Summary of LAGB studies showing effects on NAFLD.
\r\n\tLegionnaire’s disease is also an important public health topic as it involves environmental and public issues, as far as the spread and prevention is concerned. With the longevity and aging population, increasing number of transplants, increasing use of immunosuppressive medications, and compromised immunity due to multiorgan system disease, Legionnaire’s disease is emerging as an important disease.
\r\n\tMoreover, extensive research and advances have been conducted in the areas of prevention, diagnostic modalities and treatment.
There is a tremendous rise in the prevalence of nonalcoholic fatty liver disease (NAFLD) throughout the world [1]. About 20% of the world population suffer from NAFLD [2]. NAFLD is the most common cause of chronic liver disease in the developed countries. In the United States, it is the second most common indication of liver transplantation. It affects all age groups and ethnicities [3]. The epidemic of NAFLD parallels the epidemic of obesity and metabolic syndrome in the world. In fact, most (80%) of the patients suffering from NAFLD are overweight [4], and 85% of morbidly obese individuals with body mass index (BMI) >40 have NAFLD [5]. As the disease is related to insulin resistance, 70% of non-insulin-dependent diabetic patients suffer from NAFLD [6]. The disease starts with benign reversible macrovesicular steatosis affecting more than 5% of the hepatocytes. Then it progresses to nonalcoholic steatohepatitis (NASH), steatofibrosis, cirrhosis of the liver, liver failure, and hepatocellular carcinoma [7]. Weight loss, pharmacological intervention, and bariatric surgery are the three main modes of therapy of NAFLD. Weight loss by diet, exercise, and lifestyle modification is the first-line treatment of NAFLD. There are few pharmacologic agents available for the treatment of NAFLD. But as it is difficult to lose weight and maintain targeted body weight by lifestyle modifications, and pharmacological interventions are not that successful, there is a potential role of bariatric surgery in the treatment of NAFLD. In this chapter, we will be discussing the indications and types of bariatric surgery as well as their benefits and risks.
\nAt the present time, bariatric surgery is indicated only for morbidly obese individuals. The American Society for Metabolic and Bariatric Surgery (ASMBS) recommends bariatric surgery for individuals who have BMI of ≥40 or ≥35 plus at least one or more obesity-related complications (type II diabetes mellitus, hypertension, hyperlipidemia, obstructive sleep apnea, nonalcoholic fatty liver disease, gastrointestinal disorders, osteoarthritis, heart disease) and have failed to achieve targeted weight loss despite diet and exercise [8]. The American Association for the Study of Liver Diseases (AASLD) recommends to consider bariatric surgery in otherwise obese individuals with NALFD or NASH.
\nBariatric surgery is able to achieve severe (40–71%) weight loss and improve insulin resistance and obesity-related metabolic complications [9]. There are many studies showing the benefits of weight loss in NAFLD following bariatric surgery. But at the present time, there is no large randomized control trial evaluating the effects of bariatric surgery in NAFLD.
\nBariatric surgical procedures are classified into three broad categories on the basis of their mechanism of action [10]:
Restrictive procedures: The size of the stomach is surgically reduced, and as a result, the food intake is diminished. These procedures include sleeve gastrectomy, laparoscopic adjustable gastric banding (LAGB), and vertical band gastroplasty (not done anymore because of high complication rate and difficulty in maintaining weight loss). In sleeve gastrectomy (Figure 1), the gastric fundus and greater curvature of the stomach are resected vertically (>80% of the stomach is removed) making the stomach tubular (like a banana) with less capacity (initial filling volume of <100 ml) and less stretchy with rapid gastric emptying. Feeling of hunger is reduced because of resection of fundus containing ghrelinergic cells [11]. In LAGB (Figure 2), an adjustable and inflatable silicone band is placed around the upper stomach dividing the stomach into two compartments: a proximal small gastric pouch (20–30 ml volume) and a distal larger residual stomach. The size of the opening between the gastric pouch and the residual stomach can be adjusted as the band is connected to a subcutaneous infusion port [12].
Malabsorptive procedures: A long segment of the small intestine is bypassed, and as a result, the digestive juices digest the food in the distal part of the small intestine, and malabsorption of food occurs. These procedures include biliopancreatic diversion with duodenal switch (Figure 3) and biliopancreatic diversion (Figure 4).
In biliopancreatic diversion (BPD) with duodenal switch (DS), the stomach size is first reduced by doing a partial sleeve gastrectomy and preserving the pylorus. Then the first part of the duodenum is divided distal to the pylorus. The distal end of the duodenum is closed. The jejunum is then divided 250 cm proximal to the ileocecal valve. The distal end of the jejunum is then anastomosed to the proximal end of the duodenum creating a duodenojejunostomy (duodenal switch). The proximal end of the jejunum is then attached to the ileum 100 cm proximal to the ileocecal valve. As a result, there is restriction of food intake due to gastric sleeve, and most of the small intestine is bypassed leading to malabsorption of nutrients. The biliary pancreatic limb carries biliary and pancreatic secretions into the distal part of the ileum (biliary pancreatic diversion).
In biliopancreatic diversion (BPD), the lower and middle third of the stomach is resected leaving a small gastric pouch. The upper end of the duodenum is closed. The distal jejunum is divided. The distal end of the jejunum is then anastomosed to the gastric pouch. The proximal end of the jejunum is then anastomosed to the distal ileum forming a short common channel in which biliary and pancreatic juices mix with food prior to proceeding into the colon [13].
Hybrid procedures: There is combination of restriction of food intake and malabsorption of food. The typical example is Roux-en-Y gastric bypass (RYGB). This procedure divides the upper part of the stomach to create a small gastric pouch with a capacity of 20–30 ml (Figure 5). The proximal jejunum is divided 50 cm beyond the ligament of Treitz. The distal jejunal end is then connected to the gastric pouch. The proximal jejunal end of the small bowel is sutured to the jejunum (75–150 cm from the gastric pouch) to form the so-called Roux-en-Y reconstruction. The small gastric pouch (restrictive component) causes early satiety and helps in decreasing food intake. The Roux or alimentary limb (typically 75–150 cm long) extends from the gastric pouch to the jejunojejunostomy site and carries ingested food. The proximal biliopancreatic limb (30–60 cm long) containing excluded stomach, duodenum, and proximal jejunum transfers biliary and pancreatic secretions to the jejunojejunostomy site. Most of the digestion and absorption occur in the common channel which extends from the jejunojejunostomy site to the ileocecal valve.
Sleeve gastrectomy.
LAGB.
BPD with duodenal switch.
Biliopancreatic diversion (BPD).
RYGB.
A schematic diagram of different bariatric surgeries is shown below.
\nSleeve gastrectomy: Different studies were done to find out the effect of sleeve gastrectomy on NAFLD. Algooneh et al. observed that 56% of total 84 transabdominal ultrasonographically diagnosed NAFLD patients showed complete resolution of hepatic steatosis 3.3 years (average) after isolated sleeve gastrectomy [14]. Karcz et al. found that there was significant reduction (>50%) of transaminases in NASH patients within 6 months of isolated sleeve gastrectomy [15]. Parveen-Raj et al. did a prospective observational trial and found that surgically induced weight loss improved NAFLD histology significantly 6 months after isolated sleeve gastrectomy in morbidly obese patients [16].
\nLAGB: There have been several studies showing the effects of LAGB on NAFLD. Most of the studies reported improvement of hepatic steatosis, steatohepatitis, and fibrosis, but some studies showed mild increase in fibrosis.
\nFew LAGB studies with their effects on NAFLD are mentioned in Table 1.
\nStudy | \nOutcome | \nSample size | \nFollow-up | \n
---|---|---|---|
Luyckx et al. [17] | \n↓ Steatosis ↑ Mild hepatitis | \n69 | \n27 ± 15 months | \n
Busetto et al. [18] | \n↓ Steatosis | \n6 | \n24 weeks | \n
Stratopoulas et al. [19] | \n↓ Steatosis ↓ Steatohepatitis ↓ Fibrosis | \n51 | \n17 months | \n
Jaskiewicz et al. [20] | \n↓ Steatosis ↓ Steatohepatitis | \n87 | \n41 months | \n
Phillips et al. [21] | \n↓ Steatosis ↓ Gamma-glutamyl transferase | \n29 | \n3 months | \n
Dixon et al. [22] | \n↓ Steatosis ↓ Steatohepatitis ↓ Fibrosis | \n60 | \n29.5 ± 10 months | \n
Mathurin et al. [23] | \n↓ Steatosis ↓ Fibrosis | \n381 | \n60 months | \n
Summary of LAGB studies showing effects on NAFLD.
