Main steps required by a genetic algorithm.
\r\n\tThe overall objective of the book is to propose a methodological/ technological state of play and an operational assessment on the complex issues regarding the management and optimization of the multiple components of a transportation system: users, infrastructures, technologies and services.
\r\n\r\n\tThe book welcomes topics such as smart mobility, smart transportation systems, smart vehicle, smart infrastructures, smart people: citizens and users.
",isbn:"978-1-83880-823-5",printIsbn:"978-1-83880-802-0",pdfIsbn:"978-1-83880-824-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"ef80dab7f0350ea7cb28f40eedea2b35",bookSignature:"Prof. Stefano de Luca, Dr. Roberta Di Pace and Dr. Chiara Fiori",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9872.jpg",keywords:"Transportation, Intelligent Information Systems, Smart Vehicles, Vehicle Management, Driving Assistance Technologies, Smart Infrastructures, Smart Transportation Systems, Sustainable Transportation Systems, Vehicle Routing, Travel Demand Modeling, Life Cycle Assessment, Environmental Impacts Modeling",numberOfDownloads:1006,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:3,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 6th 2020",dateEndSecondStepPublish:"May 27th 2020",dateEndThirdStepPublish:"July 26th 2020",dateEndFourthStepPublish:"October 14th 2020",dateEndFifthStepPublish:"December 13th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Scientific coordinator of the Transportation Planning and Modelling laboratory, a consultant for the Italian Ministry of Transportation, the Transport commission of Campania Region, of Salerno and Avellino Transportation Departments and member of the IEEE Intelligent Transportation Systems Society.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca",profilePictureURL:"https://mts.intechopen.com/storage/users/271061/images/system/271061.jpeg",biography:"Stefano de Luca is a full professor of Transportation Planning and Transportation Systems Theory in the Department of Civil Engineering at the University of Salerno, in Salerno, Italy. Currently he is director of the “Transportation Systems Analysis” laboratory, Rector’s delegate for Transport and Mobility, and Department’s delegate for the Technological Transfer. His research focus includes transportation planning techniques, choice modelling, signal settings design, traffic assignment models, and freight/passenger terminal simulation and optimization. He advises city, regional, and national governments on transportation planning issues, and serves on the Editorial Advisory Board for Transportation Research part F, the Journal of Advanced Transportation and Sustainability. He has authored more than 100 book chapters and journal articles, and has coordinated several national and international projects. He is a consultant for the Italian Ministry of Transportation, the Transport commission of Campania Region, and Salerno and Avellino Transportation Departments. His main research interests include transportation planning techniques, travel demand modeling, users’ behavior modeling, signal settings design, traffic assignment models, and air transportation. He is a member of the IEEE Intelligent Transportation Systems Society, the Italian Society of Transport Academicians (SIDT), and the Italian Society of Transport Policy (SIPOTRA).",institutionString:"University of Salerno",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Salerno",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:{id:"271713",title:"Dr.",name:"Roberta",middleName:null,surname:"Di Pace",slug:"roberta-di-pace",fullName:"Roberta Di Pace",profilePictureURL:"https://mts.intechopen.com/storage/users/271713/images/system/271713.jpeg",biography:'Roberta Di Pace received both the MSc degree and the Ph.D. degree in transportation engineering from the University of Naples "Federico II" (Naples, Italy), in 2005 and 2009 respectively. She is an assistant professor in Transportation Engineering at the Department of Civil Engineering of the University of Salerno (Italy). She is an aggregate professor of Technique and Transport Economics (BSc, Civil Engineering and Environmental Engineering) and Transportation Systems Design (MSc, Civil Engineering). Her main research fields include development of analytical tools for advanced traveler information systems, traffic flow modeling, network signal setting design, and advanced traffic management systems. She is a member of the Transportation Planning and Modelling Laboratory since 2010, and also a member of IEEE Intelligent Transportation Systems Society and IEEE Women in Engineering.',institutionString:"University of Salerno",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salerno",institutionURL:null,country:{name:"Italy"}}},coeditorTwo:{id:"321783",title:"Dr.",name:"Chiara",middleName:null,surname:"Fiori",slug:"chiara-fiori",fullName:"Chiara Fiori",profilePictureURL:"https://mts.intechopen.com/storage/users/321783/images/system/321783.jpg",biography:"Chiara Fiori is an assistant professor at the Department of Civil Engineering of the University of Salerno, Italy. She earned her Ph.D. from Sapienza University of Rome, Italy in 2015, and completed her post-doc at the Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy (2016 to 2019). She acted as Visiting Scientist at the European Commission, Joint Research Center, Directorate for Energy, Transport and Climate Change, Ispra, Italy (2017 to 2018), Visiting Scientist at the Center for Sustainable Mobility of the Virginia Tech Transportation Institute, USA (2015 to 2016), and Visiting Scholar at the Center for Automotive Research of the Ohio State University, USA (2013). Her research interests include sustainable mobility, modeling and simulation for the functional and environmental efficiency improvement of container terminals, integration of microscopic energy consumption model for EVs with traffic control systems, energy consumption modeling and simulation of hybrid and electric powertrains, integration of traffic and energy consumption modeling at microscopic scale, impact assessment of emerging powertrain technologies on route choice behaviors and development of eco-routing strategies for personal and freight mobility, impact assessment of emerging powertrain technologies and charging systems on power electric infrastructure, electric freight logistics, electrification of ports and port operations, well-to-wheels analysis of conventional, hybrid and electric vehicles, impact assessment of emerging railway services (e.g. High Speed/High Capacity services), energy systems, alternative fuels, hydrogen, and renewable sources.",institutionString:"University of Salerno",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salerno",institutionURL:null,country:{name:"Italy"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"73624",title:"BIM Approach for Smart Infrastructure Design and Maintenance Operations",slug:"bim-approach-for-smart-infrastructure-design-and-maintenance-operations",totalDownloads:164,totalCrossrefCites:1,authors:[null]},{id:"73595",title:"Advanced Vehicles: Challenges for Transportation Systems Engineering",slug:"advanced-vehicles-challenges-for-transportation-systems-engineering",totalDownloads:28,totalCrossrefCites:0,authors:[null]},{id:"73941",title:"Towards Shared Mobility Services in Ring Shape",slug:"towards-shared-mobility-services-in-ring-shape",totalDownloads:52,totalCrossrefCites:0,authors:[null]},{id:"74201",title:"Attitudes and Behaviours in Relation to New Technology in Transport and the Take-Up amongst Older Travellers",slug:"attitudes-and-behaviours-in-relation-to-new-technology-in-transport-and-the-take-up-amongst-older-tr",totalDownloads:51,totalCrossrefCites:0,authors:[null]},{id:"73973",title:"Models and Methods for Intelligent Highway Routing of Human-Driven and Connected-and-Automated Vehicles",slug:"models-and-methods-for-intelligent-highway-routing-of-human-driven-and-connected-and-automated-vehic",totalDownloads:107,totalCrossrefCites:0,authors:[null]},{id:"74412",title:"Centralised Traffic Control and Green Light Optimal Speed Advisory Procedure in Mixed Traffic Flow: An Integrated Modelling Framework",slug:"centralised-traffic-control-and-green-light-optimal-speed-advisory-procedure-in-mixed-traffic-flow-a",totalDownloads:79,totalCrossrefCites:0,authors:[null]},{id:"74333",title:"Transit Signal Priority in Smart Cities",slug:"transit-signal-priority-in-smart-cities",totalDownloads:128,totalCrossrefCites:0,authors:[null]},{id:"73356",title:"Optimal Management of Electrified and Cooperative Bus Systems",slug:"optimal-management-of-electrified-and-cooperative-bus-systems",totalDownloads:100,totalCrossrefCites:0,authors:[null]},{id:"73240",title:"Recent Progress in Activity-Based Travel Demand Modeling: Rising Data and Applicability",slug:"recent-progress-in-activity-based-travel-demand-modeling-rising-data-and-applicability",totalDownloads:199,totalCrossrefCites:0,authors:[null]},{id:"73821",title:"Driver Assistance Technologies",slug:"driver-assistance-technologies",totalDownloads:98,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7408",title:"Transportation Systems Analysis and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"1a950b01c0e05eda01c6d2364c7af3aa",slug:"transportation-systems-analysis-and-assessment",bookSignature:"Stefano De Luca, Roberta Di Pace and Boban Djordjevic",coverURL:"https://cdn.intechopen.com/books/images_new/7408.jpg",editedByType:"Edited by",editors:[{id:"271061",title:"Prof.",name:"Stefano",surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"41393",title:"Devices and Techniques for Sensorless Adaptive Optics",doi:"10.5772/53550",slug:"devices-and-techniques-for-sensorless-adaptive-optics",body:'Minimizing the aberrations is the basic concern of all the optical system designers. For this purpose, a large amount of work has been carried out and plenty of literature can be found on the subject. Until the last twenty years, the large majority of the optical design was related to “static” optical systems, where several opto-mechanical parameters, such as refractive index, shape, curvatures, etc. are slowly time dependent. In these systems, simple mechanisms can be adopted to change the relative position of one or more optical elements (for example, the secondary mirror of many astronomical telescopes), or slightly modify their shape and curvature (as in some synchrotron beamlines, where some optical surfaces are mechanically bent) to compensate defocusing. In the last years, a new type of optical systems, that we may call “dynamical”, have heavily occupied the interest of optical designers, opening the possibility of working also in situations where the system environment varies rather quickly with time, either in a controlled or not-controlled way. For this class of optical systems adaptive optics (AO) with a closed loop control system has to be implemented. The correction of dynamical systems was predicted by Babcock in the 1953 [1] and, then, the first prototypes were realized in the early 70s with the purpose of satellite surveillance and launching high power laser beams trough the atmosphere [2]. The most known scientific applications of closed loop correction by means of AO is the acquisition of astronomical images in ground-based telescopes [3] and
In the above mentioned cases the wavefront correction can be operated with a strong reduction in the hardware complexity, in particular by using a sensorless approach. Several techniques have been developed which use these simpler AO systems. They are generally based on the optimization of some merit function that depends on the optical system under consideration.
