\r\n\tThe properties of metamaterials are designed not from the properties of their base materials, but rather from the metamaterial's newly designed structures. The precise shapes, geometries, sizes, orientations, and arrangements of metamaterial composing elements render metamaterials versatile ‘smart’ properties related to manipulating electromagnetic waves, by blocking, absorbing, enhancing, or bending waves of specific wavelengths. This allows achieving benefits extending far beyond what could be achieved by employing conventional materials. \r\n\tMetamaterials have broad and diverse potential applications including optical filters, medical devices, remote aerospace devices and materials, sensors, infrastructure monitoring, highly effective management of solar power, high-frequency battlefield communication, lenses for high-gain antennas, shielding structures to prevent earthquake damage, acoustic materials, etc. Metamaterial research area is highly interdisciplinary: it involves electrical engineering, electromagnetics, classical optics, studies in the solid-state physics field, antenna engineering, optoelectronics, material science, nanoscience and nanotechnology, semiconductor design, and even can involve computational chemistry.
",isbn:"978-1-80356-810-2",printIsbn:"978-1-80356-809-6",pdfIsbn:"978-1-80356-811-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"aa6c008d2191dbe9980b010e924deacc",bookSignature:"Prof. Aleksey Kuznetsov",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11824.jpg",keywords:"Quantum Metamaterials, Appearance of Metamaterials, Metamaterials Design, Photonic Metamaterials, Photonic Crystals, Nonlinear Metamaterials, Meta-Dimer Metamaterials, Tunable Metamaterials, Tuning Strategies, Plasmonic Metamaterials, Graphene Plasmonics, Superlattices",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 29th 2022",dateEndSecondStepPublish:"June 7th 2022",dateEndThirdStepPublish:"August 6th 2022",dateEndFourthStepPublish:"October 25th 2022",dateEndFifthStepPublish:"December 24th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"10 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Kuznetsov is a computational chemist in the areas of the computational design of novel complexes of porphyrins and studies of various compounds with pharmacological and anticorrosive applications. He was the co-author of the all-metal aromaticity discovery. Dr. Kuznetsov is a member of the American Chemical Society and the Chilean Chemical Society. He has authored 66 journal papers, 5 book chapters, and edited 2 books.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"201033",title:"Prof.",name:"Aleksey",middleName:null,surname:"Kuznetsov",slug:"aleksey-kuznetsov",fullName:"Aleksey Kuznetsov",profilePictureURL:"https://mts.intechopen.com/storage/users/201033/images/system/201033.png",biography:"Dr. Aleksey Kuznetsov obtained his Ph.D. in Physical Chemistry at the Department of Chemistry and Biochemistry, Utah State University, the USA. He graduated after 3 years of doctorate studies with a specialization in Computational/Theoretical Chemistry. Since graduation, he has been researching various subareas of this field, and in 2019, after several postdoctoral and visiting professor positions in Germany, the USA, and Brazil, Dr. Kuznetsov acquired a permanent faculty position at the Department of Chemistry, Universidad Técnica Federico Santa Maria, in Santiago, Chile, where he has been working on the computational design of various complexes of porphyrins, including core-modified porphyrins, with nanoparticles, fullerenes, and graphenes, along with computational studies of various transition metal complexes, organic compounds with potential pharmacological applications, metal-fullerene complexes, compounds with anticorrosive properties, etc.",institutionString:"Federico Santa María Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Federico Santa María Technical University",institutionURL:null,country:{name:"Chile"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453624",firstName:"Martina",lastName:"Scerbe",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/453624/images/20399_n.jpg",email:"martina.s@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh",surname:"Kamble",slug:"ganesh-kamble",fullName:"Ganesh Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6805",title:"Electrical and Electronic Properties of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f6b6930e7ae9d0704f68b5c180526309",slug:"electrical-and-electronic-properties-of-materials",bookSignature:"Md. Kawsar Alam",coverURL:"https://cdn.intechopen.com/books/images_new/6805.jpg",editedByType:"Edited by",editors:[{id:"199691",title:"Dr.",name:"Md. Kawsar",surname:"Alam",slug:"md.-kawsar-alam",fullName:"Md. Kawsar Alam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6851",title:"New Uses of Micro and Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"49e0ab8961c52c159da40dd3ec039be0",slug:"new-uses-of-micro-and-nanomaterials",bookSignature:"Marcelo Rubén Pagnola, Jairo Useche Vivero and Andres Guillermo Marrugo",coverURL:"https://cdn.intechopen.com/books/images_new/6851.jpg",editedByType:"Edited by",editors:[{id:"112233",title:"Dr.Ing.",name:"Marcelo Rubén",surname:"Pagnola",slug:"marcelo-ruben-pagnola",fullName:"Marcelo Rubén Pagnola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9393",title:"Engineering Steels and High Entropy-Alloys",subtitle:null,isOpenForSubmission:!1,hash:"d33466a3272f97353a6bf6d76d7512a5",slug:"engineering-steels-and-high-entropy-alloys",bookSignature:"Ashutosh Sharma, Zoia Duriagina, Sanjeev Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/9393.jpg",editedByType:"Edited by",editors:[{id:"145236",title:"Dr.",name:"Ashutosh",surname:"Sharma",slug:"ashutosh-sharma",fullName:"Ashutosh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7360",title:"Fillers",subtitle:"Synthesis, Characterization and Industrial Application",isOpenForSubmission:!1,hash:"4cb5f0dcdfc23d6ec4c1d5f72f726ab4",slug:"fillers-synthesis-characterization-and-industrial-application",bookSignature:"Amar Patnaik",coverURL:"https://cdn.intechopen.com/books/images_new/7360.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,isOpenForSubmission:!1,hash:"4068d570500b274823e17413e3547ff8",slug:"perovskite-materials-devices-and-integration",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68965",title:"Modeling of Coastal Processes in the Mediterranean Sea: A Pilot Study on the Entrance of Suez Canal in Egypt",doi:"10.5772/intechopen.88509",slug:"modeling-of-coastal-processes-in-the-mediterranean-sea-a-pilot-study-on-the-entrance-of-suez-canal-i",body:'
1. Introduction
The Suez Canal is located in Egypt west of the Sinai Peninsula. Its construction was preceded by cutting a small freshwater canal from the Nile Delta and connecting it with a southern branch to Suez and a northern branch to Port Said. The Suez Canal is considered to be the first artificial canal to be used in Travel and Trade. It is completed to create the first saltwater passage between Port Said on the Mediterranean and Port of Suez on the Red Sea, providing an essentially direct route for transport of goods and petroleum tankers between Europe and Asia. The construction of Suez Canal, nearly from 40 centuries, by the pharaohs, aims at to do linking between the Red Sea and Mediterranean Sea. In addition, Suez Canal Authority is responsible to do periodical dredging for the navigation channel and its surroundings to keep this channel deep and safe. The canal supports approximately 8% of the world’s shipping traffic with almost 50 vessels traveling through the canal daily. It has 195 km length; its width ranges from 60 to 300 m. It is able to accommodate ships as large as 150,000 tons fully loaded (Suez Canal Authority personal communication). This study aims to understand the main factors controlling siltation problem in the entrance of the Suez Canal port. Numerical modeling will be used to simulate coastal processes, beach profiles, and hydrodynamic regime. The results help in shoaling mitigation and facilitating passing of high loading ships along the canal.
As the important geographical location of Port Said Governorate, it has many activities in national and regional development. In addition, it is considered as the Gulf of Suez extension. Consequently, it has valuable resources such as the Mediterranean Sea, the Red Sea beaches, lakes, protected areas, and historical and archeological areas. These resources are suitable for tourism development. Therefore, Port Said has quickly become the third largest urban governorate in Egypt with respect to population.
2. Study site description
The Suez Canal coastal zone lies between longitudes 32°13′ and 32°25′ E and between latitudes 31°10′ and 31°20′ N (Figure 1). The concerned site represents a part of the Egyptian Mediterranean coast lying to the north of the Nile Delta east of Port Said. The beach profile slope has 1 m/km, and the depth of seabed reaches 25 m at the northern boundary of the study site. The beach sediment, along the coastal zone, is mainly composed of sand; its limit reaches 5 m in depth [1]. Although going to the sea bed offshore, the sediment texture that is covering the seabed was changed from muddy sand in the area limit between 5 and 10 m to muddy in deeper zone. Abu Asi [2] concluded that the coastal zone of Sinai from Port Said to El Arish is under extensive development. Consequently, several integrated development projects are being implemented along the coastal zone of North Sinai including the El-Tina plain [3]. The area is identified as it is completely covered by quaternary sediments of littoral, alluvial, and eolian origin, which show variations in their texture and composition ranging from unconsolidated sands to salinized silt and clay of chemical and biochemical origins. They also described the area as it has a concave shoreline configuration that is about 39 km long and 818 km2 in area. The plain is subsiding at a rate of about 0.5 cm/year. The only engineering structures built at the study area are the 7.7 and 2.0 km jetties constructed to protect the inlet at Port Said and the East Port Said harbors, respectively. Additionally, the thickness of Holocene strata beneath the modern delta plain is a direct function of subsidence, which ranges from 50 m at Port Said and tends to decrease or be nearly absent westward below the Alexandria coastal plain.