Biliopancreatic diversion (BPD) and biliopancreatic diversion with duodenal switch (BPD with DS): Both procedures produce long-term malabsorption and severe weight loss. They are not widely done. Their effects on NAFLD are summarized in two studies in Table 2.
\nStudy | \nType of surgery | \nOutcome | \nSample size | \nFollow-up | \n
---|---|---|---|---|
Keshishian et al. [24] | \nBPD with DS | \nTransaminases and NASH worsened at 6 months Steatosis and NASH decreased after 6 months | \n78 | \n36 months | \n
Kral et al. [25] | \nBPD | \nSevere fibrosis decreased in 27% and mild fibrosis appeared in 40%: 41 ± 25 months after BPD | \n104 | \n41 ± 25 months | \n
Summary of effects of BPD and BPD with DS on NAFLD.
In patients with BPD with DS, the transient deterioration of transaminases and steatohepatitis seen in the first 6 months postoperatively was possibly due to rapid weight loss. Transaminases became normalized by 12 months. Then there was progressive improvement of steatosis and steatohepatitis up to 3 years. In patients who had BPD, the appearance of mild fibrosis was possibly related to severe diarrhea, hypoalbuminemia, some intake of alcohol, and postmenopausal status.
\nRoux-en-Y gastric bypass (RYGB): Effects of RYGB have been studied extensively in different studies. Most of the studies showed improvement of steatosis, steatohepatitis, and hepatic fibrosis. Summary of some of the RYGB studies are mentioned in Table 3.
\nStudy | \nOutcome | \nSample size | \nFollow-up | \n
---|---|---|---|
Mottin et al. [26] | \n↓ Steatosis | \n90 | \n12 months | \n
Matter et al. [27] | \n↓ Steatosis ↓ Fibrosis | \n90 | \n12 months | \n
Clark et al. [28] | \n↓ Steatosis ↓ Steatohepatitis ↓ Fibrosis | \n16 | \n305 ± 131 days | \n
Silverman et al. [29] | \n↓ Steatosis ↓ Fibrosis | \n91 | \n18.4 months | \n
Lie et al. [30] | \n↓ Steatosis ↓ Steatohepatitis ↓ Fibrosis | \n39 | \n18 months | \n
Barker et al. [31] | \n↓ Steatosis ↓ Steatohepatitis ↓ Fibrosis | \n19 | \n21.4 months | \n
Klein et al. [32] | \n↓ Steatosis | \n7 | \n12 months | \n
Furuya et al. [33] | \n↓ Steatosis ↓ Fibrosis | \n18 | \n24 months | \n
Weiner et al. [34] | \n↓ Steatosis ↓ Steatohepatitis ↓ Fibrosis | \n116 | \n18.6 ± 8.3 months | \n
De Almeida et al. [35] | \n↓ Steatosis ↓ Steatohepatitis ↓ Fibrosis | \n16 | \n23.5 ± 8.4 months | \n
Summary of effects of RYGB on NAFLD.
\n
By achieving weight loss: Weight loss is the key in the treatment of NAFLD [36]. Seven to ten percent of weight loss by lifestyle modification has been shown to improve hepatic steatosis and steatohepatitis [37]. Significant and sustained weight loss is common after bariatric surgery.
By improving insulin resistance: Obesity is associated with insulin resistance, i.e., insulin receptors fail to work. How does this happen? Adipose tissue works as a metabolically active endocrine organ and produces proinflammatory cytokines—TNF-α, IL-1, IL-6, IL-8, IL-18, and C-reactive protein [38]. In obesity, excessive production of these cytokines occurs leading to a proinflammatory state which is associated with insulin resistance. Adiponectin is a fat cell hormone produced in the white adipose tissue. It plays an important role in the regulation of glucose and fat metabolism in insulin-sensitive tissues. It increases fatty acid oxidation and decreases de novo synthesis of fatty acid. In diet-induced obesity, the circulating level of adiponectin is paradoxically decreased [39]. Hypoadiponectinemia in obesity is associated with insulin resistance [40]. In obesity, excessive intraperitoneal fat promotes free fatty acid (FFA) reflux directly into the hepatocytes via the portal vein [41]. FFA metabolites (long-chain acyl-CoAs and diacylglycerol) then transfer cytoplasmic protein kinase Cs to the cell membrane. Subsequently, intracellular portions of insulin receptors are phosphorylated by protein kinase C leading to insulin resistance.
As a result of insulin resistance, lipolysis occurs in the adipose tissue with increased levels of plasma FFA and excessive influx of FFA into the hepatocytes. In the hepatocytes, fatty acid oxidation is inhibited, and de novo synthesis of fatty acid occurs leading to triglyceride synthesis and hepatic steatosis.
Bariatric surgery reduces insulin resistance by decreasing production of proinflammatory cytokines and improving the adiponectin level.
By improving dyslipidemia: NAFLD is associated with increased levels of serum triglyceride (TG) and low-density lipoprotein (LDL) and decreased level of high-density lipoprotein (HDL). As they are the main risk factors for the development atherosclerosis and coronary artery disease, cardiovascular disease is the main cause of mortality in NAFLD patients [42]. Bariatric surgery significantly improves the dyslipidemic state, and most of the patients do not need anymore lipid-lowering agents [43].
By improving the metabolic hormone profile: Gastrointestinal hormones play important roles in the success of weight loss and thus improve manifestations of metabolic syndrome following bariatric surgery. Ghrelin is the hunger hormone (orexigenic) mainly produced in oxyntic glands of gastric fundus [44]. Ghrelin also increases gastrointestinal motility and decreases insulin secretion [45]. In patients with Roux-en-Y gastric bypass, sleeve gastrectomy, and BPD with DS, ghrelin levels are profoundly low, and this may explain loss of hunger sensation and rapid weight loss in these patients [46, 47]. Glucagon-like peptide-1 (GLP-1) is secreted by the L cells in the distal ileum and colon. It promotes glucose-dependent insulin secretion, inhibits glucagon secretion, delays gastric emptying, inhibits gastric acid secretion, and reduces hunger sensation. Peptide tyrosine-tyrosine (PYY) is co-secreted with GLP-1 by the L cells of the distal ileum and colon after ingestion of food. It reduces hunger [48], delays gastric emptying, and decreases gastric acid secretion [49]. Serum levels of GLP-1 and PYY are high in post-RYGB patients because of rapid delivery of nutrients to the distal gut. As a result, the post-RYGB patients experience early satiety, their blood glucose and triglyceride levels decrease, and HDL level increases. The metabolic improvement can be seen as early as 2 days after surgery and do not correlate with the degree of weight loss. Many patients’ diabetes mellitus, hypertension, and dyslipidemia either disappear or get under control. The improvement of components of metabolic syndrome has positive effects on NAFLD.
Bariatric surgery carries an increased risk of morbidity and mortality in patients with cirrhosis of the liver due to NAFLD. Risk assessment should be done by evaluating the severity of liver disease and presence of hepatic reserve. The Child-Turcotte-Pugh (CTP) score and the Model for End-Stage Liver Disease (MELD) score can predict postoperative mortality. The presence of portal hypertension (HVPG >10 mm Hg) indicates worse outcome. Clinically patients may have gastroesophageal varices, ascites, and splenomegaly with thrombocytopenia [50]. Transjugular intrahepatic portosystemic shunt (TIPS) placement is an option for these patients to reduce postoperative complications [51]. There has been no randomized clinical trial of doing bariatric surgery on cirrhotic patients due to NAFLD. Most of the studies were done on unsuspected compensated cirrhotic patients. Brolin et al. published a study in 1998 on unsuspected cirrhotic patients discovered during surgery. Four percent of patients died in the perioperative period, and 8% died late due to liver disease [52]. Mosko et al. reviewed nationwide data collection of patients who had bariatric surgery in the United States between 1998 and 2007 [53]. Non-cirrhotic patients had less mortality and shorter length of hospital stay in comparison with compensated and decompensated cirrhotic patients (mortality 0.3 vs. 0.9 and 16.3%, respectively, and length of stay 3.2 vs. 4.4 and 6.7 days, respectively). The study also found that high-volume centers (performing >100 surgeries per year) had lower mortality rate (0.2 vs. 0.7%; p < 0.0001) than low volume centers (performing <50 surgeries per year). Shimizu et al. did a study on 22 Child’s A and 1 Child’s B cirrhotic patients who underwent laparoscopic RYGB, laparoscopic sleeve gastrectomy, and LAGB between 2004 and 2011. No patient had decompensation of liver disease after surgery [54]. Pestana et al. did a retrospective review on 14 Child’s A cirrhotic patients (4 with portal hypertension and 10 without portal hypertension) who had bariatric surgeries (sleeve gastrectomy and gastric bypass) between 2009 and 2011. Significant weight loss with improvement of hepatic steatosis, diabetes mellitus, hypertension, and dyslipidemia occurred. None of them had peri- or postoperative surgical complications or bleeding [55].
