Tools and databases used in glycoinformatics.
\r\n\tHowever, many questions concerning the shape and stability properties of lattice solitons remain open. For instance, do other types of lattice solitons in different geometrical structures exist as well? How does the lattice shape effect the solitons’ shape and soliton stability?
\r\n\tIn this book, we aim to present the recent developments in optical lattice soliton theory and applications.
\r\n\tTopics that will be included, but are not limited to:
\r\n\tOne-dimensional and two-dimensional lattice solitons in Kerr and saturable media
\r\n\tSolitons in Bose-Einstein condensates (BEC’s)
\r\n\tLinear, nonlinear and mixed linear-nonlinear optical lattice solitons
\r\n\tNonlocal nonlinear lattices
\r\n\tLattices with defects
\r\n\tSolitons in lattices with quadratic nonlinearities
\r\n\tSolitons in photonic-crystals and photonic-crystal fibers
\r\n\tSimilariton generation in optical lattices
\r\n\tPulse shaping in mode-locked lasers
\r\n\tLattice soliton interactions
Glycans are long chains of carbohydrate-based polymers composed of repeating units of monosaccharide monomers bound together by glycosidic linkages. Complex and diverse glycans appear to be ever-present macromolecules in all cells in nature, and essential to all biological systems. Glycans play physical, structural, and metabolic roles in living organisms [1]. In the last century, knowledge on the biochemistry and biology of nucleic acids and proteins rapidly increased. Nevertheless, it has been much more difficult to understand the biology of glycans, which are main component of the cell surface [2]. The biosynthesis mechanism of glycans is totally different from those of nucleic acids and proteins. Biological mechanism of glycans is complex, which makes analysis of them extremely difficult and limits our understanding of mechanisms responsible for biological functions of glycans [3]. After the genomics revolution and development of high-throughput technologies, scientific interests increased to understand the characterization, function, and interaction of other significant biomolecules (e.g., DNA transcripts, proteins, lipids, and glycans) for the cell. These interests resulted in emergence of other omic types such as transcriptomics, proteomics, metabolomics, lipidomics and glycomics [4]. From the perspective of evolutionary conservation, conservation decreased in the order genomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics. On the other hand, reverse order is present for informational diversity of these fields of omics (Figure 1) [5].
\nThe degree of evolutionary conservation and informational diversity for the omics fields.
With the progress in high-throughput technologies, studies on glycobiology increased to screen cells quickly and generate huge glycomics data sets. Moreover, advanced analytical techniques and tools for data analysis provide possibility to improve high-throughput techniques for screening glycans as a marker of diseases and to classify structure of glycans in therapeutic proteins [6].
\nGlycans are linear or branched sugar macromolecules composed of repeating monosaccharides linked glycosidically. Beside nucleic acids and protein, glycans are known as the third dimension in molecular biology [7, 8]. These macromolecules can be found in the form of heteropolysaccharides or homopolysaccharides. Furthermore, glycoconjugates (glycolipid, glycoprotein and proteoglycan), can be also considered as glycan despite the fact that the carbohydrate part of glycoconjugates are only oligosaccharides [9]. In glycoproteins, oligosaccharides and proteins can be linked in different forms, namely N-linked glycans and O-linked glycans. N-acetylglucosamine is linked to the amide side chain of asparagine in N-linked glycans. C-1 of N-acetylgalactosamine is linked to the hydroxyl function of serine or threonine in O-linked glycans [10].
\nWith the increasing researches in glycoscience, many different roles of glycans in biological systems have been revealed in the last decades. Significant functions of glycans have been determined in numerous research areas such as immunity, development and differentiation, biopharmaceuticals, cancer, fertilization, blood types, infectious diseases, etc. Glycans are called as “cloths of cells” since they are present on the surface of the cell and responsible for the signaling and communications between cells. Glycans can be classified in several ways. Varki divided the biological roles of glycans into four main categories: (1) structural and modulatory roles, (2) extrinsic (interspecies) recognition of glycans, (3) intrinsic (intraspecies) recognition of glycans, and (4) molecular mimicry of host glycans. A total of 50 distinct roles are defined under these main categories [1].
\nGlycans perform huge range of biological function due to the diversity of them, and they have significant roles in several physiological and pathological events, such as cell growth, cell signaling, cell-cell interactions, differentiation, and tumor growth [11, 12, 13]. In biological systems, information is carried by glycans, which are significant biomarker candidates for many diseases such as cardiovascular diseases, deficiencies of immune system, genetically inherited disorders, several cancer types, and neurodegenerative diseases [14, 15, 16]. Alteration of glycan expression is observed during the development and progression of these diseases, which is caused by misregulated enzymes such as glycosyltransferases and glycosidases. As a result, altered glycan structures have potential use for the identification of these diseases at an early stage. Besides significant role of glycans in diagnosis and management of disease, they can be used as therapeutics, markers for identification and isolation of special cell types, and targets in discovery of drugs [17, 18, 19]. Moreover, glycans can be considered as an ideal target for vaccines due to the presence of them on the surface of several different pathogens and malignant cells. High affinity and exquisite specificity of other molecules to recognize glycans are a vital point of developments in the research of glycans and related diagnostics and therapeutic applications.
\nGlycosylation plays significant roles in many biological processes including growth and development of cell, tumor growth and metastasis, immune recognition and response, intercommunication of cells, and microbial pathogenesis. As a result, glycosylation of proteins is the one of the most common and significant posttranslational modifications of proteins [20, 21]. Furthermore, more than half of proteins undergo glycosylation [6]. Many issues such as genetic factors, nucleotide levels of monosaccharides, cytokines, metabolites, hormones, and ecological factors can affect and change glycosylation process [20, 21, 22, 23, 24]. Thus, integration of omics approaches (e.g., proteomics, genomics, transcriptomics, and metabolomics) to the field of glycobiology is essential to view the big picture of the whole biological system [20, 21, 25]. Furthermore, for the analysis of glycans and glycosylation pathways, many glycoinformatics tools and databases are now accessible [6].
\nGlycomics is one of the most recent types of omics area which is responsible for the structure and function evaluations of glycans in bio-systems [26]. Integrating glycomics to other fields of omics provides new system-scale insights in integrative biology [27].
\nMoreover, glycomics informs other crucial scholarships such as systems glycobiology and personalized glycomedicine that collectively aim to explain the role of glycans in person-to-person and between population variations in disease susceptibility and response to health interventions such as drugs, nutrition, and vaccines. Glycosylation is present in both normal and diseased individuals [1]. Abnormal glycosylation is observed in a variety of diseases. Difference between glycosylation patterns of healthy and diseased individuals can be used as glycobiomarkers in personalized medicine [28]. As a result, many new medical implications will be enabled by glycobiology and glycopathology [29]. Development of glycomedicine can be contributed by holistic approach of functional and structural glycomics, which have applications in therapy development, fine-tuning immunological responses and the performance of therapeutic antibodies and boosting immune responses [28, 30]. Many applications of glycan arrays are present in many fields, from basic biochemical research to biomedical applications [31]. In addition to shotgun glycan microarrays [32], cell-based array resource has been developed [33]. These developments enable deeper understanding of the many biological roles of the glycome. Nevertheless, multiplatform and multiomics technologies are expected to further extend the knowledge of molecular mechanisms of glycans.
\nMonosaccharides represent four free hydroxyl groups for the linkage of another monosaccharide. As a result of this, glycans have more complex structure compared to structure of peptides and nucleic acids. It is known that glycans are more than the sequential monosaccharides; monomer types, modifications, the position of modifications around the ring of sugar, glycopolymer branching, and linkages chirality are the factors that are responsible for the complexity. As a result, sequencing techniques used for peptides or DNA (Sanger or Edman sequencing) are not appropriate for glycans. Moreover, most of the glycans are present as a part of a glycoconjugate. Therefore, glycan part should be released from lipid or protein part, by the use of enzymatic or chemical methods and isolated for analysis.
\nIn the last decades, a number of techniques developed and applied to determine structure of the glycans with different degrees of detail [34]. A traditional method is to label the glycoconjugates radioactively and then apply anionic exchange, gel filtration, or paper chromatographic analyses prior and subsequent to enzymatic or chemical treatments. Still, it is difficult to figure out the definition of the actual structure; in consequence, in earlier studies, if adequate amounts were present, gas chromatography together with mass spectrometry (GC-MS) and/or nuclear magnetic resonance (NMR) studies were performed. However, these analyses involve special expertise to perform the research and interpret the results, particularly if standards were unavailable to compare with results.
\nHPLC and UPLC have superseded simple chromatography systems in recent years, and radioactive labeling has been replaced by fluorescent labeling. Nowadays, variable columns such as graphitized carbon, reversed-phase (RP), anion exchange, normal phase, or hydrophilic interaction resins can be used along with suitable enzymatic/chemical treatments. A less used alternative is to analyze glycans at elevated pH. As a result of this, the hydroxyl side chain deprotonation occurs, that enables the usage of anion exchange together with amperometric detection (HPAEC-PAD). On the other hand, glycan structure cannot be defined only by HPLC retention times, and for the unknown structure, analyses in the absence of standards should be interpreted with attention [35].
\nWith the improvements in the types and the sensitivity, contribution of mass spectrometer to studies of glycans and glycoconjugates has increased in the last decades [36, 37]. At first, for the analysis of variable types of glycopolymers from different sources, researchers used fast atom bombardment mass spectrometers (FAB-MS). For the analyses with FAB-MS, chemical modifications such as methylation and acetylation were required. As an alternative method, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was developed and analysis of both permethylated and native glycans can be performed with MALDI-TOF MS. Furthermore, current numerous electrospray techniques with many detector types have significance in glycomics. Mainly, a significant point in MS-based analysis is the capability to obtain glycan fragments. Besides, the preparation and separation techniques are of great importance to obtain the best results. As a consequence, liquid chromatography-mass spectrometry (LC-MS) in a number of forms is in general necessary since glycans with low abundancy or poor ionization capacity can be suppressed in the case of whole glycome examination. Moreover, reanalysis after the treatment of a chemical and an enzyme results in maximization of the ability to obtain clear results from the existing data.
\nGlycan is generally a part of the glycoconjugate; thus, glycoproteomics and glycolipidomics that consider both peptide/lipid and glycan parts are significant fields. At this point, mass spectrometry technique comes into prominence [38]. Both glycan and polypeptide/lipid parts can be studied with this technique. On the other hand, glycan parts of glycoproteins and glycolipids can be in various forms even if the polypeptide/lipid part is same, defined as microheterogeneity. The nature of glycan modifications is non-template driven and that leads to mentioned microheterogeneity [39].
\nBlotting technique can be used for simple screens. Reagents such as lectins and anti-carbohydrate antibodies with low specificity are often used for this technique; as a result, misleading results are often obtained [40]. Still, lectins, and antiserums have significance for immune responses in animals. New array-based systems can provide essential clues on proteins bounded to glycans [41].
