Open access peer-reviewed chapter

Optimization of Surface Roughness of D2 Steels in WEDM using ANN Technique

Written By

Umesh K. Vates, N.K. Singh, B.P. Sharma and S. Sivarao

Submitted: 26 September 2018 Reviewed: 02 October 2018 Published: 31 May 2019

DOI: 10.5772/intechopen.81816

From the Edited Volume

Applied Surface Science

Edited by Gurrappa Injeti

Chapter metrics overview

817 Chapter Downloads

View Full Metrics

Abstract

Attempt has been made to investigate the experimental process and surface roughness (SR) optimization of cold working (high carbon and high chromium) hard die steel (D2) during wire electrical discharge machining processes (WEDM). It is very difficult to determine optimal cutting parameters for improving cutting performance has been reported. Wire electrical discharge machining process relies heavily on the operators’ technologies and experience because of their numerous and diverse range as using complicated cuts can made through difficult to machine electrically conductive components, WEDM process was developed to generate precise cutting on complicate, hard and difficult to machine materials. Tan-sigmoid and purlin transfer functional with bias based four layered back propagation artificial neural network (BPANN) approach have been used to investigate the effect of six independent parameters namely gap voltage (Vg), flush rate (Fr), Pulse on time (Ton), pulse off time (Toff), wire feed (Wf) and wire tension (Wt) over CLA value of surface roughness (Ra) along with corresponding material removal rate (MRR). A fractional factorial design of experiment of three level were employed to conduct 80 rows of experiment on (D2) steel with chrome coated copper alloy wire electrode. The predicted response, CLA values of SR and corresponding MRR were observed by the approach of BPANN from experimental (55 rows for training, 15 rows for validation and 10 for testing) data. Software instructed programme has been used individually for training, validation and testing in MATLAB 2010a to find the corresponding prediction output. Two fold cross over technique (TFCT) were used to developed distinguish (S1 and S2) models and also developed more models depending on numbers of neurons used in primary and secondary hidden layers. The model adequacy is very satisfactory as correlation coefficient (R2) is found to be 99.1% and adjusted (Radj.2) statistics is 98.5. It is found those spark time ON/OFF, wire feed rate, wire tension, gap voltage and flush rate and few of their interactions have significant effect on SR.

Keywords

  • WEDM
  • BPANN
  • SR
  • MRR
  • TFCT

1. Introduction

Wire electrical discharge machining is the metal removal process by means of repeated spark created between the wire electrode and work piece. It is considered as unique adaptation of the conventional EDM, which used an electrode to create the sparking within kerfs [11]. However, WEDM utilizes a continuously traveling chromium coated copper wire electrode ranging diameter 0.05–0.35 mm, which is capable to achieve very good sharpness of edge [4]. Very high temperature ranging 8000–10,000°C creates within the kerfs gap during machining, so that material removal may takes place by not only melting but directly vaporizations also. WEDM is used for the high precision machining to all type of electrically conductive metallic alloys, tool and die, graphite, and few ceramic and composite materials of any hardness which cannot be machined easily by conventional machining methods [1, 5].

Manufacturing processes (WEDM) has been chosen depending on the material characteristics and the type of responses required to be evaluating. The present study aimed to optimization of responses i.e. surface roughness with corresponding MRR of D2 steel by conducting 80 rows of experimental data using frictional factorial (26–2) design of experiment of five different set at three levels [3]. Four layered BPANN architecture has been used for modeling, where independent process variables are Vg, Fr Ton, Toff, Wf and Wt to get the précised and optimized values of responses Ra [6, 8, 10]. Best model S2 has been found on the basis of correlation coefficient (R2) between observed and predicted responses (SR) [12]. The response (SR) is expressed as the irregularities of material resulted from various machining operations. It is represented as ‘R a ’ symbol and used to be called center line arithmetic average roughness for the sampling length [2].

The optimum process parameters are much essential to achieve better surface finish with adequate material removal rate (MRR) or shrink of total machining time; lot of research attempts has been reported for modeling and investigation of WEDM process parameters [7], but sum of root mean square error (SRMSE) approach have been used to optimize the process parameters by taking 55 rows of training data [9].

