\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"5791",leadTitle:null,fullTitle:"Management Culture and Corporate Social Responsibility",title:"Management Culture and Corporate Social Responsibility",subtitle:null,reviewType:"peer-reviewed",abstract:'This monograph focuses on the level of management culture development in organizations attempting to disclose it not only with the help of theoretical insights but also by the approach based on employees and managers. Why was the term "management culture" that is rarely found in literature selected for the analysis? We are quite often faced with problems of terminology. Especially, it often happens in the translation from one language to another. While preparing this monograph, the authors had a number of questions on how to decouple the management culture from organization\'s culture and from organizational culture, how to separate management culture from managerial culture, etc. However, having analysed a variety of scientific research, it appeared that there is no need to break down the mentioned cultures because they still overlap. Therefore, it is impossible to completely separate the management culture from the formal or informal part of organizational culture. Management culture inevitably exists in every organization, only its level of development may vary.',isbn:"978-1-78923-009-3",printIsbn:"978-1-78923-008-6",pdfIsbn:"978-1-83881-244-7",doi:"10.5772/65483",price:139,priceEur:155,priceUsd:179,slug:"management-culture-and-corporate-social-responsibility",numberOfPages:448,isOpenForSubmission:!1,isInWos:1,hash:"a6be6376f37f454a42616dd3698b1966",bookSignature:"Pranas ?ukauskas, Jolita Vveinhardt and Regina Andriukaitien?",publishedDate:"April 18th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/5791.jpg",numberOfDownloads:21598,numberOfWosCitations:2,numberOfCrossrefCitations:6,numberOfDimensionsCitations:10,hasAltmetrics:1,numberOfTotalCitations:18,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 5th 2016",dateEndSecondStepPublish:"September 26th 2016",dateEndThirdStepPublish:"December 23rd 2016",dateEndFourthStepPublish:"March 23rd 2017",dateEndFifthStepPublish:"May 22nd 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Authored by",kuFlag:!1,editors:[{id:"196006",title:"Prof.",name:"Pranas",middleName:null,surname:"Žukauskas",slug:"pranas-zukauskas",fullName:"Pranas Žukauskas",profilePictureURL:"https://mts.intechopen.com/storage/users/196006/images/7756_n.jpg",biography:"Prof. Habil. Dr. Pranas Žukauskas is a professor and habilitated doctor of social sciences. Since 2002, he has been the Dean of the Faculty of Economics and Management\nof Vytautas Magnus University, the Professor at the Department of Management and the member of the VMU Council and Senate. Pranas Žukauskas is the author and co-author of 4 monographs and has published more than 120 scientific articles. He has read over 25 papers in the national and international scientific conferences: in Lithuania, Latvia, Estonia, Russia, Ukraine, Poland, Hungary, the Czech Republic, India, the USA and others.\nHe takes part in international scientific research projects and conducts applied research in Lithuania and abroad. Pranas Žukauskas is the editor-in-chief of the scientific journal Taikomoji Ekonomika: Sisteminiai Tyrimai (Applied Economics: Systemic Research), as well as a member of editorial boards of four scientific periodicals.\nHe has supervised 10 successfully defended doctoral dissertations. He has served as a chair, member and opponent of over 30 doctoral dissertation defence councils. He is a member of the Management Research Field Joint Doctoral Committee at Vytautas Magnus University, Mykolas Romeris University, Aleksandras Stulginskis University, Klaipėda University and Šiauliai University. The author did internship in more than 20 universities in Western Europe and the USA, is the professor of Torun (Poland) Higher\nBanking School, is a member of the European Management Association Board, is a member of the European University Foundation “Campus Europae” business and budget committee and is a permanent expert of the Science Council of Lithuania, the Centre for Quality Assessment in Higher Education. He has been invited to perform inspections in the Government of the Republic of Lithuania and in the Ministry of Economy.\nHe teaches international marketing and other subjects.\nHis main research interests are international economic relations, international business, international marketing and human resource management.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt",profilePictureURL:"https://mts.intechopen.com/storage/users/179629/images/system/179629.jpg",biography:"Prof. dr. Jolita Vveinhardt – a chief researcher of the Vytautas Magnus University, a professor at the Management Department of the Faculty of Economics and Management at the Vytautas Magnus University (Lithuania). The scientist is heading three scientific groups: 'Neuro-Relationships” (Lithuanian Sports University (LSU)), 'Managerial Solutions to Violence in Sport” (LSU), 'The Group of Interdisciplinary Research on Working Environment” (Vytautas Magnus University (VMU)). Jolita Vveinhardt is the author and co-author of three monographs, four scientific studies, one textbook, and five educational books. The scientist is the editor of three books published by InTech publishing house 'Congruence of Personal and Organizational Values” 2017, 'Organizational Culture” 2018, 'Management Culture and Corporate Social Responsibility” 2018). For the past several years she explores the phenomena of mobbing and nepotism, climate of the organisation and other aspects related to human resource management. She has published more than 200 scientific articles, 90 of which were published in peer reviewed journals of Web of Science Core Collection (Clarivate Analytics) database and read more than 50 papers in national and international scientific conferences. She is a member of editorial boards of 14 scientific periodicals. Prof. Dr. Jolita Vveinhardt is a member of 15 associations and societies. She teaches the following subjects for Master’s degree programme students: Contemporary Organization Theories (VMU) and Novelties of Management Science (LSU). Her main research interests are destructive relationships among employees (mobbing, bullying, nepotism, favouritism, social loafing, social ostracism, organizational cynicism, cronyism, protectionism), business ethics, organizational culture, management culture, organizational climate, personal and organizational values, value congruence, corporate social responsibility, decision-making, neuromanagement, etc.",institutionString:"Vytautas Magnus University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"22",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Vytautas Magnus University",institutionURL:null,country:{name:"Lithuania"}}},coeditorTwo:{id:"196007",title:"Dr.",name:"Regina",middleName:null,surname:"Andriukaitienė",slug:"regina-andriukaitiene",fullName:"Regina Andriukaitienė",profilePictureURL:"https://mts.intechopen.com/storage/users/196007/images/7755_n.jpg",biography:"Dr. Regina Andriukaitienė is an associate professor, and since 2001, she has been a lecturer at the Business and Economics Department of Marijampolė College; since 2012, she has been a lecturer at the Sport Management, Economics and Sociology Department of Faculty of Sports Education at the Lithuanian Sports University.\nRegina Andriukaitienė is a co-author of an educational book; she has published 19 scientific articles. She has read more than 15 papers in national and international scientific conferences.