Comparison of BDS, IPC, and SCC.
\r\n\t
",isbn:"978-1-83968-298-8",printIsbn:"978-1-83968-297-1",pdfIsbn:"978-1-83968-299-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"362b356f3ae4c3b5ab5a5fe69d92d270",bookSignature:"Dr. Luigi Cocco",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10385.jpg",keywords:"Virtual Analysis, Target Definition, Assembly Solution, Robotics, Software Architecture, Data Fusion, Autonomous Driving, Functional Safety, Vehicle Battery, Charging Infrastructures, Hybrid Vehicles, Cybersecurity",numberOfDownloads:468,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 6th 2020",dateEndSecondStepPublish:"July 27th 2020",dateEndThirdStepPublish:"September 25th 2020",dateEndFourthStepPublish:"December 14th 2020",dateEndFifthStepPublish:"February 12th 2021",remainingDaysToSecondStep:"6 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Cocco received his master's degree in Telecommunication Engineering and his Ph.D. in Information Engineering before joining the automotive industry. From the Ferrari F1 Team to Automobili Lamborghini, he has worked on Electrical/Electronics systems, he has expertise in Research & Design, Supply Quality and Product Development. Currently, he is System Responsible for Passive Safety & ADAS of Maserati vehicles at Maserati S.p.A.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"112023",title:"Dr.",name:"Luigi",middleName:null,surname:"Cocco",slug:"luigi-cocco",fullName:"Luigi Cocco",profilePictureURL:"https://mts.intechopen.com/storage/users/112023/images/system/112023.jpg",biography:'Dr. Luigi Cocco has received his master\'s degree in Telecommunication Engineering and his Ph.D. in Information Engineering before to join the automotive industry. Since 2005, From the Ferrari F1 Team to Automobili Lamborghini, he has worked on Electrical/Electronics systems; he has expertise in Research & Design, Supply Quality and Product Development. Currently, he is System Responsible for Passive Safety & ADAS of Maserati vehicles. His research interests include electronic measurements and digital signal processing, he has published several papers and three books with InTech: "Modern Metrology Concerns” (2012), "New Trends and Developments in Metrology” (2016) and "Standards, methods, and solutions of Metrology” (2018).',institutionString:"Maserati S.p.A.",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"74236",title:"New Robust Control Design of Brake-by-Wire Actuators",slug:"new-robust-control-design-of-brake-by-wire-actuators",totalDownloads:46,totalCrossrefCites:0,authors:[null]},{id:"74309",title:"Role of Bearings in New Generation Automotive Vehicles: Powertrain",slug:"role-of-bearings-in-new-generation-automotive-vehicles-powertrain",totalDownloads:68,totalCrossrefCites:0,authors:[null]},{id:"74420",title:"Hydrogen Fuel Cell Implementation for the Transportation Sector",slug:"hydrogen-fuel-cell-implementation-for-the-transportation-sector",totalDownloads:118,totalCrossrefCites:0,authors:[null]},{id:"73891",title:"Quantum Calculations to Estimate the Heat of Hydrogenation Theoretically",slug:"quantum-calculations-to-estimate-the-heat-of-hydrogenation-theoretically",totalDownloads:56,totalCrossrefCites:0,authors:[null]},{id:"73339",title:"Generation and Relaxation of Residual Stresses in Automotive Cylinder Blocks",slug:"generation-and-relaxation-of-residual-stresses-in-automotive-cylinder-blocks",totalDownloads:68,totalCrossrefCites:0,authors:[null]},{id:"74124",title:"Quality and Trends of Automotive Fuels",slug:"quality-and-trends-of-automotive-fuels",totalDownloads:23,totalCrossrefCites:0,authors:[null]},{id:"74097",title:"Hydrogen Storage: Materials, Kinetics and Thermodynamics",slug:"hydrogen-storage-materials-kinetics-and-thermodynamics",totalDownloads:48,totalCrossrefCites:0,authors:[null]},{id:"73923",title:"Hybrid Steering Systems for Automotive Applications",slug:"hybrid-steering-systems-for-automotive-applications",totalDownloads:41,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1547",title:"Modern Metrology Concerns",subtitle:null,isOpenForSubmission:!1,hash:"27edf8c2b79a9c6ae0c3d87ca8cae49c",slug:"modern-metrology-concerns",bookSignature:"Luigi Cocco",coverURL:"https://cdn.intechopen.com/books/images_new/1547.jpg",editedByType:"Edited by",editors:[{id:"112023",title:"Dr.",name:"Luigi",surname:"Cocco",slug:"luigi-cocco",fullName:"Luigi Cocco"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4622",title:"New Trends and Developments in Metrology",subtitle:null,isOpenForSubmission:!1,hash:"27aa3947c35b65d08f9c1f4a56b7f468",slug:"new-trends-and-developments-in-metrology",bookSignature:"Luigi Cocco",coverURL:"https://cdn.intechopen.com/books/images_new/4622.jpg",editedByType:"Edited by",editors:[{id:"112023",title:"Dr.",name:"Luigi",surname:"Cocco",slug:"luigi-cocco",fullName:"Luigi Cocco"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7669",title:"Standards, Methods and Solutions of Metrology",subtitle:null,isOpenForSubmission:!1,hash:"29d82c2091fb9ca1c49620000d170f2c",slug:"standards-methods-and-solutions-of-metrology",bookSignature:"Luigi Cocco",coverURL:"https://cdn.intechopen.com/books/images_new/7669.jpg",editedByType:"Edited by",editors:[{id:"112023",title:"Dr.",name:"Luigi",surname:"Cocco",slug:"luigi-cocco",fullName:"Luigi Cocco"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63682",title:"Matrix Converter for More Electric Aircraft",doi:"10.5772/intechopen.81056",slug:"matrix-converter-for-more-electric-aircraft",body:'\nEven though power electronics plays a key role for controlling electrical drives for industrial and aerospace applications since 1909, the recent developments and inventions in semiconductors caused the revolution in power electronics field, which results in many converter topologies. For example, there are two types of AC-AC converters, which convert fixed AC voltage and frequency into variable voltage with variable frequency. Figure 1 shows structure of AC-AC converter topologies [1]:
DC link
Direct link
AC-AC power converter topologies.
DC link converter or AC-DC-AC converter has been implemented at industries since 1902 because of its special features. For example, voltage source inverter has following merits:
Easy voltage supply control is possible for VSI.
Low harmonics content exist.
The main demerits of AC-DC-AC converter or DC link converters are as follows: (1) they are not suitable for transients operations because voltage across the large capacitor or large inductor in the circuit cannot be instantly changed [2]; (2) bulky, more weight, and costly. These limitations are overcome by direct AC-AC converters such as cycloconverters and matrix converters [2, 3]. This chapter is about matrix converter [4, 5], and its application is especially for aerospace. The matrix converter is preferred for cycloconverter [6] because of no limitations with respect to obtaining output frequency. The reason is that cycloconverter is limited to offer output frequency of one-third of its input frequency.
\nM. Venturini and A. Alesina invented the matrix converter technology in 1981 [4], and this paper described the fundamentals of matrix converter such as PWM to generate nine pulses with maximum voltage transfer ratio of 0.5 [4, 5]. The main advantages of MC are good sinusoidal input/output waveforms and inherent regeneration capability. The same authors improved the PWM algorithm to get 0.866 voltage transfer ratio with good sinusoidal output waveforms in 1986 [5]. After that, a lot of papers discussed different kinds of modulation schemes for MC [4, 5, 7]. The MC has severe problem with commutating bidirectional switches (BDS); but in 1992, four-step commutation [8, 9] was introduced. In 2001, Yaskawa Electric in Japan made 5.5-kW and 11-kW matrix converters, and now it is developing higher rating of matrix converters such as 22 kW and 45 kW [10] and selling for lift applications. Because of potential advantages of the Matrix Converter, this has been considered for commercial, industrial [11] and aerospace applications [12].
\nThe MC is especially suitable for aerospace applications because of it capability to provide wide range of unrestricted output frequencies which is imposed by it switching frequency.
\nThe aim of More Electric Aircraft (MEA) is to support green technology by replacing other powers usage of aircraft with electrical power usage. The conventional aircraft requires mainly four powers such as electrical power, pneumatic power, hydraulic power, and mechanical power. The concept of MEA is to replace other powers with electrical power using green technologies. This chapter is focused on green technology for aerospace applications such as aircraft surface actuation control systems. The reason is that regenerative power from the MC drive causes stability problems at aircraft power supply. Overcoming this limitation of MC drive is vital. For example, the host drum drive motor (HDDM) regenerates power when the tanker aircraft (TA) refueling hose trails and winds at air. Figure 2 shows circuit of the tanker aircraft with regeneration control circuit (RCC), which is used to dissipate regenerative power of MC drive using proposed methods.
\nTanker aircraft with RCC.
The host drum drive system (HDDS), which is controlled by Refuelling Control Unit (RCU) and Aeronautical Radio Incorporated Commands (ARINC), controls refueling hose and has three units such as motor control unit (MCU), dump resistor pack (DRP), and two motors. The schematic circuit of HDDS of TA is depicted in Figure 3.
\nSchematic of host drum drive system of TA.
Regeneration occurs only whenever refueling hose winds and trails and this action is commanded by MCU with RCU. It means that the MCU supervises direction of motors based on input from RCU commands. Hence, HDDS must dissipate the regenerated power; otherwise, it can cause below mentioned problems:
The input supply to HDDS will be increased during regeneration.
There is possibility of deactivation of HDDS system because of instability in the input supply of HDDS.
The HDDS is using DC link converter, which is not favorable to transient operations of HDDS drive, and this system is bulky and more weight, which are not desirable characteristics for aircraft. The MC drive is proposed to address above problems. However, inherent regeneration capability of matrix converter limits itself being used for above application because bidirectional switches directly fed back to regenerated power to aircraft input power supply without requiring any additional power electronic components.
\nAccording to aerospace power quality specifications, this regeneration onto aircraft input power supply must be limited. For this reason, avoidance of regeneration is vital for aircraft surface actuation systems of aircraft. Hence, to avoid regeneration in the matrix converter drive, three novel methods are proposed:
Bidirectional switch (BDS) method
Input power clamp (IPC) method
Standard clamp circuit (SCC) method
To detect regeneration in MC drive, two novel techniques are proposed:
Power comparison (PC) technique
Input voltage reference (IVR) technique
Each and every method has its own regeneration control circuit (RCC). For example, RCC for BDS method consists of three bidirectional switches (BDS) in series with three resistors, and this setup is connected across small input filter of MC drive. The RCC for IPC method requires one conventional uncontrolled six-pulse rectifier and a unidirectional switch (UDS) in series with a resistor, and this setup is connected in between input power supply and small input filter of MC. SCC method does not require additional components, which means that no separate RCC is required to do the same action.
\nThe simulation results prove that the matrix converter is a suitable alternative to conventional HDDS converter topologies. The BDS method is experimentally adopted to verify the proposed concept by laboratory prototype matrix converter, which is built at Smiths Aerospace laboratory (later called GE Aviation laboratory) in University of Nottingham. This MEA project strongly supports the green environment by adopting abovementioned green technologies to obtain reduced aircraft emissions.
\nMatrix converter consists of nine bidirectional switches arranged in 3 × 3 as shown in Figure 4. This is called all silicon solution [13]. The input phases (A, B, C) can be connected to output phases (a, b, c) for any switching period of time using bidirectional switches. The switches are controlled in such a way that the average output voltage is a sinusoidal waveform of the desired frequency and amplitude.
