Geometrical and operating parameters of the plain bearing.
\r\n\t
",isbn:"978-1-83969-491-2",printIsbn:"978-1-83969-490-5",pdfIsbn:"978-1-83969-492-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"49d3123cde96adbe706adadebebc5ebb",bookSignature:"Dr. Jose Carlos Jimenez-Lopez and Dr. Alfonso Clemente",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10749.jpg",keywords:"Orphan Crops, Sustainable Agriculture, SNPs, Legume Breeding, Genetic Diversity, Functional Foods, Seed Compounds, Food Security, Food Allergy, Abiotic & Biotic Stresses, Crop Resilience, Fungal Pathogens",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 10th 2021",dateEndSecondStepPublish:"March 10th 2021",dateEndThirdStepPublish:"May 9th 2021",dateEndFourthStepPublish:"July 28th 2021",dateEndFifthStepPublish:"September 26th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in legume seed proteins physiological and nutraceutical functions, appointed as Ramon y Cajal research fellow and tenured scientist at CSIC; AEL board member and holder of two registered patents.",coeditorOneBiosketch:"Scientist at the Spanish National Research Council, President of the Spanish Legume Association, and Author of more than 120 scientific manuscripts who has been working in legume seeds research for the last 20 years.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez",profilePictureURL:"https://mts.intechopen.com/storage/users/33993/images/system/33993.jpg",biography:"Dr. Jose Carlos Jimenez-Lopez, has studied Biochemistry and Molecular Biology (1998) and obtained Bs. in Biological Sciences (2001), Ms. in Agricultural Sciences (2004), University of Granada, Spain and PhD degree in Plant Cell Biology (2008) at the Spanish National Research Council (CSIC). He was a Full-time Postdoctoral research associate at Purdue University, USA (2008-2011). Marie Curie Research Fellow (FP7-PEOPLE- 2011-IOF) (2012-2015) at the University of Western Australia and CSIC working in human health benefits of legume seed proteins, their allergy molecular aspects and cross allergenicity. He is a Senior Research Fellow (Ramon y Cajal research program - MINECO, 2016 - present), currently working in the functionality, health benefits, and allergy implications of proteins from reproductive tissues (pollen and seeds) in crop species of agro-industrial interest (mainly legumes). He is an Author of more than 60 peer-review journal articles, 25 book chapters. His work has been presented in more than 130 international congresses. He is an Active member of different Scientific Societies: Spanish and International Legume Society; Spanish and EU Microscopy societies. He is Editor of multiple books, Reviewer for more than 35 Peer-Review Journals of editorial as Elsevier, Springer, Wiley, Frontiers, etc, and international expert panels member for funding grants evaluation.",institutionString:"Spanish National Research Council (CSIC)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Spanish National Research Council",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:{id:"149660",title:"Dr.",name:"Alfonso",middleName:null,surname:"Clemente",slug:"alfonso-clemente",fullName:"Alfonso Clemente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRDEMQA4/Profile_Picture_1615291343716",biography:"Dr. Alfonso Clemente is a staff scientist at the Spanish National Research Council, working at the Estación Experimental del Zaidín (Granada, Spain). He has been working in legume seeds for the last 20 years, being involved in several national and international related projects. Alfonso Clemente joined different labs (Institute of Food Research, 1999–2000; John Innes Centre, 2000–2002; Sainsbury Laboratory, 2003–2004) in the UK to broaden his laboratory skills and scientific knowledge. Currently, he is the President of the Spanish Legume Association (Asociación Española de Leguminosas, www.leguminosas.es) having strong interaction with a relevant network of scientists and agricultural associations and agri-food companies in the field. He is author of more than 120 scientific manuscripts and an editorial board member of the World Journal of Gastroenterology and Frontiers in Bioscience, among others.",institutionString:"Spanish National Research Council",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6096",title:"Seed Biology",subtitle:null,isOpenForSubmission:!1,hash:"0929ebc410ef5c25efdf938e3d34b6b2",slug:"advances-in-seed-biology",bookSignature:"Jose C. Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/6096.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1819",title:"Biochemical Testing",subtitle:null,isOpenForSubmission:!1,hash:"bab205c706b0f34b0dfcfa1196437fcf",slug:"biochemical-testing",bookSignature:"Jose C. Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/1819.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5382",title:"Cytoskeleton",subtitle:"Structure, Dynamics, Function and Disease",isOpenForSubmission:!1,hash:"f1c57584a4107ef50eefd39ceb1c8e64",slug:"cytoskeleton-structure-dynamics-function-and-disease",bookSignature:"Jose C. Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/5382.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8033",title:"Seed Dormancy and Germination",subtitle:null,isOpenForSubmission:!1,hash:"8dc6f520dc664e8fd07db7658931dc2d",slug:"seed-dormancy-and-germination",bookSignature:"Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/8033.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2983",title:"Current Insights in Pollen Allergens",subtitle:null,isOpenForSubmission:!1,hash:"c96b836dac36192bcd83fbe72693b972",slug:"current-insights-in-pollen-allergens",bookSignature:"Jose C. Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/2983.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7337",title:"Legume Seed Nutraceutical Research",subtitle:null,isOpenForSubmission:!1,hash:"a01ad0ca780f39f3aefd09f00cd0b7a3",slug:"legume-seed-nutraceutical-research",bookSignature:"Jose C. Jimenez-Lopez and Alfonso Clemente",coverURL:"https://cdn.intechopen.com/books/images_new/7337.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"73844",title:"Turbulent Flow Fluid in the Hydrodynamic Plain Bearing to a Non-Textured and Textured Surface",doi:"10.5772/intechopen.94235",slug:"turbulent-flow-fluid-in-the-hydrodynamic-plain-bearing-to-a-non-textured-and-textured-surface",body:'\nTribology is the science that studies the interactions of two surfaces in motion with respect to each other. It encompasses the associated technique and all of the friction and wear sectors, including lubrication. She studies the interactions between contact surfaces, but also those of solids, liquids and gases present between these surfaces, such as hydrodynamic plain bearings.
\nThe hydrodynamic bearings allow the various parts of the mechanical devices to move easily while ensuring reliability that eliminates any risk of rupture or premature wear. When the operating conditions are severe (high or rapidly changing loads, high frequency of rotation), working under a turbulent regime (like the turbojet), it becomes difficult to achieve this double objective without the help of powerful digital prediction models.
\nFriction is one of the most answered physical phenomena in hydrodynamic bearings. This is the reason why a new concept of bearings was invented, the aim of which is to minimize the losses of material and energy linked to wear and friction; it is therefore to manufacture mechanical systems with textured surfaces to improve the efficiency and life of the machines. The aim of this study is to better predict the effect of tribological behavior as well as the effect of turbulent flow behavior in the textured and non-textured hydrodynamic bearing.
\nConstantinescu has developed the phenomenon of turbulence in lubrication between years 1962 and 1965 [1, 2], Elrod and Ng in 1967 [3, 4, 5], are presented a linearized turbulent lubrication theory based on eddy-viscosity concept of Boussinesq and Reichardt’s formulation, including the treatment of turbulent shear and pressure gradient flows in thin films. This theory can be applied to the journal bearings by assuming that the turbulent flow field in the clearance space can be represented by the small perturbations on the turbulent Couette flow. The first studies on determining the Reynolds number, which expresses the ratio, changed inertial forces and viscous forces in the field of bearings, were made by Fantinos and colleagues [6].
\nIn 2005 Braunetiere [7], show that a number of theories for the turbulent lubrication film exist which are based on various well-established models of turbulent flow. Solghar and Nassab (2013) [8] carry out a study in to assess the turbulent thermohydrodynamic (THD) performance characteristics of an axially grooved finite journal bearing [8, 9]. They are mentioned in their research that the bearing of the operating characteristics are significantly changed by increasing the Reynolds number.
\nAt the moment, little is known about the effect of variations in the profile of the bushing and on its performance. Surface texturing is expected to make a significant contribution to future bearing technologies.
\nIn 2011, Ivan Krupka and al [10] presents an experimental and numerical study on the superficial textures effect of the lubricated contact, for the transitional phase. This study is done in order to observe the lubricant film behavior between two surfaces of a disc coated with chrome and a steel ball. According to their study, they showed that lubricant produced from the micro-dents helps to separate rubbing surfaces.
