Blood count recovery in umbilical cord blood transplantation pilot study utilizing hyperbaric oxygen (HBO).
\r\n\tDiseases are caused by three distinct mechanisms - infection, intoxication, toxicoinfection. There are three main steps for the process of infection that is caused by bacteria. Process starts with attachment of bacteria to host cell that leads to entrance to host cell. After entrance of bacteria to the host cell, bacterial cells colonize, grow and multiply within the host cell. Then, pathogenic bacteria start to invade to host cells. Disease contributed by intoxication is caused by toxins released from dead bacteria such as endotoxins. Toxicoinfection occurs when bacteria producing toxin are ingested. Toxicoinfection is caused by not only alive bacteria but also toxins released by them (such as exotoxins).
\r\n\tPathogenic bacteria reveal their pathogenicity and cause infection by their virulence factors such as surface proteins that lead bacterial adherence to host cells, cell surface carbohydrates, peptidoglycan, lipopolysaccharides of Gram-negative bacteria, biofilm, toxins that lead bacteria to invade and damage host cells, hydrolytic enzymes, antibiotic resistance genes, antiphagocytic factors etc.. Virulence factors enable bacteria to survive and infect host cell. Bacterial pathogens have become the main problem in hospital and community-acquired infections. Antibacterial treatment strategies have been used to prevent bacterial adherence, invasion and infection. It is hard to treat the strains that are resistant to antibiotics, due to this causing recurrent and untreatable infections. In this book, we will also present examples of pathogenesis, virulence factors and treatment strategies.
Allogeneic transplantation is the only curative approach for many hematologic malignant and nonmalignant disorders. Unfortunately, only 30% of patients will have a matched sibling donor [1]. However, well-matched donors (MUDs) are a suitable alternative for those who do not. In one study, well-matched MUDs were identified in 53% of those with Northern European ancestry, compared to only 21% of patients of other origin [2]. For patients without a histocompatible adult donor, transplant options include unrelated umbilical cord blood (UCB) transplantation or transplant from a haploidentical (haplo) donor [3]. Since the first successful UCB transplant in 1988 [4], UCB has been used as a graft source for over 40,000 patients with both malignant and nonmalignant diseases [5, 6].
\nAs a graft source for transplantation, UCB has several practical advantages including ease of procurement, absence of donor risks, reduced risk of transmissible infections, and availability for immediate use [7]. UCB is also associated with a lower incidence of graft-versus-host disease (GVHD) despite HLA disparity [8]. Therefore, UCB extends the application of allogeneic transplant to ethnic minority populations who are underrepresented in donor registries [9]. Additionally, UCB transplantation is associated with reduced leukemia relapse in patients with evidence of minimal residual disease at time of transplant, suggesting a strong graft-versus-leukemia effect [10]. However, UCB units in themselves are limited in cell doses available for optimal transplantation in adults. UCB stem cells also demonstrate defects in homing to the bone marrow (BM), implicating delayed recovery of neutrophil and platelet count and achieved engraftment, resulting in higher rates of graft failure [11]. This prolonged time to engraftment is also associated with delayed immune reconstitution after UCB transplantation [12, 13, 14], resulting in higher posttransplant infection rates [15]. Strategies to overcome these defects in homing and engraftment are clearly needed in order to make this potentially curative therapy more effective for patients. Additionally, such strategies might apply to other types of hematopoietic stem cell (HSC) transplantation, including autologous stem cell transplantation as well as allogeneic stem cell transplantation.
\nHoming is the first process by which circulating hematopoietic cells actively cross the blood/BM endothelium barrier to migrate into the BM compartment (Figure 1) [16]. This process is fairly rapid and occurs within hours and no longer than a day or two after stem cell infusion [16]. HSC homing is mediated in part by the binding of chemokine CXCR4 receptor on the surface of HSCs to their ligand, stromal cell-derived factor-1 (SDF-1) expressed by BM stromal cells [17]. Stem cell homing precedes engraftment, corresponding to proliferation and differentiation of hematopoietic stem cells (HSCs) to produce mature, functional hematopoietic cells within the BM [18]. One study claimed that only 18–20% of all intravenously transplanted stem cells, including different subsets, seeded in the BM, with UCB stem cell seeding even lower [19]. Another study demonstrated that human UCB stem cell seeding efficiency in NOD/SCID mice was found to be less than that for BM (4.4% versus 20%) [20].
\nHematopoietic stem/progenitor cell (HSPC) homing to the bone marrow. This process is mediated by CXCR4 receptors on the surface of HSPCs and stromal cell-derived factor-1 (SDF-1) in the bone marrow.
Due to the curative potential of UCB transplantation, several approaches have been investigated to improve UCB stem cell homing to the BM. In one study inhibition of CD26 peptidase activity by pretreating purified CD34+ human CB cells with Diprotin A significantly enhanced engraftment of HSCs from human UCB into NOD/SCID mice [21]. A CD26 peptidase inhibitor, sitagliptin, was investigated in a clinical trial with encouraging results in engraftment of adults with hematological malignancies after using a single unit UCB transplant [22]. Another strategy taken involved direct intrabone administration of cord blood cells into the superior-posterior iliac crest under rapid general anesthesia. Though this strategy produced impressive results in one study [23], another study showed contradictory results [24]. Therefore this procedure has not been widely accepted. In exploring further defects in cord blood stem cell homing, it was found that cord blood CD34+ cells have reduced alpha(1,3)-fucosyltransferase (FucT) expression and activity causing a depletion of cord blood stem cell surface ligands necessary for interaction with adhesion molecules at time of stem cell homing [25]. Forcing fucosylation was found to be clinically feasible with encouraging engraftment efficiency data in the double UCB transplant setting [26]. Some of these interventions require significant logistical support, and some require graft manipulation; accordingly, there is an urgent need to identify safe and practical interventions to enhance UCB homing and engraftment for patients with hematologic malignancies who are undergoing allogeneic stem cell transplantation.
\nPreviously published work implicating erythropoietin (EPO) in HSC homing led investigators to examine the role of EPO/EPOR signaling in HSC homing and engraftment in vitro and in vivo pre-clinical models. Gonzalez et al. demonstrated that circulating HSCs rapidly decline after birth [27]. Interestingly, the decline in HSCs correlated with low EPO blood concentration. Additionally, the decline in HSCs being attributed to HSC BM homing, these observations suggested a possible role for EPO in BM homing and clearance of HSCs from the infant’s circulation following birth. Investigators have pursued HBO as a potentially safe approach to effectively lower EPO as previously published [28]. The hypothesis was that lowering EPO at the time of hematopoietic stem/progenitor cell (HSPC) infusion will result in improved bone marrow homing and subsequent engraftment. Studies examining HBOT effects on hematopoietic stem cells are limited. On the other hand, HBOT has been shown to have minimal, if any, effects on blood counts during steady-state conditions [29]. The previously published and accumulated pre-clinical data that supports EPO’s role in UCB engraftment are summarized in the next section [30].
\nTo understand EPO effects on UCB CD34+, the expression of EPOR was assessed by flow cytometry. Analyses of 5 UCB units revealed that on average 6.5% of CD34+ UCB cells express EPOR [30]. A significantly higher percentage of EPOR positive cells (45.7 ± 1.4%, Figure 2) was observed within the HSC (Lin− CD34+ CD38− CD45RA− CD90+ CD49f+ cells) population. EPOR positive cells were less among multipotent progenitor (MPP) (Lin− CD34+ CD38− CD45RA− CD90− CD49f− cells, 22.2 ± 0.3%) or the broader progenitor pool (Lin−CD34+CD38+ cells, 25.1 ± 0.7%). To test whether a functional EPO-EPOR signaling cascade was activated in EPOR-expressing UCB CD34+ cells, EPOR expression was depleted via RNA interference (RNAi), and the erythroid differentiation potential after culture in methylcellulose culture medium was compared to UCB CD34+ cells without EPOR depletion. Depletion of EPOR expression by RNAi greatly reduced the size of erythroid colonies and UCB CD34+ differentiation potential toward the erythroid lineage, indicating that EPO promotes functional EPO-EPOR signaling response in these cells [30].
\nErythropoietin receptor expression on umbilical cord blood CD34+ cells and subsets (unpublished data).
As earlier studies potentially implicated EPO signaling in hematopoietic stem/progenitor cell (HSPC) homing [27], investigators tested if there were EPO-EPOR signaling effects on SDF-1-induced migration of UCB CD34+ HSPC, by examining UCB CD34+ CD38− cell transmigration toward an SDF-1 gradient after a preexposure of the cells to different concentrations of EPO. Exposure of UCB CD34+ CD38− to EPO significantly reduced their SDF-1-induced directional migration. Blocking EPO signaling by anti-EPOR or anti-EPO antibodies rescued SDF-1-induced migration of UCB CD34+ cells for both CD34+ CD38− and CD34+ CD38+ populations [30].
\nHBO treatment has been shown to reduce systemic EPO levels in healthy volunteers [28]. As previous in vitro studies indicated that EPO-EPOR signaling inhibits SDF-1-induced migration of UCB CD34+ cells, investigators examined whether HBO pre-treatment of mice prior to cell infusion enhances BM homing. First, investigators measured serum EPO levels in their murine transplant model 7 hours after HBO exposure (or 3 hours post UCB CD34+ infusion). HBO exposure significantly reduced serum EPO levels compared to controls (p < 0.0001). In addition, a higher percentage of the UCB CD34+ cells was seen in the BM of HBO-treated mice 3 hours posttransplant [30].
\nIn the same murine model, investigators evaluated the impact of HBO treatment on peripheral blood, BM, and spleen retention at early time points (24–72 hours), which correlates with BM homing, and up to 4.5 months, which correlates with long-term engraftment. Efficient support of human cell engraftment has been reported in 6–8-week-old female NSG mice NOD/SCID/IL-2Rgcnull [31] model. Briefly, sublethally irradiated NSG mice, after 24 hours, were treated with HBO for 2 hours (HBO) or without HBO in the control group. Next, approximately 105 CD34-selected UCB cells were infused into each mouse 6 hours following the start of HBO. Mice were euthanized at different time points; peripheral blood, BM, and spleen tissue were harvested; and engraftment was analyzed by flow cytometry. The degree of engraftment was determined by measuring the percentage of human CD45-expressing cells. For HBO therapy, 100% oxygen was delivered at 2.5 atmospheres absolute (ATA) in a single-place chamber. In murine in vivo model, HBO-treated mice had significantly improved BM (p = 0.0067), peripheral blood (p = 0.0131), and spleen (p = 0.0293) engraftment [32], the impact of which was more pronounced toward later time points at 3 and 4 months.