The algorithms for the sensorless correction can be divided into two main classes: the stochastic and the image-based ones. In the first class, the system is optimized starting from a random set and, then, applying an iterative selection of the best solutions. These algorithms have the advantage of not requiring any preliminary information about the system but they take a lot of time for converging. Many algorithms using this approach have been written and exploited successfully in different fields. Among them the most popular are: genetic algorithms [18, 26, 24], simulated annealing [13], simplex or ant colonies [27]. These approaches have the drawback of requiring a rather long computation time, or many iterations before converging, taking up to several minutes before reaching the desired system optimization.
Other sensorless techniques can be realized by analyzing some specific known feature, either intrinsic to the system or artificially introduced. An example of the latter case can be found in [28-29]. With respect to classical AO systems, the sensorless approach offers the advantage of not needing the wavefront sensor: this reduces the cost of the instrument and avoids all the problems related to maintaining the performance of such a device once installed and aligned. However, the absence of the wavefront sensor implies also some limitations, for instance, a much longer time before reaching an optimal image quality, or a final image not perfectly optimized. Clearly, the required final result and the available resources are the key elements driving the choice towards one system or another. In section 2, we will explain in detail the genetic algorithm and the ant colonies optimization process, while providing a few examples of their application in optical experimental setups.
The image-based algorithms will be explained in section 3, together with a few examples of recently reported successful applications in optical experiments. New devices useful to generate the bias aberrations will also be presented.
A genetic algorithm [30] searches the solution of a problem by simulating the evolution process. Starting from a population of possible solutions, it saves some of the strongest elements, that are the only ones selected to survive, and, thus, are able to reproduce themselves giving rise to the next generations. In general, the inferior individuals can survive and reproduce with a smaller probability.
This strategy allows solving a large class of problems without any initial hypothesis or preliminary knowledge. Its effectiveness was demonstrated in many experimental setups, as will be discussed in the following paragraphs.
The main steps of a genetic algorithm are depicted in Table 1 and in Fig. 1.
\n\t\t\t\t | \n\t\t
Main steps required by a genetic algorithm.
The initial population is chosen randomly in the whole set of possible solutions. The selection function can be either probabilistic or deterministic. In the probabilistic case, the strongest elements have more chances of being selected and of reproducing to the next generation. This decreases the possibility of falling in a “local” maximum solution.
The reproduction function creates new individuals from the old population. There are two kinds of functions: crossover and mutations.
Example: EuristicXOver:
From the parents Va(k-1) and Vb(k-1), the children Va(k) and Vb(k) are generated by the following rule:
Example: Uniform Mutation:
The mutation take an element Vcj(k-1) and mutate it in a new one by the rule:
where w(k) is weight function which decreases with the iteration k.
Diagram representing the genetic algorithm principle. The algorithm starts from a random population and then each individual is measured and the population is sorted according to its fitness. Then, some of the best individuals are selected for the generation of the next population.
The intensity of a laser in its focal spot is largely dependent on the quality of the focal point, and this effect is even stronger in nonlinear optics. Often, in laser systems it is not simple to reach an optimal alignment, so that AO devices can be very useful in these cases.
For example, in ref. [24] it was demonstrated how an AO sensorless optimization based on a genetic algorithm can largely enhance the XUV high-order harmonics (HH) generated by the interaction of an ultrafast laser and a gas jet.
The AO system was composed by an electrostatic deformable mirror (Okotech) placed before the interaction chamber as illustrated in Fig. 2. The feedback for the genetic algorithm was the photon flux at the shortest wavelengths acquired placing a photomultiplier tube at the XUV spectrometer output.
Experimental setup for the optimization of a laser focalization used for high order harmonics generation in ultrafast nonlinear optics. The pulsed laser beam interacts with a gas jet in the interaction chamber. The photomultiplier tube collects the signal from the spectrograph and feeds the genetic algorithm that drives the deformable mirror DM.
The laser pulse was generated by a Ti:S CPA laser system with a hollow-fiber to realize the compression of the pulse duration. The typical values used in the experiment are 6 fs of duration, 200 μJ of pulse energy, at 1 kHz repetition rate (all the experimental details are described in Villoresi et al. 2004). The focusing of the laser pulses on the gas jet, after the modifications introduced by the Deformable Mirror (DM), is obtained by means of a 250 mm focal length spherical mirror. The spectrometer that analyzes the HHs beam is based on a flat varied-line-spacing grazing-incidence grating with two toroidal mirrors.
The real-time acquisition of the spectral intensity is realized by the combination of a solar-blind open microchannel-plate (MCP) with MgF2 photocathode and a phosphor screen placed on the spectrometer focal plane, which converts the HHs XUV spectrum in the visible, and by a photomultiplier which acquires a HHs spectral interval selected with a slit. In this way, the single-shot intensity of a single harmonic, or group of harmonics, is used as feedback by the algorithm. A separate optical channel acquires in parallel the image of all at the MCP, from which the HHs spectrum is obtained.
The genetic algorithm used a population of 80 individuals, with a deterministic selection rule that saved the 13 best ones. Both mutations and crossover were used. The results showed an increase of the XUV photons by a factor of 5 when the algorithm was applied. Moreover, the cutoff region moved to shorter wavelengths as reported in Fig 3. The optimization process took about 20 iterations to converge.
Result of the experimental optimization of the high order harmonics generation spectra in the case of the flat AO mirror (black line) and in the case of the optimized wavefront (red line).
Ant colonies, in natural world, search the food by walking randomly. After having found it, they return to their colony leaving down a pheromone trail. If other ants cross the same trail they will not walk randomly but they will likely follow it and will reinforce the pheromone trail. The more ants will find food at the end of the trail, the more pheromone will mark it. However, since the pheromone evaporates reducing its strength, the described process will make the shortest path which will be the one with the highest density of pheromone, so providing a selection among all the possible paths, as illustrated in Fig. 4.
Ants start randomly their search for food, then the shortest path gets the higher content of pheromone. Finally, the ants will follow with larger probability the path having the highest content of pheromone.
The main essence of the Ant Colonies optimization algorithm [27] is to simulate the ant behavior for the optimization of a given problem. The algorithm steps necessary for running the optimization are listed in Table 2.
\n\t\t\t\t | \n\t\t
Steps of an ant colony algorithm.
As an example we show in Fig. 5 the simulation of the application of the ant colony strategy to a deformable mirror with 32 actuators and 8 bits control. In this example the actuators and their control values are the domain in which the ants can move. In the simulation the shortest path is a parabolic function, which is represented by the red line. Fig. 5 (top) shows the initial random pheromone distribution, while Fig. 5 (bottom) shows the pheromone distribution at the end of the optimization process.
Implementation of an ant colony strategy for the optimization of a deformable mirror with 32 actuators and 8 bit control. The red curve represents the shortest (optimized) path. The top panel shows the initial random pheromone distribution while the bottom panel shows the pheromone at the end of the selection process.
The quality of an optical wavefront plays an important role in Spontaneous Down Conversion (SPDC) process. As demonstrated by [31] the use of a deformable mirror can enhance the generation of photon pairs acting on the wavefront before the generation takes place in the nonlinear crystal. In that system the optimization was carried out by the use of an electrostatic DM (PAN, Adaptica srl) and the application of the ant colonies algorithm.
In the experiment, the pump beam is reflected by the DM to a BBO type-I nonlinear crystal. Then, the degenerate SPDC photons at 808 nm are selected and measured by a high efficiency SPADs (Single Photon Avalanche Diode). Since the wavefront has a strong effect on the downconverted light, it can strongly affect the coupling in the fibers of the SPAD detectors. The feedback for the algorithm imposed the condition of photon coincidences. It was demonstrated in the experiment that the coincidences rate was increased by about 20% when the optimization algorithm was applied. The algorithm used about 80 ants and the convergence took place in about 800 iterations.
Although the stochastic optimization algorithms have been demonstrated to represent important tools for optical experiments, new techniques, which demonstrated to be more effective, have recently been introduced. The use of a modal approach, based on the application of bias aberrations and of a suitable metrics, sorted out some of the limitations of the search algorithms, such as the long convergence time and the need of a training for the determination of the algorithm parameters. This new approach demonstrated to be effective both in visual optics and in laser optimization, as described later in this section. The arbitrary generation of aberrations can be achieved through the use of deformable mirrors, either thanks to a preliminary calibration of them or through the design of a suitable new class of wavefront correctors [32].
