Factors that affect the chemical purification process [17].
\r\n\tThis book will cover the most recent research studies done in three fields (i) Evolution and phylogenetic diversity of extremophilic microbes including Archaea, Bacteria, and fungi (ii) Enzymatic and metabolic diversity (iii) Biotechnological applications of enzymes or metabolites. On the other hand, this book will be a useful reference for finding clues to the origin of life and for exploring the biotechnology potential of these fascinating organisms.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",bookSignature:"Dr. Afef Najjari, Dr. Ameur Cherif, Dr. Haitham Sghaier and Dr. Hadda Imene Ouzari",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",keywords:"Extremophiles, Halophiles, Thermophiles, Barophiles, Psychrophiles, Alkaliphiles, Acidophiles-Archaea, Bacteria, Fungi, Microbial diversity, phylogeny, phylogenomics, metagenomics, Bacterial community, Archaeal community, enzymatic profiles, Metabolites, Secondary metabolites, Enzymes, microbial secondary metabolites, Bioprospecting of metabolites, Biotechnological applications, pharmaceutical applications",numberOfDownloads:1047,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:2,numberOfTotalCitations:2,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 15th 2018",dateEndSecondStepPublish:"July 6th 2018",dateEndThirdStepPublish:"September 4th 2018",dateEndFourthStepPublish:"November 23rd 2018",dateEndFifthStepPublish:"January 22nd 2019",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari",profilePictureURL:"https://mts.intechopen.com/storage/users/196823/images/system/196823.jpeg",biography:"Dr. Afef Najjari is an assistant professor in Bioinformatics at the Faculty of Sciences of Tunisia, University of Tunis El Manar. Dr. Afef worked on several topics including genetic and enzymatic diversity of bacteria and microbial diversity in arid and saline ecosystems and mainly on archaeal groups. These works were funded by national and international projects. Currently, she is interested on metagenomic analysis, genome assemblies and annotations, transcriptomic data analysis (microarrays), and biological databases development.",institutionString:"University of Tunis El Manar",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:{id:"223936",title:"Dr.",name:"Ameur",middleName:null,surname:"Cherif",slug:"ameur-cherif",fullName:"Ameur Cherif",profilePictureURL:"https://mts.intechopen.com/storage/users/223936/images/system/223936.jpg",biography:"Prof. Ameur CHERIF graduated in Natural Sciences (1995) and later obtained his PhD degree in Microbiology at the Faculty of Sciences of Tunis (FST), University of Tunis El Manar in 2001. He is the head of a research laboratory 'Biotechnology and Bio-Geo Resources valorization” at the University of Manouba. His research activities focuses on: (i) Phylogeny and ecology of extremophilic microbes; (ii) Microbial ecology of symbionts, commensal and pathogen microbiota in different hosts, (iii) biotechnological applications of active biomolecules, plant growth promotion and bioremediation. He participated in European Cost Action FA 0701, partner member in several EU FP7, Tempus, Erasmus, H2020 and bilateral projects, and serves on various review and editorial committees. Prof. Cherif has published over 80 peer reviewed articles and book chapters (h-index 21, Scopus, May 2018).",institutionString:"Manouba University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"47210",title:"Dr.",name:"Haitham",middleName:null,surname:"Sghaier",slug:"haitham-sghaier",fullName:"Haitham Sghaier",profilePictureURL:"https://mts.intechopen.com/storage/users/47210/images/system/47210.jpg",biography:"Dr. Ir. Haïtham SGHAIER (TUNAC ISO 9001/17025/15189 Lead/Technical Assessor), is an Engineer in Biotechnology and Professor (Associate) of Radiation and Computational Microbiology at the National Center for Nuclear Sciences and Technology (CNSTN) in Tunisia.\r\nHe was educated at Technical School (Kebili, Tunisia), INAT (Tunis, Tunisia) and ENIS (Sfax, Tunisia). He obtained a Master Degree from Kiryu Faculty of Engineering (Japan) and a Ph.D. following his research done at the Japan Atomic Energy Agency (JAEA, Japan). Being a glossophile, he won the 2002 best prize of Gunma University of the Third Speech Contest, in Japanese about peace, for foreign students.\r\n In 2007, he joined the CNSTN. He won the 2016 TWAS Young Arab Scientist (YAS) Prize. Basic research of Dr. Ir. Haïtham SGHAIER is related to the study of microbial resistomes, (oxidative) stress tolerance and interactions among prokaryotes/eukaryotes through computational biology and omics tools (http://orcid.org/0000-0002-8210-5345). \r\nHe has published on the evolution of ionizing-radiation-resistant prokaryotes (IRRP). In 2007, he draw attention to major discrepancy that has emerged between the ‘‘Desiccation Adaptation Hypothesis’’ and recent findings in computational biology, experimental research and terrestrial subsurface surveys.\r\n He proposed an alternative hypothesis, suggesting that desiccation tolerance could be a consequence of bacterial adaptation to ionizing radiation (Radiation Adaptation Hypothesis). \r\nAlso, he has published on bioremediation issues, particularly on bioremediation of radioactive waste using IRRP. Currently, he is implicated in various ongoing projects: multi-omics analyses (https://www.nature.com/articles/s41598-017-18839-0; https://www.nature.com/articles/ismej2015108), databases (http://home.isima.fr/irrb/; http://www.radiop.org.tn/; etc.) about IRRP, extremophiles, biotechnologically-relevant or disease-associated microbes, certification and accreditation of laboratories (ISO 11137, etc.).",institutionString:"National Center for Nuclear Sciences and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:null},coeditorThree:{id:"259498",title:"Dr.",name:"Hadda Imene",middleName:null,surname:"Ouzari",slug:"hadda-imene-ouzari",fullName:"Hadda Imene Ouzari",profilePictureURL:"https://mts.intechopen.com/storage/users/259498/images/system/259498.png",biography:"Ouzari Hadda-Imene is graduated in Natural Sciences in 1995 and completed her PhD in Microbiology at the Faculty of Sciences of Tunis in 2002. Getting her post doctoral qualification (Habilitation) in 2008, she passed as Associate Professor and promoted as Professor in 2013 at the Faculty of Sciences of Tunis. she is teaching different courses in Molecular biology, Food Microbiology and Microbial Ecology and she is currently coordinating the conduct of a research Master “Microbiology and Molecular Epidemiology” in the FST and a principal investigator in the Laboratory of “Microorganisms and Active Biomolecules”. The main research activities of Prof. Ouzari Hadda-Imene are focused on several aspects of Microbial Ecology and Food Microbiology including (i) Plant-Microbes interactions and Plant Growth Promoting Rhizobacteria selection, (ii) Biotechnological potentialities and microbial application in bioremediation, (iii) Lactic acid Bacteria characterization and microbial food security. She published about 56 peer reviewed papers and more than 600 nucleotidic sequences.",institutionString:"University of Tunis El Manar",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:[{id:"62301",title:"Predator-Prey Interactions in Ciliated Protists",slug:"predator-prey-interactions-in-ciliated-protists",totalDownloads:356,totalCrossrefCites:0,authors:[null]},{id:"64400",title:"Microbial Ecology in the Atmosphere: The Last Extreme Environment",slug:"microbial-ecology-in-the-atmosphere-the-last-extreme-environment",totalDownloads:348,totalCrossrefCites:0,authors:[null]},{id:"65778",title:"Methanogenic Diversity and Taxonomy in the Gastro Intestinal Tract of Ruminants",slug:"methanogenic-diversity-and-taxonomy-in-the-gastro-intestinal-tract-of-ruminants",totalDownloads:152,totalCrossrefCites:0,authors:[null]},{id:"64796",title:"Tree Species and Precipitation Effect on the Soil Microbial Community Structure and Enzyme Activities in a Tropical Dry Forest Reserve",slug:"tree-species-and-precipitation-effect-on-the-soil-microbial-community-structure-and-enzyme-activitie",totalDownloads:191,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"192910",firstName:"Romina",lastName:"Skomersic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/192910/images/4743_n.jpg",email:"romina.s@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakus",slug:"selcan-karakus",fullName:"Selcan Karakus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3794",title:"Swarm Intelligence",subtitle:"Focus on Ant and Particle Swarm Optimization",isOpenForSubmission:!1,hash:"5332a71035a274ecbf1c308df633a8ed",slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",bookSignature:"Felix T.S. Chan and Manoj Kumar Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/3794.jpg",editedByType:"Edited by",editors:[{id:"252210",title:"Dr.",name:"Felix",surname:"Chan",slug:"felix-chan",fullName:"Felix Chan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61794",title:"Geobacillus Bacteria: Potential Commercial Applications in Industry, Bioremediation, and Bioenergy Production",doi:"10.5772/intechopen.76053",slug:"-em-geobacillus-em-bacteria-potential-commercial-applications-in-industry-bioremediation-and-bioener",body:'The Geobacillus species are Gram-positive, aerobic or facultatively anaerobic, spore-forming, rod-shaped cells with the temperature range for growth 35–75°C (optimum at 55–65°C) (Figure 1). Neutrophilic bacteria multiply at pH 6.0–8.5, with optimal pH values 6.2–7.5. Most species are modest bacteria able to develop without growth factors or vitamins and to utilize n-alkanes as carbon and energy sources [1].
Cell morphology of Geobacillus stearothermophilus (basonym Bacillus stearothermophilus) BIM B-202 from Belarusian collection of nonpathogenic microorganisms. Legend: phase-contrast microscopy, magnification 1000×, 16 h cultivation; → – spores.
As obligate thermophiles, Geobacillus might have been expected to be found only in the warmest regions of the planet, such as equatorial deserts or naturally occurring geothermal and hydrothermal springs. However, Geobacillus can be isolated in large numbers anywhere, even from cool soils and permanently cold ocean sediments. It was shown that these bacteria are also minor opportunistic decomposers of plant-derived organic matter, capable of rapid growth under transient thermophilic conditions, but endowed with mechanisms to survive extended time spans when growth is impossible. Nevertheless, Geobacillus species play only a modest role in large microbial communities. High populations of bacteria have gradually accumulated in long-term perspective due to spore formation. Adaptive features of Geobacillus spores ensure their mobilization in the atmosphere and transport over long distances. Their spores are suggested to remain viable for long periods of time [2]. Spores of Bacillus species related to geobacilli have shown resistance to heat, radiation, and chemicals [3].
Growth at high temperatures makes Geobacillus species promising agents in biotechnological processes. They can be sources of various thermostable enzymes, such as proteases, amylases, lipases, and pullulanases. Geobacillus species can also generate exopolysaccharides and bacteriocins and take part in production of biofuel and bioremediation. New applications are constantly emerging for this group of thermophilic bacteria.
Geobacillus species are obligately thermophilic chemoorganotrophs. Temperature ranges for growth generally lie between 37 and 75°C, with optima between 55 and 65°C. They are neutrophilic bacteria growing within pH range 6.0–8.5 at optimal values 6.2–7.5. Growth factors, vitamins, NaCl, and KCl are not required; So that, most strains will grow on routine media such as nutrient agar. A wide range of substrates is utilized, including carbohydrates, organic acids, peptone, tryptone, and yeast extract. The ability to utilize hydrocarbons as carbon and energy sources is a widely distributed property in the genus [1].
Thermophiles may be obtained easily by incubating environmental or other samples in conventional cultivation media at high temperatures. A selective method for the isolation of thermophilic flat sour organisms from food was described in 1963 by Shapton and Hindes. The method used yeast-glucose-tryptone agar containing peptone (5 g), beef extract (3 g), tryptone (2.5 g), yeast extract (1 g), and glucose (1 g) diluted in distilled water (1000 ml) [4]. This procedure was used for the isolation of Geobacillus stearothermophilus [1]. A prototrophic strain of G. stearothermophilus has been shown to grow in the medium containing only glucose and mineral salts, while auxotrophic strains additionally required biotin, thiamine, nicotinic acid, and DL-methionine. The presence of L-leucine in minimal medium necessitated the addition of L-valine; however, growth occurred in the absence of both amino acids [5]. The use of medium containing 0.5% beef extract, 0.9% soy peptone, 0.2% NaCl, 0.1% K2HPO4, and 0.075% KH2PO4 resulted in 10 times higher biomass production by G. stearothermophilus than the application of the standard fermentation medium [6].
Geobacillus caldoxylosilyticus was isolated from soil by adding 0.1–0.2 g sample to the minimal medium and incubating at 65°C for up to 24 h. After two transfers of 1 ml culture into the fresh medium, enrichments were plated on solidified minimal medium and incubated at 65°C for 24 h [7]. Further isolations were made by heating samples at 90°C for 10 min, plating on CESP agar (casitone, 15 g; yeast extract, 5 g; soytone, 3 g; peptone, 2 g; MgSO4, 0.015 g; FeCl3, 0.007 g; MnCl2·4H2O, 0.002 g; water, 1000 ml; pH, 7.2.) and incubating at 65°C for 24 h [8]. The strain G. caldoxylosilyticus UTM6 demonstrated ability to reduce toxic chromium (VI) to nonharmful chromium (III). It was found to grow optimally in nutrient broth medium supplemented with 250 ppm of glucose at 55°C and pH 6.5, with the highest OD600 reading of 0.910 [9].
Geobacillus gargensis was isolated from the upper layer of a microbial mat of Garga hot spring by serial dilutions and inoculation onto the agar medium supplemented with 15 mM sucrose: TES [N-tris(hydroxymethyl)methyl-2-amino-ethanesulfonic acid], 10 g; NH4Cl, 1 g; NaCl, 0.8 g; MgSO4·7H2O, 0.2 g; CaCO3 (precipitated chalk), 0.2 g; KCl, 0.1 g; K2HPO4, 0.1 g; CaCl2·2H2O, 0.02 g; yeast extract, 0.2 g; trace metal solution, 5 ml; vitamin solution, 10 ml; water to 1000 ml, pH, 7.0 [10, 11].
Geobacillus kaustophilus was isolated from uncooled pasteurized milk by plating on peptonized milk agar, followed by subculturing on the same medium or on nutrient agar supplemented with 1% yeast extract, 0.25% tryptophan broth, and 0.05% glucose [1]. Strains of Geobacillus kaustophilus are capable to grow optimally on rich media, including tryptic soy broth and Luria broth. G. kaustophilus A1 grown on minimal defined medium at 55°C and pH 6.5 demonstrated the ability to utilize maltose, glucose, sucrose, glycerol, fructose, galactose, citric acid, acetic acid, pyruvic acid, lactic acid, or succinic acid. Cells did not utilize dodecane, m-xylene, cellulose, oxalic acid, tartaric acid, maleic acid, propanoic acid, benzoic acid, or picolinic acid as the sole carbon sources. G. kaustophilus DSM7263 displayed similar characteristics, but it did not metabolize citric acid [12].
Geobacillus thermoleovorans was isolated by adding soil, mud, and water samples to L-salts basal medium supplemented with 0.1% n-heptadecane and incubated at 60°C for 1–2 weeks, followed by transfer from turbid cultures to fresh medium of the same composition. After several such transfers, pure cultures were obtained by streaking on plates with L-salts basal medium supplemented with 0.2% n-heptadecane and solidified with 2% agar [13, 14]. Strain G. thermoleovorans T80 displayed extremely specific glucose utilization leading to high growth rates, followed by extensive cell death and lysis with the onset of substrate exhaustion. The addition of extra carbon substrate did not halt the rapid death and lysis. Lytic phenomenon was observed for a range of different carbon substrates (glucose, pyruvate, acetate, n-hexadecane, and nutrient broth), as well as ammonium (the nitrogen source). Batch cultures grown at reduced initial substrate concentration, at lower temperatures, or at lower dilution rates than continuous-flow cultures exhibited lesser rates and degree of cell death and lysis [15]. Optical density of G. thermoleovorans DSM 5366 increased in casein digest medium supplemented solely with Ca2+ or Mg2+. Na+, and to a greater extent K+, with concerted action of Ca2+ or Mg2+ also induced increased optical density readings of the strain [16].
