SWOT analysis matrix [65].
\r\n\t
",isbn:"978-1-83969-221-5",printIsbn:"978-1-83969-220-8",pdfIsbn:"978-1-83969-222-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"ec438b5e4be44dc63870c1ace6a56ed2",bookSignature:"Dr. Marcos Roberto Tovani Palone",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10710.jpg",keywords:"Orofacial Cleft, Cleft Lip, Surgery, Cleft Palate, Oral Surgical Procedures, Orthodontics, Dental Treatment, Comprehensive Dental Care, Speech Therapy, Speech-Language Pathology, Pediatric Treatment, Therapy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 3rd 2021",dateEndSecondStepPublish:"March 3rd 2021",dateEndThirdStepPublish:"May 2nd 2021",dateEndFourthStepPublish:"July 21st 2021",dateEndFifthStepPublish:"September 19th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Marcos Roberto Tovani Palone received his Ph.D. from Ribeirão Preto Medical School, University of São Paulo, Brazil. He has published more than 70 papers in reputed journals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"221178",title:"Dr.",name:"Marcos Roberto",middleName:null,surname:"Tovani Palone",slug:"marcos-roberto-tovani-palone",fullName:"Marcos Roberto Tovani Palone",profilePictureURL:"https://mts.intechopen.com/storage/users/221178/images/system/221178.jpg",biography:"Marcos Roberto Tovani Palone completed his MSc from the Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Brazil, and his PhD in Experimental Pathology from Ribeirão Preto Medical School, University of São Paulo, Brazil. He is DDS, and specialist in pediatric dentistry, syndromes and craniofacial anomalies, and health management. His main research interests are pediatric pathology, orofacial clefts, dentistry, general medicine, and public health. He has published more than 70 papers in reputed journals and has been serving as an editorial board member of BMC Public Health, Biomolecules, and Electronic Journal of General Medicine.",institutionString:"University of Sao Paulo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"345821",firstName:"Darko",lastName:"Hrvojic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/345821/images/16410_n.",email:"darko@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58289",title:"Strategies to Enhance Sustainability of Land Resources in Arid Regions",doi:"10.5772/intechopen.72492",slug:"strategies-to-enhance-sustainability-of-land-resources-in-arid-regions",body:'\nAt the historical development of human beings, we see that many civilizations had been established from the hunter-gatherer system (the Neolithic period) to the premodern 9000 period that had caused the great pressures on natural resources [1]. It is known that human activities such as overgrazing, deforestation, wrong or inappropriate land uses/conversions and poor agricultural management practices are common causes of land degradation, but extreme climatic events also accelerate this process. It is reported that today 1.5 billion people worldwide are affected by land degradation processes [2]. Especially in arid and semiarid ecosystems, land degradation is one of the most significant environmental treats. The major problems encountered in terms of sustainable land management in these ecosystems are mentioned as the salinity, desertification and drought and soil erosion. However, these problems are defined in different forms in different sources. The result is the same for humans who base their life on agricultural bases. This is the gradual decline of the fertility capacity of the soil. At this point, it is extremely important that the soil, which is one of the main resources for living beings to survive on earth, is sustainable. Today, land resources in terms of soil and water are limited to meet the needs of future generations as we completely depend on these resources. In the world, it is estimated that 12 million hectares of land are degraded annually (corresponding to 23 ha per minute), which corresponds to 20 million tons of grain due to the results of drought and desertification. In the economical aspect, annual cost of land degradation is estimated to be about US$300 billion. This includes losses to both agricultural production and other ecosystem services [3].
\nTo combat land degradation processes, many strategies have been defined by both governments and intergovernmental platforms under several titles such as United Nations Sustainable Development Goals (SDGs), Food and Agriculture Organization of the United Nations (FAO), Global Soil Partnership and Land Degradation Neutral World. In particular, Goal 2 (end hunger), Goal 3 (good health and well-being), Goal 12 (responsible consumption and production) and Goal 15 (life on land) of the Sustainable Development Goals (SDGs) that are planned to be reached for the period covering 2015–2030 include measures and policies related to the use of land and water resources [2]. Of course, the applied agricultural policies have direct and very important effects on land use. The subsidies, incentives and taxes imposed by governments have great implications for which crops are grown and where land is well managed. Inappropriate land management practices applied in marginal areas and fragile ecosystems that are sensitive to climatic, topographic and soil conditions cause the rapid deterioration of land resources. But, land resources are limited and demands for different land-use types especially in the developing countries are greater than the available land resources and these demands become more pressing on natural resources [4]. And so, the only way to protect and sustain soil and water resources from negative effects of erosion, salinity and desertification and other land degradation types in fragile ecosystems is to prepare and enforce appropriate land-use plans. Because of that, sustainable resource management can only be successful if it is based on appropriate land uses. In summary, sustainable promotion of soil and land management is necessary for the provision of healthy food and the environment. Within the scope of this chapter, the aim is to attract attention to land degradation processes in arid and semiarid regions (mostly focused on Turkey’s conditions), to analyze the conditions in terms of policy-science interaction by performing situation analysis (SWOT) and develop the effective strategies for sustainable use of land resources under arid and semiarid Turkey conditions.
\nAs mentioned above, land degradation is one of the major environmental problems worldwide and has become particularly severe in the last decades in Turkey [5]. It causes the significant reduction of the ecosystem functionality with unfavorable effects on biodiversity, desertification and water resource quality [6, 7, 8, 9]. FAO [10] figured that the main causes of land degradation are the deforestation, population growth, urban expansion, pollution and waste disposal, climate change and unsustainable land management practices, and their results led to discovering significant problems especially in the arid ecosystems having great water scarcity to survive ecosystem services at the optimal conditions. These problems are defined as biodiversity loss, salinization and sodification, nutrient imbalance, compaction, sealing, pollution, acidification, erosion and loss of soil organic carbon. As a result, water scarcity, food and nutrition insecurity, rapid climate change, poverty and social insecurity, migration and reduction of the ecosystem services are basically affecting our lives.
\nThe rate of land degradation processes is closely related to the interactions between climate, soil, land use and topography. Today, Turkey is classified as degraded in terms of soil according to the degradation map [11]. In this context, it was stated that a large part of Turkey is rated highly susceptible to desertification in terms of climate, soils, topography and land cover status [12], although no region could be classified as “desert” in the country based on the general evaluation of the 1965–2007 period using the Aridity Index [13]. Ninety percent of Turkey’s total land area is climatologically classified as arid and semiarid regions; especially, Aksaray, Cihanbeyli, Ereğli (Konya), Iğdır, Karaman, Karapınar, Konya, Nallıhan and Niğde stand out in the semiarid-very arid border. In general, Thrace, Central Anatolia, the interior of the Central Black Sea and eastern Anatolia are regions where arid and semiarid areas spread [13].
\nOther significant studies related to the long-term variability of climatic conditions over the rainfall regions of Turkey mostly indicated that annual and seasonal precipitation totals have been in the decreasing trends for many stations in Turkey, particularly at those in the Aegean and Mediterranean regions and South-eastern Anatolia and the continental interiors of Turkey that have significant potential to be arid lands in future. And it is estimated that these regions will become more sensitive to desertification in the future with anthropogenic effects such as forest fires, land conversion, urbanization, pollution, etc. [13, 14, 15, 16, 17, 18, 19, 20]. Considering the variation of rainfall erosivity values, a trend analysis for the Mediterranean part of Turkey was performed (Figure 1) [21]. And, the obtained results showed that rainfall erosivity values statistically increased in the period of 1993–2004. Not surprisingly, increasing rainfall intensities led to increase in flooding and water erosion risk in several parts of Turkey [22, 23]. This situation is not only specific to the Mediterranean region but also to the whole of arid areas. Although there is a decrease in the amount of rainfall with global warming, climate change scenarios state that rainfall intensities in dry areas significantly tend to increase [24]. Another potential threat is the degradation of soil moisture balance and the depletion of groundwater levels throughout the country as a result of reduced winter precipitations [17].
\nTrend analysis result for rainfall erosivity values in the Mediterranean part of Turkey.
At the basis of all these problems are actually anthropogenic effects. People in fragile ecosystems promote land degradation processes due to land-use conversions by farming in fragile soils and applying poor crop management techniques. And, those facilities have significant effects on salinization and nutrient exploitation in terms of degraded natural soil and water interactions. [25]. Another drastic effect on resource management of land-use transformations in these ecosystems could be mentioned as the mineralization of soil organic carbon (SOC) by cultivation activities. These changes under the Mediterranean climate conditions have been closely examined by various researchers [26, 27, 28]. And, the effects of these conversions on land resources, global warming and soil are being discussed frequently in recent times [29]. As reported, three main reasons of the global increase of CO2 and other greenhouse gas emissions, resulting in global warming, are fossil fuel combustion, cement manufacturing and land-use changes [30]. It is known that the conversion from natural to agricultural ecosystems, tillage and soil degradation with erosion and other processes in the world resulted in a reduction of about 60% of carbon stock in the soil from the beginning of agriculture 10,000 years ago [31, 32, 33]. It is an important fact that the effect of agriculture on greenhouse gas emissions is increasing day by day in terms of CO2 equivalent (Figure 2) [34]. In addition to inappropriate mechanization techniques, exploitation of grassland and forest areas in fragile ecosystems, especially for agricultural activities, is triggering this situation.
\nGreenhouse gas emissions according to the sectors in Turkey [
Soil organic carbon (SOC) is the significant parameter to evaluate land-use conversions’ effects on vulnerability of soil erodibility. This unsuitable land-use changes cause the decomposition of aggregates as a result of organic matter being oxidized [5, 35, 36]. In this context, a comprehensive investigation on the effects of changes in land-use type on some soil properties was performed in a Mediterranean plateau and searched for land-use effects for three adjacent land-use types including the cultivated lands, which have been converted from pastures for 12 years, fragmented forests and unaltered pasture lands [29]. Results indicated that cultivation of the pastures caused the degradation of soil physical properties and increased the soil susceptibility to the erosion under the limited soil depth conditions in the southern Mediterranean highlands [29]. Similarly, land-use transformation effects on soil erodibility in the Central Anatolian conditions were investigated [37]. And, findings showed that soil organic matter content, hydraulic conductivity and soil erodibility value statistically changed with changing land use, and soils of the recreational land and cropland were more sensitive to water erosion than those of the woodland, grassland and plantation usage. More recently, the changes in aggregate-associated and labile soil organic C and N fractions were evaluated after conversion of a natural forest to grassland and cropland in northern Turkey [38]. And, the results showed that long-term conversion of forest to grassland and cropland significantly decreased microbial biomass C, mineralizable C and physically protected soil organic C. Recently, it was reported that 70% of SOM was lost from agricultural soils due to cultivation practices; however, there is no definite information about dehumidification ratios [39]. Moreover, when evaluated in terms of the levels of organic matter in Turkey, it is less than 1% in two-thirds of soils [40, 41, 42].
\nNot surprisingly, the lower organic matter contents make the soil more susceptible to erosive forces in these fragile arid and semiarid ecosystems. In addition to that, considering the topographical conditions, the country generally has a mountainous topography with higher slope degrees and shallower soil profile depth. With 47.98% of the total land having ‘steepness of slope’ greater than 20% and 62.15% of land, the slope greater than 12% was not suitable for machinery agricultural activities. It also accelerated the soil erosion risk [43]. Today, 16.4 million hectares of the 27.7 million hectares of agricultural land soil erosion is the major problem in Turkey. If an overall assessment of the erosion potentials of Turkey’s soil is to be made, it can be said that more than 75% of the land is at risk of erosion at different levels [44, 45]. It was reported that suspended sediment yield was 155 ton y−1 km−2 or 119 m3 y−1 km−2 based on the detailed river observation in Turkey [43, 46], considering that the soil formation rate is naturally 1 mm within 200–400 years [47]. In this way, the soil formation rate was calculated as “0.025 mm y−1, 0.025 m3 ha−1 y−1 or 0.0325 ton ha−1 y−1 if taking into consideration the upper limit of soil formation rate for arid and semiarid conditions of Turkey. Accordingly, the rate of soil loss was estimated approximately 48 times higher than the rate of soil formation in Turkey [43]. It is also well known that for agricultural purposes the breaking of the natural soil formation rates 40 times and for other reasons, such as breaking with up to 100 times more soil losses occurred in worldwide [47, 48].