\nTala-Ighil, Fillon and Maspeyrot in 2011 [11] indicated the effect of textured area on the performances of a hydrodynamic journal bearing. They examined the texture location effect on the hydrodynamic performance hydrodynamic of the journal bearing. Their results show that the most important characteristics can be improved through an appropriate arrangement of the textured area on the contact surface.
\nIn 2014, Pratibha and Chandreshkumar [12], present an experimental study on the effect of the bearing surface texture and the profile pressure distribution in hydrodynamic performance of journal bearing. Their study shows that with the increase of the radial loads and at the constant velocity, the increase of maximum pressure is significant in textured journal bearing, in contrast, this pressure is less important for a non-textured journal bearing and with the increase of velocity and at constant radial load.
\nIn 2015 Zhang and al [13], present a numerical study of surface texturing for improving tribological properties of ultra-high molecular weight polyethylene. Ultra-high molecular weight polyethylene (UHMWPE). Smooth UHMWPE surfaces are used for total joint replacements; however, smooth surface contacts have been shown to be inadequate in friction reduction and/or anti-wear.
\nUddin and Liu present in 2016 [14], present design and optimization of a texture shape (star-like) for to improve the tribological performance. The triangle form of the texture tends to reducing the friction. A star-like texture consisting of a series of triangular pikes is positioned around the texture center’s proposed. The increasing theses triangular shape, produce the increases the film pressure and on the other hand the reduction of the friction.
\nIn 2016, Shahab Hamdavi, H. H. Ya and T. V. V. L. N. Rao [15], presented a research on the surface texturing effect on hydrodynamic performance of journal bearings. The authors study the effect of partially textured surface of long journal bearing on the pressure distribution. The results show that, applying partial surface texture has a positive and remarkable effect on operating characteristics of the bearings.
\nIn 2017, Sedlaček and al [16], studied the geometry effect and the sequence of the surface texturing process in contact on the tribological characteristics. They tested the behavior of surfaces with and without hard coating for different textures shapes: pyramid, cone and concave. The authors have shown that pyramidal textures cause significant results for tribological behavior. Deposition of textured surface coating tends to reduce friction over that achieved for uncoated textured surface.
\nWang et al. presented the study in 2018 [17] on lubrication performance of journal bearing with multiple texture distributions. They are able to compare two shaped concave textures and convex texture on a bearing lubrication performance. Their results show that the bearing load capacity is reduced by the concave spherical texture, but enhanced by the convex texture; both the concave and convex textures have a very slight influence on the friction coefficient. In the same year, Ji and Guan [18], analyses the effect of the micro-dimples on hydrodynamic lubrication of textured sinusoidal surfaces and rough surfaces. In order to characterize the non-textured surfaces, sinusoidal waves were used. Their results show that, the effect of roughness of the textured surface on the hydrodynamic pressure is significant and the load carrying capacity decreases with the increase of the roughness ratio because the roughness greatly suppresses the hydrodynamic effect of dimples.
\nIn 2019, Manser et al. [19] studied the hydrodynamic journal bearing performance under the combined influence of textured surface and journal misalignment. This study is a numerical analysis is performed to test three texture shapes: square “SQ,” cylindrical “CY,” and triangular “TR,” and shaft misalignment variation in angle and degree. The Reynolds equation of a thin viscous film is solved using the finite difference’s method. Their results show that the micro-step bearing mechanism is a key parameter, where the micro-pressure recovery action present in dimples located at the second angular part of the bearing (from 180° to 360°) can compensate for the loss on performances caused by shaft misalignment, while the micro-pressure drop effect at the full film region causes poor performances.
\nThe pressure field is determined by the resolution of the generalized Navier-Stokes equation according to the classical assumptions in the (O\n
Schematization of plain bearing. (a) Non-textured plain bearing. (b) Textured plain bearing.
The continuity equation can be expressed by the relationship (1) [20].
\nwhere \n
\nEq. (1) can also be written as follows:
\nThe Navier-Stokes equation can be defined in the following form (2003):
\nWith
For fluids in a rotating frame with constant angular velocity ω source term B can be written as follows:
\n\nEq. (1) can also be expressed in the form:
\n\n
Considering the Z axis as the axis of rotation, the components of B can be expressed as follows:
\nThe finite volume method used to solve the continuity and Navier-Stokes equations consists in subdividing the physical domain of the flow into elements of more or less regular volumes; it converts the general differential equation into a system of Algebraic equations by relating the values of the variable under consideration to the adjacent nodal points of a typical control volume. This is achieved by integrating the governing differential equation into this control volume.
\nThe main step of the finite volume method is the integration of governing equations for each control volume [20]. The algebraic equations deduced from this integration make the resolution of the transport equations simpler. Each node is surrounded by a set of surfaces that has a volume element. All the variables of the problem and the properties of the fluid are stored at the nodes of this element.
\nThe equations governing the flow are presented in their averaged forms in a Cartesian coordinate system (x, y, z):
\n\nEqs. (6) and (7) can be integrated into a control volume, using the Gaussian divergence theorem to convert volume integrals to surface integrals as follows:
\nThe next step is to discretize the known m’s of the problem as well as the differential operators of this equation. All these mathematical operations will lead to obtaining, on each volume of control, a discretized equation that will link the variables of a cell to those of neighboring cells. All of these discretized equations will eventually form a matrix system. Considering an element of an isolated mesh, Figure 2.
\nIntegration point in an element of a control volume control.
After the discretization and rearrangement of Eqs. (8) and (9) the following forms will be obtained:
\nThe method of pressure interpolation in pressure-velocity coupling is similar to that used by Rhie and Chow (1982). This method is among the methods that best save memory space and computation time. If the pressure is known, the discretized equations are easily solved [20]:
\nwhere:
\nThe physical quantity
where
These functions are also us5ed for the calculation of various geometric quantities, such as positions, coordinates of the integration point (ip), surfaces and different vectors. Form equations are also applicable for Cartesian coordinates, in which case they can be written in the following way:
\nThe shape functions are also used to evaluate the partial derivatives of the flow terms on the control surfaces and for each direction, the general formula of the different flows is as follows:
\nThe integration of the pressure gradient (P) on the control volume in the Navier-Stokes equations involves the evaluation of the following expression:
\nwhere:
\nFor the improved treatment of fluctuations induced by turbulence in the motion of a particle of fluid, there are three methods of approach to address the notion turbulence. The first method is to decompose the field of velocity and temperature in a mean component and a turbulent fluctuation, to make a variety of models are now available, ranging from the simple model equation to zero to complex (model of the constraint equations Reynolds RMS).
\nThe second is a method in which all the structures of turbulence (macro and micro-structures) are solved directly and models the effect of small structures by models more or less simple, so-called sub-grid models. This method is known as the large eddy simulation (Large Eddy Simulation, LES). The third method is a hybrid approach combines the advantages qm large eddy simulation (LES), with good results in highly separated zones, and model Reynolds-Averaged Navier-Stokes (RANS), which are most effective in areas close to the walls. The method is called (Detached Eddy Simulation, DES).
\nOne of the most prominent turbulence models, the (k-epsilon) model, has been implemented in most CFD codes [20]. It has proven to be stable and numerically robust and has a well-established regime of predictive capability; the model offers a good compromise in terms of accuracy and robustness. This turbulence model uses the scalable wall-function approach to improve robustness and accuracy when the near-wall mesh is very fine.
\nThe k-ε model introduces two new variables into the system of equations. The continuity equation is following forms:
\nand the momentum equation becomes:
\nwhere
The
where
where
With \n
The values of
where
The term 3
The purpose of this study is to highlight the behavior of the turbulent fluid flow fluid on the operating characteristics as well as the hydrodynamic behavior of a plain bearing This study is simulated by the CFD calculation code, which provides accuracy, reliability, speed and flexibility in potentially complex flow areas. Integrating the Reynolds equation on each control volume to derive an equation connecting the discrete variables of the elements that surround it, all of these equations eventually form a matrix system.