Geobacillus subterraneus and Geobacillus uzenensis were isolated from serial dilutions of thermophilic hydrocarbon-oxidizing enrichment cultures derived from oil fields. The cultures were inoculated on agar medium supplemented with 0.1% n-hexadecane and incubated at 55–60°C [17]. Geobacillus jurassicus was isolated from oil field formation water by diluting enrichment cultures grown on the following medium (NH4Cl, 1 g; KCl, 0.1 g; KH2PO4, 0.75 g; K2HPO4, 1.4 g; MgSO4·7H2O, 0.2 g; CaCl2·2H2O, 0.02 g; NaCl, 1.0 g; water, 1000 ml; pH 7.0) supplemented with 4% crude oil, incubated at 60°C, and plated on the same medium solidified with 2% agar [18].
Geobacillus thermocatenulatus was isolated from a slimy bloom at about 60°C on the inside surface of a pipe in a steam and gas thermal borehole using potato-peptone and meat-peptone media [19]. Some studies showed that G. thermocatenulatus strain does not hydrolyze starch and gelatine. It neither produces acid from xylose and lactose nor generates acetoin [20]. Trypticase soy agar can be used as the medium for cultivation of representatives of this species. Addition of 5 mg/l MnSO4 encourages sporulation of the species [21].
Strains of Geobacillus thermodenitrificans were isolated from soil by suspending 1 g soil sample in 5 ml of sterile distilled water and heating at 90°C for 10 min, then plating 1 ml aliquot on nutrient agar and incubating at 65°C for 24 h [22]. G. thermodenitrificans showing L-arabinose isomerase activity was grown in media containing 1.5% pancreatic digest of casein, 0.2% yeast extract, 0.2% beef extract, 0.2% glycerol, 0.2% K2HPO4, 0.2% KH2PO4, 0.01% MgSO4, 0.0004% D-biotin, and pH 6.8. Inocula were prepared by culturing the organisms for 10 h at 65°C and 200 rpm in a rotary shaking incubator using 250-ml flasks containing 50 ml of the above-described medium. These cultures were used to inoculate the fermenter where the mixture was incubated for 14 h at 65°C with agitation (400 rpm) and aeration (1.0 vvm) [23]. Some strains of G. thermodenitrificans were isolated and suspended in 100 ml of 0.1 mol/l potassium phosphate buffer solution (pH 7.0) with 1.0% (w/v) gelatinized potato starch in 500-ml conical flasks. The flasks were incubated at 50°C for 2 days, then 1 ml portions were transferred to 10 ml of 0.1 mol/l phosphate buffer (pH 7.0) and agitated for 6 h followed by suspension onto starch agar plates (10 g peptone, 5 g yeast extract, 10 g potato starch, and 15 g agar in 1 l of a 0.1 mol/l potassium phosphate buffer, pH 7.0) and incubation at 60°C for 24 h [24].
Geobacillus thermoglucosidasius was isolated from Japanese soil by adding 0.1 g sample to 5 ml of medium I (peptone, 5 g; meat extract, 3 g; yeast extract, 3 g; K2HPO4, 3 g; KH2PO4, 1 g; water, 1000 ml; pH 7.0) in test tubes and incubating at 65°C for 18 h, with the tubes leaning at an angle of about 10°, followed by further enrichments in tubes with the same medium and then purification on plates containing medium I solidified with 3% agar [25, 26]. Studies showed that Geobacillus thermoglucosidasius strains grew well and gave reproducible and comparable viable cell counts on the semi-defined agar medium (SDM) with glycerol and pyruvate as carbon sources under aerobic conditions at 70°C. SDM contains a dual carbon source (glycerol and pyruvate) and low levels of yeast extract, tryptone, and inorganic salts. The main components of the SDM are (g/l): glycerol 5.0, pyruvate 5.0, tryptone 0.2; yeast extract 0.2; citric acid 0.32; di-sodium hydrogen orthophosphate (anhydrous) 2.0; magnesium sulfate (heptahydrate) 0.4; potassium sulfate 0.3; ammonium chloride 2.0; manganese chloride (tetrahydrate) 0.003; ferric chloride 0.007; agar 15, and 1 ml of trace elements solution. SDM formulation suggests joint preparation of glycerol and pyruvate separated from the other constituents and mixing after sterilization at 121°C [27].
Geobacillus lituanicus was isolated using 10-fold serial dilutions of crude oil. The dilutions were inoculated onto Czapek agar and plates were incubated aerobically at 60°C for 48 h [28]. Geobacillus toebii was isolated from a suspension of hay compost plated onto solid modified basal medium (polypeptone, 5 g; K2HPO4, 6 g; KH2PO4, 2 g; yeast extract, 1 g; MgSO4·7H2O, 0.5 g; L-tyrosine, 0.5 g; agar to solidify; and deionized water, 1000 ml) and incubated at 60°C for 3 days [29]. G. toebii subsp. decanicus was cultivated in medium containing 8 g/l peptone, 4 g/l yeast extract, 2 g/l NaCl at pH 7.0 [30]. Geobacillus vulcani was isolated from a marine sediment sample by inoculating into Bacto marine broth and medium D and incubating aerobically for 3 days at 65°C, followed by plating positive cultures again onto Bacto marine agar [31]. Geobacillus galactosidasius was isolated from a compost sample and inoculated in 10 ml of enrichment media cultured within pH range 5.5–7.2 and the temperature range 60–80°C for 3 days. The enrichment growth media used were medium A containing 8 g/l peptone, 4 g/l yeast extract, and 2 g/l NaCl at pH 7.2, and medium B containing 6 g/l yeast extract and 6 g/l NaCl at pH 5.5 [32]. Geobacillus icigianus was isolated from sludge samples of an explosive hydrothermal spring located near the Troinoy geyser and purified on LB agar medium at 55–65°C [33].
Thermophilic bacterium known as Bacillus stearothermophilus (now typical species Geobacillus stearothermophilus) was discovered in 1920 [34]. For many years, geobacilli have been referred to Bacillus species. The development of molecular genetic methods resulted in the division of bacilli into several phylogenetically distinct genera. Group 5 including B. stearothermophilus, Bacillus kaustophilus, and Bacillus thermoglucosidasius formed a generic lineage distinct from Bacillus species [35]. In 2001, Nazina et al. proposed that the six species of bacilli, namely B. stearothermophilus, B. kaustophilus, B. thermoglucosidasius, B. thermocatenulatus, B. thermoleovorans, and B. thermodenitrificans, should be incorporated into a new genus, Geobacillus, along with two novel species, Geobacillus subterraneus and Geobacillus uzenensis based on 16S rRNA gene sequence analysis and a variety of physical and biochemical characteristics [17].
At present, geobacilli include about 20 species [36]. However, the lowest level of 16S rRNA gene sequence similarity between all Geobacillus species is around 93%, which indicates that at least some species need to be reclassified at the genus level [1]. Full-length recN and 16S rRNA gene sequence analysis clustered 68 isolates from the genus Geobacillus into 9 similarity groups. Some of these groups corresponded unambiguously to the known species, whereas the others contained two or more type strains from species with validly published names. recN was clearly superior to the 16S rRNA gene, with nearly an order of magnitude greater resolving power at the species-subspecies level, but the analysis was much less effective for higher taxa [37]. The availability of complete genome sequence data offers higher resolution of the phylogenetic relationships of Geobacillus species than the use of a single housekeeping gene. For example, the two strains of G. kaustophilus do not form a phylogenetically coherent monophyletic clade, while the two strains of G. thermoleovorans are closely related and share 99.4% nucleotide sequence identity [38]. The use of the phylogenomic metrics such as average amino acid identity (AAI), average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) indicated that the current genus Geobacillus is composed of 16 distinct genomospecies. Phylogeny constructed on the basis of the core genes demonstrated that the genus clustered into two monophyletic clades differing in terms of nucleotide base composition. The G + C content ranges for clade I and II were 48.8–53.1 and 42.1–44.4%, respectively. The Geobacillus species within clade II can be considered as a new genus [39].
It was shown that evolutionary conservatism of 16S rRNA leads to the case, when different bacterial strains belonging to the same species or closely related species may have identical sequences. It decreases efficiency of 16S rRNA analysis and provokes the search for alternative approaches, like comparative analysis of the nucleotide sequences of “housekeeping genes” determining the main metabolic processes. These genes have some advantages similar to those of 16S rRNA genes: universal distribution, evolutionary conservatism, and vertical inheritance. At the same time, comparative phylogenetic analysis of “housekeeping genes” may be more efficient at the lowest taxonomic levels for the following reasons: (1) the level of conservatism varies for different genes and distinctions between the nucleotide sequences may be more pronounced as compared to sequences of 16S rRNA; (2) “housekeeping genes” code for proteins allowing to better determine the frequency of synonymous substitutions and locate taxonomic position; (3) the majority of these genes are represented by a single copy. Besides the abovementioned recN gene, application prospects have been demonstrated for other genes. Genes encoding the β-subunits of a type II topoisomerase (gyrase, gyrB) and a type IV topoisomerase (parE) provided for a more precise determination of the phylogenetic position of bacteria at the species level as compared to 16S rRNA analysis of Geobacillus [40]. Additionally, genes recA and rpoB can be used in identification and taxonomic affiliation of Geobacillus species [41]. Gene spo0A codes for protein serving as the master regulator of the endospore formation process in the endosporulating bacteria and can be engaged in taxonomic positioning of these bacterial groups. The gene cannot be used as the phylogenetic marker within the genus Geobacillus, although it was shown to be helpful for the identification of G. thermodenitrificans, G. stearothermophilus, G. jurassicus, and cluster G. subterraneus-G. uzenensis [42].
16S-23S rRNA gene internal transcribed spacer (ITS) separates 16S and 23S rRNA genes and may contain tRNA genes. ITS exhibits larger variations in both the length and the sequence of this region and can be more useful in identification than 16S rRNA. Geobacillus genus-specific primers GEOBAC allowed to amplify the DNA from 13 species. Different species could be grouped according to the number and size of the PCR products and identified on the basis of the restriction analysis of these products [43].
Repetitive DNA is also a promising tool for identification of bacteria. Usually, repetitive DNA is applied for genotyping of medically important microorganisms, but it may be employed in analysis of biotechnologically important Geobacillus species. In total, 33 Geobacillus genus-specific motifs with length over 20 nucleotides were determined: 3 were genus-specific, 15—species-specific, and 15—species cluster-specific. Motifs have been used for the construction of the genus- and species-specific (G. thermodenitrificans and G. toebii) primer pairs [44]. Rep-PCR molecular method based on the usage of outwardly facing oligonucleotide PCR primers complementary to interspersed repetitive sequences is widely applied in the characterization of different groups of bacteria. BOX, ERIC, REP, and (GTG)5 are examples of evolutionarily conserved repetitive sequences. Rep-PCR fingerprinting technique using (GTG)5- and BOX-PCR has been shown as a rapid, easy-to-conduct, and reproducible tool for differentiation of thermophilic bacteria at the species, subspecies, and potentially up to the strain level, with a single-performance protocol [45]. Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) has been used to discriminate between different genotypes within species by analyzing length polymorphism of several VNTR loci, while high-resolution melt analysis (HRMA) has been shown as post-PCR method for analysis of genetic variations in PCR products using DNA-binding fluorescent dyes and a PCR machine with a highly precise temperature control. HRMA in conjunction with MLVA (MLV-HRMA) displayed a stronger discriminatory power and better reproducibility than RAPD-PCR and hence can be used for genotyping Geobacillus species [46].
Amplified ribosomal DNA restriction analysis (ARDRA) using AluI was shown to be a valuable, easy, and accurate technique for the identification of G. stearothermophilus. The presence of a fragment 162 bp in size and the absence of 76 and 86 bp fragments were recognized to be characteristic traits of this species. However, the potential of the method for the identification of other species of geobacilli is limited [47].
Geobacillus species are represented by thermophilic chemoorganotrophs. They are able to utilize a wide range of substrates, including hydrocarbons, and produce various metabolites of commercial use, like enzymes (proteases, lipases, and amylases), ethanol, bacteriocins, etc. Such metabolic diversity coupled to high temperature resistance makes the bacteria attractive for various applications. On the other hand, Geobacillus species are known to be a major cause of spoilage in canned food. The use of thermostable enzymes and biofuel production are considered in the next chapters.
Petroleum is a complex compound consisting of hydrocarbons, a small ratio of nonhydrocarbon components, and trace metals. In order to increase oil production, traditional water flooding method is used. Heavy oil, the largest potentially recoverable petroleum energy resource, is very viscous and has a high freezing point. It is problematic to extract the residual crude oil by the conventional method, so that alternative techniques, like use of microorganisms, for enhanced oil recovery have been proposed. Microorganisms and their metabolites help to retrieve residual oil by promoting its emulsification and reducing viscosity. Since high temperature reservoirs are more difficult to exploit by this method, thermophilic bacteria are advantageous in this case. G. stearothermophilus A-2 shows strong surface hydrophobicity and produces a bioemulsifier. The fermentation broth of strain A-2 induced crude oil dispersion and decreased oil viscosity. Moreover, strain A-2 preferentially degraded heavy oil components and polycyclic aromatic hydrocarbons. These features make the strain an excellent candidate for enhanced microbial oil recovery from high-temperature deposits [48]. Geobacillus sp. ZY-10 could utilize tridecane, hexadecane, octacosane, and hexatridecane as the sole carbon sources, and the digestion rate of long-chain alkanes was lower than that of short-chain alkanes. Addition of inorganic salts and trace yeast extract led to the significantly increased concentration of short-chain alkanes and the decreased content of long-chain alkanes, suggesting that the larger hydrocarbon components in crude oil were converted into shorter-chain alkanes. Thus, strain ZY-10 proved effective for improving the mobility and upgrading quality of heavy crude oil [49]. G. pallidus H9 was able to grow in temperature range 45–80°C at salinity 0–15% and synthesize biosurfactant using crude oil as the sole carbon source under aerobic or anaerobic conditions. After incubation in LB medium, 20 ml bacterial suspension was transferred to 500 ml triangular flask with 10 g of sterile crude oil-containing mineral medium, and incubated at 65°C and 180 rpm for 100 days under aerobic or anaerobic conditions. The medium was boiled for 30 min in order to expel all dissolved oxygen prior to incubation under anaerobic conditions; L-cysteine and resazurin as oxygen indicators were added to the medium to final concentrations of 0.05% and 0.01 (g/l), respectively. The yields of biosurfactant were ≈9.8 and ≈2.8 g/l under aerobic and anaerobic conditions, respectively. The fractionated components and composition of the purified biosurfactant differed between aerobic (glycosides≈50.3%, lipids≈34.5%, and peptides≈15.2%, w/w) and anaerobic (glycosides≈53.8%, lipids≈31.2%, and peptides≈26.0%, w/w) cultures. The maximum production of biosurfactant under aerobic conditions is determined by the different electron acceptors, resulting in the different pathways of biodegradation with different reaction activation energy and generation of different catabolic enzymes. The strain H9 showed preference for utilization of medium- and long-chain alkanes (C23-C43) under aerobic conditions, and degradation of long alkanes (C33-C43) under anaerobic conditions. The evident difference in the metabolic pathways between aerobic and anaerobic degradation was possibly due to a change in redox potential during the biochemical reaction. The strain H9 and its biosurfactant are potentially promising agents intensifying microbial oil recovery, especially in high temperature and salinity oil reservoirs [50]. Besides, the ability to utilize hydrocarbons makes geobacilli indispensable in bioremediation of environment, like removal of oil spills [51].
Bacteriocins are ribosomally synthesized antimicrobial peptides or proteins, usually possessing the narrow antagonistic activity spectrum against bacterial strains closely related to the strain-producer. The activity of this group of molecules against foodborne and pathogenic bacteria opens wide opportunities for their application in medicine and food industry. Little is known about bacteriocins of thermophilic bacteria; however, Geobacillus species demonstrated antibacterial activity. Geobacillus strains isolated from the surface soil above oil deposits were active against at least 1 of 19 tested pathogenic bacteria. The derived antibacterial compounds were stable in broad temperature and pH ranges, sensitive to proteolytic enzymes, proving their proteinaceous nature. They were active against closely related thermophilic bacteria, which suggests that these substances are most likely bacteriocins [52]. Geobacillus species have been shown to produce antimicrobials such as antibiotics. G. thermodenitrificans NG80-2 synthesizes two antibiotics: geobacillin I and II. The former antibiotic is nisin analog showing antimicrobial spectrum similar to nisin A, with increased activity against Streptococcus dysgalactiae, one of the causative agents of bovine mastitis. Geobacillin I demonstrated increased stability compared to nisin A. Geobacillin II displayed antimicrobial activity only against Bacillus strains [53].