\nOther significant problems encountered in arid and semiarid regions in Turkey are drought, salinity and desertification due to lack of precipitation, high evapotranspiration rates and unsuitable land management practices [49]. Today, agricultural sector is one of the most important users of water resources in Turkey. Annually, we are economically using 44 billion cubic meters of 112 billion cubic meters of water resources, and 74% of this water is only being used for agricultural activities [50]. Excessive and unsuitable use of both surface and subsurface waters for agricultural purposes led to significant changes in the quantity and quality of water resources. In the world, 60 million hectares, which account for about 20% of the world’s irrigated areas, are facing serious salinity problem. And, more than 50% of these areas are located in India, China, USA and Pakistan. Turkey is also affected by irrigation-derived salinity at considerable levels. Today, 1.5 million hectares of soils have salinity problem due to improper management of irrigation and inadequate drainage in Turkey [2]. As a result of unsustainable agricultural practices, a considerable amount of agricultural land is put out of production each year. This situation results in reducing agricultural productivity and limiting agricultural production areas [49]. Thus, it is estimated that increased salinization of arable land will led to a land loss of 50% in 2050 [51]. At the beginning of the causes that increase the activity of salinity in these regions is the drought. In Turkey, on average, a moderate drought every 6 years and a most severe drought every 18 years are observed. For this reason, World Meteorological Organization (WMO) listed Turkey among the 76 countries that have the risk of drought [50, 52].
\nAccording to the drought predictions, the tendency of meteorological drought in our country to turn into agricultural drought is rather high [53]. This is in our country that uses 74% of total water for agricultural purposes; the fact that agricultural drought is one of the most important limiting factors for the agriculture sector in terms of having enough moisture in the soil during the plant development periods for agricultural production [50]. According to the 2020, 2050 and 2080 projections in Turkey, a decrease in production rates of the grains such as wheat, barley, rye and oat by 4.9, 8.3 and 13.8 per percent, respectively, due to climate change and drought is estimated [54]. Considering that 80% of the 24 million hectares of agricultural land is rainfed, it is clear that if necessary measures are not taken, agricultural production will be adversely affected in the future from the climate change processes. As a result, the sustainability of land resources in semiarid and arid ecosystems, such as Turkey that has high sensitivity to land degradation in terms of climate, soil and topographic conditions, is directly related to the effective implementation of sustainable land management practices. And, it can be achieved on the condition that the science-policy interface is actively formed.
\nSuccessful land resource management requires action to be taken at the level of individuals, governments and even intergovernmental organizations. In this context, sustainability of the collaboration and interactions in the science-policy interface, improvement of the existing sources of information in terms of databases of land resources and the adaptation of the legal regulations under the sustainable land management approach are significant issues to reach the desired targets.
\nRelated to the subject, revised soil charter [55] defined the responsibilities under the three main groups, which are individuals and private organizations, government and intergovernmental organizations, to overcome degradation process and build restoration of degraded areas. The success of national scale works related to land resource sustainability is closely linked to the actions and strategies that governments will implement. For that, 10 significant actions to be realized by governments are defined [55]. Among them, the last three actions (VIII, IX and X) emphasize the need to develop the land and soil information systems to combat climate change and land degradation processes in terms of sustainability of land resources effectively.
\nTo more effectively and sustainably combat desertification and erosion throughout Turkey, both national and international projects have to been seriously implemented. National Soil Erosion Map by USLE/RUSLE algorithm (Universal Soil Loss Equation – Revised Universal Soil Loss Equation) [56] is one of the most important attempts by General Directorate of Combating Desertification and Erosion bureau. In this context, constantly updated ‘Erosion Monitoring System’ is preparing for monitoring studies and creating data archive in the web [57]. It is aimed to gather available information throughout the country related to applied or planned soil conservation practices. It is supported with web-available system for applying different scenarios to estimate its effects on soil loss ratios [12]. Another important monitoring system is created for the problem of desertification. For that, a risk map has been established by determining the vulnerability classes of desertification-sensitive arid and semiarid lands of Turkey [57]. Studies at national scale are also being conducted in the same way to evaluate the risk of wind erosion and take effective precautions against to it.
\nIn addition to this, considerable steps have been taken with the efforts to increase the presence of forests and the improvement of the existence of damaged forests. Over the last 37 years, total forest area has increased by 1.3 million hectares with afforestation projects. For future projections, it is aimed to increase the total forest area from 27 to 30% by 2023 by Ministry of Forestry and Water Affairs. Afforestation of degraded soils by converting into forests or other perennial land uses has a large potential of soil organic carbon sequestration. It will enhance the carbon accumulation in soil organic matter [32].
\nOther significant projects on management of limited land resources in Turkey are related to watershed managements, soil and water resource monitoring facilities, drought, desertification, snowslide, flood and landslide control and monitoring systems, rehabilitation of degraded areas in the context of Land Degradation Neutrality approach have been progressed by Ministry of Forestry and Water Affairs.
\nThe Ministry of Food, Agriculture and Livestock, which is also responsible for combating climate change in Turkey, has various projects, strategies and policies related to agriculture as follows [58, 59, 60, 61]:
\nEnvironmentally Protected Agricultural Land Conservation Program (ÇATAK) aims to give support payments for farmers who prefer ecofriendly agricultural techniques and cultural practices. Grant support is provided for the conversion of in-field irrigation systems to closed and pressurized systems within the framework of the Program for Supporting Modern Irrigation Methods to Support Water Saving and the Support Program for Rural Development Investments.
And several agricultural Research & Development studies pursue to reduce the energy use in agriculture, sustainable resource use, development and improvement of drought-tolerant plants, improvement of methods and tools in irrigated areas in dry periods and development of land processing methods and tools providing carbon capture in the soil. The others related to some information technologies carried out in our country within the scope of action plans to be taken by governments are “land use land use conversion and forest (LULUCF),” “determination of the problematic agricultural areas,” “agricultural monitoring and information system project (TARBİL),” “farming registration system” and “rural database project.” All of these projects aim at the formation and development of reliable information systems related to soil and land-use strategies.
\nRecently, the significant project that stands out in crop/soil management is the “National Agriculture Project” that has been started by the Ministry of Food, Agriculture and Livestock in 2017. Its original aim is to promote sustainable agriculture by considering the existing ecological and economic conditions and the needs of Turkey. In this context, 21 products that are important in terms of human nutrition, health and animal production, which are strategically and locally important in our country (wheat, barley, rye, rice, Dane corn, triticale, oats, lentils, chickpeas, dry beans, cotton, soybean, oil sunflower, canola, Aspir, tea, hazelnut, olive oil, potatoes, onion and forage plants), will be supported on 941 agricultural areas and planned production will be passed. To define the supported product on a specific area, a decision support system has been established that includes more than 1 billion data taking into consideration long-term output statistics, the crop rotation, climate, soil and topography conditions, water restriction data (current water potential and vegetation water consumption), present legal regulations on soil conservation and public and academic proposals. Within the scope of this project, “fertilizer usage guidelines” was prepared for total 941 agricultural basins to prevent from being contaminated with excessive fertilization and increased productivity. And, 211 large plains have been identified and their boundaries have been determined in order to ensure effective protection of agricultural land. It is planned that these 211 large agricultural basins will be declared as a protected area by the decision of the Council of Ministers and protected effectively. New arrangements have been made in order to bring unused agricultural lands for various reasons (property issue, immigration, abandonment of farming, etc.) to agricultural production and the economy of the country. Irrigation and land consolidation projects will be applied in the scope of this project. Thus, it is aimed at increasing the production capacities of the soil by adaptation of modern production/irrigation techniques within the soil and water resource conversation approach.
\nHowever, discussions about the legal, technical, socioeconomic and environmental dimensions of sustainable land and soil management in Turkey clearly showed that land-use planning for industrialization, urbanization, transportation and tourism, etc., with the contribution of the gaps in the legal regulations creates a serious pressure on our land resources, the soil functions are deteriorated and it causes the subsurface and above-ground ecosystem services to disappear. In particular, the concept of “public good” in the law on soil conservation and land use has been brought to lead to the use of an instrument for the conversion of qualified agricultural lands to another uses.
\nIn addition, databases already used in land-use plans have lost their validity. There is an increasing demand for detailed soil surveys in Turkey by scientists and technicians working on projects of sustainable soil and water management. Soil classes should be updated. It was produced within the 1938 Soil taxonomy named as the old American classification system [62], and semidetailed maps made 30 years ago need to be updated nationwide at 1/25: 000 scale to meet today’s needs. The information-based land-use planning period, which includes soil series and important phases, should be urgently passed. A more systematic case assessment on land resource sustainability in Turkey is shared below with the help of SWOT analysis.
\nStrengths, Weaknesses, Opportunities And Threats (SWOT) analysis is defined as the strategic planning method used to summarize the key elements of your strategic environments [63]. In fact, it is thought as the first step in the strategic planning and it helps planners to identify the strategies of achieving goals by concentrating on the key subjects [64]. The SWOT analysis matrix was explained by [65] as shown in Table 1. Where the questions are to be asked in the analysis to reach the planned targets are expressed clearly.
\n\n | Strengths | \nWeaknesses | \n
---|---|---|
Opportunities | \nHow do I use these strengths to take advantage of these opportunities? | \nHow do I overcome the weaknesses that prevent me from taking advantage of these opportunities? | \n
Threats | \nHow do I use my strengths to reduce the impact of threats? | \nHow do I address the weaknesses that will make these threats a reality? | \n
SWOT analysis matrix [65].
The method, commonly used for several business enterprises, has recently been widely used in sustainable planning of environmental resources in terms of changing demands and declining resources. For example, it was used to assess the rural tourism potential in Turkey [66]. Groundwater resource potentials were also evaluated in the Zakynthos Island in terms of sustainability with the help of SWOT analysis technique [67]. In addition, for more appropriate conservation and utilization of natural resource, this analysis technique could significantly be used [68] for village planning. Similarly, significant strategies were proposed for sustainable farming system management based on farmers’ needs by conducting SWOT analysis in rural areas of Shadervan district, Shouahtar Township, Iran [64]. Under the fragile arid and semiarid climate conditions, it is vital to make strategic planning to manage land resources in sustainable manner. As a first step for long-term effective planning in Turkey conditions, SWOT analysis was performed to draw the situation including the strengths, weaknesses, opportunities and threats as the internal and external effects on developing strategies on sustainability as given in Table 2.