\nFrom the above studies, it is apparent that bariatric surgeries can be safely performed in high-volume centers with acceptable morbidity and mortality in carefully selected compensated cirrhotic patients. The next question comes: What type of bariatric surgery is suitable for cirrhotic patients? Currently, three types of bariatric surgery are most commonly done. These include laparoscopic RYGB, laparoscopic sleeve gastrectomy, and LAGB. Each type has its own pros and cons which are mentioned in Table 4.
\nType of surgery | \nPros | \nCons | \n
---|---|---|
Laparoscopic RYGB | \nMost significant weight loss out of the three procedures | \n\n
| \n
LAGB | \nLeast invasive procedure out of the three | \nForeign device implantation may cause infection, particularly in the presence of ascites Currently contraindicated by the FDA to be placed in cirrhosis of the liver [59] | \n
Laparoscopic sleeve gastrectomy | \n\n
| \nRisk of significant bleeding in patients with gastric varices | \n
Pros and cons of different types of bariatric surgery in cirrhosis of the liver.
EUS, endoscopic ultrasound; ERCP, endoscopic retrograde cholangiopancreatography; FNA, fine needle aspiration.
Modality of gastric bypass surgery should be individualized according to patients’ comorbidities and pros and cons of each type of surgery. Sleeve gastrectomy is becoming more popular. Although bariatric surgery poses significant risks to patients with cirrhosis due to NAFLD, the considerable benefits of significant weight loss (including decreasing the risk of cardiovascular diseases and malignancy) and candidacy for liver transplantation may overweigh the risks. The AASLD guidelines published in January 2018 do not recommend bariatric surgery to patients with cirrhosis of the liver attributed to NAFLD as the type, safety, and efficacy of bariatric surgery are not yet established in this group of patients [60].
\nSome transplant centers have a strict criteria of not performing orthotopic liver transplantation with BMI > 35. Orthotopic liver transplantation in morbidly obese patients is technically difficult and can be associated with increased bleeding, postoperative complications, morbidity, and mortality [61]. The longevity of morbidly obese transplanted patients is also shortened. Pretransplant bariatric surgery is considered in these patients to reach the BMI goal for liver transplantation. Lin et al. did a retrospective study in pretransplant morbidly obese patients and found that laparoscopic sleeve gastrectomy was safe and successful in causing significant weight loss and improving candidacy for liver transplantation [62]. On the other hand, one third of post-liver transplant patients become obese, and some of them become morbidly obese due to increased appetite, increased calorie intake, sedentary lifestyle, and corticosteroid therapy. A proportion of these patients may develop metabolic syndrome and NAFLD in the transplanted liver. Both RYGB and laparoscopic sleeve gastrectomy have been found to be safe and feasible in post-liver transplant morbidly obese patients [63, 64]. Another small study showed combined liver transplantation and sleeve gastrectomy in morbidly obese patients led to effective weight loss and less metabolic complications. There was no mortality or graft loss in those patients [65]. So bariatric surgery has been found to be safe before, during, and after liver transplantation in selected patients in small studies although there is no consensus about the optimal timing yet.
\nWith the epidemic of obesity, there will be steep rise in performing bariatric surgery on NAFLD patients. Multiple cohort studies suggest that bariatric surgeries are extremely effective in lowering significant amount of body weight and in improving the metabolic syndrome and histology of NAFLD. Bariatric surgery helps NAFLD in achieving significant and durable weight loss, decreasing insulin resistance, ameliorating dyslipidemia, and improving metabolic hormone profile. As most of the patients with NAFLD die from cardiovascular diseases and malignancy, bariatric surgery should be considered in otherwise obese individuals with NAFLD. The commonly used bariatric surgeries include laparoscopic RYGB, laparoscopic sleeve gastrectomy, and LAGB. According to cohort studies, bariatric surgeries can be performed safely in patients with compensated Child’s A cirrhosis attributed to NAFLD. But at the present time, AASLD does not recommend bariatric surgery in patients with cirrhosis attributed to NAFLD because of the lack of randomized controlled trial. Prospective randomized controlled trials are also needed in morbidly obese patients with end-stage liver disease attributed to NAFLD to find out whether performing simultaneous orthotopic liver transplantation and bariatric surgery are safe and effective.
\nClassic smart home, internet of things, cloud computing and rule-based event processing, are the building blocks of our proposed advanced smart home integrated compound. Each component contributes its core attributes and technologies to the proposed composition. IoT contributes the internet connection and remote management of mobile appliances, incorporated with a variety of sensors. Sensors may be attached to home related appliances, such as air-conditioning, lights and other environmental devices. And so, it embeds computer intelligence into home devices to provide ways to measure home conditions and monitor home appliances’ functionality. Cloud computing provides scalable computing power, storage space and applications, for developing, maintaining, running home services, and accessing home devices anywhere at anytime. The rule-based event processing system provides the control and orchestration of the entire advanced smart home composition.
Combining technologies in order to generate a best of breed product, already appear in recent literature in various ways. Christos Stergioua et al. [1] merge cloud computing and IoT to show how the cloud computing technology improves the functionality of the IoT. Majid Al-Kuwari [2] focus on embedded IoT for using analyzed data to remotely execute commands of home appliances in a smart home. Trisha Datta et al. [3] propose a privacy-preserving library to embed traffic shaping in home appliances. Jian Mao et al. [4] enhance machine learning algorithms to play a role in the security in a smart home ecosystem. Faisal Saeed et al. [5] propose using sensors to sense and provide in real-time, fire detection with high accuracy.
In this chapter we explain the integration of classic smart home, IoT and cloud computing. Starting by analyzing the basics of smart home, IoT, cloud computing and event processing systems. We discuss their complementarity and synergy, detailing what is currently driving to their integration. We also discuss what is already available in terms of platforms, and projects implementing the smart home, cloud and IoT paradigm. From the connectivity perspective, the added IoT appliances and the cloud, are connected to the internet and in this context also to the home local area network. These connections complement the overall setup to a complete unified and interconnected composition with extended processing power, powerful 3rd party tools, comprehensive applications and an extensive storage space.
In the rest of this chapter we elaborate on each of the four components. In Section 1, we describe the classic smart home, in Section 2, we introduce the internet of things [IoT], in Section 3, we outline cloud computing and in Section 4, we present the event processing module. In Section 5, we describe the composition of an advanced smart home, incorporating these four components. In Section 6, we provide some practical information and relevant selection considerations, for building a practical advanced smart home implementation. In Section 7, we describe our experiment introducing three examples presenting the essence of our integrated proposal. Finally, we identify open issues and future directions in the future of advanced smart home components and applications.
Smart home is the residential extension of building automation and involves the control and automation of all its embedded technology. It defines a residence that has appliances, lighting, heating, air conditioning, TVs, computers, entertainment systems, big home appliances such as washers/dryers and refrigerators/freezers, security and camera systems capable of communicating with each other and being controlled remotely by a time schedule, phone, mobile or internet. These systems consist of switches and sensors connected to a central hub controlled by the home resident using wall-mounted terminal or mobile unit connected to internet cloud services.
Smart home provides, security, energy efficiency, low operating costs and convenience. Installation of smart products provide convenience and savings of time, money and energy. Such systems are adaptive and adjustable to meet the ongoing changing needs of the home residents. In most cases its infrastructure is flexible enough to integrate with a wide range of devices from different providers and standards.
The basic architecture enables measuring home conditions, process instrumented data, utilizing microcontroller-enabled sensors for measuring home conditions and actuators for monitoring home embedded devices.
The popularity and penetration of the smart home concept is growing in a good pace, as it became part of the modernization and reduction of cost trends. This is achieved by embedding the capability to maintain a centralized event log, execute machine learning processes to provide main cost elements, saving recommendations and other useful reports.
A typical smart home is equipped with a set of sensors for measuring home conditions, such as: temperature, humidity, light and proximity. Each sensor is dedicated to capture one or more measurement. Temperature and humidity may be measured by one sensor, other sensors calculate the light ratio for a given area and the distance from it to each object exposed to it. All sensors allow storing the data and visualizing it so that the user can view it anywhere and anytime. To do so, it includes a signal processer, a communication interface and a host on a cloud infrastructure.
Creates the cloud service for managing home appliances which will be hosted on a cloud infrastructure. The managing service allows the user, controlling the outputs of smart actuators associated with home appliances, such as such as lamps and fans. Smart actuators are devices, such as valves and switches, which perform actions such as turning things on or off or adjusting an operational system. Actuators provides a variety of functionalities, such as on/off valve service, positioning to percentage open, modulating to control changes on flow conditions, emergency shutdown (ESD). To activate an actuator, a digital write command is issued to the actuator.