Nanomaterials are defined as engineered materials with a least one dimension in the range of 1–100 nm. They often exhibit unique and considerably modified physical, chemical, and biological properties. Nanomaterials are used in cosmetics, chemical, and food industries, construction, medicine, agriculture, production of electronic equipment and sensors, etc. [54, 55]. The available physical methods for the metal nanoparticle synthesis such as gas condensation and irradiation with ultraviolet or gamma rays usually resulted in low production rate and high expenditure. The large scale synthesis of metal nanomaterials suffers from certain drawbacks such as polydispersity and lack of stability, especially if the reduction is carried out in aqueous media. Biological synthesis of nanoparticles can be an alternative choice. The exposure of G. stearothermophilus cell-free extract to the metal salts leads to the formation of stable silver and gold nanoparticles in the solution. The stability of nanoparticle solution could be due to the secretion of certain reducing enzymes and capping proteins by the bacterium. Preliminary gel electrophoresis indicates that the bacterium secretes not less than seven different proteins of molecular mass ranging between 12 and 98 kDa. One or more of these proteins could be a reductase enzyme that reduces metal ions [56]. Silver nanoparticles can be produced from silver nitrate using spore extract of G. stearothermophilus. Cytotoxicity of nanoparticles derived from this extract toward microbial pathogens such as Candida albicans, Candida glabrata, Streptococcus mutans, and Streptococcus sobrinus was generally higher than cytotoxic effect of silver nanoparticles stemming from spore extract of Bacillus subtilis. Moreover, antibacterial effects significantly surpassed antifungal effects [57].
Various human activities generate wastewater containing nitrogenous compounds. In the natural environment, nitrogen removal often occurs at 20–30°C, temperatures suitable for growth of nitrifying and denitrifying bacteria. As a result, many wastewater treatment plants use mesophilic bacteria for bioremediation. Thermophilic bacteria are expected to have increased enzyme activity and stability in comparison with mesophilic ones in such applications. The thermophilic denitrifying bacterium Geobacillus sp. strain TDN01 showed 12 times higher specific nitrate removal rate on media with ammonia than without ammonia. The consumption rates of nitrate and succinate were proportional. The growth rates with 120 and 150 mM nitrate were only slightly lower than those with 60 mM, not leading to notable growth inhibition. The maximum denitrification rate was six times higher than that of mesophilic bacteria [58]. Organophosphonates are characterized by the presence of a stable, covalent C─P bond. One of important applications for synthetic organophosphonates is manufacturing of herbicides, such as glyphosate. Glyphosate is the most widely used nonselective herbicide worldwide. It can cause a wide range of clinical manifestations in human beings, like skin and throat irritation to hypotension, oliguria, and death [59]. Strain G. caldoxylosilyticus T20 could utilize a number of organophosphonates as the sole phosphorus source for growth at 60°C. During growth on glyphosate, aminomethylphosphonate release to the medium was observed [60]. Azo dyes are characterized by the presence of one or more azo bonds (─N═N─) in association with one or more aromatic systems, which may carry sulfonic acid groups. The pigments are extensively used in the dyeing and textile industries and can provoke grave problems when discharged in the environment. G. stearothermophilus UCP 986 was able to degrade 96–98% of the azo dye after 24 h of incubation on LB medium under aeration. The brine shrimp Artemia salina showed the absence of toxic metabolites during the decolorization process. However, increased concentration of the dye and vigorous agitation led to high mortality rate of the shrimp [61]. Synthetic polymers generally display strong resistance to biodegradation, causing serious pollution problems as wastes persisting in the environment for a long time. Aliphatic polyamides (nylons), like nylon 6, nylon 66, and nylon 12, are produced in large amounts and are regarded as recalcitrant to biodegradation. At 60°C, G. thermocatenulatus grew on 5 g/l nylon 12, decreasing its molecular weight from 41,000 to 11,000 over 20 days. The strain also degraded nylon 66 with a decline in its molecular weight from 43,000 to 17,000 in 20 days at 60°C. However, nylon 6 was not utilized [62].
The heavy metals are well-known toxicants and their determination is vital for ecological control of soils, food, and water. Cells of G. thermoleovorans subsp. stromboliensis, immobilized on Amberlite XAD-4, showed the sorption capacity of 0.0373 and 0.0557 mmol/g for Cd(II) and Ni(II), respectively. The detection limits were 0.24 μg/l for cadmium and 0.3 μg/l for nickel. The system sustained 20 operation cycles without any loss in its sorption potential and can be used for metal determination in water and food samples [63]. Bacteria may be also applied in biosorption and removal of toxic metals from aqueous solutions. Dead biomass of G. thermodenitrificans MTCC 8341 in the synthetic metal solutions reduced the concentration of Fe+3 (91.31%), Cr+3 (80.80%), Co+2 (79.71%), Cu+2 (57.14%), Zn+2 (55.14%), Cd+2 (49.02%), Ag+ (43.25%), and Pb+2 (36.86%) at different optimum pH values within 720 min. The strain in the industrial wastewater reduced concentrations to 43.94% for Fe+3, 39.2% for Cr+3, 35.88% for Cd+2, 18.22% for Pb+2, 13.03% for Cu+2, 11.43% for Co+2, 9.02% for Zn+2, and 7.65% for Ag+ within 120 min. [64]. In turn, Cd2+, Cu2+, Co2+, and Mn2+ removal at 50 mg/l concentration in 60 min by 50 mg of dry G. thermantarcticus cells at optimum growth temperatures was 85.4, 46.3, 43.6, and 65.1%, respectively [65]. Thus, Geobacillus strains may be used for disposal of heavy metals.
Thermophilic bacteria can be the sources of valuable biomolecules, like complex polysaccharides for medical application. Extracellular polysaccharide produced by strain of G. thermodenitrificans hinders HSV-2 replication in human peripheral blood mononuclear cells (PBMC). High levels of IFN-α, IL-12, IFN-γ, TNF-α, and IL-18 were detected in exopolysaccharide supernatants following PBMC treatment. This effect was dose-dependent. Therefore, the immunological disorders determined by HSV-2 could be partially resolved by treatment with polysaccharide [66].
The biosurfactants, amphiphilic molecules consisting of hydrophobic and hydrophilic groups, are used in cosmetic formulas, pharmaceutical, chemical, food industries, agriculture, production of cleansers, enhanced oil recovery, and in bioremediation of oil-contaminated sites. Biosurfactant of G. stearothermophilus UCP 0986 grown on corn steep liquor and palm oil medium is capable of reducing the surface and interfacial water tensions to significantly lower values, and possesses excellent emulsifying and dispersion properties. The biosurfactant was isolated by precipitation of metabolic cell-free liquid with acetone 1:1 (v/v). The precipitate was allowed to stand for 24 h at 4°C, and then, it was centrifuged at 4000 rpm for 15 min at 5°C. The supernatant was discarded and the isolated biosurfactant was subjected to dialysis against deionized water for 72 h at 5°C. Properties of the compound arouse interest in terms of bioremediation of hydrophobic molecules [67].
Lactic acid is used in several industrial sectors producing food, pharmaceuticals, chemicals, and cosmetics. Around 90% of its entire production is derived from fermentation by lactic acid bacteria. However, application of thermophilic bacteria may reduce the risk of contamination and sterilization cost. G. stearothermophilus DSM494 generated lactic acid as the major product of anaerobic metabolism. The strain produced 37 g/l optically pure (98%) L-lactic acid in 20 h from 50 g/l raw potato starch. Smaller amounts (<7%w/v) of acetate, formate, and ethanol were also formed. Yields of lactic acid increased from 66 to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch [68].
Non-standard application for Geobacillus has been demonstrated in the enhancement of cement-sand mortar properties. The G. stearothermophilus was chosen for the ability to resist extreme environmental factors. Bacteria at concentration 1 × 109 CFU/ml improved the performance of cement-sand mortar in terms of compressive strength and water absorption as compared to the control mortar. The incorporation of G. stearothermophilus has catalyzed the occurrence of wollastonite (CaSiO3) capable to upgrade concrete properties by modifying its pore structure [69].
Geobacillus species can be used for cultivation and study of other bacteria. Many microorganisms in nature cannot be successfully cultured under artificial conditions, even in the presence of appropriate nutrients. Symbiobacterium toebii requires some growth-supporting factors from its partner bacterium G. toebii and does not show sustainable growth in artificial culture in the absence of the partner or its supernatant/cell-free extract [70]. Geobacillus sp. W2-10 enhances the cellulose-degrading activity of cellulolytic bacteria Clostridium thermocellum CTL-6 in peptone-cellulose solution medium under aerobic conditions. Cellulose degradation efficiency of filter paper and alkaline-treated wheat straw significantly increased up to 72.45 and 37.79%, respectively. The carboxymethyl cellulase activity and biomass productively of CTL-6 also rose from 0.23 U/ml and 45.1 μg/ml up to 0.47 U/ml and 112.2 μg/ml, respectively. In addition, coculture resulted in the accumulation of acetate and propionate up to 4.26 and 2.76 mg/ml [71].
Geobacillus species are able to reduce effects of osmotic stress in plants. G. caldoxylosilyticus IRD, halophilic facultative aerobic bacterium, inoculated into 5-day-old maize cultivars prior to treatment with 350 mM NaCl for 10 days improved maize growth and dry weight. The number of vascular bundles decreased in roots and increased in leaves upon inoculation with bacteria. In addition, the accumulation of toxic Na+ and Cl− was much lower in treated seedlings. Proline level, stress indicator, became two to four times higher in seedlings exposed to salt without Geobacillus [72].
Crystalline bacterial cell surface layers (S-layers) are composed of identical proteins or glycoprotein subunits which can self-assemble into two-dimensional crystalline arrays. It has been shown that S-layers of Geobacillus could be used as a biological template for immobilization of molecular array and provide new approaches for nanoelectronic biosensor design [73].
Probiotics are health-promoting microbial agents. Mechanisms of probiotic action are diverse. Positive effect can be expressed as direct action on the organism, like enhancement of barrier function, metabolism, immunomodulatory effects, or action on pathogenic microorganisms via secretion of bioactive compounds and/or competition with pathogens (Figure 2). The global probiotics market reached $31.8 and $34.0 billion in 2014 and 2015, respectively. The market capacity is likely to expand to $50.0 billion by 2020, growing at compound annual growth rate of 8.0% from 2015 to 2020 (Figure 3) [74]. Lactic acid bacteria are main sources of probiotics. However, it was reported that a number of bacteria such us Bacillus spp., Aeromonas hydrophila, and yeasts such us Saccharomyces boulardii, Candida famata, and Candida parapsilosis possess probiotic potential. Geobacillus species are not usually regarded as probiotic candidates, but these bacteria are able to produce a number of beneficial compounds that can favorably influence the organism or demonstrate antimicrobial features. Some bacteria show the adherence ability. Thus, Geobacillus species can be considered as potential sources of probiotics [75].
Mechanisms of beneficial action of probiotic bacteria.
Probiotics market (USD billion dollars) growth (years 2007–2020).
Due to their resistance and spore formation, geobacilli may be used as biological indicators of sterility. They are usually applied in the studies on efficiency of sterilization processes [76, 77, 78]. Finally, Geobacillus species can find use in engineering applications, such as directed evolution of robust variants of mesophilic proteins [79].
Pectinases or pectinolytic enzymes hydrolyze pectic substances. Pectinolytic enzymes are involved in fruit juice extraction and clarification, scouring of cotton, degumming of plant fibers, wastewater treatment, vegetable oil extraction, tea and coffee fermentations, bleaching of paper, in fabrication of poultry feed additives and alcoholic beverages, and in food industries [80]. The raw pressed juice is rich in insoluble particles mainly made up by pectic substances. It is difficult to extract juice by pressing or using other mechanical methods. The addition of pectinases decreases viscosity of the fruit juice, leading to its higher yields. These enzymes are produced by numerous bacteria, including Geobacillus species. The purified pectin lyase of G. pallidus P26 retained stability and full activity after 24 h incubation in temperature range from 40 to 50°C. Its activity decreased when the temperature increased above 70°C. However, the purified enzyme from thermophilic bacteria can keep its activity for 2 and 5 h at 80 and 70°C, respectively. In addition, the activity fell only by 50% after 24 h at 60°C. The optimal pH value for pectin lyase was 9, and it remained active between pH 5 and 11. Compared to the control, the enzyme increased juice yield from apple, banana, carrot, and peach pulps. Nevertheless, the results obtained for purified enzyme were less than those for commercial Pectinex 100 L Plus [81].
α-Amylase is one of the enzymes of worldwide interest in food, pharmaceutical, and fermentation industries. The moderate thermostability and Ca2+ requirement of α-amylases limit their industrial potential. The supplementation of wheat flour with hyperthermostable and Ca2+-independent α-amylase of G. thermoleovorans NP54 accelerated the rate of fermentation and reduced the viscosity of dough, resulting in the improved volume and texture of bread, its increased shelf life and softness [82]. The same amylase used in starch saccharification produced hydrolysate containing a high proportion of maltose. As a consequence, this enzyme can find use in the manufacture of high maltose syrups consumed by the food, chemical, and pharmaceutical industries [83]. The amylase from Geobacillus sp. IIPTN was stable over a broad range of temperatures from 40 to 120°C and pH from 5 to 10 and showed resistance to protease. These characteristics emphasize the enzyme potential in industrial applications [84]. Engineered α-amylase of G. stearothermophilus US100 with its significantly lower requirement for calcium ions, high resistance to thermal inactivation, to chelators, to protease, and to oxidative additives, in conjunction with well-preserved activity after storage, may be an excellent candidate for manufacturing enzyme detergent [85].
α-Glucosidases are hydrolases releasing α-glucose from the ends of the substrates such as oligo- and polysaccharides. They are usually found in association with other amylolytic enzymes which accomplish complete degradation of starch. α-Glucosidases show diversity in substrate specificity and transglycosylation activities, and such specificity differs considerably with the enzyme source. They have a number of potential applications in fundamental research, industrial starch processes, α-amylase assay kits for clinical laboratories, and synthesis of oligo-, di-, and trisaccharides. The thermostable exo-α-1,4-glucosidase of strain G. thermodenitrificans F84a remained active over temperature range 35–70°C and pH range 4.5–11.0, with optimum activity at 60°C and pH 7.0. The α-glucosidase hydrolyzed α-1,6, α-1,3, and α-1,4 bonds of substrate molecules in addition to a high transglycosylation activity. The enzyme was also found to be resistant to most of the denaturing agents and inhibitors. The characteristics of α-glucosidase make it a promising agent for biotechnological processes. It can be used for enzymatic synthesis of novel tri- and oligosaccharides due to high conformational stability and transglycosylation activity [86]. α-Glucosidase from Geobacillus sp. strain HTA-462 isolated from sediment of the Mariana Trench exclusively hydrolyzed α-1,4-glycosidic linkages of oligosaccharides in an exo-type manner. The enzyme showed an overwhelming transglycosylation activity and glycosylated various non-sugar molecules when maltose was used as a sugar donor. It converted maltose to isomaltose. α-Glucosidase is also a potential catalyst in the biosynthesis of complex carbohydrates [87].