\nObjective: strengths, weaknesses, opportunities and threats (SWOT) analysis for “land resources and sustainability in Turkey” | \n|||
---|---|---|---|
External factors | \nInternal factors | \n||
Strengths (S) | \nWeaknesses (W) | \nOpportunities (O) | \nThreats (T) | \n
S1: Abundance of natural resources all over the country compared to the most severe arid regions in the World S2: The existence of legal regulations, e.g., laws and regulations related to the soil and water protection, land-use planning, natural resource protection and rural development S3: The existence of action plans to combat erosion, climate change, desertification and protect biodiversity S4: Adopt and approve all international conventions of environmental and biological diversity by governmental and public organizations S5: The existence of strong academicals, technical and administrative infrastructure | \nW1: Sensitivity for climate change and land degradation processes in terms of severe soil erosion, salinization, drought and desertification rates especially in semiarid and arid regions W2: The shortcomings of the law and governmental regulations for sustainable land management strategies W3: Lack of reliable data on soil and water resources to protect the sustainable use of these resources W4: Increasing pollution rates of soil and water resources due to agricultural, industrial activities and energy requirements W5: Unprevented land conversions due to political pressures and gaps in the legal regulations W6: Lack of coordination and integration efforts between public, academic, private, governmental and nongovernmental organizations for sustainable planning of natural and human resources | \nO1: A very young farmer population that can better understand and accept environmental issues O2: Increased supports for farmers who especially implant the best management practices O3: Opportunities to access the international funds for environmental protection O4: Increasing public interest for the nature-friendly production methods O5: The development of nature-friendly new production technologies O6: The development of existing policies based on the protection-use balance with the aid of contribution of new information technologies due to the necessity of harmonization process in the EU and international obligations | \nT1: Predictions that the temperatures will increase and the irregularities in the precipitation regimes T2: The risk of deterioration in soil quality due to the applied national agricultural policies T3: The risk of increasing anthropogenic pressures on land resources T4: The possible environmental risks to be encountered in the absence of science-policy coordination in legal regulations T5: Placement of the perception that the unsuitable land conversions can be made to provide energy production and raw material T6: Increase in immigration rates and social-economic and cultural problems caused by the reduction of natural resources | \n
WT1: Reforming environmental, agricultural and industrial policies to establish sustainable resource use WT2: Updating databases used in monitoring climate change and land degradation processes WT3: Preparing updated land-use plans in accordance with the needs of the ecosystem, taking into account the science-policy balance WT4: Planning and implementing research, experiments and extension studies related to the defining suitable land-use types for the ecological conditions of the selected region WT5: The application of dissuasive punishment to land users exceeding pollutant limit values by periodically measuring the runoffs in terms of transported sediment-associated pollutants and water quality in the microwatershed scale WT6: Supplying an acceptable level of farm income by reducing income variability for reducing the pressure on especially marginal lands | \n
SWOT analysis for soil and water resources and sustainability in Turkey.
In light of the performed SWOT analysis for “Land resources and Sustainability in Turkey,” six threats and six weaknesses were identified, and to overcome their effects, six significant strategies were recommended as outlined below.
\nUnfortunately, it has been assessed that the soil and water resources in our country cannot be protected by effective and comprehensive legislation. And so, reforms are needed in the existing legislation, taking into account the conservation-use balance in relation to the protection of natural resources [W2-5 − T2-4-6].
\nNational scale studies such as monitoring and assessments of soil degradation types, e.g., desertification, erosion and effects of climate change and global warming on sustainable land management have been largely based on unreliable datasets, and so, they need to be updated for effective planning and monitoring of land resources. In order to do that, comprehensive soil survey and mapping studies should be carried out. In addition, species especially in arid regions should be identified for preventing biodiversity losses, and necessary measures should be taken for sustainability [W1-3 – T1-6].
\nIt should be followed after the activities specified in Strategy 2. It is very important to keep up the conservation-use balance in the land-use plan, which is prepared with updated data. But, land-use planning in practice should be an integral part due to that land-use planning only for agricultural purposes is not sufficient for solving problems. District and regional planning and then land-use planning at the entire country level should be done. In the planning phase, it is necessary to include specialists working in the fields of law, economics and society, and landowners in order to effectively implement the plans besides natural resource specialists on the planning team [W5-6 – T2-3-5-6].
\nIt suggests that research and experiments should be carried out to find most suitable land-use types in the region that are planned to be proposed primarily in land-use plans and that the results obtained in the determination of region specific uses should be objectively introduced to the people of the region and should be tested for validity of suitability by taking into account long-term forecasts and forecasts of climate change and the sensitivity of land resources to these changes. Unintended use of agricultural areas should be prevented. For that, breakup of agricultural lands, especially nonagricultural use of irrigated agricultural land, and agriculture in unfavorable agricultural land will be prevented and land consolidation services will be accelerated [W1 – T1-6].
\nVarious pollutants sourced by industrial facilities or excessive consumption of fertilizers or chemicals have the ability of easily transporting in the soil-water air cycle and affecting the ecosystem services negatively. In this context, it is proposed to establish mobile-test centers throughout the country to monitor pollution in soil and water resources and to apply effective punishments to those within the basin scale where limit values are exceeded as a result of periodically planned measurements. And, spread of the good agricultural practice techniques, establishment of modern irrigation and drainage systems in order to prevent soil salinization, planning and implementation of budgeting for drought and salinity-resistant species determination studies and identification of potential rehabilitation sites should be performed especially in the degraded arid and semiarid areas of Turkey. Proper fertilization and soil conservation strategies must be introduced. The content of soil organic matter in arid and semiarid regions should be increased with the use of animal fertilizers together with the application of stubble and green fertilizer usage techniques. Cultural and technical measures (such as fertilization, seeding and soil and water conservation measures) must be taken with pasture management to protect natural grassland areas where rainfall is insufficient or unevenly distributed. In areas having higher potential for rehabilitation, measures to prevent land degradation should be planned and enforced. Biological fighting methods should be preferred in combating harm [W4-5-6 − T2-3].
\nThe topographic and climatic conditions of Turkey limit the width of the suitable land in rural areas. Besides, the land is very fragmented in the way of inheritance, which leads farmers to use marginal lands for agricultural facilities, and it causes the land degradation process in terms of deforestation, land conversions, etc. These activities shortly give irreversible damage to areas where high slopes, shallow soil profiles and inadequate vegetation coverage are the key properties for degradation. For this reason, it is extremely important to supply an acceptable level of farm income to the farmers. In this context, rural development must be realized in agriculture. For that, agricultural income should be increased steadily, the standard of living should be increased and resources should be used more effectively and economically. Thus, the way to be followed is the regional planning of production patterns with high profit margins based on the conservation-use balance of natural resources in order to reduce the pressure on land resources considerably [W6 – T3-6].
\nIn Turkey, the effects of land degradation are considered to be mostly experienced in the inner and central Anatolia regions where the arid and semiarid areas dominate. Intensive deforestation, industrialization and rapid population growth in coastal regions have been defined as the significant threats for accelerating the impacts of climate change throughout the country and limiting the sustainability of natural resources with the aid of topographical and climatic insufficiencies. In this context, first, current situation of land degradation processes and its causes and results in Turkey were discussed and then the measures and strategies enforced in the national scale were summarized. Under the light of current situation, SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis was performed to recommend the strategies for overcoming the weakness and possible treats on sustainable land resource management. These strategies were mainly explained under the headings of deficiencies in legal regulations in Turkey: the necessity of making comprehensive land-use plans not only at the agricultural purposes but also at the regional and national scale, renewal of insufficient and unreliable databases of natural resources in terms of monitoring land degradation and climate change processes, supplying of the coordination and integration among governmental, academic, private, nongovernmental organizations and land users and dissemination of environmentally sound management practices. Finally, it is concluded that sustainable resource management must be ecologically, economically, politically and socially integrated in fragile ecosystems such as Turkey.
\nOur knowledge of the relationship between human beings and the microorganisms we harbor in our gut has greatly increased in the past years, even if we are still far from having understood all their functions. We no longer consider these living entities as simply commensal, and we start to realize that humans are “super organisms” governed also by the microorganisms living inside us. There are approximately 100 trillion cells in the human body, and more than 90% of them are microbes. They make up the human microbiota, consisting of bacteria, fungi and even viruses, mainly located in the intestine where they are referred to as the intestinal microbiota.
\nThe terms currently employed in this field are the following:
\n\n
\n
\n
\n
The first consideration that we have to do is that the microbial ecosystem of the intestine called gut microbiota, is one of the most dense communities that we know, surpassing for complexity those present in soil, subsoil and also oceans [1].
\nThe second consideration is that the microbiota does not represent an inheritance dependent on our species or genes, but rather an environmental inheritance, mainly due to the type of environment to which we have been exposed in the first 3–4 years of our life [2]. This also implies that we can act during life with the aim of improving our microbiota (Figure 1).
\nThe microbiota present in human gut is strictly connected with the whole organism state of health or illness. Major factors capable of modulating the gut microbiota in adults are represented in this picture.
The last one is that our gut microbiota and microbiome are strictly connected with our state of health or illness and, together with genetics and environment, certainly represent a discriminating point in predisposing us to the onset of some particular diseases rather than that of others. The gut microbiota is closely related to our metabolic balance as well as to the development and functioning of our immune system, as studies on germ-free animals have clearly shown. It is also closely connected with the intestinal and systemic endocrine system, and indirectly with the central nervous system, via the enteric nervous system, within what is commonly called the gut-brain axis [3].
\nThese considerations must not make us think of the microbiota and microbiome as something fixed and stable in the course of our life. The aging of our organism physiologically leads to a change in the gut microbiota with a decrease in some specific populations, such as the short-chain fatty acid (SCFA)-producing families
In addition to the physiological and irreversible increase in our biological age, there are other conditions that have a decisive impact on the composition and function of the intestinal microbiota. The first for importance and for the daily life with which it is implemented, is certainly our diet, which can cause, as we will see in the next paragraph, positive or negative changes in the microbiota. Another, often overlooked, condition is our lifestyle. Smoking and alcohol, for example, can negatively alter the microbiome [6], while regular physical activity seems to be capable of significantly improving it [7].
\nFinally, as we will analyze in the following paragraphs, there are many different pathologies, and consequent therapies, that can alter our intestinal microbiota, sometimes irreversibly. The most illuminating example concerns the transmissible pathologies of bacterial origin, encountered at an early age. The antibiotic therapies that often become necessary can, in the first 3 years of life, irreversibly alter the developmental trajectory of the intestinal microbiota leading, in the adult age, to a microbiota substantially different from that which would have developed in the absence of broad-spectrum antibiotic therapies [8]. On the contrary, antibiotic therapy in adults only reversibly alters the intestinal microbiota, which returns exactly to the starting point after the end of the therapy [9] Other intestinal pathogens, such as
However, we must not think that the pathologies correlated to alterations of the microbiota are essentially limited to the gastro-intestinal or metabolic ones. In recent years, many studies have linked alterations in the gut microbiome with a plethora of various diseases, including the neurodegenerative ones, such as Alzheimer’s or Parkinson’s [11]. Despite our limited mechanistic understanding of how the microbiota can predispose to neurodegenerative diseases, efforts to manipulate the microbiota through fecal microbiota transplantation, probiotic treatment, or other nutritional strategies, highlight the potential for microbial improvement in successfully preventing or decreasing the symptoms of these diseases, at least in laboratory animals [12]. It is therefore not surprising that some studies today are explicitly aimed at microbiome-targeted interventions for the prevention or treatment of neurodegenerative diseases.
\nTo conclude this paragraph of premises, we can state that while conventional medicine aimed at maximum specialization, with branches such as organ and cellular medicine, on the other side of the pond the role of the intestinal microbiota has gradually assumed more and more importance, to remind us that our “super organism” is unique and that alterations of our gut microbial component, that is not even part of our cellular pool, can have a broad-spectrum negative impact on many if not all the organs and apparatuses that make up our organism. The microbiota well represents the complex relationships that exist between our health and the environment in which we are born and spend the first years of our life. A compromised environment, due to excessive sterilization or pollution, certainly has a strong impact on the structure of our microbiota in adulthood and, consequently, also on our state of health and well-being. Although fecal microbiota transplantation has opened new frontiers on the prevention and treatment of many pathologies, it is indisputably true that this community of microorganisms represents a central node in the functioning of all our organs and systems, and at the same time it denotes a fundamental point of interaction between us and the environment in which we spend our lives.
\nIntestinal dysbiosis is mainly characterized by lower bacterial diversity and it is often associated with an increase in bacterial species with pathogenic potential (
Food, lifestyle, xenobiotics and aging are the main causes that can lead to dysbiosis and consequently to an alteration of the intestinal barrier function. These two conditions are linked immune system impairment and to the possible onset of many pathologies. PAMPs, pathogen-associated molecular patterns; DAMPs damage-associated molecular patterns (DAMPs).
Moreover, together with the dysbiosis-related inflammation, the depletion of specific bacterial taxa involved in endocrine signaling may directly affect the function of different organs, and for these reasons dysbiosis has also been linked to metabolic, endocrine (e.g. thyroid-related) and also psychiatric disorders [14].
