InTech uses cookies to offer you the best online experience. By continuing to use our site, you agree to our Privacy Policy.

Engineering » Biomedical Engineering » "Biomimetics Learning from Nature", book edited by Amitava Mukherjee, ISBN 978-953-307-025-4, Published: March 1, 2010 under CC BY-NC-SA 3.0 license. © The Author(s).

Chapter 3

Photosynthetic Energy Conversion: Hydrogen Photoproduction by Natural and Biomimetic Means

By Suleyman I. Allakhverdiev, Vladimir D. Kreslavski, Velmurugan Thavasi, Sergei K. Zharmukhamedov, Vyacheslav V. Klimov, Seeram Ramakrishna, Hiroshi Nishihara, Mamoru Mimuro, Robert Carpentier and Toshi Nagata
DOI: 10.5772/8785

  1. S. Abraham, 2002 Toward a more secure and cleaner energy future for America: national hydrogen energy roadmap; production, delivery, storage, conversion, applications, public education and outreach, U.S. Department of Energy, Washington, DC

  2. S. I. Allakhverdiev, M. S. Karacan, G. Somer, N. Karacan, E. M. Khan, S. Y. Rane, S. Padhye, V. V. Klimov, G. Renger, 1994a Reconstitution of the water-oxidizing complex in manganese depleted photosystem II complexes by using synthetic binuclear manganese complexes, Biochemistry, 33 12210 12214

  3. S. I. Allakhverdiev, M. S. Karacan, G. Somer, N. Karacan, E. M. Khan, S. Y. Rane, S. Padhye, V. V. Klimov, G. Renger, 1994b Binuclear manganese (III) complexes as electron donors in D1/D2/cytochrome b559 preparations isolated from spinach photosystem II membrane fragments, Z. Naturforsh., 49c 587 592

  4. S. I. Allakhverdiev, V. V. Klimov, 1992 Photoreduction of NADP+ in photosystem II of higher plants: requirement for manganese, Z. Naturforsch., 47c 57 62

  5. S. I. Allakhverdiev, V. D. Kreslavski, V. Thavasi, S. K. Zharmukhamedov, V. V. Klimov, T. Nagata, H. Nishihara, S. Ramakrishna, 2009 Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems, Photochem Photobiol Sci., 8 148 156

  6. S. I. Allakhverdiev, V. D. Kreslavski, V. V. Klimov, D. A. Los, R. Carpentier, P. Mohanty, 2008 Heat stress: An overview of molecular responses in photosynthesis, Photosynth. Res., 98 541 550

  7. S. I. Allakhverdiev, N. Murata, 2008 Salt stress inhibits photosystems II and I in cyanobacteria, Photosynth Res., 98 529 540

  8. S. I. Allakhverdiev, U. Ozdemir, J. Harnois, N. Karacan, S. Hotchandani, V. V. Klimov, N. Murata, R. Carpentier, 1999 Reconstruction of the water-oxidizing complex in manganese-depleted photosystem II preparations using mononuclear manganese complexes, Photochem. Photobiol., 70 57 63

  9. J. H. Alstrum-Acevedo, M. K. Brennaman, T. J. Meyer, 2005 Forum chemical approaches to artificial photosynthesis, Inorg. Chem., 44 6802 6827

  10. Y. Amao, I. Okura, 2002 Photoinduced hydrogen production with the system containing water-soluble viologen-linked porphyrins and hydrogenase, J. Mol. Catal., B, 17 9 21

  11. S. M. Arachchige, J. Brown, K. J. Brewer, 2008 Photochemical hydrogen production from water using the new photocatalyst [{(bpy)2Ru(dpp)}2RhBr2](PF6)5, J. Photochem. Photobiol., 197 13 17

  12. V. Artero, M. Fontecave, 2005 Some general principles for designing electrocatalysts with hydrogenase activity, Coord. Chem. Rev., 249 1518 1535

  13. J. Barber, 2007 Biological solar energy, Phil Trans R Soc A, 365 1007 1023

  14. J. Barber, 2009 Photosynthetic energy conversion: natural and artificial, Chem Soc Rev., 38 185 196

  15. J. Barber, J. Murray, 2008 Revealing the structure of the Mn-cluster of photosystem II by X-ray crystallography, Coord. Chem. Rev., 252 233 243