Electrostatic membrane deformable mirrors rely on the electrostatic pressure between an actuator pad array and a thin metalized membrane [33]. Thus, the more the actuators the better the wavefront resolution that the mirror can control. The use of these deformable mirrors is, then, subjected to the acquisition of the deformation generated by each electrode. On the other hand, this kind of DMs can also be used with the optimization algorithms. The drawback, in this case, is that the higher the number of actuators the longer will take to the algorithm to converge.
Recently, a new type of deformable mirrors suitable for the direct generation of aberrated wavefronts was designed. The modal membrane deformable mirror, MDM, relies on the use of a graphite layer electrode arrangement (see Fig. 6) for the generation of a continuous distribution of the electric field which allows the generation of the low order aberrations (defocus, astigmatism, coma) and of the spherical aberration.
Electrostatic modal membrane deformable mirror, MDM. (a) Layout of the electrodes of the MDM; (b) voltage and electrostatic pressure distribution which generates the astigmatism shape illustrated in the interferogram shown in (c).
The MDM has already been demonstrated to be effective in several fields, as laser focalization [32], image sharpening and Optical Coherence Tomography ( OCT), as it will be discussed later.
Another device for the generation of aberrations is the PhotoControlled Deformable Mirror (PCDM), which is schematically represented in Fig. 7. This deformable mirror [35, 36] is composed of an electrostatic membrane while the actuator pad array is replaced by a photoconductive material. Thus, the membrane shape depends on the light pattern projected on the photoconductor. Arbitrary actuator pads can be conveniently achieved by illuminating the photoconductive side of the mirror with a commercially available Digital Light Processing (DLP) hand-held projector.
Photo-controlled deformable membrane mirror, PCDM. a) Schematic representation of the PCDM and the projection system allowing to achieve arbitrary actuator pads. b) Left: layout of the electrode pattern; right: correspondingly generated mirror shape; as an example the electrode pattern was chosen to generate astigmatism.
The calculation of the electrode pattern that generates a determined aberration is composed of the following steps:
division of the projector area into small subsets (i.e. 40 × 40);
calculation of the membrane shape for each of the 40 × 40 pixels, solving the Poisson equation by the iterative methods;
determination of the pattern by pseudoinversion of the matrix determined at point b.
A few examples of the realized electrode patterns are shown in Fig. 8, together with the corresponding measurements of the aberrated wavefronts.
Generation of the first four Zernike orders with the photocontrolled deformable mirror; the light patterns necessary for their generation are on the left; the obtained corresponding interferograms are on the right.
We proved that the image quality can be considerably improved by using these adaptive devices in an image sharpening setup. For example, the MDM allowed achieving a significant image sharpening with just about 35 measurements, as illustrated in Fig. 9.
Optimization of an image deteriorated by aberrations; left: initial image; right: image corrected by the MDM (after 35 measurements).
The sharpness of an optical imaging system depends strongly on the wavefront quality. Recently [28] demonstrated that the low spatial frequency in an image can be used as a metric to perform the optimization. The process takes place by the acquisition of a series of images with the application of a predetermined aberration. The images, then, contain the information about the corrections which have to be applied to cancel the aberrations. This technique is very powerful, especially if coupled to the Lukosz modes aberration expansion. The Lukosz modes are similar to the Zernike polynomials: the difference is that the Zernike polynomials are normalized such that a coefficient of value 1 generates a wavefront with a variance of 1 rad2, while the Lukosz functions are normalized such that a value 1 coefficient corresponds to a rms spot radius of λ/(2πNA), where λ is the wavelength and NA is the numerical aperture of the focusing lens.
The peculiarity of this expansion is that the effect of the Lukosz polynomials coefficients {
This implies that the optimization of each mode can be performed independently and requires just the acquisition of three images. Then, the best point for each aberration can be found by interpolating the result with a quadratic function.
Another example of application of wavefront sensorless AO [29] consists in projecting a known point-like source through the optical system under test and then analyzing its image by means of a suitable software [36]. With the information obtained by the analysis of the point source image, the shape of a deformable mirror inserted along the optical path is modified. This process is iteratively repeated through a defined hierarchy, to gradually remove the optical aberrations.
With this technique, the point source image to be analyzed is not directly available and has to be somehow created. As an example, in the case of a fundus camera dedicated to the observation of the human retina, an illuminated pinhole can be projected on the retina itself through a dedicated optical path; this is a standard technique for this type of applications and is not going to introduce a significant complexity in the system. The light that is back-diffused by the retinal fundus acts as a point source, and its wavefront can be analyzed to estimate the aberrations present along the optical path from the retina to the detector.
The closed loop method of correcting the aberrations of an optical system has been verified to be very stable, at least with respect to possible misalignments of the deformable mirror or aging of the mirror membrane that has been used. This stability is inherent in the adopted approach to the problem, which is less ambitious than correcting the wavefront aberration.
The described technique has been verified by means of the rather simple optical setup shown in Fig. 10. The radiation emitted by a LED diode source (SOU) is condensed by a microscope objective lens (Lcond) on a pinhole (PH). The radiation emerging from the pinhole is collected by a zoom collimating lens (Lcoll). The collimated beam passes through a diaphragm (DIA) and a beam splitter (BS) and impinges normally onto a deformable mirror (Mdef). After reflections from Mdef and BS, the beam is compressed by an a-focal Newtonian system (Lcomp1 and Lcomp2) and can, then, follow two different paths: either a) a focusing two-lens system Lfoc that makes the image of the pinhole on a CMOS digital camera (DET), or b) a flip mirror (Mflip) which deviates the beam on a wavefront analyzer (WFA). The latter has been used to measure the wavefront aberrations before and after the correction performed by the DM. With this system, both by varying the focal length of Lcoll and tilting Lcomp1, it was possible to introduce controlled amounts of aberrations on the nominal pinhole image. Then, by the suitable image analysis and consequent estimate of the aberrations, the parameters needed to drive the deformable mirror to improve the image quality have been derived.
Schematic representation of the optical setup used for testing the capability of correcting the system aberrations with a sensorless technique. SOU: source LED diode; Mdef: deformable mirror; DET: CMOS camera for detection; WFA: wavefront analyzer. See text for a complete description.
Even if the apparatus performance was constrained by the limited unidirectional sag of the deformable mirror, the obtained results proof the principle of the adopted methodology. This is clearly demonstrated in Fig. 11, which shows the wavefront error measured with the WFA before and after the deformable mirror correction for three different cases. From these graphs, and more quantitatively from the detailed analysis described in [29], it can be seen that a RMS wavefront error as low as
Wavefront plots (obtained with the wavefront analysis, WFA) before and after the correction applied by the deformable mirror for three considered cases. Top: the main aberration is defocus; Middle: the main aberrations are astigmatism and coma; Bottom: the main aberrations are defocus and astigmatism. The blue dashed lines over plotted to the Z axis represent the total wavefront excursion.
It has to be mentioned that these tests verified that the image analysis algorithm takes less than 100 cycles to reach the optimal condition; since one cycles takes approximately 1/20 - 1/25 s on a standard computer, the whole optimization takes just 4-5 s. Comparing this time with the typical times necessary to optimize other sensorless AO systems, it is evident the significant advantage of this technique, once implemented. The only limitation of this technique is that starting PSF image should give enough signal. In fact, if the point source image is too spread out, the signal to noise ratio can be very poor, substantially inhibiting the system to make a correct image analysis.
Optical coherence tomography, OCT, is an imaging modality allowing acquisition of micrometer-resolution three-dimensional images from the inside of optical scattering media (e.g. biological tissue). OCT is analogous to ultrasound imaging, except that it makes use of light instead of sound. It relies on detecting interferometric signal created by the light back scattered from the sample and from a reference arm in a Michelson or Mach-Zehnder interferometer. OCT has many applications in biology and medicine and can be treated as a sort of optical biopsy without requirement of tissue processing for microscopic examination.
One of the interesting features of OCT is that, unlike in most optical imaging techniques, the axial and lateral resolutions are decoupled, thus allowing for an improved axial resolution, which is independent of transverse resolution. The axial resolution Δz is determined by the roundtrip coherence length of the light source and can be calculated from the central wavelength (λ0) and the bandwidth (∆λ) of the light source as [37]:
The lateral resolution (∆x) in OCT is defined similarly to the confocal scanning laser ophthalmoscopy (cSLO), since OCT is based on a confocal imaging scheme. In many imaging systems, however, the confocal aperture exceeds the size of the Airy disc, which degrades the resolution to the value known from microscopy, i.e. [38]:
Therefore, as for standard microscopy, AO enhanced devices might be necessary to achieve diffraction limited transverse resolution. As a result, only a combination of OCT with AO has the potential to achieve high and isotropic volumetric resolution. The use of broadband light sources that are necessary for OCT and the complexity of both the AO and the OCT technique, make the combination very challenging [39]. In general, any AO-OCT instrument can be divided into two subsystems: an adaptive optics subsystem, with wavefront sensing and wavefront correction, and an interferometric OCT subsystem. In every implementation of AO-OCT all the elements of the AO subsystem are located in the sample arm of the OCT interferometer. Indeed, there is no need to have AO correction in the reference arm because aberrations introduced within this part of the system will not influence the transverse resolution of the image. In most of the AO-OCT systems, a Shack–Hartmann wavefront sensor is used to measure aberrations and, then, to control adaptive optics correction.