\nA marked dysbiosis has been found to be associated with the main intestinal disorders, such as Inflammatory Bowel Diseases (IBD), Irritable Bowel Syndrome (IBS) and coeliac disease (CD). IBD are chronic inflammatory disorders characterized by the chronic activation of the immune system with an unbalanced production of inflammatory cytokines. Despite the pathogenesis of these diseases is unclear, there is evidence that, other than genetic and environmental factors, an abnormal immune response against the microbial component of the gut may be involved in inflammation development and maintenance. It has been supposed that dysbiosis could trigger an aberrant activation of immune system in IBD patients, resulting in an unbalanced inflammatory cytokine production. In particular, compared to controls, the anti-inflammatory butyrate-producing species
IBS is characterized by recurrent abdominal pain associated with a change in the bowel habits. IBS patients are divided into four subtypes: diarrhea-predominant (IBS-D), constipation-predominant (IBS-C), mixed diarrhea and constipation (IBS-M), and patients with non classifiable IBS symptoms (IBS-U) [19]. These patients are characterized by a lower microbial diversity compared to the healthy population, and also by increased proportions of Proteobacteria and Firmicutes members, such as
Coeliac disease (CD) is a well-characterized gut autoimmune disorder triggered by the interaction between the gut-associated lymphoid immune system and the undigested gluten peptides that translocate through the epithelial barrier into the lamina propria. About 30% of the world population is genetically predisposed to develop CD, but only a small amount (about 1% in developed countries) develops the disease, so a multifactorial etiology is supposed for this disorder. CD patient microbiota is characterized by an increased relative abundance of
There is rising evidence that the intestinal microbiota compositional structure may impact on thyroid function, since microbial components can regulate iodine, selenium, iron and zinc uptake, and also enterohepatic cycling of thyroid hormones. Moreover, the microbiota may also impact on the bioavailability and metabolism of L-thyroxine and the anti-hyperthyroid drug propylthiouracil (PTU) [23]. The gut microbiota influences the synthesis of neurotransmitters, such as dopamine, which can inhibit thyroid-stimulating hormone (TSH) and modulate hypothalamus-pituary axis. It is therefore reasonable to affirm that intestinal dysbiosis may contribute to the abnormal immune activation in Hashimoto’s thyroiditis (HT) [24] but also in Grave’s disease (GD), which is the second leading autoimmune thyroid disease. Studies on animals showed that microbiota transplant may increase the susceptibility to HT in rats. A proposed mechanism of action, is that
HT and GD evolve, respectively, in hypothyroidism and hyperthyroidism, with two distinct immunological patterns. HT is characterized by antibodies against thyreoperoxidase and thyroglobulin while GD is characterized by the presence of antibodies against TSH receptor. Nevertheless, in both disorders, anti-gliadin, anti-transglutaminase and anti-
Obesity, type-2 diabetes, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) are all metabolic disorders that manifest in comorbidity, and lead to an exacerbation of atherosclerosis and cardiovascular diseases [28]. These disorders are characterized by different microbial signatures, which may contribute to their chronicization. The intestinal microbiota has an active role in regulating host metabolism, indeed experiments on mice showed that conventionally raised mice had more total body fat than mice raised in germ-free condition, and that a fecal transplant in these mice was able to restore nutrient adsorption, metabolic function and body fat [29].
\nIn obese subjects, a lower bacterial richness was detected, along with a predominance of “pro-inflammatory” taxa, such as
Intestinal dysbiosis has also been found in subjects with a high risk for cardiovascular diseases compared to subjects with low risk. In particular, some bacterial genera, such as
Intestinal microbiota disruption has been linked to the development of cancer, and different specific strains have been linked to the development of different tumors. In colorectal cancer (CRC) a particular strain of
In hepatocellular cancer, the translocation of gut microbiota and its products via the portal vein seems to be a condition able to trigger inflammation and chronic liver disease that predisposes patients to the development of cancer [38].
\nLeukemia patients showed a marked dysbiosis. In acute lymphoblastic leukemia (ALL) patients, a lower microbial diversity has been found, along with an enrichment in
In non-small cell lung cancer (NSCLC) patients, a depletion of butyrate producers such as
There is evidence that psychiatric disorders such as schizophrenia (SCZ), autism spectrum disorders, mood disorders, and anxiety are linked to gut inflammation and that inflammatory status could be sustained by gut microbiota eubiosis breakdown [43]. Epidemiological studies link autoimmune and atopic disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and ankylosing spondylitis (AS) to affective, personality, and neurotic disorders [44].
\nA study conducted on Danish population demonstrated that individuals with SCZ have a 50% lifetime prevalence of autoimmune disorders. On the other hand, given a history of autoimmune disorders, the relative risk for SCZ increased by 45% [45].
\nAn association between SCZ and RA, autoimmune thyroiditis, type 1 diabetes mellitus (T1DM), SLE, Guillain-Barre´ syndrome, psoriasis, multiple sclerosis (MS) and autoimmune hepatitis has been described [46]. Interestingly, all these diseases have been associated with CD and non–celiac gluten sensitivity, with a higher prevalence of immunological markers of CD among these patients [47].
\nClinical and animal preclinical studies support the relationship between gut inflammation and mental disorders. Indeed, high levels of pro-inflammatory circulating cytokines such as IL-1b, IL-6, and TNF-α, have been found in patients suffering from SCZ. Moreover, immunomodulatory drugs have been used to effectively treat psychosis [43]. In patients with a high risk of psychosis, Clostridiales, Lactobacillales and Bacteroidales were found to be significantly higher than in healthy controls [48].
\nIt has been hypnotized that the excessive rise of SCFA synthesis could be one of the causes of microglia activation. Studies on SCZ patients showed heterogeneous results on the microbiota dysbiosis so, despite such a dysbiosis was always confirmed in these patients, it is difficult to link specific taxa to this disorder [43]. Anyway, fecal transplantation from SCZ patients to germ-free mice resulted in the development of SCZ-like behaviors in receiving mice, providing final evidence of the gut microbiota involvement in SCZ. An unbalanced microbiota was also detected in bipolar disorders and autism spectrum disorders, to underline that our gut microbiome may contribute, probably with varying importance, to most mental and stress-related disorders [43].
\nThe implication of gut microbiota in neurodegenerative disorders has been widely investigated. Several clinical studies in Parkinson’s disease (PD) patients showed modifications in the gut microbiota, characterized by a rise in the relative abundance of
For what concerns Alzheimer’s disease (AD), animal experiments on mice with induced dysbiosis and on germ-free mice showed that microbiota manipulation can impact on disease severity and cognitive impairments. LPS seems to be involved in fibrillogenesis of β-Amiloid (Aβ), and some bacterial species, such as
Since the second half of the 19th century, with Metchnikoff’s studies on the possibility of using lactic acid bacteria to decelerate the process of self-intoxication and infection by intestinal microbes [52] probiotics have been recognized as a tool to modulate the gut microbiota while conferring benefits to health. Their economic value was recognized shortly thereafter, and their global market is estimated to reach USD 69.3 billion by 2023 [https://www.marketsandmarkets.com/PressReleases/probiotics.asp]. Nowadays, probiotics represent one of the most commonly consumed food supplements worldwide, being present in yogurt, cheese, ice cream, snacks and nutritional bars, breakfast cereals, infant formulas and more recently also added to cosmetic products. They are also marketed as lyophilized pills, and their consumption is widely supported by physicians, particularly gastroenterologists [53]. The administration of probiotics is indeed a more than feasible approach in clinical practice, compared for example to diet, despite its recognized role as a pivotal determinant of the structure and function of the gut microbiota, able to support homeostasis or
According to the International Scientific Association for Probiotics and Prebiotics consensus meeting in October 2013 [55], the framework “probiotics” must include microbial species that have been shown in properly controlled studies to confer health benefits. Probiotics are also new commensals and consortia that include defined strains from human samples, for which adequate evidence of safety and efficacy exists. On the other hand, live cultures, traditionally associated with fermented foods (with no evidence of health benefits), and undefined, fecal microbiota transplants must be kept outside this framework.
\nProbiotics may have several effects on the host, including certainly the modulation of the gut microbiota but also the metabolism of lactose with improved digestion or bile salts with various systemic effects, vitamin synthesis, direct and indirect pathogen antagonism, regulation of intestinal transit and alleviation of visceral pain, strengthening of the gut barrier, production of specific bioactives and neurological, immunological and endocrinological effects. As expected, some underlying mechanisms are observed across taxonomic groups, such as the inhibition of potential enteropathogens or the production of useful metabolites or enzymes, while others, especially those at the extra-intestinal level, are more likely to be strain specific. These effects can be contact-dependent and/or mediated by surface molecules, e.g. lipoteichoic acid, peptidoglycan, cell surface proteins, exopolysaccharide, pili or other appendages, or by secreted molecules, e.g. SCFAs and bacteriocins [56]. In light of this, it is not surprising that paraprobiotics and postbiotics have recently been proposed as an alternative with a longer shelf-life and enhanced safety, especially for compromised individuals, with the former being non-viable (intact or broken) microbial cells or crude cell extracts [57] and the latter microbial cell constituents and metabolites, which act as bioactive compounds with local and systemic effects [58].
\nWith specific regard to the gut microbiota, probiotics may impact resident communities through at least three different mechanisms: trophic interactions (
Among the main (although sometimes only suggested) prophylactic and therapeutic indications and claims of probiotics, we can certainly mention gastrointestinal diseases, including the prevention or treatment of acute, antibiotic-associated and
In this regard, the awareness that one size does not fit all is rapidly gaining ground. It is now a fact that distinct baseline features of the host (e.g. age and underlying medical condition) and its microbiota (taxa represented and functions performed), including varying environmental exposure (mainly diet), can actually lead to differing outcomes even with the same probiotic preparation. As discussed recently, this could for example be due to the fact that the individual configuration of the gut microbiota may be permissive or resistant to even transient colonization of probiotics [64]. Moreover, it has been shown that probiotics could even perturb rather than aid in the recovery process of the gut microbiota after antibiotic treatment [9]. It is therefore now clear not only that their validity is not to be considered absolute but also that, if not tailored, probiotic-based interventions could not be entirely risk-free.
\nFuture directions will be the adoption of a mechanism-based approach, in which probiotic strategies are designed
Alongside traditional probiotics, it should be mentioned that novel candidate microorganisms with potential health benefits have been discovered thanks to recent research on the composition and function of the gut microbiota, deeply accelerated by massive sequencing. These microorganisms are referred to as next-generation probiotics or live biotherapeutics [65], as they fit well within the US Food and Drug Administration definition of live biotherapeutic as “a biological product that contains live organisms, such as bacteria, is applicable to the prevention, treatment or cure of a disease or condition of human being and is not a vaccine”. Unlike currently used probiotics, they are generally strict anaerobes and therefore present a number of manufacturing challenges, and they should undergo a formal regulatory approval process similar to drugs or any other medical intervention. Among them, we can list SCFA producers, e.g.
Alternatively, it has been thought to engineer GRAS organisms or commensals as a delivery vehicle for bioactive molecules or to express certain functionality. In this approach, the bacterial vehicle is known not to produce any virulence factors, it will be tolerated by the host and, if chosen carefully, may not even colonize the host. As an example, some researchers have used
However, in addition to the limitations discussed above, it should be emphasized that for most of these next-generation probiotic candidates, the available evidence is currently mostly preclinical,
In the future it is expected that overcoming all these challenges in the probiotics field will improve the state of evidence, regulation of use and, finally yet importantly, public awareness, for a precision, informed use. The current limitations in the field and future strategies to be undertaken to overcome them are summarized in Figure 3.
\nFrom traditional to next-generation probiotics: Current limitations and future directions.
Food is a primordial need for our survival and well-being. However, diet is not only essential to maintain human growth, reproduction and health, but it also modulates and supports the symbiotic microbial communities that colonize the digestive tract, the gut microbiota. Type, quality and origin of our food shape our gut microbes and affect their composition and function, impacting on host–microbe interactions. Macronutrients (fat, protein, carbohydrate) and micronutrients (vitamins, minerals, polyphenols) directly interact with gut microbes and are involved in the production of key metabolites such as SCFAs and vitamins. Moreover, dietary fiber impacts on gut microbial ecology, host physiology, and health.
