derivative operator of any function fis defined by

Dqfx=fxfqx1qx,x0,E2

and Dqf0=f0. We can prove that fis differentiable at 0, and it is clear that Dqxn=nqxn1.

Definition 1.2.[1, 2, 9, 13, 17] We define the q-integral as

0bfxdqx=1qbj=0qjfqjb.E3

If this function, f(x), is differentiable on the point x, the q-derivative in Definition 1.1 goes to the ordinary derivative in the classical analysis when q1.

Definition 1.3.[5, 17, 18, 21] The Gaussian binomial coefficients are defined by

mrq=mrq=0ifr>m1qm1qm11qmr+11q1q21qrifrm,E4

where mand rare non-negative integers. For r=0the value is 1 since the numerator and the denominator are both empty products. Like the classical binomial coefficients, the Gaussian binomial coefficients are center-symmetric. There are analogues of the binomial formula, and this definition has a number of properties.

Theorem 1.4.Let n, kbe non-negative integers. Then we get.

1. k=0n11+qkt=k=0nqk2nkqtk,E5

• k=0n111qkt=k=0n+k1kqtk.

• Definition 1.5.[5, 26] Let zbe any complex number with z<1. Two forms of q-exponential functions are defined by

eqz=n=0znnq!,eq1z=n=0znnq1!=n=0qn2znnq!.E6

Bernoulli, Euler, and Genocchi polynomials have been studied extensively by many mathematicians(see [22, 23, 24, 25]). In 2013, C. S. Ryoo introduced tangent polynomials and he developed several properties of these polynomials (see [22, 23]). The tangent numbers are closely related to Euler numbers.

Definition 1.6.[22, 23, 24, 25] Tangent numbers Tnand tangent polynomials Tnxare defined by means of the generating functions

n=0Tntnn!=2e2t+1=2m=01me2mt,n=0Tntnn!=2e2t+1etx=2m=01me2m+xt.E7

Theorem 1.7.For any positive integer n, we have

Tnx=1nTn2x.E8

Theorem 1.8.For any positive integer m=odd, we have

Tnx=mni=0m11iTn2i+xm,nZ+.E9

Theorem 1.9.For nZ+, we have

Tnx+y=k=0nnkTkxynk.E10

The main aim of this paper is to extend tangent numbers and polynomials, and study some of their properties. Our paper is organized as follows: In Section 2, we define q-tangent polynomials and find some properties of these polynomials. We consider q-tangent polynomials in two parameters and establish some relations between q-tangent polynomials and q-Euler or Bernoulli polynomials. In Section 3, we observe approximate roots distributions of q-tangent polynomials and demonstrate interesting phenomenon.

## 2. Some properties of the q-tangent polynomials

In this section we define the q-tangent numbers and polynomials and establish some of their basic properties. we shall also study the q-tangent polynomials involving two parameters. We shall find some important relations between these polynomials and q-other polynomials.

Definition 2.1.For x,qC, we define q-tangent polynomials as

n=0Tn,qxtnnq!=2qeq2t+1eqtx,t<π2.E11

From Definition 2.1, it follows that

n=0Tn,q0tnnq!=n=0Tn,qtnnq!=2qeq2t+1,E12

where Tn,qis q-tangent number. If q1, then it reduces to the classical tangent polynomial(see [22, 23, 24, 25]).

Theorem 2.2.Let x,qC. Then, the following hold.

i.  Tn,q+k=0nnkq2nkTk,q=2qifn=00ifn0,E13
ii.  Tn,qx+k=0nnkq2nkTk,qx=2qxn.

Proof.From the Definition 2.1, we have

2q=1+eq2tn=0Tn,qtnn!=n=0Tn,q+k=0nnkq2nkTk,qtnn!.E14

Now comparing the coefficients of tnwe find (i). For (ii) we use the relation

2qeqtx=1+eq2tn=0Tn,qxtnnq!=n=0Tn,qx+k=0nnkq2nkTk,qxtnn!,E15

and again compare the coefficients of tn.