Bonora and Zawadzki recently demonstrated that sensorless correction can be implemented in optical coherence tomography by using a specially developed resistive deformable mirror. This novel modal deformable mirror, MDM, was successfully employed in the UC Davis AO-OCT system to image static samples, test targets and tissue phantoms. Fig. 12 shows a schematic representation of the sensorless AO-OCT system used in the experiments.
Schematic representation of the system for sensorless adaptive optics - optical coherence tomography. Note that there is no wavefront sensor in the sample arm. The far-field camera (FF) is used to check if the AO correction generates improved focal spots. DM : deformable mirror; V: vertical mirror galvanometer; H: horizontal mirror galvanometer. In the reference arm: NDF is a neutral density filter. The detection channel comprises a grating (DG) and a linear CCD detector (LSC). The quality of the image acquired with the OCT detection channel is used to search for DM shapes that correct aberrations in the imaged sample. The imaging system used to acquire the data was developed in the Vision Science and Advanced Retinal Imaging Laboratory (VSRI). Details of the OCT system components can be found in [
To test the performance of our sensorless AO-OCT system, we evaluated the image quality of a sample, consisting of a USAF resolution test chart with an adhesive tape glued to its front side, after insertion of a trial lens with 0.5 Diopter astigmatism in front of the imaging objective. We were able to achieve improved resolution by using the following merit function S [41] on the OCT en-face projection images
where I(x,y) is the intensity in the OCT en-face image plane. This approach is simillar to PSF optimization. In fiber based OCT systems single mode fiber introduces OCT beam to the sample and also act as detector for back scattered light. Therefore we have a point source that is imaged by the optical system and the confocal pinhole that allows direct mesurment of light intensity trougput by the system. As expected, the algorithm performed the optimization by adjusting only defocus and astigmatism (see Fig. 13).
Fig. 14 shows some examples of the en-face projection views extracted from OCT volumes: there are the initial view acquired from the sample, and three improved views after correction of additional aberrations, namely, defocus and two astigmatisms. Clearly, at each correction step the images of the test target get sharper. Additionally, the features of the adhesive tape attached to the back of the Air Force test target become more visible as well.
Graph of the Merit Function of AO-OCT images for different values of aberrations generated by the modal deformable mirror. Note that higher values correspond to better AO-corrections.
En-face projection views of the AO-OCT images of the test target for the best corrected values of the Zernike coefficients; (a) before correction, (b) after defocus correction, (c) after defocus and Ast 0° correction, (d) after defocus, Ast 0° and Ast 45° correction.
These recent results demonstrate that wavefront sensorless control is a viable option for imaging biological structures for which AO cannot establish a reliable wavefront that could be corrected by a wavefront corrector. Future refinements of this technique, beyond the simple implementation presented in this chapter, should allow its extension to in-vivo applications. An example of sensorless adaptive optics scanning laser ophthalmoscopy (AO-SLO) for imaging in-vivo human retina has been recently presented [42].
Similarly to the optimization process presented in section 2.1.1 [24], we report here about the optimization of a laser process by the use of a sensorless AO [43]. In the former case, the generation of harmonics from an ultrafast laser was improved by the use of a genetic algorithm. In the latter case, an algorithm derived from the image-based procedure was employed in conjunction with the use of a MDM deformable mirror similar to the one described in section 3.1. The advantages in terms of experimental complexity and convergence time are discussed in the given reference.
In the sensorless case, the laser source was a tunable high energy mid-IR (1.2µm-1.6µm) optical parametric amplifier with 10 Hz repetition rate [44]. The harmonics of the laser were generated by the interaction of the laser pulses with a krypton gas jet. In this system, the infrared pulses and the slow repetition rate made inconvenient, respectively, the use of a wavefront sensor and of an optimization algorithm needing hundreds of iterations.
The experimental setup used for this application is illustrated in Fig. 15. To demonstrate the easiness of integrating the sensorless AO device within the experiment, the optical path before the DM is shown with a dotted line. The additional elements are simply a plane mirror and a resistive MDM, which have been introduced without any complex operations. The system optimization consisted in the increase of the harmonic signal detected by the photomultiplier at the output of the monochromator. The obtained result is illustrated in Fig. 16, where it is possible to see that the photon flux on the photomultiplier is doubled with respect to the one obtained after the correction of the defocus.
Experimental setup for the generation of harmonics from a femtosecond tunable high-energy mid-IR optical parametric amplifier, OPA. Dotted line: optical path before the insertion of the MDM. Red line: optical path realized for the experiment with the deformable mirror.
Optimization of the voltage generated by the photomultiplier over a 50 Ω load for the 5th harmonic at 290 nm, obtained by the use of krypton gas.
In adaptive optics the choice of the optimal correction strategy depends on the required application, desired image quality, and affordable complexity/cost of the final system. In this context, sensorless adaptive optics provides several solutions, most of them implementable at a simplified and relatively low-cost level, that can be exploited for a wide range of applications.
We have presented here both a review of the most diffused systems used in sensorless adaptive optics and some recently developed algorithms and devices. Essentially, two different approaches are employed: those based on random search and the subsequent application of evolutionary strategies, and those based on the application of some bias aberration. In general, the second class of algorithms present a faster convergence.
We have shown several application examples in different fields, such as the optimization of ultrafast nonlinear optical systems for the generation of high order harmonics, the image sharpening in microscopy applications and the enhancement of optical coherent tomography.
Sensorless adaptive optics appears, therefore, as having a great potential for finding new applications in current and future technologies. The continuous improvement of the optimization algorithms and development of novel deformable mirror devices, make the integration of AO into various optical systems increasingly easier. Particularly, the conjunction of sensorless AO with OCT might open the way to a new generation of diagnostic imaging.
The risks due to bacterial contamination and infection to healthcare system and socio-economic stability as well as to environment and food contamination have become global issues [1]. The current approaches are usually not performing well in complex mixtures of opposing microorganisms and environmental conditions devoid of enrichment step. These approaches comprise old-fashioned plating and antibodies-based assays. Therefore, in the skipping of enrichment step, almost all present experiments are not satisfactorily sensitive to sense a distinct or a very small quantity of target bacteria [2]. In contrast, the approaches like hybridization-based assays (ELISA) and polymerase chain reaction (PCR) are sensitive; however, these cannot differentiate the live cells from the dead ones, thus require an augmentation step for specificity and are laborious and expensive. These restrictions can be potentially overwhelmed by developing a biosensor. Biosensor development needs a specific and sensitive bio-probe that can withstand elevated temperature, extreme pH and remain active in diverse and complicated environment. Bacteriophages being sensitive and specific to host bacterium, and showing activity in diverse ionic concentrations are potent agents in biosensor development for detection of bacteria. Phages naturally deliver specificity in recognition of particular bacterial strain to attach, and specifically sense preferred bacterial spectra. Swift recognition offered by phage-based detection can improve the tracing and remediation of bacterial contamination [3]. The main issue that comes with development of phage based biosensor is active and oriented phages immobilization on substrate surface. The benefit of phage immobilization during biosensor development is that phages remain active for long time period, retain physiological activities with high densities, and having high bacterial cells capture efficiencies. Thus, showing improved detection limits that leads to possible development of phage-based biosensor for rapid and accurate bacterial detection [4]. Bacteriophage based biosensor development involve the following phage related approaches: (i) Observing the released phage particles during lytic cycle in the presence of host bacterium, (ii) monitoring released intracellular lysed cell component in the course of phage-mediated bacterial lysis, (iii) detection of inhibited bacterial growth in the presence of specific phages, (iv) use of stained phages for bacterial capture, and (v) observing the expression of cloned reporter gene in genetically modified phages that is expressed after bacterial infection [5].
The conventional bacterial detection techniques such as colony count, bio-chemical and immunological procedures (ELISA) [6], and the modern (PCR) [7] approaches are currently widely in use; however, these approaches are time consuming as these need enrichment step. Consequently, there is a need to develop rapid and sensitive detecting methods. To this end, the use of biosensor, which can sense bacteria at diverse concentrations, are considered well applicable platform owing to their low cost, simplicity, and sensitivity [5]. Figure 1 shows different bacterial detection approaches and Table 1 summarizes comparative study of different bacterial detection methods.
Representation of various bacterial detection approaches.
Bacterial detection method | Personals | Cost and detection time | Tools | Live and dead cells detection | On spot detection | Ref. |
---|---|---|---|---|---|---|
Culture & colony count | Trained users, laborious | Cheap, 5–7 days | Simple | Yes | No | [2, 13, 14] |
PCR | Trained users, laborious, | Costly, 1–4 h | Specialized | No | No | |
ELISA | Trained users, laborious, | Costly, approx.: 4 h | High-tech | No | No | |
Nucleic acids-based-biosensor | Simple, automatic | Expensive, 0.5–2 h | Simple | No | Yes | [2, 15, 16] |
Antibodies-based-biosensor | Simple, automatic | Very expensive, 0.5–2 h | Simple | No | Yes | |
Phage-based-biosensor | Simple, Automatic | Cheap, 0.5–2 h | Simple | Yes | Yes |
A comparison between culture and colony count, advanced molecular, and novel biosensors-based bacterial screening approaches, adapted and modified from [5].