\nEPO has been shown to impact hematopoietic progenitor cells differentiation [33]. Because HBOT lowers EPO levels in posttransplant, the impact of a low EPO environment induced by HBO on human UCB CD34+ cell differentiation was examined. HBO mice demonstrated significantly lower numbers of burst-forming unit-erythroid (BFU-E) (p = 0.043) and increasing numbers of colony-forming unit-granulocyte/macrophage (CFU-G/M) (p = 0.05) 1 week following transplant. Interestingly, despite reduced BFU-E in the in vivo experiments, investigators observed a favorable trend in red blood cell (RBC) time to transfusion independence (TTI) in their pilot study.
\nThese findings suggest that lowering the recipient EPO levels favors UCB CD34+ engraftment by affecting two important HSC functions: BM homing and HSPC differentiation (Figure 3). Lower recipient EPO at the time of UCB CD34+ cell infusion results in less early erythroid differentiation of infused progenitor cells. This leads to early homing of undifferentiated UCB CD34+ cells to the BM, thus improving long-term multi-lineage engraftment. In confirmatory experiments utilizing RNA-seq for transcriptional assessment, investigators found that EPO treatment of UCB CD34+ cells enriches CD71+ early erythroid cells, consistent with early erythroid commitment (Figure 4). In the same data set, EPO treatment was associated with signal transducer and activator of transcription 3 (STAT3) pathway activation (Figure 4). Importantly, signal transducer and activator of transcription 3 (STAT3) is a known downstream effector of EPOR signal transduction [34, 35, 36, 37].
\nThe mechanisms by which hyperbaric oxygen therapy (HBO) affects hematopoietic stem/progenitor cell engraftment.
Gene expression data analysis evaluating erythropoietin (EPO) treatment effects on UCB CD34+ cells. EPO treatment enriches CD71+ early erythroid cells (A) and correlates with active STAT3 signaling (B) (unpublished data).
To date, two pilot clinical trials exploring HBO in UCB transplantation as well as autologous hematopoietic cell transplantation (HCT) have been completed. In both studies HBO was given in standard fashion at least 6 hours prior to HSCP infusion on day 0 of their transplant (Figure 5). The first aim of these studies is to examine the safety and tolerability of HBO in the setting of HCT. In addition, these studies explored the impact of HBO on blood count recovery as well as EPO levels posttransplant. Details of HBO therapy and the results of these studies are being summarized in the next three paragraphs.
\nClinical trial schema incorporating hyperbaric oxygen (HBO) into hematopoietic cell transplantation.
After receiving routine clinical care on day 0 (the day of HSPC infusion), subjects were exposed to HBO for a total of 90 min after compression to 2.5 atmosphere absolutes (ATA) in a monoplace hyperbaric chamber (Model 3200/3200R, Sechrist Industries, Inc., USA), breathing 100% oxygen. The subjects spent 10–15 min during the compression and decompression phases and 10 min room air breaks for every 30 min of HBO treatment.
\nBased on the previously mentioned pre-clinical data, a pilot clinical trial investigating the safety of HBO in UCB transplant was initiated. Patients considered for either standard myeloablative conditioning (MAC) (higher intensity chemotherapy and radiation) or standard reduced intensity conditioning (RIC) (lesser intensity chemotherapy and radiation) UCB transplantation were enrolled. In this study, HBO treatment was administered on day 0 of the transplant. The treatment consisted of exposure to 100% oxygen at 2.5 ATA for a total of 2 hours, in a single see-through hyperbaric chamber. Six hours from the start of HBO, single or double UCB units are infused, and patients are followed daily for toxicity and blood count recovery. In addition to safety, neutrophil and platelet recovery and engraftment were investigated as efficacy end points. A total of 15 subjects have been treated; all have tolerated the procedure very well except for 1 patient who did not finish the last 10 min of therapy because of nausea thought to be secondary to a concomitant medication. In terms of efficacy, final data from the study indicate an encouraging median time to neutrophil recovery of 14 days compared to 20.5 in historic data (n = 48) and a median time to platelet count recovery of 37.5 compared to 38 in historic data (Table 1). HBO also resulted in improved day 100 survival (p = 0.051) and in improvement in the percentage of patients who demonstrated Neutrophil recovery was not significant platelet count recovery (p = 0.013). HBO also resulted in statistically significant reduction in median EPO level from baseline (−30.37 mU/ml+/−31.68, p = 0.004).
\n\n | HBO (n = 15) | \nHistoric (n = 48) | \np value | \n|
---|---|---|---|---|
Neutrophil recovery (n/%) | \nNo | \n0% | \n6 (12%) | \nNS | \n
Yes | \n15 (100%) | \n42 (82%) | \n||
Platelet recovery (n/%) | \nNo | \n0% | \n15 (31%) | \n0.013 | \n
Yes | \n15 (100%) | \n33 (69%) | \n||
Median time to neutrophil recovery (range) | \n14 (6–45) | \n20.5 (571) | \nNS | \n|
Median time to platelet recovery (range) | \n37.5 (0–85) | \n38 (0–161) | \nNS | \n
Blood count recovery in umbilical cord blood transplantation pilot study utilizing hyperbaric oxygen (HBO).
In a follow-up study, the long-term outcome of patients in this pilot HBO study in UCB transplantation was examined. Patients’ outcome was compared to a historic control group. The 6-month survival in the HBO group was 100%, compared to 67.0% in the control group (95% CI 50.1–79.4%, p < 0.0001) [38]. HBO-treated patients had on average lower relapse and non-relapse mortality rates, and less chronic graft-versus-host disease (GVHD), but had increased acute GVHD. However, these differences were not statistically significant, probably because of the small sample size. In the HBO-treated cohort, immune-reconstitution analysis showed significant improvement in early B-cell recovery, with a trend toward improvement in early NK cell recovery. The ratio of 8 hours to baseline EPO levels was examined. A nonsignificant trend toward lower EPO values was found in those who did not relapse or die in year 1 than those who did die or relapse. Disease progression-free survival was also improved in those who had more than 80% reduction in EPO levels in response to HBO. This study highlights the long-term safety of HBO therapy when used prior to UCB transplantation. It also shows a relationship between HBO-induced EPO reduction, early NK cell recovery and posttransplant disease progression. Since lower rates of relapse have been reported in association with higher early NK cell recovery [39], it was hypothesized that by reducing EPO, HBO improves early NK cell recovery, and improved NK cell recovery slows down disease progression.
\nEncouraged by the results of HBO in UCB transplantation, the same group conducted a pilot study in Auto-HSPC transplantation. A total of 20 patients were treated on the Auto-HSPC transplant study. HBO therapy was very well tolerated as 19 completed full therapy [40]. For efficacy comparison, HBO subjects were matched to historical controls from the same institution based on gender, age (within 5 years), disease type (multiple myeloma or lymphoma), and preparative regimen. The median time to neutrophil count recovery was 11 days in both cohorts, the HBO and control cohorts. However, time to neutrophil recovery was approximately 1 day sooner for HBO than historical controls taking into account the full distribution estimates of Kaplan-Meier estimator (log rank p = 0.005). The median time to platelet count recovery was 16 versus 18 days for the HBO and control cohorts, respectively (log rank p < 0.0001).
\nIn a separate analysis, HBO effects on other outcomes of post-autologous transplantation were evaluated. In this analysis, the HBO cohort patients who completed HBO therapy (n = 19) were compared with historic patients (n = 225) [40]. The average days of GCSF use were 6 days in the HBO cohort compared to 8 days in controls (p < 0.01). Also, HBO patients had significantly less mucositis (26.3 versus 64.2%, p < 0.01).
\nIn the previous section, the effects of HBO on stem cell homing and engraftment posttransplant were reviewed. Interestingly, HBO can also help with stem cell/progenitor cell mobilization from the bone marrow [41]. However, the mobilized stem/progenitor cells exhibited characteristics of endothelial progenitor cells [42].
\nIncorporating HBO into HCT backbone represents a new direction in the field of HCT aiming at improving the outcome of HCT by improving HSPC homing and subsequent engraftment. Accumulated data suggest improvement in immune reconstitution too. Targeting EPO at the time of HSPC infusion represents a new understanding of EPO role in basic HSCP functions, including cell differentiation, transmigration, homing, and engraftment. Though these studies represent an early attempt at understanding EPO role in HSCP biologic functions and HBO’s role in blocking EPO/EPOR signaling in HCT transplantation, the accumulated data seem to be promising. Currently, a phase II study investigating HBO in Auto-HCT is open for enrollment (
An additional area for future investigation is defining the optimal HBO schedule to effectively block EPO/EPOR signaling during HCT. In a previous study, one single HBO treatment 6 hours prior to HSPC infusion was used. It was noticed that EPO level rebounds as early as 24 hours after HBO treatment [30]; accordingly additional HBO therapy might keep EPO levels low for 48 hours, which is the duration during which homing occurs. To accomplish that, investigators will have to treat the recipients 24 hours after HSPC infusion, which means the infused HSPCs will be exposed to hyperbaric conditions. In their experience, direct CD34+ cell exposure to HBO reduced their proliferation, impaired their in vitro transmigration, and reduced their erythroid differentiation [43]. These effects were statistically significant, but the biological effects were minimal which in theory should not influence UCB CD34+ cell behavior significantly. Additionally, these direct HBO effects on UCB CD34+ cells are desirable when it comes to the HSPCs that have already homed to the bone marrow as these effects might help with HSPC retention in the bone marrow.
\nFinally, in addition to reducing EPO and affecting EPO/EPOR signaling, HBO might have additional effects beyond EPO/EPOR signaling that might impact HSPC biologic functions.
\nTargeting EPO using HBO in hematopoietic cell transplantation is a new direction in the HCT field which will potentially have major impact on the outcome of HCT. By improving HSPC homing, engraftment, and immune reconstitution, HBO therapy will have the potential to improve the outcome of HCT by improving patient recovery and by reducing posttransplant complications related to infections. Overall, that might reduce the cost of HCT. Though data from pre-clinical and pilot clinical studies are encouraging, data from current and future phase II studies might show more definitive data in support of this application. Also future studies will be needed to examine HBO effects on bone marrow microenvironment elements.
\nNo conflict of interest to declare.
Retinal diseases, including both inherited and acquired conditions, are a major cause of blindness. In 2010, the WHO estimated that 285 million people in the world were visually impaired from all causes [1]. Hereditary retinal disease represents another significant contributor to unavoidable worldwide blindness, with conditions such as retinitis pigmentosa (RP) affecting an estimated 1/4000 people, or 0.025% of the population, often of working age [2]. Representing a heterogenous group of inherited diseases, RP affects the rod and cone photoreceptors (PRs), causing progressive, profound visual impairment, but with relative preservation of the inner retinal architecture [3]. This anatomical region consists of retinal ganglion cells (RGCs) and their nerve axons, which transmit visual information to the brain, along with other regulatory interneurons, such as bipolar, amacrine and horizontal cells, and Müller support cells (Figure 1). Preservation of these structures and the associated retinotopic map has led to RP becoming a model for many forms of visual restorative therapy, in particular, retinal prosthetics.