Advertisement

2. Experimental setup

2.1 Selection of wire electrode and work piece

A chrome coated cylindrical pure copper wire electrode having 0.25 mm in diameter and high tensile strength were selected for conducting machining operation on 18 mm diameter of D2 steel rod to cut 5 mm thickness of disk using Electronica Maxicut, WEDM process. It is very clear that D2 is hard die steel and conducting material with high carbon and chromium content ( Table 1 ).

C SI Cr Mo V HRC Conductivity
1.50% 0.30% 12.00% 0.80% 0.90% 56 22 (W/mk)

Table 1.

Metallurgical component analysis: D2 steel.

The experiment has carried out on Wire Electrical Discharge Machine, model ELECTRONICA-MAXICUT, SLNO -250, (F:09:0002:01) having the facilities to hold the work piece within the place provided by the help of conductive fixture, so that they can complete the circuit between electrode and work piece. The spark is created depending upon gap voltage applied between the conductive work piece, electrode, and machining performance influence the major independent process parameter which selected for experiment as characteristics of screening test. Commercials grade of deionized water (density = 832 kg/m3) was used as dielectric fluid. 18 mm cylindrical rod of D2 steel was used as the work piece with negative polarity and the power supply has the provision to connect the 0.25 mm chromium coated pure copper tool electrode with positive polarity so that the material removal may takes place by influence of heat generated within kerfs due to applied voltage within it ( Figure 1 ).

Figure 1.

D2 steel machining using WEDM process.

The surface roughness Ra of the processed material have been measured precisely by using Surftest SJ-210 tester having center line average value (CLA), where least count of the equipment is 0.001 μm for the travel length of 0.85 mm ( Figure 2 ).

Figure 2.

Surftest SJ-210 (Mitutoyo).

2.2 Design of experiment and objective

Five different set of fractional factorial (26–2 = 16) experimental design have been selected at two levels, so that 80 rows of experimental data can be observed at three level of replication on D2 using WEDM. In this study the main aim to minimize the surface roughness of D2 on best possible maximum MRR during WEDM ( Table 2 ).

Factors/three level (coding) 1 2 3
Gap voltage (Vg): (volt) 30 60 90
Flush rate (Fr): (L/min) 4 6 8
Pulse on time (Ton): (μS) 1.05 1.15 1.25
Pulse of time (Toff): (μS) 130 160 190
Wire feed rate (Wf):(m/min) 2 5 8
Wire tension (Wt): (g) 300 600 900

Table 2.

Factors for screening test.

2.3 ANN architecture and training

The hit and trail method based on literature have been adapted to find 7 and 10 neurons in primary and secondary hidden layers respectively, which effects on the R-square statistics for best prediction modeling. Tan sigmoid activation (squashing) function used as the (infinite input to finite output range) learning capability by the controllable instructed programme in MATLAB 2010a. Steepest descent problem used for the training algorithm to train the multilayer network, where the values of gradient was smallest because of the small changes in weight and biases. p1, p2, p3,p4, p5 and p6 are the six input layer neurons and Oi is the single neurons in output layer, whereas I11-I17 and I21-I29 (7 neurons present in primary and 10 in secondary hidden layers) are the hidden layers ( Figure 3 ).

Figure 3.

Artificial neural network approach.

Advertisement

3. Experimentation

Two models (S1 and S2) were developed from 80 rows of experimental data performed of D2. Only training result of best performing model (S2) of 55 rows is presented here for achieving the aimed to optimization of influencing process parameters ( Figures 4 and 5 ).

Figure 4.

Predictions against observations of Ra for model-D2, S2, 7 N (training dataset).

Figure 5.

Predictions against observations of Ra for model-D2, S2, 7 N (validation dataset).

OPTIMIZATION OF PROCESS PARAMETER Ra: D2, 7 Neurons in hidden layer.