  16. I. Bhugun, D. Lexa, J. Savéant, M. , 1996 Homogeneous catalysis of electrochemical hydrogen evolution by iron(0) porphyrins, J. Am. Chem. Soc., 118 3982 3983

  17. R. E. Blankenship, 2002 Molecular Mechanisms of Photosynthesis, Blackwell Science, Oxford, U.K.

  18. V. A. Boichenko, S. I. Allakhverdiev, V. G. Ladygin, V. V. Klimov, 1986 Functional conjunction of hydrogenase with photosystem II in whole cells of Chlamydomonas reinhardtii mutants, Dokl. AN SSSR, 290 995 998

  19. V. A. Boichenko, E. Greenbaum, M. Seibert, 2004 Hydrogen production by photosynthetic microorganisms, in Photoconversion of solar energy, molecular to global photosynthesis, (eds. M.D. Archer and J. Barber), Imperial college Press, London, 2 397 452

  20. S. J. Borg, T. Behrsing, S. P. Best, M. Razavet, X. M. Liu, C. J. Pickett, 2004 Electron transfer at a dithiolate-bridged diiron assembly: electrocatalytic hydrogen evolution, J. Am. Chem. Soc., 126 16988 16999

  21. R. Brimblecombe, G. F. Swiegers, G. C. Dismukes, L. Spiccia, 2008 Sustained water oxidation photocatalysis by a bioinspired manganese cluster, Angew. Chem. Int. Ed., 47 7335 7338

  22. G. M. Brown, B. S. Brunschwig, C. Creutz, J. F. Endicott, N. Sutin, 1979a Homogeneous catalysis of the photoreduction of water by visible light. Mediation by a tris (2,2’-bipyridine)ruthenium(II)-cobalt(II) macrocycle system, J. Am. Chem. Soc., 101 1298 1300

  23. G. M. Brown, S. Chan, F. , C. Creutz, H. A. Schwarz, N. Sutin, 1979b Mechanism of the formation of dihydrogen from the photoinduced reactions of tris(bipyridine)ruthenium(II) with tris(bipyridine)rhodium(III), J. Am. Chem. Soc., 101 7638 7640

  24. M. Bruschi, P. Fantucci, L. De Gioia, 2004 Density functional theory investigation of the active site of Fe-hydrogenases. Systematic study of the effects of redox state and ligands hardness on structural and electronic properties of complexes related to the [2Fe]H subcluster, Inorg. Chem., 43 3733 3741

  25. T. G. Carrell, S. Cohen, G. C. Dismukes, 2002 Oxidative catalysis by Mn4O4 6+ cubane complexes, J. Mol. Catal. A, 187 3 15

  26. M. Chou, C. Creutz, D. Mahajan, N. Sutin, A. P. Zipp, 1982 Nature of Bis(2,2’-bipyridine)rhodium(I) in Aqueous Solutions, Inorg. Chem., 21 3989 3997

  27. W. S. Chow, 2003 Photosynthesis: from natural towards artificial, J. Biol. Phys., 29 447 459

  28. G. W. Crabtree, M. S. Dresselhaus, M. V. Buchanan, 2004 The Hydrogen Economy, Physics Today, 57 39 44

  29. P. Connolly, J. H. Espenson, 1986 Cobalt-catalyzed evolution of molecular hydrogen, Inorg. Chem., 25 2684 2688

  30. J. Deisenhofer, H. Michel, 1989 The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis, EMBO J., 8 2149 2170

  31. D. Dutta, D. De , S. Chaudhuri, S. K. Bhattacharya, 2005 Hydrogen production by cyanobacteria, Microb. Cell Fact., 4 36

  32. R. Eisenberg, H. B. Gray, 2008 Preface on Making Oxygen, Inorg. Chem., 47 1697 1699

  33. M. Elvington, J. Brown, S. M. Arachchige, M. Shamindri, K. J. Brewer, 2007 Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection, J. Am. Chem. Soc., 129 10644 10645

  34. A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl, M. Fontecave, 2008 Cobaloxime-based photocatalytic devices for hydrogen production, Angew. Chem. Int. Ed., 47 564 567

  35. L. Florin, A. Tsokoglou, T. Happe, 2001 A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain, J. Biol. Chem., 276 6125 6132