Theorem 2.3.Let nbe a non-negative integer. Then, the following holds

Tn,qx=k=0nnkqTnk,qxk.E16

Proof.From the definition of the q-exponential function, we have

n=0Tn,qxtnnq!=2qeq2t+1eqtx=n=0Tn,qtnnq!n=0xntnnq!=n=0k=0nnkqTnk,qxxktnnq!.E17

The required relation now follows on comparing the coefficients of tnon both sides.☐

Theorem 2.4.Let nbe a non-negative integer. Then, the following holds

Tn,q=k=0nnkq1nkqnk2Tk,qxxnk.E18

Proof.From the property of q-exponential function, it follows that

n=0Tn,qtnnq!=2qeq2t+1eqtxeq1tx=n=0Tn,qxtnnq!n=0qn21nxntnnq!=n=0k=0nnkq1nkqnk2Tk,qxxnktnnq!.E19

The required relation now follows immediately.☐

In what follows, we consider q-derivative of eqtx. Using the Mathematical Induction, we find.

i.  k=1:Dq1eqtx=n=1xn1tnn1q!.E20
ii.  k=i:Dqieqtx=n=ixnitnniq!.

If (ii) is true, then it follows that.

iii.  k=i+1:Dqi+1eqtx=Dq;x1n=ixnitnniq!=n=i+1xni+1tnni+1q!=ti+1eqtx.E21

We are now in the position to prove the following theorem.

Theorem 2.5.For kN, the following holds

DqkTn,qx=nq!nkq!Tnk,qx.E22

Proof.Considering q-derivative of eqtx, we find

Dqi+1n=0Tn,qxtnnq!=n=0Dqi+1Tn,qxtnnq!=2qeq2t+1Dqi+1eqtx=ti+12qeq2t+1eqtx=n=0n+i+1qn+2qn+1q×Tn,qxtn+i+1n+i+1q!=n=0nqn+i+1q!Tni+1,qxtnnq!,E23

which immediately gives the required result.☐

Theorem 2.6.Let a, bbe any real numbers. Then, we have

abTn,qxdqx=k=0n+11n+1qTn+1,qbTn+1,qa.E24

Proof.From Theorem 2.3, we find

abTn,qxdqx=abk=0nnkqTk,qxnkdqx=k=0nnkqTk,q1nk+1qxnk+1ab=k=0n+1Tn+1,qbTn+1,qan+1q.E25

Definition 2.7.For x,yC, we define q-tangent polynomial with two parameters as

n=0Tn,qxytnnq!=2qeq2t+1eqtxeqty,t<π2.E26

From the Definition 2.7, it is clear that

n=0Tn,qx0tnnq!=n=0Tn,qxtnnq!=2qeq2t+1eqtx,n=0Tn,q00tnnq!=n=0Tn,qtnnq!=2qeq2t+1,E27

where Tn,qis q-tangent number. We also note that the original tangent number, Tn,

limq1n=0Tn,qtnnq!=n=0Tntnn!=2e2t+1,E28

where q1.

Theorem 2.8.Let x,ybe any complex numbers. Then, the following hold.

i.  Tn,qxy=k=0nnkqTnk,qxyk,E29
ii.  Tn,qxy=l=0nnkqTnl,qk=0llkqxlkyk.

Proof.From the Definition 2.7, we have

n=0Tn,qxytnnq!=2qeq2t+1eqtxeqty=n=0Tn,qxtnnq!n=0yntnnq!.E30

Using Cauchy’s product and the method of coefficient comparison in the above relation, we find (i). Next, we transform q-tangent polynomials in two parameters as

n=0Tn,qxytnnq!=2qeq2t+1eqtxeqty=n=0Tn,qtnnq!n=0xntnnq!n=0yntnnq!.E31

Now following same procedure as in (i), we obtain (ii).☐

Theorem 2.9.Setting y=2in q-tangent polynomials with two parameters, the following relation holds

2qxn=Tn,qx2+Tn,qx.E32

Proof.Using q-tangent polynomials and its polynomials with two parameters, we have

n=0Tn,qx2tnnq!+n=0Tn,qxtnnq!=2qeq2teq2t+1eqtx+2qeq2t+1eqtx=2qeqtxE33

Now from the definition of q-exponential function, the required relation follows.☐