Cellulose is the major component of plant biomass. The enzymes degrading it are applied in the textile industry for cotton softening, in the production of detergents for color care and cleaning, in the food industry for mashing, and in the pulp and paper industries for deinking, drainage promotion, and fiber modification. Thermophilic cellulases show advantages in many industrial applications because elevated processing temperatures provide for accelerated reaction rates, increased solubility of reagents and reduced contamination. Endoglucanase of Geobacillus sp. 70PC53 expressed an optimal activity at 65°C and pH 5.0, and it exhibited 10-fold higher specific activity than the commercially available Trichoderma reesei endoglucanase. The enzyme displayed activity over a broad temperature range from 45 to 75°C and good prospects in biomass conversion, detergent upgrading, paper pulping, textile manufacturing, and juice clarification [88]. The thermophilic Geobacillus sp. T1 is able to grow and produce cellulase efficiently on untreated wheat and barley straw as the sole carbon sources. It harbors the potential for conversion of agricultural biomass to fuels [89]. Endocellulase of G. thermoleovorans T4 can hydrolyze carboxymethylcellulose, phosphoric acid-swollen cellulose, Avicel, filter paper, and salicin. When the strain was grown in medium with carboxymethylcellulose, the cellulolytic enzyme activity in culture supernatants was stable up to 70°C. More than 10% of the original activity was still detectable after heating to 100°C at pH 7.0 for 1 h [90].
Lipase catalyzes hydrolysis of triglycerides and produces esters by esterification reaction. They are used in many sectors such as food, pharmaceutical, chemical, petrochemical, biodiesel, and in detergent industries. Their main application is the enantioselective synthesis of precursors of pharmaceutically active compounds and the conversion of natural fats and oils into high-value products such as cocoa, butter, and oil enriched with omega-3 fatty acids. Thermostable lipases are characterized by inherent stability, so that they can find use in various industries and biotechnological sectors as additives to detergents, food processing aids, environmental bioremediation agents, and molecular biology tools. Lipase from Geobacillus sp. immobilized by surface adsorption onto silica showed maximum activity at temperature 55°C and 82.94% yield of methyl salicylate. The latter has various medicinal applications, like control of muscular pain [91]. In leather industry, the addition of hydrolytic enzymes such as lipases and proteases in the soaking step facilitates fat degradation and raises leather quality. Thermoalkaliphilic lipase from G. thermoleovorans DA2 is produced in high amounts using cheap substrate, such as fatty restaurant wastes, thus making the production process cost-effective. The lipase with Triton X-100 proved the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene, commonly utilized organic solvent, (7.5%) or the sole crude enzyme (8.9%). As a result, the chemical leather process can be substituted with thermoalkaliphilic lipase treatment to upgrade the quality of leather and reduce the environmental hazards [92]. Thermostable lipase from G. thermodenitrificans IBRL-nra exhibited the highest stability in the presence of acetone, ethanol, and acetonitrile and showed elevated activity (220%) when pretreated with Triton X-100. It could preserve 100% of its activity in the presence of protease up to 4 h and could retain 70% of its initial activity after 24 h of incubation; hence, the enzyme can be applied in biotechnological processes and industries [93]. Lipase from G. thermodenitrificans nr68 has expressed great enzymatic biodeinking activity toward a laser jet printed paper, with deinkability brightness test of 55%, a value that was slightly lower than that shown by a commercial lipase (63%). Such lipases can be used in the recycling of waste paper [94]. Geobacillus sp. T1 lipase fused with a cellulose binding domain has a strong medium chain (C8:0 and C10:0) preference and acts weakly on C18:1 n-9 in acidolysis reactions. This enzyme could be used as a potential biocatalyst in the synthesis of structured lipids. The latter are triacylglycerols carrying particular fatty acids in certain positions of the glycerol backbone, which provide for nutritive or therapeutic purposes [95].
Pullulanases are debranching enzymes able to hydrolyze the alpha-1,6 glycosidic linkage in pullulan, starch, amylopectin, and related oligosaccharides. Pullulanase is used for the production of glucose or maltose syrups in a two-stage liquefaction and saccharification process. Temperature variation in the saccharification process causes deactivation of enzymes and therefore the increase of enzyme costs, so that application of thermostable pullulanase could decrease the industrial costs and increase the process efficiency by merging the two-step liquefaction and saccharification scheme into one stage. The enzyme from strain Geobacillus sp. LM14-3 showed maximum activity at 60°C and pH 6.5 with a half-life time about 56 h, which favors the potential industrial application [96].
Xylan is a major component of hemicellulose. Its complete hydrolysis requires the combined action of various enzymes, like endo-1,4-β-xylanase, β-xylosidase, α-arabinofuranosidase, acetylxylan esterase, α-glucuronidase, and feruloyl esterase. Applications of xylanases include food, pulp and paper industry, and agriculture. The great majority of these enzymes are optimally active in the acidic or neutral pH range at temperatures up to 60°C. Since the incoming pulp for enzymatic bleaching is hot and alkaline, the use of thermostable alkaline xylanases is very attractive from economical and technical point of view. Geobacillus sp. 71 produces xylanase at optimum temperature 75°C and pH 8.0, but it is active over a broad pH range. The action of the enzyme on oat spelt xylan produced xylobiose and xylotetrose. Due to its characteristics, the enzyme is a promising candidate for the production of xylosaccharides in the pulp and paper and food industries [97]. Xylanase of G. thermoleovorans was optimally active at pH 8.5 and 80°C, and it was found to be useful in the pulp prebleaching process, since cellulases may adversely affect the quality of the paper pulp by destroying the structure of cellulose [98]. The immobilized xylanase from thermophilic Geobacillus sp. TF16 displayed an increase in optimum temperature from 55 to 65°C and shift in the pH value from 6.0 to 8.5 as compared to the free enzyme. The enzyme was found to be effective in release of the reducing sugars from juice and poultry feed and oven spring in bakery [99]. The β-xylosidase of the extremely thermophilic G. thermodenitrificans is optimally active at 60°C and pH 7.0 and it catalyzes transxylosylation reactions in the presence of alcohols as acceptors. The pharmaceutically important β-methyl-D-xylosides could be produced using β-xyloside as the donor and methanol as acceptor [100]. L-Arabinosyl residues widely distributed in hemicelluloses constitute monomeric and/or oligomeric side chains on the β-(1 → 4)-linked xylose or galactose backbones in xylans, arabinoxylans, and arabinogalactans and make up the core in arabinans forming α-(1 → 5)-linkages. α-L-Arabinofuranosidases are enzymes hydrolyzing terminal nonreducing α-L-arabinofuranosyl groups in L-arabinose-containing polysaccharides. α-L-Arabinofuranosidase from G. caldoxylolyticus TK4 released L-arabinose from arabinan and arabinooligosaccharides. No endoarabinanase activity was detected. L-Arabinose has a sweet taste, is not readily assimilated by the body, hence it can be used as a food additive [101].
Gellan synthesized by Sphingomonas paucimobilis is the microbial exopolysaccharide finding recently extensive use in food, pharmaceutical industries and in microbial cultivation media. Gellan lyase lowers the gellan viscosity in solutions and might broaden its current spectrum of application. However, gellan is soluble at temperatures higher than 50°C, so that industries need a thermostable gellan lyase. The enzyme from G. stearothermophilus 98 demonstrated maximum activity at 70°C. The thermal denaturation curve of the enzyme at 214 nm showed a highly cooperative transition with a midpoint at about 75°C. Kinetic studies indicated high affinity of the enzyme to gellan as a substrate. A single product was identified after enzyme action on gellan [102].
β-Galactosidases catalyze hydrolysis of lactose into glucose and galactose and take part in transgalactosylation reaction that produces galactooligosaccharide. β-Galactosidase has been used in biopharmaceutical, food, and dairy industries to prevent crystallization of lactose, to improve sweetness, to increase the solubility of milk products, to prepare low lactose-containing food products for relatively lactose-intolerant people, and to utilize cheese whey, which would otherwise become an environmental pollutant [103]. Some Geobacillus species possess these enzymes. Evolved β-galactosidases BgaB from G. stearothermophilus KVE39 provide for transglycosylation of lactose into oligosaccharide characterized as 3′-galactosyl-lactose. Galactooligosaccharides are established prebiotic food ingredients used to promote the development of bifidobacteria and lactobacilli in the large intestine in order to reduce growth of pathogenic microorganisms [104].
Monosaccharides are applied as low-calorie sweeteners, bulking agents, antioxidants, glycosidase inhibitors, and nucleoside analogs. Production of monosaccharides can be catalyzed by isomerases. A recombinant mannose-6-phosphate isomerase from G. thermodenitrificans isomerizes aldose substrates possessing hydroxyl groups oriented in the same direction at the C2 and C3 positions such as the D- and L-forms of ribose, lyxose, talose, mannose, and allose. The enzyme was shown to catalyze the conversion of D-lyxose to D-xylulose with 38% yield after 3 h, and conversion of L-ribose to L-ribulose with 29% yield [105].
Keratin is the insoluble fibrous hard-to-degrade protein of feathers, wool, hair, including other epidermal appendages. It accounts for nearly 90–95% of feather weight, which constitutes up to 10% of the total chicken weight. The increased amounts of keratin by-products may represent a pollution problem. Keratinolytic proteinases or keratinases are known to utilize insoluble substrates such as fibrin, keratin, elastin, and collagen, and soluble substrates such as sodium caseinate, albumin, and gelatin. These enzymes have potential outlets in biomedicine, pharmaceutics, cosmetics, and waste bioconversion. A keratinolytic proteinase from G. stearothermophilus AD-11 shows optimal activity at pH 9 and 60°C and degrades keratin from wool > collagen > sodium caseinate > gelatin > and bovine serum albumin in descending order with production of high-value small peptides suitable for industrial applications [106].
Hydroxamic acids are weak organic acids. They are key pharmacophores in chemotherapeutic formulas possessing a wide spectrum of activities as growth factors, food additives, tumor inhibitors, antimicrobial, antituberculosis and antileukemic agents. Acetohydroxamic acid is a potent and irreversible inhibitor of bacterial and plant urease used in adjunctive therapy of chronic urinary infections. It also selectively shows anti-HIV activity and inhibits arachidonate 5-lipoxygenase, demonstrating potential use in the treatment of asthma. Intracellular amidase of G. pallidus BTP-5x MTCC 9225 showed complete conversion of acetamide to acetohydroxamic acid in 1 h at 50°C. At 65°C, the rate of reverse reaction was found to be higher. The acetamide bioconversion rate for the strain was 90–95% and 51 g powder containing 40% acetohydroxamic acid was recovered after lyophilization [107].
Chiral α-hydroxy acids are used in the production of pharmaceuticals and other fine chemicals. L-Lactate dehydrogenase from the thermophilic organism G. stearothermophilus may be employed for the industrial synthesis of chiral α-hydroxy acids. It is also possible to engineer the enzyme with enhanced activity toward the selected α-keto acids, besides natural substrates [108].
Recombinant alcohol dehydrogenase from G. stearothermophilus takes part in the biocatalytic synthesis of ω-oxo lauric acid methyl ester (OLAMe), a key intermediate in bio-based polyamide 12 production from the corresponding long-chain alcohol. The enzyme provides for up to 23% conversion of the substrate to OLAMe after 30 min. No overoxidation to the dodecanoic diacid monomethyl ester was detected. Thus, the engineered alcohol dehydrogenase is a promising biocatalyst for industrial polymer production [109].
Amidases are among the most widely used amide-hydrolyzing enzymes. They find use as catalysts in the treatment of industrial effluents containing toxic amides, in organic synthesis, and as therapeutic agents. The amidase of G. pallidus RAPc8 exhibited high thermal stability at 50 and 60°C, with half-lives over 5 h at both temperatures. At 70 and 80°C, the half-life values were 43 and 10 min, respectively. The enzyme catalyzed the hydrolysis of low molecular weight aliphatic amides, with D-selectivity toward lactamide. Acyl transfer reactions were demonstrated with acetamide, propionamide, isobutyramide, and acrylamide as substrates and hydroxylamine as the acyl acceptor. This amidase shows potential for application as a biocatalyst for D-selective amide hydrolysis yielding enantiomerically pure carboxylic acids and for the production of novel amides by acyl transfer [110]. Acrylamide is extensively used as a monomer in the synthesis of polyacrylamides, in dye composition, in gels for electrophoresis, in contact lenses, in food wraps, and in construction grouts. However, it displays many toxic properties such as neurotoxicity, genotoxicity, and carcinogenicity and can cause water and soil pollution. Acrylamidase from G. thermoglucosidasius AUT-01 is able to transform acrylamide to acrylic acid with pH and temperature optima of 6.2 and 70°C [111].
L-Nucleosides have been widely used as nucleoside-analog drugs in the treatment of severe viral diseases because they have more potent biological activities and lower toxicities than the corresponding D-nucleosides. L-Ribose is a potential starting material for the synthesis of many antiviral drugs, such as L-nucleoside derivatives. A triple-site variant of mannose-6-phosphate isomerase from G. thermodenitrificans demonstrated 3.1 and 7.1 times higher specific activity and catalytic efficiency, respectively, for L-ribulose isomerization compared to the wild-type enzyme at pH 7.0 and 70°C. The triple-site variant produced 213 g/l L-ribose from 300 g/l L-ribulose by 60 min, which exceeded 4.5 times the level of the wild-type enzyme. The specific activity, catalytic efficiency, and productivity of the variant were approximately two-fold higher than those of the Thermus thermophilus R142N isomerase, which exhibited the highest values previously reported [112]. Recombinant thermostable enzymes purine nucleoside phosphorylase II and pyrimidine nucleoside phosphorylase from G. stearothermophilus B-2194 retained high activity after 20 reuses in nucleoside transglycosylation reactions at 70–75°C with yields of the target products as high as 96%. These enzymes are suitable for the production of pharmacologically important natural and modified nucleosides [113].
Phytic acid is the most important storage form of inositol and phosphate in plants constituting approximately 5% of the dry weight of seeds in legumes and grain cereals. Phytic acid can form complexes with proteins and ions such as magnesium, calcium, zinc, and iron and act as antinutritional factor. Addition of phytases to animal feed can be an effective strategy to decrease phosphorus contamination and increase the bioavailability of phosphorus and essential minerals to animals. After 4 h incubation, hydrolysis capacity of chitosan- and Ca-alginate immobilized phytases of Geobacillus sp. TF-16 for soy milk phytate was calculated as 24 and 33%, respectively. The chitosan- and Ca-alginate immobilized enzymes conserved their original activity after 8 and 6 cycles of reuse, respectively [114].
Bacteria modulate their population density via the regulatory mechanism called quorum sensing. The latter takes part in bioluminescence, antibiosis, biofilm development, and control of expression of virulence genes. The Gram-negative bacteria use N-acylhomoserine lactone (AHL) as the quorum sensing signal. G. caldoxylosilyticus YS-8 was found to produce AHL lactonase degrading various AHLs. This enzyme can be further used in medical applications [115].
Some enzymes of Geobacillus species can be engaged in biotechnologies. GeoICI from Geobacillus sp., a member of atypical IIS restriction endonucleases, recognizing/cleaving 5′-GCAGC(N8/12)-3′ DNA sequences is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range, and hence can be applied in DNA manipulations [116]. β-Galactosidases are also objects for molecular applications in thermophiles and under anaerobic conditions. The enzyme from G. stearothermophilus functions both as a marker, when it cleaves thermostable dye, 3,4-cyclohexenoesculetin β-d-galactopyranoside (S-gal) to black product, and as a reporter enabling quantitative measurement by a simple colorimetric assay [117].
Aldehyde dehydrogenases are a group of diverse enzymes catalyzing the oxidation of aldehydes to carboxylic acids, using NAD+ or NADP+ as the coenzyme. The enzyme from G. thermodenitrificans NG80-2 demonstrated a broad substrate range including both aliphatic and aromatic aldehydes. It is expected to play a role in the degradation of alkanes and aromatic hydrocarbons present in crude oil. The aldehyde dehydrogenase activity was detected in the temperature range from 40 to 70°C, and in the pH range from 6.0 to 8.8. The optimum temperature was determined to be 60°C and the optimum pH 8.0. The enzyme was inactivated after incubation at 80°C [118].