In such methods, bacteria existing in a sample are cultured on different types of media so that to confirm their existence and isolate them. Two main culturing approaches are used, quantitative and qualitative. By qualitative culturing technique, the target bacterial colonies are produced on selective or differential media. In quantitative culturing technique, the specific bacteria are propagated to form specific colonies which can be calculated to evaluate the sum of microorganisms. Finally, different biochemical tests are performed [8].
Immunological approaches, such as ELISA, depend upon the reaction of an antigen with a particular specific antibody. This method is unable to differentiate among living and dead cells and also antibodies production is very expensive [6].
Molecular procedures involve the use of DNA for the detection of target bacteria. For example, PCR, first pronounced in 1980s, is nowadays frequently used for detection of bacteria [7]. Molecular approaches are popular for their high sensitivity and rapidity. Dedicated apparatuses, skilled operators and expensive nature mark their rejection.
According to the proposed definition of biosensor by IUPAC, “Biosensor is a self-controlled imitated device, that is comprise a bio-recognition constituent (bio-prob/bio-receptor), connected to a transducer to translate the biological signal into a computer readable signal and is then presented on computer and analyzed [9] (Figure 2). The bio-probes used in general are bacteriophage, enzyme, whole cell, nucleic acid and antibody. The transducer is electrochemical, optical, or mass based, or combination of these. Typical features of biosensors include; selectivity, reproducibility, detection limit, stability, biocompatibility, sensitivity and linearity [10]. Biosensors are commonly used in medical, diagnostic, quality control, veterinary, food and dairy industry, viral and bacterial diagnostic, agriculture industry, drug production, mining, industrial waste water control, defense and military [11]. Classification of biosensor is based on the recognition element, that is, bio-probe (bacteriophage, enzyme, whole cell, nucleic acid and antibody) used or the type of transducer (electrical, optical, or thermal signals etc.) involved. A representative biosensor is comprised of analyte (target to be sensed), bio-receptor (bio-molecule that identifies the analyte), transducer (responsible for signal transduction) and electronics (display the transduced signal) [5].
Schematics representation of a generalized biosensors, reframed from [
As mentioned earlier, biosensor involves some biological recognition elements like bacteriophages [17], enzyme [18], whole cell [19], nucleic acid [20], and antibody [21], etc. These common bio-probe are briefed in the following sections:
To accomplish the requisite for up-to-date and fast bio-sensing schemes, antibodies (Abs) have become important affinity ligands to detect pathogens in clinical and food samples. Definitely, Abs when immobilized on a surface, these interact with specific antigens present on microbial surfaces, thus inducing a computable signal by an output detector. Abs popularity ascends from numerous benefits, for example, adaptability, ease of incorporation into diverse systems and are highly specific to their target antigens [21].
From the time of first biosensor (glucose sensor by Clark and Lyons in 1962), enzyme-based biosensors have shown immense progress in many applications. Enzymes are precise competent bioanalytical agents, having the ability to precisely mark out their substrates. This distinctive property mark enzymes potent implements in the development of analytical devices [18]. These biosensors company closely a biocatalyst-comprising a detecting coating with a transducer. Its operational principal is based on the catalysis and binding abilities for specific detection.
The sequence of nucleic acids for a precise detection was established in 1953 and is still developing widely [20]. These biosensors involve nucleic acids as a bio-recognition-prob. The high specific binding between the two single strands of DNA (ssDNA) sequences to make double stranded DNA (dsDNA) sequence is used to develop nucleic acids-based biosensor. This technique validated to develop DNA-built-biosensor from the old-style technique like pairing of radio iso-tropic and electrophoretic separations that are costly, dangerous, and time consuming.
These biosensors involve living cells as a bio-probe and detecting component. They are constructed on the basis of living cell ability to sense the physiological parameters, and the extracellular and intracellular micro-environmental conditions, and as a result a response is produced by the reaction between cell and stimulus [19]. Microbial cells, for example fungi and bacteria are commonly used to develop whole cell based biosensors to sense particular molecules or the inclusive “condition” of the nearby environs.
Phages are virus particles, infecting and reproducing only within bacterial cells. Because of their associated evolution along with bacteria, phages have extremely specific machineries to identify and then infect their host bacteria for propagation. Phages generally have two distinctive chunks, the head comprising genetic material while the tail accountable to recognize and attach to bacterial cell [22]. Phages have several biomedical applications, and owing to their specificity they are extensively used for specific and sensitive detection of bacteria [23]. Most significant feature of phages is that they can only identify, and attack living bacterial cells. This exciting feature was well demonstrated by Fernandes et al., to detect viable, viable but not culture-able, or totally dead
A phage as a bio-recognition probe offers numerous benefits in rapid bacterial sensing [17] as they are: (•) extremely specific to their host [26], (•) ability of producing extraordinary titers of descendant phages, (•) tolerant to extreme environmental conditions like ultrahigh temperatures, organic solvents and wide-ranging pH compared to Abs, [27], (•) safe handling, (•) discriminating among dead and live bacteria as they proliferate only in live bacterial cells [28], (•) production in bulk are artless and economical. These compensations make phages as leading bio-recognition probes to develop biosensors for bacterial screening [15]. Frequently designed phage-based biosensor schemes comprise the association of whole phage or phage-constituents, infecting/capturing target bacterial cells and ultimately resulting in the production of electrical, colorimetric, fluorescent, or luminescent etc. signals, based on the available biosensing system. Hence, phages are demonstrating themselves as novel troupes for cheap, fast, sensitive and specific bacterial detection in comparison to other available platforms [29].
Reporter bacteriophages are genetically edited phages used to import and insert a specific gene into the genome of target bacteria. The foreign gene inserted to host bacteria is expressed, bacteria are marked based on available platforms as a colorimetric, optical, or as a fluorescent marker and thus bacterial screening is permitted [30]. Irrespective of, whether reporter bacteriophages are lysogenic or lytic, both can detect potentially the particular pathogenic bacteria. A number of genes, such as insertion of firefly
Phages stained with different fluorescent dyes have been used for target bacterial detection involving various fluorescence sensing tools. Stained phage-probes can discriminate a target bacterium when they infect and attack host cells [33]. Like, phages were tagged with fluorescent quantum dots (QDs) and
Lytic phages infection results in cell burst and consequently intracellular organelles, descendant phages, and cell-lysis materials are released. Both the release of intracellular elements and released progeny phages provide a base to recognize the target bacterium [30]. For example, as a released cell component, adenosine-triphosphate can be detected through bioluminescence just after target bacterial cell lysis [35]. Also the amount of released progeny phages released after cell lysis by a particular phage is directly proportional to the amount of lysed cells and can be used for bacterial sensing [36]. The released progeny phages enumerated by various detection mechanisms such as plaque- or immuno assays, molecular methods like quantitative PCR (qPCR) and, or by isothermal nucleic acid amplification (ITNAA) [37].
Phages that are immobilized on solid matrix can be utilized for capturing specific bacterial cell from contained samples. Bacteriophages have a many functionally active groups like hydroxyl group (—OH), aldehyde group(—CHO), carboxyl group(—COOH), etc., on their exteriors, giving them inimitable characteristics permitting their interaction with other materials and to interact with bacterial surface receptor molecules [38]. Consequently phages have been successfully used to capture particular bacterial cells from different samples [39, 40]. Like streptavidin actuated gold nano-particles were used to immobilize GM T4 bacteriophage particles. Delay in impedance was observed due to bacterial cells binding that marked as a sign for the existence of bacterial cells [41].
Some phage components display natural magnetism to host cell for example receptor-binding proteins (RBPs), but they are highly subtle to variations in environmental conditions. Phage tail bears RBPs and helps in binding to host bacterium, proceeding to insert its genetic material within the cell and cell infection is established [42]. RPBs bind to cell surface with help of specific polypeptide or polysaccharide sequences that are present on the cell surface. Poshtiban and colleagues activated magnetic beads by immobilization of RBP protein Gp047 (from phage NCTC12673). These functionally active beads were then utilized for
It’s obvious from the literature that different approaches have been developed for immobilization of phages on surface of electrodes Figure 3. The common phage immobilization strategies on solid surfaces include physical adsorption [44], covalent bonding [45], entrapment of phages in solid matrix [46], etc.
Different ways to potentially orient phages on solid surfaces. Green highlighted-bacterial binding proteins, (a) tailed phages-side-ways, head-down, or tail-down, (b) asymmetric icosahedral phages, (c) filamentous phages-through either side-ways or, pole, (d) filamentous phages are likely to be bundled or aggregated (left). Oriented typically parallel on the substrate (right), adapted from [
The quantity of randomly oriented phages on solid surfaces is the most straightforward way for enhancing signal in bio-sensing scheme [47]. Deposition of high number of phage particles creates a steric interruption between phage particles [39]. Thus number of phage particles immobilized on solid surface should not surpass a specific threshold per surface area [48]. For T4 phage, estimated optical density was 19 phages/ mm2 area beyond that clogging was happened, resulting in reduced signal [49]. Phage particles can be simply oriented on the surface of electrode as they bear positive and negative potential on their tail fibers and head respectively. Phage immobilization strategies are briefly highlighted in the following context.