\nThe general structure of the conventional MC.
The matrix converter consists of nine bidirectional switches with 29 (512) possible switching states. However, only 27 switching states can be used because two basic rules have to be followed [13].
No short circuit of two inputs
Never open circuit the outputs
Because of the above rules and also inductive loads nature of MC drive, each output line must always be connected to an input line. Under these basic rules, space vector modulation (SVM) for MC drive has 27 switching states.
\nThe space vector modulation (SVM) is defined as type of pulse width modulation (PWM) to generate gate drive signal to trigger the bidirectional switches (BDS) in MC [14]. SVM is also preferable to control and analyze machines with vector control (VC) or field oriented control of machines and allows visualization of the spatial and time relationships between the resultant current and flux vectors (or space phasors) in various reference frames.
\nDecoupling flux and torque is feature of VC to overcome sluggish torque response of Induction Motor (IM) to work like a separately excited DC machine. To achieve an independent control of the flux and torque, the direct axis (d axis) is aligned to a rotor flux vector (Ψr) and the concept of the indirect field-oriented vector control (IFOVC) is depicted in Figure 5 [15, 16, 17]. The rotating reference frame is rotating at synchronous angular velocity (ωe). The sensed three-phase output currents of MC drive are converted into stationary reference frame (isα, isβ) and then viewed as two “dc” quantities (isd, isq). The direct axis or real axis component is responsible for the field producing current (isd) and is ideally maintained constant up to the motor synchronous speed. If d-axis is aligned with rotor flux vector (Ψr), the system is said to be field oriented. The q-axis component is responsible for torque producing current (isq). These two vectors are orthogonal to each other so that the field current and torque current can be controlled independently [16, 17].
\nField orientation: Ψr is aligned with d-axis.
Both faster current control loop and speed control loop outputs [12] provide the reference voltages (Vsd, Vsq) and hence (Va, Vb, Vc) to SVM to get the stable operation of MC drive as shown in Figure 6.
\nClosed-loop indirect field-oriented vector control (IFOVC) scheme.
Two novel techniques [18] are used to identify regeneration when step is applied to reverse the MC drive. These are (1) power comparison technique (PC) and (2) input voltage reference (IVR) technique. These techniques are responsible for generating pulses for regeneration control circuit (RCC) or electrical braking circuit (EBC) whenever regeneration is detected in the MC drive. In PC, output power is used as reference; hence, it is called PC technique similarly in IVR technique, the voltage across the small input filter capacitor and output power both are used as reference; hence, it is called IVR technique. The IVR technique is similar to and derived from conventional dynamic braking technique.
\nTo calculate the absolute value of output power of MC drive to achieve power comparison (PC) technique, the torque producing current (i*sq) and measured rotor speed (ωre) are sensed. Figure 7 shows the gate drive signal, which is generated for RCC of input power clamp (IPC) method. Here power dissipation through a resistor in the regeneration control circuit (RCC) is directly proportional to the duty cycle of unidirectional switch (UDS), as in Eq. (1),
\nBlock diagram of the power comparison (PC) technique for IPC method.
where D = duty cycle of the unidirectional switch and Pdis = power dissipation through the resistor.
\nThe duty cycle calculation requires the maximum electrical braking power (Pmb) to be calculated, as shown in Eq. (2). The duty cycle of the switches is then less than or equal to unity under all operating conditions.
\nwhere Tme = electromagnetic torque and ωmre = speed of MC drive.
\nThe gate drive signals for RCC switches are generated by using field programmable gate array (FPGA) with digital signal processor (DSP). Here FPGA that receives input parameters (ωre, Te, i*sq) from sensors is fed into DSP, which does all mathematical calculations to generate gate drive signal as shown in Figure 7, and again fed back to FPGA that is sending gate drive signal to the gate drive of UDS. The duty of UDS/BDS is linearly varying with respect to output negative power. The MC drive is not capable to output whole of regenerated power because of it losses such as friction, windage, iron, switching and conduction losses. Because of above reason, the braking resistor dissipates less than the actually regenerated power. As written in Eqs. (3) and (4), the design of braking resistor (Rb) relies on maximum regenerative power during regeneration.
\nwhere the braking current (Ib) and input power (Pin,max) are directly proportional to the input voltage. The braking resistor design also depends on the braking time, thermal capacity of the resistor, and heat sink. And the current rating of UDS/BDS in RCC must be higher than the braking current.
\nThe voltage across small input filter capacitor is measured and compared to the MC supply voltage to generate gate drive signal for RCC of IPC method as shown in Figure 8.
\nBlock diagram of the input voltage reference (IVR) technique for IPC method.
The IVR technique can be used to detect the regeneration in the matrix converter for electrical braking methods. The duty cycle variation is directly proportional to the increase in the line to line voltage across the input filter capacitor of the matrix converter under regeneration with respect to the output power (Po), as shown in Eq. (5).
\nHere, VAB is line voltage across small input filter capacitor.
\nThe RCC is turned on only if any voltage difference is detected between MC supply voltage and voltage across the small input filter capacitor for each sampling period. In addition, if the small input filter capacitor voltage is equal to the MC supply voltage, then the duty cycle is set to zero. Gate drive signal is generated using FPGA and DSP control platform similar to PC technique. The power dissipation through RCC happens only if the MC drive is operating under regenerative mode.
\nTo avoid regeneration in matrix converters, three novel circuit topologies are investigated:
Bidirectional switch (BDS) method
Input power clamp (IPC) method
Standard clamp circuit (SCC) method
The power circuit for the BDS method [18], regeneration control circuit (RCC) or electrical braking circuit, is shown in Figure 9. The regeneration control circuit (RCC) is introduced across the input filter capacitors (CAB, CBC, and CAC). The regeneration control circuit (RCC) is responsible for power dissipation when regeneration takes place in the MC motor drive.
\nBidirectional switch (BDS) method.
The RCC consists of three bidirectional switches (BDSAB, BDSBC, and BDSAC) in series with three resistors (RAB, RBC, and RAC) connected across the input lines, in parallel with the input filter capacitor. The schematic of the regeneration control circuit (RCC) or electrical braking circuit (EPC) is depicted in Figure 9.
\nThe input power clamp (IPC) method [19] is used for braking the electrical energy in a matrix converter motor drive. The IPC method requires only one braking resistor and a UDS, as shown in Figure 10, when compared to the BDS method, which requires three switches in series with three resistors. Electrical braking circuit or regeneration control circuit (RCC) for the input power clamp (IPC) method is located across the input filter capacitors (CAB, CBC, and CAC). The RCC of IPC is controlled using either power comparison (PC) technique or the input voltage reference (IVR) technique.
\nThe input power clamp (IPC) method.
The main power electronic components for RCC of IPC are conventional uncontrolled six-pulse rectifier and a UDS in series with a braking resistor (R), as shown in Figure 10. This braking resistor does not have inductive property to help to achieve better electrical braking when regeneration happens in MC drive. It is believed that IPC method is the best method when compared to BDS method because it requires only fewer power semiconductor switching components but not suitable for aerospace applications because it has electrolytic capacitor in the RCC.
\nSimilar to the BDS method and the IPC method [19], the proposed standard clamp circuit (SCC) method is using two techniques to detect the regeneration in the matrix converter drive. These are (1) power comparison (PC) technique and (2) input voltage reference technique. However, here the PC technique is only considered and the simulation results of the SCC method with PC technique are discussed. The block diagram for standard clamp circuit is shown in Figure 11. The electrical braking circuit for SCC is shown in Figure 14.
\nThe standard clamp circuit method.
Power dissipation through resistor is directly proportional to duty cycle of UDS, which is already given in Eq. (1). To prove the performance of the SCC method for electrical braking in the MC drive, a 2.2-kW vector-controlled induction motor fed by MC drive is considered.
\nWhen compared to earlier methods, called the BDS method and IPC method, no auxiliary hardware is required for SCC method for electrical braking in the matrix converter drive as shown in Table 1. The BDS method [18] has three drawbacks:
It requires three BDS in series with three resistors.
Also, it requires complex control platform, which controls six PWM for electrical braking.
This auxiliary circuit increases size, weight, and cost.
Factors | \nBDS method | \nIPC method | \nSCC method | \n
---|---|---|---|
Switches | \n3 (BDS) | \n1 (UDS) | \n1 (UDS) | \n
Resistors | \n3 | \n1 | \n1 | \n
Diodes | \n0 | \n6 | \n0 | \n
Weight, size, and cost | \nConsiderably increased | \nBit increased | \nRemains same | \n
Implementation | \nComplicated | \nNot complicated | \nSimple | \n
Comparison of BDS, IPC, and SCC.
Similarly, the IPC method has three main drawbacks:
It requires conventional uncontrolled diode rectifier and UDS with a resistor.
Separate control platform for a PWM for electrical braking is required.
This auxiliary circuit increases the size, weight, and cost.
The SCC method requires only one UDS switch in series with a resistor. Because of using SCC in the MC drive, achieving electrical braking using this method is easy and no complicated control platform is required. The SCC is considered as a safety device to protect the matrix converter under abnormal conditions such as overvoltage in the input side or output side.
\nTo predict and verify the performance of the proposed methods for avoiding regeneration in a matrix converter, a simulation study is carried out using SABER software package [12].
\nThe regeneration can be demonstrated at Vin = 240 V, q = 0.75, and fs = 10 kHz by applying step transient to reverse the speed at 1.2 s as shown in Figure 12. A step transient lasts upto 2.4s, no load speed reversal (from +188.5 rad/s to -188.5 rad/s), as shown in the Figure 13 which also shows developed torque which is direclty proportional to torque producing current (isq) of IM during VC. The torque producing current (iq) of the induction motor reaches the maximum limit of 35 A during acceleration as shown in Figure 13. Here regenerative power depends upon large inertial load (j = 0.089 kg m2) of the induction motor, which is created coupling IM with the same rating of DC motor (4 kW). The output current waveforms of the matrix converter drive is depicted in Figure 14(a), which also indicates during speed reversal, the four-quadrant operation, inherent property, of MC from motoring mode to regenerating mode is smoothly achieved. The control of dq-currents (id, iq) with no coupling effects is demonstrated. Figure 14(b) shows input phase currents (iA, iB, iC) of the matrix converter during the four-quadrant operation. The input regenerative powers (PA, PB, PC) to be dissipated using the regeneration control circuit (RCC) are shown in Figure 15(a). During regeneration, the phase opposition (180° phase displacement) between the input phase voltages (VA, VB, VC) and input phase currents (iA, iB, iC) can be seen in Figure 15(b).
\nOverview of the simulation diagram for obtaining regeneration in the MC vector-controlled induction motor.
Speed and torque of the vector-controlled IM in regeneration. Vin = 240 V, q = 0.75, and fs = 10 kHz.
(a) Output currents of the MC and (b) input phase currents of the MC.
(a) Input phase powers of the MC and (b) phase opposition at regeneration.