A schematic demonstrating the anatomy of the eye and organization of the retina. RNFL: retinal nerve fibre layer; RGCs: retinal ganglion cells; RPE: retinal pigment epithelium.
Another significant retinal cause of blindness is age-related macular degeneration (AMD), accounting for 5% globally [1]. It has been projected that, by 2040, this condition alone will affect 288 million people, 3.25% of the predicted global population [4, 5]. Late AMD comprises geographic atrophy (dry) and neovascular (wet) AMD, and is a significant cause of morbidity in the western world, with a prevalence of 2.4% in the UK [6, 7]. While anti-VEGF treatment has revolutionized the treatment of wet AMD, there is currently no treatment for the dry subtype, which results in degeneration of the PR layer and impairment of central vision in 1.3% of the UK population [7].
The concept of retinal prosthetics is centred on the phenomenon of electrically induced subjective visual percepts or ‘phosphenes’. These phosphenes have been elicited by applying electrical currents across the ocular surface since as long ago as the eighteenth century. In the early twentieth century, Förster demonstrated that phosphenes could be elicited in blind patients via direct stimulation of the visual cortex, leading, in 1968, to the first chronic implantation of an intracranial visual prosthesis [8, 9]. In the 1980s, advances in microfabrication, materials engineering and retinal surgery provided a fecund environment for emergence of the field of retinal prosthetics—devices that could deliver direct stimulation to the residual retinal neurons.
In order to create a retinal prosthesis, it is necessary to account for the processes that take place within the human eye, where light is absorbed, converted to an electrical impulse and encoded into a neural signal. Physiological capture of the visual scene occurs via the natural optical system, comprising the cornea, iris and crystalline lens, which focus light onto the photosensitive retinal cells. Within the photosensitive rods and cones, a photochemical reaction leads to transduction of light into a graded electrical neural signal with eventual RGC stimulation. The axons of the RGCs constitute the optic nerve. In the native retina, a significant amount of information compression occurs at the level the PRs, the interneurons and the RGCs, from where it is encoded for transmission via the optic nerve to the midbrain and cortical visual pathways.
There are two types of PR, rod and cone cells, which number ~120 and 6 million respectively in each eye, resulting in an average input of 100 photoreceptors to each of 1.5 million RGCs [10, 11]. Rods are sensitive to low levels of light and are most populous at about 20° eccentricity. The cone cells are responsible for colour vision and function best in bright light. They are most densely concentrated in the foveal region where they are in almost 1:1 ratio with RGCs, beyond which they decline considerably in density [12].
Following the transduction of photic energy into electrical impulses, bipolar cells effectively transmit the information from PRs to RGCs, but may have an excitatory (ON) or inhibitory (OFF) response to hyperpolarisation and are also influenced by the actions of horizontal and amacrine cells, which can introduce lateral inhibition of signals. Each RGC has a centre-surround receptive field organization and its stimulation pattern will depend both on the size of its receptive field, the input stimulation frequency, and whether it is an ‘on-centre’ or ‘off-centre’ cell. Furthermore, RGCs are not functionally homogeneous, with certain cell populations specialized in particular functions and projecting to specific midbrain regions. Most of the 1 million nerve axons of the RGCs pass via the optic nerve to their respective lateral geniculate nucleus (LGN), located within the thalamus. The LGN is a layered structure and each part receives axons from specific ganglion cell types. A degree of visual processing is thought to occur at this point, before projecting on towards the primary visual cortex, where all higher cognitive processing takes place [12].
The processing power of the retina enables us to resolve detail with remarkably high spatial and temporal resolution, across a broad spectrum of contrast and colour. Beyond this, higher neuro-cortical integration allows us to process and recognize objects, words and faces, appreciate distance, orientation and movement, while coordinating our visual interpretations with other sensory inputs and motor outputs. Together this information allows us to decide what is safe or dangerous, fast or slow, attractive or repulsive. All this activity occurs in milliseconds, with a seemingly infinite refresh rate. This phenomenon is reliant on a very complex system that can rapidly capture, assimilate, compress and process an enormous amount of visual information.
Clearly, creating a micro-electronic system, which can come close to replicating the processing capacity of the human visual system, is currently an unrealistic goal. Instead, we must focus on how visual processing software and hardware engineering can be combined to produce a device that can resolve the minimum interpretable visual information such as to be beneficial to patients with profound vision loss.
Simulated prosthetic vision (SPV) studies have been undertaken to try and estimate the optimum spatiotemporal image processing techniques for specific task completion, as well as the basic hardware requirements to best deliver RGC stimulation patterns [13, 14, 15, 16, 17]. SPV studies have extensively investigated the spatial resolution, visual field and contrast required for assorted activities of daily living, concluding that a minimum resolution of ~600–1000 pixels over a visual field 15° × 15° can permit reasonable accuracy in manipulation, recognition, orientation and mobility tasks. The resolution of around 3 pixels/degree2 is similar to that in some currently available photovoltaic retinal prosthetic systems while fields of at least 15° × 15° have been created. However, and disappointingly, there remains a mismatch in the functional aptitude demonstrated by subjects in SPV studies and that in recipients of visual prostheses. This suggests that other factors, such as the effects of behavioural adaptation, perceptual learning and cortical plasticity, as well as the loss of the intrinsic retinal processing capacity, could be critical requisites in the development of a visual restorative system that could deliver appreciable functional value [18, 19].
One of the advantages of a retinal prosthesis is that, by placing a device at the most distal part of a non-functioning visual system, it is possible to benefit from any residual downstream neuronal organization within the retina and visual pathways. However this theory relies on the assumption that the proximal visual system remains intact. It has been demonstrated that outer retinal degenerative disease results in a cascade of reorganization and remodelling within the retina and central nervous system, even taking place before there is clinical evidence of PR loss [20, 21, 22, 23, 24]. A stepwise deterioration culminates in extensive neuronal cell migration, rewiring and death, accompanied by glial hypertrophy and retinal remodelling, rendering the retina incapable of processing or encoding visual data. This neuronal plasticity carries implications for all forms of visually restorative therapy, but particularly for prostheses, which are currently introduced at a late stage of visual impairment, where there has already been widespread reorganization with limited scope for rescuing vision. However, it may be that future iterations of bionic devices could even be introduced earlier in the disease process in an attempt to halt or reverse the remodelling process.
Another matter that remains unclear is the extent to which the human brain undergoes reorganization following loss of visual sensory input. Both animal and human studies have shown that there is the capacity for neuroplasticity as a functional adaptation to loss of a sensory modality [25, 26, 27]. For example, visual cortical activity has been demonstrated in blind subjects while reading Braille [28, 29]. Other studies of patients undergoing cochlear implant surgery, have shown correlation between the pre-operative auditory organization and activation and subsequent success of the neuroprosthesis [30, 31]. If a method could be developed by which a patient could be assessed for the feasibility of generating interpretable phosphenes, this would enhance patient selection and thus outcomes in this area of visual restoration. Further understanding of the nature of cortical plasticity in sensory loss and how subjects can adapt to a new form of vision with perceptual learning and rehabilitation, is sure to enhance the beneficial effect of visual restorative treatments in the future.
In order to simulate the complex series of events that take place between the outside world and the visual cortex, a prosthesis system needs to perform a specific sequence of actions, namely image capture, processing of the image, delivery of both image data and signal amplification to the microelectrode array, which in turn must deliver a suitable stimulation current (directly or indirectly) to the RGCs. All this must take place with a biocompatible system that can produce adequate stimulation currents without causing degradation to itself or to the target tissue. Furthermore, the device needs to be straightforward to implant, modify or explant, while remaining portable, discreet and fashionable.
Presently, there are two principal means of ‘image capture’ that have found some success in retinal prosthetic systems. The first is to capture information from the visual scene using an external video camera, which is usually glasses-mounted. The video camera then transmits data directly to an external video-processing unit (VPU). The advantage of this approach is not only that it is technically simpler, but also it avoids any impediments to collecting high quality information about the visual scene, thus facilitating any downstream image processing. However, due to the fixed camera position, there is a risk of discrepancy between its orientation and that of the eye, risking inaccuracies in the perceived spatial location of an object of interest following retinal stimulation. Proposed solutions to this problem include both the incorporation of an eye tracker to coordinate the direction of gaze with the stimulation pattern, or placement of the camera system intraocularly, for which there have been some preliminary attempts to design such a system [32].
The second image capture system that has shown promise is the photodiode array device. First developed by the Chow brothers as the artificial silicon retina (ASR), this comprises a passive microphotodiode array, which was intended to intrinsically transform ambient light that falls on it into an electrical current capable of stimulating retinal neurons. The ASR array consists of 5000 interconnected photodiode anodes with individual isolated cathodes, each with an iridium oxide electrode. This method was advantageous in as far as it allowed a large number of pixels to be stimulated simultaneously, it was wireless and also it allowed for precise coordination between the eye position and the projected visual scene [33, 34]. However, in its first iteration, it was unable to deliver sufficient stimulation current to deliver functional results and the parent company, Optobionics, has since closed down. Despite this initial failure, the concept of the photovoltaic array has been taken up and developed by other groups, with encouraging results. The Retina Implant AG group developed the Alpha IMS device that contains 1500 independent and autonomous photodiode-amplifier-electrode units. The ambient light creates the stimulation pattern and an external power source amplifies the electrical signal [35, 36]. The ‘PRIMA’ Photovoltaic Retinal Implant system (Pixium Vision S.A.) combines aspects of both forms of image capture, in that is uses an external camera to capture the visual information before processing and then transmitting the data as pulsed near-infrared light patterns from a specialized visual interface in a pair of glasses directly onto a subretinal photovoltaic array [37, 38].
In some systems, the image processing takes place within an external analyser, which receives a high-quality signal from a camera system and transforms the data into a set of commands to be wirelessly transmitted to the microelectrode array to generate a specific stimulation pattern. In systems such as the Argus II retinal prosthesis, there are only 60 microelectrodes, meaning that even with perfect electrode contact and accurate retinotopic phosphene perception, the image resolution would still be low. As such, there is an emphasis on developing software algorithms that can filter the most relevant parts of a visual scene, before creating simple stimulation configurations that map the object of interest onto the array. This process is known as saliency mapping, and similar algorithmic methods of rapid recognition and segmentation of information have previously been used with success in the form of speech processors for cochlear implants [39, 40, 41, 42].