  36. T. Förster, 1948 Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys., 437 55 75

  37. M. L. Ghirardi, P. King, S. Kosourov, M. Forestier, L. Zhang, M. Seibert, 2005 Development of algal systems for hydrogen photoproduction: addressing the hydrogenise oxygen sensitivity problem, in Artificial Photosynthesis: From Basic Biology to Industrial Application, (eds. A.F Collings and C. Critchley), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 213 227

  38. M. L. Ghirardi, W. Amos, 2004 Renewable hydrogen from green algae, Biocycle, 45 59 62

  39. M. L. Ghirardi, M. C. Posewitz, P. C. Maness, A. Dubini, J. Yu, M. Seibert, 2007 Hydrogenase and hydrogen photoproduction in oxygenic photosynthetic organisms, Annu. Rev. Plant Biol., 58 71 91

  40. M. L. Ghirardi, R. K. Togasaki, M. Seibert, 1997 Oxygen sensitivity of algal H2-production, Appl. Biochem. Biotechnol., 63-65 , 141 151

  41. M. L. Ghirardi, L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, A. Melis, 2000 Microalgae: a green source of renewable H2, T rends Biotechnol., 18 506 511

  42. F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, 2001 Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate, J. Am. Chem. Soc., 123 9476 9477

  43. F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, M. Bénard, M. Rohmer, M. , 2002 Bimetallic carbonyl thiolates as functional models for Fe-only hydrogenases, Inorg. Chem., 41 6573 6582

  44. I. N. Gogotov, 1986 Hydrogenases of phototrophic microorganisms, Biochimie, 68 181 187 .

  45. J. I. Goldsmith, W. R. Hudson, M. S. Lowry, T. H. Anderson, S. Bernhard, 2005 Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production, J. Am. Chem. Soc., 127 7502 7510

  46. M. Grätzel, 2001 Photoelectrochemical cells, Nature, 414 338 344

  47. C. Herrero, B. Lassallekaiser, W. Leibl, A. Rutherford, A. Aukauloo, 2008 Artificial systems related to light driven electron transfer processes in PS II, Coord. Chem. Rev., 252 456 468

  48. B. Hinnermann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Norskov, 2005 Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalysts for Hydrogen Evolution, J. Am. Chem. Soc., 127 5308 5309

  49. H. Holm, P. Kennepohl, E. I. Solomon, 1996 Structural and functional aspects of metal sites in biology, Chem. Rev., 96 2239 2314

  50. S. Hotchandani, U. Ozdemir, S. I. Allakhverdiev, N. Karacan, V. V. Klimov, P. V. Kamat, R. Carpentier, 2000 Redox characteristics of manganese and cobalt complexes obtained from pyridine N-oxide, Bioelectrochem., 51 175 180

  51. S. Hotchandani, U. Ozdemir, C. Nasr, S. I. Allakhverdiev, N. Karacan, V. V. Klimov, P. V. Kamat, R. Carpentier, 1999 Redox characterization of schiff base manganese and cobalt complexes related to water-oxidizing complex of photosynthesis, Bioelectrochem. Bioenerg., 48 53 59

  52. X. Hu, B. M. Cossairt, B. S. Brunschwig, N. S. Lewis, J. C. Peters, 2005 Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes, Chem. Commun, 37 4723 4725

  53. T. L. James, L. S. Cai, M. C. Muetterties, R. H. Holm, 1996 Dihydrogen evolution by protonation reactions of nickel(I), Inorg. Chem., 35 4148 4161

  54. D. L. Jiang, C. Choi, K. , K. Honda, W. S. Li, T. Yuzawa, T. Aida, 2004 Photosensitized Hydrogen Evolution from Water Using Conjugated Polymers Wrapped in Dendrimeric Electrolytes, J. Am. Chem. Soc., 126 12084 12085

  55. Jones Jr, W. E. , M. A. Fox, 1994 Determination of excited-state redox potentials by phase-modulated voltammetry, J. Phys. Chem., 98 5095

  56. A. K. Jones, S. E. Lamle, H. R. Pershad, K. A. Vincent, S. P. Albracht, F. A. Armstrong, 2003 Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase, J. Am. Chem. Soc., 125 8505 8514