\nShe takes part in the national scientific research project and conducts applied research in Lithuania. She teaches business management, human resource management, personnel management and service ethics subjects. Her main research interests include corporate social responsibility, management culture, business ethics and human resource management",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1342",title:"Corporate Social Responsibility",slug:"corporate-social-responsibility"}],chapters:[{id:"58869",title:"Introductory Chapter: The Level of Management Culture Development When Aiming for Implementation of Corporate Social Responsibility",doi:"10.5772/intechopen.70623",slug:"introductory-chapter-the-level-of-management-culture-development-when-aiming-for-implementation-of-c",totalDownloads:601,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58869",previewPdfUrl:"/chapter/pdf-preview/58869",authors:[{id:"196006",title:"Prof.",name:"Pranas",surname:"Žukauskas",slug:"pranas-zukauskas",fullName:"Pranas Žukauskas"},{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"},{id:"196007",title:"Dr.",name:"Regina",surname:"Andriukaitienė",slug:"regina-andriukaitiene",fullName:"Regina Andriukaitienė"}],corrections:null},{id:"58885",title:"The Theoretical Aspect of Management Culture as Part of Organizational Culture",doi:"10.5772/intechopen.70624",slug:"the-theoretical-aspect-of-management-culture-as-part-of-organizational-culture",totalDownloads:1189,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58885",previewPdfUrl:"/chapter/pdf-preview/58885",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"58883",title:"Corporate Social Responsibility as the Organization’s Commitment against Stakeholders",doi:"10.5772/intechopen.70625",slug:"corporate-social-responsibility-as-the-organization-s-commitment-against-stakeholders",totalDownloads:2015,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58883",previewPdfUrl:"/chapter/pdf-preview/58883",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"58889",title:"Regional Tendencies of Corporate Social Responsibility",doi:"10.5772/intechopen.70626",slug:"regional-tendencies-of-corporate-social-responsibility",totalDownloads:502,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58889",previewPdfUrl:"/chapter/pdf-preview/58889",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"58905",title:"Integrating Role of the Values in the Context of Management Culture and Corporate Social Responsibility",doi:"10.5772/intechopen.70627",slug:"integrating-role-of-the-values-in-the-context-of-management-culture-and-corporate-social-responsibil",totalDownloads:594,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58905",previewPdfUrl:"/chapter/pdf-preview/58905",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"58890",title:"Philosophy and Paradigm of Scientific Research",doi:"10.5772/intechopen.70628",slug:"philosophy-and-paradigm-of-scientific-research",totalDownloads:9098,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58890",previewPdfUrl:"/chapter/pdf-preview/58890",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"58894",title:"Research Ethics",doi:"10.5772/intechopen.70629",slug:"research-ethics",totalDownloads:1988,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58894",previewPdfUrl:"/chapter/pdf-preview/58894",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"59034",title:"Structure of Research Design: Expert Evaluation",doi:"10.5772/intechopen.70630",slug:"structure-of-research-design-expert-evaluation",totalDownloads:557,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/59034",previewPdfUrl:"/chapter/pdf-preview/59034",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"58900",title:"Exploratory Research",doi:"10.5772/intechopen.70631",slug:"exploratory-research",totalDownloads:510,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58900",previewPdfUrl:"/chapter/pdf-preview/58900",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"58874",title:"Corrections of Research Instrument",doi:"10.5772/intechopen.70632",slug:"corrections-of-research-instrument",totalDownloads:427,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58874",previewPdfUrl:"/chapter/pdf-preview/58874",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"58895",title:"Theoretical-Hypothetical Model of Management Culture Level Determination",doi:"10.5772/intechopen.70633",slug:"theoretical-hypothetical-model-of-management-culture-level-determination",totalDownloads:511,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/58895",previewPdfUrl:"/chapter/pdf-preview/58895",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"59031",title:"Methodological and Psychometric Characteristics of the Research Instrument: Retest",doi:"10.5772/intechopen.70634",slug:"methodological-and-psychometric-characteristics-of-the-research-instrument-retest",totalDownloads:400,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/59031",previewPdfUrl:"/chapter/pdf-preview/59031",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"59023",title:"Sociodemographic Indicators: Employee Attitude",doi:"10.5772/intechopen.70635",slug:"sociodemographic-indicators-employee-attitude",totalDownloads:412,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/59023",previewPdfUrl:"/chapter/pdf-preview/59023",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"59024",title:"Determining the Level of Management Culture Development",doi:"10.5772/intechopen.70636",slug:"determining-the-level-of-management-culture-development",totalDownloads:500,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/59024",previewPdfUrl:"/chapter/pdf-preview/59024",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"59035",title:"Determination of Corporate Social Responsibility",doi:"10.5772/intechopen.70637",slug:"determination-of-corporate-social-responsibility",totalDownloads:617,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/59035",previewPdfUrl:"/chapter/pdf-preview/59035",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"59467",title:"Establishment of Expression of Management Culture as a Formal Part of the Organizational Culture, Aiming to Implement Corporate Social Responsibility",doi:"10.5772/intechopen.70680",slug:"establishment-of-expression-of-management-culture-as-a-formal-part-of-the-organizational-culture-aim",totalDownloads:453,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/59467",previewPdfUrl:"/chapter/pdf-preview/59467",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"59027",title:"Statistical Verification of Management Culture and Corporate Social Responsibility Correlation",doi:"10.5772/intechopen.70638",slug:"statistical-verification-of-management-culture-and-corporate-social-responsibility-correlation",totalDownloads:412,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/59027",previewPdfUrl:"/chapter/pdf-preview/59027",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"59022",title:"Management Solutions to Determine the Level of Management Culture Aiming to Implement Corporate Social Responsibility",doi:"10.5772/intechopen.70639",slug:"management-solutions-to-determine-the-level-of-management-culture-aiming-to-implement-corporate-soci",totalDownloads:387,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/59022",previewPdfUrl:"/chapter/pdf-preview/59022",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null},{id:"59021",title:"Summary and Discussion",doi:"10.5772/intechopen.70640",slug:"summary-and-discussion",totalDownloads:433,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",downloadPdfUrl:"/chapter/pdf-download/59021",previewPdfUrl:"/chapter/pdf-preview/59021",authors:[{id:"179629",title:"Prof.",name:"Jolita",surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}],corrections:null}],productType:{id:"3",title:"Monograph",chapterContentType:"chapter",authoredCaption:"Authored by"}},relatedBooks:[{type:"book",id:"6630",title:"Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"2f6cc315119ed59e44cce41a717d6316",slug:"social-responsibility",bookSignature:"Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/6630.jpg",editedByType:"Edited by",editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66062",slug:"corrigendum-to-pain-management-in-plastic-surgery",title:"Corrigendum to: Pain Management in Plastic Surgery",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66062.pdf",downloadPdfUrl:"/chapter/pdf-download/66062",previewPdfUrl:"/chapter/pdf-preview/66062",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66062",risUrl:"/chapter/ris/66062",chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:null,surname:"Mahaalit Aribawa",fullName:"I Gusti Ngurah Mahaalit Aribawa",slug:"i-gusti-ngurah-mahaalit-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]}},chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:null,surname:"Mahaalit Aribawa",fullName:"I Gusti Ngurah Mahaalit Aribawa",slug:"i-gusti-ngurah-mahaalit-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]},book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9232",leadTitle:null,title:"Mobile Apps",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tIn the current age and time, mobile apps are used widely in various real-life applications. A mobile application also referred to as a mobile app or simply an app is a computer program or software application. It is designed to run on a mobile device such as a phone, tablet, or watch. There are various potential Apps related to commerce, health, education, factory automation, GPS and location-based services, order-tracking, ticket purchases, safety, security, and others. With the passage of time, the public demand is rapidly increasing the number of apps every day. There is a great deal of interest in mobile apps development and usage. This book is specifically dedicated to mobile apps focused on education, research, developments, techniques, tools, and technologies. This comprehensive book, in general, is planned to explore the state of the art chapters in the latest developments, methods, approaches, and applications with regards to mobile devices. This volume intends to provide a view to researchers, academicians, developers, and readers of backgrounds and methods with an in-depth discussion of the latest technologies, techniques and various other advances in the field of mobile apps. It would consist of various chapters from academicians, practitioners, and researchers from different disciplines of life.