Theorem 2.9 is interesting as it leads to the relation

xn=Tn,qx2+Tn,qx2q.E34

Theorem 2.10.Let q<1. Then, the following holds

Tn,qx=k=0nnkq1kTk,1q2xnk.E35

Proof.To prove the relation, we note that

e1q2t=Eq2t,E36

where Eqt=eq1t. Using the above equation we can represent the q-tangent polynomials as

n=0Tn,qxtnnq!=2qeq2t+1eqtx=2q1+Eq2tEq2teqtx=2qe1q2t+1e1q2teqtx=n=0Tn,1q2tnnq!n=0xntnnq!=n=0k=0nnkq1kTk,1q2xnktnnq!,E37

which leads to the required relation immediately.☐

Now we shall find relations between q-tangent polynomials and others polynomials. For this, first we introduce well known polynomials by using q-numbers.

Definition 2.11.We define q-Euler polynomials, En,qx, and q-Bernoulli polynomials, Bn,qx, as

n=0En,qxtnnq!=2qeqt+1eqtx,t<π,n=0Bn,qxtnnq!=teqt1eqtx,t<2π.E38

Theorem 2.12.For x,yC, the following relation holds

Tn,qxy=12ql=0nnkqTnl,qxml+k=0nlnlkqTk,qxmnkEl,qmy.E39

Proof.Transforming q-tangent polynomials containing two parameters, we find

2qeq2t+1eqtxeqty=2qeqtm+1eqtyeqtm+12q2qeq2t+1eqtx.E40

Thus, for the relation between q-tangent polynomials of two parameters and q-Euler polynomials, we have

n=0Tn,qxytnnq!=n=0En,qmytnmnnq!n=0Tn,qxtnnq!n=012qtnmnnq!+12q=12qn=0l=0nnlqEl,qmyk=0nlnlkqTk,qxmnktnnq!+12qn=0l=0nnlqEl,qmyTnl,qxmltnnq!,E41

which on comparing the coefficients immediately gives the required relation. ☐

Corollary 2.13.From Theorem 2.12, the following hold.

i.  Tn,qxy=12ql=0nnlqTnl,qxml+k=0nlnlkqTk,qxmnkEl,qmy.E42
ii.  Tnxy=12l=0nnlTnlxml+k=0nlnlkTkxmnkElmy.

Theorem 2.14.For x,yC, the following relation holds

Tn1,qxy=1nql=0nnkqk=0nlnlkqTk,qxmnkTnl,qxmlBl,qmy.E43

Proof.We note that

2qeq2t+1eqtxeqty=teqtm1eqtyeqtm1t2qeq2t+1eqtx.E44

Thus as in Theorem 2.12, we have

n=0Tn,qxytnnq!=n=0tn1mnnq!1tn=0Bn,qmytnmnnq!n=0Tn,qxtnnq!=n=0l=0nnlqk=0nlnlkqTk,qxmnkBl,qmytn1nq!n=0l=0nnlqTnl,qxmlBl,qmytn1nq!.E45

The required relation now follows on comparing the coefficients. ☐

Corollary 2.15.From the Theorem 2.14, the following relations hold.

i.  Tn1,qxy=1nql=0nnlqk=0nlnlkqTk,qxmnkTnl,qxmlBl,qmy.E46
ii.  Tn1xy=1nl=0nnlk=0nlnlkTkxmnkTnlxmlBlmy.

## 3. The observation of scattering zeros of the q-tangent polynomials

In this section, we will find the approximate structure and shape of the roots according to the changes in nand q. We will extend this to identify the fixed points and try to understand the structure of the composite function using the Newton method.

The first five q-tangent polynomials are:

T0,qx=1+q2,T1,qx=121+q1+x,T2,qx=121+q1+q1+x+xx2,T3,qx=121+q1+q22+qqx+q3x1+q+q2x2+x3,T4,qx=121+q(1+q1+q1+4+qq1+q+q21+q21+3+qq1+q2x+1+q1+q21+q+q2x21+q1+q2x3+x4).E47

Using Mathematica, we will examine the approximate movement of the roots. In Figure 1, the x-axis means the numbers of real zeros and the y-axis means the numbers of complex zeros in the q-tangent polynomials. When it moves from left to right, it changes to n = 30, 40, 50, and when it is fixed at q = 0.1, the approximate shape of the root appears to be almost circular. The center is identified as the origin, and it has 2.0 as an approximate root, which is unusual.