Most common approach used for immobilization of phages is physisorption [50, 51]. This approach is very artless, but then again the adsorbed phage may possibly detach as of substrate surface because of shear, changes in pH, or temperature, or ionic concentrations caused in the medium that reduces principally their biosensing applications. Subsequently most phage particles having net negative charge at pH 7 [52], a number of investigators successfully used electrostatic binding for phages immobilization Figure 4, [52]. Also this methodology suffers due to variability and bacteriophage detachment in turn to the physico-chemical fluctuations in the analyte medium. Covalent bonding of phages offered a more stronger attachment and is not at risk to easy detachment of phages [53, 54]. Proper chemical studies can make easy selection of suitable substrate and then potential application. Covalent attachment resulted in a sophisticated bacteriophage surface mass that is principally necessary for phage application in biosensor development [55, 56]. To design bioactive surfaces with phages, phage infectivity is important or at least phage should be able to interact with host bacteria or analyte; therefore, optimization is needed to reduce the effect on bacteriophage integrity during immobilization.
Graphical representation of bacteriophage random immobilization and electrostatic, charge-directed orientated immobilization of T2 phage onto CNT electrode surface functionalized with polyethyleneimine (PEI) [
Bacteriophage-display tools can enable scientist to display peptides of choice present on the phage exterior, that is, phage envelope. Phages expressed peptide can consequently be adsorbed on material surfaces that are coated with peptides specific ligands Figure 5. Phage-display-libraries are produced by introducing DNA segments into specific phages to facilitate each phage to display a specific peptide expressed by the DNA segment inserted [58]. Technology of phage display developed as a combined influence of two central thoughts, fusion phage and combinatorial peptide libraries [59]. The first theory allows display of external peptides on bacteriophage surface [59]; while the second idea hires libraries of numerous peptides achieved in corresponding production as contrasting to production of single specific peptides [60]. Merging these two theories stemmed progress in phage-display-tools, multi-billion clone alignments of self-assembled and self-amplified bio-components [54]. It is significant to keep in mind that genetic alteration may alter the characteristics properties of bacteriophages. For example, biotin-carboxyl-carrier-protein (BCCP) gene or the cellulose-binding-module (CBM) gene to the small-outer-capsid-protein (SOCP) gene of T4 bacteriophage was attached, affecting bacteriophage infectivity, and result was decline in burst size, as well as extended latent period [61].
Current applications of phage display technologies as imaging agents. Icosahedral phages are mostly used as, aiming on moieties for bacterial detection, and substrates for signal amplification. While filamentous phages are mostly used as multifunctional probes, and a variety of sensors [
Bacteriophages immobilization in micro-porous matrices permits them functionally and also structurally stable, keeping them active for long time period. Phages immobilization by entrapment in a porous hydrogel, (bio)polymeric agar and alginate matrices, is a tool for selection of applications where protection of phage particles essential against severe environmental conditions [62]. Additionally, entrapment might aid to maintain moisture, which is important for many phages infectivity, or keep phage particles in lyophilized condition [63]. A fruitful marketable case in point of entrapped bacteriophage in matrix is PhagoBioDerm [64] that is 0.2 mm thick, porous-polymeric-wound-dressing saturated with a mixture of biocides and lytic phages [65]. The matrices used for bacteriophage entrapment, that might possibly delay interaction of entrapped bacteriophage particles with host bacterial cells or analytes that are present in the vicinity of medium [66], marking inefficiency of phage bioactive surface.
Many investigators discovered to possibly immobilize phages by alternative layering with polyelectrolytes having oppositely charges, and claimed observation of enhanced phage particle surface coverage [68, 69]. For instance, a layer by layer methodology for M13 bacteriophage was reported, and phage was sandwiched between oppositely charged layers of weak poly-electrolytes, that was capable to diffuse freely form a nearby packed phage monolayer [69].
The effectiveness of bio-sensing approaches is mostly measured in terms of minimum limit of detection (LOD) of bacterial or other analyte. Thus researchers attempted and focused to improve the bacteriophage surface coverage for pushing detection limits. Significantly keep in mind that the LOD has not been improved biosensors where phages are immobilized by covalent binding, in comparison to the approaches where phage is immobilized by physisorption [22]. Thus, bacteriophage surface coverage is not only the factor to necessarily increase and improve the sensitivity and LOD of bacteriophage-based biosensor. Limit of detection of biosensors, based on various transduction approaches can be different depending on the working principle of selected transduction platform.
Without any doubt, environmental monitoring and food safety are the main universal worries that we humans have to oppose and are constantly struggling to take them over. In this chapter, we evidently demonstrated the principle and development phage-based biosensor. We compared the conventional phage based detection methods and briefed an introduction to different bio-probes involved in biosensors development. Further, we reviewed demonstrative phage/phage-components used in sensors development for pathogenic bacterial detection. Finally, we briefed different techniques to immobilize phages on appropriate substrate that is the major step toward phage-based biosensor development. We intend at thought-provoking and comprehensive explanations in mounting phage-based sensors and enlightening their uses for bacterial detection. By collaboration of engineers and scientists from multidisciplinary area to design a field applicable sensor and make advancements in phage-based sensors for bacterial pathogens diagnosis, we expect that this chapter might bring together the technologies related to phage-based sensors. In short, phage based biosensors in the fields of food safety, environmental monitoring and infectious disease diagnostics is vital as they are;
Cheap (based on easy phages production)
Highly specific
Very sensitive
Versatile (based on phage components)
This work was supported by National Key Research and Development Program of China under Grant 2017YFC1104402, China Postdoctoral Science Foundation (2016 M602291), the initial Research fund from CSC; and 3551 Project, Optics Valley of China.
antibodies enzyme linked immunosorbent assay isothermal nucleic acid amplification International Union of Pure and Applied Chemistry limit of detection polymerase chain reaction quantum dots quantitative polymerase chain reaction receptor-binding proteins biotin-carboxyl-carrier-protein cellulose-binding-module small-outer-capsid-protein
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5817},{group:"region",caption:"Middle and South America",value:2,count:5282},{group:"region",caption:"Africa",value:3,count:1755},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15915}],offset:12,limit:12,total:119159},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:null,isOpenForSubmission:!0,hash:"cfe87b713a8bee22c19361b86b03d506",slug:null,bookSignature:"Dr. Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:null,editors:[{id:"2359",title:"Dr.",name:"Boris",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!0,hash:"d7481712cff0157cd8f849cba865727d",slug:null,bookSignature:"Prof. Sergio Curilef and Dr. Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:null,editors:[{id:"125424",title:"Prof.",name:"Sergio",surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10852",title:"Electromagnetic Compatibility",subtitle:null,isOpenForSubmission:!0,hash:"f5d2cce3a2adbd5d108d3301ee97025b",slug:null,bookSignature:"Dr. Ahmed Kishk",coverURL:"https://cdn.intechopen.com/books/images_new/10852.jpg",editedByType:null,editors:[{id:"150146",title:"Dr.",name:"Ahmed",surname:"Kishk",slug:"ahmed-kishk",fullName:"Ahmed Kishk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:null,bookSignature:"Dr. Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:null,editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10956",title:"Pulsed Lasers",subtitle:null,isOpenForSubmission:!0,hash:"88bd906b149fc3d1c5d6fdbd9916826c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10956.