The generation of the required identical six pulses using PC technique for the regeneration control circuit (RCC) of BDS method is shown in Figure 16(a). Here duty cycle is linearly varying with respect to the output power of the MC drive as shown in Figure 16(b). In order to verify the regenerative energy dissipation, the input phase powers are calculated using input phase voltages and the input phase currents. The resulting input phase currents and calculated input phase power are shown in Figure 17(a) and (b), respectively. When compared to Figure 15(b), Figure 18 proves that regenerative power is dissipated using novel RCC of BDS method, hence input phase voltages (VA, VB, VC) and input phase currents (iA, iB, iC) are in phase. However, there is some input power left, as shown in Figure 17(b), because of constant losses (such as friction, windage losses, and inertial losses) in the IM and switching noises.
\n(a) Generation of the six pulses and (b) duty cycle and output power variation for regeneration control circuit of the BDS method with the PC technique. Vin = 240 V, q = 0.75, and fs = 10 kHz.
(a) Input phase currents and (b) input phase powers for BDS method.
Phase relationship between input phase voltages and currents of MC drive.
The generation of a pulse to trigger the RCC, duty cycle variation, and the output power (Po) variation during regeneration for the IPC method with the IVR technique is shown in Figure 19. Figure 20 shows input phase powers (PA, PB, PC) of MC drive after regeneration control. From simulation results, the IVR technique for both methods (IPC and SCC) is producing acceptable results to avoid regeneration with a MC drive similar to PC technique.
\nPulse for RCC, duty cycle variation, and output power for the IPC method with the IVR technique. Vin = 240 V, q = 0.75, and fs = 10 kHz.
Input phase powers for the SCC method with the IVR technique. Vin = 240 V, q = 0.75, and fs = 10 kHz.
The control platform includes both the control circuits and the interface circuits. The control circuit consists of a DSP card and an FPGA card as shown in Figure 21. The interface circuit includes encoder interface board and DSP daughter card (C6713DSK HPI), which is used to send user inputs and output waveforms plotting to troubleshoot hardware problems that are faced during hardware implementation and achieving desired output results. For example, if spike occurs while reversing the speed of the MC drive, the error data were captured and troubleshot through DSP daughter card. Figure 22(a) shows the RCC of three bidirectional switches (BDSAB, BDSBC, BDSAC) that are connected between MC input supply line voltages (VAB, VBC, VAC) and the small input filter capacitors (2).
\nLayout of control and interface circuits.
(a) Photograph of RCC for BDS method and (b) complete experimental setup.
The RCC resistors (RAB, RBC, RAC) are connected in series (1) with the bidirectional switches. The triggering pulses (3) for bidirectional switches are obtained from FPGA card. Figure 22(b) shows complete experimental setup of MC drive. The host user interface PC is used to help monitor inputs to the system (complete experimental setup of MC drive) and get output from the system. The power circuit and control circuit of the laboratory prototype matrix converter drive is highlighted by letters (C) and (B), respectively. Letters (D) and (E) indicate the 4 kW induction motor with high inertial load and the RCC resistors with their heat sink arrangement, respectively.
\nProof of BDS method for electrical braking in the MC drive by carried out experiments, at Smiths aerospace (later called GE Aviation) laboratory in PEMC Group of University of Nottingham, using a prototype rated at 7.5 kW MC fed a 4 kW IM. The field current (d-currents), torque current (q-currents), torque of IM and stator currents of IM during regeneration at speed reversal from +157 rad/s to −157 rad/s [Vin = 200 V, fs = 12.5 kHz, q = 0.75] are shown in Figure 23(a) and Figure 23 (b), respectively. The input phase voltages (VA, VB), input phase currents (iA, iB), and three phase input power (using two-wattmeter method) during regeneration and after avoiding regeneration are shown in Figure 24(a) and (b), respectively. The above experimental results (from Figure 24(a) and (b)) clearly show that the regenerative (negative) power is dissipated through the RCC.
\n(a) Torque, dq-currents and (b) stator currents of the motor.
(a) During regeneration and (b) after avoiding regeneration.
The matrix converter (MC) technology has been preferred since 1989 than other direct AC/AC converters or AC-DC-AC link converters because of its special features such as no DC link components, good sinusoidal input/output waveforms, inherent regeneration capability, and unrestricted output frequency. The published research work on the matrix converter focuses on the following ideas:
MC for aerospace and industrial applications
Power quality and stability of MC
Addressing commutation techniques to avoid failure of the power circuit of MC
Modulation topologies for the MC
This novel research work is dedicated to matrix converter for more electric aircraft (MEA) application. And making MC suitable for aerospace applications by avoiding inherent regeneration in it, it means eliminating unique property of four-quadrant operation of MC, in order to satisfy the aircraft power quality specifications. Until this work, no one has paid attention on this research area, which will make the matrix converter feasible for aerospace applications and some specific industrial applications. For example, at the beginning of the twenty-first century, the matrix converter has been made as a commercial product, lift, which is manufactured by Yaskawa (Japan). The Power Electronics Machines and Control (PEMC) Group at the University of Nottingham has been developing 150-kVA matrix converter for higher power applications. Even though all three methods (BDS, IPC, and SCC) can produce good results, the standard clamp circuit method with power comparison technique is preferable because no auxiliary hardware is required. Hence, the weight, size, and cost of the matrix converter are considerably reduced. Therefore, the matrix converter with SCC method is recommended to aerospace applications where regeneration into the supply is not allowed. From obtained experimental results, it is concluded that electrical braking with a matrix converter drive is feasible and matrix converter is opt for aerospace applications such as more electric aircraft.
\nThe authors would like to thank Smiths Aerospace/GE Aviation laboratory for their support to complete this research successfully.
\nThe biological removal of nitrogen (N) comprises two processes: nitrification and denitrification. The nitrification is a strict aerobic process that involves the oxidation of ammonia (NH3) to nitrate (NO3−) by autotrophic bacteria. Firstly, ammonia is oxidized to nitrite (NO2−), by means of ammonia-oxidizing bacteria (AOB), and then nitrite is oxidized to nitrate by the nitrite-oxidizing bacteria (NOB) [1]. In the second step, named denitrification, nitrate is converted into a gaseous product, nitrous oxide (N2O) or molecular nitrogen (N2), which is finally eliminated into the atmosphere. Denitrification is an anoxic process performed by heterotrophic bacteria using nitrite and/or nitrate as the electron acceptor. In full denitrification, NO3− is reduced to NO2− and then to nitric oxide (NO), N2O, and finally to N2 [2].
\nNitrosomonas is the most common genus of autotrophic bacteria capable of oxidizing ammonium to nitrite; however, Nitrosococcus, Nitrosospira, Nitrosovibrio, and Nitrosolobus also have that ability. These ammonium oxidizers belong to the beta subdivision of the Proteobacteria [3]. Nitrobacter, Nitrospira, Nitrospina, Nitrococcus, and Nitrocystis are known to be involved in the nitrite oxidation [3]. Nitrite-oxidizing genera belong to the alpha, gamma, and delta subdivisions of the Proteobacteria [4]. Denitrification is carried out by several bacterial genera such as Achromobacter, Aerobacter, Alcaligenes, Bacillus, Brevibacterium, Lactobacillus, Micrococcus, Proteus, Pseudomonas, and Spirillum [5].
\nCarbon is not a difficult compound to eliminate by biological processes; on the contrary, one of the most common problems in wastewater treatment plants is the lack of organic carbon to carry out the denitrification process. Particularly, treatment plants with low chemical oxygen demand/nitrogen (COD/N) ratios exhibit difficulties for nitrogen removal due to a shortage of organic substrate [6, 7].
\nSeveral biological processes have been proposed for nitrogen removal. The modified Ludzack-Ettinger process is a widespread conventional technology for nitrogen biological removal. This process is a modification of a conventional activated sludge process where an anoxic reactor is located upstream of the aerobic reactor. This process with pre-anoxic configuration is commonly named anoxic/oxic (AN/OX) process. In the first reactor, denitrification is carried out using organic carbon from wastewater. For this, the process requires an internal recycle that carries nitrate, generated from ammonia by the nitrification process (aerobic reactor), to the anoxic reactor. The amount of nitrate removed in the anoxic reactor depends on both the recycle flow and availability of influent organic carbon. Several disadvantages are associated with this process: (a) high costs involved in the recirculation; (b) production of nitrogen oxides as end products, instead of N2, which is caused by microaerophilic conditions, generated by recirculation [8]; and (c) limitation of the carbon source in the anoxic tank, caused by the recirculation of the nitrate-rich mixed liquor, resulting in accumulation of intermediate products such as nitrites and nitrogen oxides [9].
\nSystems based on postanoxic denitrification have the anoxic tank located downstream of the aerobic tank. Nitrification and consumption of the organic carbon take place in the first reactor. Denitrification is carried out in the anoxic stage. Thus, mixed liquor recycle from the aerobic to the anoxic stage is not required. However, this oxic/anoxic (OX/AN) system leads usually to a total consumption of the organic carbon. This configuration was firstly proposed by Wuhrmann [10], where organic substrates required for denitrification were probably supplied from endogenous death and lysis of active biomass [11]. Then, Wuhrmann process was modified to improve denitrification by carbon addition [11]. However, additional operational costs are caused by the addition of exogenous carbon such as methanol or acetate [12]. Another disadvantage is attributed to the postanoxic denitrification process. Microaerophilic conditions generated from the transfer of oxygen by mixing in the anoxic reactor can exert an inhibitory effect on the denitrification rate [13]. This phenomenon can finally trigger the production of nitrogen oxides due to incomplete denitrification.
\nThree main routes for biological production of N2O have been proposed: hydroxylamine oxidation and nitrifier denitrification, both processes by AOB, and heterotrophic denitrification by heterotrophic denitrifiers [14]. N2O emissions from heterotrophic denitrification can occur under microaerophilic conditions, because oxygen could inhibit the activity of nitrous oxide reductase [15]. At low DOC, N removal takes place via partial nitrification, and formed nitrite is denitrified to N2/N2O by AOB [16].
\nSimultaneous nitrification and denitrification (SND) are an alternative process to the conventional configurations previously described. The SND process is carried out in a single reactor where partial nitrification, from ammonia to nitrite, coupled to denitrification, takes place. SND process is based on gradients of dissolved oxygen (DO) within the flocs. The nitrifying autotrophic bacteria are distributed on the periphery of the floc, where the dissolved oxygen concentration (DOC) is above 2 mg O2/L, while the denitrifying bacteria are located inside the floc, where the concentration of oxygen is very low [17, 18]. Large flocs (>125 μm) allow generating an oxygen gradient with anoxic conditions in the center of the floc [19, 20]. SND can be accomplished at low DOC [21]. However, at concentrations of about 0.4 mg O2/L, N2O instead of N2 may be the final product of denitrification [22]. In addition, nitrite accumulation above 1 mg/L triggers the production of N2O, and at higher nitrite levels, the denitrification process could be inhibited [21].