Simulation studies have shown that by applying transformations, such as edge detection, greyscale histogram equalization, intensity and contrast enhancement, task performance using a low resolution viewing system can be improved (Figure 2). Similarly, software has been developed to allow magnification of areas of interest in the visual scene, or even projection of a simulated object or face onto the array, in response to detection of the respective entity in the captured environment [43, 44]. The intelligent retinal implant system (IRIS) II (Pixium Vision S.A.) has a ‘neuromorphic image sensor’, which is designed to capture the coordinates and intensities of changing pixels, the information from which can be encoded and divided into transient and sustained components. This can be used to direct image processing towards the most relevant parts of the visual scene, i.e. moving people or vehicles, while removing redundant excess visual information [45].
An example of image processing transformations: the image of the bicycle first undergoes edge detection and is converted to greyscale. This is then transformed by circular binarisation into a black-and-white pixelated format. Finally the image is inverted, with the addition of four greyscale levels.
All these types of pre-processing are relevant for devices that do not have intrinsic photosensitivity, but instead rely on external image capture systems. In the case of the photovoltaic systems, there is a greater spatial resolution due to the high density of photodiode-amplifier-electrode units, each of which acts as an independent pixel. In theory, this enables greater intrinsic processing through more localized neuronal stimulation and may also incorporate some downstream processing from the residual retina to select and transmit the most salient visual information to the brain [46, 47].
Delivery of encoded visual information and power to the microelectrode array is generally either wireless (via inductively coupled coils) or directly onto the microphotodiode array via the natural optical system of the eye. In variations of the former approach, there are several considerations that need to be made. Inductive coil systems function through radio-frequency telemetry, whereby an AC current passing through the external coil induces an AC voltage in the internal coil, which can be subsequently be converted into DC power. A capacitor in series with the secondary coil permits amplification of the received voltage by creating a tuned resonance at the transmitter frequency, thus supporting efficient power transfer while minimizing the body’s exposure to radiation. Although the data may be encoded onto the same signal as the power, it is more commonly accomplished with greater effect by using a separate, high frequency coil. The capacity for data and power transfer using this model is sufficient to support the resolution and refresh rate of current systems [48].
Location is an important consideration for an efficient inductive coil system. Many systems utilize a coil system that is similar to that of cochlear implants, with an electronics unit fixed to the bone postauricularly, which communicates with the retinal array via a tunnelled connecting wire. This approach was initially chosen due to the surgical familiarity to otolaryngologists and it allows for good coil contact for coupling. However, due to the prolonged duration of surgery, complex fabrication challenges and apparent reduction in system longevity, some systems have since been modified to incorporate a glasses-mounted transmitting coil which transmits to an implanted subconjunctival receiving coil, which is connected to the array via a sclerotomy. Another approach, as used in the EPI-RET3 implant, involves positioning a receiver coil into the lens capsular bag (following removal of the native lens). This approach still relies on an inductive power and data link, but negates the need for a transscleral wire, which carries a risk of infection and erosion. In addition, this system has a bi-directional enhancement system, which allows for simultaneous stimulation of and recording from the microelectrodes. Feedback from the system enables modification of the stimulation algorithms and patterns to accommodate any residual excitatory and inhibitory signal processing of the retinal neurons [49, 50].
There are several considerations when designing an electrode array to deliver electrical currents to the RGCs in order to replicate the spatial resolution (SR) of the natural retina. These include the electrode material, size, shape, spacing (pitch), tissue contact and the anatomical position of the array.
There are three primary sites for placement of a retinal stimulating microelectrode array (Figure 1): epiretinally (i.e. on the surface of the neurosensory retina), subretinally (i.e. between the retinal pigment epithelium and the degenerated outer retina) or suprachoroidally (i.e. between the sclera and the choroid). The advantage of the epiretinal placement is that the surgical approach is more familiar to vitreoretinal surgeons, allowing safer and easier implantation, adjustment and removal of devices. Furthermore, the interface with the vitreous cavity seems to permit safer heat dispersion. This set-up may be disadvantageous due to the fact that, in order to stimulate the RGCs, the stimulating current must pass through the retinal nerve fibre layer, which may produce ectopic visual percepts elsewhere in the retinotopic map.
In terms of a subretinal system, one proposed advantage is that by mimicking the position of the PRs in the natural retina, some of the stimulating current will pass via the residual bipolar system, exploiting graded response of the inner retinal neurons and thus the natural processing power of the retina. Moreover, it is felt that better electrode-tissue contact will be achieved with the subretinal than with the epiretinal approach. However, it has been noted that, due to underlying degenerative changes, surgical implantation can be difficult, and the longevity of these devices can be more limited [51].
Finally, suprachoroidal devices require a less invasive surgical procedure, which lends itself to easier repair or removal, but trials to date have been complicated by subchoroidal haemorrhage and fibrosis [52]. Due to the distance from the RGCs, these systems tend to require higher stimulation thresholds, leading to greater current dispersion and lowering the achievable SR. Overall, it seems that epiretinal and subretinal approaches have a superior performance in safety and efficacy to suprachoroidal implants. However, with pros and cons to both approaches, there is currently no clear evidence to suggest that, of these latter two, one system offers an overall advantage.
The challenge of electrode size and density is primarily a biological one, in as far as the native PR cells change in type, size, density and downstream signalling depending on their role and location in the retina. For example, cone PRs are, on average 6 μm in diameter, but in the centre of the fovea, they are around 1.5 μm in diameter and densely packed to permit the high resolution of vision that humans usually enjoy [53]. If we consider that normal vision is 20/20, meaning that the minimal angle of resolution at the retina is 1 arcminute, or the spatial frequency (SF) is 60 cycles per degree (cpd), then the SF required to achieve 20/200 (the approximate level of visual impairment) is 6 cpd. Since each degree angle subtended at the human retina is represented by ~280 μm, a SF of 6 cpd would necessitate a maximum pixel size of about 50 μm and, in turn an electrode size and pitch of 25 μm [54, 55]. Therefore, before factors such as electrode contact, dissipation of electrical current or heat are even considered, there is a significant theoretical constraint on the scale of manufacturing required to achieve a resolution corresponding to a visual acuity of 20/200.
Among the smallest electrodes that have undergone human implantation to date are those of the alpha IMS, which are ~50 μm in diameter, with a 70 μm spacing, giving a theoretical maximum VA of about 20/250 [36]. Results have been reported of a grating VA of 3.3 cpd and optotype recognition acuity of 20/546 using this device [56]. The Argus II device has 200 μm electrodes separated by 525 μm, which suggests a theoretical maximum VA of 20/1600. The best result, with grating acuity, has been reported as 20/1262 (just over 1 cpd) with this system [57].
Electrode shape is a factor that may significantly affect the integration of the device by creating an environment where retinal tissue can migrate around the array and create a close interface. Arrays have been designed with sunken chambers or ‘wells’, into which the inner nuclear layer cells have been shown to migrate. Another approach is the three-dimensional pillar array, with protruding electrodes, designed to produce an intimate apposition between the array and the neuronal cell bodies without requiring excessive remodelling of the retina [58].
Size, shape and contact of the electrode at the tissue interface are all important considerations to improve SR, but also have implications to the charge density per unit area. As the electrode size becomes smaller, there is an exponential increase in concentration of the current, which can result in target tissue damage [59]. Therefore there is an onus on finding materials that can permit the charge-injection requirements of neural stimulation, while minimizing conduction of heat or inducing tissue degradation. In addition to this, they must be biocompatible, waterproof and remain operational over an extended lifespan. While the precise electrochemical properties of the electrode-electrolyte interface, the capacitance and charge injection limits of different electrode materials is beyond the scope of this chapter, it is worth noting that new technologies, such as nanocoating, nanotubes and conductive polymers are providing promising developments in electrode fabrication, which may offer significant advantages over the more traditional metallic designs, such as iridium, platinum or titanium-based electrodes [60, 61, 62]. The emerging field of tissue electronics, which is focused on the use of organic conductive and semi-conductive polymer alternatives to inorganic electronic systems, is rapidly advancing. Recently, long-term in vivo studies of a fully organic multi-layer device in rats have shown success in recovery of subcortical and cortical light responses, as well as improvements in visual behaviour [63, 64]. While current electrode devices achieve RGC stimulation by direct current injection to trigger action potentials, it appears that organic coupling occurs in a more physiological manner by modulating local neuronal neurotransmitter release through discretely varying the membrane potentials [65]. It is probable that approaches using conductive polymers, or other chemical photoswitches (e.g. photochromic molecules or photoactive nanoparticles) permit a more natural interaction with the residual neuronal environment, which, in theory, could achieve cellular resolution.
The Argus II epiretinal device (Second Sight Medical Products Inc.) was the first retinal prosthetic system to obtain CE marking (2011) and FDA approval (2013) for commercial use, and is the most widely implanted retinal prosthetic worldwide. Comprising external and implantable components, it utilizes camera-based image capture and VPU processing, with wireless data and power induction, transmitting stimulation commands to an epiretinally located microelectrode array (Figure 3).
The components of the Argus II retinal prosthesis system (adapted with permission from Second Sight Medical Products).
The Argus II system is implanted using standard pars plana vitrectomy and scleral buckling procedures, and usually the surgery includes removal of the native lens. Following removal of the vitreous and posterior hyaloid face, a conjunctival peritomy is performed and the recti muscles are isolated to allow fixation of an encircling band containing the internal coil and in-built application-specific integrated circuit. A 5 mm sclerotomy is created for insertion of the 60-microelectrode array and the connecting cable. This lies flush on the epiretinal surface and is secured in place using a spring-loaded titanium tack (Figure 4). A scleral allograft (or similar alternative) covers the hermetically-sealed coil and electronics case, which is then re-covered by Tenon’s capsule and conjunctiva, such that the internal components are invisible to the casual observer. To use the device, the external components are worn, including a glasses-mounted camera and external coil, and a portable VPU and power unit [57].
Fundus photograph demonstrating an Argus II microelectrode array in situ.
Throughout the 1990s, Humayun demonstrated that low current stimulation of dissected animal retinal tissue could produce localized retinal responses [66]. This was followed by acute epiretinal stimulation experiments of blind human volunteers, with various forms of retinal degeneration. It was shown that stimulation could elicit subjective phosphenes, which in many cases could be accurately localized and resolved to an equivalent acuity of up to 4/200 [67, 68]. In a subsequent series of acute stimulation tests using multielectrode arrays, two patients were able to identify crude forms from discrete patterns of electrical stimulation, using 400 μm electrodes arranged in 3 × 3 or 5 × 5 grids.