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"dfef424169be73c94407064a3802696c",bookSignature:"Prof. Muhammad Sarfraz",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9232.jpg",keywords:"Native app, Hybrid app, Mobile software, Sencha Touch, HTML5, Mobile user interface, Mobile Backend, Apple App Store, Google Play, Mobile games, mobile health, GPS and location-based services",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 21st 2019",dateEndSecondStepPublish:"November 11th 2019",dateEndThirdStepPublish:"January 10th 2020",dateEndFourthStepPublish:"March 30th 2020",dateEndFifthStepPublish:"May 29th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a Professor and Director of MSIT in the Department of Information Science, Kuwait University, Kuwait. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology and information systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised more than 85 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. Prof. Sarfraz is a member of various professional societies. He is the Chair and member of the International Advisory Committees and Organizing Committees of various international conferences. He is also Editor-in-Chief and Editor of various international journals.",institutionString:"Kuwait University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,isOpenForSubmission:!1,hash:"c730560dd2e3837a03407b3a86b0ef2a",slug:"biometric-systems",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9239",title:"Digital Imaging",subtitle:null,isOpenForSubmission:!1,hash:"656ebe9652b39a1f5dc33d004170a1c4",slug:"digital-imaging",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/9239.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69020",title:"Partial Entropy and Bundle-Like Entropy for Topological Dynamical Systems",doi:"10.5772/intechopen.89021",slug:"partial-entropy-and-bundle-like-entropy-for-topological-dynamical-systems",body:'\nBy a
When a considered mapping
In 1991, Langevin and Walczak [5] regard the “inverse” as a relation and formulate a notion of entropy for this relation (analogous to the entropy of a foliation [6]), based on distinguishing points by means of the structure of their “preimage trees,” which is called preimage relation entropy. The interested reader can see [7] or [8] for more details on this invariant. Later, several important entropy-like invariants based on the preimage structure for non-invertible maps, such as pointwise preimage entropies, preimage branch entropy [1, 8, 9, 10], partial preimage entropy, conditional preimage entropy [11], etc., have been introduced, and their relationships with topological entropy have been established. To learn more about the results related to the preimage entropy for noninvertible maps, one can see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].
\nThe local entropy theory for topological dynamical systems started in the early 1990s with the work of Blanchard (see [24, 25]). Nowadays this theory has become a very interesting topic in the field of dynamical systems and has also proven to be fundamental to many other related fields. For example, Blanchard defined the notion of entropy pairs and used it to obtain a disjointness theorem [26]. The notion of entropy pairs can also be used to show the existence of the maximal zero-entropy factor, called the topological Pinsker factor, for any topological dynamical system [25]. In order to gain a better understanding of the topological version of a
We remark that in reality, it is difficult to find a real orbit in the system, but a pseudo-orbit can be used to approximate the real orbit, and so there have been a lot of applications in many fields. Since the works of Bowen [31] and Conley [32], pseudo-orbits have proved to be a powerful tool in dynamical systems. For instance, Hammel et al. [33, 34] have investigated the role of pseudo-orbits in computer simulations of certain dynamical systems; Barge and Swanson [35] made use of pseudo-orbits to study rotation sets of circle and annulus maps. Also, a remarkable result by Misiurewicz [36] showed that the topological entropy can be computed by measuring the exponential growth rate of the numbers of pseudo-orbits (related results can see [37]). In [1], Hurley showed that the point entropy with pseudo-orbits that is defined by replacing inverse orbit segments by inverse pseudo-orbit segments in the definition of pointwise preimage entropy is in fact equal to the topological entropy.
\nIn this chapter, following Hurley [1] we further study the preimage entropy for topological dynamical system from the view of localization. In Section 2, we consider the calculation of topological entropy for open covers from pseudo-orbits (Theorem 2.3). In Section 3, we investigate the relationship among the topological entropy for open covers and several preimage entropy invariants, which is viewed as the local version of the Hurley inequality (Theorem 3.1). In Section 4, we show that the topological entropy for open covers can be computed by measuring the exponential growth rate of the number of pseudo-orbits that end at a particular point (Theorems 4.2 and 4.3).
\nA nonautonomous discrete dynamical system is a natural generalization of a classical dynamical system; its dynamics is determined by a sequence of continuous self-maps \n
Topological entropy was defined originally by Adler et al. [2] for continuous maps on compact topological spaces. Let \n
Let \n
The
In this subsection, we recall two equivalent definitions, which are given by Dinaburg [3] and Bowen [4]. Let \n
Denote the maximal cardinality of any \n
The following lemma is well-known, and its proof is not difficult, so we omit its detail proof.
\n\n
\n\n
\n\n
\n\n
By Lemma 2.1, we obtain directly the following result.
\n\n
Let \n
Let \n
For each positive integer \n
Note that a point \n
Topological entropy has been characterized by Misiurewicz [36] and Barge and Swanson [37] in terms of growth rates of pseudo-orbits. Let \n
In the following, we will show that the topological entropy for an open cover can be characterized by pseudo-orbits. Before proceeding, let us first introduce a definition of pseudo-orbit entropy via open covers. Let \n
where
\nGiven \n
and the
\n
\n
This completes the proof of the theorem. □
\n\n
On the other hand, let us define \n
So, it is in fact to give a simpler proof of Theorem 1 of [37] by Theorem 2.3.
\nWhen
Let \n
Each \n
Let \n
Note that \n
which is called the
Let us recall two non-invertible invariants defined by Hurley [1] in 1995. Hurley’s invariants are about the maximum rate of dispersal of the preimage sets of individual points, which are called
It is clear that \n
We call it the Hurley inequality.
\nIn this subsection, we mainly study the relationship among the topological entropy for open covers and several preimage entropy invariants, which is viewed as the local version of the Hurley inequality. To do it, we first introduced a definition of preimage entropy via open covers.
\nLet \n
and
\n\n
\n
Let \n
We claim that \n
In fact, let \n
So that,
\nThis completes the proof of the theorem.□
\nWe remark that Theorem 3.1 generalizes the classical Hurley’s inequality given in [26, Theorem 3.1]. A direct consequence of Theorem 3.1 is.
\n\n
\n
In [1], Hurley considered pseudo-orbits for inverse images and showed that the topological entropy can be characterized in terms of growth rates of pseudo-orbits that end at a particular point. Let \n
For each \n
In either formula \n
In the following, we will show that the topological entropy for an open cover can be characterized by pseudo-orbits for inverse images. Before proceeding, let us consider the following definitions, which use the notation introduced in Section 2.3.
\nLet \n
Clearly,
\nfor every \n
\n
\n
In fact, let \n
\n
\n
for each fixed \n
for all positive number \n
This completes the proof.□
\n\n
\n
Now we start to prove the converse inequality.