Figure 1.
Suez Canal entrance; protected by eastern and western jetties.
The principal transporting agents in the concerned site are waves and wave-induced longshore current [4]. The wave rose was constructed based on records measured between 1997 and 1999 off the Damietta Harbor using a pressure wave gauge (InterOcean System S4DW) installed at ~12 m water depth [5]. The average significant wave height ranges from 1.04 to 4.45 m with long duration, its direction is mainly coming from NW in winter. These waves are responsible for generating the longshore currents and transporting sediment toward the east. However, the N-E waves having short duration are responsible for generating a reverse longshore current toward the west [6].
The eroded sediment of Damietta promontory was blocked west of Port Said causing accretion of +15 m/year along the western jetty of the El-Gamil inlet. Growth of tombolos occurred behind detached breakwaters at a rate of +6 m/year. The resulting break in longshore drift caused erosion of −6 m/year downdrift of the breakwaters. The eastern side of the Suez Canal, Bur Fouad, is suffering from erosion at a rate of −18 m/year. The coastline of El-Bardawil Lake is experiencing accretion of +6 m/year in some sections and erosion of −9 m/year in others [7]. The basins inside the Port Said harbor have a depth ranging from 8 to 24 m water; it is subjected to a severe sand drift. Suez Canal Authority usually keeps it clear by dredging. Maintenance dredging is simply the removal of sediments from a body of water that have accumulated due to erosion in order to maintain a desired depth, as in a navigation channel. Suez Canal navigation channel is authorized to be maintained to certain depths depending on its use, by periodic dredging of the silt, sand, and clay that are deposited in it [8].
In order to evaluate the impact of engineering protection on the coastal processes including waves and currents and beach profile configuration, numerical modeling techniques are utilized to predict the patterns of shoreline changes due to the changes in wave conditions.
3. Remote sensing techniques and results
3.1 Change detection
Shoreline positions were obtained from the TM band-7 images using a region-based segmentation process in which the sea area was extracted as a region [9]. Region growing techniques are generally better in noisy images, where borders are extremely difficult to delineate. Homogeneity is an important character of regions and is used as the main segmentation criterion in region growing. Thematic Mapper band 7 (short-wave infrared) was used for the image segmentation procedure to produce a vector map of the shoreline, so that the land-sea boundary could be delineated. Shorter wavelengths can pass through shallow water, making accurate delineation of the coastline difficult [10]. Using short-wave infrared data ameliorates the high-reflectance problems caused by surf in the breaker zone [11]. A line representing shoreline position (the boundary between sea and land) was created along the Suez Canal coastal zone. The output data were saved as a vector file enabling analysis of coastline change using geographic information system (GIS) software [12]. Shoreline displacements during the 2000–2018 period were extracted from the images using the measurement tools in ERDAS IMAGINE VirtualGIS. Edge detection and segmentation seem to be the most suitable approach to produce vector map data for the study site. The results indicate updrift accretion at a rate of +15 m/year and downdrift erosion at a rate of −13 m/year along the entrance of the Suez Canal port (Figure 2).
Figure 2.
(a) Patterns of shoreline changes during 2000–2018 and (b) areas of loss and gain along El-Tina plain.
3.2 Image classification
Unsupervised classification was carried out on the three data sets of the images separately using a histogram peak cluster technique to identify dense areas or frequently occurring pixels [13, 14, 15]. Generally, multispectral classification consists of a compression of all information in a multispectral data set into a single image that depicts the major types of surfaces in different colors [16]. Maximum likelihood of supervised classification was applied to detect land cover classes. Once a sufficient number of such spectral subclasses were acquired for all information classes, a maximum likelihood classification was performed with the full set of refined spectral classes [17]. Image classification of the Enhanced Landsat Thematic Mapper displays an increase in siltation problem along the entrance of the Suez Canal port during 2000–2018 (Figure 3).
Figure 3.
Image classification during 2000–2018; green color showing siltation along the study site coastal zone.
4. Required data for modeling
The data input for Mike 21-2D modeling, which is the key parameter to run spectral wave (SW) model, the flow model of hydrodynamics (HD), and flow model of sediment transport (ST), includes bathymetry, tide, wind, waves, sediment grain size, and shoreline position. Simulation of shoreline changes, waves, sediment transport, and hydrodynamic regime, using the Mike 21 HD (Flow Model and Hydrodynamic Module), needs some data sets, which are not changed during all simulation analyses. The required data are (4.1) extracted shoreline positions, (4.2) offshore wave parameters, (4.3) bathymetric survey, and (4.4) sediment grain size.
4.1 Extracted shoreline positions
The shoreline positions provided for modeling were extracted from remote sensing results using Thematic Mapper image technique. Wave characteristics required for modeling are wave height, period, and direction. Wave data were measured at Ras El-Bar station. Waves were recorded using a Cassette Acquisition System (CAS); the wave gauge was installed about 1200 m away from the western side of the navigation channel of the Damietta harbor, at water depth of 12 m. The recorder measured the wave characteristics for 20 min each 4 h during a day [18]. Data provided from the Coastal Research Institute in Alexandria have been analyzed in order to determine wave height, period, and direction. These data represent the wave parameters in year 1986 for eastern Nile Delta coast. Bathymetric data were supplied from the Suez Canal Authority. It shows parallel offshore contours to the shoreline trend from 0 to 20 m depth within the nearshore zone.
Satellite images are the main source of data for shoreline positions in this study. Data acquired include SPOT-4 images for year 2006, ETM+ Landsat 7 images during 2000–2012, EgyptSat images for year 2010, and Landsat 8 images for years 2013, 2014, and 2018.
4.2 Offshore wave parameters
Tidal data along the Egyptian Mediterranean coast do not exceed 44–50 cm range. Consequently, tide has insignificant role as input data for MIKE 21 modeling. One-year measurements (1990–2000) of wind and wave series data used in this study were measured in Port Said. The strongest wind series are coming from SSW to WSW direction and blowing from land; therefore, it did not create any waves approaching the shoreline. However, it transported beach sand toward offshore. The velocity of this series is 13.8 m/s. This speed is not strong enough to generate storm (wind speed 18 between 24.5 and 32.6 m/s). The main input wave parameters for the hydraulic computations in LITDRIFT and LITLINE are wave height, wave angle, and wave period. Longshore currents crossing beach profiles are generated using these programs due to shoaling and refraction of the incident waves. Wave data were supplied from many sources such as Suez Canal Authority and Delft Hydraulics. For year 2003, it was measured in Damietta promontory, while wave data for years 1986, 1987, and 1990 were measured in Rosetta promontory. Finally, during 2009–2013, it was measured in Alexandria.
4.3 Bathymetric survey
The bathymetric data used in this study were supplied from the Egyptian Military Survey as hard copy maps. Bathymetric data for year 2004 was used in Port Said and Suez Canal areas. This data was scanned by AutoCAD 2014 software to be digitized and processed using civil 3D software to get (x, y, z) format and work with Mike 21 Flow Model. Mesh file map was generated from the x, y, z digital file using MIKE 21 to understand hydrodynamics regime and sediment transport.
4.4 Sediment grain size
The sediment properties should be defined for each grid point in the cross-shore profile. The average grain size diameter at one of the concerned site, Port Said, is 0.14–1.21 mm (fine sand), and the closure depth is at a range of 2–4 m, and berm height varies from 0.5 to 1 m [18]. The changes in this range produce slight response in shoreline changes (which calculated by Genesis 1D modeling) [19]. When the median grain size decreased from 0.40 to 0.14 mm, there was no change in the shoreline position. The LITPACK module calculates the sediment transport capacity (i.e., it assumes that there is an unlimited source of sediment supply) [20].
5. Results of modeling techniques
Coastal zones are one of the most important areas for human activities and infrastructure growth. However, the systems in these areas are dynamic and need to be studied extensively before planning infrastructure to avoid damages. Numerical modeling is considered as important tool to evaluate coastal zone systems and predict its environmental characteristics. Quantitative prediction of coastal processes and coastal evolution via numerical modeling is now possible due to the major advances that have been made in understanding physical processes and mathematical modeling techniques. The problem of Nile Delta localities is the intensive erosion following construction of some engineering protection and transporting of these materials from beach face by waves and longshore currents. Consequently, the application of modeling is very important to understand hydrodynamic regime and coastal processes controlling coastal erosion and accretion at the concerned sites. In addition, the impact of construction of some engineering protections on the coastal morphodynamic during 2000–2015 will be evaluated. MIKE 21 by Danish Hydraulic Institute (DHI) software is such an integrated complete coastal modeling suite, commercially marketed by Danish Hydraulic Institute, which delivers superior technology, expert support, and outstanding value based on 40 years of experience. The DHI group helped us in this study by giving a permission to use the original package of MIKE 21 with a limited license. Certain modules were selected from MIKE 21 to achieve the objectives of this study; they are (1) MIKE 21 SW, (2) MIKE 21 HD, and (3) MIKE 21 sand transport (ST).