The best model needs to be predicted among Model-S1 and S2, in D2 steel. Effect of individual input parameters will be observed on the Ra ( Tables 3 6 ).

SN Gap voltage (Vg) Flush rate (Fr) Spark time (TON) Spark time (TOFF) Wire feed (Wf) Wire tension (Wt) Surface roughness (Ra) Obs. Surface roughness (Ra) Pred. Material removal (MRR) Square of residuals
(V) (Lit./min) (μS) (μS) (m/min) (g) (μm) (μm) (mg/min) (μm)2
1 30 4 1.05 130 2 300 1.6858 1.6863 102 2.5E−07
2 30 4 1.05 160 2 600 1.4452 1.4451 92 1E−08
3 30 4 1.15 130 5 600 1.3884 1.3713 133 0.0002924
4 30 4 1.15 160 5 300 1.4658 1.4428 95 0.000529
5 30 6 1.05 130 5 600 1.3836 1.3788 125 2.304E−05
6 30 6 1.05 160 5 300 1.5278 1.5553 110 0.0007562
7 30 6 1.15 130 2 300 1.676 1.6756 97 1.6E−07
8 30 6 1.15 160 2 600 1.564 1.4909 95 0.0053436
9 60 4 1.05 130 5 300 1.1772 1.1754 104 3.24E−06
10 60 4 1.05 160 5 600 1.2076 1.2083 88 4.9E−07
11 60 4 1.15 130 2 600 1.273 1.2663 136 4.489E−05
12 60 4 1.15 160 2 300 1.3476 1.3455 116 4.41E−06
13 60 6 1.05 130 2 600 1.3322 1.3277 110 2.025E−05
14 60 6 1.05 160 2 300 1.1598 1.1371 115 0.0005153
15 60 6 1.15 130 5 300 1.248 1.1945 118 0.0028623
16 30 8 1.15 160 8 900 1.5124 1.5422 145 0.000888
17 30 8 1.15 190 8 600 1.363 1.3482 108 0.000219
18 30 8 1.25 160 5 600 2.1256 2.128 206 5.76E−06
19 30 8 1.25 190 5 900 1.6794 1.6823 101 8.41E−06
20 90 4 1.15 160 8 600 1.1098 1.1096 88 4E−08
21 90 4 1.15 190 8 900 1.1096 1.0952 63 0.0002074
22 90 4 1.25 160 5 900 1.3572 1.3664 107 8.464E-05
23 90 4 1.25 190 5 600 1.3218 1.3425 88 0.0004285
24 90 8 1.15 160 5 900 1.2286 1.2292 91 3.6E−07
25 90 8 1.15 190 5 600 1.1194 1.1062 64 0.0001742
26 60 6 1.15 160 5 600 1.4038 1.4023 155 2.25E−06
27 60 8 1.05 130 5 900 1.4592 1.459 162 4E−08
28 60 8 1.05 160 5 600 1.3601 1.3441 139 0.000256
29 60 8 1.25 130 2 600 1.5208 1.5302 202 8.836E−05
30 60 8 1.25 160 2 900 1.5435 1.5535 168 0.0001
31 90 6 1.05 130 5 600 1.3127 1.3118 78 8.1E−07
32 90 6 1.05 160 5 900 1.2973 1.3023 72 2.5E−05
33 90 6 1.25 130 2 900 1.1823 1.1867 117 1.936E−05
34 90 6 1.25 160 2 600 1.0832 1.0812 105 4E−06
35 90 8 1.05 130 2 900 1.2396 1.2696 89 0.0009
36 90 8 1.05 160 2 600 1.1838 1.1739 81 9.801E−05
37 90 8 1.25 130 5 600 1.1413 1.1524 92 0.0001232
38 90 8 1.25 160 5 900 1.1125 1.1364 112 0.0005712
39 60 6 1.05 130 2 600 1.4536 1.4546 128 1E−06
40 60 6 1.05 160 2 900 1.3208 1.3474 114 0.0007076
41 90 8 1.05 130 2 900 1.1369 1.1423 96 2.916E−05
42 90 8 1.05 160 2 600 1.0962 1.0905 78 3.249E−05
43 90 8 1.25 130 5 600 1.1551 1.1551 99 0
44 90 8 1.25 160 5 900 1.1723 1.1153 74 0.003249
45 30 4 1.15 160 2 300 1.6813 1.6628 112 0.0003422
46 30 4 1.15 190 2 900 1.5782 1.5577 108 0.0004202
47 30 4 1.25 160 8 900 1.4935 1.5283 163 0.001211
48 30 4 1.25 190 8 300 1.4658 1.4666 155 6.4E−07
49 30 6 1.15 160 8 900 1.6402 1.6368 121 1.156E−05
50 30 6 1.15 190 8 300 1.6128 1.6021 132 0.0001145
51 30 6 1.25 160 2 300 1.6368 1.6354 103 1.96E−06
52 30 6 1.25 190 2 900 1.5609 1.5668 108 3.481E−05
53 60 4 1.15 160 8 300 1.2136 1.1945 123 0.0003648
54 60 4 1.15 190 8 900 1.1871 1.1878 128 4.9E−07
55 60 4 1.25 160 2 900 1.2036 1.2035 148 1E−08
Average 1.3654 113.8