  57. P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger, N. Krauss, 2001 Three-dimensional structure of cyanobacterial photosytstem I at 2.5 Å resolution, Nature, 411 909 917

  58. A. Kayal, T. B. Rauchfuss, 2003 Protonation studies of the new iron carbonyl cyanide trans-[Fe(CO)3(CN)2]2-: implications with respect to hydrogenases, Inorg. Chem., 42 5046 5048

  59. M. Kawamura, M. Mimuro, Y. Fujita, 1979 Quantitative relationship between two reaction centers in the photosynthetic system of blue-green algae, Plant Cell Physiol., 20 697 705

  60. R. M. Kellet, T. G. Spiro, 1985a Cobalt(I) porphyrin catalysis of hydrogen production from water, Inorg. Chem., 24 2378 2382

  61. R. M. Kellet, T. G. Spiro, 1985b Cobalt porphyrin electrode films as H2 evolution catalysts, Inorg. Chem., 24 2373 2377

  62. V. V. Klimov, G. M. Ananyev, S. I. Allakhverdiev, S. K. Zharmukhamedov, M. Mulay, U. Hedge, S. Padhye, 1990 Photoreaction and photoinactivation of photosystem II after a complete removal of manganese from pea subchloroplast particles, in Current Research in Photosynthesis, (ed. M. Baltscheffsky), Kluwer Academic Publishers, Dordrecht, 247 254

  63. V. V. Klimov, S. I. Allakhverdiev, S. Demeter, A. A. Krasnovsky, 1979 Photoreduction of pheophytin in the photosystem 2 of chloroplasts depending on the oxidation-reduction potential of the medium, Dokl. Acad. Nauk SSSR, 249 227 230

  64. V. V. Klimov, S. I. Allakhverdiev, V. A. Shuvalov, A. A. Krasnovsky, 1982 Effect of extraction and readdition of manganese on light reactions of photosystem II preparations, FEBS Lett., 148 307 312

  65. U. Koelle, 1992 Transition Metal-catalyzed Proton Reduction, New J. Chem., 16 157 169

  66. U. Koelle, S. Paul, 1986 Electrochemical reduction of protonated cyclopentadienylcobalt phosphine complexes, Inorg. Chem., 25 2689 2694

  67. E. N. Kondratieva, I. N. Gogotov, 1981 Molecular hydrogen in microbia metabolism. Moscow, Nauka. 344

  68. S. Kosourov, M. Seibert, M. L. Ghirardi, 2003 Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing cultures, Plant Cell Physiol., 44 146 155

  69. V. D. Kreslavski, R.. Carpentier, V. V. Klimov, N. Murata, S. I. Allakhverdiev, 2007 Molecular mechanisms of stress resistance of the photosynthetic apparatus, Membr. Cell Biol., 1 185 205

  70. O. Kruse, J. Rupprecht, K. P. Bader, S. Thomas-Hall, P. M. Schenk, G. Finazzi, B. Hankamer, 2005a Improved photobiological H2 production in engineered green algal cells, J. Biol. Chem., 280 34170 34177

  71. O. Kruse, J. Rupprecht, J. H. Mussgnug, G. C. Dismukes, B. Hankamer, 2005b Photosynthesis: a blue print for energy capture and conversion technologies, Photochem. Photobiol., 4 957 970

  72. W. Kühlbrandt, D. N. Wang, Y. Fujiyoshi, 1994 Atomic model of plant light-harvesting complex by electron crystallography, Nature, 367 614 621

  73. T. V. Laurinavichene, A. S. Fedorov, M. L. Ghirardi, M. Seibert, A. A. Tsygankov, 2006 Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells, Int. J. Hydrog. Ener., 31 659 667

  74. T. V. Laurinavichene, S. N. Kosourov, M. L. Ghirardi, M. Seibert, A. A. Tsygankov, 2008 Prolongation of H2 photoproduction by immunobilized, sulfur-limited Chlamydomonas reinhardtii cultures, J. Biotech., 134 275 277

  75. T. V. Laurinavichene, I. V. Tolstygina, R. R. Galiulina, M. L. Ghirardi, M. Seibert, A. A. Tsygankov, 2002 Different methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction, Int. J. Hydrog. Ener., 27 1245 1249

  76. D. A. La Van , J. N. Cha, 2006 Approaches for biological and biomimetic energy conversion, Proc. Natl. Acad. Sci. USA, 103 5251 5255

  77. J. Lehn, M. , J. P. Sauvage, 1977 Chemical storage of light energy: Catalytic generation of hydrogen by visible light or sunlight irradiation of neutral aqueous solutions, Nouv. J. Chim. 1 449 451 .