\nAnother alternative process to the conventional nitrification-denitrification is based on shortcut nitrification (nitritation) followed by denitritation. In this process, AOBs oxidize NH4+ to NO2−, and then, the formed NO2− is denitrified [23]. Nitrogen elimination via nitrite requires high ammonia concentration and low DOC (<0.4 mg O2/L) in order to prevent NOB growth [24]. In this process, oxygen consumption (aerobic phase) and organic carbon demand (anoxic stage) are reduced 25 and 40%, respectively, in comparison to the conventional nitrification-denitrification [25]. However, NO2− accumulated after nitritation is considered a key factor that triggers the N2O generation by means of the nitrifier denitrification in a low DO environment [26]. Partial nitritation/anammox was proposed 20 years ago as key strategy for achieving a more sustainable treatment of municipal wastewater. Partial nitritation/anammox is an autotrophic nitrogen removal process based on two successive processes: partial oxidation of ammonium to nitrite by AOBs followed by oxidation of the residual ammonium with the formed nitrite to nitrogen gas [27]. The last process named anammox is carried out by a group of Planctomycete bacteria, which grow with CO2 as the sole carbon source and use nitrite as the electron donor [3]. Partial nitrification, which occurs usually at low DO conditions (involving lower energy demands), can lead to NO2− accumulation. Nitrifier denitrification, in the presence of NO2− and low DO, has been considered the most likely pathway of production of N2O in both nitritation reactor and anammox reactor [23].
\nAdvanced N-removal processes such as partial nitrification-denitrification (shortcut nitrification, nitritation, followed by denitritation), SND, or partial nitritation-anammox are applied with the view to reducing the energy demands. However, N2O emissions still occur and can even be higher than the ones observed during conventional nitrification-denitrification [23].
\nAerobic denitrification is an alternative process to conventional anoxic denitrification, which can achieve complete denitrification at high oxygen concentrations. This process constitutes a good strategy to diminish N2O emissions [28]. A total of 37 species (14 genera) has been reported as potential aerobic denitrifiers, which belong mainly to α, β, and γ Proteobacteria [29]. Citrobacter diversus [30], Alcaligenes faecalis [31], Pseudomonas aeruginosa [32], Microvirgula aerodenitrificans [33], Paracoccus denitrificans [32], and Bacillus licheniformis [34], among others, have been reported to be able to carry out aerobic denitrification. Ji et al. [29] have proposed that nitrate and oxygen co-respiration is a microbial adaption that allows the degradation of toxic nitrate in an aerobic environment. Aerobic denitrification can be an auxiliary pathway next to aerobic respiration [35]. It has been suggested that the enzymatic system for aerobic and anaerobic denitrification is probably the same. Anaerobic denitrification is negatively affected by aerobic conditions, being widely accepted that nitrous oxide reductase is inhibited by oxygen. However, N2 generation as final product under high oxygen concentrations suggests the probable existence of different nitrous oxide reductases, which are insensitive to oxygen [35]. Denitrification via nitric oxide dismutation has been also proposed. In this process, denitrification of nitrate and nitrite to nitric oxide is followed by dismutation of nitric oxide into oxygen and N2, which did not require nitrous oxide reductase. However, it still needs to be investigated if nitric oxide dismutation is a common and widespread process between bacteria [35].
\nThe organic carbon required for denitrification has been considered the critical element in conventional nitrogen removal processes [36]. Therefore, it is crucial to achieve a nitrogen removal process using completely the organic carbon from wastewaters. Intracellular carbon such as PHA (polyhydroxyalkanoates) and/or glycogen is commonly stored in wastewater treatment systems. These carbon reserves could drive denitrification. Anaerobic/oxic (ANA/OX) configuration can enrich two kinds of organisms: polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) [37]. PAOs and GAOs are able to store PHA and glycogen. Denitrifying PAOs and denitrifying GAOs are able to denitrify using PHA and/or glycogen as carbon source.
\nThe sequential batch reactor (SBR) is one of the main technologies for the biological treatment of wastewaters, being successfully used in urban wastewater [38, 39], as in industrial wastewaters [40, 41]. A SBR with anaerobic/oxic/anoxic configuration (ANA/OX/AN SBR) has been used for the removal of carbon and nitrogen. Efficient nitrogen removal via nitrification followed by post-denitrification, without the addition of external organic carbon, was reported. For this, PHA and glycogen stored during the anaerobic phase were later used as electron donors during post-anoxic denitrification. Denitrification was attributed to denitrifying glycogen-accumulating organisms [36].
\nIn this chapter, a nitrogen removal process based on nitrification-aerobic denitrification was proposed. An anoxic/oxic (AN/OX) SBR with DOC higher than 1.5 mg O2/L during the aerobic period was utilized. In this system, two requirements must be met: (a) growth of denitrifying bacteria able to store internally sufficient carbon reserves (PHA and/or glycogen) in the anoxic phase and (b) ability of the denitrifying bacteria to denitrify during the aerobic phase by using the intracellular carbon reserves. The AN/OX SBR would avoid both mixed liquor recirculation and exogenous carbon addition, and additionally potential emissions of N2O could be minimized. Thus, the proposed system offers important advantages with respect to both conventional nitrification-denitrification and advanced N-removal processes.
\nA lab-scale SBR (1.2 L working volume) was operated for 10 months. The SBR was inoculated with sludge from a lab-scale activated sludge plant in Center of Research and Development in Food Cryotechnology (CIDCA, UNLP-CONICET-CIC, Argentina). The SBR was operated with cycles comprising the following phases: reaction (with anoxic and aerobic stages), biomass settling, and supernatant draw. The reactor was completely mixed at a stirring rate of 100 rpm, except during the settle and draw periods. The reactor was automatically controlled by a data acquisition and control system (DACS) developed in the electronic laboratory of CIDCA; pH was measured by a pH probe (Phoenix, Houston, TX, USA). Air was introduced through porous diffusers at the bottom of the reactor. Dissolved oxygen concentration was measured by a DO probe (Ingold Mettler Toledo, Urdorf, Switzerland) and expressed as percentage of the oxygen saturation level (OSL) by the DACS. The SBR scheme is shown in Figure 1.
\nScheme of the lab-scale sequencing batch reactor (from Alzate Marin et al. [42]).
Oxygen is known to increase the oxidative state of biological systems, which could negatively affect anaerobic and anoxic processes. Microaerophilic conditions can be caused by stirring. The volumetric oxygen transfer coefficient (kLa, h−1) is an important parameter in the aerobic wastewater treatment, particularly when anaerobic or anoxic conditions are required. In the present study, kLa was determined in order to evaluate the oxygen amount supplied to the reactor by agitation during the anoxic phase. kLa was measured by the clean water non-steady-state method [43] at 20°C, agitation rate of 100 rpm, and different aeration rates (vvm = 12–137 L/(L h)). Firstly, the SBR (1.2 L) was continuously aerated until the saturation concentration of oxygen (DOC*, mg O2/L) in water was reached. Then, DO is completely removed by the addition of sodium sulfite. Finally, the aeration was turned on to the oxygen saturation level. DOC was measured at several points during the aeration period. kLa in the reactor was measured by integration of the following equation:
\n\n
where DOC* is the saturation concentration of oxygen in water (mg O2/L) at the working temperature and DOC is the dissolved oxygen concentration (mg O2/L) at time (t). The driving force of the oxygen transfer process is given for the difference between DOC* and DOC.
\nA linear relationship between kLa and the aeration rate has been proposed by the following expression:
\n\n
where AER is the aeration rate (L/(L h)), m is the slope (L/L), and n (h−1) corresponds to the kLa produced by stirring without aeration (AER = 0). The parameters m and n were determined through linear regression analysis (Sigma Plot 10.0) resulting in 0.10 L/L and 2.34 h−1, respectively.
\nFor clean water, at working conditions of the SBR, 25°C, stirring rate of 100 rpm, and without aeration, a kLa value of 2.63 h−1 was estimated by using the following expression [43]:
\n\n
Based on this estimation, it was assumed that only stirring will cause oxygen penetration through liquid surface during the anoxic stage of the SBR operation.
\nSynthetic wastewater (SWW) contained sodium acetate (carbon and energy source), ammonium sulfate (nitrogen source), and potassium phosphate (phosphorus source). A micronutrient solution (1 ml) was added to the SWW (1 L) [44]; influent COD/N/P ratio was 100:10:5. SWW was fed to the reactor in the first 2 min of the anoxic period. Mixed liquor was withdrawn at the end of the aerobic phase, leading to a cellular residence time (CRT) of 10 days. Treated wastewater was removed from the SBR after settling period. A volumetric exchange ratio of about 27% was set. The effects of different operating parameters, such as DOC, organic load, cycle duration, and AN/OX ratio on the ability of nitrification and denitrification were studied.
\nThe SBR was monitored by determination of the following physical–chemical parameters: oxidation-reduction potential (ORP, mV), orthophosphate (PO43−-P, mg/L), ammonia nitrogen (NH3-N, mg/L), nitrate nitrogen (NO3−-N, mg/L), nitrite nitrogen (NO2−-N, mg/L), soluble COD (CODS, mg/L), and total COD (CODT, mg/L). The oxidation-reduction potential is a measure of the oxidative state in an aqueous system. ORP reflects the concentration of DO, organic substrate, activity of organisms, and some toxic compounds in the system, the DOC being the most important factor [45]. The ORP of the SBR was measured off-line using an ORP probe (Phoenix, Houston, TX, USA). The other physical-chemical parameters were determined by spectrophotometric methods using commercial reagents (Hach Company, Loveland, CO). CODS corresponded to the organic substrate. Biomass concentration was determined as COD (CODB, mg/L) from the difference between CODT and CODS. CODB was correlated with volatile suspended solids (VSS, mg/L). Intracellular poly-P and PHA granules were detected by Neisser and Sudan Black staining, respectively [46]. Total carbohydrate (TC) content was determined following a modified version of the anthrone method proposed by Jenkins et al. [47].
\nInorganic nitrogen (Ni) corresponded to the sum of ammonia, nitrite, and nitrate concentrations. The inorganic nitrogen removal (NiR) was measured throughout the operational cycle as follows:
\n\n
where NiO is the Ni concentration at the start of the anoxic phase (mg/L) given by the NH3-N from the wastewater and NiT corresponds to the Ni concentration (mg/L) at time t of the SBR operational cycle. Residual nitrate and nitrite (from of the previous cycle) were not considered in the determination of NiO.
\nSimultaneous nitrification and denitrification (SND) took place from the beginning of the aerobic phase until the moment when the ammonium was exhausted. Later, subsequent nitrogen removal occurred by denitrification (DN).
\nNitrogen removed via SND was determined in the aerobic phase from the difference between the amounts of oxidized ammonia nitrogen (NH3-Noxidized) and oxidized nitrogen (NOx−-N: NO3−-N + NO2−-N). For SND determination, NH3-Noxidized was calculated from the difference between the total NH3-N consumption and NH3-N assimilated into heterotrophic biomass (NH3-Nassimilated). Nitrogen assimilated by nitrifying bacteria was assumed to be negligible [48]. The total consumption of NH3-N was determined by spectrophotometry. NH3-N assimilated into heterotrophic biomass was estimated for the aerobic period in the presence of ammonium. For this, theoretical mass balances of carbon and nitrogen were carried out using typical values for stoichiometric coefficients of the studied biological process. In SBR with feast-famine regime, PHB (polyhydroxybutyrate) is synthetized from acetate under anaerobic or anoxic phase, and then biomass is produced during the aerobic phase from stored PHB. In our system, PHB production was estimated using a yield YPHB/Acetate of 0.52 C-mol PHB/C-mol Ac for anoxic condition [49]. Available acetate for PHB synthesis was estimated from difference between initial COD and COD required for anoxic denitrification using a stoichiometric coefficient of 3.8 mg CODAc/mg NO3−-N. Biomass production from PHB was estimated assuming a heterotrophic biomass yield YX/PHB of 0.5 C-mol X/C-mol PHB. Finally, NH3-Nassimilated by heterotrophs was determined assuming a biomass molecular formula of CH1.8O0.5N0.2, which is equivalent to 24.6 g VSS/C-mol X [48].