Figure 2 shows the shape of the approximate roots when nis changed to the above conditions and fixed at q = 0.5.

In Figure 2, the shape of the root changes to an ellipse, unlike the q = 0.1 condition, and the widening phenomenon appears when the real number is 0.5. In addition, like the previous Figure 1, we can see that it has a common approximate root at 2.0. In the following Figure 3, nof the far-left figure is 30, and it increases by 10 while moving to the right, and the far-right figure shows the shape of the root when n = 50 and is fixed at q = 0.9.

In Figure 3, the roots have a general tangent polynomial shape with similar properties (see [22, 23, 24, 25]). If each approximate root obtained in the previous step is piled up according to the value of n, it will appear as shown in Figure 4. The left Figure 4 is q = 0.1 with nfrom 1 to 50. The middle Figure 4 is q = 0.5 with nfrom 1 to 50. The right Figure 4 is q = 0.9 with nfrom 1 to 50.

Let f:DDbe a complex function, with Das a subset of C. We define the iterated maps of the complex function as the following:

fr:z0f(f((frz0)))E48

The iterates of fare the functions f,ff,fff,,which are denoted f1,f2,f3,If zC, and then the orbit of z0 under fis the sequence <z0,fz0,ffz0,>.

We consider the Newton’s dynamical system as follows [12, 15, 20]:

C:Rx=xTxTx.E49

Ris called the Newton iteration function of T. It can be considered that the fixed points of Rare the zeros of Tand all the fixed points of Rare attracting. Rmay also have one or more attracting cycles.

For xC, we consider T4,qx, and then this polynomial has four distinct complex numbers, aii=1,2,3,4such that T4,qai=0. Using a computer, we obtain the approximate zeros (Table 1) as follows:

iq = 0.1q = 0.5q = 0.9
1−0.672809−0.581881 − 0.412941i−1.10249
2−0.0821877 − 0.710388i−0.581881 + 0.412941i−0.158841
3−0.0821877 + 0.710388i0.9070241.84004
41.948182.131742.86029

### Table 1.

Approximate zeros of T4,qx.

In Newton’s method, the generalized expectation is that a typical orbit {R(x)} will converge to one of the roots of T4,qxfor x0C. If we choose x0, which is sufficiently close to ai, then this proves that

limrRx0=ai,fori=1,2,3,4.E50

When it is given a point x0 in the complex plane, we want to determine whether the orbit of x0 under the action of R(x) converges to one of the roots of the equation. The orbit of x0 under the action of Ralso appears by calculating until 30 iterations or the absolute difference value of the last two iterations is within 10−6.

The output in Figure 5 is the last calculated orbit value. We construct a function, which assigns one of four colors for each point according to the outcome of Rin the plane. If an orbit of x0 for q = 0.1 converges to −0.672809, −0.0821877 − 0.710388i, −0.0821877 + 0.710388iand 1.94818, then we denote the red, blue, yellow, and sky-blue, respectively(the left figure). For example, the yellow region for the left figure represents the part of the basin of attraction of a3 = −0.0821877 + 0.710388i.

If we use T3,0.1xto draw a figure using the Newton method, we can obtain Figure 6. The picture on the left shows three roots, and the colors are blue, red, and ivory in the counterclockwise direction. When we examine the area closely, we can see that it converges to an approximate value in each color area. The convergence value in the blue area is 0.379202+0.523651i, that in the red area is 0.3792020.523651i, and that in the ivory area is 1.8684. We can also see that it shows self-similarity at the boundary point as divided into three areas. The figure on the right is obtained by 2-times iterated q-tangent polynomials, T3,0.12x, and the area is divided into nine colors “gray (x=2.31831), scarlet (x=1.76736+0.216319i), light brown (x=0.137247+0.59473i), sky blue (x=0.604153+1.19884i), blue (x=0.794606+0.378411i), red (x=0.7946060.378411i), ivory (x=0.6041531.19884i), green (x=0.1372470.59473i), and navy blue (x=1.767360.216319i) in the counterclockwise direction. This also shows self-similarity at the boundary.