\n\nFigure 3 illustrates the 3-D structure of the plain bearing with fluid and solid regions are shown. The supply holes are presented in a simplified manner without affecting the accuracy of the model. A tetrahedron element is adopted in the oil supply holes of the fluid region, and a hexahedral element is adopted in domain fluid. A hexahedral element is also applied to the solid region such as the bearing and the shaft (Figure 4).
\n3D structure of the non-textured plain bearing. (a) Non-textured bearing. (b) textured bearing.
Mesh of the plain bearing. (a) Non-textured bearing. (b) textured bearing.
The geometrical and operating parameters of the plain journal bearing is presented in the Table 1. As well as, parameters of the lubricant are showed in Table 2.
\nItem | \nValue | \n
---|---|
Bearing diameter (mm) | \n100 | \n
Shaft diameter (mm) | \n99.91 | \n
Bearing length (mm) | \n70 | \n
Radial clearance (mm) | \n0.09 | \n
Pad thickness (mm) | \n4 | \n
Feed port diameter (mm) | \n14 | \n
Feed groove length (mm) | \n70 | \n
Rotating velocity N (rpm) | \n11,000–- 21, 000 | \n
Radial load W (N) | \n2000–20- 10, 000 | \n
Supply temperature ambiaente Ta (°C) | \n40 | \n
Supply pressure Pa (MPa) | \n0.08 | \n
Geometrical and operating parameters of the plain bearing.
Item | \nValue | \n
---|---|
Lubricant type | \nPMA3 | \n
Density ρ (kg/m3) | \n800 | \n
Specific heat capacity C (J/kg. K) | \n2000 | \n
Kinematic viscosity at 40 °C υ1 (mm2/s) | \n17.,49 | \n
Kinematic viscosity at 80 °C υ2 (mm2/s) | \n8,003 | \n
Parameters of the lubricant.
Boundary conditions of the numerical model of the plain bearing are shown in Figure 5, definite as follows: 1: the rotating speed is applied to the outer wall surface of the shaft; 2: the inner wall surface of the bushing is stationary; 3: the domain is simulated by the fluid region. The slip of the interface is ignored; 4: the oil supply pressure is 0.08 MPa and supply temperature is 40°C, are set in oil supply holes; 5: the two ends of the plain bearing domain, and the pressure is set to one bar; and is considered as symmetry.
\nBoundary conditions.
The setting is done by a graphical interface. The mesh used is a mixed mesh which understood elements of tetrahedral type with 6 nodes and hexahedral elements with 8 nodes. It’s necessary to choose an appropriate mesh, consequently, a mesh independence study is carried out, and calculation results are shown in Figure 6. When the nodes number is greater than 4815, the evolution of the pressure stabilizes in the angular coordinate 205° of the plain bearing. Therefore, the number of nodes chosen for this numerical analysis corresponds to a number of nodes equal to 4815. The nodes number for textured bearing is 65,172. Convergence criterion of the numerical results is calculated for a maximum number of iterations of 1000 iterations with a convergence criterion of the order of 10−4. The solution converges when the residuals reach 10−4. However, in some cases it is necessary to push the calculations to 10−6.
\nEvolution max pressure according to the nodes number of the shaft mesh.
Surface texturing of the bushing is a technique used to improve the load capacity of various tribological conjunctions, as well as to reduce frictional losses. The texture spherical shape of diameter rx = 3 mm and the depth of ry = 0.5 mm, the axial distance between the textures d = 10 mm and their angular offsets α = 10°, (Figure 7).
\nTextured bushing parameters.
In this section, we will carry out a comparative study between two models of turbulence: k-ε model for turbulence in the vicinity of the walls and the RMS model (Reynolds shear stress) for turbulence in the vicinity and far from the walls. Figure 8 illustrates the pressure distribution along the median plane of the plain bearing, for the k-ε model and the RMS model. Both models give the same pressure distribution. Since we are interested in examining the distribution of pressure, of the friction torque between the fluid and the internal surface of the bearing, we used the k-ε model for the numerical analysis carried out in this study.
\nPressure evolution for k-epsilon model and Reynolds shear stress (RMS).
To demonstrate the effect of the radial load on the operating performance of the non-textured and textured hydrodynamic plain bearing, such as pressure, fluid flow velocity and friction torque, the radial load is varied (W1 = 2000 N, W2 = 5000 N, W3 = 7000 N and W3 = 9000 N). The initial operating conditions of the bearing re a supply temperature Ta = 40° C, supply pressure Pa = 0.08 MPa and the rotational speed of the shaft equal to 11,000 rpm with a Reynolds number of Re = 3622.64 to ensure the turbulent regime.
\n\nFigure 9 illustrates the distribution of the pressure along the median plane for non-textured and textured bearing, for different radial loads. The graph shows that increasing the load from 2000 N to 9000 N leads to an increase in pressure. Significant pressures are obtained for a bearing subjected to a radial load of 9000 N. This increase reaches 65 per cent for a textured bearing. Also for a no textured bearing, the increase in pressure will reach 81 per cent by varying the radial load from 2kN to 9kN. The curves also indicate that the maximum pressure is noted in the angular position from 160° to 175°, on the other hand, in the angular coordinates at 200°, the noted pressure is lower than the supply pressure, indicating the existence rupture zones of the oil film. The rupture zones of the oil film are observed in the angular positions between 190° and 335° and also between 300° and 350°. The values of circumferential pressure are significant for a textured bearing with respect to those recorded for a non-textured bearing (Figure 10).
\nCircumferential pressure for different radial load N = 11,000 rpm (Re = 3622.64 turbulent regime).
Pressure evolution for different radial load N = 11,000 rpm.
The fluid flow velocity according to the angular position of the plain bearing, for different radial loads is presented in Figure 11. The maximum flow velocity is noted for a textured plain bearing working under a radial load of 9000 N and which is of the order of 61 m/s, on the other hand is of the order of 36 m/s for non-textured plain bearing. The increase in the radial load which reacts on the bearing causes the increase in the flow velocity. This increase is estimated at 21 per cent for textured bearing and estimated at 29 per cent for non-textured bearing (Figure 12).
\nEvolution of the fluid flow velocity according the angular position for different radial load N = 11,000 rpm (Re = 3622.64 turbulent regime).
Velocity evolution for different radial load N = 11,000 rpm.
The fluid friction torque or “viscous” friction is a particular friction force, which is associated with the movement of an object in a fluid (air, water, etc.). It is at the origin of energy losses by friction for the object moving in the fluid. The friction torque is calculated by integrating the shear stresses at the surface of the shaft or of the bushing, the shear stresses in the fluid are given by derivation the fluid velocity in the radial and tangential direction. Therefore, there is an empirical relationship between the flow velocity of the fluid and the friction torque, for this we obtain the same distribution for the fluid flow velocity and the friction torque along the median plane of the hydrodynamic bearing.
\nThe friction torque along the circumference of the textured bearing is illustrated in Figure 13. The important values are noted for a radial load of 9000 N, the maximum value of the friction torque is of the order of 17.93 N.m for a textured bearing, and is the order of 10.83 N.m for non-textured bearing. These maximum values are noted in the angular positions at 180° and 195°. The increase in the radial load from 2000 N to 9000 N leads to an increase in the friction torque of 21 per cent and 29 per cent respectively for a textured and non-textured bearing.
\nFriction torque in the median plane for different radial load N = 11,000 rpm (Re = 3622.64 turbulent regime).
\nFigure 14 shows the pressure distribution along the bearing circumference, for four shaft rotation speeds (11,000 rpm, 14,000 rpm 17,000 rpm and 21,000 rpm). The supply conditions used for this numerical analysis are Ta = 40°C and Pa = 0.08 MPa. The radial load is 10,000 N. This rotational speed gives respectively a Reynolds number of Re = 3622.64, Re = 4687.53, Re = 5187.6 and Re = 6752.54, which indicates that the regime is turbulent.
\nCircumferential pressure for different rotational velocity W = 10 KN (turbulent regime).