  78. D. Lexa, V. Grass, J. M. Savéant, 1997 Electrochemical generation of rhodium porphyrin hydride. Catalysis of hydrogen evolution, J. Am. Chem. Soc., 119 7526 7532

  79. S. Licheng, A. Bjoern, O. Sascha, 2005 Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production, Coord. Chem. Rev., 249 1563 1663

  80. B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, 2005 Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature, 438 1040 1044

  81. R. Lomoth, A. Magnuson, M. Sjödin, P. Huang, S. Styring, L. Hammarström, 2006 Mimicking the electron donor side of Photosystem II in artificial photosynthesis, Photosynth. Res., 87 25 40

  82. W. Lubitz, E. J. Reijerse, J. Messinger, 2008 Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases, Energy Environ Sci., 1 15 31

  83. V. V. Makarova, S. Kosourov, T. E. Krendeleva, B. K. Semin, G. P. Kukarskikh, A. B. Rubin, R. T. Sayre, M. L. Ghirardi, M. Seibert, 2007 Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired photosystem II photochemical activity, Photosynth. Res., 94 79 89

  84. S. V. Mal’tsev, S. I. Allakhverdiev, V. V. Klimov, A. A. Krasnovsky, 1988 Hydrogen evolution by subchloroplast preparations of photosystem II from pea and spinach, FEBS Lett., 240 1 5

  85. J. P. Mc Evoy, G. W. Brudvig, 2006 Water-Splitting Chemistry of Photosystem II, Chem. Rev., 106 4455 4483

  86. A. Melis, 2007 Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae), Planta, 226 1075 1086

  87. A. Melis, 2005 Bioengineering of green algae to enhance photosynthesis and hydrogen production, in Artificial Photosynthesis: From Basic Biology to Industrial Application, (eds. A.F. Collings and C. Critchley), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 229 240

  88. A. Melis, J. Neidhardt, J. R. Benemann, 1999 Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells, J. Appl. Phycol., 10 515 525

  89. A. Melis, L. Zhang, M. Forestier, M. L. Ghirardi, M. Seibert, 2000 Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii, Plant Physiol., 122 127 133

  90. A. Moradpour, E. Amouyal, P. Keller, H. Kagan, 1978 Hydrogen production by visible light irradiation of aqueous solutions of tris(bipyridine)ruthenium(2+), Nouv. J. Chim., 2 547 549

  91. J. W. Murray, K. Maghlaoui, J. Kargul, N. Ishida, T. L. Lai, A. W. Rutherford, M. Sugiura, A. Boussac, J. Barber, 2008 X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of photosystem II, Energy Environ Sci., 1 161 166

  92. T. Nagasawa, S. I. Allakhverdiev, Y. Kimura, T. Nagata, 2009 Photooxidation of alcohols by a porphyrin/quinone/TEMPO system, Photochem. Photobiol. Sci., 8 174 180

  93. T. Nagasawa, T. Nagata, 2007 Synthesis and electrochemistry of Co(III) and Co(I) complexes having C5Me5 auxiliary, Biochim. Biophys. Acta, 1767 666 670

  94. T. Nagata, Y. Kikuzawa, 2007 An approach towards artificial quinone pools by use of photo- and redox-active dendritic molecules, Biochim. Biophys. Acta, 1767 648 652

  95. T. Nagata, T. Nagasawa, S. K. Zharmukhamedov, V. V. Klimov, S. I. Allakhverdiev, 2007 Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations using synthetic binuclear Mn(II) and Mn(IV) complexes: production of hydrogen peroxide, Photosynth. Res., 93 133 138

  96. T. Nagata, S. K. Zharmukhamedov, A. A. Khorobrykh, V. V. Klimov, S. I. Allakhverdiev, 2008 Reconstitution of the water-oxidizing complex in manganese-depleted.photosystem II preparations using synthetic Mn complexes: a fluorine-19 NMR study of the reconstitution process, Photosynth. Res., 98 277 284