\nDuring or shortly after birth, the human gut is colonized by microbes. The fact that babies born spontaneously have higher bacterial counts in the gut at 1 month of age than those born by the cesarean section indicates that colonization of the gut by microbes starts and is improved during natural birth [75]. The growth and maintenance of a healthy gut microbiota is essential for the development of the immune system and continues during breastfeeding, a stage that seems essential to the individual’s long-term health. Oligosaccharides found in breast milk encourage the growth of
A standard Western style diet offers about 50 g daily of potentially fermentable substrate, primarily dietary fiber, to the colonic microbiota. Non-starch polysaccharides are major components of dietary fiber and constitute 20–45% of the dry matter supplied to the colon. Simple sugars and oligosaccharides also account for another 10%, whereas starch (and starch hydrolysis products) supply less than 8% of dry matter. Some sugar alcohols also avoid the absorption of the small intestine and are minor dietary substrates for colonic microbiota [77]. Approximately 90% of dietary polyphenols (approximately 1 g/day) avoid digestion and absorption in the small bowel and can have a major effect on microbial composition and activities.
\nAbout 5–15 g of proteins and 5–10 g of lipids, mainly of dietary origin, pass daily through the proximal colon. Various other minor dietary constituents, including catechins, lignin, tannins and others, also nourish colonic microbes [78]. The action of all these macro and micronutrients is certainly synergistic and complex at the level of the intestinal microbiota, however in the following paragraphs we will analyze separately the effects of individual macro and micronutrients, trying not to lose the overall vision that is fundamental when it comes to microbial ecology.
\nThese changes have also been observed in weight gain-resistant mice, which implies a direct effect of dietary lipids on the microbiota. It has recently been found that microbes in the small intestine are highly susceptible to fat load and are essential for lipid digestion and absorption. These data suggest that the regional microbiota composition may have significant functional implications, and highlight the need for distinct microbiota and microbiome analysis along the gastrointestinal tract [79]. The lipid-mediated effects on the microbiota depend on the form and source of lipids. For example, mice fed with an isocaloric diet rich in long-chain saturated fats derived primarily from meat products showed greater insulin resistance and inflammation of the adipose tissue compared to mice fed with a high-fish oil diet. In addition, transgenic mice that constitutively generate n-3 polyunsaturated fatty acids (PUFAs) have higher phylogenetic diversity of the microbiome, which provides protection against the metabolic consequences of a high-saturated, high-sugar diet. One mechanism by which gut microbes can mediate the negative metabolic effects of high-fat intake could be by translocating LPS, a membrane toxin of gram-negative bacteria. An increase in circulating LPS after a high-fat meal has also been documented in humans, with amplified effects in obese people. Once in circulation, LPS induces a powerful inflammatory response by activating Toll-like 4 receptor signaling, which has been involved in cardiovascular and metabolic disease development [80].
\nInflammation appears to be the common denominator among the seemingly unrelated biological negative effects of fats on the gut microbiome, involving the immune system and n-3 PUFAs. It is currently accepted that inflammation plays a key role in the progression of several chronic diseases, such as atherosclerosis, inflammatory bowel disease, cancer, diabetes, and neurodegenerative syndromes [81]. Moreover, as described above, several evidence supports the role of n-3 PUFAs on the microbiota and on the regulation of inflammation and the immune system [82]. In addition, dietary n-3 PUFAs have been shown to reduce clinical colitis in IBD patients [83]. In clinical human studies, n-3 PUFA administration resulted in decreased Firmicutes/Bacteroidetes ratio, reduced relative abundance of Coprococcus and Facecalibacterium, and increased proportions of health-associated genera, i.e., Bifidobacterium, Lachnospira, Roseburia and Lactobacillus [84]. These data were consistent with those obtained in a subsequent study in which the authors also found a significant correlation between the plasma levels of n-3 PUFAs and the relative abundance of SCFA producers [85]. In addition, a diet supplemented with n-3 PUFAs has been able to prevent neuropsychiatric disorders and dysbiosis caused by social instability stress during adolescence, and these effects have been maintained through adulthood, supporting the concept that a healthy diet enriched in fish or n-3 PUFAs can have beneficial long-lasting effects and may help to prevent neuropsychiatric disorders [86]. Taken together, all these data allow us to hypothesize the existence of a strong link between n-3 PUFA intake, gut microbiome shaping and modulation of the immune system, with the ultimate objective of hampering the existing loop between bowel inflammation and gut dysbiosis.
\nIn the fat dietary component, n-3 PUFAs can rightly be considered prebiotics. Therefore, the consumption of an n-3-rich diet is currently thought to be beneficial for microbiota health, even if the gut microbiome changes induced in humans by n-3 PUFA supplementation deserve further clinical investigations.
\nWhat we can conclude for the fat dietary component is that the lipid excess present in HFD diet is dangerous for the microbiota and, on the other hand, that a diet enriched in n-3 PUFAs protects the microbiota from possible alterations. However, n-3 PUFA sources, mainly fish, should not considered completely safe, considering the pollution of the sea and the growing presence of microplastics and xenobiotics in the trophic chain of marine animals. In particular, scientific data suggest that shellfish and other small marine organisms consumed with their intestine pose particular concern because they accumulate and retain microplastics. The biological effects of microplastics in human gut are poorly understood, but it has been supposed that in high amounts they could cause an alteration of the gut microbiome, with cascading effects on host physiology [87].
\nFiber intake impacts on host metabolism and immunity by affecting the gut microbiota. Under a fiber-rich diet, the gut microbiota metabolizes undigested dietary fiber into SCFAs (acetate, propionate, and butyrate), affecting host metabolism and immunity. Microbial metabolites from this process improve host metabolism. In particular, the secretion of peptide hormones, such as PYY and GLP-1, is promoted by microbial metabolites: PYY decreases appetite and GLP-1 lowers blood glucose level via promotion of insulin secretion. Among SCFAs, butyrate and propionate activate intestinal gluconeogenesis and improve systemic glucose profiles. Meanwhile, acetate promotes secretion of ghrelin, a hunger hormone, and increases food intake, consequently causing hyperphagia and obesity. Nevertheless, acetate has anti-inflammatory function like butyrate. Butyrate enhances gut barrier function of intestinal epithelial cells and increases regulatory T (Treg) cells. In addition, the gut microbiota suppresses expression of fasting-induced adipose factor (Fiaf), an inhibitor of LPL, promoting fat storage in adipocytes. Under fiber-deficient diet, mucus-degrading bacteria expand and impair the integrity of the mucus layer. Thereby, endotoxemia-induced metabolic inflammation ensues. SCFAs, short-chain fatty acids; PYY, peptide YY; GLP-1, glucagon-like peptide-1; LPL, lipoprotein lipase. From [
Digestible carbohydrates are enzymatically degraded in the small intestine and contain starches and sugars such as glucose, fructose, sucrose and lactose. All these compounds release glucose into the bloodstream upon degradation, triggering an insulin response. Human subjects fed high levels of glucose, fructose and sucrose in the form of fruit, had increased relative abundance of bifidobacteria, with reduced
The administration of retinoic acid (physiologically active vitamin A metabolite) in patients with norovirus infection significantly increased the abundance of
Vitamin C is the most important antioxidant agent, and it must be obtained from dietary sources (mainly fruits and vegetables). This vitamin regulates the redox state and can considerably modulate the gut microbiota. In weaned piglets, vitamin C levels correlated positively with Firmicutes and negatively with Bacteroidetes relative abundances [103]. Vitamin D is thought to be a multifunctional vitamin involved in calcium homeostasis and in a list of systemic physiological functions that include the modulation of gut microbiota [104]. A randomized controlled trial showed that weekly vitamin D supplementation (50,000 ergocalciferol IU) over 12 months increased SCFA fecal levels and the relative abundance of SCFA-producing genera such as
Some vitamins of the B group have been shown to promote bacterial colonization of the gut, modulate bacterial virulence and participate in pathogen clearance [106]. However, they may also have a role in the growth of enteropathogens, such as
It is evident that there is a high and complex interaction between vitamins and the gut microbiota: some vitamins are produced by the microbiota itself and others, particularly liposoluble vitamins, are responsible for its modulation. On the other hand, some of these vitamins may also contribute to enhanced virulence and colonization of potential pathogenic microbes. These studies together suggest that vitamin supplementation could modulate the gut microbiota, but its effects depend on the level of vitamin in the host and the microbiota status. Further clinical trials should be carried out to understand the effects of multivitamin supplementation, in order to evaluate possible effects linked to over-supplementation.
\nConceptually, it is difficult to isolate the activity of polyphenols from the overall activity of the foods that contain them. Nevertheless, overall we can conclude that a diet rich in foods with high polyphenol content, can have positive effects on the human intestinal microbiota.
\nArtificial sweeteners such as saccharin, sucralose and aspartame have been considered as options that might be used to replace natural sugar to prevent and control glucose dysmetabolism. However, recent evidence suggests that consumption of all types of artificial sweeteners may induce glucose intolerance. It is important to note that artificial sweeteners are thought to mediate this effect also by altering the gut microbiota. For example, it was noted that saccharin-fed mice had intestinal dysbiosis with increased relative abundance of
Even on the large category of xenobiotics it is very difficult if not impossible to generalize. Just as an example, analysis of the microbiome of children with Crohn’s disease developed at a very young age showed that the most altered metabolic patterns in the gut microbiome were those related to xenobiotic metabolism [113].
\nSeveral popular diets have been studied for their ability to modulate the intestinal microbiota, including Western, ketogenic, omnivore, vegetarian, vegan and Mediterranean diets. The Western diet (high in animal protein and fat, low in fiber) has led in several studies to a marked decrease in microbial diversity and in some beneficial genera, such as
Ketogenic diets are characterized by a very low consumption of carbohydrates (5 to 10 percent of total caloric intake), sufficient to increase the production of ketone bodies. They were originally developed as a treatment for refractory childhood epilepsy, and the gut microbiota responses to a ketogenic diet seem to play a role in the effectiveness of this intervention in epileptic infants [41, 42]. In recent years, these diets are commonly adopted in order to obtain rapid weight loss and in some studies, they have been shown to improve longevity and reduce the onset of disease in experimental animals. Conversely, some human studies in which ketogenic diets were examined, suggest negative impacts on microbial ecology and gut health. These studies, however, were carried out in small cohorts with specific metabolic conditions, limiting the generalization to larger populations [115]
\nVegan/vegetarian diets are both plant-rich diets associated with positive health outcomes and reduced risk of some diseases [116]. The beneficial effects of these diets on human health could also be linked to intestinal microbiota modulation. Plant-based foods are the primary source of dietary MACs, and it has been found that individuals who consume vegetarian or predominantly plant-based diets have a microbiota metabolically optimized for MAC fermentation. However, some intervention and cross-sectional studies have found only modest differences in microbiota composition between omnivores and vegetarians, and suggest that the effects of dietary patterns on the microbiota are greatest at the level of genus and species, but relatively minimal on broader compositional features such as diversity [117]. Despite the absence of a wide microbiota compositional shift, the species-level changes appear to be sufficient to alter metabolic outputs as SCFA production, which in vegetarians is typically increased. It is still unclear to what extent these microbiota-dependent metabolic outputs can mediate the beneficial effects of vegetarian diets.
\nPlant-based foods, in addition to supplying MACs, provide a diverse source of vitamins, polyphenols and other biologically active phytochemicals. Many phytochemicals may often reach the lower intestinal tract and have direct antimicrobial and anti-inflammatory effects in the intestine. Furthermore, microbial enzymes can modify phytochemicals into metabolites with increased bioactivity [118, 119]. So, microbiome-mediated changes in phytochemical bioavailability can be an additional mechanism underlying the beneficial effects of plant-based diets.