\nDevelopments in integrative informatics and systems biology of glycans based on a holistic approach can make available a more comprehensive analysis. It elucidates annotation of glycans, enzyme levels, abundances of glycans biosynthesis pathways, and other omics data sets which are complementary. Though, several tools are developed for proteomics and genomics data sets and standard bioinformatics approaches are used in these tools, the complex relationships between diverse components (such as glycans, enzymes, transporters, and sugar nucleotides) of the glycosylation process are not considered by most of the existing bioinformatics tools. Consequently, the use of these tools for glycomics data sets has some limitations. The genome does not encode glycans directly and unlike proteins, interconnected action of many enzymes provides assembly of glycans. Due to mentioned limitations, developments in glycan analysis tools and methods have been delayed and most of the present glycoinformatics tools are special for single type data analysis [42, 43, 44, 45]. For instance, database matching between obtained MS results and specific glycans in a glycan library is used as a mutual method for MS-based glycoprofiling for the purpose of individual peak annotation [46, 47]. If the complexity of glycosylation is wanted to be considered, enzymes of the organism which synthesize the studied glycans should generate glycan structures used for the annotation of the spectrum [48]. Due to this alignment, activities of enzyme and those structures assigned to each peak in the same spectrum will be consistent.
\nAlthough many omics approaches have significant progress in the last decades, existing techniques of bioinformatics are still unsatisfactory for the integration of varied data sets [49, 50, 51]. For instance, relations between expression levels of gene and specific glycan linkages abundance are investigated by statistical database-driven approaches, and these approaches could not predict quantity of detailed glycan distributions [50, 51]. This indicates the necessity of glycoinformatics and systems biology tools integration for the identification of glycan structure and these should be also linked to the information of gene expression responsible for glycosylation enzymes which synthesize these glycans. In order to understand levels of mRNA which is related with the distribution and quantity of glycans present within healthy and diseased cells, mathematical modeling of glycosylation is considered as a promising method [48, 49, 52].
\nVariability in the platform of analytical high-throughput experiments can be reduced by data integration approach. Increased confidence of biomarker predictions and recommendations can be obtained if different data from experiments such as glycogenes expression information or mass spectra profile confirm the results from integrative glycoinformatics and systems glycobiology tools. Although integrated glycoinformatics tools have limitations in analytical sensitivities, analysis and comparison of various results with various platforms are enabled by these tools [6].
\nThe integration of glycomics with other various omics data is promising for further innovation in diagnosis and treatment of diseases [30]. The start point of multiomics data integration is to sort the data based on the omics level. In the following part, association between glycomics and other omics levels will be represented.
\nIntegration of glycomics with genetic sequence can be occur in a number of ways. For instance, glycosylation site can be gained or lost with the variation of sequence. A single-nucleotide polymorphism (SNP) affects glycosylation of prostate-specific antigen (PSA) and an altered function of it increases the risk of prostate cancer. Functional analysis indicated that the stability and structural conformation of PSA are affected by missense variant rs61752561, which causes an additional extra glycosylation site [53]. Furthermore, computational studies revealed that variations in cancer somatic cells have potential to cause gain or loss of glycosylation. In addition to SNP, variations in structure and abnormalities in cytogenetics could be integrated with glycomics. Cytogenetic abnormalities have been associated with glycome expression [54]. A particular glycosyltransferase can glycosylate numerous proteins, so genetic variants of it have extraordinary significance because function of many glycoproteins can be affected by a single difference in activity of enzyme. Several downstream pathways and cell metabolism can be affected by a genetic or epigenetic variant that is called pleiotropic effect of genetic or epigenetic variant on glycosylation [55].
\nMost of the glycomics research have been done at the level of transcriptome, which can be performed either at a particular locus or with a technology of microarray. In colorectal cancer (CRC), glycosyltransferase ST6GAL1 is associated with cancer, and altered ST6GAL1 expression was found by The Cancer Genome Atlas (TCGA) mining [56]. Moreover, in order to identify differential expression of glycosylation-related genes Saravanan et al. [57] used GLYCOv2 glycogene microarray technology. In the further studies, myeloma was compared with normal plasma cell samples and 60 upregulated and 20 downregulated genes were found among 243 genes in glycan-biosynthesis pathway [54]. A novel molecular signature that is enriched for enzymes of glycosylation was revealed by meta-analysis performed for gene expression of prostate cancer [58]. Additionally, hepatocellular carcinoma was investigated by reviewing gene expressions that are related with core fucosylation of the disease [59]. More systematic reviews and meta-analyses are required to develop reliable biomarkers.
\nStudies on glycoproteomics include peptide structures, glycan structures, and sites of glycosylation [30]. Single site on the peptide chain can be glycosylated by different glycans, and by this way, glycans can modulate function of the protein [60]. In the literature, diverse techniques were associated with different phenotypes, for instance, breast cancer, colon cancer, liver cancer, skin cancer, ovary cancer, bladder cancer, and neurodegenerative diseases, and additionally, a number of structural variations including sialylation, fucosylation, degree of branching, and specific glycosyltransferases expression [61, 62, 63]. For instance, cerebrospinal fluid N-glycoproteomics is of significant importance in early diagnosis of Alzheimer’s disease. Glycosylation patterns were assessed in patients and therapeutics targets such as glycoenzymes were suggested [63]. For the diagnosis of pancreatic cancer, specific glycoforms together with protein levels should be measured to improve potential for diagnosis [64]. Glycoproteins constitute the majority of protein tumor markers approved by Food and Drug Administration (FDA), and they are also used currently in clinical practice. Many of these glycoproteins have alterations of glycosylation in cancer [60]. MUC-1 (CA15-3/CA27.29) [65] and plasminogen activator inhibitor (PAI-1) [66] are biomarkers of breast cancer; beta-human chorionic gonadotropin (Beta-hCG) [67] is biomarker of colorectal cancer; alpha-fetoprotein (AFP) [68] is a biomarker of liver cancer and germ cell tumors; chromogranin A (CgA) [69] is a biomarker of neuroendocrine tumors; MUC16 (CA-125) [70] and HE4 [71] are biomarkers of ovarian cancer; and many other biomarkers are present for a variety type of cancer. Most of the results in the existing publications are heterogeneous; thus, systematic integrative reviews of the literature are required for further development of glycoproteomics.
\nMetabolomics is the large-scale study of the small molecule substrates that investigates variations in the metabolites within cells, biofluids, tissues, or organism. Metabolomics and glycomics were investigated in the research of post-traumatic stress [72]. According to the researchers of this study, these biomarkers together with omics markers should be integrated to understand the biological differences responsible for this stress. For discovery of liver cancer biomarker, proteomics, glycomics, and metabolomics were integrated and this integration enhanced performance when compared to separate omics data [73]. Physiological and pathological conditions are reflected by metabolomic and glycomic data in individuals. Similar to metabolites, small glycans can be quantified easily [74]. Human Metabolome Database (HMDB) is the most inclusive metabolite source that offers significant resource for the discovery of biomarkers in glycomics [75].
\nGlycolipidomics is a scientific field that identifies and quantifies glycolipids. For the determination of physiological and pathological conditions of individual, glycolipids can be used as a specific biomarker. They take role in development of neurological and neurodegenerative diseases, such as Lewy body dementia, Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia [30]. Furthermore, glycosphingolipids are associated with cancer and they are promising molecules for diagnosis as biomarkers and for malignant tumor immunotherapy as target [76]. More recently, Dehelean et al. [77] reviewed trends in the discovery of glycolipid biomarker by MS.
\nInteractomics is the research field that investigates whole set of interactions between molecules including glycans. Interaction of glycans with glycan-binding proteins (GBPs) is of significant importance in immune response, signaling, cell recognition, infections, neurodegenerative diseases, and cancer. High-throughput technologies ease studies also on interactomics [78]. UniLectin3D is a database that catalog lectins that are most studied GBPs. Database consists of curated information on 3D structures and interacting ligands [79]. Lectin-glycan interaction on surface of the cell is a significant factor for the regulation in corneal biology (i.e., corneal infection) and pathophysiology (i.e., inflammation) [80]. The whole protein-glycan interactome information has not been obtained yet [41]. For future studies, estimated number of interactions is of importance. GenProBiS is a bioinformatics tool that analyzes binding sites between peptide-peptide, peptide-nucleic acid, and peptide-compound and also sites of glycosylation and other posttranslational modifications. Furthermore, it provides maps between sequence variations and structure of protein. More developments of bioinformatics tools analyzing huge data will prioritize the objections for experimental verification and provide contribution to interactomics development.
\nIn future studies, many other omics fields should be associated with glycomics such as comparative genomics, epigenomics, regulomics, NcRNomics, MiRNomics, LncRNomics, etc. Although glycomics is the significant field related with molecular interactions, information about how these complex processes controlled by regulatory network is still inadequate. In addition to classic omics fields, omics applications such as iatromics, environmental omics, pharmacogenomics, and nutrigenomics should also be reviewed.
\nGlycoinformatics combines bioinformatics tools with glycome. Glycomics data is collected by the tools and databases to investigate, reveal, and associate with other repository of related data of proteomics, genomics, and interactomics. Commonly used tools and databases are summarized in Table 1.