These promising results led to the development of the Argus I epiretinal prosthesis, which was the first device to undergo chronic testing in 2002 in six patients with end-stage RP. The Argus I device included a 4 × 4 array, comprising 16 alternating 250 and 500 μm diameter electrodes. The initial device design was based closely on that of cochlear implants, with an electronic unit surgically positioned in a postauricular recess of the temporal bone, from where a connecting cable would be passed along a groove in the bone and communicate with the intraocularly placed array. The external camera and VPU components captured the images, which, once encoded, were wirelessly transmitted via an antenna, that was magnetically held in position over the internal electronic unit. Results showed coarse functional performance was better than chance with the device on, with one patient able to detect light, motion and simple shapes [69, 70, 71]. In another subject, it was recently shown that the device continued to elicit phosphenes sufficient to permit target localization, orientation and mobility performance better than chance with the device on, 10 years postimplantation [72]. The overall safety and longevity of the device, which demonstrated coarse functional outcomes at a safe charge density limit, led to the development of the Argus II system, with a 6 × 10 microelectrode array and an optimized surgical approach.
The phase II multicenter clinical trial for the Argus II retinal prosthesis system began in 2006, enrolling 28 patients with end-stage RP, one with Leber congenital amaurosis and one with choroideremia. The primary endpoints of this study were safety and visual function, while secondary assessments of functionality included activities of daily living, such as orientation and mobility [57, 73, 74].
Witinn 12 months of the start of the trial, there were 18 reported serious adverse events (SAEs) requiring intervention, occurring in 10 of the 30 implanted patients. These included three cases of presumed endophthalmitis, three cases of conjunctival dehiscence, three cases of conjunctival erosion, two cases of hyptony, two arrays requiring re-tacking and one case each of rhegmatogenous retinal detachment, tractional retinal detachment, a retinal tear, corneal opacification and an inflammatory uveitis. The majority of these SAEs (78%) took place within the first 6 months after implantation and they were clustered among the initial 15 patients (72%). The reduction in SAEs in the second half of the trial was ascribed to refinement of both the device and the implantation procedure during the study, such as inclusion of prophylactic intravitreal antibiotics to the surgical protocol. All SAEs were successfully treated; in the cases of hypotony, the subjects required silicone oil tamponade (in one case for retinal detachment), which led to stabilization of the intraocular pressure [57, 73].
At 36 months, there were five additional reported late SAEs, including two further cases of hypotony and one each of infective keratitis, corneal melt and conjunctival erosion. Within this period, only one device required explantation, due to recurrent conjunctival erosion, and no eyes were enucleated [73]. At 5 years, the latest reported time point, there was only one additional SAE, which was a successfully treated retinal detachment, resulting in a total rate of 24 reported SAEs among 12 (40%) of subjects. A total of three devices have been partially or completely removed at the request of the subjects, while a further seven subjects underwent elective repositioning during the trial to improve the contact of the array with the retina [74].
Overall, this is the largest and longest study of a retinal prosthesis system to date, demonstrating an acceptable safety profile and ongoing functionality and biocompatibility in the majority of subjects. Subsequent case series have shown improved safety profiles in parallel with growing surgical familiarity.
There were three objective assessments used to evaluate visual function in the study. Firstly, a ‘square localization’ task, which involved the subject locating a white square displayed on a black background, indicated by touching the monitor. At 1 year, 94% of subjects could perform the task better with the device on than off. This was maintained at 3 years (89%) and 5 years (80.9%). The second task was ‘direction of motion’, which was assessed by asking the subject to indicate the direction of a high-contrast white line as it moved across the monitor. Initially 57% of subjects performed better than chance with the device on, which was once again maintained at 3 and 5 years (56 and 50%), respectively. Of note, these two tests of visual function were not performed in all subjects at the 1-year time point, due to their introduction partway through the study. Finally visual function was assessed using, ‘grating visual acuity’, which consisted of randomly generated widths of black and white gratings in one of four different orientations, displayed for 5 s on a screen. Throughout the study, 27–48% of patients scored better than 2.9 logMAR equivalent (mean 2.5 logMAR), depending on time point, with 38% performing significantly better with the device on than off at year 5. The best result recorded grating acuity was 1.8 logMAR, which approximates to a Snellen acuity of 20/1262 [57, 73, 74, 75]. The results from these tests of visual function are presented in Figure 5.
Results for square localization (A), direction of motion (B) and grating visual acuity (C) at yearly time-points. Credit: da Cruz et al. [74].
Dorn et al. tested the effect of providing scrambled spatial information to the device compared to one-to-one mapping, to investigate the degree to which the synchronization of multiple electrode stimulation conferred a benefit during motion detection. They found that of the 15 subjects who were able to perform the initial motion detection task better with the device on, 10 (67%) also performed better with one-to-one mapping of spatial information, than with scrambled information [76]. This suggests that the pattern of phosphenes being elicited was important for motion detection, and not that the patient was using the device to detect light, and simply scanning with their head to determine direction.
In the phase II clinical trial, two tests of orientation and mobility were employed. The first involved locating a simulated black door on a white background across the room. The second consisted of the subject following a 6-inch-wide white line on the floor, either configured as a straight line, or with a 90° turn along its length. Successful performance was maintained at ~50 and 70% in each respective task with the device on, which was significantly better than 15–30% success with the device off [57, 73, 74]. Dagnelie et al. found a similar rate of performance success using a real world ‘sidewalk tracking’ test in 27 implanted subjects, showing that 67% performed above chance with the device on, compared to 22% with the system off [77]. Figure 6 illustrates the testing environments for orientation and mobility tasks.
Photographs of subjects performing door finding (A), line tracking (B) and sidewalk tracking (C) tasks. Credit: Humayun et al. [78], Dagnelie et al. [77].
Arsiero et al. demonstrated, among implanted subjects, recognition of eight simple, solid, white shapes on a black background was significantly better the device on (31%) than off (13%), which improved further to 57% when the shapes were presented as outlines [79]. Luo et al. built upon this, presenting seven implanted subjects with eight high-contrast everyday items, both in the solid and outlined forms. It was found that subjects could identify solid objects to the same degree of accuracy with the device on as they could with the device on in the scrambled mode. Although superior to having the device off, this suggested that subjects were relying on visual cues other than the form presented but the array stimulation pattern. When the shapes were presented in their outlined forms, this significantly improved performance with the device on, above either that of the scrambled mode or with the device off [80].
Another real-world task described by Dagnelie et al., consisted of a ‘sock sorting’ task, in which subjects were asked to sort a randomly arranged collection of 10 black, 10 white and 10 grey socks into separate piles, according to colour. Each test was performed on a wooden table, or on a background of the subject’s choice (i.e. black or white). In both scenarios, the subjects performed significantly better on average with the device on than off [77].
In a study of 21 implanted subjects, da Cruz et al. studied functional form vision by assessing ability to discriminate high-contrast letters. Letters were grouped according to typographical complexity and randomly displayed on a computer screen. Measurements from all subjects revealed a correct identification of 72% of group A (least complex) letters, presented at 30 cm, such that they subtended a visual angle of 41.27°. In the study, 19 and 20 subjects respectively completed the group B and group C letters, correctly identifying 55 and 52% in each instance. In all cases, performance was significantly better with the device turned on than off. A subset of six subjects who identified more than 50% of group A letters in fewer than 60 s went on to complete tests to assess the minimum letter size that could be resolved, while four of these six subjects were also assessed for performance on 2-, 3- and 4-letter word identification. The minimum letter size correctly identified was 0.9 cm, subtending a visual angle of 1.7°. On average, four subjects could identify 6.8 out of 10 words, ranging from 11 to 20 cm in height. In all cases, the performance was significantly better when the device was switched on in standard mode, than when scrambled or off [81]. These results are very promising for the capacity of some patients to achieve good spatial resolution, approaching the theoretical limit of the system.
In a series of experiments using a 3D motion-capture system, Luo et al. measured the ability of five subjects to grasp a white block on a black table (Figure 7). With the device turned on, subjects would successfully initiate and complete a grasping action 74% of the time, compared to 0% with the device off [82, 83]. Unlike other object recognition tasks, this study suggests a good capacity for the system to permit performance of hand-eye coordination tasks in a 3D environment, similar to that of the real-world.
Subject performing prehension task (a) with live infrared motion capture of subject’s hand (b). Credit: Luo et al. [82].
An important consideration in visual restoration is the extent to which the recipients judge the system to be beneficial in everyday life. The Functional Low-vision Observer Rated Assessment (FLORA) was developed by Geruschat et al. in order to evaluate the impact of partial restoration of ultra-low vision in subjects undergoing Argus II implantation. Initial results using the FLORA tool demonstrated that it was able to provide useful information about the everyday functional benefit of prosthesis-derived visual restoration, as well as identifying areas in which rehabilitation could be utilized to maximize subjective value. At 1 year, the assessment demonstrated an 80% reported positive effect, which dropped to 65% at 3 years. No patients reported a negative effect using this self-reporting tool [84, 85].
There are several other groups across the world using a variety of techniques to develop retinal prosthetic systems. Currently the intelligent retinal implant system (IRIS) II (Pixium Vision S.A. France) is the only other epiretinal device that has received CE approval. The external components and power induction mechanism of this system are fairly similar to the Argus II system. However, unlike the Argus II system, the 150-microelectrode array receives stimulation commands directly from an infrared array, which is integrated into a glasses-mounted visual interface, thus facilitating high data transfer and device miniaturization [45]. While initial data from the clinical trial were promising for functional and safety outcomes with the IRIS II, the study was postponed following concerns about device longevity [86].
The aforementioned Alpha IMS and its successor, the Alpha AMS (Retina Implant AG, Germany), have both been approved for commercial use in Europe. Utilizing photovoltaic technology, the Alpha IMS has 1500 autonomous photodiode complexes, giving a higher theoretical resolution than the Argus II. To date, this system has yielded safety and functional results similar to the Argus II, albeit with inferior longevity, possibly due to the surgical approach, involving subretinal device placement and a tunnelled link to a postauricular coil for electromagnetic power induction [35, 36, 87]. Preliminary data from trials of the Alpha AMS report considerable improvements in the lifespan of this system.
Finally, the Photovoltaic Retinal Implant (PRIMA) bionic vision system (also Pixium Vision S.A.) is currently undergoing a safety and performance evaluation feasibility study [88]. This subretinal system comprises a modular array set-up with 1 mm-wide hexagonal chips, each containing 142 30 μm-thick pixel cells, each ~70 μm2, which receive visual data from a visual interface as pulsed near infrared light. Multiple photodiodes in series are stimulated, generating sufficient current to polarize the adjacent neuronal tissue with a local concentric return to limit signal diffusion. This system is unique in that it is scalable through insertion of additional chips and does not require any direct transscleral delivery of power or data [37, 89, 90].