\nSeveral studies classify the Mediterranean diet as the most healthy and balanced human diet. It is characterized by a beneficial fatty acid profile, rich in both monounsaturated and polyunsaturated fatty acids, high polyphenols and other antioxidants and high fiber intake. Fruits, vegetables, cereals, legumes and nuts are at the basis of this diet, as well as consumption of fish and red wine [120]. The potential benefits of Mediterranean diet on the gut microbiota are linked to the increased levels of fecal SCFAs together with an increase of
Even if there are different types of Mediterranean diet, as well as several ketogenic diets (e.g. normo- or iper-proteic) and even vegetarian diets (with or without eggs, with or without fish), what can be concluded in general about the effects of dietary patterns on the intestinal microbiota is that all those patterns which, for various reasons, tend to restrict the amount of vegetables, seem to be inadvisable. Thus the Western diet, which is poor in fruit and vegetables, and the ketogenic diets, which necessarily eliminate fruit for its carbohydrate content, appear to be diets with a probable negative impact on the intestinal microbial ecology. Despite this, comparative controlled clinical trials are needed to fully evaluate the possible short-term and long-term effects of these dietary patterns on the gut microbiome.
\nMicrobiota and its multiple connections, already described in the previous paragraphs, remind us that every human being is an unrepeatable and unique Psycho-Neuro-Endocrine-Immuno-Somatic-Environmental unit that is constantly dynamic and interactive in its parts [121]. From this perspective, the gastrointestinal system should be evaluated and treated as a neuro-immuno-endocrine-visceral-microbial interface of the human body. The modulation of the gut microbiota and, consequently, of the immune system is a key function of this complex network. Any disorder of the gastrointestinal tract, be it functional or with organic inflammatory basis, involves cells belonging to multiple tissues, including the sphere of the microbiota, and is therefore continuously reflected at the systemic level.
\nConsequently, even medicinal plants can, indeed should, act at multiple levels of the organism through direct and indirect actions that certainly, with various types of mechanisms, involve the Intestinal Immune System (IIS) and the intestinal microbiota. The action of fungi and medicinal plants is exerted on the gastrointestinal system through the immunomodulating, antioxidant and protective properties of the microbiota. Furthermore, the protection of the biofilm and the intestinal barrier, in the structuring of which the microbiota directly and actively participates, also fall within these therapeutic actions. These effects on the intestinal barrier and on the gastrointestinal system can obviously also have systemic consequences.
\nSeveral medicinal plants and fungi are described in the scientific literature as being able to act positively on various acute and chronic inflammatory disorders of the gastrointestinal system, most of these are also part of the medical tradition of one or more regions of the world.
\nMedicinal mushrooms that have been used in most preclinical and clinical studies are
In this brief discussion, we will limit ourselves to analyzing the scientific literature supporting possible therapeutic use of some of these fungi and these plants, in the modulation of intestinal inflammation and dysbiosis, the two components that are always associated in almost all pathologies of the gastrointestinal tract.
\nThe drugs used are the fruiting body and/or the mycelium in aqueous or hydroalcoholic or alcoholic extracts titrated and standardized in one or more of the following components: polysaccharides and beta-glucans (with anti-inflammatory and antibacterial action), alpha-glucans, diterpenes and triterpenes and polyphenols [125, 126].
\nThe most studied activities of this fungus relate to its immunomodulatory effects on the gut, its anti-inflammatory systemic activity, but also its prebiotic activities on the intestinal microbiota [127].
\nA single protein, called HEP3, isolated from
Similar results were obtained in a model of dextran sulfate sodium (DSS)-induced colitis in mice. DSS treatment resulted in increased relative abundances of Verrucomicrobia and Actinobacteria and decreased amounts of Bacteroidetes in fecal samples, compared to the control group. Treatment of colitic mice with dry power of fermented
The most studied activities of this mushroom are the immunostimulatory effect exerted on the gut but also at systemic level. However, there is also evidence of prebiotic activity on the microbiota, although this could be secondary to a direct effect on immune system components. Its powerful immunomodulatory effects led to extend its field of use also to the therapy of tumors, a topic which, however, goes beyond the themes of this chapter [138]. In DSS-induced colitis in rats,
In a mouse model of pancreatitis, induced by diethyldithiocarbamate (DDC), polysaccharides from
Finally, it should be emphasized that even if all these mushroom preparations can be easily found for free sale, and even if they do not seem to have side effects, it is a good practice to never use them in self-prescriptions as their direct interactions with drugs, or their effects on detoxifying enzymes such as CYP, have not yet been studied or poorly known. For example, Chaga extract inhibited platelet aggregation in mice. It may also have synergistic effects when used with anticoagulant/antiplatelet drugs, but the clinical relevance in humans is not known [143]. Chaga may also interact with hypoglycemic agents drugs, since it has demonstrated to possess hypoglycemic activity in animals [144, 145]. A single case-report described oxalate nephropathy as a side effect associated with the ingestion of Chaga mushroom powder (4–5 teaspoons daily for 6 months), in a 72-year-old Japanese woman with liver cancer [146].
\nChaga effects on detoxifying enzymes such as CYP have not yet been studied. Reishi may increase the risk of bleeding, interfering with anticoagulants/antiplatelets drugs [147]. Reishi can also enhance immune response and this effect should be taken into account in patients on immunosuppressive therapy. Finally, at least
As for
Aromatic plants are a wide group of herbs with characteristics aroma due to the presence of high amounts of volatile compounds known as EOs. Consequently, aromatic plants have always constituted a characteristic aspect of the gastronomic traditions. In recent years, the use of these aromatic plants has been replaced, especially in countries with high per capita income, with artificial flavors that allow the elaboration of more sophisticated aromas that in many cases are kept secret by the food industry, to avoid plagiarism. This replacement is certainly part of the transition from the traditional cuisines to the so-called western diet, the process called westernization of the diet that has taken place in many countries, parallel to the increase in the incidence of many intestinal diseases related to alterations of the gut microbioma, such as Inflammatory Bowel Diseases (IBD) [157]. EOs have multitarget effects on the intestine due to their antioxidant, anti-inflammatory but also antimicrobial properties directed on the bacterial, yeasts, fungi and viruses components of the human microbioma [158]. The antibacterial activity of EOs depends on the concentration that they reach into the gut, but also on the species of bacteria that they encounter. In fact, some OEs have more marked effects (i.e. lower Minimum Inhibitory Concentrations or MICs) for bacterial species considered pathogenic, while showing less activity (i.e. higher MICs) towards components of the microbiota such as bifidobacteria and lactobacilli [159]. This multitarget positive effects of EOs on the intestinal microbiota, different from those obtained with the use of probiotics and prebiotics, has not found a definition in the literature yet. Hence, we propose here for the first time the term “eubiotic” activity since EOs restore the intestinal microbiota back to a physiological state of eubiosis, when a dysbiosis has been established into the gut.
\nThere is no doubt that EOs are able to modulate the intestinal microbioma for their antimicrobial activities, which is one of the reasons why nature has selected these complex mixtures of active molecules with evolution. EOs may have “eubiotic” effects thanks to their capability to control and modulate bacterial growth, acting both as bacteriostatic or bactericidal agents [160]. In fact, due to their lipophilic properties, EOs can penetrate membranes, and damage bacterial cells structure making their membranes more unstable and permeable. Membrane disruption may also lead to bacterial death caused by the significant leak of ions and other essential cytosolic components. These EO effects are generally more pronounced on Gram positive bacteria respect to Gram negative ones [161]. However, it has been demonstrated that EOs can also affect bacterial cell wall in Gram-negative bacterial strains [162]. Despite this, there are very few clinical studies of their eubiotic activity on humans, while the scientific data obtained on animals bred for human consumption or on experimental animal models are numerous and really convincing.
\nIn broiler chickens, EOs have been widely adopted to improve intestinal microbiota and, as a consequence, to boost the growth performances of farmed animals. For example, the effects of liquidambar essential oils (LEO) isolated from Turkish sweet gum leaves (
Broiler chicken is not the only farmed animal treated with EOs for the purpose of modifying microbiota and reduce the susceptibility to infection by pathogenic bacteria. In farmed rainbow trout, the treatment with a mixed EO (containing eucalyptus, oregano, thyme and sweet orange EOs) caused significant microbiota changes in alpha and beta diversity, increasing also their growth performance and the final product quality. [165]. In farmed pigs, oral administration of a EO mixture (containing cinnamon and oregano EOs) caused a significant decrease of infections caused by two porcine diarrhetic enterotoxigenic
Two different essential oils were tested on farmed ducks, again in order to improve their growth performance and also to replace the use of antibiotics in animal farming. One consisted of oregano oil, the second of thyme and cinnamon oil. Both of these EO preparations were able to decrease the cecal populations of coliforms and lactose-negative enterobacteria, demonstrating also in these animals an eubiotic effect of these OE on the gut microbiota [167].
\nEven on farmed crustaceans, a blend of organic acids and essential oils was tested for the improvement gut microbiota and disease resistance of Pacific white shrimps. Results demonstrated that this mixture was capable to enhance microbiota diversity and richness, increasing the abundance of Firmicutes and reducing the abundance of Proteobacteria. Also, a significant increase in the abundance of
All these studies as a whole demonstrate without doubt the eubiotic potential of orally administered EOs. Furthermore, they clearly demonstrate that dosages effective for modulating the microbiota are free of toxic effects on animals. Nevertheless, it remains rather difficult to understand which components of EOs are most active for modulating the microbiota, because of their natural complexity and their use in mixtures. For these reasons, several studies have explored the eubiotic properties of EO single molecules. The most studied was certainly geraniol, for its interesting antimicrobial potential. Geraniol antibacterial activity seems to be linked to his property to destabilize bacterial cell wall and damage transmembrane efflux pumps [168]. Despite being absorbed very quickly and in an active manner by the small intestine mucosa, geraniol is reported to positively modulate the colitis-associated dysbiosis when administered by oral route by using a controlled delivery system based on microencapsulation [169]. In mice but also in humans, geraniol has demonstrated to act as an excellent modulator of intestinal microbiota, capable to boost populations of butyrate-producer bacteria such as
Another interesting EO molecule with antibacterial activities is eugenol (2-Methoxy-4-(prop-2-en-1-yl) phenol), the major compound present in clove oil, but also found in many other EOs. Eugenol has demonstrated antimicrobial activities based on a non-specific permeabilization of the bacterial membrane with depletion of adenosin triphosphate (ATP), an energy moiety necessary for bacterial metabolism and survival [170]. This effect has been observed against gut pathobionts such as
Cinnamaldehyde (2E-3-Phenylprop-2-enal) is a phenylpropanoid naturally present in the plant of the genus
Other molecules, such as thymol do not seem to show eubiotic effects in the gut, being non-selective and affecting all the intestinal bacteria and therefore behaving like a broad-spectrum antibiotics, depleting the microbiota even when administered at low dosages with a negative impact also on commensal bacteria [159].
\nCarvacrol, a major component of oregano EO, showed to inhibit bacterial adhesion, invasion and biofilm development in cultured intestinal cells [144, 145]. In farmed broiler, treatment with carvacrol-rich EO was tested to control the pathogenic bacteria spreading inside the farms. Results of these studies demonstrated that carvacrol reduced the microbial counts of
Limonene (1-Methyl-4-(prop-1-en-2-yl) cyclohex-1-ene) is a cyclic monoterpene present in high amount in EO of citrus fruit peels that has widely demonstrated antimicrobial and eubiotic effects
Eucalyptol (1,3,3-Trimethyl-2-oxabicyclo[2.2.2]octane) is a cyclic ether and a monoterpenoid. It is the major compound in
Menthol (5-Methyl-2-(propan-2-yl)cyclohexan-1-ol) is a chiral alcohol and the main molecule present in cornmint and peppermint EOs. It has been well known for its use in foods as a cooling and minty-smell aroma. Many
Fungi were reported to represent about 0,1% of all the microorganisms present in the gastrointestinal tracts. Maybe also for this reason, despite the presence of fungi in the intestine has been known for many years, in depth studies of the human mycobiome were only recently performed [183]. Together with bacteria, fungi contribute to the modulation of the intestinal immune system [184]. Many of them have a clear pathogenic potential even if, physiologically, they are commensals in our bodies. Only in some specific conditions their overgrowth can lead to well-known mycosis. The best known fungal pathogen of humans is certainly
EOs antimycotic activities are characterized by a broad spectrum of actions [189].