\n\n | Name | \nDescription | \nLink | \n
---|---|---|---|
Databases | \nCAZY | \nDescribes the families of structurally related catalytic and carbohydrate binding modules (or functional domains) of enzymes that degrade, modify, or create glycosidic bonds | \n\n | \n
KEGG GLYCAN | \nThe KEGG GLYCAN structure database is a collection of experimentally determined glycan structures. It contains all unique structures taken from CarbBank, structures entered from recent publications, and structures present in KEGG | \n\n | \n|
Glycan Library | \nA list of approximately 830 lipid-linked sequence-defined glycan probes derived from diverse natural sources or chemically synthesized | \n\n | \n|
GlycoMob | \nAn ion mobility-mass spectrometry collision cross-section database for glycomics | \n\n | \n|
GlycoBase 3.2 | \nA database of over 650 N- and O-linked glycan structures of HPLC, UPLC, exoglycosidase sequencing, and mass spectrometry (MALDI-MS, ESI-MS, ESI-MS/MS, LC-MS, LC-ESI-MS/MS) data | \n\n | \n|
Glyco3D | \nA portal of 3D structures of mono-, di-, oligo-, and polysaccharides and carbohydrate recognizing proteins (lectins, monoclonal antibodies, glycosyltransferases) and glycosaminoglycan binding proteins | \n\n | \n|
GlyMAP | \nAn online resource mapping of the variational landscape of glycoactive enzymes | \n\n | \n|
Glycosciences.de | \nA collection of databases and bioinformatics tools for glycobiology and glycomics | \n\n | \n|
UniProtKB | \nThe universal protein sequence database with information on glycosylated proteins | \n\n | \n|
UniCarbKB | \nUniCarbKB is a curated and annotated glycan database which curates information from the scientific literature on glycoprotein-derived glycan structures. It includes data previously available from GlycoSuiteDB | \nhttp://www.unicarbkb.org/ | \n|
UniCarbDB | \nUniCarbDB is a platform for presenting glycan structures and fragment data characterized by LC-MS/MS strategies. The database is annotated with high-quality datasets and is designed to extend and reinforce those standards and ontologies developed by existing glycomics databases | \n\n | \n|
UniPep | \nA database for human N-linked glycosites: a resource for biomarker discovery | \n\n | \n|
SugarBindDB | \nSugarBindDB provides a collection of known carbohydrate sequences to which pathogenic organisms specifically adhere via lectins or adhesins. The data were compiled through an exhaustive search of literature published over the past 30 years by glycobiologists, microbiologists, and medical histologists | \nhttp://sugarbind.expasy.org/ | \n|
Consortium for Functional Glycomics (CFG) | \nThe CFG serves to combine the expertise and glycomics resources to reveal functions of glycans and glycan-binding proteins (GBPs) that impact human health and disease. The CFG offers resources to the community, including glycan array screening services, a reagent bank, and access to a large glycomics database and data analysis tools | \n\n | \n|
GLYCONAVI | \nA Website for carbohydrate research. It consists of the “GlycoNAVI database” for molecular information of carbohydrates, and chemical reactions of carbohydrate synthesis, the “Route Searching System for Glycan Synthesis,” and “GlycoNAVI tools” for editing two-dimensional molecular structure of carbohydrates | \n\n | \n|
GlycoGeneDataBase (GGDB) | \nGlycogene includes genes associated with glycan synthesis such as glycosyltransferase, sugar nucleotide synthases, sugar-nucleotide transporters, sulfotransferases, etc. | \n\n | \n|
Carbohydrate Structure Data Base (CSDB) | \nCSDB covers information on structures and taxonomy of natural carbohydrates published in the literature and mostly resolved by nuclear magnetic resonance (NMR). CSDB is composed of two parts: Bacterial and Archeal (BCSDB) and Plant and Fungal (PFCSDB) | \n\n | \n|
EXPASy | \nThis section of the ExPASy server gathers a toolbox for processing data as well as simulating, predicting, or visualizing information, relative to glycans, glycoproteins, and glycan-binding proteins | \nhttp://www.expasy.org/glycomics | \n|
TOOLS | \nCASPER | \nA tool for calculating NMR chemical shifts of oligo- and polysaccharides | \n\n | \n
Glycan Builder | \nA software library and set of tools to allow the rapid drawing of glycan structures with support for all of the most common symbolic notation formats | \n\n | \n|
GlycoDomainViewer | \nAn online resource to study site glycosylation with respect to protein context and conservation | \n\n | \n|
Glynsight | \nGlynsight offers visualization and interactive comparison of glycan expression profiles. The tool was initially developed with a focus on IgG N-glycan profiles but it was extended to usage with any experiment, which produces N- or O-linked glycan expression data | \n\n | \n|
GlycoMinestruct | \nA new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by incorporating structural features | \n\n | \n|
GlyMAP | \nAn online resource mapping out the variational landscape of glycoactive enzymes | \n\n | \n|
GlycoMod | \nAn online tool to predict oligosaccharide structures on proteins from experimentally determined masses | \n\n | \n|
GlycoMiner/GlycoPattern | \nSoftware tools designed to detect, characterize, and perform relative quantitation of N-glycopeptides based on LC-MS runs | \n\n | \n|
Glycosciences.de | \nA collection of databases and bioinformatics tools for glycobiology and glycomics | \n\n | \n|
RINGS | \nA Web resource providing algorithmic and data mining tools to aid glycobiology research | \n\n | \n|
MonosaccharideDB | \nA comprehensive reference source for monosaccharide notation | \n\n | \n|
NetOGlyc | \nNext generation prediction of O-glycosylation sites on proteins | \n\n | \n|
GlycoSpectrumScan | \nA Web-based bioinformatic tool designed to link glycomics and proteomics analyses for the characterization of glycopeptides. GlycoSpectrumScan is a MS platform which is independent, freely accessible, and profiles glycopeptide MS data using beforehand separately acquired released glycan and proteomics information. Both N- and O-glycosylated peptides as well as multiply glycosylated peptides can be analyzed | \n\n | \n|
SimGlycan | \nA predictive carbohydrate analysis tool for MS/MS data | \n\n | \n|
SugarQb | \nSugarQb enables genome-wide insights into protein glycosylation and glycan modifications in complex biological systems. This is a collection of software tools (Nodes) which enable the automated identification of intact glycopeptides from HCD‐MS/MS data sets, using commonly use peptide-centric MS/MS search engines | \n\n | \n|
GlycoDigest | \nGlycoDigest is a tool that simulates exoglycosidase digestion based on controlled rules acquired from expert knowledge and experimental evidence available in GlycoBase | \n\n | \n|
Virtual Glycome | \nThis Website is focused on presenting selected computational tools and experimental resources that can be used to better understand the processes regulating cellular glycosylation at multiple levels | \n\n | \n|
SweetUnityMol | \nSoftware to display 3-D structures of carbohydrates, polysaccharides, and glycoconjugates | \n\n | \n
Tools and databases used in glycoinformatics.
System-based analyses applied smoothly to network of signaling, metabolic processes, and physiological modeling; however, applications in systems glycobiology still have problems in computational and analytical studies and this situation arises from prominent bottlenecks [81]: (i) there is no accepted standard for model building; (ii) glycoinformatics databases are underdeveloped; (iii) and insufficient quantitative data are from glycoproteomics experiments.
\nIn recent years, many systems based models have been developed to simulate biosynthesis of glycans. Nevertheless, difficulty in the incorporation of glycan structure and specificity data of enzymes related with glycosylation into mathematical models. As a result of this difficulty, systematic model building is still not present in this field. Moreover, limited number of the current models is available in Systems Biology Markup Language (SBML) format [82], which is the obstacle to develop, share, and validate computational models.
\nIn the last decades, many databases related to glycoscience have emerged. Nevertheless, functional information is limited when compared to glycan structure and taxonomy data. In the future, relation of glycan structure to specific enzymes that synthesize them, the rates of their synthesis, and also their function are required in order to build model.
\nFor the measurement of glycome, two main approaches are common. In the first approach, enzymes or mild hydrolysis is used to separate the glycans from the peptide backbone. Next, to obtain information about the composition and relative abundance of the carbohydrate structures, permethylation of glycans and MS analysis are used [83]. The bottleneck is the lack of well-developed software. For the data analysis of glycoproteomics and correspondingly acceleration of system-based model building and validation, more sophisticated computational tools are required.
\nMathematical models of glycosylation are developed in three main stages: (i) biological information gathering; (ii) model formulation; (iii) and simulation and postsimulation analysis. First step includes definition of components (enzyme, substrate, and product) crucial for the model. All of the components present in the biochemical network and connections between them are cataloged in this step. The process relies on information of biochemistry and cell biology, and analytical tools. In the next step, behavior in the steady state of the system is investigated by using simple linear algebra and principles of optimization. If time is a variable, the computer model can incorporate ordinary differential equations (ODEs) or Boolean networks. Proper kinetic/thermodynamic/stochastic/optimization parameters are collated depending on the formulation nature of the model and processes which are specified by enzymatically/nonenzymatically. The last step is performed to simulate the experimental system in the computer and to define unknown parameters of model by the help of fitting experimental data [81]. Visualization of multidimensional results is significant because numerous diverse models may attempt to fit one data set obtained from time labor and concentration-dependent experiments. As a result, consolidation of the findings obtained by simulations of complex reaction network and generation of hypotheses that can be tested experimentally require network analysis strategies.
\nGlycomics is a very comprehensive research area of science and interacts with several different omics fields. As many other omics types, it consists of a huge number of genomics components. In the future, techniques in high-throughput analysis and bioinformatics will be developed and enable the integration of all available data of glycomics into a particular diagram and by this way, it will be possible to develop biomarker and identify potential new therapeutic targets. Moreover, progresses in the field reveal that integrative multiomics approach should include glycomics in order to develop new biomarkers for robust diseases. One of the specific fields of systems biology is the systems glycobiology. It is based on a holistic approach that indicates process of complex glycosylation and associations between its constituents. A more complete glycome overview is targeted by using enzyme levels, abundances of glycans, pathways for biosynthesis, glycan annotation, and related omics data sets.
\nAn approach of systems glycobiology is constructed in combination of various data sets of glycomics with that of other omics fields by the use of glycoinformatics tools to clarify understanding on process of glycosylation from various data sets. With the presented chapter, main aspects of glycobiology, glycomics, and systems glycobiology are summarized. However, these fields are still developing and further developments provide more insight to this specific research area.
\nIn 1980, Furchgott noted that the endothelium produces and releases a vasodilatory substance named endothelium-derived relaxing factor (EDRF), which diffuses into adjacent vascular smooth muscle cells and results in vascular relaxation [1]. In 1987, EDRF was identified as nitric oxide (NO) by Ignarro [2] and Moncada [3]. Murad reported the vasodilatory effect of nitroglycerin and NO formation from nitroglycerin in 1977 [4]. However, at the time, it was not known that endogenous NO is produced and released as a physiological substance in the body, especially in the vascular endothelium.
High-temperature combustion accelerates the reaction of oxygen and nitrogen in air to generate nitrogen oxides (NOx), such as NO, NO2, and N2O3. A common source of NOx is car engines, among which diesel engines have particularly high production. NO reacts with O2 to produce NO2, which is more toxic than NO. Thus, NOx, including NO, is considered an air pollutant. Accordingly, measuring instruments and NO gas standards with known concentrations are needed to assess NO concentrations in air. In addition, NO gas has various industrial applications, including uses in the production of chemicals, semiconductors, integrated circuits, and memory storage elements and devices. Therefore, measuring instruments for NO and the delivery of NO from gas cylinders were developed long before the discovery of NO as a physiological substance in the body. NO is now recognized as a gas and a physiological substance. Pioneering clinicians determined that “as a gas, NO can be administered to the body through the lung.” It was fortunate for these clinicians who first conducted NO inhalation in humans that measuring instruments for NO and NO cylinders were available.
The present chapter discusses endogenous NO production in normal and hypertensive pulmonary vasculature, the history of NO inhalation for therapeutic use, the fate of inhaled NO (iNO), effects of iNO in remote organs other than the lung, and iNO as a therapeutic strategy in pediatrics.
NO is primarily synthesized by endothelial NO synthase (eNOS, NOSIII) in pulmonary vascular endothelial cells. NO reacts with a receptor, soluble guanylate cyclase (sGC), in adjacent smooth muscle cells. Activated sGC produces cGMP, which stimulates protein kinase G (PKG) and exerts many physiological effects, including pulmonary vascular relaxation. The inhibition of NO production by
The effects of NO differ among cell types. NO induces relaxation in vascular smooth muscle cells, prevents aggregation and adhesion in platelets, prevents adhesion in leucocytes, and acts as a neurotransmitter in synapses. Thus, NO regulates various cell functions. In the vasculature, NO is released from endothelial cells, reaches adjacent smooth muscle cells, and causes vascular relaxation, indicating that it functions in intercellular signaling. Among the physiological roles of endogenous NO, vascular relaxation was discovered first.