5.1 MIKE 21 spectral wave
Wave characteristics required for modeling are wave height, period, and direction. Wave data were measured at Ras El-Bar station for the eastern part of the Mediterranean coastal zone. The station was put nearly 1200 m away from the western side of the navigation channel of the Damietta harbor, at water depth of 12 m [7, 19]. The recorder measured the wave characteristics for 20 min each 4 h during a day. Data provided from the Coastal Research Institute in Alexandria have been analyzed in order to determine wave height, period, and direction. These data represent the wave parameters in year 1992 for eastern Nile Delta coast.
In order to simulate the growth, transformation of wind-generated waves, and swell in offshore in coastal zones, MIKE 21 spectral analysis module (SW) has been used to get two-dimensional wave heights for the study area according to wave bottom interactions and wave structure interactions (shoaling, refraction, diffraction, reflection, bottom friction, and wave breaking) [20] (Figure 4).
Figure 4.
Simulated spectral wave (SW) model for Suez Canal entrance including (a) spectral waves in NNW direction, (b) spectral waves in NW direction, (c) spectral waves in N direction, and (d) spectral waves in NE direction.
The model has coarsely triangle mesh at offshore zones and finely triangle mesh at surf zones and study area to get more accurate wave heights with acceptable model run period [21].
MIKE 21 hydrodynamic has modeled to solve currents due to interaction between wave radiation stresses and water level variations with bottom depths and structures at study area in addition to updrift and downdrift zones. The hydrodynamic forces due to wave breaking are the main effective parameters that lead sediments to move [23].
5.3 MIKE 21 sand transport
This model will be used to predict coastal sand transport and morphodynamics; MIKE 21 sediment transport is designed for the assessment of the sediment transport rates and related initial rates of bed level changes of non-cohesive sediment (sand) due to currents or combined wave-current flow [24]. It is only adapted for non-cohesive sediment (e.g., sand) for which it provides good results. Mathematical shoreline models are tools which are widely used to study the effect of hydrographic parameters on coastal processes and calculate the sediment transport rates and consequently the shoreline changes. The sediment transport process at onshore/offshore and/or alongshore is very complicated problem because it results from iteration from wind, waves, and currents with the bottom sediments and/or the shore face. The orbital velocity of the waves is the principal force to shake the sediments in its place and put them in suspended case, while the currents existing in this area are responsible for transport of sediment from one place to another.
Therefore, the sand movement in the longshore direction is the longshore sediment transport, while the actual volume of sand involved in the transport are termed the littoral drift Qs that counted in m3/year or month. All morphological changes happen due to the littoral drift current, which was created as a result of waves that approach the coastline with an oblique angle. Based on that, the relationship between the incident wave and shoreline orientation is a major factor in evaluating the morphological changes for any studied area. All morphological changes happen due to the littoral drift current, which was created as a result of waves that approaches the coastline with an oblique angle. Based on that, the relationship between the incident wave and shoreline orientation is the goal of this study.
In conclusion, siltation inside Suez Canal entrance can be explained due to moving of waves and currents at west Port Said and inside the entrance of Suez Canal. Therefore, when current comes from shallow depths at west of Port Said in the direction of W-E to deep depths at the entrance of Suez Canal, while it is carrying sediment load, its speed gradually decreases near the long western Suez Canal jetty and starts making eddies up to the long jetty, and once it becomes quiet, it starts throwing its sediment load inside Suez Canal entrance (Figure 5a–c).
Figure 5.
Modeling simulation of 10 years sediment transport during 2008–2018 along the Suez Canal coastal zone; (a) accretion along the updrift site and the entrance otherwise, erosion along the downdrift site; (b) erosion behind the eastern Jetty; and (c) siltation behind the western jetty.
6. Discussion and conclusion
Construction of ports such as in the Suez Canal entrance has a significant potential effect on natural sediment transport processes. This causes disruption to the adjacent beaches. When current transfers from low contour level at west of Suez Canal long jetty, it decreases gradually inside the entrance of Suez Canal then started to increase and decrease back and forth, by making eddies. This eddies around the eastern and western jetties start to throw their load, while the high current speed at the eastern side of Port Said causes erosion. Consequently, some recommendations are suggested as follows:
Increasing coastal development has led to a conflict between man desire and nature processes that modified the used land. Therefore, most countries that are located on coastal areas should study in details the coastal zone management problems and risk as a result of the protection work structure effect on coastal area hydrodynamic regime.
Choice should be taken between allowing unlimited construction of high-valued property and implementing the regulations that prevent developments which would be exposed to major hazards. This choice requires the estimation and prediction of probable future shoreline position and risk assessment to balance between the possible losses of development against the reduction of the existing shoreline.
Integration between remote sensing and 2D finite hydrodynamic flow models is mandatory to evaluate, interpret, and analyze the effect of costal processes and protection hard structures.
Because of high current speed at Suez Canal east jetties, the downdrift area is exposed to sever erosion, and there is an investment plan to implement big national projects on it, so it is mandatory to study and monitor the rates of erosion and consider it in any construction plans.
Studying of sediment transport and bed level change and highlighting the risky and hot spot areas of erosions of east and west of Suez Canal to predict the annual rates before implementing any projects.
\n',keywords:"2D modeling, Mediterranean Sea, coastal processes, Suez Canal port, hydrodynamic regime, beach morphology",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/68965.pdf",chapterXML:"https://mts.intechopen.com/source/xml/68965.xml",downloadPdfUrl:"/chapter/pdf-download/68965",previewPdfUrl:"/chapter/pdf-preview/68965",totalDownloads:622,totalViews:0,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:33,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:"November 13th 2018",dateReviewed:"July 10th 2019",datePrePublished:"September 7th 2019",datePublished:"January 22nd 2020",dateFinished:"September 7th 2019",readingETA:"0",abstract:"The main objective of this research is applying numerical modeling to simulate the impact of the Suez Canal jetties on the beach morphology and hydrodynamic regime along the Suez Canal coastal zone. In addition, coastal processes including waves and wave-induced currents will be evaluated using 2D modeling. This research will contribute to quantify the shoreline stability during the last three decades. Hydrodynamic and sediment transport (ST) models are utilized to predict sediment transport pathways and how sediment might move within the entrance of Suez Canal port. Remote sensing analyses of the Landsat Thematic Mapper images during 2000–2018 show siltation processes at the entrance of the Suez Canal. Vector analyses of the images’ data indicated updrift accretion at a rate of +15 m/year and downdrift erosion at a rate of −13 m/year. Coastal processes including waves and currents contribute to shoaling problem along the navigation channel of the Suez Canal port. Applications of 2-3D models were used to simulate wave and current dissipation. In addition, beach slope profiles and hydrodynamic models are used to help in understanding the impact of coastal processes on beach morphology and hydrodynamic regime controlling siltation problem along the entrance of Port Said harbor.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/68965",risUrl:"/chapter/ris/68965",book:{id:"7606",slug:"coastal-and-marine-environments-physical-processes-and-numerical-modelling"},signatures:"Mona Fouad Kaiser, Walaa Awaad Ali and Maysara Khairy El Tahan",authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Study site description",level:"1"},{id:"sec_3",title:"3. Remote sensing techniques and results",level:"1"},{id:"sec_3_2",title:"3.1 Change detection",level:"2"},{id:"sec_4_2",title:"3.2 Image classification",level:"2"},{id:"sec_6",title:"4. Required data for modeling",level:"1"},{id:"sec_6_2",title:"4.1 Extracted shoreline positions",level:"2"},{id:"sec_7_2",title:"4.2 Offshore wave parameters",level:"2"},{id:"sec_8_2",title:"4.3 Bathymetric survey",level:"2"},{id:"sec_9_2",title:"4.4 Sediment grain size",level:"2"},{id:"sec_11",title:"5. Results of modeling techniques",level:"1"},{id:"sec_11_2",title:"5.1 MIKE 21 spectral wave",level:"2"},{id:"sec_12_2",title:"5.2 MIKE 21 hydrodynamics",level:"2"},{id:"sec_13_2",title:"5.3 MIKE 21 sand transport",level:"2"},{id:"sec_15",title:"6. Discussion and conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'El Tokhi M, Abdel Gawad E, Lotfy MM. Impact of heavy metals and petroleum hydrocarbons contamination of the East Port Said port area, Egypt. Journal of Applied Sciences Research. 