In Figure 7, we express the coloring for T3,0.12x.

Conjecture 3.1.The q-tangent polynomials always have self-similarity at the boundary.

We know that the fixed point is divided as follows. Suppose that the complex function fis analytic in a region Dof C, and fhas a fixed point at z0D. Then z0 is said to be (see [6, 16, 20]):

1. an attracting fixed point if fz0<1;

2. a repelling fixed point if fz0>1;

3. a neutral fixed point if fz0=1.

For example, T3,0.1xhas three points satisfying T3,0.1x=x.

That is, x0=0.967484,0.33466,2.41214. Since

ddtT3,0.10.967484=0<1,ddtT3,0.10.33466=0<1E51

Theorem 3.2.T3,0.1xfor q = 0.1 has two attracting fixed points.

Using Mathematica, we can separate the numerical results for fixed points of Tn,0.1x. From Table 2, we know that Tn,0.1xhave no neutral fixed point for 1n4. We can also reach Conjecture 3.3.

Degree nAttractorRepellorNeutral
1010
2110
3210
4130
5140

### Table 2.

Numbers of fixed points of Tn,0.1x.

Conjecture 3.3.The q-tangent polynomials for n2have at least one attracting fixed point except for infinity.

In Table 3, we denote RTn,qrxas the numbers of real zeros for rth iteration and RFTn,qrxas the numbers of attracting fixed point on real number. From this table, we can know that number of real fixed points of T3,qrxare less than two. Here, we can suggest Conjecture 3.4.

rRT3,0.1rxRFT3,0.1rx
132
232
332
4232
522
611

### Table 3.

The numbers of RT3,0.1rxand RFT3,0.1rxfor 1r6.

Conjecture 3.4.The q-tangent polynomials that are iterated, T3,0.1rx, have real fixed point, α=0.33466.

In the top-left of Figure 8, we can see the forms of 3D structure related to stacks of fixed points of T3,0.1rxfor 1r6. When we look at the top-left of Figure 8 in the below position, we can draw the top-right figure. The bottom-left of Figure 8 shows that image and n-axes exist but not real axis in three dimensions. In three dimensions, the bottom-right of Figure 8 is the right orthographic viewpoint for the top-left figure,-that is, there exist real and n-axes but there is no image axis (Figure 8).

## 4. Conclusion

We can see that when qcomes closer to 0, the approximate shape of the roots become increasingly more circular. Also in this situation, we can observe scattering of zeros in q-tangent polynomials around 2 in three-dimension. When qcomes closer to 1, it has properties that are more symmetrical. We can also assume that the property that appears when iterating Tn,qxhas self-similarity. By iterating, we can conjecture some properties about fixed points. This property warrants further study so that we can create a new property.

## Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. 2017R1E1A1A03070483).

## Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

chapter PDF
Citations in RIS format
Citations in bibtex format

## More

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## How to cite and reference

### Cite this chapter Copy to clipboard

Jung Yoog Kang and Cheon Seoung Ryoo (January 23rd 2019). A Numerical Investigation on the Structure of the Zeros of the Q-Tangent Polynomials, Polynomials - Theory and Application, Cheon Seoung Ryoo, IntechOpen, DOI: 10.5772/intechopen.83497. Available from:

### Related Content

Next chapter

#### Investigation and Synthesis of Robust Polynomials in Uncertainty on the Basis of the Root Locus Theory

By Nesenchuk Alla

#### Number Theory and Its Applications

Edited by Cheon Seoung Ryoo

First chapter

#### A New Integer-to-Integer Transform

By Rajesh Cherian Roy

We are IntechOpen, the world's leading publisher of Open Access books. Built by scientists, for scientists. Our readership spans scientists, professors, researchers, librarians, and students, as well as business professionals. We share our knowledge and peer-reveiwed research papers with libraries, scientific and engineering societies, and also work with corporate R&D departments and government entities.