Home access technologies are commonly used for public access doors. A common system uses a database with the identification attributes of authorized people. When a person is approaching the access control system, the person’s identification attributes are collected instantly and compared to the database. If it matches the database data, the access is allowed, otherwise, the access is denied. For a wide distributed institute, we may employ cloud services for centrally collecting persons’ data and processing it. Some use magnetic or proximity identification cards, other use face recognition systems, finger print and RFID.
In an example implementation, an RFID card and an RFID reader have been used. Every authorized person has an RFID card. The person scanned the card via RFID reader located near the door. The scanned ID has been sent via the internet to the cloud system. The system posted the ID to the controlling service which compares the scanned ID against the authorized IDs in the database.
To enable all of the above described activities and data management, the system is composed of the following components, as described in Figure 1.
Sensors to collect internal and external home data and measure home conditions. These sensors are connected to the home itself and to the attached-to-home devices. These sensors are not internet of things sensors, which are attached to home appliances. The sensors’ data is collected and continually transferred via the local network, to the smart home server.
Processors for performing local and integrated actions. It may also be connected to the cloud for applications requiring extended resources. The sensors’ data is then processed by the local server processes.
A collection of software components wrapped as APIs, allowing external applications execute it, given it follows the pre-defined parameters format. Such an API can process sensors data or manage necessary actions.
Actuators to provision and execute commands in the server or other control devices. It translates the required activity to the command syntax; the device can execute. During processing the received sensors’ data, the task checks if any rule became true. In such case the system may launch a command to the proper device processor.
Database to store the processed data collected from the sensors [and cloud services]. It will also be used for data analysis, data presentation and visualization. The processed data is saved in the attached database for future use.
Smart home paradigm with optional cloud connectivity.
The internet of things (IoT) paradigm refers to devices connected to the internet. Devices are objects such as sensors and actuators, equipped with a telecommunication interface, a processing unit, limited storage and software applications. It enables the integration of objects into the internet, establishing the interaction between people and devices among devices. The key technology of IoT includes radio frequency identification (RFID), sensor technology and intelligence technology. RFID is the foundation and networking core of the construction of IoT. Its processing and communication capabilities along with unique algorithms allows the integration of a variety of elements to operate as an integrated unit but at the same time allow easy addition and removal of components with minimum impact, making IoT robust but flexible to absorb changes in the environment and user preferences. To minimize bandwidth usage, it is using JSON, a lightweight version of XML, for inter components and external messaging.
Cloud computing is a shared pool of computing resources ready to provide a variety of computing services in different levels, from basic infrastructure to most sophisticated application services, easily allocated and released with minimal efforts or service provider interaction [6, 7]. In practice, it manages computing, storage, and communication resources that are shared by multiple users in a virtualized and isolated environment. Figure 2 depicts the overall cloud paradigm.
Cloud computing paradigm.
IoT and smart home can benefit from the wide resources and functionalities of cloud to compensate its limitation in storage, processing, communication, support in pick demand, backup and recovery. For example, cloud can support IoT service management and fulfillment and execute complementary applications using the data produced by it. Smart home can be condensed and focus just on the basic and critical functions and so minimize the local home resources and rely on the cloud capabilities and resources. Smart home and IoT will focus on data collection, basic processing, and transmission to the cloud for further processing. To cope with security challenges, cloud may be private for highly secured data and public for the rest.
IoT, smart home and cloud computing are not just a merge of technologies. But rather, a balance between local and central computing along with optimization of resources consumption. A computing task can be either executed on the IoT and smart home devices or outsourced to the cloud. Where to compute depends on the overhead tradeoffs, data availability, data dependency, amount of data transportation, communications dependency and security considerations. On the one hand, the triple computing model involving the cloud, IoT and smart home, should minimize the entire system cost, usually with more focus on reducing resource consumptions at home. On the other hand, an IoT and smart home computing service model, should improve IoT users to fulfill their demand when using cloud applications and address complex problems arising from the new IoT, smart home and cloud service model.
Some examples of healthcare services provided by cloud and IoT integration: properly managing information, sharing electronic healthcare records enable high-quality medical services, managing healthcare sensor data, makes mobile devices suited for health data delivery, security, privacy, and reliability, by enhancing medical data security and service availability and redundancy and assisted-living services in real-time, and cloud execution of multimedia-based health services.
Smart home and IoT are rich with sensors, which generate massive data flows in the form of messages or events. Processing this data is above the capacity of a human being’s capabilities [8, 9, 10]. Hence, event processing systems have been developed and used to respond faster to classified events. In this section, we focus on rule management systems which can sense and evaluate events to respond to changes in values or interrupts. The user can define event-triggered rule and to control the proper delivery of services. A rule is composed of event conditions, event pattern and correlation-related information which can be combined for modeling complex situations. It was implemented in a typical smart home and proved its suitability for a service-oriented system.
The system can process large amounts of events, execute functions to monitor, navigate and optimize processes in real-time. It discovers and analyzes anomalies or exceptions and creates reactive/proactive responses, such as warnings and preventing damage actions. Situations are modeled by a user-friendly modeling interface for event-triggered rules. When required, it breaks them down into simple, understandable elements. The proposed model can be seamlessly integrated into the distributed and service-oriented event processing platform.
The evaluation process is triggered by events delivering the most recent state and information from the relevant environment. The outcome is a decision graph representing the rule. It can break down complex situations to simple conditions, and combine them with each other, composing complex conditions. The output is a response event raised when a rule fires. The fired events may be used as input for other rules for further evaluation. Event patterns are discovered when multiple events occur and match a pre-defined pattern. Due to the graphical model and modular approach for constructing rules, rules can be easily adapted to domain changes. New event conditions or event patterns can be added or removed from the rule model. Rules are executed by event services, which supply the rule engine with events and process the evaluation result. To ensure the availability of suitable processing resources, the system can run in a distributed mode, on multiple machines and facilitate the integration with external systems, as well. The definition of relationships and dependencies among events that are relevant for the rule processing, are performed using sequence sets, generated by the rule engine. The rule engine constructs sequences of events relevant to a specific rule condition to allow associating events by their context data. Rules automatically perform actions in response when stated conditions hold. Actions generate response events, which trigger response activities. Event patterns can match temporal event sequences, allowing the description of home situations where the occurrences of events are relevant. For example, when the door is kept open too long.
The following challenges are known with this model: structure for the processed events and data, configuration of services and adapters for processing steps, including their input and output parameters, interfaces to external systems for sensing data and for responding by executing transactions, structure for the processed events and data, data transformations, data analysis and persistence. It allows to model which events should be processed by the rule service and how the response events should be forwarded to other event services. The process is simple: data is collected and received from adapters which forward events to event services that consume them. Initially the events are enriched to prepare the event data for the rule processing. For example, the response events are sent to a service for sending notifications to a call agent, or to services which transmit event delay notifications and event updates back to the event management system.
Event processing is concerned with real-time capturing and managing pre-defined events. It starts from managing the receptors of events right from the event occurrence, even identification, data collection, process association and activation of the response action. To allow rapid and flexible event handling, an event processing language is used, which allows fast configuration of the resources required to handle the expected sequence of activities per event type. It is composed of two modules, ESP and CEP. ESP efficiently handles the event, analyzes it and selects the appropriate occurrence. CEP handles aggregated events. Event languages describe complex event-types applied over the event log.
In some cases, rules relate to discrepancies in a sequence of events in a workflow. In such cases, it is mandatory to precisely understand the workflow and its associated events. To overcome this, we propose a reverse engineering process to automatically rediscover the workflows from the events log collected over time, assuming these events are ordered, and each event refers to one task being executed for a single case. The rediscovering process can be used to validate workflow sequences by measuring the discrepancies between prescriptive models and actual process executions. The rediscovery process consists of the following three steps: (1) construction of the dependency/frequency table. (2) Induction of dependency/frequency graphs. (3) Generating WF-nets from D/F-graphs.
In this section, we focus on the integration of smart home, IoT and cloud computing to define a new computing paradigm. We can find in the literature section [11, 12, 13, 14] surveys and research work on smart home, IoT and cloud computing separately, emphasizing their unique properties, features, technologies, and drawbacks. However, our approach is the opposite. We are looking at the synergy among these three concepts and searching for ways to integrate them into a new comprehensive paradigm, utilizing its common underlying concepts as well as its unique attributes, to allow the execution of new processes, which could not be processed otherwise.