\nSND was calculated from the following equation [48]:
\n\n
where NOx−-N is the sum of the oxidized nitrogen species (nitrite and nitrate) at the moment when ammonia was exhausted and NH3-Noxidized corresponds to the ammonia nitrogen oxidized during the aerobic period.
\nNitrogen removed via denitrification (DN) was calculated from the difference between oxidized nitrogen at the end of nitrification (NOx−-NFN) and oxidized nitrogen at the end of the aerobic phase (NOx−-NFA) as follows:
\n\n
Experiments were carried out at low and high dissolved oxygen concentrations (oxygen saturation levels, OSL, of 20 and 60%, respectively) using in each case low and high organic loads (440 and 880 mg COD/L day). The following notation was used to describe and report the results of the experiments: low oxygen concentration and low organic load (LOLC), low oxygen concentration and high organic load (LOHC), high oxygen concentration and low organic load (HOLC), and high oxygen concentration and high organic load (HOHC).
\nIn these experiments, the effect of organic load on the nitrification process was evaluated at low DOC. An oxygen saturation level (OSL) of 20%, equivalent to a DOC of 1.6 mg O2/L, was set for the aerobic phase (Table 1). Experiments were carried out at two different organic volumetric loads. In experiment low oxygen concentration and low organic load (LOLC), 440 mg COD/(L day) was used, and in experiment low oxygen concentration and high organic load (LOHC), the value was 880 mg COD/(L day).
\nParameters | \nExperiment LOLC | \nExperiment LOHC | \n
---|---|---|
Anoxic phase (min) | \n150 | \n150 | \n
Aerobic phase (min) | \n150 | \n150 | \n
Settling phase (min) | \n50 | \n50 | \n
Draw phase (min) | \n10 | \n10 | \n
Total cycle length (h) | \n6 | \n6 | \n
Anoxic/aerobic ratio | \n1.0:1.0 | \n1.0:1.0 | \n
Temperature (°C) | \n25 ± 0.5 | \n25 ± 0.5 | \n
pH (anoxic and aerobic phases) | \n7.0 ± 0.1 | \n7.0 ± 0.1 | \n
Oxygen saturation level (%) | \n20 | \n20 | \n
Organic volumetric load (mg COD/(L day)) | \n440 | \n880 | \n
Nitrogen volumetric load (mg NH3-N/(L day)) | \n44 | \n88 | \n
Phosphorus volumetric load (mg P/(L day)) | \n22 | \n44 | \n
Operating conditions for experiments at low oxygen concentration.
Adapted from Alzate Marin et al. [42].
In the experiments LOLC, the SBR showed at steady state a good performance with a biomass concentration of 1220 ± 215 mg CODB/L. For organic carbon, a removal higher than 99% was reached in anoxic phase. Ammoniacal nitrogen removal was about 99%, mainly in the aerobic phase (Figure 2). In this phase, about 70% of the ammonium was nitrified up to nitrate as was determined by mass balance. According to these results, a redox potential of about +295 mV was measured during the aerobic phase, which involves a suitable oxidizing environment for autotrophic nitrification. It must be considered that ORP values between +100 and +350 mV are necessary for the nitrification process to take place [50]. A relatively low concentration of oxygen (<2.0 mg O2/L) was enough to achieve a good nitrifying activity without accumulation of nitrite. Volumetric and specific nitrification rates are shown in Table 2.
\nChanges of phosphorus and nitrogen concentrations during operational cycles of the steady-state SBR. Experiment with low oxygen concentration and low organic load (LOLC). (□) Orthophosphate (PO43−-P, mg P/L), (●) ammonia (NH3-N, mg N/L), (■) nitrate (NO3−-N, mg N/L), (▲) nitrite (NO2−-N, mg N/L), and (○) % inorganic nitrogen removal (% NiR).
Parameters | \nExperiment LOLC | \nExperiment HOLC | \nExperiment HOHC | \n|
---|---|---|---|---|
VNR (mg NH3-N/(L h)) | \n3.96 ± 0.10 | \n3.71 ± 0.45 | \n4.09 ± 0.08 | \n|
SNR (mg NH3-N/(g VSS h)) | \n4.22 ± 0.10 | \n4.14 ± 0.48 | \n1.33 ± 0.00 | \n|
VDNR (mg NO3−-N/(L h)) | \nND | \n2.53 ± 0.96 | \n2.57 ± 0.36 | \n|
SDNR (mg NO3−-N/(g VSS h)) | \nND | \n2.94 ± 1.10 | \n0.83 ± 0.10 | \n|
% NAS | \n— | \n10.0 ± 1.0 | \n28.7 ± 0.5 | \n|
% SND | \n11 ± 10 | \n0 ± 0 | \n9 ± 2 | \n|
% DN | \n5 ± 5 | \n55 ± 3 | \n57 ± 2 | \n|
% AR | \n99 ± 1 | \n99 ± 1 | \n99 ± 1 | \n|
% NiR | \n45 ± 2 | \n67 ± 2 | \n78 ± 1 | \n
Biological parameters of the SBR for the different experiments.
Adapted from Alzate Marin et al. [42].
ND, not determined.
PHA accumulation followed by degradation of the polymer took place in the anoxic and aerobic phases, respectively, as was detected by Sudan Black staining. Cocci-shaped cells arranged in tetrads (tetrad-forming organisms, TFOs) displayed that metabolic ability (Figure 3a and b). Some subgroups of Alphaproteobacteria and Gammaproteobacteria exhibit TFO morphology with GAO phenotype. These microorganisms are commonly associated with enhanced biological phosphorus removal (EBPR) deterioration [51]. In the present study, TFOs corresponded likely to some group of GAO commonly found in systems without EBPR.
\nMicrographs of activated sludge stained with Sudan black (a and b) and Neisser (c). (a) Tetrad-forming organisms (TFOs) showing positive PHA staining (final anoxic phase), (b) TFOs with negative PHA staining (final aerobic phase), and (c) negative Neisser staining.
PHA could be used as intracellular carbon source for denitrification. However, poor denitrification took place since at the end of the operational cycle, the final effluent exhibited a nitrate concentration of 4.75 ± 0.25 mg NO3−-N/L, equivalent to about 70–80% of the nitrified ammoniacal nitrogen. According to these results, nitrogen removal through the SND and DN processes represented 11 ± 10% and 5 ± 5%, respectively. The final effluent exhibited an inorganic nitrogen concentration of 4.84 ± 0.40 mg N/L, which resulted in a mean discharge of 5.80 mg N/day. These results involved an inorganic nitrogen removal of 45 ± 2% (Table 2). This poor nitrogen removal was associated with the low denitrification ability of the system. It must be considered that the residual nitrate, after the discharge of the final effluent, was completely removed by denitrification in the first 90 min of the following cycle (Figure 2).
\nPoly-P staining by Neisser method resulted negative (Figure 3c), and soluble phosphorus (orthophosphate) concentration did not show important changes (Figure 2). These results involve that PAO activity and hence the EBPR process did not take place. According to these findings, positive ORP values (+286 ± 8 mV) were recorded throughout the anoxic phase, which are not suitable for anaerobic PHA metabolism. It is well known that negative ORP values between −50 and − 200 mV are usually required for anaerobic polyphosphate breakdown [52]. In the anoxic phase, zero DOC was registered, and a kLa value of 2.63 h−1 was estimated by using Eq. (3). For these conditions, an oxygen transfer rate of 21.3 mg O2/(L h) was estimated at 25°C by using Eq. (1). The oxygen transfer by stirring increased the oxidative state (positive ORP) during the anoxic phase. It can be assumed that this phenomenon would lead to unfavorable ecological conditions for anaerobic metabolism of PAOs.
\nIn the experiments with low oxygen concentration and high organic load (LOHC), the organic volumetric load was increased from 440 to 880 mg COD/(L day) under identical operational conditions to those of the experiment LOLC (Figure 4). The nitrogen and phosphorus volumetric load were 88 mg NH3-N/(L day) and 44 mg P/(L day), respectively, in order to maintain the same COD/N/P ratio (100:10:5) (Table 1). The steady-state SBR reached a biomass concentration of 1850 ± 120 mg CODB/L. Ammoniacal nitrogen was removed only 15% throughout the operational cycle. Poor nitrification was observed as only 7% of ammonia from anoxic phase was nitrified, even though adequate oxidizing conditions were registered during the aerobic phase (ORP > +100 mV). Low nitrate concentrations were generated, and hence the denitrification process did not take place; nitrite was not accumulated. The final effluent showed a high inorganic nitrogen concentration (43.5 ± 0.20 mg N/L), resulting in a mean discharge of 57.42 mg N/day. Thus, a poor Ni removal of only 8% was achieved (Figure 4). It is important to highlight that even though the influent nitrogen load was only two times higher to that of the experiment LOLC, the daily nitrogen discharge was about ten times greater than that corresponding to the previous assay. EBPR activity was not observed; as was previously discussed for experiment LOLC, oxidizing conditions during the anoxic phase (positive ORP) were unfavorable for PAO growth.
\nChanges of phosphorus and nitrogen concentrations during operational cycles of the steady-state SBR. Experiment with low oxygen concentration and high organic load (LOHC). (□) Orthophosphate (PO43−-P, mg P/L), (●) ammonia (NH3-N, mg N/L), (■) nitrate (NO3−-N, mg N/L), (▲) nitrite (NO2−-N, mg N/L), and (○) % inorganic nitrogen removal (% NiR) (adapted from Alzate Marin et al. [42]).
In the tested system, a COD/N/P ratio of 100:10:5 was utilized in experiments LOLC and LOHC in order to ensure excess conditions of nitrogen and phosphorus. Nevertheless, a relatively low DO concentration was used, which can lead to competition between heterotrophic and nitrifying bacteria. In the experiment LOHC, the higher organic load led to a greater intracellular PHA production, in anoxic phase, in comparison to LOLC. Thus, a higher growth of heterotrophic bacteria from PHA took place in the aerobic phase, which would involve a greater oxygen uptake rate by heterotrophs. This observation was reported by Third et al. [48] working with an aerobic SBR fed with acetate. Nitrifying bacteria, with very low growth rate, were likely outcompeted by heterotroph overgrowth under low oxygen availability. This phenomenon could explain the poor nitrifying activity in experiment LOHC. In conclusion, the organic load stimulated strongly the competition by oxygen between heterotrophic and nitrifying bacteria at low DO concentrations.
\nIn these assays, at high dissolved oxygen concentration, a value of OSL (60%), equivalent to a DOC of 4.8 mg O2/L, was set for the aerobic phase (Table 3). As in the previous experiments, two organic volumetric loads were evaluated: 440 and 880 (mg COD/(L day)) (Table 3). The effects of cycle duration, anoxic/aerobic ratio, and organic load on the denitrification process were evaluated. The purpose of these experiments was to determine optimal experimental conditions to attain a good denitrifying activity and hence an acceptable process of nitrogen removal. Therefore, in addition to achieving efficient nitrification, sufficient organic carbon must be supplied for the denitrification process to take place. High oxygen availability permitted to minimize competition by oxygen between heterotrophic and nitrifying bacteria. In these experiments, the extension of the operating cycle was increased from 6 h to 12 h, and the anoxic/aerobic ratio was decreased from 1.0:1.0 to 0.5:1.0. These conditions were set in order to provide a longer aerobic period to favor the denitrification process.
