Open access peer-reviewed chapter

Introductory Chapter: Irrigation after Millennia - Still One of the Most Effective Strategies for Sustainable Management of Water Footprint in Agricultural Crops

By Gabrijel Ondrasek

Submitted: March 8th 2018Reviewed: August 28th 2018Published: November 5th 2018

DOI: 10.5772/intechopen.81189

Downloaded: 361

1. Introduction

Water is an essential component of the Earth’s (agro) ecosystems with direct influence on global food production. As a renewable resource, water fluctuates over its phases in the global water cycle and replenishes the root zones (rhizospheres) of cultivated croplands in agroecosystems. Agroecosystem can be defined as a very complex functional unit of biotic (agricultural crops/varieties, animal breeds, uncultivated weeds and accompanied macro/micro biota) and abiotic (minerals, organics, fluids, gasses, water) components with the primary goal of food/feed production. Agroecosystems orientated to cultivated crop production have the major contribution in human food supply given that about 80% of human nutrition represent plant-derived foodstuffs (cereals, vegetables, fruits), while the rest are those of animal origin. Therefore, agroecosystems are the world’s principal food supplier, as well as the predominant user of renewable freshwater (blue water) resources, consuming globally per year ~7 trillion m3 of water, either in rain-fed (~60%) or irrigated (~40%) conditions. Thus, water resources and their management in agroecosystems are of crucial importance for stability and security of global food production.

However, from the last several decades, water resources exploited in (agro) ecosystems have been started to be overexposed to different human-induced pressures (pollution by modern in/organic contaminants) and non-sustainable management practices (uncontrolled water abstractions, lacking of purification, recycling and/or reusing of grey waters). Such pressures accompanied with ongoing global climate changes and processes (more frequent and intensive droughts, deruralisation, human growth in water-stressed areas) imbalance water cycling and reduce availability of fresh hydro-resources for increased food demands.

Agroecosystems, especially those rain-feed, are experiencing more frequent and pronounced water imbalances (water stress) on the soil-plant-atmosphere route. Besides the substantial reduction in yield and quality, water stress in arable areas often additionally underpins numerous other environmental constraints such as salinisation, desertification, soil organic matter depletion, biodiversity reduction, eutrophication, etc. Thus, ensuring a stable and balanced water relationship in the soil-crop route is important for the sustainability and stability of the whole (agro) ecosystem.

Implementation of irrigation practice in agroecosystem is one of the most effective approaches to overcome crop water stress and ensure stable and quality food supply. It was confirmed that application of irrigation systems can substantially reduce the water footprint (i.e. a measure for the water volume needed for the realisation of goods and/or services), notably in horticultural and fruit crops more responsive to irrigation. Irrigated agroecosystems are overspread at nearly 20% of cultivated land areas but they generate even ~40% of global food supplies. For more than 50 years (1961–2009), irrigation was one of the widely accepted and fast-growing global strategies for overcoming water stress in agroecosystems and generator of continuous stable crop yields. In the same period, irrigated areas grew almost linearly by 120% and occupied about 300 Mha worldwide. However, due to increasing demands and continuous competition for high-quality water resources in the agricultural-industrial-domestic triangle, it is quite unrealistic to expect further expansion of agricultural irrigation on the expanse of rain-feed cropping. Adaptations to modern challenges of irrigated agroecosystem (e.g. more frequent and pronounced draughts and extreme heat strikes) aim to improve water use efficiency (WUE), and are therefore more likely. Namely, most of the modern sustainable irrigation (agricultural) management strategies are focused on using hydro-/land-resources more effectively (avoiding/reducing losses and quality deterioration) and more efficiently (maximally increasing food production) which are encompassed by the concept of WUE.

Among traditional irrigation methods and systems (which dominate at nearly 95% of irrigated area) and modern ones (distributed at nearly 5% of irrigated land) existing many significant differences in WUE along with their different operational (technological) and environmentally related characteristics. For instance, traditional surface gravity-flow irrigation systems (furrows, basins, contours, muang fai) in comparison to modern ones (drip irrigation, low-energised/-pressurised sprinklers) can obtain and up to two-fold lower WUE. Consequently, there is a significant potential for improvement of WUE in irrigated agroecosystems over shifting from traditional to modern irrigation systems and/or upgrading particular sections and their elements (from the water source over conveyance system to the irrigated paddocks) of traditional systems.

Finally, improved irrigation management (scheduling, timing, frequency, depth) was confirmed as one of the most feasible approach of achieving large increases in WUE. Current soil-water regime, detected either on real-time in situ approach (with precise sensors, probes) or calculated based on nearby weather recordings (to obtain reference evapotranspiration, crop coefficients, effective rainfalls), may significantly optimise irrigation timing and consequently improve WUE. Processing of such instantly collected data over modern information technologies (smartphone/PC applications) represents some of the most novel approaches in irrigation agroecosystems management.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite and reference

Link to this chapter Copy to clipboard

Cite this chapter Copy to clipboard

Gabrijel Ondrasek (November 5th 2018). Introductory Chapter: Irrigation after Millennia - Still One of the Most Effective Strategies for Sustainable Management of Water Footprint in Agricultural Crops, Irrigation in Agroecosystems, Gabrijel Ondrašek, IntechOpen, DOI: 10.5772/intechopen.81189. Available from:

chapter statistics

361total chapter downloads

1Crossref citations

More statistics for editors and authors

Login to your personal dashboard for more detailed statistics on your publications.

Access personal reporting

Related Content

This Book

Next chapter

Informational Entropy Approach for Rating Curve Assessment in Rough and Smooth Irrigation Ditch

By Greco Michele

Related Book

First chapter

Satellite Data and Supervised Learning to Prevent Impact of Drought on Crop Production: Meteorological Drought

By Leonardo Ornella, Gideon Kruseman and Jose Crossa

We are IntechOpen, the world's leading publisher of Open Access books. Built by scientists, for scientists. Our readership spans scientists, professors, researchers, librarians, and students, as well as business professionals. We share our knowledge and peer-reveiwed research papers with libraries, scientific and engineering societies, and also work with corporate R&D departments and government entities.

More About Us