Limonene has shown to possess strong antifungal properties [192] and in particular an excellent anti-
Mentha EOs have demonstrated good antimycotic activities against different fungi genus, including
\n
Clove EO has been traditionally used in dentistry for its anesthetic and antimicrobial activities [197]. Its anti-fungal action has been attributed to eugenol, the major clove oil molecule. A recent study indicated that Clove EO, at concentrations that ranged between 0,03% and 0.25% (v/v), inhibited the biofilm formation in many
EOs have also been shown to have strong antiviral activities, which could affect the gut virome, which is an integral part of the human microbiota [200]. To date, no study has been performed to understand the impact of EOs on the intestinal virome. The main physiological viral component of the gastrointestinal tract is represented by prophages or phages [201]. The bacteriophage component is mainly composed by temperate virus of the Caudovirales order, but most of the detected viral sequences in human gut virome could not be attributed to known viruses [202] and to date it is estimated that the number of virus in human stools is up to 109 per gram [203]. Despite it is clear that EOs may impact on the intestinal virome composition by modulating all the microbiota components, it could be really difficult to understand the direct impact of EOs on the intestinal viruses and the consequences of this modulation on the intestinal ecology.
\nThe scientific data present in the literature undoubtedly demonstrate that some EOs and some of their components are able to positively modulate the human intestinal microbiota, acting in a differentiated way on pathobiontic microorganisms, without altering or even improving the component of microorganisms defined as healthier commensals. This selective antimicrobial activity is certain for the bacterial component of the intestinal microbiota, conceivable for fungi, but at the moment completely unknown for viruses. It is therefore possible to define with certainty an eubiotic activity for some EOs and some of their components, such as for example geraniol, eugenol, cinnamic aldehyde and limonene, which can properly be considered as eubiotics. Finally, it is interesting to note that the antibacterial activities of these compounds are always multitarget and that for this reason the bacteria are unable to develop resistance. These data associated with the low toxicity of these compounds (by oral administration), suggests that these EOs may be part of a long-term therapy aimed at restoring an eubiotic and resilient microbial ecosystem.
\nThe authors thank Dr. Alberto Sardo for illuminating us on the infinite potential of essential oils.
\nThe authors declare no conflict of interest.
\nThis research received no external funding.
\nThese Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5828},{group:"region",caption:"Middle and South America",value:2,count:5288},{group:"region",caption:"Africa",value:3,count:1765},{group:"region",caption:"Asia",value:4,count:10557},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15951}],offset:12,limit:12,total:119464},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"11"},books:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!0,hash:"421757c56a3735986055250821275a51",slug:null,bookSignature:"Dr. Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editedByType:null,editors:[{id:"274242",title:"Dr.",name:"Meng",surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10680",title:"Product Life Cycle - Opportunities for Digital and Sustainable Transformation",subtitle:null,isOpenForSubmission:!0,hash:"52fbd37bc41094c7f82d1112e6ef3682",slug:null,bookSignature:"Dr. Antonella Petrillo and Prof. Fabio De Felice",coverURL:"https://cdn.intechopen.com/books/images_new/10680.jpg",editedByType:null,editors:[{id:"181603",title:"Dr.",name:"Antonella",surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10681",title:"Biodegradation",subtitle:null,isOpenForSubmission:!0,hash:"9a6e10e02788092872fd249436898e97",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes, Dr. Rodrigo Nogueira de Sousa and Dr. Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10682",title:"Pathways and Challenges for Efficient Desalination",subtitle:null,isOpenForSubmission:!0,hash:"ca25e9eca70d54deb503d2663f75218c",slug:null,bookSignature:"Dr. Muhammad Wakil Shahzad, Dr. Mike Dixon and Dr. Giancarlo Barassi",coverURL:"https://cdn.intechopen.com/books/images_new/10682.jpg",editedByType:null,editors:[{id:"174208",title:"Dr.",name:"Muhammad Wakil",surname:"Shahzad",slug:"muhammad-wakil-shahzad",fullName:"Muhammad Wakil Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Hydropower",subtitle:null,isOpenForSubmission:!0,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:null,bookSignature:"Dr. Yizi Shang, Dr. Ling Shang and Dr. Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:null,editors:[{id:"349630",title:"Dr.",name:"Yizi",surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries - Vision and Development",subtitle:null,isOpenForSubmission:!0,hash:"fb63a798f34d4f00e4681291ae2c0e10",slug:null,bookSignature:"Prof. Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10685",title:"Energy Storage Devices",subtitle:null,isOpenForSubmission:!0,hash:"586a205ec604f58bc4df847ceafa60c3",slug:null,bookSignature:"Dr. Kenneth Eloghene Okedu",coverURL:"https://cdn.intechopen.com/books/images_new/10685.jpg",editedByType:null,editors:[{id:"172580",title:"Dr.",name:"Kenneth Eloghene",surname:"Okedu",slug:"kenneth-eloghene-okedu",fullName:"Kenneth Eloghene Okedu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10687",title:"Energy Efficiency",subtitle:null,isOpenForSubmission:!0,hash:"64a34163db17dece465bbc6ee5684031",slug:null,bookSignature:"Dr. Collins Ayoo",coverURL:"https://cdn.intechopen.com/books/images_new/10687.jpg",editedByType:null,editors:[{id:"224658",title:"Dr.",name:"Collins",surname:"Ayoo",slug:"collins-ayoo",fullName:"Collins Ayoo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:29},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:9},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:29},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:51},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:4},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:32},popularBooks:{featuredBooks:[{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5334},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9559",title:"Teamwork in Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"0053c2ff8d9ec4cc4aab82acea46a41e",slug:"teamwork-in-healthcare",bookSignature:"Michael S. Firstenberg and Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/9559.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editedByType:"Edited by",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"756",title:"Power Electronics",slug:"power-electronics",parent:{title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:21,numberOfAuthorsAndEditors:368,numberOfWosCitations:257,numberOfCrossrefCitations:172,numberOfDimensionsCitations:379,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"power-electronics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8839",title:"Advanced Communication and Control Methods for Future Smartgrids",subtitle:null,isOpenForSubmission:!1,hash:"272b87662ec87f859b72930758bce663",slug:"advanced-communication-and-control-methods-for-future-smartgrids",bookSignature:"Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/8839.jpg",editedByType:"Edited by",editors:[{id:"272760",title:"Dr.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7737",title:"Micro-grids",subtitle:"Applications, Operation, Control and Protection",isOpenForSubmission:!1,hash:"b467a6326d4629e126154c2eccb0db54",slug:"micro-grids-applications-operation-control-and-protection",bookSignature:"Mahmoud Ghofrani",coverURL:"https://cdn.intechopen.com/books/images_new/7737.jpg",editedByType:"Edited by",editors:[{id:"183482",title:"Dr.",name:"Mahmoud",middleName:null,surname:"Ghofrani",slug:"mahmoud-ghofrani",fullName:"Mahmoud Ghofrani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7192",title:"Electric Power Conversion",subtitle:null,isOpenForSubmission:!1,hash:"5e36d92e9d0b584fb343f94a6665848b",slug:"electric-power-conversion",bookSignature:"Marian Găiceanu",coverURL:"https://cdn.intechopen.com/books/images_new/7192.jpg",editedByType:"Edited by",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Gaiceanu",slug:"marian-gaiceanu",fullName:"Marian Gaiceanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8358",title:"Power System Stability",subtitle:null,isOpenForSubmission:!1,hash:"08fa3d9538a3ab150e5a1e5309b51a1c",slug:"power-system-stability",bookSignature:"Kenneth Eloghene Okedu",coverURL:"https://cdn.intechopen.com/books/images_new/8358.jpg",editedByType:"Edited by",editors:[{id:"172580",title:"Dr.",name:"Kenneth Eloghene",middleName:null,surname:"Okedu",slug:"kenneth-eloghene-okedu",fullName:"Kenneth Eloghene Okedu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7211",title:"Electric Machines for Smart Grids Applications",subtitle:"Design, Simulation and Control",isOpenForSubmission:!1,hash:"6704a769e34bd70d714b589a67565018",slug:"electric-machines-for-smart-grids-applications-design-simulation-and-control",bookSignature:"Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/7211.jpg",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6226",title:"MATLAB",subtitle:"Professional Applications in Power System",isOpenForSubmission:!1,hash:"501587f2817d82fecb984853a952526e",slug:"matlab-professional-applications-in-power-system",bookSignature:"Ali Saghafinia",coverURL:"https://cdn.intechopen.com/books/images_new/6226.jpg",editedByType:"Edited by",editors:[{id:"174893",title:"Dr.",name:"Ali",middleName:null,surname:"Saghafinia",slug:"ali-saghafinia",fullName:"Ali Saghafinia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6173",title:"Compendium of New Techniques in Harmonic Analysis",subtitle:null,isOpenForSubmission:!1,hash:"39a6df08251bdf1771d2921b3b7386b6",slug:"compendium-of-new-techniques-in-harmonic-analysis",bookSignature:"Moulay Tahar Lamchich",coverURL:"https://cdn.intechopen.com/books/images_new/6173.jpg",editedByType:"Edited by",editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",middleName:null,surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6214",title:"Power System Harmonics",subtitle:"Analysis, Effects and Mitigation Solutions for Power Quality Improvement",isOpenForSubmission:!1,hash:"a47eecbb4d501efdd9cc62ffa26ebe0a",slug:"power-system-harmonics-analysis-effects-and-mitigation-solutions-for-power-quality-improvement",bookSignature:"Ahmed Zobaa, Shady H. E. Abdel Aleem and Murat Erhan Balci",coverURL:"https://cdn.intechopen.com/books/images_new/6214.jpg",editedByType:"Edited by",editors:[{id:"39249",title:"Dr.",name:"Ahmed F.",middleName:null,surname:"Zobaa",slug:"ahmed-f.