\nParameters | \nExperiment HOLC | \nExperiment HOHC | \n
---|---|---|
Anoxic phase (min) | \n220 | \n220 | \n
Aerobic phase (min) | \n440 | \n440 | \n
Settling phase (min) | \n51 | \n51 | \n
Draw phase (min) | \n9 | \n9 | \n
Total cycle length (h) | \n12 | \n12 | \n
Anoxic/aerobic ratio | \n0.5:1.0 | \n0.5:1.0 | \n
Temperature (°C) | \n25 ± 0.5 | \n25 ± 0.5 | \n
pH (anoxic and aerobic phases) | \n7.5 ± 0.1 | \n7.5 ± 0.1 | \n
Oxygen saturation level (%) | \n60 | \n60 | \n
Organic volumetric load (mg COD/(L day)) | \n440 | \n880 | \n
Nitrogen volumetric load (mg NH3-N/(L day)) | \n44 | \n44 | \n
Phosphorous volumetric load (mg P/(L day)) | \n22 | \n44 | \n
Operational conditions for experiments at high dissolved oxygen concentration with different organic loads.
In the experiment HOLC, the volumetric loads of organic carbon, nitrogen, and phosphorus were the same as those used in the experiment LOLC. All the operating conditions are shown in Table 3.
\nThe COD/N/P ratio (100:10:5) and oxygen saturation level (60%) used in this assay would minimize competition between heterotrophs and nitrifiers. Oxidizing conditions were registered in the anoxic phase (ORP = +187 ± 13), being unfavorable for the EBPR process to occur. Ammonium was almost completely removed (99%). About 80% was eliminated in the aerobic phase. Nitrification produced nitrate concentrations of about 10–12 mg NO3−-N/L in the first 2 h of the aerobic period. ORP values higher than +190 mV favored the nitrifying activity. Then, the nitrate concentration gradually decreased, which was attributed to the activity of denitrifying bacteria (Figure 5). The mean discharge of nitrate was 3.2 mg N/day. This concentration was about 32% lower than the one obtained in experiment LOLC for a same nitrogen volumetric load.
\nChanges of the phosphorus and nitrogen concentrations during an operational cycle of the steady-state SBR (experiment HOLC). (□) orthophosphate (PO43−-P, mg P/L), (●) ammonia (NH3-N, mg N/L), (■) nitrate (NO3−-N, mg N/L), (▲) nitrite (NO2−-N, mg N/L), and (○) % inorganic nitrogen removal (% NiR) (adapted from Alzate Marin et al. [42]).
Residual nitrate was denitrified at the beginning of the following cycle (anoxic phase). Nitrite was not accumulated in the SBR, as was also observed in the previous experiments. The mean discharge of inorganic nitrogen was 3.2 mg N/day (corresponding totally to nitrate), being about 45% lower than the results obtained in experiment LOLC. According to the nitrogen mass balance, about 85% of the incoming ammonia in aerobic period was nitrified; nitrogen assimilation by heterotrophic bacteria corresponded to 15%. Nitrogen assimilated by heterotrophs represented 10% of the total ammonia load applied to the SBR. Volumetric and specific nitrification rates were not significantly different to those determined in the experiment LOLC. SND did not take place; denitrification began once the nitrification process was completed; 55 ± 3% of the generated nitrate was removed (Table 2).
\nNitrification followed by denitrification was the most important process for nitrogen removal. The elimination of Ni was about 50% higher than that achieved in experiment LOLC (Table 2). The greater efficiency for nitrogen removal was attributed to a higher denitrifying activity in the experiment HOLC. In addition, the improved denitrification process of this assay can be attributed to a greater extension of the aerobic phase. However, the denitrification was probably limited by a low availability of intracellular organic carbon during the aerobic phase. In the experiment HOHC, the organic volumetric load was increased from 440 to 880 mg COD/(L day), while the ammoniacal nitrogen load was the same as that corresponding to the HOLC (44 mg NH3-N/(L day)). This led to an increase in the COD/N ratio from 100:10 to 100:5. The volumetric load of phosphorus was 29 mg P/(L day). The other operating conditions were identical to those used in the experiment HOLC (Table 3).
\nOrganic substrate was completely removed in anoxic phase. Ammonium was almost depleted during the process; about 80–85% was eliminated in the aerobic phase (Figure 6). Nitrogen assimilated by heterotrophs represented almost 30% of the incoming ammonia to the SBR (Table 2). Oxidizing conditions were similar to those corresponding to previous assays, with positive ORP values. The specific nitrification rate was significantly lower than that corresponding to the assay HOLC (Table 2). This result was attributed to the enrichment of the biomass in heterotrophic bacteria because of the higher organic load applied in experiment HOHC. Biomass concentration was twice the value reached in the HOLC assay.
\nChanges of the phosphorus and nitrogen concentrations during an operational cycle of the steady-state SBR (experiment HOHC). (□) orthophosphate (PO43−-P, mg P/L), (●) ammonia (NH3-N, mg N/L), (■) nitrate (NO3−-N, mg N/L), (▲) nitrite (NO2−-N, mg N/L), and (○) % inorganic nitrogen removal (% NiR).
The SND process showed little improvement. The denitrification was similar to that obtained in experiment HOLC, and the specific denitrification rate was significantly lower than that observed in the previous experiment. The mean discharge of inorganic nitrogen was 2.2 mg N/day. The inorganic nitrogen removal was 78 ± 1%, being significantly higher than that observed in the previous assay (Table 2). In the experiments HOHC, the higher organic load generated a greater PHA production, as was estimated by material balance, in comparison with HOLC assay. Thus, a higher content of endogenous carbon and energy reserve for the denitrification process was available. However, the higher efficiency of inorganic nitrogen removal attained in experiment HOHC was attributed mainly to a greater assimilation of nitrogen by heterotrophic bacteria, which was about three times larger than that observed at low organic load (Table 2).
\nAs was mentioned, the highest inorganic nitrogen removal was attained in the experiments HOHC; however, the specific denitrification rate was significantly lower than that corresponding to the assay HOLC. It must be considered that a high organic load led to an excessive growth of heterotrophs, which probably involved an intense competition by different growth factors among heterotrophic bacteria. Under these conditions, it can be inferred that denitrifying bacteria would preferably use oxygen as the final acceptor of electrons instead of nitrate, which represents a competitive advantage in terms of energy efficiency. This would explain the low specific denitrification rate obtained in the HOHC experiment.
\nIn all the experiments, the denitrification process at aerobic phase took place without external organic carbon. Denitrification occurred from intracellular carbon and energy reserves; the specific denitrification rates obtained were higher than those corresponding to endogenous decay (0.2–0.6 mg NO3−-N/(g VSS h) [53]). Under steady-state conditions, the total carbohydrate (TC) concentration of the biomass was determined by the anthrone method throughout the operational cycle of the reactor. TC increased slightly during the anoxic phase and initial period of the aerobic phase, and then it decreased slightly at the end of the aerobic phase. These TC changes could not be attributed to cyclic changes of intracellular glycogen, which are typical of reactors with anaerobic/aerobic regime. In these systems, the microbial community is commonly enriched with GAOs and/or PAOs, which are responsible for the degradation and synthesis of glycogen during the anaerobic and aerobic stages, respectively. In the case of GAOs, glycogen constitutes the primary source of energy for both uptake of exogenous organic carbon and PHA storage during the initial anaerobic stage [51, 54]. Then, glycogen is replenished aerobically from PHA. In the anoxic/oxic SBR of the present study, GAOs as tetrad-arranged cocci and positive PHA staining were microscopically detected. However, typical GAO metabolism regarding glycogen cycling was not observed. TC increase was mainly attributed to microbial growth instead of glycogen accumulation, even though a light glycogen increase during the anoxic phase of the operational cycle cannot be discarded. Slight decay of TC at final aerobic phase could be attributed to the glycogen component. Anyway, GAO was not a representative microbial phenotype in the anoxic-oxic SBR. This result could be explained considering that oxidative conditions were prevalent in the anoxic period generated by the high oxygen transfer during the agitation.
\nBased on this analysis, it can be argued that the denitrification achieved in the SBR took place from the intracellular reserves of PHA during the aerobic phase. Denitrification process could also be driven from intracellular glycogen but to a lesser extent. PAOs and GAOs are able to denitrify using intracellular carbon source. In the present study, PAO activity was not observed. The absence of EBPR activity was associated to high oxidative conditions not favorable to PAOs during anoxic phase more than to the GAO-PAO competition. GAOs with tetrad-type morphology were probably responsible of the denitrification process; however, the denitrifying activity of other microbial groups should not be discarded.
\nThe specific denitrification rates obtained in the present study were similar (experiment HOHC) or higher (experiment HOLC) than those reported in literature for anoxic denitrification carried out by PAOs; intracellular glycogen was the carbon source used for anoxic denitrification [9, 55]. Vocks et al. [56] reported a similar SDNR to that obtained in the experiment HOLC, using a membrane bioreactor (ANA/OX/AN); denitrifying GAOs were considered as responsible for the denitrification using stored glycogen as internal carbon source [56]. Li et al. [36] reported SDNRs of 0.5 and 1.24 mg NO3−-N/(g VSS h) using glycogen and PHA, respectively, at anoxic conditions. These SDNRs were similar to that obtained in the experiment HOHC and 2–6 times lower than that corresponding to experiment HOLC.
\nAnoxic denitrification rates are commonly higher than those obtained under aerobic conditions [57]. In contrast, the specific denitrification rates (SDNR) obtained in the present study, at bulk DO concentration higher than 4.0 mg O2/L, were similar or higher to those reported for anoxic conditions.
\nA lab-scale sequencing batch reactor (SBR) operated with two phases, anoxic and aerobic, achieved complete COD removal. At low DO concentration, the nitrification process depended on the organic load. Low DO concentration and relatively high organic load (LOHC) led to significant growth of heterotrophic bacteria and poor nitrification. At low DO concentration and low organic load (LOLC), a good nitrifying activity led to an inorganic nitrogen removal of about 45%. It is known that in activated sludge systems, competition by growth factors (macro- and micronutrients and DO) between heterotrophic and nitrifying bacteria can occur. In both experiments, LOLC and LOHC, a COD/N/P ratio of 100:10:5 assured excess conditions of nitrogen and phosphorus. Nevertheless, competition by oxygen between both groups of microorganisms took place at high organic load.
\nWith reference to the experiments carried out at high oxygen concentration (HOLC and HOHC), a high DOC minimized competition by oxygen between heterotrophs and nitrifiers. Higher inorganic nitrogen removal (67–78%) was achieved at the following conditions: pH = 7.5, higher dissolved oxygen concentration, and prolonged aerobic phase. Nitrification followed by denitrification during the aerobic phase was the most important process for nitrogen removal. The elimination of Ni was 50–70% higher than that achieved in experiment LOLC. The greater efficiency for nitrogen removal was attributed to a higher denitrifying activity, due to a greater extension of the aerobic phase. From the results obtained using high dissolved oxygen concentrations (HOLC and HOHC), it can be concluded that there was no shortage of intracellular carbon and energy reserve. Thus, organic carbon was not the limiting substrate for the denitrification process under aerobic conditions. Denitrification took place mainly from the intracellular reserves of PHA during the aerobic phase. Aerobic denitrification could be attributed to glycogen-accumulating organism (GAOs) with tetrad-type morphology; activity of polyphosphate-accumulating organisms (PAOs) was not observed. Other microbial groups have probably contributed to the denitrifying activity. The nitrification followed by denitrification, under aerobic conditions, analyzed in the present chapter, is an alternative process to the conventional configurations. The specific denitrification rates, at bulk DO concentration higher than 4.0 mg O2/L, were similar or higher to those reported for anoxic conditions. It is widely accepted that in an aerobic environment, denitrifying bacteria can survive in the anaerobic/anoxic center of the microbial flocs. If not, denitrifiers could tolerate oxygen so that the denitrification process is not affected. Aerobic denitrifiers can use alternatively nitrate or oxygen as final electron acceptor. In the present study, denitrifying activity was attributed to the aerobic denitrification process.