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:46},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5314},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"133",title:"Environmental Pollution",slug:"environmental-pollution",parent:{title:"Environmental Sciences",slug:"environmental-sciences"},numberOfBooks:15,numberOfAuthorsAndEditors:546,numberOfWosCitations:441,numberOfCrossrefCitations:238,numberOfDimensionsCitations:576,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"environmental-pollution",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editedByType:"Edited by",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8863",title:"Hydrocarbon Pollution and its Effect on the Environment",subtitle:null,isOpenForSubmission:!1,hash:"25243b6684e6a441a6bf1f854d49f9e8",slug:"hydrocarbon-pollution-and-its-effect-on-the-environment",bookSignature:"Muharrem Ince and Olcay Kaplan Ince",coverURL:"https://cdn.intechopen.com/books/images_new/8863.jpg",editedByType:"Edited by",editors:[{id:"258431",title:"Prof.",name:"Muharrem",middleName:null,surname:"Ince",slug:"muharrem-ince",fullName:"Muharrem Ince"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7547",title:"Monitoring of Marine Pollution",subtitle:null,isOpenForSubmission:!1,hash:"4700c71016d4ab73a99b22cee68da2fe",slug:"monitoring-of-marine-pollution",bookSignature:"Houma Bachari Fouzia",coverURL:"https://cdn.intechopen.com/books/images_new/7547.jpg",editedByType:"Edited by",editors:[{id:"95997",title:"Dr.",name:"Houma",middleName:null,surname:"Bachari Fouzia",slug:"houma-bachari-fouzia",fullName:"Houma Bachari Fouzia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6975",title:"Air Pollution",subtitle:"Monitoring, Quantification and Removal of Gases and Particles",isOpenForSubmission:!1,hash:"ba35a5093e6aa0bf13500c37a23976f6",slug:"air-pollution-monitoring-quantification-and-removal-of-gases-and-particles",bookSignature:"Jorge Del Real Olvera",coverURL:"https://cdn.intechopen.com/books/images_new/6975.jpg",editedByType:"Edited by",editors:[{id:"166103",title:"Dr.",name:"Jorge",middleName:null,surname:"Del Real Olvera",slug:"jorge-del-real-olvera",fullName:"Jorge Del Real Olvera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7224",title:"Persistent Organic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"06c3095a17bf790c56c71013cc5e3ad6",slug:"persistent-organic-pollutants",bookSignature:"Stephen Kudom Donyinah",coverURL:"https://cdn.intechopen.com/books/images_new/7224.jpg",editedByType:"Edited by",editors:[{id:"26196",title:"Dr.",name:"Stephen Kudom",middleName:null,surname:"Donyinah",slug:"stephen-kudom-donyinah",fullName:"Stephen Kudom Donyinah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,isOpenForSubmission:!1,hash:"cd61e407dc2dc5a74ffe354b294f71a8",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}},{type:"book",id:"6644",title:"Emerging Pollutants",subtitle:"Some Strategies for the Quality Preservation of Our Environment",isOpenForSubmission:!1,hash:"9e03aeca8b09510ef11fcf3621a2a996",slug:"emerging-pollutants-some-strategies-for-the-quality-preservation-of-our-environment",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/6644.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5356",title:"Air Quality",subtitle:"Measurement and Modeling",isOpenForSubmission:!1,hash:"4a7d0d06a1f8d925fcfa9d8b79858729",slug:"air-quality-measurement-and-modeling",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/5356.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4572",title:"Current Air Quality Issues",subtitle:null,isOpenForSubmission:!1,hash:"86ac538cdf00ceeb823842ebdef2997c",slug:"current-air-quality-issues",bookSignature:"Farhad Nejadkoorki",coverURL:"https://cdn.intechopen.com/books/images_new/4572.jpg",editedByType:"Edited by",editors:[{id:"71481",title:"Associate Prof.",name:"Farhad",middleName:null,surname:"Nejadkoorki",slug:"farhad-nejadkoorki",fullName:"Farhad Nejadkoorki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2167",title:"Air Quality",subtitle:"New Perspective",isOpenForSubmission:!1,hash:"bc672efe15af006251c8646150ec78b7",slug:"air-quality-new-perspective",bookSignature:"Gustavo Lopez Badilla, Benjamin Valdez and Michael Schorr",coverURL:"https://cdn.intechopen.com/books/images_new/2167.jpg",editedByType:"Edited by",editors:[{id:"24784",title:"Dr.",name:"Gustavo",middleName:null,surname:"Lopez",slug:"gustavo-lopez",fullName:"Gustavo Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1998",title:"Water Quality",subtitle:"Monitoring and Assessment",isOpenForSubmission:!1,hash:"fd1b9d4bb120268c760014c263f7ef9f",slug:"water-quality-monitoring-and-assessment",bookSignature:"Kostas Voudouris and Dimitra Voutsa",coverURL:"https://cdn.intechopen.com/books/images_new/1998.jpg",editedByType:"Edited by",editors:[{id:"36891",title:"Prof.",name:"Konstantinos (Kostas)",middleName:null,surname:"Voudouris",slug:"konstantinos-(kostas)-voudouris",fullName:"Konstantinos (Kostas) Voudouris"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1322",title:"Air Quality",subtitle:"Monitoring and Modeling",isOpenForSubmission:!1,hash:"2b927fed40df8d0658b55110febe1028",slug:"air-quality-monitoring-and-modeling",bookSignature:"Sunil Kumar and Rakesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/1322.jpg",editedByType:"Edited by",editors:[{id:"86581",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar",slug:"sunil-kumar",fullName:"Sunil Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:15,mostCitedChapters:[{id:"48145",doi:"10.5772/59749",title:"Health Effects of Metals in Particulate Matter",slug:"health-effects-of-metals-in-particulate-matter",totalDownloads:2118,totalCrossrefCites:9,totalDimensionsCites:23,book:{slug:"current-air-quality-issues",title:"Current Air Quality Issues",fullTitle:"Current Air Quality Issues"},signatures:"T.I. Fortoul, V. Rodriguez-Lara, A. Gonzalez-Villalva, M. Rojas-Lemus,\nL. Colin-Barenque, P. Bizarro-Nevares, I. García-Peláez, M. Ustarroz-\nCano, S. López-Zepeda, S. Cervantes-Yépez, N. López-Valdez, N.\nMeléndez-García, M. Espinosa-Zurutuza, G. Cano-Gutierrez and\nM.C. Cano-Rodríguez",authors:[{id:"38601",title:"Dr.",name:"Vianey",middleName:null,surname:"Rodriguez-Lara",slug:"vianey-rodriguez-lara",fullName:"Vianey Rodriguez-Lara"},{id:"38603",title:"MSc.",name:"Adriana",middleName:null,surname:"Gonzalez-Villalva",slug:"adriana-gonzalez-villalva",fullName:"Adriana Gonzalez-Villalva"},{id:"38609",title:"Dr.",name:"Marcela",middleName:null,surname:"Rojas-Lemus",slug:"marcela-rojas-lemus",fullName:"Marcela Rojas-Lemus"},{id:"63230",title:"Dr.",name:"Isabel",middleName:null,surname:"García-Peláez",slug:"isabel-garcia-pelaez",fullName:"Isabel García-Peláez"},{id:"172360",title:"Dr.",name:"Teresa",middleName:null,surname:"Fortoul-van der Goes",slug:"teresa-fortoul-van-der-goes",fullName:"Teresa Fortoul-van der Goes"},{id:"172724",title:"MSc.",name:"Patricia",middleName:null,surname:"Bizarro-Nevares",slug:"patricia-bizarro-nevares",fullName:"Patricia Bizarro-Nevares"},{id:"172725",title:"Dr.",name:"Martha",middleName:null,surname:"Ustarroz-Cano",slug:"martha-ustarroz-cano",fullName:"Martha Ustarroz-Cano"},{id:"172726",title:"Ms.",name:"Sofía",middleName:null,surname:"López-Zepeda",slug:"sofia-lopez-zepeda",fullName:"Sofía López-Zepeda"},{id:"172727",title:"Ms.",name:"Silvana",middleName:null,surname:"Cervantes-Yépez",slug:"silvana-cervantes-yepez",fullName:"Silvana Cervantes-Yépez"},{id:"172728",title:"MSc.",name:"Nelly",middleName:null,surname:"López-Valdez",slug:"nelly-lopez-valdez",fullName:"Nelly López-Valdez"},{id:"172729",title:"Ms.",name:"Nayeli",middleName:null,surname:"Meléndez-García",slug:"nayeli-melendez-garcia",fullName:"Nayeli Meléndez-García"},{id:"172730",title:"Ms.",name:"Maribel",middleName:null,surname:"Espinosa-Zurutuza",slug:"maribel-espinosa-zurutuza",fullName:"Maribel Espinosa-Zurutuza"},{id:"172731",title:"Dr.",name:"Gumaro",middleName:null,surname:"Cano-Gutierrez",slug:"gumaro-cano-gutierrez",fullName:"Gumaro Cano-Gutierrez"},{id:"172733",title:"Dr.",name:"Laura",middleName:null,surname:"Colín-Barenque",slug:"laura-colin-barenque",fullName:"Laura Colín-Barenque"},{id:"173263",title:"Dr.",name:"María Concepción",middleName:null,surname:"Cano-Rodríguez",slug:"maria-concepcion-cano-rodriguez",fullName:"María Concepción Cano-Rodríguez"}]},{id:"35057",doi:"10.5772/33720",title:"Surface Water Quality Monitoring in Nigeria: Situational Analysis and Future Management Strategy",slug:"surface-water-quality-monitoring-in-nigeria-situational-analysis-and-future-management-strategy",totalDownloads:12766,totalCrossrefCites:8,totalDimensionsCites:19,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"A.M. Taiwo, O.O. Olujimi, O. Bamgbose and T.A. Arowolo",authors:[{id:"96826",title:"Prof.",name:"Toyin",middleName:null,surname:"Arowolo",slug:"toyin-arowolo",fullName:"Toyin Arowolo"},{id:"138905",title:"Mr.",name:"Adewale Mathew",middleName:null,surname:"Taiwo",slug:"adewale-mathew-taiwo",fullName:"Adewale