2008;4(12):1788-1798'},{id:"B2",body:'Abu Asi IM. The Geographic Criteria for the East Port Said along the Mediterranean. Egyptian Geographical Association; 1998. 29 pp (in Arabic)'},{id:"B3",body:'Dewidar KM, Frihy OE. Thematic mapper analysis to identify geomorphologic and sediment texture of El-Tineh plain, north-western coast of Sinai, Egypt. International Journal of Remote Sensing. 2003;24:2377-2385'},{id:"B4",body:'Coleman JM, Robert HH, Murray SP, Salama M. Morphology and dynamic sedimentology of the eastern Nile delta shelf. Marine Geology. 1981;42:301-312'},{id:"B5",body:'Frihy OE, Debes EA, El Sayed WR. Processes reshaping the Nile delta promontories of Egypt: Pre- and post-protection. Geomorphology. 2003;53:263-279'},{id:"B6",body:'Kaiser MFM. Monitoring and modelling the impact of engineering structures on coastline change, Nile Delta, Egypt [Ph.D. thesis]. UK: University of Reading; 2004. 270 p'},{id:"B7",body:'Ali W, Kaiser MF, Kholief S, El-Tahan M. Assessment of shoreline stability and solidity for Please provide volume number and page range for Refs. [7, 12].future investment plans at Ras El-Bar Resort. Egyptian Journal of Aquatic Biology and Fisheries. 2017'},{id:"B8",body:'Wilson PA. Rule-based classification of water in Landsat MSS images using the variance filter. Photogrammetric Engineering and Remote Sensing. 1997;63:485-491'},{id:"B9",body:'Sonka M, Hlavac V, Boyle R. Image Processing, Analysis and Machine Vision. London: Chapman & Hall; 1993. 555 p'},{id:"B10",body:'Janssen LLF, Molenaar M. Terrain objects, their dynamics and their monitoring by the integration of GIS and remote sensing. IEEE Transaction on Geoscience and Remote Sensing. 1995;33:749-758'},{id:"B11",body:'Frouin R, Schwindling M, Deschamps PY. Spectral reflectance of sea foam in the visible and near-infrared. In situ measurements and remote sensing implications. Journal of Geophysical Research. 1996;101:14361-14371'},{id:"B12",body:'Ali W, Kaiser MF, Kholief S, El-Tahan M. Assessment of coastal change along Baltim Resort from (2000-2015) using remote sensing and DSAS method. Egyptian Journal of Aquatic Biology and Fisheries. 2017'},{id:"B13",body:'Eastman JR. Supervised Classification in IDRISI for Windows Version 2, Tutorial Exercises. Worcester, Massachusetts: Clark University; 1997. pp. 86-94'},{id:"B14",body:'Lillesand TM, Kiefer RW. Remote Sensing and Image Interpretation. 4th Edition. New York: John Wiley & Sons, Inc; 1994. 750 pp'},{id:"B15",body:'Mather PM. Computer Processing of Remotely-sensing Images. An Introduction. 2nd ed. Chichester: John Wiley and Sons; 1999. pp. 1-75'},{id:"B16",body:'Lillesand TM, Kiefer RW, Chipman JW. Remote Sensing and Image Interpretation. 5th Edition. New York: John Wiley & Sons, Inc; 2004. 763 pp'},{id:"B17",body:'Kaiser MF. Monitoring and Modelling the Impact of Engineering Structures on Coastline Change, Nile Delta, Egypt. Reading, U.K.: University of Reading, Ph.D; 2004'},{id:"B18",body:'Holthuijsen LH. Waves in Oceanic and Coastal Waters. Cambridge Univesity Press; ISBN 978-0521860284. 2007. pp. 387'},{id:"B19",body:'Ali W, Kaiser MF, El-Tahan M. Assessment of bottom erosion in front of Rosetta Eastern and Western Groins System. In: The Scientific Committee (SC) of the 1st Scientific Congress of Junior Geosciences in Egypt (SCJGE-1) held at Suhag University, February 3-4-2019. Paper Work in Submission. 2019'},{id:"B20",body:'Naef D, Rickenmann D, Rutschmann P, McArdell BW. Comaparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Natural Hazards and Earth System Science. 2006;6(1):155-165'},{id:"B21",body:'Julien PY. Erosion and Sedimentation. 2nd ed. xviii + 371 pp. Cambridge University Press; 2010;148(04):683-684. DOI: 10.1017/S0016756811000215'},{id:"B22",body:'El-Tahan M, El Sharnouby B. Dramatic Erosion of Nile Delta Coast Caused by Anthropogenic and natural Influences. Delft. 2015'},{id:"B23",body:'Wang JD. Numerical modelling of bay circulation. In: The Sea. Ocean Engineering Science. Australia: Elsevier Publisher; Vol. 9. Part B. Chapter 32. 1990. pp. 1033-1067'},{id:"B24",body:'Eurosion. Living with coastal erosion in Europe: Sediment and space for sustainability. A guide to coastal erosion management practices in Europe: Lessons learned. Coastal erosion–evaluation of the need for action. Directorate general environment. In: European Commission. Prepared by the National Institute of Coastal and Marine Management of the Netherlands. 2004'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Mona Fouad Kaiser",address:"monakaiser2013@gmail.com",affiliation:'
Geology Department, Faculty of Science, Suez Canal University, Egypt
Petroloum Geology Department, Faculty of Petroleum and Mining Sciences, Matrouh University, Egypt
'},{corresp:null,contributorFullName:"Maysara Khairy El Tahan",address:null,affiliation:'
Transportation Department, Faculty of Engineering, Alexandria University, Egypt
'}],corrections:null},book:{id:"7606",type:"book",title:"Coastal and Marine Environments",subtitle:"Physical Processes and Numerical Modelling",fullTitle:"Coastal and Marine Environments - Physical Processes and Numerical Modelling",slug:"coastal-and-marine-environments-physical-processes-and-numerical-modelling",publishedDate:"January 22nd 2020",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/7606.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-360-6",printIsbn:"978-1-78984-359-0",pdfIsbn:"978-1-78984-732-1",reviewType:"peer-reviewed",numberOfWosCitations:6,isAvailableForWebshopOrdering:!0,editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"839"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"68193",type:"chapter",title:"Coastal Adaptation: Past Behaviors, Contemporary Management, and Future Options",slug:"coastal-adaptation-past-behaviors-contemporary-management-and-future-options",totalDownloads:737,totalCrossrefCites:0,signatures:"José Simão Antunes do Carmo",reviewType:"peer-reviewed",authors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",fullName:"José Simão Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo"}]},{id:"66266",type:"chapter",title:"Numerical Modeling Tools Applied to Estuarine and Coastal Hydrodynamics: A User Perspective",slug:"numerical-modeling-tools-applied-to-estuarine-and-coastal-hydrodynamics-a-user-perspective",totalDownloads:881,totalCrossrefCites:4,signatures:"Isabel Iglesias, Paulo Avilez-Valente, José Luís Pinho, Ana Bio, José Manuel Vieira, Luísa Bastos and Fernando Veloso-Gomes",reviewType:"peer-reviewed",authors:[null]},{id:"66929",type:"chapter",title:"Long-Term Changes in Sea Surface Temperature Off the Coast of Central California and Monterey Bay from 1920 to 2014: Are They Commensurate?",slug:"long-term-changes-in-sea-surface-temperature-off-the-coast-of-central-california-and-monterey-bay-fr",totalDownloads:826,totalCrossrefCites:0,signatures:"Laurence C. Breaker",reviewType:"peer-reviewed",authors:[{id:"285157",title:"Dr.",name:"Laurence C.",middleName:null,surname:"Breaker",fullName:"Laurence C. Breaker",slug:"laurence-c.-breaker"}]},{id:"68000",type:"chapter",title:"Significance of Mesoscale Warm Core Eddy on Marine and Coastal Environment of the Bay of Bengal",slug:"significance-of-mesoscale-warm-core-eddy-on-marine-and-coastal-environment-of-the-bay-of-bengal",totalDownloads:542,totalCrossrefCites:0,signatures:"Nanda Kishore Reddy Busireddy, Kumar Ankur and Krishna Kishore Osuri",reviewType:"peer-reviewed",authors:[null]},{id:"68965",type:"chapter",title:"Modeling of Coastal Processes in the Mediterranean Sea: A Pilot Study on the Entrance of Suez Canal in Egypt",slug:"modeling-of-coastal-processes-in-the-mediterranean-sea-a-pilot-study-on-the-entrance-of-suez-canal-i",totalDownloads:622,totalCrossrefCites:0,signatures:"Mona Fouad Kaiser, Walaa Awaad Ali and Maysara Khairy El Tahan",reviewType:"peer-reviewed",authors:[null]},{id:"70525",type:"chapter",title:"Ionospheric Monitoring and Modeling Applicable to Coastal and Marine Environments",slug:"ionospheric-monitoring-and-modeling-applicable-to-coastal-and-marine-environments",totalDownloads:653,totalCrossrefCites:0,signatures:"Ljiljana R. Cander and Bruno Zolesi",reviewType:"peer-reviewed",authors:[null]}]},relatedBooks:[{type:"book",id:"6821",title:"Natural Hazards",subtitle:"Risk Assessment and Vulnerability Reduction",isOpenForSubmission:!1,hash:"855e55f0cd51410f7013bb47181d3321",slug:"natural-hazards-risk-assessment-and-vulnerability-reduction",bookSignature:"José Simão Antunes do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/6821.