\nThe proposed AN/OX system constitutes a simple and potentially eco-friendly process for biological nitrogen removal, providing N2 as the end product and decreasing the formation of N2O, a greenhouse gas that has an important influence on atmosphere warming.
\nThe authors gratefully acknowledge the financial support given by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, and Agencia Nacional de Promoción Científica y Tecnológica, Argentina.
\n\n aeration rate (L/(L h) anoxic ammonia removal anaerobic ammonia-oxidizing bacteria chemical oxygen demand biomass concentration as COD (mg CODB/L) soluble COD (mg/L) total COD (mg/L) cellular residence time (days) data acquisition and control system denitrification dissolved oxygen concentration (mg O2/L) saturation concentration of oxygen (mg O2/L) glycogen-accumulating organisms volumetric oxygen transfer coefficient (h−1) low oxygen concentration and high organic load low oxygen concentration and low organic load high oxygen concentration and high organic load high oxygen concentration and low organic load molecular nitrogen nitrous oxide nitrogen assimilated by heterotrophic bacteria ammonia ammonia nitrogen (mg/L) ammonia nitrogen assimilated by heterotrophs (mg/L) oxidized ammonia nitrogen (mg/L) inorganic nitrogen (mg/L) Ni concentration at the start of the anoxic phase (mg/L) Ni concentration at time t (mg/L) inorganic nitrogen removal nitric oxide nitrite nitrite nitrogen (mg/L) nitrate nitrate nitrogen (mg/L) oxidized nitrogen (mg/L) oxidized nitrogen at the end of the aerobic phase (mg/L) oxidized nitrogen at the end of nitrification (mg/L) nitrite-oxidizing bacteria oxygen saturation level oxic polyhydroxyalkanoates polyphosphate-accumulating organisms orthophosphate (mg/L) sequencing batch reactor specific denitrification rate (mg NO3−-N/(g VSS h) simultaneous nitrification and denitrification specific nitrification rate (mg NH3-N/(g VSS h) synthetic wastewater tetrad-forming organisms total carbohydrates volumetric denitrification rate (mg NO3−-N/(L h)) volumetric nitrification rate (mg NH3-N/(L h)) volatile suspended solids (mg VSS/L) yield coefficient for PHB from acetate (C-mol PHB/C-mol Ac) yield coefficient for heterotrophic biomass from PHB (C-mol X/C-mol PHB)
The Edited Volume, also known as the IntechOpen Book, is an IntechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters.
",metaTitle:"Edited Volumes",metaDescription:"The Edited Volume, also known as the InTechOpen Book, is an InTechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters. ",metaKeywords:null,canonicalURL:"/pages/edited-volumes",contentRaw:'[{"type":"htmlEditorComponent","content":"WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\\n\\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nQUALITY CONTENT
\\n\\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\\n\\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\\n\\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\\n\\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\\n\\nACCESS
\\n\\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\\n\\nYOUR WORK, YOUR COPYRIGHT
\\n\\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\\n\\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\\n\\nOur Open Access book collection includes:
\\n\\n3,332 OPEN ACCESS BOOKS
\\n\\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\\n\\n113+ MILLION DOWNLOADS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview of all publishing process steps and descriptions here.
\\n\\nCURRENT PROJECTS
\\n\\nTo view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\n\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\n\nQUALITY CONTENT
\n\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\n\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\n\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\n\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\n\nACCESS
\n\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\n\nYOUR WORK, YOUR COPYRIGHT
\n\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\n\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\n\nOur Open Access book collection includes:
\n\n3,332 OPEN ACCESS BOOKS
\n\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\n\n113+ MILLION DOWNLOADS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview of all publishing process steps and descriptions here.
\n\nCURRENT PROJECTS
\n\nTo view current Open Access book projects that are Open for Submissions visit us here.
\n\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5160},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15608}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"15"},books:[{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!0,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:null,bookSignature:"Dr. Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:null,editors:[{id:"92921",title:"Dr.",name:"Bruno",surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:12},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:17},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:6},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5124},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"683",title:"Aeronautics",slug:"aeronautics",parent:{title:"Aerospace Engineering",slug:"aerospace-engineering"},numberOfBooks:18,numberOfAuthorsAndEditors:461,numberOfWosCitations:408,numberOfCrossrefCitations:382,numberOfDimensionsCitations:706,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"aeronautics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10445",title:"Preparation of Space Experiments",subtitle:null,isOpenForSubmission:!1,hash:"5bfa68c29ae5337ce970b83f7d8b9f03",slug:"preparation-of-space-experiments",bookSignature:"Vladimir Pletser",coverURL:"https://cdn.intechopen.com/books/images_new/10445.jpg",editedByType:"Edited by",editors:[{id:"320503",title:"Dr.",name:"Vladimir",middleName:null,surname:"Pletser",slug:"vladimir-pletser",fullName:"Vladimir Pletser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6399",title:"Aircraft Technology",subtitle:null,isOpenForSubmission:!1,hash:"37811f78d88a70cfe7a89ffb0889102a",slug:"aircraft-technology",bookSignature:"Melih Cemal Kuşhan",coverURL:"https://cdn.intechopen.com/books/images_new/6399.jpg",editedByType:"Edited by",editors:[{id:"185873",title:"Dr.",name:"Melih",middleName:"Cemal",surname:"Kushan",slug:"melih-kushan",fullName:"Melih Kushan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6350",title:"Space Flight",subtitle:null,isOpenForSubmission:!1,hash:"023c9b0d77a58c0a263c075a7deed7e5",slug:"space-flight",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/6350.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6442",title:"Into Space",subtitle:"A Journey of How Humans Adapt and Live in Microgravity",isOpenForSubmission:!1,hash:"e7414f85fdf56e54bfd694d91fa492ac",slug:"into-space-a-journey-of-how-humans-adapt-and-live-in-microgravity",bookSignature:"Thais Russomano and Lucas Rehnberg",coverURL:"https://cdn.intechopen.com/books/images_new/6442.jpg",editedByType:"Edited by",editors:[{id:"220541",title:"Dr.",name:"Thais",middleName:null,surname:"Russomano",slug:"thais-russomano",fullName:"Thais Russomano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6150",title:"Flight Physics",subtitle:"Models, Techniques and Technologies",isOpenForSubmission:!1,hash:"fa5828a4ee518adf719c68c1e533f3b7",slug:"flight-physics-models-techniques-and-technologies",bookSignature:"Konstantin Volkov",coverURL:"https://cdn.intechopen.com/books/images_new/6150.jpg",editedByType:"Edited by",editors:[{id:"118184",title:"Dr.",name:"Konstantin",middleName:null,surname:"Volkov",slug:"konstantin-volkov",fullName:"Konstantin Volkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5136",title:"Recent Progress in Some Aircraft Technologies",subtitle:null,isOpenForSubmission:!1,hash:"6855bfb94011b56313a07020fa05ead6",slug:"recent-progress-in-some-aircraft-technologies",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/5136.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4476",title:"Satellite Positioning",subtitle:"Methods, Models and Applications",isOpenForSubmission:!1,hash:"0f1cb6a7a18e2391d2308b6ac1d423b0",slug:"satellite-positioning-methods-models-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/4476.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",middleName:null,surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3407",title:"Global Navigation Satellite Systems",subtitle:"From Stellar to Satellite Navigation",isOpenForSubmission:!1,hash:"e979761c56c78237e4cba8d980dd90a4",slug:"global-navigation-satellite-systems-from-stellar-to-satellite-navigation",bookSignature:"Ahmed H Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/3407.jpg",editedByType:"Edited by",editors:[{id:"85554",title:"Dr.",name:"Ahmed",middleName:null,surname:"Mohamed",slug:"ahmed-mohamed",fullName:"Ahmed Mohamed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2181",title:"Advances in Air Navigation Services",subtitle:null,isOpenForSubmission:!1,hash:"a386a9ccddb89796c38f600f65b19ef0",slug:"advances-in-air-navigation-services",bookSignature:"Tone Magister",coverURL:"https://cdn.intechopen.com/books/images_new/2181.jpg",editedByType:"Edited by",editors:[{id:"149252",title:"Prof.",name:"Tone",middleName:null,surname:"Magister",slug:"tone-magister",fullName:"Tone Magister"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1994",title:"Advances in Spacecraft Systems and Orbit Determination",subtitle:null,isOpenForSubmission:!1,hash:"005b6f7fa0ad6e582e7b37bee4ce88be",slug:"advances-in-spacecraft-systems-and-orbit-determination",bookSignature:"Rushi Ghadawala",coverURL:"https://cdn.intechopen.com/books/images_new/1994.jpg",editedByType:"Edited by",editors:[{id:"103175",title:"Dr.",name:"Rushi",middleName:null,surname:"Ghadawala",slug:"rushi-ghadawala",fullName:"Rushi Ghadawala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1992",title:"Recent Advances in Aircraft Technology",subtitle:null,isOpenForSubmission:!1,hash:"67fa903d68a094013f66d01b38882107",slug:"recent-advances-in-aircraft-technology",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/1992.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"623",title:"Global Navigation Satellite Systems",subtitle:"Signal, Theory and Applications",isOpenForSubmission:!1,hash:"cf4b30bc55fec41acdfe8c1203e1de62",slug:"global-navigation-satellite-systems-signal-theory-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/623.