Several other groups are also investigating alternative methods of neural stimulation, including optic nerve, cortical and thalamic prostheses [91]. As increasing numbers of patient volunteers undergo implantation with these systems, more data will become available, thus guiding the optimal design characteristics for future generations of devices.
Advancements in visually restorative medicine are not limited to prosthetics, with other regenerative technologies, including stem cells, gene therapy and optogenetics, demonstrating exciting developments in the endeavor to treat blindness [92, 93, 94, 95, 96, 97]. In particular, optogenetics, an approach that is focused on targeting microbial opsin (light-dependent ion channels) to surviving retinal neurons to rescue or restore visual function, has shown exciting results in in vivo animal and in vitro human studies [98, 99, 100]. In addition to the aforementioned organic approaches, these techniques are attractive insofar as they offer a biocompatible, autonomous and scalable alternative to inorganic systems, which could be administered earlier in the disease course as a rescue therapy. It is widely anticipated that these strategies will soon build on the initial success of synthetic prosthetics, or potentially complement them in the form of biohybrid implants.
The success of the Argus II is representative of the enormous progress that has been made in the field of retinal prosthetics over the past 3 decades. However, there remain significant challenges to be overcome before the concept of ‘bionic vision’ is fully realized. Despite this, retinal prostheses have delivered the most compelling form of artificial vision to date, bearing testimony to the value of close collaboration between engineers, clinicians, patients and industry in pushing the boundaries of what is conceivable, let alone scientifically feasible.
The authors declare no potential conflicts of interest or financial support with respect to the authorship and/or publication of this chapter.
IntechOpen will act in accordance with its published Refund Policy if requests for refunds are made.
",metaTitle:"Refund Policy",metaDescription:"IntechOpen will act in accordance with its Refund Policy if requests for refunds are made.",metaKeywords:null,canonicalURL:"/page/refund-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Refunds are possible in the following cases:
\\n\\n1. A double payment, in which case a full refund will be made.
\\n\\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\\n\\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\\n\\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Refunds are possible in the following cases:
\n\n1. A double payment, in which case a full refund will be made.
\n\n2. A justified withdrawal of work by the Author, which had already been accepted during or after production but prior to publication. In this situation, a 50% refund will be made. (IntechOpen reserves the right to determine, at its discretion, whether withdrawal is justified and, consequently, whether a refund should be issued).
\n\n3. In those rare instances where IntechOpen declines to publish a book that had been previously accepted, full refunds will be made to the same account or credit card from which the Author made the original payment.
\n\nPlease note that refunded amounts will not always be exactly the same as original payment amounts due to bank transaction fees and expenses. Any such costs will be split evenly between IntechOpen and the Author.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5311},{group:"region",caption:"Middle and South America",value:2,count:4814},{group:"region",caption:"Africa",value:3,count:1465},{group:"region",caption:"Asia",value:4,count:9355},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14773}],offset:12,limit:12,total:108151},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"9230",title:"Nanosystems",subtitle:null,isOpenForSubmission:!0,hash:"1d1af591d87490c9ad728a1352e62d96",slug:null,bookSignature:"Prof. Tatyana Shabatina and Dr. Vladimir Bochenkov",coverURL:"https://cdn.intechopen.com/books/images_new/9230.jpg",editedByType:null,editors:[{id:"237988",title:"Prof.",name:"Tatyana",surname:"Shabatina",slug:"tatyana-shabatina",fullName:"Tatyana Shabatina"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!0,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:null,bookSignature:"Dr. Evon M.O. Abu-Taieh, Dr. Issam H. Al Hadid and Associate Prof. Abdelkrim El Mouatasim",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:null,editors:[{id:"223522",title:"Dr.",name:"Evon",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8111",title:"Foams - Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"b0bd44cbe7220785e3fbbd1003364a82",slug:null,bookSignature:"Dr. Huijin Xu, Prof. Chen Yang and Dr. Dengwei Jing",coverURL:"https://cdn.intechopen.com/books/images_new/8111.jpg",editedByType:null,editors:[{id:"213843",title:"Dr.",name:"Huijin",surname:"Xu",slug:"huijin-xu",fullName:"Huijin Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8354",title:"Flexible Electronics",subtitle:null,isOpenForSubmission:!0,hash:"8272c1a722a1bb30003b6cedf6cd03bb",slug:null,bookSignature:"Dr. Peng He and Dr. Shuye Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8354.jpg",editedByType:null,editors:[{id:"297762",title:"Dr.",name:"Peng",surname:"He",slug:"peng-he",fullName:"Peng He"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9205",title:"Electron Crystallography",subtitle:null,isOpenForSubmission:!0,hash:"9185ce16fc6f5756cf55fe6082f09fab",slug:null,bookSignature:"Dr. Devinder Singh",coverURL:"https://cdn.intechopen.com/books/images_new/9205.jpg",editedByType:null,editors:[{id:"184180",title:"Dr.",name:"Devinder",surname:"Singh",slug:"devinder-singh",fullName:"Devinder Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9463",title:"An Introduction to Mushroom",subtitle:null,isOpenForSubmission:!0,hash:"989e23dafb2b12c71acfe79ce04c3c2b",slug:null,bookSignature:"Dr. Ajit Kumar Passari and Dr. Sergio Sánchez",coverURL:"https://cdn.intechopen.com/books/images_new/9463.jpg",editedByType:null,editors:[{id:"304710",title:"Dr.",name:"Ajit",surname:"Kumar Passari",slug:"ajit-kumar-passari",fullName:"Ajit Kumar Passari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9210",title:"Quantum Dots",subtitle:null,isOpenForSubmission:!0,hash:"a4343b3c941808702febf1d6b5bda803",slug:null,bookSignature:"Dr. Faten Divsar",coverURL:"https://cdn.intechopen.com/books/images_new/9210.jpg",editedByType:null,editors:[{id:"293418",title:"Dr.",name:"Faten",surname:"Divsar",slug:"faten-divsar",fullName:"Faten Divsar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9321",title:"Microporous and Mesoporous Materials",subtitle:null,isOpenForSubmission:!0,hash:"d5b349cbde0b129c20f31dc02b94d33b",slug:null,bookSignature:"Dr. Rafael Huirache Acuña",coverURL:"https://cdn.intechopen.com/books/images_new/9321.jpg",editedByType:null,editors:[{id:"181660",title:"Dr.",name:"Rafael",surname:"Huirache Acuña",slug:"rafael-huirache-acuna",fullName:"Rafael Huirache Acuña"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9322",title:"Hybrid Nanomaterials",subtitle:null,isOpenForSubmission:!0,hash:"beff6cce44f54582ee8a828759d24f19",slug:null,bookSignature:"Dr. Rafael Vargas-Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/9322.jpg",editedByType:null,editors:[{id:"182114",title:"Dr.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9319",title:"Thermosoftening Plastics",subtitle:null,isOpenForSubmission:!0,hash:"02c4a3b7dcd88ffbe6adcdc060c2465b",slug:null,bookSignature:"Dr. Gülşen Akın Evingür, Dr. Önder Pekcan and Dr. Dimitris S Achilias",coverURL:"https://cdn.intechopen.com/books/images_new/9319.jpg",editedByType:null,editors:[{id:"180256",title:"Dr.",name:"Gülşen",surname:"Akın Evingür",slug:"gulsen-akin-evingur",fullName:"Gülşen Akın Evingür"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9350",title:"Knee Surgery - Reconstruction and Replacement",subtitle:null,isOpenForSubmission:!0,hash:"78aa92dc594a2cc0f60f28b640b28c10",slug:null,bookSignature:"M.Sc. João Bosco Sales Nogueira, Dr. José Alberto Dias Leite, Dr. Leonardo Heráclio Do Carmo Araújo and Dr. Marcelo José Cortez Bezerra",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:[{id:"215718",title:"M.Sc.",name:"João Bosco Sales",surname:"Nogueira",slug:"joao-bosco-sales-nogueira",fullName:"João Bosco Sales Nogueira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9151",title:"Ankle Injuries",subtitle:null,isOpenForSubmission:!0,hash:"5c900036edf7184f25d3a92229ae02b5",slug:null,bookSignature:"Prof. Arie M. Rijke",coverURL:"https://cdn.intechopen.com/books/images_new/9151.jpg",editedByType:null,editors:[{id:"245166",title:"Prof.",name:"Arie M.",surname:"Rijke",slug:"arie-m.