In isolated rat main pulmonary arterial rings precontracted with prostaglandin F2α (PGF2a), acetylcholine (ACh) induces relaxation in endothelium-preserved pulmonary arteries, but not in endothelium-denuded pulmonary arteries, suggesting that the endothelium in pulmonary arteries produces a relaxation-inducing substance in response to acetylcholine (Figure 1(a) and (b)).
(a) Acetylcholine induces relaxation in endothelium-preserved pulmonary arterial rings. Pulmonary artery rings were obtained from normal control air rats. Rings were suspended in an 20 ml organ bath, and isometric tension was measured. Relaxation responses to acetylcholine (Ach) in endothelium-preserved (END+) and endothelium-denuded (END-) rings of the extrapulmonary artery were obtained. Endothelium was removed by gently rubbing luminal surface by fine stainless wire in endothelium-denuded rings. Rings were precontracted with prostaglandin F2a (PGF2a). Relaxation induced by 10−4 M papaverine (Pap 4) was taken as 100%. Bars mean standard error. Relaxation responses to ACh were abolished in the endothelium-denuded pulmonary arterial rings, showing that pulmonary vascular endothelium releases vasorelaxation substance named endothelium-derived relaxing factor (EDRF). The absence of the endothelium was confirmed by scanning electron micrography (b). END−, endothelium-denuded rings; END+, endothelium-preserved rings; 8, 10−8 mol/L, the same for 7, 6, 5, and 4. (B) Scanning electron micrograph of the endothelium-preserved pulmonary artery and endothelium-denuded pulmonary artery. Endothelium was removed by gently rubbing luminal surface by fine stainless wire. Left: luminal surface of the endothelium-preserved pulmonary artery. Right: luminal surface of the endothelium-denuded pulmonary artery.
In pulmonary arteries isolated from experimental PH models (chronic hypoxic PH in rat), the relaxation response to acetylcholine (ACh) is depressed, as observed in endothelium-denuded arteries, suggesting that endothelial function is impaired in PH arteries. Both ACh- and sodium nitroprusside (SNP, an NO donor)-induced relaxations were impaired in pulmonary arteries from rats with chronic hypoxic PH, suggesting that NO-induced relaxation is depressed in hypertensive pulmonary arteries [7, 8] (Figure 2). However, the magnitude of impairment seems to be higher in ACh-induced endothelium-dependent relaxation than in SNP-induced endothelium-independent relaxation [7].
The relaxation responses are depressed in isolated pulmonary arterial rings from chronic hypoxic pulmonary hypertensive rat. Pulmonary artery rings were obtained from normal control air rats and rats exposed to 10 days of hypoxia with chronic hypoxic pulmonary hypertension (PH). Isometric tension was measured. Relaxation responses to acetylcholine (ACh) in prostaglandin F2a (PGF2a)-precontracted rings of extrapulmonary were recorded. Relaxation induced by 10−4 M papaverine (Pap 4) was taken as 100%. Relaxation responses to ACh were depressed in rings from rats with chronic hypoxic PH, showing that the release of vasorelaxation substance is impaired in PH rings. Although the relaxation responses to sodium nitroprusside (SNP) are impaired in pH rings compared with control, this means that there was a room where SNP could cause relaxation in PH rings from chronic hypoxic PH.
The relaxation responses to SNP are caused by the liberation of NO from SNP. To determine the vasodilatory effects of NO directly, a NO solution was made by bubbling 10% NO in pure N2 into deoxygenated distilled water. Although depressed, the relaxation responses were indeed induced by NO in hypertensive pulmonary arteries [7] (Figure 3). Importantly, iNO exhibits selectivity, resulting in vasodilation in pulmonary arteries (Figure 4) when administered by inhalation through the trachea. The intravenous injection of NO donors simultaneously decreases both pulmonary and systemic arterial pressure.
NO solution (0.16–0.2 mM NO) caused the relaxation responses in isolated normal and pulmonary hypertensive arterial rings. Pulmonary artery rings were obtained from normal control air rats (A), rats exposed to 10 days of hypoxia with chronic hypoxic pulmonary hypertension (PH) (B), and rats after 28 days of recovery in room air from chronic hypoxia (C). NO solution was made by bubbling 10% NO through deoxygenated distilled water, which results in 0.16–0.2 mM concentration. Aliquots (0.5 ml) of this solution were applied to the organ bath. Papaverine (Pap) was introduced to obtain maximal relaxation. Relaxation responses to NO solution to prostaglandin F2a-precontracted rings were recorded. (A) NO-induced relaxation in pulmonary artery rings from normal rats. (B) Response to NO was depressed in pulmonary artery rings from chronic hypoxic rats. (C) The relaxation response returned to normal after 28 days of recovery from chronic hypoxic pulmonary hypertension. The result of (B) showed that NO could dilate hypertensive pulmonary vascular smooth muscles, although depressed compared to normal.
Inhaled NO as selective pulmonary vasodilator in pulmonary hypertensive rats. A pulmonary artery catheter was introduced via the right external jugular vein into the pulmonary artery by a closed chest technique. Pulmonary arterial pressure(PAP) was recorded with rat fully awake in a pulmonary hypertensive rat (19 days after the single injection of monocrotaline). About 20 ppm NO inhalation decreased PAP with no change of arterial pressure. When NO inhalation was discontinued, the PAP returned to baseline.
Although the role of the eNOS-derived NO-related pathway in pulmonary arterial hypertension (PAH) has been determined, its pathophysiology remains unclear. eNOS plays a key role in this pathway. Giaid et al. detected decreased eNOS protein expression in human lungs with PAH [9]. Additionally, exhaled NO has been found to be lower in patients with PAH than in controls [10]. Subsequent studies have reported increased eNOS protein expression in plexiform lesions in PAH [11] and increased eNOS activity in idiopathic PAH (IPAH) lungs, despite no change in NOS expression [12]. The membrane protein caveolin-1 (CAV1) is a crucial negative regulator of eNOS activity. The CAV1 expression is decreased in IPAH lungs, which might lead to persistent eNOS activation, the accumulation of dysfunctional (i.e., uncoupled) eNOS, the formation of peroxynitrite, and the impairment of PKG kinase activity via tyrosine nitration [12]. Increased eNOS activity and/or expression might not be associated with NO production in PAH.
Animal studies using a monocrotaline (MCT)-induced PAH rat model, which is characterized by pulmonary endothelial damage and perivascular inflammation in the early pathological stage, have shown decreased eNOS expression [13] and/or phosphorylated eNOS activity [14] as well as decreases in sGC and PKG. Vasodilation induced by ACh, an endothelium-dependent NO-related vasodilator, was also impaired. Another adult rat model of severe PAH with precapillary obliterative lesion (SU/Hx model) shows similarities in the pulmonary vascular pathology to that of PAH in adults. This SU/Hx model, induced by combined SUGEN5416 (a vascular endothelial growth factor receptor II antagonist) and exposure to chronic hypoxia, showed a reduction of ACh-induced NO production and/or release in pulmonary arteries [15]. Another recent study has reported decreased CAV1 expression in the same model [16]. eNOS also translocates from cell surface caveolae to cytoplasmic and perinuclear regions in pathological state [17]. Consequently, the amount of NO production is decreased. Accordingly, the pathogenesis and progression of PAH may be partially induced by endothelial dysfunction associated with suppression of the eNOS-NO-related pathway.
Genetic variants in the eNOS-NO-cGMP pathway might cause PAH. CAV1 plays an important role in NO signaling in PAH. Mutations in CAV1 have been identified in PAH [18]. The gene encoding bone morphogenetic protein receptor 2 (BMPRII) is frequently mutated in heritable PAH [19, 20] and adult IPAH [19, 21]. BMPRII is a member of the transforming growth factor (TGF)-β receptor superfamily, localized to caveolae, and interacts with CAV1 in vascular smooth muscle cells [22, 23]. Recent studies have demonstrated that BMPRII deficiency promotes SRC-dependent caveolar trafficking defects [24]. In addition, CAV1-deficient mice have shown reduced BMPRII expression after exposure to chronic hypoxia [16]. In MCT-treated pulmonary arterial endothelial cells, BMPRII was increasingly trapped intracellularly together with increased trapping CAV1 and eNOS. These results suggest that NO-cGMP-related dysfunction and BMPRII deficiency are closely related to and play a significant role in the pathogenesis of PAH.
Pulmonary veno-occlusive disease (PVOD), classified as a PAH subgroup, is inextricably associated with pulmonary capillary hemangiomatosis (PCH) [25]. Pulmonary vascular lesions in this condition are mainly detected in postcapillary venules and veins but are also found in pulmonary capillaries and arteries [25]. The pathogenesis is heterogeneous and poorly understood [25]. These are rare diseases, and few studies have focused on the pathogenesis and pathophysiology. Kradin et al. reported that eNOS expression in abnormal capillary lesions is significantly decreased in patients with PCH with pulmonary vascular remodeling and concomitant pulmonary hypertension and is minimally decreased or not decreased in patients without pulmonary vascular remodeling [26]. These results suggest that the alteration of eNOS expression is associated with the pathogenesis of these complicated conditions. Further experiments are necessary to determine the precise role of the eNOS-NO-cGMP pathway in PVOD/PCH.
Biallelic mutations in eukaryotic translation initiation factor 2α kinase 4 (EIF2AK4) have been identified in familial and idiopathic PVOD/PCH. EIF2AK4 encodes general control nonderepressible 2 (GCN2) [27]. The most common experimental models of these conditions are mitomycin C (MMC)-treated rats and mice [28]. Interestingly, MMC dose dependently induces pulmonary GCN2 depletion [28]. EIF2AK4 mutations are also found in sporadic PVOD/PCH [27]. Mutation carriers have distinct histological features, including strong muscular hyperplasia of the interlobular septal vein as well as arterial severe intimal fibrosis [29]. EIF2AK4 is activated by amino acid depletion. Because
The pathophysiologic features of lung diseases include chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) and mixed pathologic diseases, including combined pulmonary fibrosis and emphysema. All involve alveolar hypoxia and subsequent hypoxic pulmonary vasoconstriction. eNOS expression is upregulated in acute hypoxia in rat lungs [30]. eNOS expression increases in a time-dependent manner in rats during the development of hypoxia-induced PH [31, 32, 33], while eNOS activity is impaired [34]. The production of tetrahydrobiopterin (BH4), an obligatory cofactor for generating the active dimer form of eNOS, was altered in hypoxic conditions [34]. An imbalance between BH4 and dihydrobiopterin (BH2) may cause eNOS uncoupling and inactive monomer formation [34]. Several studies have reported decreased eNOS expression and/or activity in patients with COPD [35, 36], with severity of endothelial dysfunction correlated with degree of airflow obstruction [36]. eNOS is also absent in pulmonary arteries of patients with IPF [37]. As the histological features of this disease differ from those of COPD, the pathogenesis of IPF-induced PH may include a multifactorial and complex process involving proinflammatory cytokines and growth factors.