  97. Y. Naruta, M. Sasayama, T. Sasaki, 1994 Oxygen Evolution by Oxidation of Water with Manganese Porphyrin Dimers, Angew. Chem. Int. Ed. Engl., 33 1839 1841

  98. P. Ngweniform, Y. Kusumoto, T. Teshima, M. Ikeda, S. Somekawa, B. Ahmmad, 2007 Visible-light induced hydrogen production using a polypeptide-chlorophyll complex with alpha-helix conformation, Photochem. Photobiol. Sci., 6 165 170

  99. J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, 2005 Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc., 152 J23 J26

  100. J. K. Norskov, C. H. Christensen, 2006 Toward Efficient Hydrogen Reduction at Surfaces, Science, 312 1322 1323

  101. S. Ogo, R. Kabe, K. Uehara, B. Kure, T. Nishimura, S. C. Menon, R. Harada, S. Fukuzumi, Y. Higuchi, T. Ohhara, T. Tamada, R. Kuroki, 2007 A dinuclear Ni(µ-H)Ru complex derived from H2, Science, 316 585 587

  102. B. O’Regan, M. Grätzel, 1991 A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353 737 740

  103. H. Ozawa, M. Haga, K. Sakai, 2006 A Photo-hydrogen-evolving Molecular Device Driving Visible-light-induced EDTA-reduction of water into Molecular Hydrogen, J. Am. Chem. Soc., 128 4926 4927

  104. W. Peters, W. N. Lanzilotta, B. J. Lemon, L. C. Seefeldt, 1998 X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution, Science, 282 1853 1858

  105. R. C. Prince, H. S. Kheshgi, 2005 The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel, Crit. Rev. Microbiol., 31 19 31

  106. V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, H. Tamiaki, 2002 Energy Transfer in Supramolecular Artificial Antenna Units of Synthetic Zinc Chlorins and Co-Aggregated Energy Traps. A Time-Resolved Fluorescence Study, J. Phys. Chem., B, 106 5761 5768

  107. K. K. Rao, D. O. Hall, 1996 Hydrogen production by cyanobacteria: potential, problems and prospects, J. Mar. Biotecnol., 4 10 15

  108. T. B. Rauchfuss, 2004 Research on soluble metal sulfides: from polysulfido complexes to functional models for the hydrogenases, Inorg. Chem., 43 14 26

  109. T. B. Rauchfuss, 2007 A Promising mimic of hydrogenase activity, Science, 316 553 554 .

  110. T. Riis, E. F. Hagen, P. J. S. Vie, Ø. Ulleberg, 2005 Hydrogen Production- Gaps and Priorities, HIA-HCG-Production, 2005-03-15-rev1 -final. doc.

  111. J. Rupprecht, B. Hankamer, J. H. Mussgnug, G. Ananyev, G. C. Dismukes, O. Kruse, 2006 Perspectives and advances of biological H2 production in microorganisms, Appl. Mic robiol. Biotechnol., 72 442 449

  112. K. Sakai, H. Ozawa, 2007 Homogeneous catalysis of platinum(II) complexes in photochemical hydrogen production from water, Coord. Chem. Rev., 251 2753 2766

  113. M. Sakamoto, T. Kamachi, L. Okura, A. Ueno, H. Mihara, 2001 Photoinduced hydrogen evolution with peptide dendrimer-multi-Zn(II)-porphyrin, viologen, and hydrogenase, Biopolymers, 59 103 109

  114. H. Sakurai, H. Masukawa, 2007 Promoting R & D in Photobiological Hydrogen Production Utilizing Mariculture-Raised Cyanobacteria, Marine Biotechnol., 9 128 145

  115. X. Sala, I. Romero, M. Rodriguez, L. Escriche, A. Llobet, 2009 Molecular Catalysts that Oxidize Water to Dioxygen, Angew. Chem. Int. Ed., 48 2842 2852

  116. P. E. M. Siegbahn, 2004 Proton and Electron Transfers in Ni-Fe Hydrogenase, Adv. Inorg. Chem., 56 101 125

  117. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, 1999 Photovoltaic technology: The case for thin-film solar cells, Science, 285 692 698