Figure 3 depicts the advanced smart-home main components and their inter-connectivity. On the left block, the smart home environment, we can see the typical devices connected to a local area network [LAN]. This enables the communication among the devices and outside of it. Connected to the LAN is a server and its database. The server controls the devices, logs its activities, provides reports, answers queries and executes the appropriate commands. For more comprehensive or common tasks, the smart home server, transfers data to the cloud and remotely activate tasks in it using APIs, application programming interface processes. In addition, IoT home appliances are connected to the internet and to the LAN, and so expands smart home to include IoT. The connection to the internet allows the end user, resident, to communicate with the smart home to get current information and remotely activate tasks.
Advanced smart home—integrating smart home, IoT and cloud computing.
To demonstrate the benefits of the advanced smart home, we use RSA, a robust asymmetric cryptography algorithm, which generates a public and private key and encrypts/decrypts messages. Using the public key, everyone can encrypt a message, but only these who hold the private key can decrypt the sent message. Generating the keys and encrypting/decrypting messages, involves extensive calculations, which require considerable memory space and processing power. Therefore, it is usually processed on powerful computers built to cope with the required resources. However, due to its limited resources, running RSA in an IoT device is almost impossible, and so, it opens a security gap in the Internet, where attackers may easily utilize. To cope with it, we combine the power of the local smart home processors to compute some RSA calculations and forward more complicated computing tasks to be processed in the cloud. The results will then be transferred back to the IoT sensor to be compiled and assembled together, to generate the RSA encryption/decryption code, and so close the mentioned IoT security gap. This example demonstrates the data flow among the advanced smart home components. Where, each component performs its own stack of operations to generate its unique output. However, in case of complicated and long tasks it will split the task to sub tasks to be executed by more powerful components. Referring to the RSA example, the IoT device initiates the need to generate an encryption key and so, sends a request message to the RSA application, running in the smart home computer. The smart home computer then asks the “prime numbers generation” application running on cloud, to provide p and q prime numbers. Once p and q are accepted, the encryption code is generated. In a later stage, an IoT device issues a request to the smart home computer to encrypt a message, using the recent generated RSA encryption key. The encrypted message is then transferred back to the IoT device for further execution. A similar scenario may be in the opposite direction, when an IoT device gets a message it may request the smart home to decrypt it.
To summarize, the RSA scenarios depict the utilization of the strength of the cloud computing power, the smart home secured computing capabilities and at the end the limited power of the IoT device. It proves that without this automatic cooperation, RSA would not be able to be executed at the IoT level.
A more practical example is where several detached appliances, such as an oven, a slow cooker and a pan on the gas stove top, are active in fulfilling the resident request. The resident is getting an urgent phone call and leaves home immediately, without shutting off the active appliances. In case the relevant IoTs have been tuned to automatically shut down based on a predefined rule, it will be taken care at the IoT level. Otherwise, the smart home realizes the resident has left home [the home door has been opened and then locked, the garage has been opened, the resident’s car left, the main gate was opened and then closed, no one was at home] and will shut down all active devices classified as risk in case of absence. It will send an appropriate message to the mailing list defined for such an occasion.
Smart home has three components: hardware, software and communication protocols. It has a wide variety of applications for the digital consumer. Some of the areas of home automation led IoT enabled connectivity, such as: lighting control, gardening, safety and security, air quality, water-quality monitoring, voice assistants, switches, locks, energy and water meters.
Advanced smart home components include: IoT sensors, gateways, protocols, firmware, cloud computing, databases, middleware and gateways. IoT cloud can be divided into a platform-as-a-service (PaaS) and infrastructure-as-a-service (IaaS). Figure 4 demonstrates the main components of the proposed advanced smart home and the connection and data flow among its components.
Advanced smart home composition.
The smart home application updates the home database in the cloud to allow remote people access it and get the latest status of the home. A typical IoT platform contains: device security and authentication, message brokers and message queuing, device administration, protocols, data collection, visualization, analysis capabilities, integration with other web services, scalability, APIs for real-time information flow and open source libraries. IoT sensors for home automation are known by their sensing capabilities, such as: temperature, lux, water level, air composition, surveillance video cameras, voice/sound, pressure, humidity, accelerometers, infrared, vibrations and ultrasonic. Some of the most commonly used smart home sensors are temperature sensors, most are digital sensors, but some are analog and can be extremely accurate. Lux sensors measure the luminosity. Water level ultrasonic sensors.
Float level sensors offer a more precise measurement capability to IoT developers. Air composition sensors are used by developers to measure specific components in the air: CO monitoring, hydrogen gas levels measuring, nitrogen oxide measure, hazardous gas levels. Most of them have a heating time, which means that it requires a certain time before presenting accurate values. It relies on detecting gas components on a surface only after the surface is heated enough, values start to show up. Video cameras for surveillance and analytics. A range of cameras, with a high-speed connection. Using Raspberry Pi processor is recommended as its camera module is very efficient due to its flex connector, connected directly to the board.
Sound detectors are widely used for monitoring purposes, detecting sounds and acting accordingly. Some can even detect ultra-low levels of noise, and fine tune among various noise levels.
Humidity sensors sense the humidity levels in the air for smart homes. Its accuracy and precision depend on the sensor design and placement. Certain sensors like the DHT22, built for rapid prototyping, will always perform poorly when compared to high-quality sensors like HIH6100. For open spaces, the distribution around the sensor is expected to be uniform requiring fewer corrective actions for the right calibration.
Smart home communication protocols: bluetooth, Wi-Fi, or GSM. Bluetooth smart or low energy wireless protocols with mesh capabilities and data encryption algorithms. Zigbee is mesh networked, low power radio frequency-based protocol for IoT. X10 protocol that utilizes powerline wiring for signaling and control. Insteon, wireless and wireline communication. Z-wave specializes in secured home automation. UPB, uses existing power lines. Thread, a royalty-free protocol for smart home automation. ANT, an ultra-low-power protocol for building low-powered sensors with a mesh distribution capability. The preferred protocols are bluetooth low energy, Z-wave, Zigbee, and thread. Considerations for incorporating a gateway may include: cloud connectivity, supported protocols, customization complexity and prototyping support. Home control is composed of the following: state machine, event bus, service log and timer.
Modularity: enables the bundle concept, runtime dynamics, software components can be managed at runtime, service orientation, manage dependencies among bundles, life cycle layer: controls the life cycle of the bundles, service layers: defines a dynamic model of communication between various modules, actual services: this is the application layer. Security layer: optional, leverages Java 2 security architecture and manages permissions from different modules.
OpenHAB is a framework, combining home automation and IoT gateway for smart homes. Its features: rules engine, logging mechanism and UI abstraction. Automation rules that focus on time, mood, or ambiance, easy configuration, common supported hardware:
Domoticz architecture: very few people know about the architecture of Domoticz, making it extremely difficult to build applications on it without taking unnecessary risks in building the product itself. For example, the entire design of general architecture feels a little weird when you look at the concept of a sensor to control to an actuator. Building advanced applications with Domoticz can be done using OO based languages.
Deployment of blockchain into home networks can easily be done with Raspberry Pi. A blockchain secured layer between devices and gateways can be implemented without a massive revamp of the existing code base. Blockchain is a technology that will play a role in the future to reassure them with revolutionary and new business models like dynamic renting for Airbnb.
We can find in the literature and practical reports, many implementations of various integrations among part of the main three building blocks, smart home, IoT and cloud computing. For example, refer to [12–14]. In this section we outline three implementations, which clearly demonstrate the need and the benefits of interconnecting or integrating all three components, as illustrated in Figure 5. Each component is numbered, 1–6. In the left side, we describe for each implementation, the sequence of messages/commands among components, from left to right and from bottom up. Take for example the third implementation, a control task constantly runing at the home server (2) discovers the fact that all residents left home and automatically, initiates actuators to shut down all IoT appliances (3), then it issues messages to the relevant users/residents, updating them about the situation and the applied actions it took (6).
Advanced smart home implementations chart.
The use of (i) in the implementations explanation, corresponds to the circled numbers in Figure 5.
First step is deploying water sensors under every reasonable potential leak source and an automated master water valve sensor for the whole house, which now means the house is considered as an IoT.
In case the water sensor detects a leak of water (3), it sends an event to the hub (2), which triggers the “turn valve off” application. The home control application then sends a “turn off” command to all IoT (3) appliances defined as sensitive to water stopping and then sends the “turn off” command to the main water valve (1). An update message is sent via the messaging system to these appearing in the notification list (6). This setup helps defending against scenarios where the source of the water is from the house plumbing. The underlying configuration assumes an integration via messages and commands between the smart home and the IoT control system. It demonstrates the dependency and the resulting benefits of combining smart home and IoT.