The curve clearly shows that the maximum pressure is positioned at angular coordinates from 140° to 160°, while at angular positions between 170° and 200°, the pressure is lower than the supply pressure, which indicates the existence of the rupture zone of the oil film. It can also be said that increasing the rotational speed causes a slight decrease in pressure, this decrease being estimated at 24 per cent. The significant pressure is recorded for a very high rotation speed, which is of the order of 21,000 rpm.
\n\nFigure 15 shows the pressure distribution as a function of the angular position for a textured and non-textured bearing for a radial load of 10,000 N and a rotation speed of 14,000 rpm. The curve clearly shows that the pressure distribution along the median plane of the bearing is different in the case of a non-textured bearing and a bearing with a textured surface; the difference is estimated at 8.5 per cent (Figure 16).
\nCircumferential pressure according the angular coordinate of the non- textured and textured bearing W = 10 KN, N = 14,000 rpm (Re = 5187.6 turbulent regime).
Distribution circumferential of the pressure for differents rotational velocity.
\nFigure 17 illustrates the variation of flow velocity in the circumferential direction of the plain bearing, to a feed temperature of 40°C and feed pressure of 0.08 MPa. The shaft rotational speed varies from 11,000 rpm to 21,000 rpm (Turbulent regime) and a radial load of 10,000 N. The curve shows that the rotational speed leads to an increase in the fluid flow velocity. The increase reached 39 per cent. The flow velocity is significant for a bearing which rotates at a speed of 21,000 rpm (Re = 6752.54), on the other hand it is less important for a rotational speed of 11,000 rpm (Re = 3622.64). The significant value of the fluid flow velocity is noted for a textured plain bearing which is the order of 89.56 m/s. On the other hand, for a non-textured plain bearing, the maximum value of the fluid flow velocity is only of the order of 56.37 m/s.
\nFluid flow velocity evolution according angular position angular for different rotational speed W = 10 KN (turbulent regime).
For the different of the fluid flow velocity (Figure 18), has the same variation for the case of plain bearing without texture and a textured plain bearing. This speed takes a maximum value at the angular coordinate of 200° of the bearing. The difference between the fluid flow velocity for a non-textured and textured plain bearing is of the order of 38 per cent (Figure 19).
\nFluid flow velocity according angular position of the non-textured and textured bearing W = 10 KN, N = 14,000 rpm (Re = 5187.6 turbulent regime).
Distribution circumferential of the fluid flow velocity for differents rotational velocity.
For the evolution of the friction torque as a function of the angular coordinates of the non-textured and textured plain bearing by varying the rotational speed of the shaft from 11,000 to 21,000 rpm and for a radial load of 10,000 N, is presented in Figure 20. The increasing the rotational speed causes a slight increase in the friction torque, this increase is of the order of 2 per cent. The important values are obtained for a rotational speed of 21,000 rpm; the maximum value of the friction torque is also positioned at the angular coordinate of 200°. The significant value of the friction torque for a non-textured plain bearing is of the order of 16 N.m, on the other hand for a textured plain bearing is 26 N.m.
\nFriction torque in median plane for different rotational speed W = 10 KN (turbulent regime).
\nFigure 21 illustrates the variation of friction torque along the circumferential non-textured and textured plain bearing. The evolution of the friction torque along the angular bearing position has the same shape for the two cases studied, the difference is estimated at 38 per cent at the 200° level.
\nFriction torque in the median plane of the non-textured and textured bearing W = 10 KN, N = 14,000 tr/min (Re = 5187.6 turbulent regime).
This numerical study presents the evolution of the fluid flow for turbulent regime in hydrodynamic plain bearings with a non-textured and textured surface, in order to improve the hydrodynamic lubrication and tribological performance of plain bearing, using the finite volume method, such as pressure, friction torque and fluid flow velocity.
\nThe results obtained for the textured plain bearing were compared to the non-textured plain bearing, the main conclusions drawn from this study are:
The pressure distribution according to the angular position for the textured and non-textured plain bearing for the radial load of 10,000 N and the speed of rotation of 14,000 rpm has the same appearance for the two cases studied; the difference is estimated at 8.5%.
The rupture zones of the oil film are observed in several angular positions at 190° and 300° for a plain bearing with textured surface, on the other hand for a plain bearing without texture, the rupture zone is positioned only in the angular position at 190°. This rupture of the oil film is due to the drop in pressure below the supply pressure.
The evolution of the friction torque, along the angular position, has the same distribution for the non-textured and the textured plain bearing, the difference is estimated at 38%.
The flow velocity of the fluid in the plain bearing takes a maximum value at the angular position of 165°. The difference between the flow velocity for a non-textured and textured plain bearing is estimated of 38%.
It should be emphasized, however, that the conclusions we give here are only valid for the cases we have studied, and that they are not independent of the characteristics of the plain bearing and of the lubricant.
\nThe numerical results show that the most significant hydrodynamic characteristics such as pressure, flow velocity of the fluid and friction torque, are significant for the textured plain bearing under rotational velocity of 21,000 rpm and radial load 10,000 N compared to the results obtained for a non-textured plain bearing.
\nWhen one is interested in plain bearings operating under severe conditions, that is to say for the turbulent regime, the hydrodynamic pressures sometimes reach several hundred mega Pascal’s.
\nThe authors declare no conflict of interest.
source term
\nradial clearance
\neccentricity
\nbearing length
\nshaft radius
\nbush radius
\nrotational velocity [rpm]
\npressure [Pa]
\nposition vector [m]
\nperipheral speed [m/s]
\nvelocity according x, y, z axis [m/s]
\nradial load [N]
\nReynolds number
\nrelative eccentricity
\nFlow factor [°]
\ndynamic viscosity [Pa.s]
\nturbulent dynamic viscosity [Pa.s]
\nshaft angular speed [rad/s]
\nturbulence kinetic energy
\ndensity [kg/m3]
\nInterne
\nIndice du point d’intégration
\nspécifique
\nthéorique
\nutile
\nHoney is a compound widely used as a medicine and food source for thousands of years [1]. Several natural products that have been used as medicine have been replaced by modern pharmaceuticals, but recently they have returned to the world stage due to the growing public interest [2]. In ancient Egypt, beekeeping has been practiced for more than 4000 years, and honey has been used as a medicine in the treatment of wounds, ulcers, burns, abscesses, gastrointestinal diseases, inflammations, rigid joints, and even as a contraceptive method [1, 3]. In Asia, honey is recognized for its medicinal value since 2000 BC [1]. There are also references to different uses of honey in the bible and in the Qur’an [1]. The ancient Greek Hippocrates, known as the father of modern medicine, used honey to clean wounds, gastrointestinal diseases, and ulcers [1, 3]. In Ancient Rome, honey was also prescribed alone or in combinations, often used to treat throat problems, pneumonia, and even snake bites [1].
\nThe main components of honey are sugars, among which are predominantly fructose and glucose [4, 5]. However, there are other compounds in smaller quantities and very variable depending on the type of each honey, from the floral source where the bee collects the nectar, such as water and free amino acids [4, 5]. Among them, the most found is proline [4, 6]. Some specific enzymes are also found, the main enzymes of honey are invertase, amylase, and glucose oxidase, but other enzymes such as catalase and phosphatase [6, 7, 8]. Honey is also composed of organic acids that contribute to its characteristic flavor and are responsible for the excellent stability of honey against micro-organisms, for example, formic, acetic, butyric, oxalic, lactic, succinic, folic, malic, citric, and glycolic [6, 7]. Gluconic acid is considered one of the most important organic acids in honey; it is the product of catalytic oxidation of glucose oxidase, in this oxidation, hydrogen peroxide is also formed, which has a strong antibacterial effect [4, 5, 6, 7].
\nHoney may still have some mineral substances, such as potassium, magnesium, sodium, calcium, phosphorus, iron, manganese, cobalt, and copper; studies show that honey can contain several types of minerals, but potassium is the most abundant in various types of honey [6, 8, 9, 10]. Carotenoids, flavones, and anthocyanins can still be found, which contribute to the antioxidant action of honey [6]. About 80 aromatic compounds have been detected in honey, including carboxylic acids, aldehydes, ketones, alcohols, hydrocarbons, and phenols [6]. These compounds also contribute to the organoleptic properties of honey. The appearance of honey varies from almost colorless to dark brown; it can be liquid, viscous, or solid. Its flavor, aroma, and composition vary enormously, depending on the floral source in which the honeybee collects the nectar. However, some environmental factors can strongly influence honey composition, such as temperature and humidity [6, 7, 11].