\nNote that for the given \n
Taking a sequence of integers \n
By restricting to a subsequence, we can assume without loss of generality that the sequence \n
Let \n
whenever \n
Now we choose a sequence \n
whenever \n
whenever \n
Now let \n
Therefore, combining (12) and (19), we have
\nThis completes the proof.□
\nIn [38, 41], topological entropy for certain nonautonomous discrete dynamical system was defined and studied. In this section, we study the topological entropy for nonautonomous discrete dynamical systems by introducing two entropy-like invariants called the partial entropy and bundle-like entropy as being motivated by the idea of [1, 39].
\nLet \n
For any integer \n
Fixing an integer \n
The following result is trivial, so we omit its detail proof.
\n\n
For each \n
Given a nonautonomous discrete dynamical system \n
Then the common limit in (21) by taking \n
Let \n
For any integer \n
Put \n
which is called the
Let \n
which is called the
Also, we have the spanning set versions of definitions of \n
\n
\n
Fixing a sufficiently small \n
In fact, for any \n
This yields the claim that \n
Taking limits as the requirements of the related definitions of entropies establishes the desired inequality. This completes the proof.□
\nLet \n
\n
\n
Clearly, \n
This implies
\nOn the other hand, from the proof of Theorem 5.2, it follows that
\nfor any integer \n
This implies
\nThus, combining (22) and (23) gets the later equality. This completes the proof.□
\n\n
Given a nonautonomous discrete dynamical system \n
\n
(1)
(2)
(3) \n
\n
For each \n
for any \n
Now, given \n
This argument shows that \n
For any sufficiently small \n
Several important entropy-like invariants based on the preimage structure for non-invertible maps have been defined and studied by some authors. In this chapter, we first further study the preimage entropy for topological dynamical system from the view of localization. We show that the topological entropy for an open cover can be characterized by pseudo-orbits (Theorems 2.3, 4.2, and 4.3). We also establish an inequality relating the topological entropy for open covers and several preimage entropy invariants, which is viewed as the local version of the Hurley’s inequality (Theorem 3.1). Finally, we discuss the topological entropy for nonautonomous discrete dynamical systems by introducing two entropy-like invariants called the partial entropy and bundle-like entropy. We establish some relationships among such two invariants and the topological entropy (Theorem 5.2, 5.3, and 5.5).
\nThis work was carried out when Kesong Yan visited the Michigan State University. Kesong Yan sincerely appreciates the warm hospitality of Professor Huyi Hu. We thank the anonymous referees for their useful comments and helpful suggestions that improved the manuscript. The authors are supported by NNSF of China (11861010,11761012) and NSF for Distinguished Young Scholar of Guangxi Province (2018GXNSFFA281008). The first author is supported by the Cultivation Plan of Thousands of Young Backbone Teachers in Higher Education Institutions of Guangxi Province, Program for Innovative Team of Guangxi University of Finance and Economics, and Project of Guangxi Key Laboratory Cultivation Base of Cross-border E-commerce Intelligent Information Processing (201801ZZ03).
\nImmunohistochemistry (IHC) represents a way to build a picture of particular distribution and localization of molecular markers within cells and in the proper tissue context and is a powerful tool that provides important diagnostic, prognostic, and predictive information supplemental to the morphological assessment of the tissues. Although less sensitive quantitatively than such immunoassays as western blotting or ELISA, IHC enables observation of molecular signature in the context of intact tissue. In its very simplified method, IHC visualizes target antigens by using target-specific antibodies tagged with appropriate labels. However, lack of need for labeling of molecular marker-specific primary antibodies and higher sensitivity made indirect staining methods as the preferred staining method. The need for more sensitive detection systems in case of minimally expressed markers was a provocative factor that eventually led to the emergence of next generations of IHC detection methods with the hope to amplify staining signal. IHC methods based on avidin-biotin interaction and polymer- and tyramide-based signal amplification are among IHC signal amplification methods that have greatly enhanced the sensitivity of IHC staining. However, when more sensitive methods are used, background signal tends to increase along with the target signal and so highly sensitive detection systems are not always desirable. Therefore, the optimal IHC method is planned as a compromise between sensitivity that allows proper and reliable visualization of a given molecular marker and at the same time avoiding background signals that impair staining index and specificity of the staining method. In an optimal IHC detection system, tissue type, level of expression of the marker of interest, localization of the marker, and cost are among important factors that should be taken into consideration. As a general rule of thumb, there is no a
Direct detection methods are known as a one-step process applying a primary antibody, which is directly labeled with reporter molecules, such as biotin, colloidal gold, fluorochromes, or enzymes [1, 2]. The conjugated antibody makes a direct contact with cognate antigen in histological or cytological preparations (Figure 1). Direct detection methods are widely used for detecting highly expressed antigens. Furthermore, when the use of the secondary antibodies causes nonspecific and unwanted reactions, owing to the histological nature of the tissue and/or host species of the primary antibody, direct detection could be the technique of choice. For instance, in case of mouse lymph node immunostaining, labeled primary mouse monoclonal antibodies are preferred because antimouse secondary antibodies are not only bound to mouse primary antibodies bound to the tissue antigens of interest but will also react with endogenous immunoglobulins vastly found in lymph nodes. This would lead to a strong nonspecific staining. Hence, direct detection methods using mouse primary antibodies conjugated to a fluorophore or enzyme would be a better option [3]. If this approach is not practically feasible, for example, due to the low expression level of the target antigen or technical problems in primary antibody labeling, indirect methods using primary antibodies from species other than that of target tissue would be desirable.
Direct immunostaining method.
One of the advantages of direct detection is that the incubation step with a secondary reagent is eliminated. Hence, this method is time saving and easy to perform. In addition, due to the wide range of fluorochromes that are commercially available, direct detection is vastly used in multicolor experimental designs [4, 5].
It is important to note that insufficient sensitivity to detect most of the antigens found in routinely processed tissues is one of the drawbacks of using direct detection method. Furthermore, each primary antibody needs to be individually conjugated with fluorophores or enzymes, which increases considerably the cost of the whole process. Another concern with direct staining methods is the possibility of functional impairment of the antibody affinity if the process of antibody labeling is nonoptimal. This is especially case for monoclonal antibodies in which all antibody molecules in a given preparation have almost the same affinity and so are most likely to be affected all together by improper labeling. This issue is less problematic for polyclonal antibodies in which antibodies with diverse physicochemical properties are produced against an antigen [5, 6, 7].
Needless to say, direct detection methods are the method of choice in such high-sensitive protein detection systems as flow cytometry. Although this system is the simplest and the most convenient method for detection of a given marker expression, it is not routinely employed in clinical and research applications due to the limitations mentioned above.
The need for more sensitive detection systems for antigens with low expression pattern was a provoking factor that prompted Coons et al. in 1941 to develop two-step detection methods [8]. This system employs an unlabeled primary antibody as the first layer and the secondary antibody, which is raised against the primary antibody and is labeled with different fluorophores or enzymes (Figure 2) [6, 9, 10, 11]. In indirect methods, primary antibodies retain full avidity because they remain unlabeled. Indeed, higher number of labels per molecule of primary antibody is achieved in indirect compared to direct detection methods. The later stems from the fact that at least two labeled secondary antibodies can bind to each primary antibody molecule. These factors result in increased reaction intensity and the higher sensitivity in indirect staining methods. Accordingly, indirect methods are able to detect fewer number of antigens with less primary antibody. Moreover, indirect methods are more practical than direct methods since the same secondary antibody can be applied for detection of different sets of primary antibodies if they have been raised in the same species [12]. Another benefit of indirect method in IF stainings is possibility to select secondary antibodies with fluorophores of different colors. For example, if the tissue shows strong endogenous red autofluorescence, the secondary antibody labeled with green fluorophore could be a right choice [3]. Previously mentioned advantages of indirect detection systems eventually led to its widespread applications in research and clinical settings.