In 1988, at the international conference of the American Thoracic Society, Higenbottam presented his team’s paper titled “Inhaled endothelium-derived relaxing factor (EDRF) in primary pulmonary hypertension (PPH),” including the first description of NO inhalation in humans with pulmonary arterial hypertension for laboratory use [38]. In 1991, Lancet published the study [39], showing that 40 ppm NO inhalation selectively reduces PAP, with no changes in systemic pressure. Frostell et al. also showed that inhaled NO (5–80 ppm) causes selective pulmonary arterial dilatation, without changes in systemic arterial pressure in sheep [40], where PAP elevation was induced by hypoxic pulmonary vasoconstriction. Both research groups referenced the studies by Yoshida, Kasama, and Kitabatake about the metabolic fate of iNO [41, 42] because toxicity and retention in the human body should be minimal. NO has been a focus in air pollution research and thus provides a basis for work by clinicians evaluating NO inhalation in humans. In rats with chronic hypoxia- and MCT-induced PH, iNO results in a decrease in PAP with no changes in systemic arterial pressure [43, 44, 45] (Figure 4).
iNO dilates the pulmonary vasculature by NO combining with guanylate cyclase Fe in pulmonary vascular smooth muscle cells. Most NO diffuses into the blood at alveoli, where it reacts with the Fe of oxygenated hemoglobin (oxy-Hb, O2Hb, O2Hb(Fe2+)) in red blood cells and is converted to NO3−. When NO reacts with oxy-Hb Fe2+ or combines with the Fe2+ of deoxygenated Hb (deoxy-Hb, deoxy-Hb(Fe2+)) in red blood cells, iNO does not have direct vasodilatory effects because it reacts or combines with Hb Fe2+ and becomes unable to combine with guanylate cyclase Fe of smooth muscle cells in systemic arteries. Thus, iNO is a selective pulmonary vasodilator, causing decreased PAP with no changes in systemic pressure (Figure 4).
The clinical use of NO inhalation is aimed at inducing selective pulmonary arterial dilation and treating PH and right ventricular failure. NO inhalation is also used to test pulmonary vascular reactivity in catheterization labs, which will be discussed in the last section of this chapter. Improved arterial oxygenation is also expected in patients with high intrapulmonary shunting [46]. Thus, the main target of iNO is lung and pulmonary circulation. In addition, iNO effects on remote organs, such as the kidney [47], liver [48, 49], heart [50], and muscle [51], have been investigated, with iNO shown to ameliorate inflammation and ischemia-reperfusion injury.
NO reacts or combines with transition metal ions, such as thiols (–SH, –SS–, and HS–). Many enzymes and substances involved in regulating cell function include in their structure Fe, a transitional metal, thus suggesting its importance as an NO target. Because hemoglobin (Hb) and guanylate cyclase contain heme, which includes Fe in its structure, NO reacts or combines with Hb and guanylate cyclase. NO also combines with enzymes containing Fe–S in their structure, and combined NO (nitration) and Fe–S can prevent enzymatic activity. High concentrations of NO induce cell damage, which presumably result from this enzymatic dysfunction. Thus, NO is a double-edged sword. Although an appropriate amount is important for regulating cell function, an excess dysregulates cell function and causes damage.
RS–NO is a complex of SH– and NO. Nitrosothiol is a thionitrite including S-nitroso-albumin, where NO combines with cysteine, a component of albumin. –SH is a component of amino acids, peptides, and proteins. NO binds to –SH, forming S-nitrosothiol, 96% of which is S-nitrosoprotein. About 82% of S-nitrosoprotein is serum S-nitrosoalbumin. Thus, endogenous NO circulates in the form of S-nitrosoalbumin [52].
NO targets are transition metal ions, oxygen, nucleophilic centers (thiols, amides, carboxyls, and hydroxyls), and free radicals. iNO targets are (Figure 5) also transition metal ions, namely, in the guanylate cyclase Fe, Hb Fe, iron-sulfur (Fe-S) center. Other targets include oxygen (gaseous oxygen in the airway and alveoli), dissolved oxygen in the tissue and body fluids, the nucleophilic center of organic compounds (–S–S– and –SH), and free radicals (reactive oxygen species produced in leucocytes and macrophages). Among these substances that react with iNO, The main target of an approved medical iNO gas is guanylate cyclase Fe in pulmonary vascular smooth muscle cells.
The substances in the lung to react or combine with iNO. NO reacts with Fe in the guanylate cyclase (GC) and induces cyclic GMP and subsequent pulmonary vascular relaxation; NO reacts with Fe2+ in O2Hb and forms MetHb and NO3−; NO and Fe2+ in deoxy-Hb combine in NOHb; NO and O2 combine in NO2; NO and O2- combine in ONOO-; NO and OH- combine in NO2-; NO and thiol (sulfhydryl group, -SH group), amine, and iron-sulfur (Fe-S) center combine in nitrosothiol, nitrosamine, and Fe-S NO, respectively. RSH is a compound including SH group. S-nitro-Hb is combination of NO and SH in the cysteine in the Hb beta subunit. Reactive oxygen species (O2−, OH−) are produced in leucocytes and macrophages.
Oxidation refers to electron loss and reduction to electron gain. Reducing agents release electrons, whereas oxidizing agents receive electrons. The term redox is a combination of “reduction and oxidation reaction.” Reduction and oxygenation occur simultaneously so that when a reducing agent is oxidized, an oxidizing agent is also reduced. Nitrogen monoxides involve an array of species: NO+ (nitrosonium), NO·, and NO− (nitroxyl anion) [53]. Among these, NO· has a single electron, and its removal forms NO+, whereas its addition yields NO−. NO· is electrically neutral, which contributes to its free diffusibility in aqueous medium and across cell membranes.
The main NO· targets are oxygen and transition metal ions. The various redox forms of oxygen, such as superoxide (O2−) and (di)oxygen, are candidates in both the gas phase and aqueous solution. Metalloproteins, such as heme-containing protein and non-heme-containing protein, and iron-sulfur clusters also react with NO·.
iNO reacts with oxy-Hb. NO oxidizes oxy-Hb to form MetHb. In other words, MetHb is oxidized oxy-Hb. Oxidized iron (MetHb) species do not catch NO, and iNO during cardiopulmonary bypass (CPB) decreases acute kidney injury [47]:
NO reacts or combines with Hb in three ways: (1) NO combines with in the heme Fe to form NOHb (nitrosyl Hb), a metal nitrosyl species; (2) NO− combines with amines in Hb to form S-nitroso-Hb, a nitrosamine, where NO combines with cysteine in the beta subunit of Hb; and (3) O− or NO+ combines with the sulfhydryl center (-SH) in Hb. NO reacts with oxy-Hb and combines with deoxy-Hb. If NO reacts with oxy-Hb (Fe2+), MetHb (Fe3+) and nitrate (NO3−) are formed. If NO combines with deoxy-Hb (Fe2+), NOHb (Fe2+) is formed, after which NOHb (Fe2+) reacts with O2 to form MetHb (Fe3+) and NO3−. MetHb (Fe3+) is reduced to deoxy-Hb (Fe2+) by MetHb reductase. The depletion of MetHb reductase or high production of MetHb causes methemoglobinemia. NO3− is excreted in the urine (Figures 6, 7).
Reaction of NO with Hb. NO reacts with Fe2+ of oxy-Hb making MetHb and NO3− and combines with deoxy-Hb making NOHb. NOHb reacts with O2 making MetHb and NO3−.
In an in vitro experiment, Wennmalm [54] incubated NO with arterial and venous blood and measured MetHb, NOHb, NO3−, and NO2−. The reaction of NO with O2Hb was rapid in the arterial blood (oxygen saturation 94–99%). NOHb was low in arterial blood and high in venous blood (oxygen saturation 36–86%). These results suggest that O2Hb (oxy-Hb) gives O2 to NO making NO3−. In contrast, deoxy-Hb directly combines with NO making NOHb in the absence of oxy-Hb (i.e., in the presence of deoxy-Hb). The NO and oxy-Hb reaction is completed in 100 ms [55].
Nakajima and Oda have shown that the NOHb concentration is 0.13% in the blood during 20 min of 10 ppm NO inhalation [56]. This low concentration suggests the rapid turnover of NOHb, in which NOHb is presumably an intermediate in the conversion from NO to NO2− and NO3−.
When 5 mM NO2− is added to human blood, NO3− changes are detected within 10 min [57]. The intravenous injection of sodium nitrite to rabbits results in the rapid disappearance of NO2−. After the intratracheal injection of 13NO2−, 70% of 13NO2− changed to 13NO3−, and 26% remained as 13NO2− [58]. These observations suggest that NO2− is converted to NO3− in red blood cells [59]. NO2− and NO3− are stable and unchanged in plasma without red blood cells.
A clear understanding of the fate of iNO is critical for its clinical use in humans. As previously mentioned, the metabolic fate of iNO was examined in the early 1980s, and it was found that retention of iNO in the body was lacking (Figure 7).
Metabolic fate of NO. Almost all inhaled NO is converted to NO3−. Forty-five percent of NO3− is excreted in urine; 10% is changed to nitrogen compound except NO3− and NO2− and excreted in feces; 10% is changed to urea through the digestive tract and liver and excreted in urine. The rest will be changed to N2 in the stomach and discharged outside of the body.
An inhalation study of 15NO in rats investigated the metabolism of iNO. In the carcasses, 1.6% of total inhaled 15N was detected, similar to the level of natural 15N. This result suggests that iNO largely does not remain in the body. About 55% of total inhaled 15N was recovered in urine [41, 42], including 45% as nitrates and 10% as urea (Figure 7). About 10% of total inhaled 15N was recovered as undetermined nitrogen compounds in feces. The remaining 35% was not recovered but is assumed to be N2 produced from the reduction of NO3− → NO2− → N2 by stomach flora.
During cardiopulmonary bypass(CPB), hemolysis causes an increase in Hb plasma concentration due to the destruction of red blood cells. Hb includes oxy-Hb and deoxy-Hb. Oxy-Hb causes vasoconstriction, which is partly due to the depletion of NO available to induce vascular smooth muscle relaxation. NO is produced in and released from endothelial cells, some of which reaches adjacent vascular smooth muscles, causing vasorelaxation, and some of which diffuses into the plasma. If the amount of oxy-Hb in the plasma increases, the binding of NO to oxy-Hb increases, resulting in less NO reaching adjacent smooth muscle cells. Thus, the presence of large amounts of oxy-Hb might decrease NO availability in vascular smooth muscle cells (Figure 8).