Purification protocols for enzymes include several steps. The initial step is the release of the enzyme from the cell material, if the protein is not secreted by the organism into the surrounding solution. This procedure requires either a mechanical or chemical lysis of the cells. Techniques vary from gentle methods such as osmotic shock, detergent lysis, or enzymatic digestion to more vigorous methods such as homogenization in a blender, grinding with an abrasive substance or ultrasonication. The selected procedure must not damage the target enzyme, and therefore, the conditions must be optimized for each cell type and target enzyme in terms of the pH of the extraction buffer, the temperature, and the concentration of certain components of the buffer such as detergents, salts, or reducing agents. The next step after clarification is the concentration of the enzyme preparation. Dialysis can be performed prior to this procedure in order to remove salts from the cell extract. The most common concentration procedures are ammonium sulfate precipitation, ultrafiltration, and ion exchange chromatography [119]. Purification of Geobacillus proteins follows the same steps. Cell-free supernatant of exo-α-1,4-glucosidase-producing strain G. thermodenitrificans F84a was removed from the medium by centrifugation, fractioned with solid ammonium sulfate, dialyzed overnight and centrifuged to remove insoluble residues. Then, the sample was concentrated 6.5-fold by centrifugation, suspended in Tris-HCl buffer (pH 8.0) and applied to cation-exchange chromatography [86]. The culture broth with amylase-producing Geobacillussp. IIPTN was centrifuged; then supernatant was collected and filtered followed by ion-exchange chromatography [84]. Cells of amidase-producing G. pallidus RAPc8 were harvested by centrifugation and resuspended in an appropriate amount of potassium phosphate buffer. Cell lysis was achieved by freezing the cells at −20°C overnight, thawing at room temperature and sonication for 6–10 cycles. After subsequent centrifugation, the soluble fraction was heat-treated. Then, precipitated proteins were removed by centrifugation. Further purification was performed by gel exclusion chromatography [110].
Besides bacteria themselves, their bacteriophages are also potential sources of enzymes. Viruses constitute a major component of the biosphere, playing a significant role in nutrient and energy turnover of carbon, nitrogen, and phosphorus, and producing important impact on the evolution of their hosts. Thermophilic viruses are worse studied compared to the mesophilic viruses, and the majority of them infect archaeal genera. Generally, the life cycle of bacteriophage includes several programmed steps, such as phage adsorption to host cell surface, injection of phage genomic DNA into bacterial cell, metabolic transition from host to phage, phage genome replication, phage morphogenesis, phage package, and lysis of the host (Figure 4). Bacteriophage-host protein interactions in high-temperature environment remain poorly understood. Nevertheless, studies are carried out, like the discovery that the host’s aspartate aminotransferase, chaperone GroEL, and viral capsid protein VP371 of bacteriophage GVE2 (host Geobacillus sp. E263) formed a linearly interacted complex for protection of the virus reproduction in high-temperature environment [120]. Because of adaptation to extreme conditions, such bacteriophages can be used as sources of ligases, polymerases, and nucleases for biotechnological processes [121].
Bacteriophage lytic and lysogenic cycles.
The growing demand for energy to keep up with the industrial spurt and the rampant urbanization has created a huge shortfall, urging to resort to alternative energy options. The global bioenergy market is anticipated to reach $246.52 billion by 2024 from $158.39 billion in 2015. During the forecast period of 2016–2024, the global market is expected to rise at a compound annual growth rate of 4.9% [122]. Bioenergy is renewable resource derived from organic matter (biomass), i.e., all materials of biological origin not embedded in geological formations (fossilized). Biomass can be used in its original form as fuel, or be refined to different kinds of solid, gaseous, or liquid biofuels. The supply of biomass can be provided from forestry, agriculture, industrial, and municipal waste [123].
Bioenergy is divided into three broad categories: solid biomass (e.g., wood, harvesting residues), liquid biofuels (e.g., bioethanol, biodiesel), and gaseous biofuels (e.g., biogas). Bioenergy accounted for 14% of the global energy consumption in 2012 with roughly 2.6 billion people dependent on traditional biomass for power supply (Figure 5). USA and Brazil lead the world in production and consumption of liquid biofuels for transport accounting for almost 80% of the market. The production of all biofuels in the Americas increased from about 16 billion liters in 2000 to 79 billion liters in 2012. The use of biomass for electricity is prominent in Europe and North America—predominantly produced from forestry products and residues. The Europe and American continent contribute more than 70% of overall consumption of biomass for electricity. In 2013, 462 TWh of electricity was produced globally from biomass. The major use of biomass is household heating in rural and developing countries [123].
Global renewable energy consumption.
Bioethanol is a biodegradable, renewable energy resource which is produced from biomass through sugar fermentation and chemical process. It forms an attractive alternative to conventional fuel sources owing to its high octane value and lower greenhouse gas emissions. Bioethanol can be used as a motor fuel, fuel for power generation, feedstock for chemical industry, substrate for fuel cells and cogeneration systems, in cosmetic technology, and in manufacturing processes due to its clean burning and ready availability [124]. The global bioethanol market is projected to reach USD 68.95 billion by 2022, at a compound annual growth rate of 5.3% between 2017 and 2022 [125].
Ethanol produced from renewable sources by fermentation is the most promising biofuel and the starting material for various chemicals. Substrates for ethanol production can be classified into three main groups: (1) those containing considerable amounts of readily fermentable sugars (sugarcane, sugar beet, and sweet sorghum), (2) starches and fructosans (corn, potatoes, rice, wheat, and agave), and (3) cellulosics (stover, grasses, corn cobs, wood, and sugarcane bagasse) [126]. Ethanol-producing microorganisms such as Saccharomyces cerevisiae and Zymomonas mobilis lack amylases and cellulases and are unable to directly convert starch and cellulosics into ethanol. Traditionally, the starch is hydrolyzed enzymatically into fermentable sugars via liquefaction and saccharification processes prior to ethanol fermentation [82].
Biodiesel is a mixture of long-chain monoalkylic esters of fatty acids obtained from renewable resources, to be used in diesel engines, alone or blended with diesel oil. The global biodiesel market size was estimated as USD 28.04 billion in 2016 and is likely to reach USD 54.8 billion by 2025. The market is expected to expand at 7.3% compound annual growth rate owing to increasing demand for biodiesel as automobile fuel with eco-friendly characteristics. The automotive fuel segment accounts for over 75% of the market [127]. The raw materials for biodiesel production are vegetable oils, animal fats, and short-chain alcohols. Biodiesel is produced by transesterification reaction. This chemical reaction converts vegetable oil or animal fat into a mixture of esters of the fatty acids that make up oil or fat. Biodiesel is derived by purification of the mixture of fatty acid methyl esters. Transesterification can be basic, acidic, or enzymatic. In the latter case, lipases are used [128].
Global isobutanol market demand was estimated at 552.4 kilo tons in 2014. It is used as a raw material for the production of various chemicals, including cleaners and coating solvents, isobutyl esters, extractants for pharmaceuticals, textiles, polish additive, gasoline admixture, agricultural products, and biofuel. The global isobutanol market is expected to reach USD 1.18 billion by 2022. Synthetic isobutanol was the largest product segment accounting for 58.1% of total market volume in 2014. Bio-based isobutanol is estimated to witness the highest growth of 7.0% from 2015 to 2022 [129]. Isobutanol can be a better biofuel than ethanol due to its higher energy capacity and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Bacteria have been shown to produce this compound, but isobutanol demonstrated toxicity to cells, forcing to use more resistant microorganisms [130].
Biogas, a mixture of methane and carbon dioxide, is produced from the methanogenic decomposition of organic waste under anaerobic conditions. Between 2009 and 2015, the number of biogas plants in Europe increased significantly from around 6000 to nearly 17,000. Total European Union biogas primary energy production in 2014 was estimated at 14.9 Mtoe, up 6.6% from the previous year. About 57 TWh of EU electricity was produced from biogas in 2014, up 9% from 2013. However, biogas share is only 1.9% of the total electricity generation. USA has been slower in launching biogas plants, with around 2200 in operation, of which the majority are run at wastewater treatment facilities [131].
Geobacillus species have been shown to produce or stimulate synthesis of some biofuels. Nevertheless, investigations of Geobacillus role in these processes started recently.
The demand for energy production is at an all-time high level. Fossil materials, like coal and oil, are important fuels; however, they are considered as non-renewable resources raising serious environmental concerns. Bioenergy is the alternative source of fuels. Multiple approaches are currently explored for the use of microorganisms in the production of biofuel (alcohols, hydrogen, biodiesel, and biogas) from various starting materials. Geobacillus species able to synthesize a wide range of enzymes and resistant to high temperatures, allowing to minimize the risk of contamination and reduce energy consumption for product separation and fermenter cooling, appear excellent agents for bioenergy production.
Ethanol can be produced through fermentation by various strains of mesophilic bacteria, yeasts, and fungi. Thermophiles are able to utilize a wide range of sugars at high temperature converting them into ethanol. Most organisms in this class do not naturally carry out homoethanol fermentation and do not naturally exhibit high product tolerance, demanding additional metabolic engineering [132]. Thermophilic bacterium G. thermoglucosidasius M10EXG fermented a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and was tolerant to high ethanol concentrations (10%, v/v). The carbon flux during microaerobic growth was directed to ethanol, L-lactate (>99% optical purity), acetate, and formate. Under fully anaerobic conditions, the strain was involved in a mixed acid fermentation process, achieving a maximum ethanol yield of 0.38 ± 0.07 mol/mol glucose [133]. Strains of G. thermoglucosidasius have been engineered to divert their fermentative carbon flux from a mixed acid pathway to that where ethanol becomes the major product. The triple mutant TM242 generated ethanol from glucose at yields higher than 90% of the theoretical value 0.51 g/g with productivity 2.85 g/l/h. In addition, it was particularly rapid in the metabolism of cellobiose (productivity 3.2 g/l/h) [134]. Bacterial enzymes can be used in ethanol production. About 20 and 30% raw pearl millet starch exposure to the above-mentioned hyperthermostable and Ca2+-independent α-amylase of G. thermoleovorans NP54 for 3 h resulted in the sugar yields of 68 and 55.8%, respectively. Upon subsequent treatment with amylopullulanase of G. thermoleovorans NP33 for 4 h, 85 and 80% starch saccharification rates were attained from 20 and 30% raw starch, respectively. Saccharification was further enhanced to 98 and 92.4%, respectively, when the hydrolysate was treated with glucoamylase of Thermomucor indicae-sedaticae for 12 h. Following fermentation of reducing sugars in the hydrolysates, ethanol production levels by S. cerevisiae were 35.40 and 28.0 g/l [82].
As mentioned above, biodiesel is produced via transesterification reaction, and in some cases, lipases are used. Lipase from G. thermodenitrificans AV-5 showed molecular weight 50 kDa, temperature and pH optima, 65°C and pH 9.0, respectively, and was able to efficiently convert waste cooking oil and coconut oil to biodiesel with yields 76 and 45.5%, respectively [135]. The enzymatic reaction system enables to utilize low-grade and low-cost feedstock with high free fatty acid or water content. It reduces the amount of alkali wastewater that requires treatment and promotes easy recovery of the main product and the by-product glycerol. In addition, the biocatalyst is biodegradable and when immobilized can be reused for many production cycles and can lower the operation cost of the process. However, the major drawbacks of the enzymatic system are relatively high biocatalyst cost and its limited stability in the presence of high methanol concentrations. In order to achieve complete conversion of one oil molar equivalent to fatty acid methyl ester, three molar equivalents of methanol are necessary. Nevertheless, in reaction systems with more than 1.5 methanol equivalents, the methanol is not completely dissolved and its droplets stay in the mixture leading to enzyme unfolding and inactivation. The triple mutant lipase of G. stearothermophilus T6 showed a half-life value of 324 min in the presence of 70% methanol, which reflects 87-fold enhanced stability as compared to the wild type. This variant also exhibited an improved biodiesel yield from waste chicken oil when compared to commercial Lipolase 100L® and Novozyme® CALB [136]. The recombinant lipase from G. stearothermophilus G3 immobilized on the aminated silica gel can be used as a biocatalyst for the preparation of fatty acid methyl esters from vegetable oils. The optimum reaction parameters allowed to produce fatty acid methyl esters with 40–43% yield within 96 h [137].
Isobutanol biosynthesis shares intermediates with the valine biosynthesis pathway, which exists in most microorganisms, including Geobacillus. Engineered G. thermoglucosidasius variant produced 3.3 g/l of isobutanol from glucose and 0.6 g/l of isobutanol from cellobiose by 48 h at 50°C, demonstrating stable isobutanol generation in recombinant bacteria at an elevated temperature [138]. The other G. thermoglucosidasius culture was able to produce isobutanol in amounts around 50 mg/l via the conversion of isobutyryl-CoA to isobutyraldehyde by aldehyde dehydrogenase and from isobutyraldehyde to isobutanol by alcohol dehydrogenase. It was observed that supplementing the growth medium with an intermediate of the valine biosynthesis pathway, 2-ketoisovalerate, resulted in increased isobutanol titers [139].
Acetoin is widely used in food processing, flavoring, cosmetic formulation and chemical synthesis, while its reduced form, 2,3-butanediol, compares favorably with ethanol (29,100 J/g) and methanol (22,100 J/g) in heating value (27,200 J/g), so that 2,3-butanediol can be used as a liquid fuel or fuel additive. Its dehydration yields the industrial solvent methyl ethyl ketone, which can be hydrogenated to high octane isomers, suitable for high-quality aviation fuels. Acetoin and 2,3-butanediol are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. The application of thermophilic strains is able to meet the challenge. Geobacillus strain XT15 generated 7.7 g/l of acetoin and 14.5 g/l of 2,3-butanediol when incubated with corn steep liquor as a nitrogen source at 55°C. Acetoin, 2,3-butanediol, and their derivatives accounted for about 96% of total volatile products, while organic acids and other metabolites were minor by-products [140].
Due to its high organic content, sewage sludge is used as a substrate for anaerobic digestion to recover biogas. Anaerobic digestion of organic waste material is an effective technology for both waste disposal and energy generation. The addition of sludge with aerobic thermophilic (AT) bacteria (closely related to G. thermodenitrificans) to methanogenic sludge enhanced the production of biogas. The optimum added volume and the pretreatment temperature of the AT sludge for optimum biogas production were 5% and 65°C. The AT sludge inoculated with the AT seed sludge (mass of sludge containing populations of microorganisms) improved biogas production by 2.2 times. The addition of bacterial culture reduced volatile solids by 21%, which was higher than 12.6% achieved with the sewage sludge addition. The bacteria enhanced biogas production more than AT seed sludge [141]. The increased biogas production from anaerobic digestion of sewage sludge can be caused by the protease activity [142].
Microbial fuel cells (MFCs), another power-generating system, utilize bacteria acting as living catalysts to convert organic substrates into electricity. MFCs lack viability in most applications and demand optimization. Recently, it has been shown that Geobacillus species can be used for energy generation. However, Geobacillus strain could not produce current in the absence of an exogenous electron shuttle [143].
The Geobacillus species are represented by Gram-positive, aerobic or facultatively anaerobic, spore-forming, rod-shaped cells. The bacteria able to survive and grow at high temperatures can be found everywhere. At present, Geobacillus genus comprises about 20 species, but they are quite heterogeneous and require reclassification.
Owing to the ability of geobacilli to utilize and to produce a wide range of substances, coupled with resistance to high temperatures, they are considered as promising agents for many biological processes. Geobacillus genus is a source of a vast array of thermostable enzymes: amylases, lipases, pectinases, β-galactosidases, endonucleases, etc. Applications of bacteria and their enzymes range from food industry and medicine to molecular biology and bioremediation. New investigations concerning Geobacillus characteristics and spheres of use are carried out every year.
The growing demand for energy urges researchers and manufacturers to resort to alternative options. Bioenergy is the attractive source of fuels. It accounted for 14% of the global energy consumption in 2012. Multiple approaches are currently being probed to use microorganisms in the production of various fuels from diverse materials. Geobacillus genus demonstrated ability to produce or stimulate synthesis of some biofuels. Generation of biofuels coupled with resistance to high temperatures allows to enlist Geobacillus bacteria as potential candidates for bioenergy projects.