Indirect immunostaining method.
Despite advantages mentioned above, indirect immunostaining methods suffer from some shortcomings. First, additional controls and blocking steps are inevitable when using secondary antibodies. Indeed, there is possibility of nonspecific staining that happens when the secondary antibody interacts with unwanted tissue targets. If nonspecific staining is noticed, blocking reagents have to be used to treat the tissue sections that could be time-consuming and cause additional costs to IHC experiment [6, 13]. The blocking agent should contain nonimmune antibody fraction from the same species in which secondary antibody has been produced. This results in competitive blocking of the nonspecific binding sites for secondary antibody in the target tissue by the unlabeled antibodies from the same species. The addition of further layers beyond their use in the two-step indirect method for increasing the sensitivity of detection can be problematic as addition of every new species of antibody considerably increases the risk of nonspecific interactions and background staining [14]. Desire for more sensitive detection systems triggered researchers to develop next-generation detection systems, especially for those antigenic markers, which are not expressed in physiological condition, and any level of their upregulation would be interpreted as a pathological condition.
Early conjugation protocols were not efficient and did not label all antibodies leaving a fraction of antibodies unlabeled. These unlabeled antibodies were able to compete with labeled antibodies for binding to the cognate antigen and reduced the efficiency of detection. To overcome this problem, new approaches were invented that eliminated the need for chemical conjugation of antibodies. In these approaches, antigen specificity of antibodies is employed to couple antibodies to the enzymes. Taking advantage of antigen specificity of antibodies, antiperoxidase or antialkaline phosphatase antibodies are easily coupled with peroxidase or alkaline phosphatase after incubation with these enzymes without need for any chemical modifications of the antibody. These preformed soluble enzyme-antienzyme immune complexes are then used as the third layer reporter antibody for detection of the antigen-bound primary antibody in tissue section. Taking advantage of the bivalent properties of IgG binding, a second-step antibody with binding specificity to primary antibody and tertiary antienzyme antibody complexed with the enzyme bridges two layers (Figure 3a). The bridge antibody is usually used in excess, so that one of its two identical binding sites interacts with enzyme-coupled tertiary antibody, while the other site interacts with primary antibody. The tertiary antienzyme antibody has the same animal species of origin as the primary antibody. The bridge methods are collectively called as soluble enzyme-antienzyme methods [5, 8, 15, 16, 17].
Two- (a) and three-step (b) bridge immunostaining methods.
The classical immunoenzyme bridge method [18] was rapidly replaced with an improved version in which peroxidase-antiperoxidase complex (PAP, MW: 400–430 KDa) contained three peroxidase molecules and two antiperoxidase antibodies (Figure 3b) [15]. In this system, antibodies against alkaline phosphatase can also be employed to form alkaline phosphatase-antialkaline phosphatase complexes (APAAP, MW: approximately 560 KDa) [17]. In contrast to PAP complexes, APAAP complexes include two molecules of alkaline phosphatase and only one antibody. The APAAP method is usually used as an alternative to PAP technique when high levels of endogenous peroxidase in such tissues as bone marrow aspirate specimens, spleen and peripheral blood, interfere with the staining or when double labeling approaches are desired [19].
Soluble enzyme-antienzyme methods offer several advantages over direct and indirect detection methods. The drawback of chemical conjugation process, which could potentially lead to impairment of antibody activity, is entirely avoided in enzyme-antienzyme methods. Due to a greater number of enzyme molecules localized per antigenic site, enzyme-antienzyme process shows the higher sensitivity compared to previously described methods. It is reported that PAP method exhibits nearly 100- to 1000-fold higher sensitivity than two-step indirect method [7]. Although multilayering of detection antibodies could potentially increase the risk for nonspecific interaction with the tissue antigens, PAP and APAAP methods that offer triple level detection are among the exceptions. These methods are suitable for cell and cryosection IHC [14].
In comparison to two-step indirect methods, PAP and APAAP are more time-consuming. Indeed, these methods may not have sensitivity enough required for use in formalin-fixed paraffin-embedded (FFPE) preparations, especially when used in combination with monoclonal antibodies [14]. Although PAP and APAAP methods have been known as the highly sensitive, reliable, and popular techniques in pathology laboratories for a long time, they have gradually been replaced by more improved methods such as streptavidin-biotin- and polymer-based systems.
Labeled avidin/streptavidin-biotin (LAB/LSAB) are among very sensitive IHC detection methods, which take advantage of high-affinity binding of avidin/streptavidin to a water-soluble vitamin, biotin (vitamin H or B7) [5, 20, 21, 22]. The affinity constant of avidin binding to biotin (1015 M−1) is nearly 103–106 times more than the binding affinity of antibody-antigen interaction [22].
The potential of avidin-biotin system to be used in immunoassays was inspired for the first time from a study in 1972 in which it has been shown that avidin could inactivate the biotinylated bacteriophages [23]. Avidin-biotin-based system was used for the first time in an immunological experiment in 1976 when an erythrocyte surface antigen was localized by using biotin-labeled antibody and ferritin-avidin conjugate [24]. In 1979, Guesdon et al. showed that avidin-biotin complex could be effectively used for immunoassays. Using avidin-biotin system, they suggested different related methods for enhancing the specificity and sensitivity of solid-phase immunoassays. They also used avidin-biotin-based immunohistochemistry for localization of intracellular immunoglobulins [25].
The principle of labeled avidin-biotin (LAB) technique is based on sequential interaction of biotin-labeled antibody with tissue antigen and enzyme-labeled avidin with biotinylated primary antibody (Figure 4a). In the bridged avidin-biotin (BRAB) technique, however, avidin bridges biotin-labeled primary antibody and biotin-labeled enzyme (Figure 4b). BRAB is particularly suitable in cases where intracellular penetration and/or sensitivity of the staining reaction are the major concerns. An indirect approach of BRAB technique (IBRAB) can also be applied for identification of antigens in formalin-fixed paraffin-embedded tissues in which avidin and biotin-labeled peroxidase are added sequentially to the system after primary antibody and biotin-labeled secondary antibody. The superiority of BRAB over LAB method is that there is no need to prepare protein-protein conjugate [20, 25].
LAB/LSAB (a) and BRAB (b) immunostaining methods.
Avidin extracted from egg white is a large tetrameric glycoprotein with molecular weight of about 66 KDa. Each subunit (MW 16,400 Da) contains one high-affinity binding site for biotin [26] and one oligosaccharide modification (Asn-linked). Tryptophan and lysine residues in each subunit are believed to be involved in forming the binding pocket with high affinity for biotin molecule [27, 28, 29]. Biotin with molecular weight of about 244.31 Da is a small molecule, which has only one binding site specific for avidin. Biotin can be easily conjugated with an antibody or other macromolecules such as fluorochrome and enzymes through other sites [6, 22].