NO formed in the endothelium is scavenged by plasma oxygenated Hb. (A) NO produced in the endothelium diffuses into adjacent smooth muscle cells and binds with guanylate cyclase. (B) If O2Hb (Fe2+) increases, NO produced in the endothelium diffuses into the blood and scavenged by O2Hb (Fe2+), decreasing the amount of NO diffused into smooth muscle cells. (C) If O2 Hb(Fe2+) is converted to MetHb(Fe3+) by NO inhalation, NO is not scavenged, which recovers the amount of NO diffusing to the smooth muscle side.
Acute kidney injury is a common complication after cardiac surgery with prolonged CPB. Because oxygen tension is high during CPB, plasma oxy-Hb exhibits substantial hemolysis, causing vasoconstriction in the kidney. Recently, NO was demonstrated to decrease the occurrence of acute kidney injury and chronic kidney disease 1 year postoperatively [47]. NO inhalation at 80 ppm was started at the onset of CPB via a CPB machine and was continued after CPB via a mechanical ventilator for 24 h or less if patients were ready to be extubated early. Under NO inhalation, oxy-Hb was converted to MetHb, which recovered NO availability to vascular smooth muscle cells due to the decrease in oxy-Hb. Thus, exogenous NO inhalation might increase endogenous NO availability to counteract renal vasoconstriction during CPB.
In brief, the reduction of nitrite and nitrate produces NO (Figure 9). Nitrite is reduced by deoxy-Hb, respiratory chain enzymes, xanthine oxidoreductase, deoxygenated myoglobin, and protons, facilitating the transfer of protons to NO2− and thereby producing NO. These reactions are intensified under acidic and hypoxic states. After iNO is converted to NO2− and NO3−, NO can be recycled from nitrite and used to protect organs from ischemia-reperfusion injury [48, 51].
Recycle of NO from nitrite and nitrate. Nitrate is reduced to nitrite, and subsequent reduction of nitrite forms NO. Reducing substances are deoxy-Hb [Hb(Fe2+)], myoglobin [Mb(Fe2+)], xanthine oxidase, hydrogen ion (H+), and cytochrome enzymes (Fe2+). NO2− is reduced by deoxy-Hb(Fe2+) to NO showing stoichiometric relation. Please count the number of O before and after the reduction responses.
In liver transplantation, the inhalation of 80 ppm NO until reperfusion ameliorates apoptosis, attenuated increases of liver enzymes, and enhanced the recovery of coagulation factors [48].
In orthopedic knee surgery, NO inhalation prevented increases in the adhesion molecule expression on granulocytes, plasma selectin levels, and NF-κB expression in quadriceps muscles [51]. NO inhalation was started before the tourniquet application and was continued during reperfusion until the completion of surgery.
After NO was identified as an endothelial cell-derived relaxation factor and following preclinical studies, iNO therapy has been studied extensively in multicenter randomized trials as well as in early pilot studies of infants with severe hypoxemia associated with PH or infants with congenital diaphragmatic hernia (CDH) [60]. These studies have demonstrated improved oxygenation and reduction in the need for extracorporeal membrane oxygenation (ECMO) therapy, leading to the approval of iNO therapy by the Food and Drug Administration for use in patients at >34-week gestation with hypoxemic respiratory failure and persistent PH of the newborn (PPHN). Over the last two decades, the discussion of its application has been extended to premature infants and acute pulmonary vascular response testing to assess indications for specific pulmonary vasodilator therapy for patients with PAH or operability for children with congenital heart disease.
Bronchopulmonary dysplasia (BPD), which is characterized by impaired pulmonary development resulting from insults affecting the immature lung, including inflammation, hyperoxia, and mechanical ventilation, is associated with high mortality and adverse long-term neurological and respiratory outcomes in infants born very preterm. Although the effectiveness of iNO for the treatment of PPHN is largely due to its function as a selective pulmonary vasodilator, laboratory observations also suggest other important biological effects of NO, such as roles in decreasing lung inflammation (e.g., lung vascular protein leak; pulmonary neutrophil accumulation) [61], reducing oxidant stress [62], decreasing pulmonary vascular cell proliferation [63], and enhancing alveolarization and lung growth [64, 65, 66]. These observations have led to investigations into the use of iNO to prevent the development of BPD in premature newborns. In an initial randomized, placebo-controlled study in a single center, 7 days of iNO prevented chronic lung disease in premature infants [67]. Despite promising findings in some subsequent studies showing a reduction in BPD in premature newborns [68, 69], later trials did not confirm the beneficial effects [70]. Meta-analyses of these studies have not found evidence for a net improvement in either chronic lung disease or developmental sequelae [71], leading to the conclusion by the National Institutes of Health Consensus Development Conference [72] and the American Academy of Pediatrics Committee on the Fetus and Newborn [73] that the use of iNO to prevent BPD is not supported by available evidence [74].
In addition to the use of iNO for BPD prevention, its use in preterm infants for acute management of severe hypoxemic respiratory failure has been discussed. Several case series have described responses to iNO in premature newborns with PPHN associated with prolonged oligohydramnios and pulmonary hypoplasia. Chock et al. evaluated a subset of 12 premature newborns enrolled in the Preemie Inhaled Nitric Oxide Trial with pulmonary hypoplasia after preterm premature rupture of membranes (PPROM) [75]. Six infants were treated with iNO with a mortality rate of 33% compared with 67% mortality for six infants in the placebo control group. Shah and Kluckow described outcomes for infants with PPROM and reported that survival improved from 62 to 90% after the introduction of iNO and high-frequency oscillatory ventilation [76]. Semberova et al. reported a series of 22 premature infants with a history of PPROM, pulmonary hypoplasia, and PPHN who were treated with iNO, with a survival rate of 86% [77]. Thus, iNO therapy may have important benefits in subgroups of preterm infants with severe PH, especially in patients with oligohydramnios and lung hypoplasia. Further studies of the precise effects of iNO in premature neonates are needed.
iNO in neonates with CDH has been evaluated in three randomized trials [78, 79, 80]. Finer and Barrington performed a Cochrane Review [81] of the use of iNO for respiratory failure in infants born at or near term. They concluded that while iNO might transiently improve oxygenation, its use is not recommended for infants with CDH because the risks of a composite of either death or ECMO are similar to or worse than those of controls [82].
Based on this evidence, iNO cannot be recommended for the routine treatment of PH in patients with CDH. However, iNO continues to be regularly used for CDH. Indeed, iNO was used at some point during preoperative stabilization in 36% (191/526) of infants with CDH from the population-based CAPSNet database. The ability of iNO to improve oxygenation and reduce the need for ECMO in non-CDH patients with PH explains its continued use in patients with CDH. The lack of a response to pulmonary vasodilators in CDH is speculated to be likely due to left atrial/pulmonary vein hypertension rather than to functional changes in the pulmonary arterial vasculature [83]. A recent study suggests that the response to pulmonary vasodilators in neonates with CDH may be limited by the severity of left ventricular (LV) dysfunction and/or hypoplasia, which impairs LV filling. Careful echocardiographic assessment, therefore, may guide treatment by identifying patients who may benefit from pulmonary vasodilators, including iNO [83].
The prognosis of children with PAH has improved in the past decade owing to new therapeutic agents and aggressive treatment strategies [84]. In idiopathic or heritable PAH (I/H-PAH), acute vasodilator testing (AVT) is recommended to identify patients who have a good long-term prognosis when treated with a long-term calcium channel blocker (CCB), accounting for 7–37% of children with PAH. For example, a >20% decrease in PAP or pulmonary vascular resistance (PVR) to inhaled NO accurately predicts a subsequent response to oral vasodilators, such as nifedipine. To identify such patients, the Sitbon criteria for positive AVT, as defined by a decrease in mean PAP by ≥10 mmHg to a value of <40 mmHg with an increased or unchanged cardiac output, is commonly used in adult I/H-PAH [85]. The Sitbon criteria can also be used to identify children who are expected to show a sustained response to CCB therapy [86]. Based on these data, the use of the Sitbon criteria is advised for AVT in children. Because only half of adult responders have a long-term hemodynamic and clinical improvement in response to CCB therapy, close long-term follow-up is required [87].
AVT (Figure 10) is also used to assess operability in children with PAH associated with a systemic-to-pulmonary shunt [87, 88]. Although pulmonary vasodilators other than iNO, such as inhaled iloprost or other orally or intravenously administered compounds (e.g., sildenafil and treprostinil), can be used for AVT, iNO ± oxygen is recommended [87]. The hemodynamic change that defines a positive response to AVT in PAH associated with a shunt (a ratio of pulmonary to systemic blood flow >1.5) for children should be a >20% decrease in PVR index and a ratio of pulmonary to systemic vascular resistance with respective final values of <6 Wood units m2 and <0.3. However, specific criteria for defining a positive AVT response that predicts the reversal of PAH and good long-term prognosis have not been described. The pediatric task force of the Sixth World Symposium on Pulmonary Hypertension agreed on a general guidance for assessing operability in CHD-PAH but emphasized that the long-term impact of defect closure in the presence of PAH with increased PVR is unknown [84].