  118. W. D. Swingley, M. Chen, P. C. Cheung, A. L. Conrad, L. C. Dejesa, J. Hao, B. M. Honchak, L. E. Karbach, A. Kurdoglu, S. Lahiri, S. D. Mastrian, H. Miyashita, L. Page, P. Ramakrishna, S. Satoh, W. M. Sattley, Y. Shimada, H. L. Taylor, T. Tomo, T. Tsuchiya, Z. T. Wang, J. Raymond, M. Mimuro, R. E. Blankenship, J. W. Touchman, 2008 Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina, Proc. Natl. Acad. Sci. USA, 105 2005 2010

  119. P. Tamagnini, J. L. Costa, L. Almeida, Salema. R. Oliveira, P. Lindblad, Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 2000 40 356 361

  120. P. Tamagnini, R. Axelsson, P. Lindberg, F. Oxelfelt, R. Wunschiers, P. Lindblad, 2002 Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev;66 1 20

  121. C. Tard, X. M. Liu, S. K. Ibrahim, M. Bruschi, L. De Gioia, S. C. Davies, X. Yang, L. S. Wang, G. Sawers, C. J. Pickett, 2005 Synthesis of the H-cluster framework of iron-only hydrogenase, Nature, 433 610 613

  122. T. Tomo, Y. Kato, T. Suzuki, S. Akimoto, T. Okubo, K. Hasegawa, T. Noguchi, T. Tsuchiya, K. Tanaka, M. Fukuya, N. Dohmae, T. Watanabe, M. Mimuro, 2008 Characterization of highly purified PS I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017, J. Biol. Chem., 283 18198 18209

  123. T. Tomo, T. Okubo, S. Akimoto, M. Yokono, H. Miyashita, T. Tsuchiya, T. Noguchi, M. Mimuro, 2007 Identification of the special pair of photosystem II in the chlorophyll d-dominated cyanobacteriu m, Proc. Natl. Acad. Sci. USA, 104 7283 7288

  124. A. A. Tsygankov, 2007 Nitrogen-fixing cyanobacteria- hydrogen producents. Applied Biochem. & Microbiol., 43 279 288 .

  125. A. A. Tsygankov, A. S. Fedorov, S. N. Kosourov, K. K. Rao, 2002 Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions, Biotechnol. Bioeng., 80 777 783 .

  126. A. A. Tsygankov, L. T. Serebryakova, D. D. Sveshnikov, K. K. Rao, I. N. Gogotov, D. O. Hall, 1997 Hydrogen photoproduction by three different nitrogenases in whole cells of Anabaena variabilis and the dependence on pH, Int. J. Hydr. Energy, 22 9), 859 867 .

  127. P. M. Vignais, A. Colbeau, 2004 Molecular Biology of Microbial Hydrogenases. Curr. Issues Mol. Biol., 6 159 188 .

  128. T. Wada, K. Tsuge, K. Tanaka, 2000 Electrochemical oxidation of water to dioxygen catalyzed by the oxidized form of the bis(ruthenium-hydroxo) complex in H2O, Angew. Chem. Int. Ed., 39 1479 1482

  129. M. Wasielewski, 2006 Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J. Org. Chem., 71 5051 5066

  130. D. Wohrle, A. D. Romogailo, Y. Amao, M. Kaneko, E. A. Karakhanov, Y. S. Kang, A. L. Maximov, H. Nishide, T. Ohsava, I. Okura, R. C. Raj, J. Won, 2003 Metal Complexes and Metal in Macromolecules, Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany, 573 600

  131. J. Wu, Z. , F. D. Angelis, T. G. Carrell, G. P. A. Yap, J. Sheats, R. Car, G. C. Dismukes, 2006 Tuning the photo-induced O2-evolving reactivity of Mn4O4 6+ and Mn4O4 7+ manganese-oxo cubane complexes., Inorg. Chem., 45 189 195

  132. M. Yagi, M. Kaneko, 2001 Molecular Catalysts for Water Oxidation, Chem. Rev., 101 21 35

  133. L. Zhang, P. Happe, A. Melis, 2002 Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga), Planta, 214 552 561

  134. A. Zouni, H. Witt, J. Kern, P. Fromme, N. Krauss, 2001 Crystal structyure of photosystem II from Synechococcus elongates at 3.8 Å resolution, Nature, 409 739 743