Due to some limitations mentioned below, avidin has been mostly substituted by streptavidin in IHC applications. In this regard, labeled streptavidin-biotin methods (LSAB) are now more popular than LAB methods in both diagnostic and research IHC laboratories [30, 31, 32, 33, 34]. The sequence of streptavidin from
LAB/LSAB methods offer several advantages for IHC applications. Biological activities of macromolecules (e.g., enzymatic catalysis or antibody binding) are not affected when they are conjugated with biotin. On the other hand, the affinity of avidin/streptavidin to biotin is quite high enough that ensures the biotin-avidin/streptavidin complex is not disrupted by manipulations like multiple washing when the complex is immobilized in the tissue sections or by changes in pH and presence of chaotropes [22]. LAB/LSAB techniques considerably improve the sensitivity and efficiency of the immunohistochemical detections and allow researchers to use even more diluted primary antibodies. An immunohistochemical staining that employs a single layer of biotin-labeled monoclonal antibody provides sensitivity equivalent or much greater than PAP methods [43]. The increased sensitivity of avidin-biotin methods stems from larger numbers of biotin molecules that is conjugated to a primary antibody [20, 25, 44]. Due to very high sensitivity, IHC stainings using LAB/LSAB techniques are rapid [45, 46]. LAB and LSAB technique can also be applied in an indirect manner, where biotinylated secondary antibodies are used in conjunction with unlabeled primary antibody [47].
The main challenge of LAB/LSAB techniques is the nonspecific (false-positive) staining, which occurs when the tissue of target contains endogenous biotin [6, 7]. Endogenous avidin biotin activity (EABA) or tissue affinity for avidin/streptavidin is especially common in tissues and cells that contain high amount of biotin, such as placenta, mammary glands, kidney, adrenal cortex, brain, liver, fat, and mast cells [3, 6, 48]. EABA is much highlighted by heat-induced epitope retrieval (HIER) but also develops in tissues subjected to other types of antigen retrieval [49, 50, 51]. The level of endogenous biotin activity is especially higher in frozen compared to FFPE tissue sections, which leads to unwanted nonspecific reaction [52, 53]. EABA is typically found in cytoplasm, but it has been reported in the nucleus as well [51, 54, 55, 56]. Although paraffin embedding and formalin fixation have been found to significantly decrease the level of endogenous biotin, it is highly recommended to use a biotin blocking step when using avidin/streptavidin-biotin-based detection systems to decrease endogenous biotin activity. Since the commercially available EABA blocking reagents (pure avidin and biotin solutions) are very expensive, many researchers prefer to use homemade blocking reagent containing egg white and 5% powdered milk as sources of avidin and biotin, respectively [57, 58, 59, 60].
For signal amplification, another biotin-based IHC detection method was developed, namely avidin-biotin complex (ABC) method, in which a preformed avidin-biotin-peroxidase complex is used as the detection layer [20, 61]. This technique induces three different layers; an unconjugated primary antibody, a biotinylated secondary antibody, and finally a large complex of enzyme-labeled biotin and avidin, which is attached to the biotin molecules conjugated to the secondary antibodies (Figure 5). Two biotins from adjacent biotinylated enzyme molecules can be joined via an avidin molecule [62]. Four biotin binding site of avidin molecule could result in formation of lattice complexes in which avidins are attached together by biotinylated enzyme molecules creating a large complex, which is attached to the biotinylated secondary antibody [20, 63]. In normal circumstances, not all the four avidin’s capacity for biotin are taken up by biotinylated enzyme. This allows the complexes to attach to biotin of primary or secondary antibodies [64].
Avidin/streptavidin immunostaining method.
Before the advent of biotin-avidin-based methods, the PAP method was considered the most sensitive detection technique. The ABC method was then found to be nearly 40 times more sensitive compared to PAP method [65, 66].
By applying biotinylated primary antibodies, the ABC protocol can be shortened to a two-step method [3]. It is reported that application of biotin-labeled primary antibody in the two-step ABC method creates an equal sensitivity to the unconjugated antibody in the three-step ABC method. This finding proposes that biotinylation does not impair antibody activity and that application of a secondary antibody to intensify the reaction would not be necessary, if a suitable biotin-labeled primary antibody is used [43].
Although formation of lattice complexes of avidin and biotinylated enzyme seems to increase the sensitivity of ABC method compared to LAB/LSAB, it was found that the sensitivity of ABC method is 5–10 times less than the LSAB method [67]. This disadvantage of ABC method is due to the large size of lattice complexes that hinder their penetration into the cells. Indeed, as with LAB/LSAB methods, the background in ABC method cannot be removed due to the irreversibility of the avidin-biotin reaction [21, 68]. As with LAB/LSAB methods, tissue endogenous biotin is one of the concerns in ABC-based IHC staining methods that results in nonspecific staining.
Desire for IHC detection systems with improved sensitivity led to the development of chain polymer-conjugate technology in the last decade of the former century [69, 70]. Improved sensitivity of this technology is based on using synthetic or natural polymers that increase the capacity for incorporating ligands or enzymes to be coupled to linker antibodies [71, 72, 73, 74, 75, 76, 77, 78]. Using this technology, much higher antigen detectability could be obtained in comparison to standard ABC and LSAB methods or in enzyme-antienzyme immune complex techniques (PAP and APAAP) [69, 70]. The chain polymer-conjugate technology normally utilizes a backbone of an inert polymer molecule of dextran [71, 72, 73], polypeptides [74], dendrimers [75, 77], or DNA branches [78]. The backbone is able to carry both antibodies and multiple enzymes. Hence, nearly 11 antibodies and up to 40 HRP molecules could be anchor to one 500 KDa dextran molecule [79].
In 1993, a one-step direct polymer immunohistochemical staining method, namely enhanced polymer one-step staining (EPOS) system, was introduced by Bisgaard and Pluzed [80]. In this method, up to 10 monoclonal primary antibodies and 70 enzyme molecules are attached to a dextran backbone with a high molecular weight. This would enable the whole immunohistochemical staining process (from primary antibody to enzyme) to be completed in a single step (Figure 6a) [81]. The whole process can be performed in nearly 7 min for frozen sections and to less than 3 h for regularly processed, paraffin-embedded specimens. Hence, when a quick and reproducible IHC-based diagnostic approach is demanded in emergency circumstances, for example, during surgeries, this method should be taken into consideration [82]. However, applicability of this method is restricted to primary antibodies provided by the manufacturer and was not suitable for user supplied primary antibodies.
Polymer-based immunostaining method: (a) EPOS and (b) EnVision.
To overcome this limitation, a polymer-enhanced two-step IHC detection system (EnVision, EV) was introduced in 1995. EV system contains secondary antimouse and antirabbit Ig antibodies and could be applied to localize tissue-bound primary antibodies of mouse and rabbit origins (Figure 6b) [83, 84, 85]. The EnVision complex is composed of up to 20 secondary antibodies and nearly 100 molecules of peroxidase molecules, which all are directly attached to an activated dextran polymer backbone [86].