The work and chapter were funded through the FP7—Seventh Framework Programme of the European Community for Research and Technological Development (The ener2i project—Energy to Innovation—Reinforcing cooperation with ENP countries on bridging the gap between energy research and energy innovation. Reference of the Grant Agreement no: 609532).
The deterioration of the natural source of fresh water supply correlates with the increase in global social economic growth and activities, which generates wastewater with a high content of pollutants [1, 2]. Due to the detrimental effects of pollution in wastewater, water-related technologies and materials development have become the utmost priority in most of the wastewater industrials [2, 3]. Among the numerous purification methods, integrating coagulation along with filtration [2, 3, 4], sedimentation or flotation [5, 6] have been well-known pre-treatment techniques in water and wastewater settings where water quality is cardinal [7]. However, a variation of inflow water quality and lack of optimized treatment facilities result in decreasing the treatability efficiency with the incurred cost of production [8, 9]. Chemical purification process, well known as coagulation, even though it’s essential in wastewater settings, sometimes is seen to be an expensive technology due to the cause of cost of chemical usage involved [10, 11, 12]. This method involves the precipitation of the soluble metal ions by using coagulants. Subsequently, the long-term application of metal-based coagulants (aluminum and iron) [11] has raised concerns associated with sludge generation and heavy metal residuals which are potentially toxic to the ecosystem [10, 11, 12]. This has resulted in most effluent not complying with the stringent Environmental Protection Agency’s standards for regulating the quality of effluent plants [8].
In a typical wastewater treatment plant (Figure 1), a mixture of inorganic and organic polymer additives are usually employed as a heterocoagulation technique [14, 15]. This is to accelerate the agglomeration and coalescing of weighted particles to be separated from the water either by sedimentation or flotation techniques [5, 6]. However, most of the industrial wastewaters from the oil refinery, food, and the agricultural processing industries contain organics, suspended and emulsified oil and grease that prefer to float than settle [10, 15, 16]. Also, to enhance dewatering and advanced treatment of sewage which includes the removal of phosphorus, the utilization of polymers has become a very common practice [14, 17, 18]. Although, coagulant chemicals and its derivatives are very resourceful in wastewater treatment settings, they may alter the characteristics of the effluents in terms of its physiochemical properties [11, 17]. Also, the problem related to disposal of huge sludge and metals in the effluents, for instance in the application of hydroxide precipitation [4, 13, 19], requires a technique to recover the valuable or toxic metals from the sludge [20, 21]. In response to this, Donnan membrane technology which requires a lower operating pressure than others has been one of the fields tested technique in the wastewater treatment settings. However, the cost of the membrane is one of the setbacks [20, 21, 22].
Schematic flow chart of a typical sewage treatment plant adapted from [13].
As some of the limitations associated with inorganic based coagulants are been mentioned, this study focuses on the option for the natural and composite inorganic-organic polymer to maximize the treatability performance in the wastewater settings. Therefore, the goal is to evaluate the efficiency of organic polymers as coagulant agents for the treatment of water and wastewater and also to provide an alternative option to metal salts for the chemical purification process. This is done by exploring the use of organic polymer coagulant techniques as compared to metal-based salt coagulants in existing conventional treatment methods on the basis of effectiveness. Furthermore, to identify some of the operating conditions that affect chemical purification process.
Chemical treatment using metal salts of iron and aluminum is widely applied in several wastewater treatment industries as primary treatments for the removal of particulate and organic matter effectively [23]. Figure 2 shows a typical chemical treatment process for both wastewater and drinking water settings, which usually consists of coagulation, flocculation, and sedimentation or flotation [24]. Coagulation is an indispensable mechanism that promotes the aggregation of the suspended solids, which are mostly responsible for turbidity, color, and taste and odor removal [24, 25, 26]. The flocculation facilitates the agglomeration of the coagulated particles to form larger flocs, thereby hastening the gravitational settling or flotation process for the removal of contaminants [24]. The spontaneous forming of flocs in suspension is term as flocculation. This is usually applicable in water purification and sewage treatment. The cationic polyelectrolytes have been the most viable flocculants. Their low charge density makes not to reverse the surface charge and hence they are less prone to induce destabilization.
Physicochemical treatment process [24].
Also, agglomeration of particles to form large and stable flocs involve mixing of the coagulants with the wastewaters usually monitored via Jar test. However, there are several types of coagulants which show the different potential application in treating drinking water or wastewater [11, 17, 27]. Due to the detrimental effects of discharging untreated wastewater, it is essential for purification systems to be well established and optimized [28, 29]. Ideally, the suitable operation conditions required depends on the characteristics of the wastewater and the coagulants, as well as the physical properties as shown in Table 1.
Coagulant characteristics | MOW characteristics | Physical characteristics |
---|---|---|
Coagulant type | Water quality | Flotation/settling time |
Coagulant dosage | Suspended solids | Mixing intensity |
Coagulant quality | Temperature | Coagulant dosage end point |
Coagulant lifespan | pH | Chemical stability during storage |
Proper solution makeup and dilution | Alkalinity | |
Ionic constituents |
Factors that affect the chemical purification process [17].
Coagulation, flocculation and sedimentation processes in water and wastewater treatment are crucial. The first stage in most chemical water treatment processes is coagulation, whose performance is dependent on coagulant concentration and the water chemistry [12, 14]. Essentially, there are four coagulation mechanisms for aggregation of particles to occur, namely (1) double layer compression; (2) sweep flocculation; (3) adsorption and charge neutralization; and (4) adsorption and interparticle bridging [13, 17, 18, 19, 20, 21, 22, 23, 24]. This involves the reaction between the colloids and the added coagulant to destabilize and neutralize the electric charges in the particles, whereas the flocculation facilitates the agglomerated flocs in the colloidal suspension.
For instance (Figure 3), the addition of the coagulant is accountable for the creation of small scattered particles which come together into larger and more stable particle flocs. These then make the flocs heavier than the water, which settle as sediments and can be removed. This results in the removal of about 90% of the suspended matter [1, 2]. Furthermore, the coagulation step depends on conditions of time and agitation whereby the particles coalesced to form larger flocs could be eliminated by sedimentation.
Process of coagulation, flocculation, and sedimentation [24].
Conventionally, flotation is a concentration process in which selective hydrophobic materials are separated from hydrophilic materials by a gravity separation process [30]. In a typical flotation process (Figure 4), the coagulated particles adhere to air bubbles lowering the apparent density below that of the water, which then allows the flocs to float to the surface. To cause a change in the separation phase depends on four mechanisms such as (1) air bubble generation, (2) contact between air bubble and the particulates, (3) attachment of gas bubbles to particulates, and (4) rising up of the combined air bubble- particulate [31, 32].
Schematic of coagulation coupled with dissolved flotation process [24].
The addition of the coagulant enhances the air bubbles and organic matter to form robust flocs that can resist breakage in the flotation zone [33]. However, this process is somehow complicated because it requires the hydrodynamics and surface chemistry interaction via the means of bubble attachment, where the bubbles are generated as a result of compressed air released into the flotation zone. Therefore, to obtain good performance, studies have shown that coagulation chemistry has a strong influence on flotation performance [34], such that the chemical reaction between the coagulants and the organic matter results in forming larger oil flocs, whereas, the flotation process facilitates separation [35, 36]. This allows the coagulated flocs to float on the surface as sludge, whereas clear water moves to the bottom of the floatation tank to the sewer as treated water.
There are several operating factors that have an impact on the parallel and sequential reactions that occur when a coagulant is added to the wastewater. To promote the interparticle bridging and floc formation, there are a series of transportation mechanisms which occurs including Brownian diffusion and fluid motion. All these influence the efficiency and effectiveness of the coagulation process for wastewater treatment.
Polymer molecular weight (MW) and charge density (CD) affects the interparticle bridging and electrostatic force mechanism which contributes to the coagulation efficiency [37, 38], such that an increase in molecular weight improves agglomeration and floc formation. Although anionic charge on the polymer can obstruct adsorption onto an undesirable surface, it promotes the polymer chain via mutual charge repulsion between polymer molecules [39]. Organic polymer concentration originates to be free of molecular weight but reliant on ionic strength. The CD is generally expressed as a percentage of ionic groups (both those that are charged, irrespective of pH and those that can become charged under certain pH conditions) relative to all the groups in the polymer. The CD is expressed in terms of length (qL), area (qA) and volume (qV) as shown in (1)–(3) as a function of the amount of ionic charge (qQ) per length (L), area (A) or volume (V) respectively.
Temperature serves as the driving force for chemical reaction. This affects the coalescence and the physical properties of the polymer including viscosity, mobility, collision, and solubility, density, rising or settling velocity of the flocs. Thus, higher temperature hastens the rate of chemical reactions, whereas low temperatures stabilize the colloidal surfaces to reduce the hydrolysis reactions [38, 40]. This might affect the free movement of the particles and higher solubility as well as higher reaction kinetics of the polymer applied, which in turn decreases the coagulation efficiency.
The degree of coagulation completion for effective treatment can be related to coagulant dosage and mixing conditions. Sequentially, destabilization and agglomeration of coagulated flocs occur through two mixing regimes, viz. rapid mixing and slow mixing as shown in Figure 5. The rapid or fast mixing occurs after the addition of the coagulants, which requires turbulent mixing to form a homogeneous solution [24, 25, 29]. Lack of rapid mixing might cause poor performance of the coagulants due to under dose or overdose. On the other hand, slow mixing comes soon after rapid mixing, and is intended to increase the particle entrapment and growth of the flocs.
Schematic steps of mixing in coagulation process.
Furthermore, consistent slow mixing accelerates the rate floc aggregation and entrapment of the particles in suspension to enhance separation. Slow mixing provides a velocity gradient for particles with similar size that can be larger than 1 μm. Such that the relation between the aggregation of a given size and the polymer MW can enhance the bridging or breaking forces of the flocs to either settle or float [33, 36, 38]. In practice (Figure 5), this is achieved by a suspension being stirred at a high rate (250 rpm f) to cause floc breakage, and after the breakages, the slow mixing (30 rpm) is initiated to increase the floc size [24, 27]. In flotation principle, a lower dosage of the polymer can be used because the agitation creates a well-established suspension of smaller flocs to agglomerate to float [33, 41].
The pH plays a dominant role in coagulant-particle interaction for effective neutralization and agglomeration of the flocs. In addition, the solubility of metal hydroxide species can be affected by pH (4–8) [36, 41]. Therefore pH adjustment prior to coagulant addition is very important to influence the chain reactions that will occur. The effective species of inorganic coagulants or polymers being a metal-based ion can affect the floc formation through a double-layer compression [24, 38]. With an increase in pH, these species become charged resulting in a change in mechanism. For instance, when the colloids are hydrophilic, e.g. acids, the pH will affect the protonation.
There are various types of coagulants used in wastewater settings, such as inorganic and organic polymers. However, polymers are generally more costly than inorganic coagulants. This depends on the type and quantity of chemical the coagulant might contain. Selection of the suitable coagulant for wastewater treatment is very important, which also depends on the water chemistry, the hydrodynamics and operating conditions of the processing system [4, 41]. Coagulant dosage is an energetic factor in finding how the metal ions react with the organic matter in wastewater to enhance its clarity.
Organic polymers by nature are very viscous solutions, which sometimes becomes problematic to be distributed homogeneously in a medium [15, 17]. However, they are very attractive towards particle surfaces, which is irreversible when attached. So uneven distribution of polymers in polluted wastewater might contribute to inefficiency and cost of the treatment process [17, 18, 24]. Thus, the dosage needs to be stepped up in other to compensate for the loss of the polymer.
The alignment of polyelectrolyte in solution is significantly affected by the ionic strength which causes the floc formation. The metal ions hinders the hydrolysis activity when a metal-based coagulant is added to a solution [24, 38, 40]. In contrast, like-charges of a polymer chain tend to expand when there is a mutual repulsion. This is directed to an increase in viscosity of a polyelectrolyte solution as ionic strength decreases. Also, an increase in ionic strength shields the charged site of the polymer which then affects its hydrodynamic volume expansion by decreasing the viscosity of the solution [39, 40]. This causes a double layer compression to be formed around the floc surface area where there might be oppositely charged ions.
There are several types of coagulants which are applicable to water and wastewater treatment settings [42]. These can either be chemical, non-chemical, synthetic material or natural coagulants. However, each type of coagulant has its own unique properties with positive ions which will entrap the negative charge of the organic matter in the water that causes turbidity.
Aluminum and iron salts are the most commonly used inorganic coagulants in the wastewater treatment settings. These include based aluminum metals (aluminum chloride, aluminum sulfate, sodium aluminate) and iron based metals (ferrous sulfate, ferric sulfate, ferric chloride) [13, 17, 18]. The addition of these coagulants to wastewater undergo a series of reactions with the hydroxyl ions (OH−) producing monomeric and polynuclear species. These results in dissociation of their metal salts to release their trivalent ions, which hydrates to give complex water molecules of Al (H2O)63+ and Fe (H2O)63+ for aluminum and iron respectively [26, 37, 39, 43]. This results in the replacement of the water molecules (H2O) by OH− ions to form soluble Al (OH)2+ and Fe (OH)2 which increases the coagulation performance by the trivalent ions being strongly adsorbed onto the negative surface of the colloids [26, 29].
Consequently, metal-based coagulants are most widely used due to their low cost and availability; however, there are some drawbacks [17, 18]. These include high dosage dependence, a high requirement on pH, weakness to temperature disparity and high sludge generation. Some of these inorganic coagulants with their merits and demerits are presented in Table 2. Furthermore, an overdose of aluminum and iron in effluent poses a threat to both the ecosystem and human health such as intestinal constipation, abdomen colic and spasms. In addition, Ferric-based coagulants are very caustic and produce highly visible rust-colored stains associated with chemical spills and leaks [25, 33]. Therefore, there is great interest in improving inorganic coagulants by employing polymeric organic and natural coagulants for the treatment of wastewater.
Name | Advantages | Disadvantages |
---|---|---|
Aluminum sulfate (Alum) Al2 (SO4)3·18H2O | Easy to handle and apply; most commonly used; produces less sludge than lime; most effective between pH 6.5 and 7.5 | Adds dissolved solids (salts) to water; effective over a limited pH range |
Sodium aluminate Na2Al2O4 | Effective in hard waters; small dosage usually needed | Often used with alum; high cost; ineffective in soft waters |
Polyaluminium chloride (PAC) Al13(OH)20(SO)4Cl15 | In some applications, Floc, formed is denser and faster settling than alum | Not commonly used; little full-scale data compared to other aluminum derivatives |
Ferric sulfate Fe2(SO4)3 | Effective between pH 4–6 and 8.8–9.2 | Adds dissolved solids (salts) to water; usually, need to add alkalinity |
Ferric chloride FeCl3.6H2O | Effective between pH 4 and 11 | Adds dissolved solids (salts) to water; consumes twice as much alkalinity as alum |
Ferrous sulfate FeSO4·7H2O | Not as pH sensitive as lime | Adds dissolved solids (salts) to water; usually need to add alkalinity |
Lime Ca(OH)2 | Commonly used; very effective; may not add salts to effluent | pH-dependent; produces large quantities of sludge; overdose can result in poor effluent quality |
Organic coagulants are generally synthesized monomers of aluminum and iron-based coagulants, applicable in the wastewater settings as coagulant aids or floc builders [15, 17]. Table 3 shows some of the organic coagulants which are usually employed in potable and wastewater treatment after the addition of inorganic coagulants to enhance its treatment efficiency [15]. There are various types of organic coagulants, which have different covalent charges and bonds of their polymeric molecules. These include the charge or ionic polymers (polyelectrolytes) and no charge or non-ionic polymers [15, 25]. In respect to the charge polymers, those with a positive charge are termed as cationic polymers, whereas those with negative charges are called anionic polymers.