Most houses already have the typical collection of smoke detectors (1), but there is no bridge to send data from the sensor to a smart home hub. Connecting these sensors to a smart home app (2), enables a comprehensive smoke detection system. It is further expanded to notify the elevator sensor to block the use of it due to fire condition (1), and so, it is even further expanded to any IoT sensor (3), who may be activated due to the detected smoke alert.
In [5] they designed a wireless sensor network for early detection of house fires. They simulated a fire in a smart home using the fire dynamics simulator and a language program. The simulation results showed that the system detects fire early.
Consider the scenario where you leave home while some of the appliances are still on. In case your absence is long enough, some of the appliances may over heat and are about to blowout. To avoid such situations, we connect all IoT appliances’ sensors to the home application (2), so that when all leave home it will automatically adjust all the appliances’ sensors accordingly (3), to avoid damages. Note that the indication of an empty home is generated by the Smart Home application, while the “on” indication of the appliance, is generated by IoT. Hence, this scenario is possible due to the integration between smart home and IoT systems.
In this chapter we described the integration of three loosely coupled components, smart home, Iot, and cloud computing. To orchestrate and timely manage the vast data flow in an efficient and balanced way, utilizing the strengths of each component we propose a centralized real time event processing application.
We describe the advantages and benefits of each standalone component and its possible complements, which may be achieved by integrating it with the other components providing new benefits raised from the whole compound system. Since these components are still at its development stage, the integration among them may change and provide a robust paradigm that generates a new generation of infrastructure and applications.
As we follow-up on the progress of each component and its corresponding impact on the integrated compound, we will constantly consider additional components to be added, resulting with new service models and applications.
IntechOpen will act in accordance with its published Refund Policy if requests for refunds are made.
",metaTitle:"Refund Policy",metaDescription:"IntechOpen will act in accordance with its Refund Policy if requests for refunds are made.",metaKeywords:null,canonicalURL:"/page/refund-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Refunds are possible in the following cases:
\\n\\n1. A double payment, in which case a full refund will be made.
\\n\\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\\n\\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\\n\\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Refunds are possible in the following cases:
\n\n1. A double payment, in which case a full refund will be made.
\n\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\n\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\n\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5311},{group:"region",caption:"Middle and South America",value:2,count:4814},{group:"region",caption:"Africa",value:3,count:1465},{group:"region",caption:"Asia",value:4,count:9355},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14773}],offset:12,limit:12,total:108151},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndSecondStepPublish"},books:[{type:"book",id:"7852",title:"Binding Immunoglobulin Protein",subtitle:null,isOpenForSubmission:!0,hash:"2e2e79aa033b6f1c096eb1fb9be03d1c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7852.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7901",title:"Cocoa",subtitle:null,isOpenForSubmission:!0,hash:"bd93f97ceb11fd901da97e54a700270d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7901.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8196",title:"ABC Transporters",subtitle:null,isOpenForSubmission:!0,hash:"bfec00d7a6a9666fe01c230f7b133297",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8196.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8367",title:"Collagen",subtitle:null,isOpenForSubmission:!0,hash:"cebbd18b88d65288e3b0d4d0d1050830",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8367.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8565",title:"Aeronautics and Astronautics",subtitle:null,isOpenForSubmission:!0,hash:"43f114ba03e5e42ba53da372ffc3cbde",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8565.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8568",title:"Intelligent Life Beyond Earth",subtitle:null,isOpenForSubmission:!0,hash:"f678594f3e4c852a12790aca46dbcdc2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8568.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8601",title:"Fixed Point",subtitle:null,isOpenForSubmission:!0,hash:"294c402de44bdd6636c0bc0ee84333ff",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8601.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8657",title:"Fingerprint Identification System",subtitle:null,isOpenForSubmission:!0,hash:"282a558df729691eb1f767bd57fa3303",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8733",title:"Side-effects of Penicilin",subtitle:null,isOpenForSubmission:!0,hash:"bcb5e7b509de6ba98f7ed4eeff208df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8733.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8764",title:"Methanol Chemistry",subtitle:null,isOpenForSubmission:!0,hash:"a2d585554682fa7c2ad74c79ceb2cfee",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8764.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8682",title:"Vectors",subtitle:null,isOpenForSubmission:!0,hash:"a9ea6743964f79b391b672fc667bbbf1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8682.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8696",title:"Pulmonary Insufficiency",subtitle:null,isOpenForSubmission:!0,hash:"0dfed0b2495fdf08ebf2f5779db08135",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:28},{group:"topic",caption:"Computer and Information Science",value:9,count:27},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:39},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:142},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:25},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:12},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1},{group:"topic",caption:"Osteology",value:1414,count:1},{group:"topic",caption:"Polymer Chemistry",value:1415,count:1}],offset:12,limit:12,total:998},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8408",title:"Titanium Alloys",subtitle:"Novel Aspects of Their Manufacturing and Processing",isOpenForSubmission:!1,hash:"e5533136b732dc4ada818553023d4d55",slug:"titanium-alloys-novel-aspects-of-their-manufacturing-and-processing",bookSignature:"Maciej Motyka, Waldemar Ziaja and Jan Sieniawsk",coverURL:"https://cdn.intechopen.com/books/images_new/8408.jpg",editors:[{id:"101690",title:"Associate Prof.",name:"Maciej",middleName:null,surname:"Motyka",slug:"maciej-motyka",fullName:"Maciej Motyka"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7875",title:"Liver Disease and Surgery",subtitle:null,isOpenForSubmission:!1,hash:"163f3050d8d21a64401f9ef6f7230da5",slug:"liver-disease-and-surgery",bookSignature:"Georgios Tsoulfas and Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/7875.jpg",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7865",title:"Type 2 Diabetes",subtitle:"From Pathophysiology to Modern Management",isOpenForSubmission:!1,hash:"f8b817f1959240ca2551ece7b8d03d75",slug:"type-2-diabetes-from-pathophysiology-to-modern-management",bookSignature:"Mira Siderova",coverURL:"https://cdn.intechopen.com/books/images_new/7865.jpg",editors:[{id:"242582",title:"Associate Prof.",name:"Mira",middleName:null,surname:"Siderova",slug:"mira-siderova",fullName:"Mira Siderova"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7007",title:"Biosensors for Environmental Monitoring",subtitle:null,isOpenForSubmission:!1,hash:"0f0aa079c718ff38aece0a8cecb65f98",slug:"biosensors-for-environmental-monitoring",bookSignature:"Toonika Rinken and Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/7007.jpg",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8326",title:"Recent Advances in Laparoscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"bb33202378533dfccd860269d494d6a6",slug:"recent-advances-in-laparoscopic-surgery",bookSignature:"Francisco M. Sánchez Margallo and Juan A. Sánchez-Margallo",coverURL:"https://cdn.intechopen.com/books/images_new/8326.jpg",editors:[{id:"14715",title:"Prof.",name:"Francisco Miguel",middleName:null,surname:"Sánchez-Margallo",slug:"francisco-miguel-sanchez-margallo",fullName:"Francisco Miguel Sánchez-Margallo"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7879",title:"Spinal Cord Injury Therapy",subtitle:null,isOpenForSubmission:!1,hash:"674d4925395d0e0c564f092bda8c6482",slug:"spinal-cord-injury-therapy",bookSignature:"Antonio Ibarra, Elisa García-Vences and Gabriel Guízar-Sahagún",coverURL:"https://cdn.intechopen.com/books/images_new/7879.jpg",editors:[{id:"72488",title:"Dr.",name:"Antonio",middleName:null,surname:"Ibarra",slug:"antonio-ibarra",fullName:"Antonio Ibarra"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8362",title:"Time Series Analysis",subtitle:"Data, Methods, and Applications",isOpenForSubmission:!1,hash:"7e98dd03d921c19cc2324e91845d5160",slug:"time-series-analysis-data-methods-and-applications",bookSignature:"Chun-Kit Ngan",coverURL:"https://cdn.intechopen.com/books/images_new/8362.jpg",editors:[{id:"227503",title:"Dr.",name:"Chun-Kit",middleName:null,surname:"Ngan",slug:"chun-kit-ngan",fullName:"Chun-Kit Ngan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"6845",title:"Graphene and Its Derivatives",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"63a9783e678fc42ce981efb35be02096",slug:"graphene-and-its-derivatives-synthesis-and-applications",bookSignature:"Ishaq Ahmad and Fabian I. Ezema",coverURL:"https://cdn.intechopen.com/books/images_new/6845.jpg",editors:[{id:"25524",title:"Prof.",name:"Ishaq",middleName:null,surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7304",title:"Geospatial Analyses of Earth Observation (EO) data",subtitle:null,isOpenForSubmission:!1,hash:"e90c7cda0e7f94a6620d6ec83db808ae",slug:"geospatial-analyses-of-earth-observation-eo-data",bookSignature:"Antonio Pepe and Qing Zhao",coverURL:"https://cdn.intechopen.com/books/images_new/7304.jpg",editors:[{id:"99269",title:"Dr.",name:"Antonio",middleName:null,surname:"Pepe",slug:"antonio-pepe",fullName:"Antonio Pepe"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1067",title:"Maternal-Fetal Medicine",slug:"maternal-fetal-medicine",parent:{title:"Obstetrics and Gynecology",slug:"obstetrics-and-gynecology"},numberOfBooks:8,numberOfAuthorsAndEditors:225,numberOfWosCitations:26,numberOfCrossrefCitations:23,numberOfDimensionsCitations:76,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"maternal-fetal-medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8471",title:"Prediction of Maternal and Fetal Syndrome of Preeclampsia",subtitle:null,isOpenForSubmission:!1,hash:"327257ae2f4783050d327cd524bf2a3e",slug:"prediction-of-maternal-and-fetal-syndrome-of-preeclampsia",bookSignature:"Nidhi Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/8471.jpg",editedByType:"Edited by",editors:[{id:"220214",title:"Prof.",name:"Nidhi",middleName:null,surname:"Sharma",slug:"nidhi-sharma",fullName:"Nidhi Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7259",title:"Selected Topics in Midwifery Care",subtitle:null,isOpenForSubmission:!1,hash:"e5010271563ab3bbf99a960a183acb80",slug:"selected-topics-in-midwifery-care",bookSignature:"Ana Polona Mivšek",coverURL:"https://cdn.intechopen.com/books/images_new/7259.jpg",editedByType:"Edited by",editors:[{id:"85109",title:"Dr.",name:"Ana Polona",middleName:null,surname:"Mivšek",slug:"ana-polona-mivsek",fullName:"Ana Polona Mivšek"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7173",title:"Multiple Pregnancy",subtitle:"New Challenges",isOpenForSubmission:!1,hash:"f599a465410812da5aee0b247d427e9b",slug:"multiple-pregnancy-new-challenges",bookSignature:"Julio Elito Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7173.jpg",editedByType:"Edited by",editors:[{id:"35132",title:"Prof.",name:"Julio",middleName:null,surname:"Elito Jr.",slug:"julio-elito-jr.",fullName:"Julio Elito Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6295",title:"Pregnancy and Birth Outcomes",subtitle:null,isOpenForSubmission:!1,hash:"fc1274517f5c0c09b0a923b3027f3d8a",slug:"pregnancy-and-birth-outcomes",bookSignature:"Wei Wu",coverURL:"https://cdn.intechopen.com/books/images_new/6295.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",middleName:null,surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5937",title:"Obstetrics",subtitle:null,isOpenForSubmission:!1,hash:"092197b1191815505a23e7dd1c9edde6",slug:"obstetrics",bookSignature:"Hassan Salah Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/5937.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",middleName:"S",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"952",title:"Cesarean Delivery",subtitle:null,isOpenForSubmission:!1,hash:"cdde3ddf5707430e18678e9ed4c77f4e",slug:"cesarean-delivery",bookSignature:"Raed Salim",coverURL:"https://cdn.intechopen.com/books/images_new/952.jpg",editedByType:"Edited by",editors:[{id:"91354",title:"Dr.",name:"Raed",middleName:null,surname:"Salim",slug:"raed-salim",fullName:"Raed Salim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"776",title:"Preterm Birth",subtitle:"Mother and Child",isOpenForSubmission:!1,hash:"4e5369103770cdbf61058ad75e2e63bb",slug:"preterm-birth-mother-and-child",bookSignature:"John C. Morrison",coverURL:"https://cdn.intechopen.com/books/images_new/776.jpg",editedByType:"Edited by",editors:[{id:"68209",title:"Dr.",name:"John",middleName:null,surname:"Morrison",slug:"john-morrison",fullName:"John Morrison"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"233",title:"Ectopic Pregnancy",subtitle:"Modern Diagnosis and Management",isOpenForSubmission:!1,hash:"8c65111e8ad6970e2023fc65cd3a92b5",slug:"ectopic-pregnancy-modern-diagnosis-and-management",bookSignature:"Michael Kamrava",coverURL:"https://cdn.intechopen.com/books/images_new/233.jpg",editedByType:"Edited by",editors:[{id:"30190",title:"Dr.",name:"Michael",middleName:"M",surname:"Kamrava",slug:"michael-kamrava",fullName:"Michael Kamrava"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,mostCitedChapters:[{id:"27121",doi:"10.5772/27439",title:"Clinical Risk Factors for Preterm Birth",slug:"clinical-risk-factors-for-preterm-birth",totalDownloads:7842,totalCrossrefCites:6,totalDimensionsCites:11,book:{slug:"preterm-birth-mother-and-child",title:"Preterm Birth",fullTitle:"Preterm Birth - Mother and Child"},signatures:"Ifeoma Offiah, Keelin O’Donoghue and Louise Kenny",authors:[{id:"68552",title:"Dr.",name:"Ifeoma",middleName:null,surname:"Offiah",slug:"ifeoma-offiah",fullName:"Ifeoma Offiah"},{id:"70166",title:"Prof.",name:"Louise",middleName:null,surname:"Kenny",slug:"louise-kenny",fullName:"Louise Kenny"},{id:"74717",title:"Dr.",name:"Keelin",middleName:null,surname:"O'Donoghue",slug:"keelin-o'donoghue",fullName:"Keelin O'Donoghue"}]},{id:"27122",doi:"10.5772/27539",title:"Psychobiological Stress and Preterm Birth",slug:"psychobiological-stress-and-preterm-birth",totalDownloads:2137,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"preterm-birth-mother-and-child",title:"Preterm Birth",fullTitle:"Preterm Birth - Mother and Child"},signatures:"Curt A. Sandman, Elysia P. Davis and Laura M. Glynn",authors:[{id:"70534",title:"Prof.",name:"Curt",middleName:null,surname:"Sandman",slug:"curt-sandman",fullName:"Curt Sandman"},{id:"74174",title:"Prof.",name:"Laura",middleName:null,surname:"Glynn",slug:"laura-glynn",fullName:"Laura Glynn"},{id:"74177",title:"Prof.",name:"Elysia",middleName:null,surname:"Davis",slug:"elysia-davis",fullName:"Elysia Davis"}]},{id:"22230",doi:"10.5772/21555",title:"Tubal Damage, Infertility and Tubal Ectopic Pregnancy: Chlamydia trachomatis and Other Microbial Aetiologies",slug:"tubal-damage-infertility-and-tubal-ectopic-pregnancy-chlamydia-trachomatis-and-other-microbial-aetio",totalDownloads:4812,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"ectopic-pregnancy-modern-diagnosis-and-management",title:"Ectopic Pregnancy",fullTitle:"Ectopic Pregnancy - Modern Diagnosis and Management"},signatures:"Louise M. Hafner and Elise S. Pelzer",authors:[{id:"43697",title:"Prof.",name:"Louise",middleName:null,surname:"Hafner",slug:"louise-hafner",fullName:"Louise