Table 3.

D2, S1, 7N, training data (combined parameters).

SN Gap voltage (Vg) Flush rate (Fr) Spark ON time (TON) Spark OFF time (TOFF) Wire feed (Wf) Wire tension (Wt) Surface roughness (Ra) obs. Surface roughness (Ra) predicted. (Residual)2 Material removal predicted (MRR)
(V) (Lit./min) (μS) (μS) (m/min) (g) (μm) (μm) (μm)2 (mg/min)
1 30 4 1.05 130 2 300 1.6858 1.6863 2.5E−07 105
2 30 4 1.05 160 2 600 1.4452 1.4451 1E−08 95
3 30 4 1.15 130 5 600 1.3884 1.3713 0.0002924 119
4 30 4 1.15 160 5 300 1.4658 1.4428 0.000529 102
5 30 6 1.05 130 5 600 1.3836 1.3788 2.304E−05 115
6 30 6 1.05 160 5 300 1.5278 1.5553 0.0007562 116
7 30 6 1.15 130 2 300 1.676 1.6756 1.6E−07 114
8 30 6 1.15 160 2 600 1.564 1.4909 0.0053436 102
9 60 4 1.05 130 5 300 1.1772 1.1754 3.24E−06 108
10 60 4 1.05 160 5 600 1.2076 1.2083 4.9E−07 96
11 60 4 1.15 130 2 600 1.273 1.2663 4.489E−05 131
12 60 4 1.15 160 2 300 1.3476 1.3455 4.41E−06 123
13 60 6 1.05 130 2 600 1.3322 1.3277 2.025E−05 111
14 60 6 1.05 160 2 300 1.1598 1.1371 0.0005153 117
15 60 6 1.15 130 5 300 1.248 1.1945 0.0028623 112
16 30 8 1.15 160 8 900 1.5124 1.5422 0.000888 136
17 30 8 1.15 190 8 600 1.363 1.3482 0.000219 105
18 30 8 1.25 160 5 600 2.1256 2.128 5.76E−06 189
19 30 8 1.25 190 5 900 1.6794 1.6823 8.41E−06 97
20 90 4 1.15 160 8 600 1.1098 1.1096 4E−08 79
21 90 4 1.15 190 8 900 1.1096 1.0952 0.0002074 70
22 90 4 1.25 160 5 900 1.3572 1.3664 8.464E−05 110
23 90 4 1.25 190 5 600 1.3218 1.3425 0.0004285 92
24 90 8 1.15 160 5 900 1.2286 1.2292 3.6E−07 101
25 90 8 1.15 190 5 600 1.1194 1.1062 0.0001742 69
26 60 6 1.15 160 5 600 1.4038 1.4023 2.25E−06 153
27 60 8 1.05 130 5 900 1.4592 1.459 4E−08 158
28 60 8 1.05 160 5 600 1.3601 1.3441 0.000256 143
29 60 8 1.25 130 2 600 1.5208 1.5302 8.836E−05 208
30 60 8 1.25 160 2 900 1.5435 1.5535 0.0001 163
31 90 6 1.05 130 5 600 1.3127 1.3118 8.1E−07 74
32 90 6 1.05 160 5 900 1.2973 1.3023 2.5E−05 93
33 90 6 1.25 130 2 900 1.1823 1.1867 1.936E−05 122
34 90 6 1.25 160 2 600 1.0832 1.0812 4E−06 111
35 90 8 1.05 130 2 900 1.2396 1.2696 0.0009 97
36 90 8 1.05 160 2 600 1.1838 1.1739 9.801E−05 86
37 90 8 1.25 130 5 600 1.1413 1.1524 0.0001232 81
38 90 8 1.25 160 5 900 1.1125 1.1364 0.0005712 106
39 60 6 1.05 130 2 600 1.4536 1.4546 1E−06 135
40 60 6 1.05 160 2 900 1.3208 1.3474 0.0007076 111
41 90 8 1.05 130 2 900 1.1369 1.1423 2.916E−05 96
42 90 8 1.05 160 2 600 1.0962 1.0905 3.249E−05 74
43 90 8 1.25 130 5 600 1.1551 1.1551 0 94
44 90 8 1.25 160 5 900 1.1723 1.1153 0.003249 88
45 30 4 1.15 160 2 300 1.6813 1.6628 0.0003422 117
46 30 4 1.15 190 2 900 1.5782 1.5577 0.0004202 100
47 30 4 1.25 160 8 900 1.4935 1.5283 0.001211 158
48 30 4 1.25 190 8 300 1.4658 1.4666 6.4E−07 163
49 30 6 1.15 160 8 900 1.6402 1.6368 1.156E−05 115
50 30 6 1.15 190 8 300 1.6128 1.6021 0.0001145 141
51 30 6 1.25 160 2 300 1.6368 1.6354 1.96E−06 112
52 30 6 1.25 190 2 900 1.5609 1.5668 3.481E−05 109
53 60 4 1.15 160 8 300 1.2136 1.1945 0.0003648 123
54 60 4 1.15 190 8 900 1.1871 1.1878 4.9E−07 125
55 60 4 1.25 160 2 900 1.2036 1.2035 1E−08 144
Average 1.3654 0.002642 114.8