\nHoney is a food that contains high energy carbohydrates, being that 95–99% of the total solids are composed by sugars, which are easily digestible, since they are similar to many fruits [7, 12]. Proteins and enzymes in honey often have no significant nutritional value, as they are usually not present in sufficient amounts [7]. Several of the essential vitamins are present in honey, such as vitamin K, B1, B2, B6, and C, but generally at insignificant levels [7, 8, 13]. The mineral content of honey is variable, usually darker honeys have significant amounts of minerals, but honey can be considered a nutritive sweetener, mainly due to its high fructose content [7, 13].
\nIn addition to its food value, honey has great potential in medicine; it has been used for thousands of years, and has now been widely studied as an alternative medicine. Honey is not a suitable medium for bacteria, since it is very acidic and has a very high sugar content. This causes an osmotic effect that prevents the growth of bacteria, this effect works literally drying the bacteria [7, 13]. Another type of antibacterial property of honey was called inhibition in 1940 by Dold [7]. And in 1963, Jonathan White proposed that this inhibitory effect described in 1940 was due to the hydrogen peroxide produced and accumulated in the diluted honey, which we know today, is a by-product of the formation of gluconic acid by the enzyme glucose oxidase [5, 7, 11].
\nHistorically, honey has been used for various medical purposes; and recent research has confirmed the effectiveness in the treatment of several diseases due to its components and its properties antibacterial, anti-inflammatory, antioxidants, antiviral, and others that will be addressed in this chapter.
\nInflammation is nothing more than a defense response of the body to a tissue that has suffered a certain damage, which consists of the recruitment of leucocytes and plasma proteins of the blood [14, 15]. This damage can be caused by physical, chemical, or even microbial agents; inflammation is characterized by edema, erythema, pain, and increased temperature [15, 16].
\nIt is well known that propolis, another product from honeybee colony, has potential anti-inflammatory properties, including
Gastric ulcers are among the most common diseases affecting humans, a study demonstrated that the use of honey in conjunction with other compounds may promote gastroprotection. Later, a recent study investigated the effect of gastric protection using only honey against gastric ulcers induced by ethanol in rats and also suggested this effect as gastroprotection [21, 22]. Manuka honey significantly decreased the ulcer, completely protected the mucus of the lesions and preserved the gastric mucus glycoprotein, significantly increased the mucus levels of gastric nitric oxide, reduced glutathione, glutathione peroxidase, and superoxide dismutase, and also decreased lipid peroxidation of the mucus and tumor necrosis factor-α, interleukins-1β, and concentrations of interleukins-6 [21]. Honey has been shown to be efficient in other types of ulcers, and this Manuka honey exerted an antiulcer effect, keeping enzymes and antioxidants, non-enzymatic and inflammatory cytokines reduced [21, 23].
\nIn addition to the Manuka honey and the Tualang honey, the anti-inflammatory effect of Malaysia’s Gelam honey was also studied, which is associated with anti-inflammatory effects on tissues [24, 25]. Malaysia Gelam honey was tested in rats induced by inflammation [25]. Paw edema was induced by a subplantar injection and the rats were treated with either the anti-inflammatory drug Indomethacin or Gelam honey. Results showed that Gelam honey can reduce dose-dependent edema in inflamed rat paws, decrease the production of nitric oxide, prostaglandin, tumor necrosis factor-α, and interleukin-6 in plasma, and suppress expression of synthase inducible nitric oxide, cyclooxygenase-2, tumor necrosis factor-α, and interleucine-6 in paw tissue [25]. The oral pre-treatment of Gelam honey at 2 g/kg body weight at two times (1 and 7 days) showed a decreased production of proinflammatory cytokines, which was similar to the effect of the anti-inflammatory indomethacin, both in plasma and in the tissue, and Gelam honey has anti-inflammatory effects and is potentially useful for the treatment of inflammatory conditions [25]. Another study demonstrated that different types of honey promoted increased release of TNF-α, IL-1β, and IL-6 from monocytes, which are cells that assist in healing [26].
\nWe can also compare the anti-inflammatory activity of honey with another herbal remedy in a study carried out in 2012 to test the activity of honey and brown sugar, surgically treated guinea pigs that were treated with honey, brown sugar, and a control group treated with saline solution, it is already known that sugar can help healing [27, 28]. The honey group showed a decrease in the area of the wound and the formation of granulation tissue before the brown sugar group and control; the honey group was still the only one that presented no crust in any wound and promoted a faster healing by stimulating the faster formation of granulation tissue and re-epithelization [28]. In addition, honey showed a higher antibacterial effect in relation to brown sugar and control group [28]. Another study had the same result, honey was effective in reducing bacterial contamination and wound healing [29].
\nRecent studies proved the anti-inflammatory activity of honey; different types of honey, different regions and different floral sources, were studied and both showed anti-inflammatory responses [17, 21, 25, 28]. Treatment with Tualang honey and Gelam honey showed similar responses to conventional anti-inflammatories used for specific treatments [17, 25]. Honey still has a better anti-inflammatory activity than brown sugar, promoting faster healing [28]. Also, honey is a relatively cheap and easily accessible anti-inflammatory compound that needs to be further studied and later applied in modern medicine [17, 21, 25, 28].
\nOne of the advances of modern medicine has been the development of antibiotics; these antibiotics can be bactericidal, which kill the micro-organisms directly, or bacteriostatic, which prevent the growth of micro-organisms [30]. However, micro-organisms are increasingly developing resistance to these antibiotics, which is a major concern. In addition to antibiotics, the prevention of bacterial diseases can be carried out with the use of vaccines and with basic sanitary methods [30, 31].
\nMany different micro-organisms can cause disease and be transmitted even by contaminated water, and among the major aquatic pathogens are
The bacteria
Salmonellosis is a gastrointestinal disease caused by eating food contaminated with
Another form of food poisoning is caused by enterotoxins produced by Gram-positive bacteria, such as
\n
Honey has an excellent antibacterial effect against different types of bacteria, as previously mentioned; honey is very acidic and has a very high sugar content, which does not serve as a suitable medium for bacteria [4, 5, 6, 7]. Moreover, in some honeys, the peroxide of hydrogen is found, which has a strong antibacterial effect [4, 5, 6, 7]. Remavil® honeys, Manuka honey, Tualang honey, and Gelam honey were tested with different types of bacteria and had positive results [34, 36, 41, 42]. The bacteria tested and susceptible to some of these honeys were
Of all human infectious diseases, the most prevalent and difficult to treat are those that are caused by viruses, because viruses usually remain infectious in dry mucus for a long time [14]. Also, viruses need a host cells to occur its replication; so killing the virus means killing your host cell as well. Hence, vaccination is the most efficient way to prevent these diseases [14, 46].
\nChickenpox is caused by the varicella-zoster virus and it is a very common childhood disease that usually does not cause many problems; but when it affects the elderly, it can be easily fatal [14, 47]. Varicella-zoster is highly contagious and is transmitted by infectious droplets, which results in a systemic rash on the skin [14]. As honey can be conveniently applied to the skin, it is easily found and relatively inexpensive, it can be considered an excellent remedy against Zoster rash, especially in developing countries, or in countries where antiviral drugs are relatively expensive and difficult to access. Therefore, a study determined
Respiratory syncytial virus is the most common cause of viral respiratory infections in infants and young children, also seriously affects adults, the elderly and immunocompromised, causing deaths mainly in the elderly [50, 51]. The antiviral activity of honey was tested for its action against the respiratory syncytial virus. A variety of tests using cell culture was developed to assess the susceptibility of respiratory syncytial virus to honey. The results confirmed that treatment with honey promoted inhibition of viral replication [50]. Attempts to isolate the antiviral component in honey demonstrated that sugar was not responsible for the inhibition of respiratory syncytial virus, but could be methylglyoxal; this component of honey may play a role in the increased potency of Manuka honey against respiratory syncytial virus [50]. Thus, honey may be an alternative and effective antiviral treatment for the therapy of respiratory viral infections, such as respiratory syncytial virus; however, other measures, such as an effective vaccine, are still necessary for the control of this disease [50, 52].