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"62132",title:"Vulnerability, Urban Design and Resilience Management",slug:"vulnerability-urban-design-and-resilience-management",signatures:"Bruno Barroca",authors:[{id:"242380",title:"Dr.",name:"Bruno",middleName:null,surname:"Barroca",fullName:"Bruno Barroca",slug:"bruno-barroca"}]},{id:"62488",title:"Index of Proportional Risk (IRP) Flood-Risk Assessment Model and Comparison to Collected Data",slug:"index-of-proportional-risk-irp-flood-risk-assessment-model-and-comparison-to-collected-data",signatures:"Luca Franzi, Gennaro Bianco, Alessandro Pezzoli and Angelo Besana",authors:[{id:"25144",title:"Dr.",name:"Luca",middleName:null,surname:"Franzi",fullName:"Luca Franzi",slug:"luca-franzi"},{id:"181692",title:"Dr.",name:"Alessandro",middleName:null,surname:"Pezzoli",fullName:"Alessandro Pezzoli",slug:"alessandro-pezzoli"},{id:"241814",title:"Prof.",name:"Gennaro",middleName:null,surname:"Bianco",fullName:"Gennaro Bianco",slug:"gennaro-bianco"},{id:"242105",title:"Prof.",name:"Angelo",middleName:null,surname:"Besana",fullName:"Angelo Besana",slug:"angelo-besana"}]},{id:"63411",title:"Insight into the Correlation between Land Subsidence and the Floods in Regions of Indonesia",slug:"insight-into-the-correlation-between-land-subsidence-and-the-floods-in-regions-of-indonesia",signatures:"Heri Andreas, Hasanuddin Z. Abidin, Irwan Gumilar, Teguh P. Sidiq,\nDina A. Sarsito and Dhota Pradipta",authors:[{id:"238146",title:"Prof.",name:"Hasanuddin",middleName:null,surname:"Zainal Abidin",fullName:"Hasanuddin Zainal Abidin",slug:"hasanuddin-zainal-abidin"},{id:"238147",title:"Dr.",name:"Irwan",middleName:null,surname:"Gumilar",fullName:"Irwan Gumilar",slug:"irwan-gumilar"},{id:"238148",title:"Dr.",name:"Dina",middleName:null,surname:"Anggreni Sarsito",fullName:"Dina Anggreni Sarsito",slug:"dina-anggreni-sarsito"},{id:"238150",title:"Dr.",name:"Dhota",middleName:null,surname:"Pradipta",fullName:"Dhota Pradipta",slug:"dhota-pradipta"},{id:"242381",title:"Dr.",name:"Heri",middleName:null,surname:"Andreas",fullName:"Heri Andreas",slug:"heri-andreas"},{id:"257886",title:"MSc.",name:"Teguh",middleName:null,surname:"P Sidiq",fullName:"Teguh P Sidiq",slug:"teguh-p-sidiq"}]},{id:"62352",title:"Assessing the Impact of Land Use Changes and Rangelands and Forest Degradation on Flooding Using Watershed Modeling System",slug:"assessing-the-impact-of-land-use-changes-and-rangelands-and-forest-degradation-on-flooding-using-wat",signatures:"Nafise Moghadasi, Iman Karimirad and Vahedberdi Sheikh",authors:[{id:"245168",title:"Ph.D. Student",name:"Nafise",middleName:null,surname:"Moghaddasi",fullName:"Nafise Moghaddasi",slug:"nafise-moghaddasi"},{id:"245170",title:"MSc.",name:"Iman",middleName:null,surname:"Karimirad",fullName:"Iman Karimirad",slug:"iman-karimirad"},{id:"245172",title:"Dr.",name:"Vahedberdi",middleName:null,surname:"Sheikh",fullName:"Vahedberdi Sheikh",slug:"vahedberdi-sheikh"}]},{id:"62591",title:"Extent of 2014 Flood Damages in Chenab Basin Upper Indus Plain",slug:"extent-of-2014-flood-damages-in-chenab-basin-upper-indus-plain",signatures:"Shakeel Mahmood and Razia Rani",authors:[{id:"232797",title:"Mr.",name:"Shakeel",middleName:null,surname:"Mahmood",fullName:"Shakeel Mahmood",slug:"shakeel-mahmood"},{id:"258314",title:"Ms.",name:"Razia",middleName:null,surname:"Rani",fullName:"Razia Rani",slug:"razia-rani"}]},{id:"62845",title:"Towards the Reduction of Vulnerabilities and Risks of Climate Change in the Community-Based Tourism, Namibia",slug:"towards-the-reduction-of-vulnerabilities-and-risks-of-climate-change-in-the-community-based-tourism-",signatures:"Selma Lendelvo, Margaret N. Angula, Immaculate Mogotsi and Karl Aribeb",authors:[{id:"243845",title:"Dr.",name:"Selma",middleName:null,surname:"Lendelvo",fullName:"Selma Lendelvo",slug:"selma-lendelvo"},{id:"253651",title:"Ms.",name:"Margaret",middleName:null,surname:"Angula",fullName:"Margaret Angula",slug:"margaret-angula"},{id:"253653",title:"Ms.",name:"Immaculate",middleName:null,surname:"Mogotsi",fullName:"Immaculate Mogotsi",slug:"immaculate-mogotsi"},{id:"253654",title:"Mr.",name:"Karl",middleName:null,surname:"Aribeb",fullName:"Karl Aribeb",slug:"karl-aribeb"}]},{id:"61775",title:"Using the Monoplotting Technique for Documenting and Analyzing Natural Hazard Events",slug:"using-the-monoplotting-technique-for-documenting-and-analyzing-natural-hazard-events",signatures:"Conedera Marco, Bozzini Claudio, Ryter Ueli, Bertschinger Thalia and Krebs Patrik",authors:[{id:"244697",title:"Dr.",name:"Marco",middleName:null,surname:"Conedera",fullName:"Marco Conedera",slug:"marco-conedera"},{id:"244699",title:"MSc.",name:"Claudio",middleName:null,surname:"Bozzini",fullName:"Claudio Bozzini",slug:"claudio-bozzini"},{id:"244700",title:"MSc.",name:"Patrik",middleName:null,surname:"Krebs",fullName:"Patrik Krebs",slug:"patrik-krebs"},{id:"253452",title:"Mr.",name:"Ueli",middleName:null,surname:"Ryter",fullName:"Ueli Ryter",slug:"ueli-ryter"},{id:"253462",title:"MSc.",name:"Thalia",middleName:null,surname:"Bertschinger",fullName:"Thalia Bertschinger",slug:"thalia-bertschinger"}]},{id:"62834",title:"Tsunami Hazard Assessment for the Hokuriku Region, Japan: Toward Disaster Mitigation for Future Earthquakes",slug:"tsunami-hazard-assessment-for-the-hokuriku-region-japan-toward-disaster-mitigation-for-future-earthq",signatures:"Michihiro Ohori, Yuri Masukawa and Keisuke Kojima",authors:[{id:"237993",title:"Associate Prof.",name:"Michihiro",middleName:null,surname:"Ohori",fullName:"Michihiro Ohori",slug:"michihiro-ohori"},{id:"257859",title:"MSc.",name:"Yuri",middleName:null,surname:"Masukawa",fullName:"Yuri Masukawa",slug:"yuri-masukawa"},{id:"257910",title:"Prof.",name:"Keisuke",middleName:null,surname:"Kojima",fullName:"Keisuke Kojima",slug:"keisuke-kojima"}]},{id:"62769",title:"Disaster Mitigation Model of Eruption Based on Local Wisdom in Indonesia",slug:"disaster-mitigation-model-of-eruption-based-on-local-wisdom-in-indonesia",signatures:"Eko Hariyono and Solaiman Liliasari",authors:[{id:"214360",title:"Dr.",name:"Eko",middleName:null,surname:"Hariyono",fullName:"Eko Hariyono",slug:"eko-hariyono"},{id:"219699",title:"Prof.",name:"Liliasari",middleName:null,surname:"S",fullName:"Liliasari S",slug:"liliasari-s"}]}]}],publishedBooks:[{type:"book",id:"6012",title:"Morphodynamic Model for Predicting Beach Changes Based on Bagnold's Concept and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"79ce8dc1cde58947a61fe4aea725d437",slug:"morphodynamic-model-for-predicting-beach-changes-based-on-bagnold-s-concept-and-its-applications",bookSignature:"Takaaki Uda, Masumi Serizawa and Shiho Miyahara",coverURL:"https://cdn.intechopen.com/books/images_new/6012.jpg",editedByType:"Authored by",editors:[{id:"13491",title:"Dr.",name:"Takaaki",surname:"Uda",slug:"takaaki-uda",fullName:"Takaaki Uda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"6195",title:"Sea Level Rise and Coastal Infrastructure",subtitle:null,isOpenForSubmission:!1,hash:"4eb2fa7c0bf9d4a493375ee47276aa38",slug:"sea-level-rise-and-coastal-infrastructure",bookSignature:"Yuanzhi Zhang, Yijun Hou and Xiaomei Yang",coverURL:"https://cdn.intechopen.com/books/images_new/6195.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7606",title:"Coastal and Marine Environments",subtitle:"Physical Processes and Numerical Modelling",isOpenForSubmission:!1,hash:"dd1227726856d58b88116129b0de8384",slug:"coastal-and-marine-environments-physical-processes-and-numerical-modelling",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/7606.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8007",title:"Estuaries and Coastal Zones",subtitle:"Dynamics and Response to Environmental Changes",isOpenForSubmission:!1,hash:"ec140486c42d62e69ef428e6cf71b6d7",slug:"estuaries-and-coastal-zones-dynamics-and-response-to-environmental-changes",bookSignature:"Jiayi Pan and Adam Devlin",coverURL:"https://cdn.intechopen.com/books/images_new/8007.jpg",editedByType:"Edited by",editors:[{id:"179303",title:"Prof.",name:"Jiayi",surname:"Pan",slug:"jiayi-pan",fullName:"Jiayi Pan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio",surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"71854",title:"Succession after Fire in a Coastal Pine Forest in Norway",doi:"10.5772/intechopen.92158",slug:"succession-after-fire-in-a-coastal-pine-forest-in-norway",body:'
1. Introduction
Forest fires have become more common recently as a result of climatic change resulting in warmer and drier summers. However, their effects are not only negative. The reason is that a forest fire makes nutrients more available, by increasing decomposition rates in the forest floor, removing trees and makes light more accessible for plants in the field and bottom layer [1, 2]. Many plant and insect species are dependent on periodic fires in order to survive, and in Norway, as many as 40 red-listed species are related to forest fires [3]. Forest fires may also remove competition from some species, thereby favoring others [4]. Finally, some species like the heather (Calluna vulgaris) and the herb Geranium bohemicum have seeds that are activated by fire [5, 6]. Most pine species like the coastal Pinus sylvestris growing in Fennoscandia are adapted to fire in the sense that they reproduce by seeds, which germinate more easily after a fire.