Mathew Taiwo"},{id:"138908",title:"Mr.",name:"Olanrewaju Olusoji",middleName:null,surname:"Olujimi",slug:"olanrewaju-olusoji-olujimi",fullName:"Olanrewaju Olusoji Olujimi"},{id:"138915",title:"Prof.",name:"Olukayode",middleName:null,surname:"Bamgbose",slug:"olukayode-bamgbose",fullName:"Olukayode Bamgbose"}]},{id:"17390",doi:"10.5772/17734",title:"Spatial Interpolation Methodologies in Urban Air Pollution Modeling: Application for the Greater Area of Metropolitan Athens, Greece",slug:"spatial-interpolation-methodologies-in-urban-air-pollution-modeling-application-for-the-greater-area",totalDownloads:3060,totalCrossrefCites:6,totalDimensionsCites:19,book:{slug:"advanced-air-pollution",title:"Advanced Air Pollution",fullTitle:"Advanced Air Pollution"},signatures:"Despina Deligiorgi and Kostas Philippopoulos",authors:[{id:"29291",title:"Prof.",name:"Despina",middleName:null,surname:"Deligiorgi",slug:"despina-deligiorgi",fullName:"Despina Deligiorgi"},{id:"38634",title:"MSc.",name:"Kostas",middleName:null,surname:"Philippopoulos",slug:"kostas-philippopoulos",fullName:"Kostas Philippopoulos"}]}],mostDownloadedChaptersLast30Days:[{id:"64674",title:"Nitrogen and Phosphorus Eutrophication in Marine Ecosystems",slug:"nitrogen-and-phosphorus-eutrophication-in-marine-ecosystems",totalDownloads:1716,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"monitoring-of-marine-pollution",title:"Monitoring of Marine Pollution",fullTitle:"Monitoring of Marine Pollution"},signatures:"Lucy Ngatia, Johnny M. Grace III, Daniel Moriasi and Robert Taylor",authors:[{id:"246475",title:"Dr.",name:"Lucy",middleName:null,surname:"Ngatia",slug:"lucy-ngatia",fullName:"Lucy Ngatia"},{id:"256676",title:"Prof.",name:"Robert",middleName:null,surname:"Taylor",slug:"robert-taylor",fullName:"Robert Taylor"},{id:"266289",title:"Dr.",name:"Daniel",middleName:null,surname:"Moriasi",slug:"daniel-moriasi",fullName:"Daniel Moriasi"},{id:"269661",title:"Dr.",name:"Johnny",middleName:null,surname:"Grace III",slug:"johnny-grace-iii",fullName:"Johnny Grace III"}]},{id:"64603",title:"Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies",slug:"detection-and-monitoring-of-marine-pollution-using-remote-sensing-technologies",totalDownloads:3325,totalCrossrefCites:6,totalDimensionsCites:11,book:{slug:"monitoring-of-marine-pollution",title:"Monitoring of Marine Pollution",fullTitle:"Monitoring of Marine Pollution"},signatures:"Sidrah Hafeez, Man Sing Wong, Sawaid Abbas, Coco Y. T. Kwok,\nJanet Nichol, Kwon Ho Lee, Danling Tang and Lilian Pun",authors:[{id:"225316",title:"Dr.",name:"Sawaid",middleName:null,surname:"Abbas",slug:"sawaid-abbas",fullName:"Sawaid Abbas"},{id:"259861",title:"Ms.",name:"Sidrah",middleName:null,surname:"Hafeez",slug:"sidrah-hafeez",fullName:"Sidrah Hafeez"},{id:"259890",title:"Prof.",name:"Man Sing",middleName:null,surname:"Wong",slug:"man-sing-wong",fullName:"Man Sing Wong"}]},{id:"52560",title:"Economics and Air Pollution",slug:"economics-and-air-pollution",totalDownloads:2832,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"air-quality-measurement-and-modeling",title:"Air Quality",fullTitle:"Air Quality - Measurement and Modeling"},signatures:"Fernando Carriazo",authors:[{id:"186900",title:"Dr.",name:"Fernando",middleName:null,surname:"Carriazo",slug:"fernando-carriazo",fullName:"Fernando Carriazo"}]},{id:"52206",title:"Particulate Matter Sampling Techniques and Data Modelling Methods",slug:"particulate-matter-sampling-techniques-and-data-modelling-methods",totalDownloads:2498,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"air-quality-measurement-and-modeling",title:"Air Quality",fullTitle:"Air Quality - Measurement and Modeling"},signatures:"Jacqueline Whalley and Sara Zandi",authors:[{id:"188593",title:"Associate Prof.",name:"Jacqueline",middleName:null,surname:"Whalley",slug:"jacqueline-whalley",fullName:"Jacqueline Whalley"},{id:"188594",title:"Ms.",name:"Sara",middleName:null,surname:"Zandi",slug:"sara-zandi",fullName:"Sara Zandi"}]},{id:"67349",title:"Source and Control of Hydrocarbon Pollution",slug:"source-and-control-of-hydrocarbon-pollution",totalDownloads:807,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"hydrocarbon-pollution-and-its-effect-on-the-environment",title:"Hydrocarbon Pollution and its Effect on the Environment",fullTitle:"Hydrocarbon Pollution and its Effect on the Environment"},signatures:"Manish Srivastava, Anamika Srivastava, Anjali Yadav and Varun Rawat",authors:[{id:"293236",title:"Dr.",name:"Manish",middleName:null,surname:"Srivastava",slug:"manish-srivastava",fullName:"Manish Srivastava"},{id:"300569",title:"Dr.",name:"Anamika",middleName:null,surname:"Srivastava",slug:"anamika-srivastava",fullName:"Anamika Srivastava"},{id:"300570",title:"Dr.",name:"Varun",middleName:null,surname:"Rawat",slug:"varun-rawat",fullName:"Varun Rawat"},{id:"300572",title:"Ms.",name:"Anjali",middleName:null,surname:"Yadav",slug:"anjali-yadav",fullName:"Anjali Yadav"}]},{id:"16221",title:"Application of Remote Sensing Instrument in Air Quality Monitoring",slug:"application-of-remote-sensing-instrument-in-air-quality-monitoring",totalDownloads:2903,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"air-quality-monitoring-assessment-and-management",title:"Air Quality Monitoring, Assessment and Management",fullTitle:"Air Quality Monitoring, Assessment and Management"},signatures:"Chuen Meei Gan, Barry Gross, YongHua Wu and Fred Moshary",authors:[{id:"26638",title:"Ms",name:"Chuen Meei",middleName:null,surname:"Gan",slug:"chuen-meei-gan",fullName:"Chuen Meei Gan"},{id:"32399",title:"Mr.",name:"YongHua",middleName:null,surname:"Wu",slug:"yonghua-wu",fullName:"YongHua Wu"},{id:"32400",title:"Mr.",name:"Barry",middleName:null,surname:"Gross",slug:"barry-gross",fullName:"Barry Gross"},{id:"35185",title:"Dr.",name:"Fred",middleName:null,surname:"Moshary",slug:"fred-moshary",fullName:"Fred Moshary"}]},{id:"37979",title:"Air Quality in Portal Areas: An Index for VOCs Pollution Assessment",slug:"air-quality-in-portal-areas-an-index-for-vocs-pollution-assessment",totalDownloads:1681,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"air-quality-new-perspective",title:"Air Quality",fullTitle:"Air Quality - New Perspective"},signatures:"Davide Astiaso Garcia, Fabrizio Cumo and Franco Gugliermetti",authors:[{id:"149118",title:"Prof.",name:"Fabrizio",middleName:null,surname:"Cumo",slug:"fabrizio-cumo",fullName:"Fabrizio Cumo"},{id:"149129",title:"Dr.",name:"Davide",middleName:null,surname:"Astiaso Garcia",slug:"davide-astiaso-garcia",fullName:"Davide Astiaso Garcia"},{id:"149145",title:"Prof.",name:"Franco",middleName:null,surname:"Gugliermetti",slug:"franco-gugliermetti",fullName:"Franco Gugliermetti"}]},{id:"48283",title:"Indoor Air Quality and Risk Factors Associated with Respiratory Conditions in Nigeria",slug:"indoor-air-quality-and-risk-factors-associated-with-respiratory-conditions-in-nigeria",totalDownloads:1791,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"current-air-quality-issues",title:"Current Air Quality Issues",fullTitle:"Current Air Quality Issues"},signatures:"Godson Rowland Ana, Oyewale Mayowa Morakinyo and Gregory\nAdekunle Fakunle",authors:[{id:"26394",title:"Dr.",name:"Ana",middleName:"Rowland",surname:"Godson",slug:"ana-godson",fullName:"Ana Godson"}]},{id:"48090",title:"Biological Contamination of Air in Indoor Spaces",slug:"biological-contamination-of-air-in-indoor-spaces",totalDownloads:1839,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"current-air-quality-issues",title:"Current Air Quality Issues",fullTitle:"Current Air Quality Issues"},signatures:"Anca Maria Moldoveanu",authors:[{id:"25924",title:"Prof.",name:"Anca",middleName:"Maria",surname:"Moldoveanu",slug:"anca-moldoveanu",fullName:"Anca Moldoveanu"}]},{id:"52290",title:"The Air Quality Influences of Vehicular Traffic Emissions",slug:"the-air-quality-influences-of-vehicular-traffic-emissions",totalDownloads:1107,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"air-quality-measurement-and-modeling",title:"Air Quality",fullTitle:"Air Quality - Measurement and Modeling"},signatures:"Sailesh N. Behera and Rajasekhar Balasubramanian",authors:[{id:"93412",title:"Dr.",name:"Sailesh",middleName:"N",surname:"Behera",slug:"sailesh-behera",fullName:"Sailesh Behera"},{id:"162402",title:"Prof.",name:"Rajasekhar",middleName:null,surname:"Balasubramanian",slug:"rajasekhar-balasubramanian",fullName:"Rajasekhar Balasubramanian"}]}],onlineFirstChaptersFilter:{topicSlug:"environmental-pollution",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/adaptive-optics-progress/devices-and-techniques-for-sensorless-adaptive-optics",hash:"",query:{},params:{book:"adaptive-optics-progress",chapter:"devices-and-techniques-for-sensorless-adaptive-optics"},fullPath:"/books/adaptive-optics-progress/devices-and-techniques-for-sensorless-adaptive-optics",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()