Name | Formula | Typical properties | Uses |
---|---|---|---|
Polyaluminium chlorohydrate (ACH) Al2(OH)5Cl | PAC 23 | * 23–24% Al2O3 or 40–41% w/w ACH | Used in lieu of alum where raw water has low pH & alkalinity. Has little impact on pH |
MEGAPAC 23 | |||
ALCHLOR AC | * SG 1.33 | ||
* 83–84% basicity | |||
PROFLOC A23 | * 8.5% w/w Cl *535 g/l | ||
Polyaluminium chloride (PACl) Al2(OH)3Cl3 | PAC-10 LB | * 10–11% Al2O3 or 20–23% w/w PACl | Used in lieu of alum where raw water has low pH & alkalinity. Has greater impact on pH than ACH |
MEGAPAC 10 | |||
* SG 1.18 | |||
* 50% basicity | |||
* 10.5% w/w Cl | |||
* 245 g/l | |||
Polyaluminium silicosulphate Al2(OH)3.24Si0.1(SO4)1.58 | PASS® | * 10% Al2O3 or 5.3% w/w Al | Forms flocs easily |
* SG 1.34 | |||
* 54% basicity | |||
Polyferric sulfate Fe2(OH)0.6(SO4)2.7 | PFS® | * 12.2% w/w Fe(III) or 43.7% w/w Fe2(SO4)3 | Mostly used for oil emulsified wastewater |
* SG 1.54 | |||
* 10% basicity | |||
* 673 g/l |
There are two characteristics of polymers that defines them to be used as coagulant or flocculant aids [15, 17]. These include (1) they have a very high charge density to neutralize the negative charges present on the surface of the colloidal material, and (2) they have a relatively low molecular weight (MW) which allows good diffusion of the cationic charges around the particles. This enhances good distribution of the coagulant in the effluent, when not concentrated at low viscosity of less than 2 × 103 centipoises, and when concentrated at a high viscosity of 20 × 103 centipoises [14, 15, 24]. Organic polymers have long chain molecular weights, which consists of repeating chemical units called monomers. This makes them be classified as low with MW less than 105, and medium and high when they are between 105 and 106 and more than 106 respectively [14, 15, 17].
Organic polymer coagulants can exist in different forms which is due to the method of polymerization such as liquid, beads, powder, emulsion, and dispersion [15, 24].
Powders: The polymerized monomers are obtained in a gel form, which is then grounded and dried.
Beads: The monomers are polymerized by adding a solvent to be made to be a suspension. The solvent is later evaporated to obtain microspheres. This prevents dust and enhances rapid dissolution.
Emulsions: The monomers are emulsified in a solvent before being polymerized. Afterwards, a surfactant is added to make it dissolvable in water.
Liquids: The monomers are polymerized at low concentration in aqueous solutions, making it effortlessness to use.
Dispersions: In this case, the monomers are usually dispersed in brine before being polymerized. This is done as direct feed inline without any solvent or surfactant and aging time. These are applicable in the flotation process, making it a cost-effective process for the treatment of oil refinery wastewater. Figure 6 shows the dissociation of the ionic charge of the polymer when introduced into a receiving medium (emulsion of oil-water).
Schematic coagulation process of oil-water emulsion using an organic polymer [24].
Hydrophobic organic coagulants adapted from inorganic coagulants have gained attention in application due to their unique characteristics. Organic polymers, in general, are classified as natural and synthetic polymers [14, 15, 17]. Natural polymers are hydrophilic compounds which carry natural characteristics as being nontoxic to humans, readily available and environmentally friendly. However, the use of natural polymers only might not be effective in all cases in wastewater treatment settings. This might be due to their properties which cannot be modified (e.g. Chitosan, tannin, starch, Moringa oleifera). Natural polymers are usually mixed with inorganic coagulants to enhance their treatability efficiency, although synthetic polymers can at times be toxic to humans [11, 14, 44].
Organic polymers can easily be modified and optimized during the manufacturing process for wider application. Several polymers are produced with polymer chains of the linear, branched or cross-linked form of structures [11, 18]. For instance, Figure 7 shows the chemical structure of poly diallyl dimethyl ammonium chloride (pDADMAC), epichlorohydrin/dimethylamine polymers (ECH/DMA) and cationic polyacrylamides (CPAMs) are examples of cationic synthetic polymers while chitosan is an example of the cationic natural polymer [15, 17, 24].
Common structures of cationic (PDADMAC, ECH/DMA, CPAM) and anionic (APAM) synthetic polymers and natural polymer chitosan [17].
Anionic polymers are amphoteric polymers, which gets a negative charge when their ionic groups dissociate in a medium [15, 17]. Their polymerization is very sensitive, involving a change in molecular weight, charge groups and density as well their structure being linear or branched as shown in Figure 8. This is usually instigated by using either active anionic species like sodium, nitrile, hydroxide or cationic species such as hydrochloric acid, sulfuric acid, and phosphoric acid. Subsequent hydrolysis of the polyacrylamide under basic pH conditions produces a polymer with anionic charges. Table 4 shows the molecular formulas of anionic APAMs or PAMs, containing changing proportions of acrylamide co-monomers in terms of charge density (mol%) and a theoretical basis in meq/g of polymer.
Copolymers of acrylamide and acrylic acid to form anionic polyacrylamides [24].
Molecular formula | CD (mol %) | CD (meq/g) |
---|---|---|
C3H3 O2Na | 100 | 10.2 |
(C3H3 O2Na)0.75(C3H5 ON)0.25 | 75 | 8.5 |
(C3H3 O2Na)0.50(C3H5 ON)0.50 | 50 | 6.1 |
(C3H3 O2Na)0.25(C3H5 ON)0.75 | 25 | 3.3 |
(C3H3 O2Na)0.1(C3H5 ON)0.9 | 10 | 1.4 |
Charge densities of anionic polyacrylamides [17].
Cationic polymers are positively charged natural or synthetic based organic coagulants. Some of these polymers have charge ammonium groups making them strong electrolytes irrespective of their pH variation [15, 17]. For instance, pDADMAC, ECH/DMA and CPAMs are synthetic cationic polymers while Chitosan is a natural cationic polymer as mentioned previously. The hydrolysis of the ester groups and consequent loss of cationic charge is CD and pH dependent. Table 5 outlines the CD of various cationic polymers in mol% and meq/g of polymer. The higher charge density shows that the polymer has a greater loop which enhances interparticle bridging and effective destabilization of the medium. Figure 9 shows the cationic polymer structure, denoting polymerization of acrylamide followed by partial hydrolysis.
Polymer | Molecular formula | CD (mol %) | CD (meq/g) |
---|---|---|---|
PDADMAC | C8H16NCl | 100 | 6.2 |
ECH/DMA | C5H12 ONCl | 100 | 7.3 |
CPAM | C8H16 O2NCl | 100 | 5.2 |
CPAM | (C8H16 O2NCl)0.5(C3H5 ON)0.5 | 50 | 3.8 |
CPAM | (C8H16 O2NCl)0.25(C3H5 ON)0.75 | 25 | 2.5 |
CPAM | (C8H16 O2NCl)0.1(C3H5 ON)0.9 | 10 | 1.2 |
Chitosan | C6H11 O4N.HCl | 100 | 5.2 |
Charge densities of cationic polyelectrolytes [17].
Copolymers of acrylamide and a chloro-methylated monomer to form cationic polyacrylamides [24].
There are several naturally-occurring polymers that have inherent cationic properties, which can be modified to yield a cationic polyelectrolyte to be used for solid-liquid separations as flocculants [11]. Non-ionic polymers vary in structure, molecular weight and degradability. Some examples include polyacrylamides (PAMs), Chitosan, starch without substitutions, cellulose derivative, and glues [17, 38, 44]. Chitosan, like most natural polymers, is toxic free which makes them generally acceptable on health grounds. The use of chitosan in water purification applications has been referenced to decolorizing dye house effluents, the treatment of food-processing wastes, metal ion removal and sludge conditioning.
Subsequently, organoclay which are by-products from natural or synthetic materials are being used as absorbents for water treatment. They are generally known as low-cost adsorbents which are readily available. These include ball clay, bentonite and kaolin. Organoclay is also a result of merging sodium montmorillonite clay with a cationic quaternary amine salt which interchanges the adsorbed sodium through ion exchange [17, 25].
Furthermore, plants and minerals are a cardinal source of natural polymers. Some examples includes: Nirmali seeds, Moringa oleifera, Tannin, eggplant seed and radish seed which are locally available from vegetables for treatment [14, 15, 44]. These coagulants are nontoxic, renewable, produce lower sludge, biodegradable and relatively cost-effective. Moreover, natural coagulants have a wide range of effective dosage and do not change the value of pH for the treated water. Another example of a plant-based coagulant using unexploded waste is cassava peel. Fresh cassava peels have three main efficiencies: spread very rapidly, contain phytates, and huge amounts of cyanogenic glycosides [3, 44].
Organic polymers and inorganic coagulants over the years have been used in chemical treatment and purification of water and wastewater [41]. These are used in chemical treatment to assist sedimentation of sewage solids to enhance the removal of suspended matter. Coagulation used ahead of gravity settling may be expected to yield suspended solid removals of about 90% as compared to without coagulation [1, 11]. This concept is also applicable to primary coagulation of industrial wastewaters where the separation may be based on flotation, as in examples from the leather, steel, wool scouring, cosmetic, detergent, plastics, dyehouse, paper, food processing, and brewing industries. The cationic polymer which is hydrophobically modified is significant in the case of soap, oil and grease removal. Table 6 shows some examples for the application of organic polymers for the treatment of wastewater.
Industries | Coagulant | Dosing | Performance | Reference |
---|---|---|---|---|
Pulp and paper | Poly-aluminum-silicate-chloride | 40 mg/l | 93.13% COD 91.12% turbidity | [45] |
Textile industry | PAC | 25 mg/l | 90.17% COD, 74.09% TDS and 93.47% turbidity | [37] |
Dye wastewater | Polyferric chlorides (PFCs) | 30 mg/l | 55% reduction | [46] |
Vegetable tannery wastewater | PACl (poly aluminum chloride) | 60 mg/l | 45%TSS, 20% COD and 80% turbidity | [47] |
Palm oil effluent | PAC | 0.5 g/l, 8.0 and 60 g/l | 99% SOG | [48] |
Application of organic polymers in wastewater settings.
Their many advantages associated with organic polymers been used as primary coagulants, however, it is sometimes quite challenging selecting the suitable one for specific water treatment. The selection of the right polymer to use under the circumstances in question depends on their molecular weight, charge density, and structure, dose, mixing condition, amount and type of impurities found in the water and pH dependency. However, to achieve optimum stabilization and agglomerating of flocs requires optimum dosage, which is inversely dependent on the size of the particles in suspension [39, 40].
Coagulation is one of the simplest methods for the treatment of water and wastewater, especially for non-settleable solids, turbidity, and color from effluents. Application of coagulation is expected to enhance the gravity system for the removal of suspended solids of about 90% as compared to a system without coagulation. Thus, the issue of sludge sedimentation which must be floated is relatively low to flotation systems utilizing organic polymers rather than inorganic coagulants. This chapter addresses the limitation associated with coagulation using inorganic coagulants, by highlighting some of the eco-friendly organic coagulants and operating parameters of coagulation for water and wastewater treatment. Also, composite polymerization and impregnation of organic polymers with inorganic coagulants as a research area should be focused for commercialization and industrialization.
The authors wish to thank the Durban University of Technology and National Research Foundation South Africa for their support.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5314},{group:"region",caption:"Middle and South America",value:2,count:4818},{group:"region",caption:"Africa",value:3,count:1466},{group:"region",caption:"Asia",value:4,count:9363},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108152},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6842",title:"Aerosols",subtitle:null,isOpenForSubmission:!0,hash:"efe043290c576559ee15f293bc924f65",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/6842.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6926",title:"Biological Anthropology",subtitle:null,isOpenForSubmission:!0,hash:"db6aa70aa47f94b3afa5b4951eba6d97",slug:null,bookSignature:"Dr. Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:null,editors:[{id:"313084",title:"Dr.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6931",title:"Personality Disorders",subtitle:null,isOpenForSubmission:!0,hash:"cc530c17b87275c5e284fcac8047d40e",slug:null,bookSignature:"Dr. Catherine Athanasiadou-Lewis",coverURL:"https://cdn.intechopen.com/books/images_new/6931.jpg",editedByType:null,editors:[{id:"287692",title:"Dr.",name:"Catherine",surname:"Athanasiadou-Lewis",slug:"catherine-athanasiadou-lewis",fullName:"Catherine Athanasiadou-Lewis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6934",title:"Sexual Ethics",subtitle:null,isOpenForSubmission:!0,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6937",title:"Subcultures and Lifestyles",subtitle:null,isOpenForSubmission:!0,hash:"870d7f9f5ac0d8068a64507ef2fd0e3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/6937.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6940",title:"E-Services",subtitle:null,isOpenForSubmission:!0,hash:"0dd6e0f6c0a6d3be53af40ae99a1529d",slug:null,bookSignature:"Dr. Sam Goundar",coverURL:"https://cdn.intechopen.com/books/images_new/6940.jpg",editedByType:null,editors:[{id:"280395",title:"Dr.",name:"Sam",surname:"Goundar",slug:"sam-goundar",fullName:"Sam Goundar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6947",title:"Contemporary Topics in Graduate Medical Education - Volume 2",subtitle:null,isOpenForSubmission:!0,hash:"4374f31d47ec1ddb7b1be0f15f1116eb",slug:null,bookSignature:"Dr. Stanislaw P. Stawicki, Michael S. S Firstenberg, Dr. James P. Orlando and Dr. Thomas John Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/6947.jpg",editedByType:null,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6972",title:"Soybean for Human Consumption and Animal Feed",subtitle:null,isOpenForSubmission:!0,hash:"4bc6f95dc8630c9a8be84bb46286c445",slug:null,bookSignature:"Dr. Aleksandra Sudarić",coverURL:"https://cdn.intechopen.com/books/images_new/6972.jpg",editedByType:null,editors:[{id:"21485",title:"Dr.",name:"Aleksandra",surname:"Sudarić",slug:"aleksandra-sudaric",fullName:"Aleksandra Sudarić"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7003",title:"Herbs and Spices",subtitle:null,isOpenForSubmission:!0,hash:"1f33df17010fa5e54988c44e32db2b40",slug:null,bookSignature:"Dr. Muhammad Akram",coverURL:"https://cdn.intechopen.com/books/images_new/7003.jpg",editedByType:null,editors:[{id:"275728",title:"Dr.",name:"Muhammad",surname:"Akram",slug:"muhammad-akram",fullName:"Muhammad Akram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems - Design, Modeling, Simulation and Analysis",subtitle:null,isOpenForSubmission:!0,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:null,bookSignature:"Dr. Tien Manh Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:null,editors:[{id:"210657",title:"Dr.",name:"Tien",surname:"Nguyen",slug:"tien-nguyen",fullName:"Tien Nguyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7032",title:"Sea Urchins",subtitle:null,isOpenForSubmission:!0,hash:"cf1501a535fa08bdb36c3806d8b9cf82",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7032.