Acute vasoreactivity testingto assess operability. AVT is also used to assess operability in children with PAH associated with a systemic-to-pulmonary shunt [87, 88]. (Figure 10, unpublished). A 5-month-old infant with Down syndrome and an atrial septal defect was evaluated for operability by acute vasoreactivity testing using inhaled nitric oxide. Pulmonary hemodynamic parameters at baseline, including pulmonary arterial pressure (76/29/49 mmHg), pulmonary vascular resistance index (6.7 Wood units m2), the ratio of pulmonary to systemic vascular resistance (0.45), and the ratio of pulmonary to systemic blood flow (1.74), are changed to 60/14/32 mmHg, 3.14 Wood units m2, 0.20, and 2.2 after nitric oxide inhalation, respectively. The patient underwent surgical closure of the shunt, and no postoperative pulmonary hypertension was observed. NO, nitric oxide; AO, aorta; PA, pulmonary artery.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}},{id:"101208",title:"Prof.",name:"Abdel Karim",middleName:"Mohamad",surname:"El Hemaly",slug:"abdel-karim-el-hemaly",fullName:"Abdel Karim El Hemaly",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101208/images/733_n.jpg",biography:"OBGYN.net Editorial Advisor Urogynecology.\nAbdel Karim M. A. El-Hemaly, MRCOG, FRCS � Egypt.\n \nAbdel Karim M. A. El-Hemaly\nProfessor OB/GYN & Urogynecology\nFaculty of medicine, Al-Azhar University \nPersonal Information: \nMarried with two children\nWife: Professor Laila A. Moussa MD.\nSons: Mohamad A. M. El-Hemaly Jr. MD. Died March 25-2007\nMostafa A. M. El-Hemaly, Computer Scientist working at Microsoft Seatle, USA. \nQualifications: \n1.\tM.B.-Bch Cairo Univ. June 1963. \n2.\tDiploma Ob./Gyn. Cairo Univ. April 1966. \n3.\tDiploma Surgery Cairo Univ. Oct. 1966. \n4.\tMRCOG London Feb. 1975. \n5.\tF.R.C.S. Glasgow June 1976. \n6.\tPopulation Study Johns Hopkins 1981. \n7.\tGyn. Oncology Johns Hopkins 1983. \n8.\tAdvanced Laparoscopic Surgery, with Prof. Paulson, Alexandria, Virginia USA 1993. \nSocieties & Associations: \n1.\t Member of the Royal College of Ob./Gyn. London. \n2.\tFellow of the Royal College of Surgeons Glasgow UK. \n3.\tMember of the advisory board on urogyn. FIGO. \n4.\tMember of the New York Academy of Sciences. \n5.\tMember of the American Association for the Advancement of Science. \n6.\tFeatured in �Who is Who in the World� from the 16th edition to the 20th edition. \n7.\tFeatured in �Who is Who in Science and Engineering� in the 7th edition. \n8.\tMember of the Egyptian Fertility & Sterility Society. \n9.\tMember of the Egyptian Society of Ob./Gyn. \n10.\tMember of the Egyptian Society of Urogyn. \n\nScientific Publications & Communications:\n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Asim Kurjak, Ahmad G. Serour, Laila A. S. Mousa, Amr M. Zaied, Khalid Z. El Sheikha. \nImaging the Internal Urethral Sphincter and the Vagina in Normal Women and Women Suffering from Stress Urinary Incontinence and Vaginal Prolapse. Gynaecologia Et Perinatologia, Vol18, No 4; 169-286 October-December 2009.\n2- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nFecal Incontinence, A Novel Concept: The Role of the internal Anal sphincter (IAS) in defecation and fecal incontinence. Gynaecologia Et Perinatologia, Vol19, No 2; 79-85 April -June 2010.\n3- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nSurgical Treatment of Stress Urinary Incontinence, Fecal Incontinence and Vaginal Prolapse By A Novel Operation \n"Urethro-Ano-Vaginoplasty"\n Gynaecologia Et Perinatologia, Vol19, No 3; 129-188 July-September 2010.\n4- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n5- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n6- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n7-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n8-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n9-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n10-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n11-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n12- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n13-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n14- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n15-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n\n16-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n17- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis\n\n18-Maternal Mortality in Egypt, a cry for help and attention. The Second International Conference of the African Society of Organization & Gestosis, 1998, 3rd Annual International Conference of Ob/Gyn Department � Sohag Faculty of Medicine University. Feb. 11-13. Luxor, Egypt. \n19-Postmenopausal Osteprosis. The 2nd annual conference of Health Insurance Organization on Family Planning and its role in primary health care. Zagaziz, Egypt, February 26-27, 1997, Center of Complementary Services for Maternity and childhood care. \n20-Laparoscopic Assisted vaginal hysterectomy. 10th International Annual Congress Modern Trends in Reproductive Techniques 23-24 March 1995. Alexandria, Egypt. \n21-Immunological Studies in Pre-eclamptic Toxaemia. Proceedings of 10th Annual Ain Shams Medical Congress. Cairo, Egypt, March 6-10, 1987. \n22-Socio-demographic factorse affecting acceptability of the long-acting contraceptive injections in a rural Egyptian community. Journal of Biosocial Science 29:305, 1987. \n23-Plasma fibronectin levels hypertension during pregnancy. The Journal of the Egypt. Soc. of Ob./Gyn. 13:1, 17-21, Jan. 1987. \n24-Effect of smoking on pregnancy. Journal of Egypt. Soc. of Ob./Gyn. 12:3, 111-121, Sept 1986. \n25-Socio-demographic aspects of nausea and vomiting in early pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 35-42, Sept. 1986. \n26-Effect of intrapartum oxygen inhalation on maternofetal blood gases and pH. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 57-64, Sept. 1986. \n27-The effect of severe pre-eclampsia on serum transaminases. The Egypt. J. Med. Sci. 7(2): 479-485, 1986. \n28-A study of placental immunoreceptors in pre-eclampsia. The Egypt. J. Med. Sci. 7(2): 211-216, 1986. \n29-Serum human placental lactogen (hpl) in normal, toxaemic and diabetic pregnant women, during pregnancy and its relation to the outcome of pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:2, 11-23, May 1986. \n30-Pregnancy specific B1 Glycoprotein and free estriol in the serum of normal, toxaemic and diabetic pregnant women during pregnancy and after delivery. Journal of the Egypt. Soc. of Ob./Gyn. 12:1, 63-70, Jan. 1986. Also was accepted and presented at Xith World Congress of Gynecology and Obstetrics, Berlin (West), September 15-20, 1985. \n31-Pregnancy and labor in women over the age of forty years. Accepted and presented at Al-Azhar International Medical Conference, Cairo 28-31 Dec. 1985. \n32-Effect of Copper T intra-uterine device on cervico-vaginal flora. Int. J. Gynaecol. Obstet. 23:2, 153-156, April 1985. \n33-Factors affecting the occurrence of post-Caesarean section febrile morbidity. Population Sciences, 6, 139-149, 1985. \n34-Pre-eclamptic toxaemia and its relation to H.L.A. system. Population Sciences, 6, 131-139, 1985. \n35-The menstrual pattern and occurrence of pregnancy one year after discontinuation of Depo-medroxy progesterone acetate as a postpartum contraceptive. Population Sciences, 6, 105-111, 1985. \n36-The menstrual pattern and side effects of Depo-medroxy progesterone acetate as postpartum contraceptive. Population Sciences, 6, 97-105, 1985. \n37-Actinomyces in the vaginas of women with and without intrauterine contraceptive devices. Population Sciences, 6, 77-85, 1985. \n38-Comparative efficacy of ibuprofen and etamsylate in the treatment of I.U.D. menorrhagia. Population Sciences, 6, 63-77, 1985. \n39-Changes in cervical mucus copper and zinc in women using I.U.D.�s. Population Sciences, 6, 35-41, 1985. \n40-Histochemical study of the endometrium of infertile women. Egypt. J. Histol. 8(1) 63-66, 1985. \n41-Genital flora in pre- and post-menopausal women. Egypt. J. Med. Sci. 4(2), 165-172, 1983. \n42-Evaluation of the vaginal rugae and thickness in 8 different groups. Journal of the Egypt. Soc. of Ob./Gyn. 9:2, 101-114, May 1983. \n43-The effect of menopausal status and conjugated oestrogen therapy on serum cholesterol, triglycerides and electrophoretic lipoprotein patterns. Al-Azhar Medical Journal, 12:2, 113-119, April 1983. \n44-Laparoscopic ventrosuspension: A New Technique. Int. J. Gynaecol. Obstet., 20, 129-31, 1982. \n45-The laparoscope: A useful diagnostic tool in general surgery. Al-Azhar Medical Journal, 11:4, 397-401, Oct. 1982. \n46-The value of the laparoscope in the diagnosis of polycystic ovary. Al-Azhar Medical Journal, 11:2, 153-159, April 1982. \n47-An anaesthetic approach to the management of eclampsia. Ain Shams Medical Journal, accepted for publication 1981. \n48-Laparoscopy on patients with previous lower abdominal surgery. Fertility management edited by E. Osman and M. Wahba 1981. \n49-Heart diseases with pregnancy. Population Sciences, 11, 121-130, 1981. \n50-A study of the biosocial factors affecting perinatal mortality in an Egyptian maternity hospital. Population Sciences, 6, 71-90, 1981. \n51-Pregnancy Wastage. Journal of the Egypt. Soc. of Ob./Gyn. 11:3, 57-67, Sept. 1980. \n52-Analysis of maternal deaths in Egyptian maternity hospitals. Population Sciences, 1, 59-65, 1979. \nArticles published on OBGYN.net: \n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n2- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n3- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n4-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n5-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n6-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n7-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n8-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n9- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n10-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n11- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n12-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n13-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n14- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis",institutionString:null,institution:{name:"Al Azhar University",country:{name:"Egypt"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",middleName:null,surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",country:{name:"Egypt"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:1683},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10542",title:"Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex",subtitle:null,isOpenForSubmission:!0,hash:"29279e34f971687dc28de62534335ac4",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10542.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!0,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10304",title:"Giant-Cell Arteritis",subtitle:null,isOpenForSubmission:!0,hash:"b144271ebc5d331aab73de18a7f9f4f5",slug:null,bookSignature:"Dr. Imtiaz A. Chaudhry",coverURL:"https://cdn.intechopen.com/books/images_new/10304.jpg",editedByType:null,editors:[{id:"66603",title:"Dr.",name:"Imtiaz",surname:"Chaudhry",slug:"imtiaz-chaudhry",fullName:"Imtiaz Chaudhry"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10539",title:"Ginseng in Medicine",subtitle:null,isOpenForSubmission:!0,hash:"5f388543a066b617d2c52bd4c027c272",slug:null,bookSignature:"Prof. Christophe Hano and Dr. Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editedByType:null,editors:[{id:"313856",title:"Prof.",name:"Christophe",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10482",title:"Human Teeth – Structure and Composition of Dental Hard Tissues and Developmental Dental Defects",subtitle:null,isOpenForSubmission:!0,hash:"82a91346a98d34805e30511d6504bd4c",slug:null,bookSignature:"Dr. Ana Gil De Bona and Dr. Hakan Karaaslan",coverURL:"https://cdn.intechopen.com/books/images_new/10482.jpg",editedByType:null,editors:[{id:"203919",title:"Dr.",name:"Ana",surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9608",title:"Myasthenia Gravis",subtitle:null,isOpenForSubmission:!0,hash:"db6c84e3aa58f3873e1298add7042c44",slug:null,bookSignature:"Dr. Nizar Souayah",coverURL:"https://cdn.intechopen.com/books/images_new/9608.jpg",editedByType:null,editors:[{id:"162634",title:"Dr.",name:"Nizar",surname:"Souayah",slug:"nizar-souayah",fullName:"Nizar Souayah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10300",title:"Breast Cancer",subtitle:null,isOpenForSubmission:!0,hash:"bcf3738b16b0a4de6066853ab38b801c",slug:null,bookSignature:"Dr. Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/10300.jpg",editedByType:null,editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10260",title:"E-Service",subtitle:null,isOpenForSubmission:!0,hash:"11dab65781b3c4347022c56477311f46",slug:null,bookSignature:"Dr. Kyeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/10260.jpg",editedByType:null,editors:[{id:"2114",title:"Dr.",name:"Kyeong",surname:"Kang",slug:"kyeong-kang",fullName:"Kyeong Kang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9589",title:"Depigmentation as a Disease or Therapeutic Goal",subtitle:null,isOpenForSubmission:!0,hash:"3e1efdb1fc8c403c402da09b242496c6",slug:null,bookSignature:"Dr. Tae-Heung Kim",coverURL:"https://cdn.intechopen.com/books/images_new/9589.jpg",editedByType:null,editors:[{id:"121353",title:"Dr.",name:"Tae-Heung",surname:"Kim",slug:"tae-heung-kim",fullName:"Tae-Heung Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10585",title:"Interleukin",subtitle:null,isOpenForSubmission:!0,hash:"6d4ebb087fdb199287bc765704246b60",slug:null,bookSignature:"Ph.D. Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/10585.jpg",editedByType:null,editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:159},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1241",title:"Aging",slug:"aging",parent:{title:"Gerontology",slug:"gerontology"},numberOfBooks:4,numberOfAuthorsAndEditors:72,numberOfWosCitations:2,numberOfCrossrefCitations:12,numberOfDimensionsCitations:23,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"aging",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7904",title:"Aging",subtitle:"Life Span and Life Expectancy",isOpenForSubmission:!1,hash:"4507619de679dfa85bc6e073d163f3c8",slug:"aging-life-span-and-life-expectancy",bookSignature:"Robert J. Reynolds and Steven M. Day",coverURL:"https://cdn.intechopen.com/books/images_new/7904.jpg",editedByType:"Edited by",editors:[{id:"220737",title:"Dr.",name:"Robert",middleName:null,surname:"J. Reynolds",slug:"robert-j.-reynolds",fullName:"Robert J. Reynolds"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6704",title:"Geriatrics Health",subtitle:null,isOpenForSubmission:!1,hash:"7cac7767e0b34391318cd4a680ca0d68",slug:"geriatrics-health",bookSignature:"Hülya Çakmur",coverURL:"https://cdn.intechopen.com/books/images_new/6704.jpg",editedByType:"Edited by",editors:[{id:"190636",title:"Associate Prof.",name:"Hülya",middleName:null,surname:"Çakmur",slug:"hulya-cakmur",fullName:"Hülya Çakmur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6381",title:"Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"bf232563c8fe15ef0848ed6ffb8f832d",slug:"gerontology",bookSignature:"Grazia D’Onofrio, Antonio Greco and Daniele Sancarlo",coverURL:"https://cdn.intechopen.com/books/images_new/6381.jpg",editedByType:"Edited by",editors:[{id:"184080",title:"Dr.",name:"Grazia",middleName:null,surname:"D’Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D’Onofrio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5925",title:"Perception of Beauty",subtitle:null,isOpenForSubmission:!1,hash:"11f483d631557ad26d48b577e23a724f",slug:"perception-of-beauty",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/5925.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:"Peaslee",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"60564",doi:"10.5772/intechopen.76249",title:"Ageing Process and Physiological Changes",slug:"ageing-process-and-physiological-changes",totalDownloads:4251,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Shilpa Amarya, Kalyani Singh and Manisha Sabharwal",authors:[{id:"226573",title:"Ph.D.",name:"Shilpa",middleName:null,surname:"Amarya",slug:"shilpa-amarya",fullName:"Shilpa Amarya"},{id:"226593",title:"Dr.",name:"Kalyani",middleName:null,surname:"Singh",slug:"kalyani-singh",fullName:"Kalyani Singh"},{id:"243264",title:"Dr.",name:"Manisha",middleName:null,surname:"Sabharwal",slug:"manisha-sabharwal",fullName:"Manisha Sabharwal"}]},{id:"55388",doi:"10.5772/intechopen.68944",title:"Beauty, Body Image, and the Media",slug:"beauty-body-image-and-the-media",totalDownloads:5705,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Jennifer S. Mills, Amy Shannon and Jacqueline Hogue",authors:[{id:"202110",title:"Dr.",name:"Jennifer",middleName:null,surname:"Mills",slug:"jennifer-mills",fullName:"Jennifer Mills"}]},{id:"59227",doi:"10.5772/intechopen.73385",title:"Differentiating Normal Cognitive Aging from Cognitive Impairment No Dementia: A Focus on Constructive and Visuospatial Abilities",slug:"differentiating-normal-cognitive-aging-from-cognitive-impairment-no-dementia-a-focus-on-constructive",totalDownloads:827,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Radka Ivanova Massaldjieva",authors:[{id:"75907",title:"Associate Prof.",name:"Radka Ivanova",middleName:null,surname:"Massaldjieva",slug:"radka-ivanova-massaldjieva",fullName:"Radka Ivanova Massaldjieva"}]}],mostDownloadedChaptersLast30Days:[{id:"60564",title:"Ageing Process and Physiological Changes",slug:"ageing-process-and-physiological-changes",totalDownloads:4252,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Shilpa Amarya, Kalyani Singh and Manisha Sabharwal",authors:[{id:"226573",title:"Ph.D.",name:"Shilpa",middleName:null,surname:"Amarya",slug:"shilpa-amarya",fullName:"Shilpa Amarya"},{id:"226593",title:"Dr.",name:"Kalyani",middleName:null,surname:"Singh",slug:"kalyani-singh",fullName:"Kalyani Singh"},{id:"243264",title:"Dr.",name:"Manisha",middleName:null,surname:"Sabharwal",slug:"manisha-sabharwal",fullName:"Manisha Sabharwal"}]},{id:"55388",title:"Beauty, Body Image, and the Media",slug:"beauty-body-image-and-the-media",totalDownloads:5706,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Jennifer S. Mills, Amy Shannon and Jacqueline Hogue",authors:[{id:"202110",title:"Dr.",name:"Jennifer",middleName:null,surname:"Mills",slug:"jennifer-mills",fullName:"Jennifer Mills"}]},{id:"60852",title:"The Basics of Biogerontology",slug:"the-basics-of-biogerontology",totalDownloads:647,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Mark Rinnerthaler and Klaus Richter",authors:[{id:"216585",title:"Prof.",name:"Klaus",middleName:null,surname:"Richter",slug:"klaus-richter",fullName:"Klaus Richter"},{id:"216587",title:"Dr.",name:"Mark",middleName:null,surname:"Rinnerthaler",slug:"mark-rinnerthaler",fullName:"Mark Rinnerthaler"}]},{id:"57714",title:"Adherence to Medication in Older Adults as a Way to Improve Health Outcomes and Reduce Healthcare System Spending",slug:"adherence-to-medication-in-older-adults-as-a-way-to-improve-health-outcomes-and-reduce-healthcare-sy",totalDownloads:1106,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Luís Midão, Anna Giardini, Enrica Menditto, Przemyslaw Kardas and\nElísio Costa",authors:[{id:"181971",title:"Prof.",name:"Elísio",middleName:null,surname:"Costa",slug:"elisio-costa",fullName:"Elísio Costa"},{id:"216343",title:"M.Sc.",name:"Luís",middleName:"Silva",surname:"Midão",slug:"luis-midao",fullName:"Luís Midão"},{id:"225355",title:"Prof.",name:"Anna",middleName:null,surname:"Giardini",slug:"anna-giardini",fullName:"Anna Giardini"},{id:"225356",title:"Prof.",name:"Przemyslaw",middleName:null,surname:"Kardas",slug:"przemyslaw-kardas",fullName:"Przemyslaw Kardas"},{id:"225357",title:"Prof.",name:"Enrica",middleName:null,surname:"Menditto",slug:"enrica-menditto",fullName:"Enrica Menditto"}]},{id:"59227",title:"Differentiating Normal Cognitive Aging from Cognitive Impairment No Dementia: A Focus on Constructive and Visuospatial Abilities",slug:"differentiating-normal-cognitive-aging-from-cognitive-impairment-no-dementia-a-focus-on-constructive",totalDownloads:827,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Radka Ivanova Massaldjieva",authors:[{id:"75907",title:"Associate Prof.",name:"Radka Ivanova",middleName:null,surname:"Massaldjieva",slug:"radka-ivanova-massaldjieva",fullName:"Radka Ivanova Massaldjieva"}]},{id:"57952",title:"Neurocognitive Implications of Tangential Speech in Patients with Focal Brain Damage",slug:"neurocognitive-implications-of-tangential-speech-in-patients-with-focal-brain-damage",totalDownloads:864,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Nora Silvana Vigliecca",authors:[{id:"202008",title:"Dr.",name:"Nora",middleName:"Silvana",surname:"Vigliecca",slug:"nora-vigliecca",fullName:"Nora Vigliecca"}]},{id:"56000",title:"On the Design of a Photo Beauty Measurement Mechanism Based on Image Composition and Machine Learning",slug:"on-the-design-of-a-photo-beauty-measurement-mechanism-based-on-image-composition-and-machine-learnin",totalDownloads:767,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Chin-Shyurng Fahn and Meng-Luen Wu",authors:[{id:"35484",title:"Prof.",name:"Chin-Shyurng",middleName:null,surname:"Fahn",slug:"chin-shyurng-fahn",fullName:"Chin-Shyurng Fahn"},{id:"201818",title:"Mr.",name:"Meng-Luen",middleName:null,surname:"Wu",slug:"meng-luen-wu",fullName:"Meng-Luen Wu"}]},{id:"55405",title:"The Problematic Perception of Beauty in the Artistic Field",slug:"the-problematic-perception-of-beauty-in-the-artistic-field",totalDownloads:839,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Raquel Cascales",authors:[{id:"201251",title:"Prof.",name:"Raquel",middleName:null,surname:"Cascales",slug:"raquel-cascales",fullName:"Raquel Cascales"}]},{id:"60164",title:"The Elderly in the Emergency Department",slug:"the-elderly-in-the-emergency-department",totalDownloads:3792,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Alexander Morales Erazo",authors:[{id:"224826",title:"M.Sc.",name:"Alexander",middleName:null,surname:"Morales",slug:"alexander-morales",fullName:"Alexander Morales"}]},{id:"55406",title:"Beauty and the Beast: Perception of Beauty for the Female Athlete",slug:"beauty-and-the-beast-perception-of-beauty-for-the-female-athlete",totalDownloads:873,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Sharon K. Stoll, Heather VanMullem, Nicole Ballestero and Lisa\nBrown",authors:[{id:"189960",title:"Prof.",name:"Sharon Kay",middleName:null,surname:"Stoll",slug:"sharon-kay-stoll",fullName:"Sharon Kay Stoll"},{id:"205593",title:"Dr.",name:"Heather",middleName:null,surname:"VanMullem",slug:"heather-vanmullem",fullName:"Heather VanMullem"},{id:"205594",title:"Ms.",name:"Nicole",middleName:null,surname:"Ballestero",slug:"nicole-ballestero",fullName:"Nicole Ballestero"},{id:"205595",title:"Mrs.",name:"Lisa",middleName:null,surname:"Brown",slug:"lisa-brown",fullName:"Lisa Brown"}]}],onlineFirstChaptersFilter:{topicSlug:"aging",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/computational-biology-and-chemistry/systems-glycobiology-past-present-and-future",hash:"",query:{},params:{book:"computational-biology-and-chemistry",chapter:"systems-glycobiology-past-present-and-future"},fullPath:"/books/computational-biology-and-chemistry/systems-glycobiology-past-present-and-future",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()