Table 4.

Training data for model: S2, Ra, N7, D2 steel.

SN Gap voltage (Vg) Flush rate (Fr) Spark time (TON) Spark time (TOFF) Wire feed (Wf) Wire tension (Wt) Surface roughness (Ra) Material removal (MRR) Square of residuals
(Ra)
(V) (Lit./min) (μS) (μS) (m/min) (g) (μm) (mg/min) (μm)2
Vg
2 30 4 1.05 160 2 600 1.4452 92 1E−08
7 30 6 1.15 130 2 300 1.676 97 1.6E−07
27 60 8 1.05 130 5 900 1.4592 162 4E−08
54 60 4 1.15 190 8 900 1.1871 128 4.9E−07
20 90 4 1.15 160 8 600 1.1098 88 4E−08
43 90 8 1.25 130 5 600 1.1551 99 0
Fr
1 30 4 1.05 130 2 300 1.6858 102 2.5E−07
55 60 4 1.25 160 2 900 1.2036 148 1E−08
7 30 6 1.15 130 2 300 1.676 97 1.6E−07
31 90 6 1.05 130 5 600 1.3127 78 8.1E−07
27 60 8 1.05 130 5 900 1.4592 162 4E−08
43 90 8 1.25 130 5 600 1.1551 99 0
Ton
41 90 8 1.05 130 2 900 1.1369 96 2.916E−05
42 90 8 1.05 160 2 600 1.0962 78 3.249E−05
54 60 4 1.15 190 8 900 1.1871 128 4.9E−07
20 90 4 1.15 160 8 600 1.1098 88 4E−08
55 60 4 1.25 160 2 900 1.2036 148 1E−08
43 90 8 1.25 130 5 600 1.1551 99 0
Toff
7 30 6 1.15 130 2 300 1.676 97 1.6E−07
27 60 8 1.05 130 5 900 1.4592 162 4E−08
55 60 4 1.25 160 2 900 1.2036 148 1E−08
36 90 8 1.05 160 2 600 1.1838 81 9.801E−05
21 90 4 1.15 190 8 900 1.1096 63 0.0002074
54 60 4 1.15 190 8 900 1.1871 128 4.9E−07
Wf
34 90 6 1.25 160 2 600 1.0832 105 4E−06
2 30 4 1.05 160 2 600 1.4452 92 1E−08
43 90 8 1.25 130 5 600 1.1551 99 0
31 90 6 1.05 130 5 600 1.3127 78 8.1E−07
48 30 4 1.25 190 8 300 1.4658 155 6.4E−07
16 30 8 1.15 160 8 900 1.5124 145 0.000888
Wt
7 30 6 1.15 130 2 300 1.6760 97 1.6E−07
1 30 4 1.05 130 2 300 1.6858 102 2.5E−07
2 30 4 1.05 160 2 600 1.4452 92 1E−08
31 90 6 1.05 130 5 600 1.3127 78 8.1E−07
54 60 4 1.15 190 8 900 1.1871 128 4.9E−07
21 90 4 1.15 190 8 900 1.1096 63 0.0002074

Table 5.

D2, S2, 7N, training data (individual parameters corresponding to least square of residuals).

Correlation coefficient (R2): Training data of D2 steel (best performing model S2) using 7 and 10 neurons in primary and secondary hidden layers.