\nInfluenza is a highly infectious respiratory disease of viral origin that causes even more deaths than the respiratory syncytial virus at all ages, except in children less than a year old [14, 51]. Influenza viruses are transmitted from person to person through the air, especially from droplets expelled during coughing and sneezing and are a serious threat to human health, and there is an urgent need for the development of new drugs against these viruses. Therefore, the anti-influenza virus activity of honey from several sources was studied [53]. The results showed that honey, in general, and particularly Manuka honey, has potent inhibitory activity against the influenza virus, demonstrating a potential medicinal value [53]. In addition to honey, propolis has also been studied against the influenza virus and appears to decrease the activity of the influenza virus [54].
\nHoney, especially Manuka honey, has strong antiviral properties. Studies show that honey has action against the varicella-zoster virus, the respiratory syncytial virus, and also has anti-influenza activity [47, 50, 53]. New studies on this property of honey are necessary, mainly with other types of honey.
\nMost people associate fungi with organic matter decomposition or superficial fungal infections, but fungi can cause various human diseases, from mild to firmly established systemic diseases; the most serious infections can even be fatal [14]. The incidence of
As previously stated, honey has antifungal properties and may act against
In addition to the antifungal activity of honey against
\n
Besides the antibacterial and antiviral properties, some honeys also have antifungal properties [56, 57, 59, 61]. Recent studies showed some honey have properties against
In 2016, the cancer mortality rate has dropped 23% since 1991 [65]. Despite this progress, mortality rates are increasing for liver, pancreatic, and uterine cancers; and cancer is now the leading cause of death in 21 states from United States, lung cancer is still the most lethal, followed by breast cancer [65, 66]. The advance for cancer treatment needs more clinical and basic research [65].
\nMany scientists have focused on the antioxidant property of honey. Studies indicate that ingestion of honeybee products, such as honey, can prevent cancer [67, 68]. Through the use of human renal cancer cells, the antiproliferative activities, apoptosis, and the antitumor activity of honey were investigated [67]. Honey decreased cell viability in malignant cells regardless of concentration and time [67]. Honey induced apoptosis of human renal cancer cells according to honey concentration, and apoptosis plays an important role, most of the drugs used in the treatment of cancer are apoptotic inducers, so the apoptotic nature of honey is considered vital [67].
\nThe anticancer activity of honey samples was extracted from three different Egyptian floral sources and was tested against colon, breast, and liver tumor lineage [69]. Cassia honey showed moderate cytotoxic activity against colon cancer and breast cancer, with the weakest cytotoxic activity against liver cancer; Citrus honey exhibited the highest cytotoxic activity against breast cancer; and Ziziphus honey showed potent efficiency against colon, liver, and breast cancer [69]. Breast cancer, which is the type of cancer that most affects and kills women, was also tested for another type of honey, the Manuka honey, and the results showed that it is cytotoxic to MCF-7 breast cancer cells
The phytochemical content and antioxidant activity of melon honey and Manuka honey and their cytotoxic properties were tested against human and metastatic colon adenocarcinoma. The ability to induce apoptosis in colon cancer cells depends on the concentration of honey and type of cell line, in addition to having a great relation with the phenolic content and residues of tryptophan. Honey was analyzed for phenolic, flavonoid, amino acid, and protein contents, as well as their free radical scavenging activities [71, 72]. Melon honey presented the highest amount of phenolics, flavonoids, amino acids, and proteins, as well as antioxidant capacity in relation to Manuka honey [71]. Both melon honey and Manuka honey induced cytotoxicity and cell death independently of dose and time in human and metastatic colon adenocarcinoma cells [71]. Melon honey showed to be more efficient in concentrations [71]. The results indicate that melon honey and Manuka honey can induce inhibition of cell growth and the generation of reactive oxygen species in colon adenocarcinoma and metastatic cells, which may be due to the presence of phytochemicals with antioxidant properties. These results suggest a potential chemo-preventive agent against colon cancer; in addition, honey can improve the functioning of other substances already used in cancer treatment [71, 73].
\nResearch on cancer control has shown the importance of adjuvant therapies [74].
Several types of honey have been studied because of their anticancer properties [65, 67, 69, 70, 71, 74]. Currently, cancer is one of the world’s leading diseases, requiring further studies [65]. Some honey have already been tested against colon, breast, and liver tumor, as well as human kidney cancer and Ehrlich ascites carcinoma cell lines, where most have weak to strong cytotoxic activity depending on the type of honey tested and depending on the dose of honey [67, 69, 70, 71]. The effect of
Antioxidants, which are present in large amounts of honey, making it a food with great antioxidative potential, are free radical scavengers that reduce the formation or neutralize free radicals [11, 78]. A comparative analysis of total phenolic content and antioxidant potential of commercially available common honey was performed along with Malaysia’s Tualang honey. Biochemical analyzes revealed a significantly high phenolic content in Tualang honey [78]. In addition, the antioxidant capacity of Tualang honey was higher than that of common honey; these data suggested that the high activity of elimination of free radicals and antioxidant activity observed in Tualang honey were due to the increase in the level of phenolic compounds, it was also observed that the antioxidant activity of honey depends on its botanical origin [78, 79]. Therefore, the favorable antioxidant properties of Tualang honey can be important for nutrition and human health [78].
\nType 2 diabetes consists of progressive hyperglycemia, insulin resistance, and β-pancreatic cell failure, which may result from glucose toxicity, inflammatory cytokines, and oxidative stress, and is responsible for 90–95% of all cases of diabetes [80, 81]. A study investigated the effect of pre-treatment with Gelam honey, and the individual flavonoid components chrysin, luteolin, and quercetin on the production of reactive oxygen species, cell viability, lipid peroxidation, and insulin in hamster pancreatic cells, cultured under normal conditions and hyperglycemic, the pre-treatment of cells with Gelam honey extract or flavonoid components showed a significant decrease in the production of reactive oxygen species, glucose-induced lipid peroxidation, and a significant increase in insulin content and viability of cultured cells under hyperglycemic conditions. The results indicated the
Honey contains antioxidants, such as phenolic compounds that prevent cellular oxidative damage that leads to aging, disease such as cancer, metabolic disturbances, cardiovascular dysfunction and even death [83, 84]. The antioxidant effect of honey in young and middle-aged rats was compared, the rats were fed with pure water (control), those supplemented with 2.5 and 5.0 g/kg of Gelam honey for 30 days. Results showed that Gelam honey supplementation reduced DNA damage, plasma malondialdehyde level, and glutathione peroxidase. Liver activity superoxide dismutase also decreased in young rats supplemented with 5 g/kg of Gelam honey [84]. Gelam honey reduces the oxidative damage of young and middle-aged rats by modulating the activities of the antioxidant enzymes that were more prominent in higher concentration compared to the lower concentration [84]. Another study indicates that honey has these antioxidant and free radical sequestering properties, mainly due to its phenolic compounds [85].
\nHoney has antioxidant properties that can be further explored and studied, because antioxidants reduce free radicals and oxidative stress, which can help to promote and maintain health [80, 82, 84]. Besides the previously described, the antioxidant effect of honey can be an important property to help in the anticancer effect [67, 71].
\nSeveral studies have proven the effectiveness of honey as an alternative medicine; some have even shown that honey is as good a medicine as conventional medicine. Use of different types of honeys showed anti-inflammatory effect very similar to the conventional drug and that can be used as an alternative medicine in the treatment of diseases or inflammations. Honey can also be used as an antimicrobial agent anti-inflammatory, antibacterial, antivirals, antifungal, anticancer, and antioxidants. However, there is still a need to increase research on honey, especially in its potential as a medicine and also a dissemination of this knowledge to the population and the medical community, so an increase in the use of this powerful compound will be possible.
\nThe authors declare that there is no conflict of interest.
Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.