Hafner"},{id:"43707",title:"Ms.",name:"Elise",middleName:null,surname:"Pelzer",slug:"elise-pelzer",fullName:"Elise Pelzer"}]}],mostDownloadedChaptersLast30Days:[{id:"62277",title:"Basic Antenatal Care Approach to Antenatal Care Service Provision",slug:"basic-antenatal-care-approach-to-antenatal-care-service-provision",totalDownloads:979,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"selected-topics-in-midwifery-care",title:"Selected Topics in Midwifery Care",fullTitle:"Selected Topics in Midwifery Care"},signatures:"Thembelihle Sylvia Patience Ngxongo",authors:[{id:"243711",title:"Dr.",name:"Thembelihle Sylvia Patience",middleName:null,surname:"Ngxongo",slug:"thembelihle-sylvia-patience-ngxongo",fullName:"Thembelihle Sylvia Patience Ngxongo"}]},{id:"57672",title:"Ectopic Pregnancy: Diagnosis, Prevention and Management",slug:"ectopic-pregnancy-diagnosis-prevention-and-management",totalDownloads:1392,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"obstetrics",title:"Obstetrics",fullTitle:"Obstetrics"},signatures:"Talal Anwer Abdulkareem and Sajeda Mahdi Eidan",authors:[{id:"201127",title:"Prof.",name:"Talal",middleName:"Anwer",surname:"Abdulkareem",slug:"talal-abdulkareem",fullName:"Talal Abdulkareem"}]},{id:"64141",title:"Early Pregnancy Ultrasound Assessment of Multiple Pregnancy",slug:"early-pregnancy-ultrasound-assessment-of-multiple-pregnancy",totalDownloads:517,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"multiple-pregnancy-new-challenges",title:"Multiple Pregnancy",fullTitle:"Multiple Pregnancy - New Challenges"},signatures:"Panagiotis Antsaklis, Maria Papamichail, Marianna Theodora,\nMichael Syndos and George Daskalakis",authors:[{id:"64707",title:"Dr.",name:"George",middleName:null,surname:"Daskalakis",slug:"george-daskalakis",fullName:"George Daskalakis"},{id:"202113",title:"Dr.",name:"Panagiotis",middleName:null,surname:"Antsaklis",slug:"panagiotis-antsaklis",fullName:"Panagiotis Antsaklis"},{id:"253908",title:"Dr.",name:"Marianna",middleName:null,surname:"Theodora",slug:"marianna-theodora",fullName:"Marianna Theodora"},{id:"268350",title:"Dr.",name:"Maria",middleName:null,surname:"Papamichail",slug:"maria-papamichail",fullName:"Maria Papamichail"},{id:"268351",title:"Dr.",name:"Michael",middleName:null,surname:"Sindos",slug:"michael-sindos",fullName:"Michael Sindos"}]},{id:"56365",title:"Massive Postpartum Hemorrhage: Protocol and Red Code",slug:"massive-postpartum-hemorrhage-protocol-and-red-code",totalDownloads:1134,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"obstetrics",title:"Obstetrics",fullTitle:"Obstetrics"},signatures:"Jaume Miñano Masip, Laura Almeida Toledano, Sílvia Ferrero\nMartínez and María Dolores Gómez Roig",authors:[{id:"202446",title:"Ph.D.",name:"Maria Dolores",middleName:null,surname:"Gómez Roig",slug:"maria-dolores-gomez-roig",fullName:"Maria Dolores Gómez Roig"},{id:"202447",title:"Dr.",name:"Jaume",middleName:null,surname:"Miñano Masip",slug:"jaume-minano-masip",fullName:"Jaume Miñano Masip"},{id:"202448",title:"Dr.",name:"Laura",middleName:null,surname:"Almeida",slug:"laura-almeida",fullName:"Laura Almeida"},{id:"202449",title:"Dr.",name:"Silvia",middleName:null,surname:"Ferrero",slug:"silvia-ferrero",fullName:"Silvia Ferrero"}]},{id:"65495",title:"Improving Maternal Health: The Safe Childbirth Checklist as a Tool for Reducing Maternal Mortality and Morbidity",slug:"improving-maternal-health-the-safe-childbirth-checklist-as-a-tool-for-reducing-maternal-mortality-an",totalDownloads:493,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"selected-topics-in-midwifery-care",title:"Selected Topics in Midwifery Care",fullTitle:"Selected Topics in Midwifery Care"},signatures:"Julius Dohbit, Vetty Agala, Pamela Chinwa-Banda, Betty Anane-\nFenin, Omosivie Maduka, Ufuoma Edewor, Ibimonye Porbeni, Fru\nAngwafo and Rosemary Ogu",authors:[{id:"213063",title:"Prof.",name:"Rosemary",middleName:null,surname:"Ogu",slug:"rosemary-ogu",fullName:"Rosemary Ogu"},{id:"241001",title:"Dr.",name:"Pamela",middleName:"Chirwa",surname:"Banda",slug:"pamela-banda",fullName:"Pamela Banda"},{id:"259772",title:"Dr.",name:"Vetty",middleName:null,surname:"Agala",slug:"vetty-agala",fullName:"Vetty Agala"},{id:"270792",title:"Prof.",name:"Fru",middleName:null,surname:"Angwafo",slug:"fru-angwafo",fullName:"Fru Angwafo"},{id:"270799",title:"Dr.",name:"Sama",middleName:null,surname:"Dohbit",slug:"sama-dohbit",fullName:"Sama Dohbit"},{id:"270802",title:"Dr.",name:"Betty",middleName:null,surname:"Anane-Fenin",slug:"betty-anane-fenin",fullName:"Betty Anane-Fenin"},{id:"270803",title:"Dr.",name:"Ufuoma",middleName:null,surname:"Edewor",slug:"ufuoma-edewor",fullName:"Ufuoma Edewor"},{id:"273872",title:"Dr.",name:"Ibimonye",middleName:null,surname:"Porbeni",slug:"ibimonye-porbeni",fullName:"Ibimonye Porbeni"},{id:"273875",title:"Dr.",name:"Omosivie",middleName:null,surname:"Maduka",slug:"omosivie-maduka",fullName:"Omosivie Maduka"}]},{id:"63089",title:"Time and Mode of Delivery in Twin Pregnancies",slug:"time-and-mode-of-delivery-in-twin-pregnancies",totalDownloads:439,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"multiple-pregnancy-new-challenges",title:"Multiple Pregnancy",fullTitle:"Multiple Pregnancy - New Challenges"},signatures:"Eduardo Félix Martins Santana, Vivian Melo Corrêa, Isabela Bottura\nand José Pedro Parise Filho",authors:[{id:"171791",title:"Ph.D.",name:"Eduardo",middleName:"Felix Martins",surname:"Santana",slug:"eduardo-santana",fullName:"Eduardo Santana"},{id:"249917",title:"Dr.",name:"Vivian",middleName:null,surname:"Melo Correa",slug:"vivian-melo-correa",fullName:"Vivian Melo Correa"},{id:"251239",title:"Dr.",name:"Isabela",middleName:null,surname:"Bottura",slug:"isabela-bottura",fullName:"Isabela Bottura"},{id:"256945",title:"Dr.",name:"José Pedro",middleName:null,surname:"Parise Filho",slug:"jose-pedro-parise-filho",fullName:"José Pedro Parise Filho"}]},{id:"56985",title:"Pelvic Floor Support",slug:"pelvic-floor-support",totalDownloads:2146,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"obstetrics",title:"Obstetrics",fullTitle:"Obstetrics"},signatures:"Yu Chye Wah and Chew Heng Hai",authors:[{id:"202862",title:"Dr.",name:"Chye Wah",middleName:null,surname:"Yu",slug:"chye-wah-yu",fullName:"Chye Wah Yu"}]},{id:"63345",title:"Psychosocial Antenatal Care: A Midwifery Context",slug:"psychosocial-antenatal-care-a-midwifery-context",totalDownloads:477,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"selected-topics-in-midwifery-care",title:"Selected Topics in Midwifery Care",fullTitle:"Selected Topics in Midwifery Care"},signatures:"Johanna Mmabojalwa Mathibe-Neke and Seipati Suzan\nMasitenyane",authors:[{id:"243661",title:"Prof.",name:"Johanna",middleName:null,surname:"Mathibe-Neke",slug:"johanna-mathibe-neke",fullName:"Johanna Mathibe-Neke"},{id:"255954",title:"Mrs.",name:"Suzan",middleName:null,surname:"Masitenyane",slug:"suzan-masitenyane",fullName:"Suzan Masitenyane"}]},{id:"58162",title:"Gestational Age and Pregnancy Outcomes",slug:"gestational-age-and-pregnancy-outcomes",totalDownloads:365,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"pregnancy-and-birth-outcomes",title:"Pregnancy and Birth Outcomes",fullTitle:"Pregnancy and Birth Outcomes"},signatures:"Yasmin H. Neggers",authors:[{id:"29639",title:"Dr.",name:"Yasmin",middleName:"H",surname:"Neggers",slug:"yasmin-neggers",fullName:"Yasmin Neggers"}]},{id:"66726",title:"Risk Factor and Biomarker of Preeclampsia",slug:"risk-factor-and-biomarker-of-preeclampsia",totalDownloads:215,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"prediction-of-maternal-and-fetal-syndrome-of-preeclampsia",title:"Prediction of Maternal and Fetal Syndrome of Preeclampsia",fullTitle:"Prediction of Maternal and Fetal Syndrome of Preeclampsia"},signatures:"Makmur Sitepu and Jusuf Rachmadsyah",authors:[{id:"289701",title:"Dr.",name:"Makmur",middleName:null,surname:"Sitepu",slug:"makmur-sitepu",fullName:"Makmur Sitepu"}]}],onlineFirstChaptersFilter:{topicSlug:"maternal-fetal-medicine",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"chapter.detail",path:"/books/liver-disease-and-surgery/non-alcoholic-fatty-liver-disease-and-surgery",hash:"",query:{},params:{book:"liver-disease-and-surgery",chapter:"non-alcoholic-fatty-liver-disease-and-surgery"},fullPath:"/books/liver-disease-and-surgery/non-alcoholic-fatty-liver-disease-and-surgery",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()