-rijke",fullName:"Arie M. Rijke"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:28},{group:"topic",caption:"Computer and Information Science",value:9,count:27},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:74},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:39},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:140},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:23},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:11},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1},{group:"topic",caption:"Osteology",value:1414,count:1},{group:"topic",caption:"Polymer Chemistry",value:1415,count:1}],offset:12,limit:12,total:514},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8408",title:"Titanium Alloys",subtitle:"Novel Aspects of Their Manufacturing and Processing",isOpenForSubmission:!1,hash:"e5533136b732dc4ada818553023d4d55",slug:"titanium-alloys-novel-aspects-of-their-manufacturing-and-processing",bookSignature:"Maciej Motyka, Waldemar Ziaja and Jan Sieniawsk",coverURL:"https://cdn.intechopen.com/books/images_new/8408.jpg",editors:[{id:"101690",title:"Associate Prof.",name:"Maciej",middleName:null,surname:"Motyka",slug:"maciej-motyka",fullName:"Maciej Motyka"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7875",title:"Liver Disease and Surgery",subtitle:null,isOpenForSubmission:!1,hash:"163f3050d8d21a64401f9ef6f7230da5",slug:"liver-disease-and-surgery",bookSignature:"Georgios Tsoulfas and Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/7875.jpg",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7865",title:"Type 2 Diabetes",subtitle:"From Pathophysiology to Modern Management",isOpenForSubmission:!1,hash:"f8b817f1959240ca2551ece7b8d03d75",slug:"type-2-diabetes-from-pathophysiology-to-modern-management",bookSignature:"Mira Siderova",coverURL:"https://cdn.intechopen.com/books/images_new/7865.jpg",editors:[{id:"242582",title:"Associate Prof.",name:"Mira",middleName:null,surname:"Siderova",slug:"mira-siderova",fullName:"Mira Siderova"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7007",title:"Biosensors for Environmental Monitoring",subtitle:null,isOpenForSubmission:!1,hash:"0f0aa079c718ff38aece0a8cecb65f98",slug:"biosensors-for-environmental-monitoring",bookSignature:"Toonika Rinken and Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/7007.jpg",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8326",title:"Recent Advances in Laparoscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"bb33202378533dfccd860269d494d6a6",slug:"recent-advances-in-laparoscopic-surgery",bookSignature:"Francisco M. Sánchez Margallo and Juan A. Sánchez-Margallo",coverURL:"https://cdn.intechopen.com/books/images_new/8326.jpg",editors:[{id:"14715",title:"Prof.",name:"Francisco Miguel",middleName:null,surname:"Sánchez-Margallo",slug:"francisco-miguel-sanchez-margallo",fullName:"Francisco Miguel Sánchez-Margallo"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7879",title:"Spinal Cord Injury Therapy",subtitle:null,isOpenForSubmission:!1,hash:"674d4925395d0e0c564f092bda8c6482",slug:"spinal-cord-injury-therapy",bookSignature:"Antonio Ibarra, Elisa García-Vences and Gabriel Guízar-Sahagún",coverURL:"https://cdn.intechopen.com/books/images_new/7879.jpg",editors:[{id:"72488",title:"Dr.",name:"Antonio",middleName:null,surname:"Ibarra",slug:"antonio-ibarra",fullName:"Antonio Ibarra"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8362",title:"Time Series Analysis",subtitle:"Data, Methods, and Applications",isOpenForSubmission:!1,hash:"7e98dd03d921c19cc2324e91845d5160",slug:"time-series-analysis-data-methods-and-applications",bookSignature:"Chun-Kit Ngan",coverURL:"https://cdn.intechopen.com/books/images_new/8362.jpg",editors:[{id:"227503",title:"Dr.",name:"Chun-Kit",middleName:null,surname:"Ngan",slug:"chun-kit-ngan",fullName:"Chun-Kit Ngan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"6845",title:"Graphene and Its Derivatives",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"63a9783e678fc42ce981efb35be02096",slug:"graphene-and-its-derivatives-synthesis-and-applications",bookSignature:"Ishaq Ahmad and Fabian I. Ezema",coverURL:"https://cdn.intechopen.com/books/images_new/6845.jpg",editors:[{id:"25524",title:"Prof.",name:"Ishaq",middleName:null,surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7304",title:"Geospatial Analyses of Earth Observation (EO) data",subtitle:null,isOpenForSubmission:!1,hash:"e90c7cda0e7f94a6620d6ec83db808ae",slug:"geospatial-analyses-of-earth-observation-eo-data",bookSignature:"Antonio Pepe and Qing Zhao",coverURL:"https://cdn.intechopen.com/books/images_new/7304.jpg",editors:[{id:"99269",title:"Dr.",name:"Antonio",middleName:null,surname:"Pepe",slug:"antonio-pepe",fullName:"Antonio Pepe"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"189",title:"Obstetrics and Gynecology",slug:"obstetrics-and-gynecology",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:45,numberOfAuthorsAndEditors:1183,numberOfWosCitations:203,numberOfCrossrefCitations:176,numberOfDimensionsCitations:514,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"obstetrics-and-gynecology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8471",title:"Prediction of Maternal and Fetal Syndrome of Preeclampsia",subtitle:null,isOpenForSubmission:!1,hash:"327257ae2f4783050d327cd524bf2a3e",slug:"prediction-of-maternal-and-fetal-syndrome-of-preeclampsia",bookSignature:"Nidhi Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/8471.jpg",editedByType:"Edited by",editors:[{id:"220214",title:"Prof.",name:"Nidhi",middleName:null,surname:"Sharma",slug:"nidhi-sharma",fullName:"Nidhi Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8584",title:"Molecular Bases of Endometriosis",subtitle:"The Integration Between Research and Clinical Practice",isOpenForSubmission:!1,hash:"9cc793fe99169a1dc09ad735d5d0955f",slug:"molecular-bases-of-endometriosis-the-integration-between-research-and-clinical-practice",bookSignature:"Giovana Aparecida Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/8584.jpg",editedByType:"Edited by",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6977",title:"Embryology",subtitle:"Theory and Practice",isOpenForSubmission:!1,hash:"4620ebf60e92b453c7e4fde00cd94515",slug:"embryology-theory-and-practice",bookSignature:"Bin Wu and Huai L. Feng",coverURL:"https://cdn.intechopen.com/books/images_new/6977.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Dr.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7163",title:"Infertility, Assisted Reproductive Technologies and Hormone Assays",subtitle:null,isOpenForSubmission:!1,hash:"6db6e4ccb7088f17f819121f7eb6424d",slug:"infertility-assisted-reproductive-technologies-and-hormone-assays",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/7163.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7494",title:"Menstrual Cycle",subtitle:null,isOpenForSubmission:!1,hash:"f3e1135f2d45bbaafe6e61b252108d05",slug:"menstrual-cycle",bookSignature:"Olena Ivanivna Lutsenko",coverURL:"https://cdn.intechopen.com/books/images_new/7494.jpg",editedByType:"Edited by",editors:[{id:"225667",title:"Mrs.",name:"Olena Ivanivna",middleName:null,surname:"Lutsenko",slug:"olena-ivanivna-lutsenko",fullName:"Olena Ivanivna Lutsenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7132",title:"Complications of Pregnancy",subtitle:null,isOpenForSubmission:!1,hash:"d2bdac8e99a71feab10bd0b9e1063bb9",slug:"complications-of-pregnancy",bookSignature:"Hassan Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/7132.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",middleName:"S",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7259",title:"Selected Topics in Midwifery Care",subtitle:null,isOpenForSubmission:!1,hash:"e5010271563ab3bbf99a960a183acb80",slug:"selected-topics-in-midwifery-care",bookSignature:"Ana Polona Mivšek",coverURL:"https://cdn.intechopen.com/books/images_new/7259.jpg",editedByType:"Edited by",editors:[{id:"85109",title:"Dr.",name:"Ana Polona",middleName:null,surname:"Mivšek",slug:"ana-polona-mivsek",fullName:"Ana Polona Mivšek"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7173",title:"Multiple Pregnancy",subtitle:"New Challenges",isOpenForSubmission:!1,hash:"f599a465410812da5aee0b247d427e9b",slug:"multiple-pregnancy-new-challenges",bookSignature:"Julio Elito Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7173.jpg",editedByType:"Edited by",editors:[{id:"35132",title:"Prof.",name:"Julio",middleName:null,surname:"Elito Jr.",slug:"julio-elito-jr.",fullName:"Julio Elito Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6191",title:"Selected Topics in Breastfeeding",subtitle:null,isOpenForSubmission:!1,hash:"3334b831761ffa52e78de6fc681e33b3",slug:"selected-topics-in-breastfeeding",bookSignature:"R. Mauricio Barría P.",coverURL:"https://cdn.intechopen.com/books/images_new/6191.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",middleName:null,surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7175",title:"Placenta",subtitle:null,isOpenForSubmission:!1,hash:"447d49d62164c5437461f3b0aae7a67f",slug:"placenta",bookSignature:"Ahmed R. G.",coverURL:"https://cdn.intechopen.com/books/images_new/7175.jpg",editedByType:"Edited by",editors:[{id:"138555",title:"Prof.",name:"Ahmed",middleName:null,surname:"R.G.",slug:"ahmed-r.g.",fullName:"Ahmed R.G."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6707",title:"Caesarean Section",subtitle:null,isOpenForSubmission:!1,hash:"5efff2e8c75a9e3dc96206b2929c59e7",slug:"caesarean-section",bookSignature:"Georgios Androutsopoulos",coverURL:"https://cdn.intechopen.com/books/images_new/6707.jpg",editedByType:"Edited by",editors:[{id:"173834",title:"Prof.",name:"Georgios",middleName:null,surname:"Androutsopoulos",slug:"georgios-androutsopoulos",fullName:"Georgios Androutsopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6295",title:"Pregnancy and Birth Outcomes",subtitle:null,isOpenForSubmission:!1,hash:"fc1274517f5c0c09b0a923b3027f3d8a",slug:"pregnancy-and-birth-outcomes",bookSignature:"Wei Wu",coverURL:"https://cdn.intechopen.com/books/images_new/6295.