EnVision is a user-friendly technique and provides the users a rapid visualization in only 45 min. This method offers a very high sensitivity and does not lead to false-positive reaction due to the endogenous biotin [87]. Although the EV system is a very expensive method, it can be applied with higher dilutions of primary antibodies. Indeed, because endogenous biotin is not a problem anymore, EV permits more efficient heat-induced epitope retrieval (HIER) [69, 88]. The detection systems based on polymers could also be a choice for quick immunostaining of frozen sections when tumor margin and micrometastasis is to be identified. Furthermore, polymer-based detection systems are sensitive enough to be applied as an alternative detection system in western blotting [89] and in chromogenic
Dextran carriers with a high molecular weight, however, appear to compromise the penetrative ability of the detection reagent due to spatial hindrance. Accordingly, the sensitivity of polymer-enhanced systems is profoundly affected by antigen localization. For instance, remarkably low sensitivity has been noticed in nuclear antigens [88, 91]. Indeed, in thick tissue sections, where the antigens are located beneath the surface area, only a part of antigens are amplified. This happens because of the large size of dextran-enzyme complex, which could not disperse into the deeper layers making quantitative results unreliable [87]. Subsequently, EnVision+ was developed, which was a modified version of EV system with higher sensitivity. EnVision+ contains a mixture of dextran polymers with two different secondary antibodies (goat antirabbit and goat antimouse IgG) anchored to it [86, 88, 92]. Nonetheless, EnVision systems were reported to give less sensitivity in case of some antibodies especially those that require proteolytic digestion, which was believed to stem from problems of tissue penetration of the labeled polymer.
Although the application of polymer gives a chance of increasing the number of enzymes coupled to the carrier backbone, it also profoundly increases the size of complex. Therefore, enzyme density per unit surface may not be increased to the degree that would be expected. Hence, it would be a desirable approach to design a compact polymer-enzyme-linker antibody conjugates with optimal number of enzyme molecules. Based on this goal, Shi et al. [91] suggested to use small linear molecules that have a capacity to polymerize with enzymes and linker antibodies in a tightly packed size. The IHC results with this newly designed detection system (Power Vision) showed that it possesses compact size and, compared to conjugates containing polymer linkers, shows higher detection efficiency for antigens located on the cell surface or in the nucleus [91]. Compared to EnVision+, this “second-generation” polymer-based conjugate was found to be less expensive and fast and showed better reproducibility and capacity to be standardized [93, 94]. From clinical point of view, these methods are extremely useful when emergency results (for example, assessing the intraoperatively surgical margins of tumor specimens) are needed [95].
In 1989, a novel signal amplification method for immunoassays was introduced by Bobrow et al. called catalyzed reporter deposition (CARD). The CARD was first used in western blots and immunodots [96, 97, 98] and was then adapted for IHC by Adams [99].
The signal amplification in this system is based on an analyte-dependent reporter enzyme (ADRE), which catalyzes the deposition of additional reporter molecules. The first step of this system relies on the same principle as LAB/LSAB detection system. Accordingly, primary antibody is first added to the tissue section followed by biotinylated secondary antibody and either HRP-labeled streptavidin (in tyramine signal amplification (TSA)) or streptavidin-biotin-HRP complex (in catalyzed signal amplification (CSA)). The amplification process happens when the peroxidase enzyme (ADRE) oxidizes the phenolic components to produce extremely unstable and reactive intermediate radicals, which are then bound to a tissue section [96, 100]. Tyramine, a biogen amine derived from aromatic amino acid tyrosine, is a substrate commonly used in this technique. It contains an amine at one end and a phenol at another end, which is used by peroxidase enzyme. The amine group is employed to conjugate the molecule with biotin or any other target molecules via an amide bound [101]. In the presence of HRP and H2O2, biotinylated tyramine is oxidized and resulting highly reactive radicals will react with electron-rich aromatic components, such as tyrosine-rich moieties of proteins in the vicinity of the HRP binding sites in tissues. This binding occurs very rapidly within 10 min. Due to a very short half-life of tyramide radicals, they are deposited at the same location where they are generated [102]. This reaction is then followed by incubation of the tissues with streptavidin-peroxidase complex. This complex is attached to the biotin sites of the tyramine, which are remained free. This reaction is restricted to the sites of primary antibody binding site where HRP had previously accumulated (Figure 7).
Tyramide-based immunostaining method.
Because of the high sensitivity of this method, biotinylated tyramide amplification enabled many antigens to be traced, which had previously been unreactive in formalin-fixed paraffin-embedded tissues [101]. In comparison to the avidin-biotin-based methods, biotinylated tyramide signal amplification exhibits 5- to 10-fold more sensitivity. Some researchers believed in even more sensitivity [103]. It was reported by Sanno et al. that staining of pituitary hormones with CSA showed nearly 100-fold higher sensitivity compared to standard ABC method [104]. It is recommended to use this method when (1) antigen expression in target tissue is extremely low or the amount of antibody available is limited and (2) primary antibodies possess low affinity or are not compatible with paraffin-embedded tissue sections [104, 105]. Repeating the biotinyl-tyramide reaction can further increase the signal intensity. However, this circuit is restricted to only two or three rounds before the background noise becomes an issue [106]. CSA and/or TSA methods are found to be cheaper than EnVision system but with the same effectiveness [86].
These methods, however, are laborious because they involve an initial avidin-biotin procedure followed by the tyramine reaction. Background can also be considered a serious problem, particularly with HIER. In this case, more prolonged treatment of tissues to quench endogenous peroxidase or endogenous avidin-biotin activities (EABA) is usually necessary [105, 107, 108, 109]. Although TSA/CSA detection methods have resulted in satisfactory results in terms of significantly increased sensitivity in IHC and
In an attempt to reduce the problems associated with endogenous biotin in conventional tyramide signal amplification, a biotin-free system, fluorescyl-tyramide amplification system (FT-CSA or CSAII), was introduced. Rather than biotinyl-tyramide, this system uses fluorescyl-tyramide and does not contain avidin/biotin reagents avoiding the problem associated with endogenous biotin. In this method, addition of primary antibody is followed by a peroxidase-labeled secondary antibody. Peroxidase enzyme is responsible to catalyze the transformation and deposition of fluorescyl-tyramide in the tissue section. When the reaction terminates, it could be inspected by fluorescence microscopy. The produced signals could even be converted to a colorimetric reaction by using peroxidase-conjugated antifluorescein antibody and a diaminobenzidine-hydrogen peroxide substrate.
This method is highly sensitive enabling researchers to detect and localize antigens with low expression level and to use primary antibodies with very low affinities [105, 106]. Alternative reporter includes dinitrophenol, which also results in marked reduction of background from endogenous biotin. Absence of nonspecific staining is due to no endogenous tissue distribution of dinitrophenol [14].
In the latest improvement of the biotin-free CSA method, fluorescein is conserved in the substrate, while the tyramine is substituted with ferulic acid, which is a much better peroxidase substrate and increases signal-to-noise ratio. In this system, the incubation time in each step can be significantly reduced, making it possible to stain a tissue in less than 1 h [112].
Rolling circle amplification (RCA) reaction was first developed for the purpose of nucleic acid detection [106], but it was then adapted for amplification of signals from antibodies bound to antigens [113, 114, 115, 116, 117, 118]. RCA is an enzymatic process in which a short DNA or RNA primer is amplified using a circular DNA template and special DNA or RNA polymerases to form a long single-stranded DNA or RNA [119, 120]. The end product of RCA is a long continuous sequence of DNA containing several tandem repeats complementary to the circular template. Unlike PCR, RCA could be performed at a constant temperature (room temperature to 37°C). A RCA reaction contains five different components: (i) a short DNA or RNA primer, (ii) a polymerase enzyme (e.g., Phi29 DNA polymerase for DNA, and T7 RNA polymerase for RNA), (iii) a suitable buffer compatible with polymerase enzyme, (iv) a circular DNA template, and (v) deoxy nucleotide triphosphates (dNTPs) [121].