-zobaa",fullName:"Ahmed F. Zobaa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6624",title:"Rational Fitting Techniques for the Modeling of Electric Power Components and Systems Using MATLAB Environment",subtitle:null,isOpenForSubmission:!1,hash:"a49a03fd24070455c2dec21654df01ae",slug:"rational-fitting-techniques-for-the-modeling-of-electric-power-components-and-systems-using-matlab-environment",bookSignature:"Eduardo Salvador Banuelos- Cabral, Jose Alberto Gutierrez-Robles and Bjorn Gustavsen",coverURL:"https://cdn.intechopen.com/books/images_new/6624.jpg",editedByType:"Authored by",editors:[{id:"212229",title:"Ph.D.",name:"Eduardo-Salvador",middleName:null,surname:"Bañuelos-Cabral",slug:"eduardo-salvador-banuelos-cabral",fullName:"Eduardo-Salvador Bañuelos-Cabral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}},{type:"book",id:"5835",title:"Development and Integration of Microgrids",subtitle:null,isOpenForSubmission:!1,hash:"f7816bff39f3662d16a4df91841e2b5b",slug:"development-and-integration-of-microgrids",bookSignature:"Wen-Ping Cao and Jin Yang",coverURL:"https://cdn.intechopen.com/books/images_new/5835.jpg",editedByType:"Edited by",editors:[{id:"174154",title:"Prof.",name:"Wenping",middleName:null,surname:"Cao",slug:"wenping-cao",fullName:"Wenping Cao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5754",title:"Recent Developments on Power Inverters",subtitle:null,isOpenForSubmission:!1,hash:"23d990840df375cc66028ba369ad0471",slug:"recent-developments-on-power-inverters",bookSignature:"Ali Saghafinia",coverURL:"https://cdn.intechopen.com/books/images_new/5754.jpg",editedByType:"Edited by",editors:[{id:"174893",title:"Dr.",name:"Ali",middleName:null,surname:"Saghafinia",slug:"ali-saghafinia",fullName:"Ali Saghafinia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5703",title:"Electrical Resistivity and Conductivity",subtitle:null,isOpenForSubmission:!1,hash:"1610778635f74a85054885a032a5554a",slug:"electrical-resistivity-and-conductivity",bookSignature:"Adel El Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/5703.jpg",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:21,mostCitedChapters:[{id:"50481",doi:"10.5772/62766",title:"Energy Storage Systems for Energy Management of Renewables in Distributed Generation Systems",slug:"energy-storage-systems-for-energy-management-of-renewables-in-distributed-generation-systems",totalDownloads:2198,totalCrossrefCites:3,totalDimensionsCites:52,book:{slug:"energy-management-of-distributed-generation-systems",title:"Energy Management of Distributed Generation Systems",fullTitle:"Energy Management of Distributed Generation Systems"},signatures:"Amjed Hina Fathima and Kaliannan Palanisamy",authors:[{id:"179143",title:"Dr.",name:"Hina",middleName:null,surname:"Fathima",slug:"hina-fathima",fullName:"Hina Fathima"},{id:"185245",title:"Dr.",name:"Kaliannan",middleName:null,surname:"Palanisamy",slug:"kaliannan-palanisamy",fullName:"Kaliannan Palanisamy"}]},{id:"29293",doi:"10.5772/26749",title:"Diagnosis of Electrochemical Impedance Spectroscopy in Lithium-Ion Batteries",slug:"diagnosis-of-electrochemical-impedance-spectroscopy-in-lithium-ion-batteries",totalDownloads:9180,totalCrossrefCites:17,totalDimensionsCites:42,book:{slug:"lithium-ion-batteries-new-developments",title:"Lithium Ion Batteries",fullTitle:"Lithium Ion Batteries - New Developments"},signatures:"Quan-Chao Zhuang, Xiang-Yun Qiu, Shou-Dong Xu, Ying-Huai Qiang and Shi-Gang Sun",authors:[{id:"67703",title:"Prof.",name:"Zhuang",middleName:null,surname:"Quanchao",slug:"zhuang-quanchao",fullName:"Zhuang Quanchao"},{id:"121264",title:"Dr.",name:"Qiu",middleName:null,surname:"Xiangyun",slug:"qiu-xiangyun",fullName:"Qiu Xiangyun"},{id:"121265",title:"Dr.",name:"Xu",middleName:null,surname:"Shoudong",slug:"xu-shoudong",fullName:"Xu Shoudong"},{id:"125957",title:"Prof.",name:"Qiang",middleName:null,surname:"Yinghuai",slug:"qiang-yinghuai",fullName:"Qiang Yinghuai"},{id:"125958",title:"Prof.",name:"Sun",middleName:null,surname:"Shigang",slug:"sun-shigang",fullName:"Sun Shigang"}]},{id:"29291",doi:"10.5772/31112",title:"Electrolyte and Solid-Electrolyte Interphase Layer in Lithium-Ion Batteries",slug:"electrolyte-and-solid-electrolyte-interphase-layer-in-lithium-ion-batteries",totalDownloads:8363,totalCrossrefCites:3,totalDimensionsCites:16,book:{slug:"lithium-ion-batteries-new-developments",title:"Lithium Ion Batteries",fullTitle:"Lithium Ion Batteries - New Developments"},signatures:"Alexandre Chagnes and Jolanta Swiatowska",authors:[{id:"85632",title:"Dr.",name:"Alexandre",middleName:null,surname:"Chagnes",slug:"alexandre-chagnes",fullName:"Alexandre Chagnes"},{id:"88217",title:"Dr.",name:"Jolanta",middleName:null,surname:"Swiatowska",slug:"jolanta-swiatowska",fullName:"Jolanta Swiatowska"}]}],mostDownloadedChaptersLast30Days:[{id:"50520",title:"Fundamentals of Inductively Coupled Wireless Power Transfer Systems",slug:"fundamentals-of-inductively-coupled-wireless-power-transfer-systems",totalDownloads:3702,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"wireless-power-transfer-fundamentals-and-technologies",title:"Wireless Power Transfer",fullTitle:"Wireless Power Transfer - Fundamentals and Technologies"},signatures:"Ali Abdolkhani",authors:[{id:"179618",title:"Dr.",name:"Ali",middleName:null,surname:"Abdolkhani",slug:"ali-abdolkhani",fullName:"Ali Abdolkhani"}]},{id:"64086",title:"Resonant Power Converters",slug:"resonant-power-converters",totalDownloads:1337,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"electric-power-conversion",title:"Electric Power Conversion",fullTitle:"Electric Power Conversion"},signatures:"Mohammed Salem and Khalid Yahya",authors:[{id:"254056",title:"Dr.",name:"Mohamed",middleName:null,surname:"Salem",slug:"mohamed-salem",fullName:"Mohamed Salem"},{id:"270815",title:"Dr.",name:"Khalid",middleName:"O. Moh.",surname:"Yahya",slug:"khalid-yahya",fullName:"Khalid Yahya"}]},{id:"51254",title:"Wireless Power Transfer by Using Magnetically Coupled Resonators",slug:"wireless-power-transfer-by-using-magnetically-coupled-resonators",totalDownloads:4209,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"wireless-power-transfer-fundamentals-and-technologies",title:"Wireless Power Transfer",fullTitle:"Wireless Power Transfer - Fundamentals and Technologies"},signatures:"Ali Agcal, Selin Ozcira and Nur Bekiroglu",authors:[{id:"19888",title:"Dr.",name:"Nur",middleName:null,surname:"Bekiroglu",slug:"nur-bekiroglu",fullName:"Nur Bekiroglu"},{id:"179716",title:"Dr.",name:"Selin",middleName:null,surname:"Ozcira",slug:"selin-ozcira",fullName:"Selin Ozcira"},{id:"186130",title:"Dr.",name:"Ali",middleName:null,surname:"Agcal",slug:"ali-agcal",fullName:"Ali Agcal"}]},{id:"50481",title:"Energy Storage Systems for Energy Management of Renewables in Distributed Generation Systems",slug:"energy-storage-systems-for-energy-management-of-renewables-in-distributed-generation-systems",totalDownloads:2198,totalCrossrefCites:3,totalDimensionsCites:52,book:{slug:"energy-management-of-distributed-generation-systems",title:"Energy Management of Distributed Generation Systems",fullTitle:"Energy Management of Distributed Generation Systems"},signatures:"Amjed Hina Fathima and Kaliannan Palanisamy",authors:[{id:"179143",title:"Dr.",name:"Hina",middleName:null,surname:"Fathima",slug:"hina-fathima",fullName:"Hina Fathima"},{id:"185245",title:"Dr.",name:"Kaliannan",middleName:null,surname:"Palanisamy",slug:"kaliannan-palanisamy",fullName:"Kaliannan Palanisamy"}]},{id:"64723",title:"Effects of Climate Change in Electric Power Infrastructures",slug:"effects-of-climate-change-in-electric-power-infrastructures",totalDownloads:1426,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"power-system-stability",title:"Power System Stability",fullTitle:"Power System Stability"},signatures:"Daniel Burillo",authors:[{id:"263758",title:"Dr.",name:"Daniel",middleName:"Tomas",surname:"Burillo",slug:"daniel-burillo",fullName:"Daniel Burillo"}]},{id:"62857",title:"Basics of High-Speed Electrical Machines",slug:"basics-of-high-speed-electrical-machines",totalDownloads:1057,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"electric-machines-for-smart-grids-applications-design-simulation-and-control",title:"Electric Machines for Smart Grids Applications",fullTitle:"Electric Machines for Smart Grids Applications - Design, Simulation and Control"},signatures:"Flyur R. Ismagilov, Viacheslav Ye. Vavilov and Valentina V. Ayguzina",authors:[{id:"192044",title:"Dr.",name:"Viacheslav",middleName:null,surname:"Vavilov",slug:"viacheslav-vavilov",fullName:"Viacheslav Vavilov"},{id:"249428",title:"Prof.",name:"Flyur",middleName:null,surname:"Ismagilov",slug:"flyur-ismagilov",fullName:"Flyur Ismagilov"},{id:"249429",title:"Ms.",name:"Valentina",middleName:null,surname:"Ayguzina",slug:"valentina-ayguzina",fullName:"Valentina Ayguzina"}]},{id:"50727",title:"Advanced Metering Infrastructure Based on Smart Meters in Smart Grid",slug:"advanced-metering-infrastructure-based-on-smart-meters-in-smart-grid",totalDownloads:3434,totalCrossrefCites:8,totalDimensionsCites:10,book:{slug:"smart-metering-technology-and-services-inspirations-for-energy-utilities",title:"Smart Metering Technology and Services",fullTitle:"Smart Metering Technology and Services - Inspirations for Energy Utilities"},signatures:"Trong Nghia Le, Wen‐Long Chin, Dang Khoa Truong and Tran Hiep\nNguyen",authors:[{id:"178015",title:"Dr.",name:"Trong Nghia",middleName:null,surname:"Le",slug:"trong-nghia-le",fullName:"Trong Nghia Le"},{id:"178169",title:"Prof.",name:"Wen-Long",middleName:null,surname:"Chin",slug:"wen-long-chin",fullName:"Wen-Long Chin"}]},{id:"55683",title:"Overview of Technical Challenges, Available Technologies and Ongoing Developments of AC/DC Microgrids",slug:"overview-of-technical-challenges-available-technologies-and-ongoing-developments-of-ac-dc-microgrids",totalDownloads:1605,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"development-and-integration-of-microgrids",title:"Development and Integration of Microgrids",fullTitle:"Development and Integration of Microgrids"},signatures:"Reza Sabzehgar",authors:[{id:"197616",title:"Dr.",name:"Reza",middleName:null,surname:"Sabzehgar",slug:"reza-sabzehgar",fullName:"Reza Sabzehgar"}]},{id:"62999",title:"Single-Phase Motors for Household Applications",slug:"single-phase-motors-for-household-applications",totalDownloads:1398,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"electric-machines-for-smart-grids-applications-design-simulation-and-control",title:"Electric Machines for Smart Grids Applications",fullTitle:"Electric Machines for Smart Grids Applications - Design, Simulation and Control"},signatures:"Damiano D’Aguanno, Fabrizio Marignetti and Francesco Faginoli",authors:[{id:"42568",title:"Prof.",name:"Fabrizio",middleName:null,surname:"Marignetti",slug:"fabrizio-marignetti",fullName:"Fabrizio Marignetti"},{id:"252416",title:"Dr.",name:"Damiano",middleName:null,surname:"D'Aguanno",slug:"damiano-d'aguanno",fullName:"Damiano D'Aguanno"}]},{id:"60462",title:"Introductory Chapter: Power System Harmonics—Analysis, Effects, and Mitigation Solutions for Power Quality Improvement",slug:"introductory-chapter-power-system-harmonics-analysis-effects-and-mitigation-solutions-for-power-qual",totalDownloads:1815,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"power-system-harmonics-analysis-effects-and-mitigation-solutions-for-power-quality-improvement",title:"Power System Harmonics",fullTitle:"Power System Harmonics - Analysis, Effects and Mitigation Solutions for Power Quality Improvement"},signatures:"Ahmed F. Zobaa, Shady H.E. Abdel Aleem and Murat E. Balci",authors:[{id:"39249",title:"Dr.",name:"Ahmed F.",middleName:null,surname:"Zobaa",slug:"ahmed-f.-zobaa",fullName:"Ahmed F. Zobaa"},{id:"206054",title:"Dr.",name:"Murat Erhan",middleName:null,surname:"Balci",slug:"murat-erhan-balci",fullName:"Murat Erhan Balci"},{id:"251090",title:"Dr.",name:"Shady H.E.",middleName:null,surname:"Abdel Aleem",slug:"shady-h.e.-abdel-aleem",fullName:"Shady H.E. Abdel Aleem"}]}],onlineFirstChaptersFilter:{topicSlug:"power-electronics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/arid-environments-and-sustainability/strategies-to-enhance-sustainability-of-land-resources-in-arid-regions",hash:"",query:{},params:{book:"arid-environments-and-sustainability",chapter:"strategies-to-enhance-sustainability-of-land-resources-in-arid-regions"},fullPath:"/books/arid-environments-and-sustainability/strategies-to-enhance-sustainability-of-land-resources-in-arid-regions",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()