Material Model R2 value Equation of lines (correlation between obs. and pred. values of Ra) Average predicted Ra (μm) Root mean square error (μm) Percentage RMSE (%) Average % RMSE RMSE
D2 S1 Training 0.983 y = 1.005x - 0.010 1.3864 0.003401 0.2453 0.8129
0.7353
S1 Validation 0.967 y = 1.067x - 0.090 1.3008 0.01077 0.8279
S1, Testing Testing 0.963 y = 0.879x + 0.154 1.4016 0.01914 1.3655
S2 set, Training Training 0.991 y = 1.004x - 0.008 1.3654 0.002642 0.1934 0.3865
S2 validation 0.988 y = 0.984x + 0.028 1.3888 0.007015 0.5051
S2, testing testing 0.979 y = 1.006x - 0.006 1.4232 0.006565 0.4612

Table 6.

Summary of R2 values of training validation and testing data: 7 N in 1st and 10 N in 2nd L, Ra.

Advertisement

4. Optimization of process parameters

It is evident from Table 3 , that each independent influencing input parameter has corresponding values of their square of residuals at each three levels. Two values at each level (2 × 3 = 6 rows) has been taken for each inputs, where lowest possible square of residuals are available, to draw the Figure 6(a–f) .

Figure 6.

(a–f) 3D scattered plot between Ra vs. MRR vs. individual independent parameter.

Advertisement

5. Result

Figure 6 (a–f) shows the relations between individual influencing parameters (Vg, Fr, Ton, Toff, Wf and Wt) to their optimized response, surface roughness (Ra) with corresponding values of MRR. Table 5 also indicates that unique values of each influencing parameters (corresponding to its serial numbers of Table 5 ) gives optimum responses, which has been highlighted.

Again experiment has been conducted on D2 steel using WEDM by setting the individual optimum parametric combinations (Vg, Fr, Ton, Toff, Wf and Wt) as 90 (V), 8 (Lit./min), 1.05 (μS), 190 (μS), 2 (m/min) and 900 (g) respectively and found the values of Ra = 0.9638 (μm) at MRR = 105 (mg/min) ( Table 7 ).