RCA reaction has three different steps: (1) the circular DNA template with typically ~15–200 nt in length is synthesized through the intramolecular ligation of phosphate and hydroxyl end groups of a linear probe with the use of the target DNA or RNA as a ligation template [121, 122, 123], (2) the polymerase enzyme continuously adds dNTPs to a circular template-annealed primer to form a long ssDNA with tens to hundreds of tandem repeats, and (3) the RCA end products could be detected and even monitored by different signal readout methods (Figure 8) [121]. Different methods are available to visualize and also analyze the RCA process including (a) labeling the RCA products directly during the amplification process by using fluorescent dyes-conjugated dNTPs; (b) detecting the RCA product with hybridization of fluorophore-tethered complementary strands; quantum dots or gold nanoparticles can be attached to RCA products via a complimentary strand to visualize RCA product; (c) using molecular beacon for fluorescent detection of RCA products; (d) using DNA binding dyes such as SYBR green; (e) using biotinylated decorator and streptavidin-HRP conjugate or by DNA-peptide nucleic acid (PNA) intercalating dye for colorimetric detection of RCA product; and (f) using luciferase to generate light for bioluminescence detection of RCA products [121].
Rolling circle amplification immunostaining method. (1) Immunoconjugate bound to target antigen. (2) RCA primer hybridized to circle template (3) Synthesis of new DNA strand by DNA polymerase (4) Detection of amplified DNA by enzyme-labeled probe at the site of bound antibody.
One of the important advantages of RCA is that circular templates can be customized so that the signals of a single binding event are amplified in an exponential manner (e.g., multiprimed RCA) [124, 125, 126]. In this approach, signal amplification more than 109-fold is feasible, while a linear mode of RCA has a capacity to amplify signals to nearly 105-fold [127]. RCA reactions could be accomplished on a solid surface and also in a solution environment. In solid-phase RCA, reaction is conducted on a solid surface such as glass, microwell plates, microbead or nanobead particles, paper strips, or microfluidic devices. This system gives researchers an advantage of high-throughput analysis and potential for easy detection of target from complex sample matrices [121].
RCA is appeared to be a powerful method in immunoassays. The combination of RCA method with ELISA is found to grant more sensitivity and decrease the lower detection limit. In this regard, there is an approach called immuno-RCA in which, a RCA primer-conjugated antibody is applied on a target antigen that has been coated on a solid surface followed by a RCA reaction. The first immuno-RCA test was introduced by Schweitzer B et al. (2000) on a glass slide for IgE quantification [128]. From that time, solid-phase RCA has become popular as signal amplification method in antibody microarray analysis of multiplexed proteins [129, 130, 131, 132]. A sandwich immuno-RCA has been adapted to detect the target with high sensitivity. In this technique, the target antigen in biological media is first captured on a solid surface using coated antibody. In the next step, a RCA primer-conjugated secondary antibody is applied to conduct the RCA reaction [133, 134, 135].
Konry et al. [136], by combining the capacity of RCA reaction to detect a single-molecule and microfluidic technology, demonstrated the feasibility of identification of specific protein markers on tumor cell surfaces in miniaturized nanoliter reaction droplets. This approach of signal amplification in a microfluidic format could improve the applicability of existing methods by reducing consumption of sample and reagent and increasing the specificity and sensitivity for various applications such as early diagnosis of cancer [136]. Specific immunocytochemical and immunohistochemial identification of a wide range of intracellular molecules (prostate-specific antigen and vimentin) and cell surface antigens (epithelial membrane antigen, CD3 and CD20) in a variety of tissues (tonsil and breast) and cell lines (U266, Jurkat) has successfully been accomplished using RCA-mediated signal amplification. Indeed, immuno-RCA was reported to give more uniform staining pattern compared to the conventional methods [129].
It has been shown that attachment of a RCA primer to primary or secondary antibody does not impair affinity or avidity of the conjugate. Nonetheless, RCA reaction adds 60–90 min to the conventional IHC protocol. Although RCA is able to generate amplification of DNA up to 109-fold, immuno-RCA in LSAB-based IHC applications is able to increase the signal to only about fourfold [129]. Simultaneous evaluation of TSA and RCA detection techniques by Warford et al. revealed that both methods are capable to produce results with a high signal-to-noise ratio. However, they found TSA detection system to be more sensitive than the RCA method [14].
The sensitivity of an IHC staining is a function of detection method for signal amplification [138].
The choice of a detection system is mainly determined by laboratories based on the nature of the specimen, expression level of the antigen, cost, desired sensitivity, and possible automation [53]. Choosing an appropriate detection system enables maximum sensitivity and optimum visibility of the immune reaction with the fewest steps and in the shortest time [139]. As a general rule, the more complex an IHC method, the more sensitive it is. One- or two-step IHC procedures are usually less sensitive than more complex, multistep procedures. In addition, the detection system must be accurate, reproducible, and results in a high signal-to-noise ratio [140]. When choosing a desirable detection system, several factors are needed to be taken into consideration: (1) the expertise/experience of the technician; (2) type of the antigen to be identified; for example, some antigens are widely expressed and do not need a sensitive method to be visualized; (3) number of tests and the amount of antibody that is available; (4) the affinity of the antibody: each antibody has its own affinity that requires a specific detection system, antibodies with less affinity usually need more sensitive detection systems; (5) species idiosyncrasies (does the tissue contain endogenous biotin), (6) budget; (7) localization of the antigen of interest (some detection systems do not have high cell penetration capacity due to the large size and regardless of having high sensitivity for detection of surface antigens, do not yield a high sensitivity for intracellular or nuclear antigens), (8) the need for or type of antigen retrieval; typically, a non-biotin-labeled detection system is recommended if HIER is used to avoid background from endogenous avidin-biotin activity (EABA) [141].
A detection system should be compatible with animal species as well. A detection system with an outstanding performance in human is not always suitable for animal models [6, 142]. The sensitivity of commercially available detection kits, some optimized for particular animal species, should be validated in-house before use. The secondary and tertiary reagents of some kits may contain antibodies or other compounds that potentially nonspecifically react with tissue antigens, leading to a background or staining. This is one justification for negative controls in IHC [141].
As a further general rule, one should always try to use the simplest detection method with sensitivity enough for detection of the antigen. The multilayering of detection antibodies beyond this threshold can be problematic as with the addition of every new step, the risk of nonspecific interaction with the preparation increases. There are some exceptions to this rule. For example, in tumor-specific antigens, which are not expressed in normal condition, the use of more sensitive methods might decrease detection level cutoff and increase the likelihood for early detection of cancer [143, 144].
In emergency conditions when results are needed in a short amount of time (such as evaluating intraoperatively surgical margins of tumor specimens), applying a detection method with high sensitivity will definitely improve accuracy of the procedure and help surgeon to obtain wider surgical margins if needed.
The authors dedicate this book chapter to all mice, which generously made substantial contribution for improving authors’ knowledge of immunohistochemical staining during experimental researches.
The authors declare no conflict of interest.
IntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:119061},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slu