In an earlier study [7], biomass and chemical composition in six dominant field and bottom layer species was recorded for 5 years after a wildfire in a coastal pine forest in Sveio, West Norway, in 1992, as compared with a control site outside of the burned area. As a follow-up of this study, the percentage coverage of field and bottom layer species and the regeneration of main tree species (Pinus sylvestris, Betula pubescens, and Salix spp.) were recorded in 1997, 2001, and 2008. The present study was carried out as part of an integrated study on the rate of succession after fire in coastal pine and heath vegetation types. Although the total amounts of nutrients in soil may decrease as a result of the fire [8], their availability may be temporarily increased by conversion from organic to inorganic forms [9], leading to increased availability of nutrients during several years due to leaching [10]. According to Moe [11], a number of pine trees in the study site survived the fire and produced the seeds that were able to regenerate due to improved light and soil conditions (cf. [12, 13]). Because of the improved light and nutrient conditions, increased productivity was expected on short term in the burned areas. Experiments with pine [14] have shown that controlled burning may be a more successful method of regeneration of Pinus sylvestris than, for example, clear cutting.
The reproduction and establishment of vascular plants after a forest fire may take place in three ways, for example, (1) by the transport and spreading of seeds from surviving mother trees, (2) by germination from a seed bank, and (3) by vegetative reproduction from surviving roots, rhizomes, and stumps. In the present study, the further growth and succession rates of the most common trees and field layer species were followed up by comparing results from 1998, 2001, and 2008 with the results from the initial 5 years of succession after the fire in 1992 [7].
Based on the abovementioned relationships, the objectives of the present study may be formulated as follows:
How has the growth of the main tree and field layer species changed in terms of percentage cover and biomass?
Will the total plant biomass and productivity change permanently as a result of the fire?
What are the implications of the present study for the long-term carbon balance?
2. Materials and methods
The forest fire took place in June 1992 south and west of Hopsfjellet in Sveio, western Norway after an extremely warm and dry period. The burned site covered an area of about 300 ha and is located at 59°30′ N, 5°20′ E (see Figure 1). Mean temperatures (1961–1990) vary from 2°C in February to 14°C in August, with annual precipitation about 2000 mm [8]. Different parts of the area burned with different intensities [11], depending on soil depth and humidity. Calluna heaths dominated in the dry parts of the burned site, while Vaccinium myrtillus was more common on moist sites with deeper soil system. The topography is rather variable, and the thickness of the humus layer varied from <2 cm in the most dry and nutrient-poor areas to >20 cm where peat accumulation had taken place. In some cases, the mineral soil was almost absent, and the dry humus layer was burned off, leaving the underlying rock exposed. The fire intensity reached its maximum in these areas, while areas with high water level in soil were relatively little damaged by surface fire [13]. Six representative plots of 10 by 10 m size were established in 1993, covering the whole range of fire intensities.
Figure 1.
Map of Norway showing the location of the study area (left). The six study sites are classified on the small-scale (1:15,000) map over the burned study area (right), as follows: low fire intensity (1–2), medium fire intensity (3–4), and high fire intensity (5–6). The control site was located about 500 m outside and west of the burned area.
Growth estimation. Instead of destructive biomass sampling of field layer species, the growth was estimated by measuring the percentage coverage and the corresponding shoot density in pure stands of the same species in 1997 and 2001. From these two parameters and estimates of biomass per shoot (Table 3), the total biomass per area was estimated (cf. [15]). The percentage coverage of regenerating seedlings of Pinus sylvestris, Betula pubescens, and Salix spp. was recorded in 1995, 2001, and 2008, as well as tree density on 10 by 10 m plots and the stem base diameter (mm), age, and total height (cm). The following field layer species were recorded: Calluna vulgaris, Vaccinium myrtillus, V. vitis-idaea, Pteridium aquilinum, Deschampsia flexuosa, Molinia caerulea, and the mosses Polytrichum commune and P. juniperinum. The number of shoots per m2 in pure stands were extrapolated from sampling squares of 10 by 10 cm (Calluna, Deschampsia, Polytrichum), 20 by 20 cm (Vaccinium), or 1 by 1 m (Pteridium). The overall biomass per unit area was then estimated by multiplying the calculated biomass in pure stands with the corresponding percentage cover of each species (cf. [7]). The method was tested out by harvesting random samples of each species by ordinary sampling method using a core with known surface area [15]. In the present study, the results are given as mean values (n = 5) from each of the six study sites.
In earlier studies, the biomass per shoot or leaf (Pteridium) in most cases was not found to be significantly different from the control plot and was therefore used to estimate the overall biomass of field layer species (cf. [7]). In this study, the shoot density, height, and diameter growth was tested by ordinary statistical methods by using variance analysis [16] in order to find significant differences.
3. Results and discussion
The observations of the sample plots in 1997, 2001, and 2008 confirmed the results from the short-term study [7]. The overall biomass of main field layer species was therefore estimated using the mentioned indirect method [15] where the biomass per shoot was multiplied with the shoot density and the coverage of the same species. The shoot density in pure stands is shown in Table 1, where the numbers in the table are referring to the size of the sample plots in cm2 (10 by 10 cm vs. 20 by 20 cm or 100 by 100 cm). Table 1 shows a strong increase in shoot density of Calluna vulgaris and a moderate increase in V. myrtillus during the period of 1997–2001. In the other species, the shoot density was decreasing, and in Deschampsia flexuosa partly missing (see Table 1).
Species/plot
1995
2001
2008
Ctr
1
2
3
4
5
6
Mean
1
2
3
4
5
6
Mean
Calluna
30
48
64
56
58
48
60
54
51
60
71
55
32
78
58
20
V. myr
4
4
3
5
0
26
10
9
3
13
2
10
30
19
13
40
V. v-i
2
11
13
14
6
3
14
11
11
10
17
14
7
3
10
10
Pteridium
15
46
22
22
19
6
10
21
36
30
24
26
1
20
23
8
D. flex
6
2
10
2
2
3
3
4
0
4
3
0
0
0
1
4
Molinia
7
20
12
6
13
11
0
10
13
7
3
20
11
9
11
12
Polytrichum
19
13
70
16
5
2
13
20
12
23
2
5
16
2
10
2
Pinus
14
15
5
16
6
5
12
18
14
11
8
7
12
14
45
Betula
7
14
4
16
4
4
10
13
20
9
11
8
11
14
20
Total
83
165
223
130
135
109
119
152
157
186
156
149
98
165
157
161
Table 1.
Percentage coverage in field layer species, including pine and birch seedlings, at each of the six study sites during 1995–2008 (n = 5) with mean values, as compared with the control site (Ctr).