SN Gap voltage (Vg) Flush rate (Fr) Spark time (TON) Spark time (TOFF) Wire feed (Wf) Wire tension (Wt) Surface roughness (Ra) obs. Surface roughness (Ra) predicted (Zero residual)2 Material removal predicted (MRR)
(V) (Lit./min) (μS) (μS) (m/min) (g) (μm) (μm) (μm)2 (mg/min)
20 90 4 1.15 160 8 600 1.1098 1.1096 4.00E−08 79
43 90 8 1.25 130 5 600 1.1551 1.1551 0 94
42 90 8 1.05 160 2 600 1.0962 1.0905 3.25E−05 74
54 60 4 1.15 190 8 900 1.1871 1.1878 4.90E−07 125
34 90 6 1.25 160 2 600 1.0832 1.0812 4.00E−06 111
54 60 4 1.15 190 8 900 1.1871 1.1878 4.90E−07 125

Table 7.

Best parametric combination with their possible responses.

Advertisement

6. Conclusion

It has been concluded that the best fitted model (S2) for material removal rate and surface roughness of D2 steel has been achieved by artificial neural network using WEDM. From best modeled training data, optimum parametric combinations (Vg, Fr, Ton, Toff, Wf and Wt) observed as 90 V, 8 Lit./min, 1.05 μS, 190 μS, 2 m/min and 900 g respectively and found the values of Ra = 0.9638 μm at MRR = 105 mg/min, whereas the average Ra = 1.3654 μm at MRR = 114.8 mg/min. It has been concluded that ANN modeling technique is best fitted for surface roughness prediction and able to successfully minimize (SR) is 29.41% with 8.53% decreases the MRR from its average values on D2 steel using BPANN under WEDM. Such combinations may be applied for industrial application, where it is needed.

References

  1. 1. Gatto A, Luliano L. Cutting mechanisms and surface features of WEDM metal matrix composite. Journal of Material Processing Technology. 1997;65:209-214
  2. 2. Azouzi R, Guillot M. On-line prediction of surface finish and dimensional deviation in turning neural network base sensor fusion. International Journal of Machine Tools and Manufacture. 1997;37:1201-1217
  3. 3. Montgomery DC. Design and Analysis of Experiments. Singapore: Wiley; 1991
  4. 4. Ho KH, Newman ST, Rahimifard S, Allen RD. State of the art wire electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture. 2004;44:1247-1259
  5. 5. Puertas I, Lues CJ. A study on the machining parameters optimization of electrical discharge machining. Journal of Material Processing Technology. 2003;143-144:521-526
  6. 6. Sanchez JA, Lopez de Lacalle LN, Lamikiz A, Bravo U. Dimensional accuracy optimization of multi-stage planetary EDM. International Journal of Machine Tools & Manufacture. 2002;42:1643-1648
  7. 7. Mondal D, Pal SK, Saha P. Modelling of electrical discharge machining process using back propagation neural network and multi- objective optimizations using non-dominating sorting genetic algorithm-2nd. Journal of Materials Processing Technology. 2007;186:154-162
  8. 8. Panda DK, Bhoi RK. Artificial neural network prediction of material removal rate in electro-discharge machining. Materials and Manufacturing Processes. 2005;20:645-672
  9. 9. Fisher RA. Statistical Methods for Research Worker. London: Oliver & Boyd; 1925
  10. 10. Sahoo GB, Ray C, Wade HF. Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks. Ecological Modelling. 2005;183(1):29-46
  11. 11. Kexing S, Jiandong X, Qiming D, et al. Optimization of the processing parameters during internal oxidation of Cu–Al alloy powders using an artificial neural network. Materials & Design. 2005;26(4):337-341
  12. 12. Juan-Hua S, Qi-Ming D, Ping L. Simulation of aging process of lead frame copper alloy by an artificial neural network. Transactions of the Nonferrous Metals Society of China. 2003;13(6):1419-1423

Written By

Umesh K. Vates, N.K. Singh, B.P. Sharma and S. Sivarao

Submitted: 26 September 2018 Reviewed: 02 October 2018 Published: 31 May 2019