',metaTitle:"Odredbe i uvjeti",metaDescription:"Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.",metaKeywords:null,canonicalURL:"/page/cro-terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\\n\\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\\n\\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\\n\\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\\n\\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\\n\\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\\n\\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\\n\\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\\n\\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\\n\\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\\n\\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\\n\\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\\n\\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\\n\\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\\n\\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\\n\\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\n\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\n\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\n\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\n\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\n\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\n\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\n\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\n\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\n\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\n\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\n\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\n\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\n\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\n\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\n\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15912}],offset:12,limit:12,total:119060},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"10"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10754",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"8994a915a306910a01cbe2027aa2139b",slug:null,bookSignature:"Dr. Stuart Arthur Harris",coverURL:"https://cdn.intechopen.com/books/images_new/10754.jpg",editedByType:null,editors:[{id:"12539",title:"Dr.",name:"Stuart",surname:"Harris",slug:"stuart-harris",fullName:"Stuart Harris"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10756",title:"Urban Agglomeration",subtitle:null,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",slug:null,bookSignature:"Dr. Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",editedByType:null,editors:[{id:"108118",title:"Dr.",name:"Luis",surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10759",title:"Gravitational Field",subtitle:null,isOpenForSubmission:!0,hash:"9c388947e68d72d8b23d5c7018112852",slug:null,bookSignature:"Prof. Khalid S. Essa",coverURL:"https://cdn.intechopen.com/books/images_new/10759.jpg",editedByType:null,editors:[{id:"102766",title:"Prof.",name:"Khalid S.",surname:"Essa",slug:"khalid-s.-essa",fullName:"Khalid S. Essa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10761",title:"Glaciology",subtitle:null,isOpenForSubmission:!0,hash:"bd112c839a9b8037f1302ca6c0d55a2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10761.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10851",title:"Volcanology",subtitle:null,isOpenForSubmission:!0,hash:"6cfc09f959efecf9ba95654b1bb4b987",slug:null,bookSignature:"Prof. Angelo Paone and Prof. Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/10851.jpg",editedByType:null,editors:[{id:"182871",title:"Prof.",name:"Angelo",surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10949",title:"Clay and Clay Minerals",subtitle:null,isOpenForSubmission:!0,hash:"44d08b9e490617fcbf7786c381c85fbc",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/10949.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10951",title:"Mining Technology",subtitle:null,isOpenForSubmission:!0,hash:"04396c3eac82ed4aca81cf73bd404138",slug:null,bookSignature:"Dr. Andrew Hammond, Dr. Brendan Donnelly and Dr. Nanjappa Ashwath",coverURL:"https://cdn.intechopen.com/books/images_new/10951.jpg",editedByType:null,editors:[{id:"259487",title:"Dr.",name:"Andrew",surname:"Hammond",slug:"andrew-hammond",fullName:"Andrew Hammond"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10952",title:"Soil Science - Emerging Technologies, Global Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3dbedd2099c57a24eaab114be4ba2b48",slug:null,bookSignature:"Dr. Michael Thomas Aide and Dr. Indi Braden",coverURL:"https://cdn.intechopen.com/books/images_new/10952.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",subtitle:null,isOpenForSubmission:!0,hash:"b0fbd6ee0096e4c16e9513bf01273ab3",slug:null,bookSignature:"Dr. Michael L. Smith",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg",editedByType:null,editors:[{id:"59479",title:"Dr.",name:"Michael L.",surname:"Smith",slug:"michael-l.-smith",fullName:"Michael L. Smith"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:25},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:44},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"511",title:"Solid-State Chemistry",slug:"chemistry-physical-chemistry-solid-state-chemistry",parent:{title:"Physical Chemistry",slug:"chemistry-physical-chemistry"},numberOfBooks:2,numberOfAuthorsAndEditors:80,numberOfWosCitations:68,numberOfCrossrefCitations:36,numberOfDimensionsCitations:82,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"chemistry-physical-chemistry-solid-state-chemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5072",title:"Advanced Catalytic Materials",subtitle:"Photocatalysis and Other Current Trends",isOpenForSubmission:!1,hash:"9ef46740b3ee28262a1704a0499ef899",slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",bookSignature:"Luis Enrique Norena and Jin-An Wang",coverURL:"https://cdn.intechopen.com/books/images_new/5072.jpg",editedByType:"Edited by",editors:[{id:"15562",title:"Dr.",name:"Noreña",middleName:null,surname:"Luis",slug:"norena-luis",fullName:"Noreña Luis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1772",title:"Neutron Diffraction",subtitle:null,isOpenForSubmission:!1,hash:"56eee3a81abfd89c555eeec99bdc4227",slug:"neutron-diffraction",bookSignature:"Irisali Khidirov",coverURL:"https://cdn.intechopen.com/books/images_new/1772.jpg",editedByType:"Edited by",editors:[{id:"113446",title:"Prof.",name:"Irisali",middleName:null,surname:"Khidirov",slug:"irisali-khidirov",fullName:"Irisali Khidirov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"49588",doi:"10.5772/61808",title:"Electrocatalytic Applications of Graphene–Metal Oxide Nanohybrid Materials",slug:"electrocatalytic-applications-of-graphene-metal-oxide-nanohybrid-materials",totalDownloads:3246,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Arnab Halder, Minwei Zhang and Qijin Chi",authors:[{id:"176168",title:"Prof.",name:"Qijin",middleName:null,surname:"Chi",slug:"qijin-chi",fullName:"Qijin Chi"},{id:"177663",title:"Dr.",name:"Arnab",middleName:null,surname:"Halder",slug:"arnab-halder",fullName:"Arnab Halder"},{id:"177664",title:"Dr.",name:"Minwei",middleName:null,surname:"Zhang",slug:"minwei-zhang",fullName:"Minwei Zhang"}]},{id:"49692",doi:"10.5772/61823",title:"Photochemical Decomposition of Hydrogen Sulfide",slug:"photochemical-decomposition-of-hydrogen-sulfide",totalDownloads:2278,totalCrossrefCites:1,totalDimensionsCites:8,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Shan Yu and Ying Zhou",authors:[{id:"176372",title:"Prof.",name:"Ying",middleName:null,surname:"Zhou",slug:"ying-zhou",fullName:"Ying Zhou"},{id:"176791",title:"Dr.",name:"Shan",middleName:null,surname:"Yu",slug:"shan-yu",fullName:"Shan Yu"}]},{id:"49829",doi:"10.5772/62206",title:"Advanced Nanomatericals for Solar Photocatalysis",slug:"advanced-nanomatericals-for-solar-photocatalysis",totalDownloads:2784,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Le Li and Minqiang Wang",authors:[{id:"176453",title:"Dr.",name:"Le",middleName:null,surname:"Li",slug:"le-li",fullName:"Le Li"},{id:"176454",title:"Prof.",name:"Minqiang",middleName:null,surname:"Wang",slug:"minqiang-wang",fullName:"Minqiang Wang"}]}],mostDownloadedChaptersLast30Days:[{id:"49674",title:"Iron-based Nanomaterials in the Catalysis",slug:"iron-based-nanomaterials-in-the-catalysis",totalDownloads:3731,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Boris I. Kharisov, Oxana V. Kharissova, H.V. Rasika Dias, Ubaldo Ortiz\nMéndez, Idalia Gómez de la Fuente, Yolanda Peña and Alejandro\nVázquez Dimas",authors:[{id:"13939",title:"Dr.",name:"Boris",middleName:null,surname:"Kharisov",slug:"boris-kharisov",fullName:"Boris Kharisov"},{id:"13941",title:"Dr.",name:"Oxana V.",middleName:null,surname:"Kharissova",slug:"oxana-v.