Biomass estimates. There was a significant increase from 1993 to 1995 (cf. [7]) in biomass per shoot in green and nongreen Pteridium, and in nongreen Calluna vulgaris tissue, and a corresponding decrease in green tissue of Calluna and Deschampsia, and nongreen V. myrtillus and V. vitis-idaea. During the following period, from 1995 to 2001, however, there were no significant changes in biomass per shoot in any of the investigated species (Table 2). The mean values of this parameter were therefore used to estimate the overall biomass of green and nongreen tissue in each species in 1995, 1997, and 2001.
Species
cm2/plot
1997
2001
1
2
3
4
5
6
Mean
1
2
3
4
5
6
Mean
Calluna
100
97
118
98
84
117
79
99
155
143
122
156
168
151
149
V. myr
400
142
121
76
135
85
126
114
98
166
92
166
107
127
126
V. v-i
400
65
43
49
35
54
53
50
39
57
40
45
56
39
46
Pteridium
10000
12
12
14
14
13
10
13
15
12
11
10
10
6
11
D. flex
100
84
147
180
182
130
76
150
116
Molinia
100
39
40
36
41
42
34
39
31
26
29
26
28
28
Polytrichum
100
113
98
70
139
128
73
120
72
104
127
112
114
63
99
Table 2.
The density in pure stands of the investigated species at each of the six study sites in 1997 and 2001 (n = 5), as related to the size of the sample plots in cm2 and the mean density per species.
The mean estimated biomass in g/m2 of each of the investigated species was shown in Figure 2. From this figure, it may be concluded:
There was a strong increase in green and nongreen Calluna tissue during the period from 1993 to 2001 to a top level that is 3–7 times as high as in the control plots, and the highest level was found in the green tissue.
In the remaining six investigated species (Vaccinium myrtillus, V. vitis-idaea, Pteridium aquilinum, Molinia caerulea, and the moss Polytrichum spp.), the biomass in green and nongreen tissue increased from 1993 to 1997 and then decreased – but still at a higher level than in the control plots, except from Vaccinium vitis-idaea (see Figure 2).
Figure 2.
Mean estimated overall biomass (g/m2) in green and nongreen tissue of the investigated field layer species during the period from 1993 to 2001 as compared with control plants from an unburned area outside the fire.
The Calluna biomass increased strongly during the whole period, due to a combined effect of increased shoot density and increased coverage. The green biomass in the Calluna regrowth after the fire was still very high in 2001, with a shoot/root ratio of 3.7, while the corresponding value was 0.5 at the control plot. The Calluna vulgaris has probably been enhanced by a high number of seeds that were present in the soil already before the fire (e.g., [17, 18]) and activated by the fire and better light and nutrient conditions [8]. This result was also confirmed by Måren [19] and Måren and Vandvik [6], who studied the succession after a controlled fire in a coastal heathland and found that seed germination in Calluna could be stimulated by smoke and ash from the fire. They also found that the seed bank in the soil was acting as a refuge and was not influenced by the management with prescribed burning (cf. [20]).
Coverage of main species. The coverage (%) of the main field layer species in 2001 and 2008 (Table 3) was recorded and compared with earlier measurements from 1995 [7]. There was a strong increase in the coverage of Calluna vulgaris and in the two Vaccinium species (V. myrtillus and V, vitis-idaea) as well as in the bracken (Pteridium aquilinum) during the period from 1995 to 2001 and a moderate increase in the coverage of the grass species Molinia caerulea. During the following period from 2001 to 2008, there was a further moderate increase in the coverage of these species, but in Deschampsia flexuosa and Polytrichum spp., the coverage was decreasing during the whole period. The coverage of Pinus sylvestris and Betula pubescens seedlings increased during the same period, from 22 to 28%. The total coverage increased strongly from 83 to 152% during the period of 1995–2001, but during the following period up to 2008, there was only a slight increase, from 152 to 157%. Strong variations were found in 2001 between sample plots, from a total of 109% on the nutrient-poor plot 5 to 223% on the mesotrophic plot 4 in accordance with soil conditions [21].
Species
mg/shoot
Green
Non-green
Calluna vulgaris
118
40
Vaccinium myrtillus
86
88
Vaccinium vitis-idaea
160
96
Pteridium aquilinum
7290
5500
Desdhampsia flexuosa
90
30
Molinia caerula
270
90
Polytrichum spp.
20
12
Table 3.
Mean biomass in mg per shoot of green and non-green tissue of the investigated species, measured in 2001 (n = 30).
The coverage of Calluna was more than 50% already in 2001, and strong competition between the well-adapted Calluna and more slow-growing plants seemed to have caused a slight decrease in light-dependent species like Vaccinium myrtillus and Deschampsia flexuosa after an initial rapid period of establishment after the fire. Unlike Calluna, the regeneration of the two Vaccinium species takes place mainly from surviving rhizomes, and a comparison with the control plots shows that the green biomass had been strongly reduced by the fire (e.g., [22]).
In addition to Calluna vulgaris, two other species seemed to have taken advantage of the fire, for example, the bracken Pteridium aquilinum and the light-sensitive grass Deschampsia flexuosa. Both of these species are reproducing vegetatively, the Pteridium by putting out a very deep rhizome network that can survive medium and low intensity fires [23] and producing large leaves that are able to compete successfully on light and nutrients. Deschampsia are surviving as resting buds in the upper soil layer [18, 24] that take advantage of improved light and nutrient conditions after the fire [8]. However, the long-term study indicates that increased competition after 2001 may have caused a strong reduction in growth and survival rates of Deschampsia (cf. [7]).
The coastal and oligotrophic grass species Molinia caerulea also survived the fire because of its deep root system and humid soil conditions. It was not shown in the samplings from the short-term study, but then its coverage increased strongly from 1995 to 2001 and then stayed constant (see Table 3). Like Deschampsia, Pteridium, and Calluna, the Molinia tussocks seem to be favored by improved light conditions and are reported to inhibit pine reproduction by removing access to the mineral soil layer [25].
In the two moss species Polytrichum commune and P. juniperinum, there was also a strong increase in biomass after the fire. The pioneer mosses Polytrichum juniperinum and Ceratodon purpureus [8] are dominating at the nutrient-poor sites 5 and 6 (see map on Figure 1), and in agreement with earlier reports [18] seem to culminate 2–3 years after the fire (Table 3).
The present results agree well with the results from a short-term study on the succession in a pine forest in Mykland, southern Norway after a forest fire in 2008 [25]. They found strong Pinus regeneration already 4 years after the fire (cf. Table 4), and the corresponding mean height of pine seedlings was then 10–50 cm, while the mean height of pine seedlings in the present study 9 years after the fire (2001) was 190 cm. The four most common pioneer species after the fire were the same as in the present study, but in a different order. In the present study, Calluna vulgaris was the dominant species with about 30% coverage already 3 years after the fire (Table 3), while in the Mykland study, Molinia caerulea was the most abundant (5–15%), with Calluna only covering 2–4% 4 years after the fire [25]. In both studies, the Polytrichum moss species were very common during the first year after the fire.
2001
2008
Species/plot
1
2
3
4
5
6
Sum
1
2
3
4
5
6
Sum
Pinus
1.4
5.6
3.6
2.4
1.2
0.8
2.5
3.4
6.2
4.6
2.0
2.0
1.6
3.3
Betula
0.8
2.4
1.8
3.0
0.6
1.4
1.7
2.2
6.4
1.6
4.0
1.6
1.4
2.9
Salix
0.2
0.9
1.0
0.6
0.2
0.2
0.6
0
0.3
0
0
0
0.2
0.1
Table 4.
Mean tree density (n = 5) of Pinus sylvestris, Betula pubescens and Salix spp. on 10 m2 study sites at the six investigated study sites, measured in 2001 and 2008.
Long-term successions. Due to a strong increase in the total plant cover during the three first years after the fire, and to a certain degree in the shoot density, there was a strong increase in the overall biomass (cf. Figure 2), in particular in Calluna and Molinia caerulea, but also to a certain degree in Deschampsia, Polytrichum, and Pteridium. This increase continued in 1997, but then it culminated in all the investigated species except Calluna, which was totally dominating in 2001, probably due to the improved light and nutrient conditions. As a result, a gradual increase took place also in the total plant cover in the field layer and reached 90% by 1995 and 150% by 1997 and then stayed constant (Table 3). The improved light and nutrient conditions may partly also be a result of the accumulation of dead organic matter after the fire, as reported by Vestmoen [26] and Nygaard and Brean [25], on a much higher scale, and by similar studies in Sweden [27, 28]. The total biomass of the investigated species in 2001 was much higher than the corresponding biomass at the control plot, mainly because of the strong growth of Calluna. However, with increasing competition for light, water, and nutrients, a decrease is expected in the production rates of the field layer. Tables 4 and 5 indicate that in the future there will be more competition also from Pinus and Betula seedlings that are expected to gradually replace the more light-dependent species in the field layer (see Figure 3).