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",middleName:null,surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:18,mostCitedChapters:[{id:"26018",doi:"10.5772/38918",title:"Fault Tolerant Flight Control Techniques with Application to a Quadrotor UAV Testbed",slug:"fault-tolerant-flight-control-techniques-with-application-to-a-quadrotor-uav-testbed",totalDownloads:4395,totalCrossrefCites:29,totalDimensionsCites:43,book:{slug:"automatic-flight-control-systems-latest-developments",title:"Automatic Flight Control Systems",fullTitle:"Automatic Flight Control Systems - Latest Developments"},signatures:"Youmin Zhang and Abbas Chamseddine",authors:[{id:"20035",title:"Dr.",name:"Youmin",middleName:null,surname:"Zhang",slug:"youmin-zhang",fullName:"Youmin Zhang"},{id:"148350",title:"Dr.",name:"Abbas",middleName:null,surname:"Chamseddine",slug:"abbas-chamseddine",fullName:"Abbas Chamseddine"}]},{id:"19526",doi:"10.5772/22396",title:"Nonequilibrium Plasma Aerodynamics",slug:"nonequilibrium-plasma-aerodynamics",totalDownloads:3681,totalCrossrefCites:25,totalDimensionsCites:39,book:{slug:"aeronautics-and-astronautics",title:"Aeronautics and Astronautics",fullTitle:"Aeronautics and Astronautics"},signatures:"Andrey Starikovskiy and Nickolay Aleksandrov",authors:[{id:"29275",title:"Dr.",name:"Andrey",middleName:null,surname:"Starikovskiy",slug:"andrey-starikovskiy",fullName:"Andrey Starikovskiy"},{id:"47602",title:"Prof.",name:"Nikolay",middleName:null,surname:"Aleksandrov",slug:"nikolay-aleksandrov",fullName:"Nikolay Aleksandrov"}]},{id:"15172",doi:"10.5772/15177",title:"Fault Tolerant Flight Control, a Physical Model Approach",slug:"fault-tolerant-flight-control-a-physical-model-approach",totalDownloads:2824,totalCrossrefCites:16,totalDimensionsCites:35,book:{slug:"advances-in-flight-control-systems",title:"Advances in Flight Control Systems",fullTitle:"Advances in Flight Control Systems"},signatures:"Thomas Lombaerts, Ping Chu, Jan Albert (Bob) Mulder and Olaf Stroosma",authors:[{id:"16061",title:"Dr.",name:"Qi-Ping",middleName:null,surname:"Chu",slug:"qi-ping-chu",fullName:"Qi-Ping Chu"},{id:"19892",title:"Dr.",name:"Thomas",middleName:null,surname:"Lombaerts",slug:"thomas-lombaerts",fullName:"Thomas Lombaerts"},{id:"19893",title:"Prof.",name:"Jan Albert (Bob)",middleName:null,surname:"Mulder",slug:"jan-albert-(bob)-mulder",fullName:"Jan Albert (Bob) Mulder"},{id:"19894",title:"Prof.",name:"Olaf",middleName:null,surname:"Stroosma",slug:"olaf-stroosma",fullName:"Olaf Stroosma"}]}],mostDownloadedChaptersLast30Days:[{id:"57483",title:"Helicopter Flight Physics",slug:"helicopter-flight-physics",totalDownloads:5774,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"flight-physics-models-techniques-and-technologies",title:"Flight Physics",fullTitle:"Flight Physics - Models, Techniques and Technologies"},signatures:"Constantin Rotaru and Michael Todorov",authors:[{id:"206857",title:"Prof.",name:"Constantin",middleName:null,surname:"Rotaru",slug:"constantin-rotaru",fullName:"Constantin Rotaru"},{id:"209010",title:"Prof.",name:"Michael",middleName:null,surname:"Todorov",slug:"michael-todorov",fullName:"Michael Todorov"}]},{id:"57517",title:"Flight Dynamic Modelling and Simulation of Large Flexible Aircraft",slug:"flight-dynamic-modelling-and-simulation-of-large-flexible-aircraft",totalDownloads:1780,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"flight-physics-models-techniques-and-technologies",title:"Flight Physics",fullTitle:"Flight Physics - Models, Techniques and Technologies"},signatures:"Gaétan Dussart, Vilius Portapas, Alessandro Pontillo and Mudassir\nLone",authors:[{id:"206753",title:"Dr.",name:"Mudassir",middleName:null,surname:"Lone",slug:"mudassir-lone",fullName:"Mudassir Lone"},{id:"206955",title:"Mr.",name:"Vilius",middleName:null,surname:"Portapas",slug:"vilius-portapas",fullName:"Vilius Portapas"},{id:"220349",title:"Mr.",name:"Gaetan",middleName:null,surname:"Dussart",slug:"gaetan-dussart",fullName:"Gaetan Dussart"},{id:"220350",title:"Mr.",name:"Alessandro",middleName:null,surname:"Pontillo",slug:"alessandro-pontillo",fullName:"Alessandro Pontillo"}]},{id:"16873",title:"New Antenna Array Architectures for Satellite Communications",slug:"new-antenna-array-architectures-for-satellite-communications",totalDownloads:11924,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"advances-in-satellite-communications",title:"Advances in Satellite Communications",fullTitle:"Advances in Satellite Communications"},signatures:"Miguel Alejandro Salas Natera, Andrés García Aguilar, Jonathan Mora Cueva, José Manuel Fernández, Pablo Padilla De La Torre, Javier García-Gasco Trujillo, Ramón Martínez Rodríguez-Osorio, Manuel Sierra-Perez, Leandro De Haro Ariet and Manuel Sierra Castañer",authors:[{id:"47892",title:"Dr.",name:"Miguel Alejandro",middleName:null,surname:"Salas Natera",slug:"miguel-alejandro-salas-natera",fullName:"Miguel Alejandro Salas Natera"},{id:"55109",title:"Mr.",name:"Andrés",middleName:null,surname:"García Aguilar",slug:"andres-garcia-aguilar",fullName:"Andrés García Aguilar"},{id:"55110",title:"Mr.",name:"Jonathan",middleName:null,surname:"Mora Cueva",slug:"jonathan-mora-cueva",fullName:"Jonathan Mora Cueva"},{id:"55111",title:"Dr.",name:"Ramón",middleName:null,surname:"Martínez Rodríguez-Osorio",slug:"ramon-martinez-rodriguez-osorio",fullName:"Ramón Martínez Rodríguez-Osorio"},{id:"55112",title:"Prof.",name:"Manuel",middleName:null,surname:"Sierra-Perez",slug:"manuel-sierra-perez",fullName:"Manuel Sierra-Perez"},{id:"55113",title:"Dr.",name:"Leandro",middleName:null,surname:"De Haro Ariet",slug:"leandro-de-haro-ariet",fullName:"Leandro De Haro Ariet"},{id:"56081",title:"Dr.",name:"José Manuel",middleName:null,surname:"Fernández",slug:"jose-manuel-fernandez",fullName:"José Manuel Fernández"},{id:"63116",title:"Mr",name:"Javier",middleName:null,surname:"García-Gasco Trujillo",slug:"javier-garcia-gasco-trujillo",fullName:"Javier García-Gasco Trujillo"},{id:"63250",title:"Dr.",name:"Pablo",middleName:null,surname:"Padilla De La Torre",slug:"pablo-padilla-de-la-torre",fullName:"Pablo Padilla De La Torre"},{id:"91100",title:"Dr.",name:"Manuel",middleName:null,surname:"Sierra Castañer",slug:"manuel-sierra-castaner",fullName:"Manuel Sierra Castañer"}]},{id:"59615",title:"Plants in Space",slug:"plants-in-space",totalDownloads:872,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"into-space-a-journey-of-how-humans-adapt-and-live-in-microgravity",title:"Into Space",fullTitle:"Into Space - A Journey of How Humans Adapt and Live in Microgravity"},signatures:"Bratislav Stankovic",authors:[{id:"220778",title:"Ph.D.",name:"Bratislav",middleName:null,surname:"Stankovic",slug:"bratislav-stankovic",fullName:"Bratislav Stankovic"}]},{id:"72556",title:"Tumors in Space: Preparation for Spaceflight",slug:"tumors-in-space-preparation-for-spaceflight",totalDownloads:246,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"preparation-of-space-experiments",title:"Preparation of Space Experiments",fullTitle:"Preparation of Space Experiments"},signatures:"Tricia L. Larose",authors:[{id:"320626",title:"Dr.",name:"Tricia L.",middleName:null,surname:"Larose",slug:"tricia-l.-larose",fullName:"Tricia L. Larose"}]},{id:"16867",title:"Helical Antennas in Satellite Radio Channel",slug:"helical-antennas-in-satellite-radio-channel",totalDownloads:10810,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"advances-in-satellite-communications",title:"Advances in Satellite Communications",fullTitle:"Advances in Satellite Communications"},signatures:"Zoran Blazevic and Maja Skiljo",authors:[{id:"45034",title:"Mrs",name:"Maja",middleName:null,surname:"Skiljo",slug:"maja-skiljo",fullName:"Maja Skiljo"},{id:"53427",title:"Prof.",name:"Zoran",middleName:null,surname:"Blazevic",slug:"zoran-blazevic",fullName:"Zoran Blazevic"}]},{id:"59553",title:"The Mortality of Space Explorers",slug:"the-mortality-of-space-explorers",totalDownloads:780,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"into-space-a-journey-of-how-humans-adapt-and-live-in-microgravity",title:"Into Space",fullTitle:"Into Space - A Journey of How Humans Adapt and Live in Microgravity"},signatures:"Robert J. Reynolds and Steven M. Day",authors:[{id:"220737",title:"Dr.",name:"Robert",middleName:null,surname:"J. Reynolds",slug:"robert-j.-reynolds",fullName:"Robert J. Reynolds"},{id:"220748",title:"Dr.",name:"Steven",middleName:null,surname:"M. Day",slug:"steven-m.-day",fullName:"Steven M. Day"}]},{id:"50409",title:"Active Flow Control by Using Plasma Actuators",slug:"active-flow-control-by-using-plasma-actuators",totalDownloads:2198,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"recent-progress-in-some-aircraft-technologies",title:"Recent Progress in Some Aircraft Technologies",fullTitle:"Recent Progress in Some Aircraft Technologies"},signatures:"Gabriele Neretti",authors:[{id:"178403",title:"Dr.",name:"Gabriele",middleName:null,surname:"Neretti",slug:"gabriele-neretti",fullName:"Gabriele Neretti"}]},{id:"19535",title:"Plasma-Assisted Ignition and Combustion",slug:"plasma-assisted-ignition-and-combustion",totalDownloads:5300,totalCrossrefCites:7,totalDimensionsCites:13,book:{slug:"aeronautics-and-astronautics",title:"Aeronautics and Astronautics",fullTitle:"Aeronautics and Astronautics"},signatures:"Andrey Starikovskiy and Nickolay Aleksandrov",authors:[{id:"29275",title:"Dr.",name:"Andrey",middleName:null,surname:"Starikovskiy",slug:"andrey-starikovskiy",fullName:"Andrey Starikovskiy"},{id:"47602",title:"Prof.",name:"Nikolay",middleName:null,surname:"Aleksandrov",slug:"nikolay-aleksandrov",fullName:"Nikolay Aleksandrov"}]},{id:"58565",title:"Countermeasure Development for Lumbopelvic Deconditioning in Space",slug:"countermeasure-development-for-lumbopelvic-deconditioning-in-space",totalDownloads:607,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"into-space-a-journey-of-how-humans-adapt-and-live-in-microgravity",title:"Into Space",fullTitle:"Into Space - A Journey of How Humans Adapt and Live in Microgravity"},signatures:"Andrew Winnard, Dorothee Debuse and Nick Caplan",authors:[{id:"222099",title:"Prof.",name:"Nick",middleName:null,surname:"Caplan",slug:"nick-caplan",fullName:"Nick Caplan"},{id:"222101",title:"Dr.",name:"Andrew",middleName:null,surname:"Winnard",slug:"andrew-winnard",fullName:"Andrew Winnard"},{id:"234054",title:"Prof.",name:"Dorothee",middleName:null,surname:"Debuse",slug:"dorothee-debuse",fullName:"Dorothee Debuse"}]}],onlineFirstChaptersFilter:{topicSlug:"aeronautics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/aerospace-engineering/matrix-converter-for-more-electric-aircraft",hash:"",query:{},params:{book:"aerospace-engineering",chapter:"matrix-converter-for-more-electric-aircraft"},fullPath:"/books/aerospace-engineering/matrix-converter-for-more-electric-aircraft",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()