-kharissova",fullName:"Oxana V. Kharissova"},{id:"13942",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Ortiz Mendez",slug:"ubaldo-ortiz-mendez",fullName:"Ubaldo Ortiz Mendez"},{id:"176321",title:"Prof.",name:"H.V. Rasika",middleName:null,surname:"Dias",slug:"h.v.-rasika-dias",fullName:"H.V. Rasika Dias"},{id:"179552",title:"Dr.",name:"Idalia",middleName:null,surname:"Gomez De La Fuente",slug:"idalia-gomez-de-la-fuente",fullName:"Idalia Gomez De La Fuente"},{id:"179553",title:"Dr.",name:"Alejandro",middleName:null,surname:"Vazques Dimas",slug:"alejandro-vazques-dimas",fullName:"Alejandro Vazques Dimas"},{id:"179554",title:"Dr.",name:"Yolanda",middleName:null,surname:"Peña Mendez",slug:"yolanda-pena-mendez",fullName:"Yolanda Peña Mendez"}]},{id:"49599",title:"Recent Advances in Visible-Light Driven Photocatalysis",slug:"recent-advances-in-visible-light-driven-photocatalysis",totalDownloads:2282,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Yuhua Wangab, Xinlong Ma, Hao Li, Bin Liu, Huihui Li, Shu Yin and\nTsugio Sato",authors:[{id:"19332",title:"Dr.",name:"Yuhua",middleName:null,surname:"Wang",slug:"yuhua-wang",fullName:"Yuhua Wang"},{id:"177843",title:"Dr.",name:"Xinlong",middleName:null,surname:"Ma",slug:"xinlong-ma",fullName:"Xinlong Ma"},{id:"177844",title:"Dr.",name:"Hao",middleName:null,surname:"Li",slug:"hao-li",fullName:"Hao Li"},{id:"177845",title:"Dr.",name:"Bin",middleName:null,surname:"Liu",slug:"bin-liu",fullName:"Bin Liu"},{id:"177846",title:"Dr.",name:"Huihui",middleName:null,surname:"Li",slug:"huihui-li",fullName:"Huihui Li"},{id:"177847",title:"Dr.",name:"Shu",middleName:null,surname:"Yin",slug:"shu-yin",fullName:"Shu Yin"},{id:"177848",title:"Dr.",name:"Tsugio",middleName:null,surname:"Sato",slug:"tsugio-sato",fullName:"Tsugio Sato"}]},{id:"32362",title:"Hydrides of Cu and Mg Intermetallic Systems: Characterization and Catalytic Function",slug:"hydrides-of-cu-and-mg-intermetallic-systems-characterization-and-catalytic-function",totalDownloads:2665,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"neutron-diffraction",title:"Neutron Diffraction",fullTitle:"Neutron Diffraction"},signatures:"M. Helena Braga, Michael J. Wolverton, Maria H. de Sá and Jorge A. Ferreira",authors:[{id:"111737",title:"Prof.",name:"Maria Helena",middleName:null,surname:"Braga",slug:"maria-helena-braga",fullName:"Maria Helena Braga"},{id:"112816",title:"MSc.",name:"Michael J.",middleName:null,surname:"Wolverton",slug:"michael-j.-wolverton",fullName:"Michael J. Wolverton"},{id:"112817",title:"Dr.",name:"Maria",middleName:null,surname:"Sa",slug:"maria-sa",fullName:"Maria Sa"},{id:"112818",title:"MSc.",name:"Jorge",middleName:null,surname:"Ferreira",slug:"jorge-ferreira",fullName:"Jorge Ferreira"}]},{id:"49588",title:"Electrocatalytic Applications of Graphene–Metal Oxide Nanohybrid Materials",slug:"electrocatalytic-applications-of-graphene-metal-oxide-nanohybrid-materials",totalDownloads:3246,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Arnab Halder, Minwei Zhang and Qijin Chi",authors:[{id:"176168",title:"Prof.",name:"Qijin",middleName:null,surname:"Chi",slug:"qijin-chi",fullName:"Qijin Chi"},{id:"177663",title:"Dr.",name:"Arnab",middleName:null,surname:"Halder",slug:"arnab-halder",fullName:"Arnab Halder"},{id:"177664",title:"Dr.",name:"Minwei",middleName:null,surname:"Zhang",slug:"minwei-zhang",fullName:"Minwei Zhang"}]},{id:"49758",title:"Practical Design of Green Catalysts for PET Recycling and Energy Conversion",slug:"practical-design-of-green-catalysts-for-pet-recycling-and-energy-conversion",totalDownloads:1991,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Arvin Sangalang, Seunghwan Seok and Do Hyun Kim",authors:[{id:"97132",title:"Prof.",name:"Do Hyun",middleName:null,surname:"Kim",slug:"do-hyun-kim",fullName:"Do Hyun Kim"},{id:"177578",title:"MSc.",name:"Arvin",middleName:null,surname:"Sangalang",slug:"arvin-sangalang",fullName:"Arvin Sangalang"},{id:"177579",title:"MSc.",name:"Seunghwan",middleName:null,surname:"Seok",slug:"seunghwan-seok",fullName:"Seunghwan Seok"}]},{id:"49829",title:"Advanced Nanomatericals for Solar Photocatalysis",slug:"advanced-nanomatericals-for-solar-photocatalysis",totalDownloads:2778,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Le Li and Minqiang Wang",authors:[{id:"176453",title:"Dr.",name:"Le",middleName:null,surname:"Li",slug:"le-li",fullName:"Le Li"},{id:"176454",title:"Prof.",name:"Minqiang",middleName:null,surname:"Wang",slug:"minqiang-wang",fullName:"Minqiang Wang"}]},{id:"49692",title:"Photochemical Decomposition of Hydrogen Sulfide",slug:"photochemical-decomposition-of-hydrogen-sulfide",totalDownloads:2274,totalCrossrefCites:1,totalDimensionsCites:8,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Shan Yu and Ying Zhou",authors:[{id:"176372",title:"Prof.",name:"Ying",middleName:null,surname:"Zhou",slug:"ying-zhou",fullName:"Ying Zhou"},{id:"176791",title:"Dr.",name:"Shan",middleName:null,surname:"Yu",slug:"shan-yu",fullName:"Shan Yu"}]},{id:"49683",title:"X-Ray Spectroscopy — The Driving Force to Understand and Develop Catalysis",slug:"x-ray-spectroscopy-the-driving-force-to-understand-and-develop-catalysis",totalDownloads:1488,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Jakub Szlachetko and Jacinto Sá",authors:[{id:"176327",title:"Prof.",name:"Jacinto",middleName:null,surname:"Sa",slug:"jacinto-sa",fullName:"Jacinto Sa"},{id:"176328",title:"Dr.",name:"Jakub",middleName:null,surname:"Szlachetko",slug:"jakub-szlachetko",fullName:"Jakub Szlachetko"}]},{id:"49671",title:"New Catalytic Systems for Fixation of Carbon Dioxide into Valuable Poly(Alkylene Carbonates)",slug:"new-catalytic-systems-for-fixation-of-carbon-dioxide-into-valuable-poly-alkylene-carbonates-",totalDownloads:3580,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Bahareh Bahramian and Fariba Dehghani",authors:[{id:"176380",title:"Prof.",name:"Fariba",middleName:null,surname:"Dehghani",slug:"fariba-dehghani",fullName:"Fariba Dehghani"},{id:"176429",title:"Mrs.",name:"Bahareh",middleName:null,surname:"Bahramian",slug:"bahareh-bahramian",fullName:"Bahareh Bahramian"}]},{id:"49601",title:"Catalytic Applications of Metal-Organic Frameworks",slug:"catalytic-applications-of-metal-organic-frameworks",totalDownloads:3380,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"advanced-catalytic-materials-photocatalysis-and-other-current-trends",title:"Advanced Catalytic Materials",fullTitle:"Advanced Catalytic Materials - Photocatalysis and Other Current Trends"},signatures:"Sandra Loera-Serna and Elba Ortiz",authors:[{id:"176856",title:"Dr.",name:"Sandra",middleName:null,surname:"Loera-Serna",slug:"sandra-loera-serna",fullName:"Sandra Loera-Serna"},{id:"176863",title:"Dr.",name:"Elba",middleName:null,surname:"Ortiz",slug:"elba-ortiz",fullName:"Elba Ortiz"}]}],onlineFirstChaptersFilter:{topicSlug:"chemistry-physical-chemistry-solid-state-chemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/fisheries-and-aquaculture-in-the-modern-world",hash:"",query:{},params:{book:"fisheries-and-aquaculture-in-the-modern-world"},fullPath:"/books/fisheries-and-aquaculture-in-the-modern-world",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()