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",middleName:null,surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:45,mostCitedChapters:[{id:"30747",doi:"10.5772/27200",title:"Cervical Cancer in Sub Sahara Africa",slug:"cervical-cancer-in-sub-sahara-africa",totalDownloads:7065,totalCrossrefCites:15,totalDimensionsCites:21,book:{slug:"topics-on-cervical-cancer-with-an-advocacy-for-prevention",title:"Topics on Cervical Cancer With an Advocacy for Prevention",fullTitle:"Topics on Cervical Cancer With an Advocacy for Prevention"},signatures:"Atara Ntekim",authors:[{id:"69178",title:"Dr.",name:"Atara",middleName:"I",surname:"Ntekim",slug:"atara-ntekim",fullName:"Atara Ntekim"}]},{id:"43348",doi:"10.5772/55562",title:"Molecular Mechanisms of Platinum Resistance in Ovarian Cancer",slug:"molecular-mechanisms-of-platinum-resistance-in-ovarian-cancer",totalDownloads:3240,totalCrossrefCites:9,totalDimensionsCites:13,book:{slug:"ovarian-cancer-a-clinical-and-translational-update",title:"Ovarian Cancer",fullTitle:"Ovarian Cancer - A Clinical and Translational Update"},signatures:"Gonzalo Tapia and Ivan Diaz-Padilla",authors:[{id:"157073",title:"Dr.",name:"Ivan",middleName:null,surname:"Diaz-Padilla",slug:"ivan-diaz-padilla",fullName:"Ivan Diaz-Padilla"},{id:"166871",title:"Dr.",name:"Gonzalo",middleName:null,surname:"Tapia Rico",slug:"gonzalo-tapia-rico",fullName:"Gonzalo Tapia Rico"}]},{id:"43352",doi:"10.5772/54170",title:"The PI3K/Akt/mTOR Pathway in Ovarian Cancer: Biological Rationale and Therapeutic Opportunities",slug:"the-pi3k-akt-mtor-pathway-in-ovarian-cancer-biological-rationale-and-therapeutic-opportunities",totalDownloads:4907,totalCrossrefCites:2,totalDimensionsCites:12,book:{slug:"ovarian-cancer-a-clinical-and-translational-update",title:"Ovarian Cancer",fullTitle:"Ovarian Cancer - A Clinical and Translational Update"},signatures:"Alexandra Leary, Edouard Auclin, Patricia Pautier and Catherine Lhomme",authors:[{id:"161998",title:"Dr.",name:"Alexandra",middleName:null,surname:"Leary",slug:"alexandra-leary",fullName:"Alexandra Leary"}]}],mostDownloadedChaptersLast30Days:[{id:"62277",title:"Basic Antenatal Care Approach to Antenatal Care Service Provision",slug:"basic-antenatal-care-approach-to-antenatal-care-service-provision",totalDownloads:973,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"selected-topics-in-midwifery-care",title:"Selected Topics in Midwifery Care",fullTitle:"Selected Topics in Midwifery Care"},signatures:"Thembelihle Sylvia Patience Ngxongo",authors:[{id:"243711",title:"Dr.",name:"Thembelihle Sylvia Patience",middleName:null,surname:"Ngxongo",slug:"thembelihle-sylvia-patience-ngxongo",fullName:"Thembelihle Sylvia Patience Ngxongo"}]},{id:"60402",title:"Abnormalities of the Placenta",slug:"abnormalities-of-the-placenta",totalDownloads:968,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"congenital-anomalies-from-the-embryo-to-the-neonate",title:"Congenital Anomalies",fullTitle:"Congenital Anomalies - From the Embryo to the Neonate"},signatures:"Roxana Cristina Drăgușin, Maria Șorop-Florea, Ciprian Laurențiu\nPătru, Lucian Zorilă, Cristian Marinaș, Bogdan Virgiliu Șorop, Răzvan\nCăpitănescu and Dominic Gabriel Iliescu",authors:[{id:"212459",title:"Dr.",name:"Dominic",middleName:null,surname:"Iliescu",slug:"dominic-iliescu",fullName:"Dominic Iliescu"},{id:"212490",title:"Dr.",name:"Dragusin",middleName:null,surname:"Roxana",slug:"dragusin-roxana",fullName:"Dragusin Roxana"},{id:"212493",title:"Dr.",name:"Pătru",middleName:null,surname:"Ciprian",slug:"patru-ciprian",fullName:"Pătru Ciprian"},{id:"212494",title:"Dr.",name:"Șorop-Florea",middleName:null,surname:"Maria",slug:"sorop-florea-maria",fullName:"Șorop-Florea Maria"},{id:"222056",title:"Dr.",name:"Cristian",middleName:null,surname:"Marinaș",slug:"cristian-marinas",fullName:"Cristian Marinaș"},{id:"222057",title:"Dr.",name:"Lucian George",middleName:null,surname:"Zorila",slug:"lucian-george-zorila",fullName:"Lucian George Zorila"},{id:"222058",title:"Dr.",name:"Bogdan Virgiliu",middleName:null,surname:"Sorop",slug:"bogdan-virgiliu-sorop",fullName:"Bogdan Virgiliu Sorop"},{id:"246816",title:"Dr.",name:"Capitanescu",middleName:null,surname:"Razvan",slug:"capitanescu-razvan",fullName:"Capitanescu Razvan"}]},{id:"64704",title:"Normal Menstrual Cycle",slug:"normal-menstrual-cycle",totalDownloads:1182,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"menstrual-cycle",title:"Menstrual Cycle",fullTitle:"Menstrual Cycle"},signatures:"Barriga-Pooley Patricio and Brantes-Glavic Sergio",authors:[{id:"250273",title:"Associate Prof.",name:"Patricio",middleName:null,surname:"Barriga",slug:"patricio-barriga",fullName:"Patricio Barriga"}]},{id:"57672",title:"Ectopic Pregnancy: Diagnosis, Prevention and Management",slug:"ectopic-pregnancy-diagnosis-prevention-and-management",totalDownloads:1390,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"obstetrics",title:"Obstetrics",fullTitle:"Obstetrics"},signatures:"Talal Anwer Abdulkareem and Sajeda Mahdi Eidan",authors:[{id:"201127",title:"Prof.",name:"Talal",middleName:"Anwer",surname:"Abdulkareem",slug:"talal-abdulkareem",fullName:"Talal Abdulkareem"}]},{id:"50021",title:"Staphylococcal Infection and Infertility",slug:"staphylococcal-infection-and-infertility",totalDownloads:2975,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"genital-infections-and-infertility",title:"Genital Infections and Infertility",fullTitle:"Genital Infections and Infertility"},signatures:"Liyun Shi, Huanhuan Wang and Zhe Lu",authors:[{id:"178644",title:"Prof.",name:"Liyun",middleName:null,surname:"Shi",slug:"liyun-shi",fullName:"Liyun Shi"},{id:"184823",title:"Dr.",name:"Huanhuan",middleName:null,surname:"Wang",slug:"huanhuan-wang",fullName:"Huanhuan Wang"},{id:"184824",title:"Dr.",name:"Zhe",middleName:null,surname:"Lu",slug:"zhe-lu",fullName:"Zhe Lu"}]},{id:"48249",title:"Female Sexuality and Medicine – Sexualisation of Everyday Life, Desexualisation of Childbirth",slug:"female-sexuality-and-medicine-sexualisation-of-everyday-life-desexualisation-of-childbirth",totalDownloads:1285,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sexology-in-midwifery",title:"Sexology in Midwifery",fullTitle:"Sexology in Midwifery"},signatures:"Zalka Drglin",authors:[{id:"170766",title:"Ph.D.",name:"Zalka",middleName:null,surname:"Drglin",slug:"zalka-drglin",fullName:"Zalka Drglin"}]},{id:"64141",title:"Early Pregnancy Ultrasound Assessment of Multiple Pregnancy",slug:"early-pregnancy-ultrasound-assessment-of-multiple-pregnancy",totalDownloads:516,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"multiple-pregnancy-new-challenges",title:"Multiple Pregnancy",fullTitle:"Multiple Pregnancy - New Challenges"},signatures:"Panagiotis Antsaklis, Maria Papamichail, Marianna Theodora,\nMichael Syndos and George Daskalakis",authors:[{id:"64707",title:"Dr.",name:"George",middleName:null,surname:"Daskalakis",slug:"george-daskalakis",fullName:"George Daskalakis"},{id:"202113",title:"Dr.",name:"Panagiotis",middleName:null,surname:"Antsaklis",slug:"panagiotis-antsaklis",fullName:"Panagiotis Antsaklis"},{id:"253908",title:"Dr.",name:"Marianna",middleName:null,surname:"Theodora",slug:"marianna-theodora",fullName:"Marianna Theodora"},{id:"268350",title:"Dr.",name:"Maria",middleName:null,surname:"Papamichail",slug:"maria-papamichail",fullName:"Maria Papamichail"},{id:"268351",title:"Dr.",name:"Michael",middleName:null,surname:"Sindos",slug:"michael-sindos",fullName:"Michael Sindos"}]},{id:"62854",title:"The Surgical Technique of Caesarean Section: What is Evidence Based?",slug:"the-surgical-technique-of-caesarean-section-what-is-evidence-based-",totalDownloads:617,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"caesarean-section",title:"Caesarean Section",fullTitle:"Caesarean Section"},signatures:"Jan-Simon Lanowski and Constantin S. von Kaisenberg",authors:[{id:"100660",title:"Prof.",name:"Constantin",middleName:"Sylvius",surname:"Von Kaisenberg",slug:"constantin-von-kaisenberg",fullName:"Constantin Von Kaisenberg"},{id:"240353",title:"Dr.",name:"Jan-Simon",middleName:null,surname:"Lanowski",slug:"jan-simon-lanowski",fullName:"Jan-Simon Lanowski"}]},{id:"41721",title:"Artificial Insemination in Poultry",slug:"artificial-insemination-in-poultry",totalDownloads:7474,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"success-in-artificial-insemination-quality-of-semen-and-diagnostics-employed",title:"Success in Artificial Insemination",fullTitle:"Success in Artificial Insemination - Quality of Semen and Diagnostics Employed"},signatures:"M.R. Bakst and J.S. Dymond",authors:[{id:"155683",title:"Dr.",name:"Murray R.",middleName:null,surname:"Bakst",slug:"murray-r.-bakst",fullName:"Murray R. Bakst"},{id:"167852",title:"Dr.",name:"Jessica",middleName:null,surname:"Dymond",slug:"jessica-dymond",fullName:"Jessica Dymond"}]},{id:"56365",title:"Massive Postpartum Hemorrhage: Protocol and Red Code",slug:"massive-postpartum-hemorrhage-protocol-and-red-code",totalDownloads:1134,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"obstetrics",title:"Obstetrics",fullTitle:"Obstetrics"},signatures:"Jaume Miñano Masip, Laura Almeida Toledano, Sílvia Ferrero\nMartínez and María Dolores Gómez Roig",authors:[{id:"202446",title:"Ph.D.",name:"Maria Dolores",middleName:null,surname:"Gómez Roig",slug:"maria-dolores-gomez-roig",fullName:"Maria Dolores Gómez Roig"},{id:"202447",title:"Dr.",name:"Jaume",middleName:null,surname:"Miñano Masip",slug:"jaume-minano-masip",fullName:"Jaume Miñano Masip"},{id:"202448",title:"Dr.",name:"Laura",middleName:null,surname:"Almeida",slug:"laura-almeida",fullName:"Laura Almeida"},{id:"202449",title:"Dr.",name:"Silvia",middleName:null,surname:"Ferrero",slug:"silvia-ferrero",fullName:"Silvia Ferrero"}]}],onlineFirstChaptersFilter:{topicSlug:"obstetrics-and-gynecology",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"67733",title:"Treatment of Gestational Diabetes",slug:"treatment-of-gestational-diabetes",totalDownloads:117,totalDimensionsCites:0,doi:"10.5772/intechopen.86988",book:{title:"Gestational Diabetes"},signatures:"Ahmed Mohamed Maged"},{id:"67343",title:"A Clinical Insight into Gestational Diabetes",slug:"a-clinical-insight-into-gestational-diabetes",totalDownloads:82,totalDimensionsCites:0,doi:"10.5772/intechopen.85892",book:{title:"Gestational Diabetes"},signatures:"HH Siddiqui, Tarique Mahmood, Mohd. Haris Siddiqui, Paramdeep Bagga, Farogh Ahsan and Arshiya Shamim"},{id:"65616",title:"Insulin Therapy in Gestational Diabetes",slug:"insulin-therapy-in-gestational-diabetes",totalDownloads:345,totalDimensionsCites:0,doi:"10.5772/intechopen.84569",book:{title:"Gestational Diabetes"},signatures:"Anca Pantea-Stoian, Roxana Adriana Stoica and Simona Diana Stefan"}],onlineFirstChaptersTotal:5},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"chapter.detail",path:"/books/advances-in-hematologic-malignancies/effect-of-hyperbaric-oxygen-on-hematopoietic-stem-cell-transplantation",hash:"",query:{},params:{book:"advances-in-hematologic-malignancies",chapter:"effect-of-hyperbaric-oxygen-on-hematopoietic-stem-cell-transplantation"},fullPath:"/books/advances-in-hematologic-malignancies/effect-of-hyperbaric-oxygen-on-hematopoietic-stem-cell-transplantation",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()