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:33},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:26},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:140},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:5},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:980},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science",parent:{title:"Health Sciences",slug:"health-sciences"},numberOfBooks:24,numberOfAuthorsAndEditors:637,numberOfWosCitations:149,numberOfCrossrefCitations:170,numberOfDimensionsCitations:438,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"veterinary-medicine-and-science",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8288",title:"Bacterial Cattle Diseases",subtitle:null,isOpenForSubmission:!1,hash:"f45b8b4974eb0d7de8719ef6b9146200",slug:"bacterial-cattle-diseases",bookSignature:"Hussein Abdel hay El-Sayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8288.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",middleName:null,surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6898",title:"Comparative Endocrinology of Animals",subtitle:null,isOpenForSubmission:!1,hash:"1c615706c8e4220ea5a24d231947ac7a",slug:"comparative-endocrinology-of-animals",bookSignature:"Edward Narayan",coverURL:"https://cdn.intechopen.com/books/images_new/6898.jpg",editedByType:"Edited by",editors:[{id:"259298",title:"Dr.",name:"Edward J",middleName:null,surname:"Narayan",slug:"edward-j-narayan",fullName:"Edward J Narayan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6993",title:"Bovine Science",subtitle:"A Key to Sustainable Development",isOpenForSubmission:!1,hash:"fe7bdc1a2e1aa960e1f51dae7c705002",slug:"bovine-science-a-key-to-sustainable-development",bookSignature:"Sadashiv S. O. and Sharangouda J. Patil",coverURL:"https://cdn.intechopen.com/books/images_new/6993.jpg",editedByType:"Edited by",editors:[{id:"176334",title:"Dr.",name:"Sadashiv",middleName:null,surname:"S. O.",slug:"sadashiv-s.-o.",fullName:"Sadashiv S. O."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6647",title:"Animal Genetics",subtitle:"Approaches and Limitations",isOpenForSubmission:!1,hash:"8c7e69892d305f7231a5600de2acdc16",slug:"animal-genetics-approaches-and-limitations",bookSignature:"Dana Liana Pusta",coverURL:"https://cdn.intechopen.com/books/images_new/6647.jpg",editedByType:"Edited by",editors:[{id:"90748",title:"Prof.",name:"Dana Liana",middleName:null,surname:"Pusta",slug:"dana-liana-pusta",fullName:"Dana Liana Pusta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9356",title:"European Local Pig Breeds - Diversity and Performance",subtitle:"A study of project TREASURE",isOpenForSubmission:!1,hash:"182fe65256f9a0bbc25b0b7576412b0e",slug:"european-local-pig-breeds-diversity-and-performance-a-study-of-project-treasure",bookSignature:"Marjeta Candek-Potokar and Rosa M. Nieto Linan",coverURL:"https://cdn.intechopen.com/books/images_new/9356.jpg",editedByType:"Edited by",editors:[{id:"23161",title:"Dr.",name:"Marjeta",middleName:null,surname:"Čandek-Potokar",slug:"marjeta-candek-potokar",fullName:"Marjeta Čandek-Potokar"}],productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,isOpenForSubmission:!1,hash:"74f4147e3fb214dd050e5edd3aaf53bc",slug:"new-insights-into-theriogenology",bookSignature:"Rita Payan-Carreira",coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",editedByType:"Edited by",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6384",title:"Animal Husbandry and Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"45e3ab6f834a3efc7836eb8b3c8e3427",slug:"animal-husbandry-and-nutrition",bookSignature:"Banu Yücel and Turgay Taşkin",coverURL:"https://cdn.intechopen.com/books/images_new/6384.jpg",editedByType:"Edited by",editors:[{id:"191429",title:"Prof.",name:"Banu",middleName:null,surname:"Yucel",slug:"banu-yucel",fullName:"Banu Yucel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5987",title:"Goat Science",subtitle:null,isOpenForSubmission:!1,hash:"35f3a7d6f517410f6581d265f17ee7c9",slug:"goat-science",bookSignature:"Sándor Kukovics",coverURL:"https://cdn.intechopen.com/books/images_new/5987.jpg",editedByType:"Edited by",editors:[{id:"25894",title:"Prof.",name:"Sándor",middleName:null,surname:"Kukovics",slug:"sandor-kukovics",fullName:"Sándor Kukovics"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6474",title:"Recent Advances in Zebrafish Researches",subtitle:null,isOpenForSubmission:!1,hash:"836dbbee4a96eb36019bdf8d0a93cd24",slug:"recent-advances-in-zebrafish-researches",bookSignature:"Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/6474.jpg",editedByType:"Edited by",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6206",title:"Ruminants",subtitle:"The Husbandry, Economic and Health Aspects",isOpenForSubmission:!1,hash:"2f4344b633afc742eb0cfc50413c928b",slug:"ruminants-the-husbandry-economic-and-health-aspects",bookSignature:"Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/6206.jpg",editedByType:"Edited by",editors:[{id:"112070",title:"Dr.",name:"Muhammad",middleName:null,surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5543",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",subtitle:null,isOpenForSubmission:!1,hash:"3d2bf9a6dccb151b4c68b986ec4e59d6",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",bookSignature:"Rosa Estela Quiroz-Castañeda",coverURL:"https://cdn.intechopen.com/books/images_new/5543.jpg",editedByType:"Edited by",editors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}],productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:24,mostCitedChapters:[{id:"41563",doi:"10.5772/53504",title:"Fish Cytokines and Immune Response",slug:"fish-cytokines-and-immune-response",totalDownloads:4279,totalCrossrefCites:7,totalDimensionsCites:27,book:{slug:"new-advances-and-contributions-to-fish-biology",title:"New Advances and Contributions to Fish Biology",fullTitle:"New Advances and Contributions to Fish Biology"},signatures:"Sebastián Reyes-Cerpa, Kevin Maisey, Felipe Reyes-López, Daniela Toro-Ascuy, Ana María Sandino and Mónica Imarai",authors:[{id:"92841",title:"Dr.",name:"Mónica",middleName:null,surname:"Imarai",slug:"monica-imarai",fullName:"Mónica Imarai"},{id:"153780",title:"Dr.",name:"Sebastian",middleName:null,surname:"Reyes-Cerpa",slug:"sebastian-reyes-cerpa",fullName:"Sebastian Reyes-Cerpa"},{id:"157025",title:"Dr.",name:"Kevin",middleName:null,surname:"Maisey",slug:"kevin-maisey",fullName:"Kevin Maisey"},{id:"157026",title:"Dr.",name:"Felipe",middleName:"Esteban",surname:"Reyes-López",slug:"felipe-reyes-lopez",fullName:"Felipe Reyes-López"},{id:"157027",title:"MSc.",name:"Daniela",middleName:null,surname:"Toro-Ascuy",slug:"daniela-toro-ascuy",fullName:"Daniela Toro-Ascuy"},{id:"157028",title:"Dr.",name:"Ana",middleName:null,surname:"Sandino",slug:"ana-sandino",fullName:"Ana Sandino"}]},{id:"39623",doi:"10.5772/50192",title:"Use of Yeast Probiotics in Ruminants: Effects and Mechanisms of Action on Rumen pH, Fibre Degradation, and Microbiota According to the Diet",slug:"use-of-yeast-probiotics-in-ruminants-effects-and-mechanisms-of-action-on-rumen-ph-fibre-degradation-",totalDownloads:6781,totalCrossrefCites:8,totalDimensionsCites:24,book:{slug:"probiotic-in-animals",title:"Probiotic in Animals",fullTitle:"Probiotic in Animals"},signatures:"Frédérique Chaucheyras-Durand, Eric Chevaux, Cécile Martin and Evelyne Forano",authors:[{id:"151065",title:"Dr.",name:"Frederique",middleName:null,surname:"Chaucheyras-Durand",slug:"frederique-chaucheyras-durand",fullName:"Frederique Chaucheyras-Durand"},{id:"151068",title:"Mr.",name:"Eric",middleName:null,surname:"Chevaux",slug:"eric-chevaux",fullName:"Eric Chevaux"},{id:"151069",title:"Dr.",name:"Evelyne",middleName:null,surname:"Forano",slug:"evelyne-forano",fullName:"Evelyne Forano"},{id:"160177",title:"Dr.",name:"Cécile",middleName:null,surname:"Martin",slug:"cecile-martin",fullName:"Cécile Martin"}]},{id:"28679",doi:"10.5772/32100",title:"Values of Blood Variables in Calves",slug:"values-of-blood-variables-in-calves",totalDownloads:8894,totalCrossrefCites:8,totalDimensionsCites:19,book:{slug:"a-bird-s-eye-view-of-veterinary-medicine",title:"A Bird's-Eye View of Veterinary Medicine",fullTitle:"A Bird's-Eye View of Veterinary Medicine"},signatures:"Martina Klinkon and Jožica Ježek",authors:[{id:"90171",title:"Prof.",name:"Martina",middleName:null,surname:"Klinkon",slug:"martina-klinkon",fullName:"Martina Klinkon"}]}],mostDownloadedChaptersLast30Days:[{id:"58095",title:"The Innovative Techniques in Animal Husbandry",slug:"the-innovative-techniques-in-animal-husbandry",totalDownloads:1606,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Serap Göncü and Cahit Güngör",authors:[{id:"215579",title:"Prof.",name:"Serap",middleName:null,surname:"Goncu",slug:"serap-goncu",fullName:"Serap Goncu"},{id:"218971",title:"Dr.",name:"Cahit",middleName:null,surname:"Güngör",slug:"cahit-gungor",fullName:"Cahit Güngör"}]},{id:"56453",title:"Goat System Productions: Advantages and Disadvantages to the Animal, Environment and Farmer",slug:"goat-system-productions-advantages-and-disadvantages-to-the-animal-environment-and-farmer",totalDownloads:1706,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"goat-science",title:"Goat Science",fullTitle:"Goat Science"},signatures:"António Monteiro, José Manuel Costa and Maria João Lima",authors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"},{id:"203680",title:"Prof.",name:"Maria João",middleName:null,surname:"Lima",slug:"maria-joao-lima",fullName:"Maria João Lima"},{id:"203683",title:"MSc.",name:"José Manuel",middleName:null,surname:"Costa",slug:"jose-manuel-costa",fullName:"José Manuel Costa"}]},{id:"56697",title:"Nutritional and Health Profile of Goat Products: Focus on Health Benefits of Goat Milk",slug:"nutritional-and-health-profile-of-goat-products-focus-on-health-benefits-of-goat-milk",totalDownloads:1323,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"goat-science",title:"Goat Science",fullTitle:"Goat Science"},signatures:"Maria João Reis Lima, Edite Teixeira-Lemos, Jorge Oliveira, Luís P.\nTeixeira-Lemos, António M.C. Monteiro and José M. Costa",authors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"},{id:"203680",title:"Prof.",name:"Maria João",middleName:null,surname:"Lima",slug:"maria-joao-lima",fullName:"Maria João Lima"},{id:"203683",title:"MSc.",name:"José Manuel",middleName:null,surname:"Costa",slug:"jose-manuel-costa",fullName:"José Manuel Costa"},{id:"203681",title:"Prof.",name:"Edite",middleName:null,surname:"Teixeira-Lemos",slug:"edite-teixeira-lemos",fullName:"Edite Teixeira-Lemos"},{id:"203682",title:"Dr.",name:"Jorge",middleName:"Belarmino Ferreira",surname:"Oliveira",slug:"jorge-oliveira",fullName:"Jorge Oliveira"}]},{id:"61373",title:"Managing Dietary Energy Intake by Broiler Chickens to Reduce Production Costs and Improve Product Quality",slug:"managing-dietary-energy-intake-by-broiler-chickens-to-reduce-production-costs-and-improve-product-qu",totalDownloads:1297,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Emmanuel U. Ahiwe, Apeh A. Omede, Medani B. Abdallh and Paul\nA. Iji",authors:[{id:"25080",title:"Prof.",name:"Paul",middleName:null,surname:"Iji",slug:"paul-iji",fullName:"Paul Iji"},{id:"211672",title:"Dr.",name:"Apeh",middleName:"A.",surname:"Omede",slug:"apeh-omede",fullName:"Apeh Omede"},{id:"211673",title:"MSc.",name:"Emmanuel",middleName:null,surname:"Ahiwe",slug:"emmanuel-ahiwe",fullName:"Emmanuel Ahiwe"},{id:"213452",title:"Mr.",name:"Medani",middleName:null,surname:"Abdallh",slug:"medani-abdallh",fullName:"Medani Abdallh"}]},{id:"64814",title:"Diseases Caused by Bacteria in Cattle: Tuberculosis",slug:"diseases-caused-by-bacteria-in-cattle-tuberculosis",totalDownloads:632,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"bacterial-cattle-diseases",title:"Bacterial Cattle Diseases",fullTitle:"Bacterial Cattle Diseases"},signatures:"Joseph K.N. Kuria",authors:[{id:"268345",title:"Dr.",name:"Joseph",middleName:null,surname:"Kuria",slug:"joseph-kuria",fullName:"Joseph Kuria"}]},{id:"59305",title:"Avian Coccidiosis, New Strategies of Treatment",slug:"avian-coccidiosis-new-strategies-of-treatment",totalDownloads:1699,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Rosa Estela Quiroz-Castañeda",authors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}]},{id:"65535",title:"Reptilian Skin and Its Special Histological Structures",slug:"reptilian-skin-and-its-special-histological-structures",totalDownloads:819,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"veterinary-anatomy-and-physiology",title:"Veterinary Anatomy and Physiology",fullTitle:"Veterinary Anatomy and Physiology"},signatures:"Catrin Sian Rutland, Pia Cigler and Valentina Kubale",authors:[{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",slug:"valentina-kubale",fullName:"Valentina Kubale"}]},{id:"58928",title:"Current and Future Improvements in Livestock Nutrition and Feed Resources",slug:"current-and-future-improvements-in-livestock-nutrition-and-feed-resources",totalDownloads:1879,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Grace Opadoyin Tona",authors:[{id:"217751",title:"Dr.",name:"Grace",middleName:"Opadoyin",surname:"Tona",slug:"grace-tona",fullName:"Grace Tona"}]},{id:"57341",title:"Probiotic Bacteria as an Healthy Alternative for Fish Aquaculture",slug:"probiotic-bacteria-as-an-healthy-alternative-for-fish-aquaculture",totalDownloads:2261,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Camila Sayes, Yanett Leyton and Carlos Riquelme",authors:[{id:"208614",title:"Mrs.",name:"Camila",middleName:null,surname:"Sayes",slug:"camila-sayes",fullName:"Camila Sayes"},{id:"208939",title:"Dr.",name:"Yanett",middleName:null,surname:"Leyton",slug:"yanett-leyton",fullName:"Yanett Leyton"},{id:"208940",title:"Dr.",name:"Carlos",middleName:null,surname:"Riquelme",slug:"carlos-riquelme",fullName:"Carlos Riquelme"}]},{id:"56318",title:"The Development and Genetic Improvement of South African Goats",slug:"the-development-and-genetic-improvement-of-south-african-goats",totalDownloads:1076,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"goat-science",title:"Goat Science",fullTitle:"Goat Science"},signatures:"Carina Visser and Este van Marle‐Köster",authors:[{id:"202489",title:"Dr.",name:"Carina",middleName:null,surname:"Visser",slug:"carina-visser",fullName:"Carina Visser"},{id:"206221",title:"Prof.",name:"Este",middleName:null,surname:"Van Marle Koster",slug:"este-van-marle-koster",fullName:"Este Van Marle Koster"}]}],onlineFirstChaptersFilter:{topicSlug:"veterinary-medicine-and-science",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"68798",title:"Sustainable Control of Rats by Rodenticide Application and Natural Propagation of Barn Owls (Tyto Javanica)",slug:"sustainable-control-of-rats-by-rodenticide-application-and-natural-propagation-of-barn-owls-tyto-jav",totalDownloads:32,totalDimensionsCites:0,doi:"10.5772/intechopen.84561",book:{title:"Owls"},signatures:"Hafidzi Mohd Noor"},{id:"68975",title:"Instability of Sex-Determining Systems in Frogs",slug:"instability-of-sex-determining-systems-in-frogs",totalDownloads:87,totalDimensionsCites:0,doi:"10.5772/intechopen.89050",book:{title:"Frogs as Biological Indicators"},signatures:"Michihiko Ito"},{id:"68489",title:"A Review of the Macroscopic, Microscopic, and Ultramicroscopic Characteristics of Some Key Oocyte Developmental Processes in Fish Species",slug:"a-review-of-the-macroscopic-microscopic-and-ultramicroscopic-characteristics-of-some-key-oocyte-deve",totalDownloads:70,totalDimensionsCites:0,doi:"10.5772/intechopen.87967",book:{title:"Theriogenology"},signatures:"Mônica Cassel"}],onlineFirstChaptersTotal:9},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"chapter.detail",path:"/books/growing-and-handling-of-bacterial-cultures/-em-geobacillus-em-bacteria-potential-commercial-applications-in-industry-bioremediation-and-bioener",hash:"",query:{},params:{book:"growing-and-handling-of-bacterial-cultures",chapter:"-em-geobacillus-em-bacteria-potential-commercial-applications-in-industry-bioremediation-and-bioener"},fullPath:"/books/growing-and-handling-of-bacterial-cultures/-em-geobacillus-em-bacteria-potential-commercial-applications-in-industry-bioremediation-and-bioener",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()