2001
2008
Species/plot
1
2
3
4
5
6
Sum
1
2
3
4
5
6
Sum
Diameter (mm)
Pinus
3.1
1.8
2.8
4.0
3.2
3.4
3.1
7.7
3.4
4.1
3.7
5.2
4.2
4.7
Betula
2.8
1.6
3.4
3.7
3.1
3.1
3.1
5.4
4.3
2.9
4.0
3.5
2.4
3.8
Height (m)
Pinus
2.3
1.7
2.0
2.1
1.4
2.1
1.9
4.0
2.5
2.6
2.7
1.8
2.1
2.6
Betula
2.7
1.7
2.7
2.8
2.3
2.6
2.5
4.0
5.0
2.6
3.2
2.3
1.7
3.1
Age (yrs)
Pinus
9.3
8.8
8.3
9.0
8.9
10.7
9.2
13.0
11.0
11.2
11.5
12.3
11.0
11.7
Betula
10.0
7.3
9.1
10.3
10.4
10.7
9.6
14.2
16.6
9.9
12.2
11.8
12.7
12.9
Table 5.
Diameter and height (n = 5) of Pinus sylvestris and Betula pubescens seedlings at the six investigated study sites, with mean values, measured in 2001 and 2008.
Figure 3.
View of the low-intensity burned site 2 from 2008 with pine regeneration competing with Calluna and Pteridium in the field layer.
The regrowth and density of trees in 2001 and 2008, that is, 9 and 16 years after the fire, are shown in Tables 4 and 5. Seedlings of Pinus sylvestris and saplings of surviving Betula pubescens seemed to have established at all plots in 2001, and there was a further increase in density, to maximum of 3.3 and 2.9 trees per 10 m2 in 2008. In Salix, the regrowth was small and insignificant (Table 4).
Further information on tree growth and development is shown in Table 5. The established seedlings and saplings showed a strong (50%) height and diameter growth during the period from 2001 to 2008 in both species. Finally, it is interesting to note that the recorded age (years) of the two tree species corresponded well with the observed age in 2001 but was considerably lower in 2008, indicating a certain seed regeneration from surviving mother trees also after the fire, in accordance with the results from a similar study by Nygaard and Brean [25].
Carbon-binding capacity. One of the implications of Figure 2 is that on short term, the CO2-binding capacity of the forest is severely damaged as a result of the fire, but on longer terms (10–15 years), the reduction in CO2 uptake is partly compensated by the strong growth in aboveground green Calluna tissue. This conclusion is partly supported by results from coastal heathland studies (e.g., [19]) but not by Kjønaas et al. [29] in long-term successional studies on a spruce plantation in southeastern Norway as influenced by clear cutting. They found that the CO2 uptake in understorey biomass and litter during the first 10–15 years after a clear cut was of the same order as the corresponding annual CO2 output in the living tree biomass during the following succession, up to the mature stage of 130 years. Table 3 indicates that the percentage coverage of Calluna 10–15 years after the fire is of the same order or higher than the combined coverage of the two dominating tree species (Pinus sylvestris and Betula pubescens) at the control plot. The much higher shoot/root ratio in young Calluna relative to old plants at the control plot (3.7 vs. 0.5) also indicates that regularly controlled burning at intervals, for example, 5 or 10 years as described by Måren [19] and Kaland [30], may be as efficient as, for example, spruce plantation in the carbon uptake process as climatic regulators. These results have also been supported by other studies from northern boreal forests, for example, by Ivanova et al. [31], Kukavskaya et al. [32], and Tarasov et al. [33] on succession after fire in Siberian pine forests. Also, other studies emphasize the function of forest fires in the process of recycling nutrients and speeding up regeneration, photosynthesis, and growth, including the CO2-binding capacity (e.g., [34, 35]; see also [36]).
4. Conclusion
In line with the three objectives of the study, some species may have taken advantage of improved light and nutrient conditions after the fire. This refers particularly to the heather (Calluna vulgaris), which seems to be particularly well adapted to fire. In fact, the coastal heaths with pine forests in Norway have been regularly burned for more than 2000 years in order to enhance the growth of green Calluna tissue as food for animals [30] and to facilitate seed regeneration in pine [14]. However, the fire also favors other light-dependent species like Pteridium aquilinum and Molinia caerulea. According to, for example, Måren et al. [37], Pteridium is competing with Calluna on burned areas of coastal heathlands, but repeated cutting of Pteridium will help favoring Calluna growth. Furthermore, because seed regeneration of pine is favored by exposed mineral, the fire will increase pine regrowth and juvenilization. On the other hand, plants dependent on vegetative reproduction like Vaccinium myrtillus may be permanently suppressed [38].
In some parts of the study site (plots 4 and 5), the humus layer and soil were almost burned off, and the regrowth may have been permanently restricted by lack of nutrients and water (Figure 4). In these areas, the succession process may take place over a very long time, after a new soil layer has been formed by mosses and other pioneer plants. But, on the remaining part of the study site, where water and nutrients are not limiting factors, increasing pine and birch growth is expected to shadow out light-dependent plants such as Deschampsia flexuosa, Molinia caerulea, Pteridium aquilinum, and Calluna vulgaris, and after a period of time that may take 100 years or more [8], the ecosystem may have reached its climax stage again and be back to the starting point (cf. Figure 3).
Figure 4.
View of the high-intensity burned site 5 from 2008 with missing or sparse soil cover and dead fallen pine trees. In the background Hopsfjellet and Mardalsfjellet.
The study also indicates that periodic burning of old-growth Calluna heath (cf. [19]) may be as efficient in the CO2 uptake process in short terms (10–15 years) as climate regulators as spruce plantations in coastal districts of Norway.
\n',keywords:"succession, fire, coastal pine, coverage, regeneration",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/71854.pdf",chapterXML:"https://mts.intechopen.com/source/xml/71854.xml",downloadPdfUrl:"/chapter/pdf-download/71854",previewPdfUrl:"/chapter/pdf-preview/71854",totalDownloads:483,totalViews:0,totalCrossrefCites:0,dateSubmitted:"December 20th 2019",dateReviewed:"March 17th 2020",datePrePublished:"April 20th 2020",datePublished:"February 17th 2021",dateFinished:"April 20th 2020",readingETA:"0",abstract:"Biomass and chemical composition in six dominant field and bottom layer species have been recorded for 5 years after a wildfire in a coastal pine forest in Sveio, West Norway, in June 1992. As a follow-up of this study, the percentage coverage of field and bottom layer species and the regeneration of main tree species (Pinus sylvestris, Betula pubescens, and Salix spp.) were recorded in 1997, 2001, and 2008. Preliminary results indicate that the three dominant field layer species, Calluna vulgaris, Molinia caerulea, and Pteridium aquilinum, had expanded at the expense of other species, in particular Vaccinium myrtillus, V. vitis-idaea, Deschampsia flexuosa, and pioneer moss species, for example, Polytrichum spp. Seedlings of pine and saplings of birch and other deciduous species had established in the burned areas, and the succession of these species was followed and compared with nearby control plots. The strong growth of Calluna vulgaris after the fire indicates that periodic controlled burning may be an alternative management method of balancing carbon uptake rates in coastal areas of western Norway.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/71854",risUrl:"/chapter/ris/71854",signatures:"Oddvar Skre",book:{id:"8985",type:"book",title:"Natural Resources Management and Biological Sciences",subtitle:null,fullTitle:"Natural Resources Management and Biological Sciences",slug:"natural-resources-management-and-biological-sciences",publishedDate:"February 17th 2021",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83880-465-7",printIsbn:"978-1-83880-464-0",pdfIsbn:"978-1-83968-600-9",isAvailableForWebshopOrdering:!0,editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"317115",title:"Dr.",name:"Oddvar",middleName:null,surname:"Skre",fullName:"Oddvar Skre",slug:"oddvar-skre",email:"oddvar@nmvskre.no",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Materials and methods",level:"1"},{id:"sec_3",title:"3. Results and discussion",level:"1"},{id:"sec_4",title:"4. Conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Rolstad J, Blanck Y-L, Storaunet KO. Fire history in a western Fennoscandian boreal forest as influenced by human landuse and climate. Ecological Monographs. 2017. DOI: 10.1002/ecm.1244'},{id:"B2",body:'Storaunet KO, Rolstad J, Toeneiet M, Blanck Y-L. Strong anthropogenic signal in historic forest fire regime; A detailed spatio-temporal case study from south-central Norway. Canadian Journal of Forest Research. 2013;43(9):836-845'},{id:"B3",body:'Storaunet KO, Gjerde I. Skog. In: Nybø S, editor. Naturindeks for Norge 2010. 2010'},{id:"B4",body:'Solbraa K. Brannflatedynamikk i skog. Sammendrag fra et seminar 13–14. Januar 1997 i Norges Forskningsråd, Oslo. Rapport Skogforsk 2/97. 1997'},{id:"B5",body:'Fægri K, Danielsen A. Maps of Distribution of Norwegian Vascular Plants III. The Southeastern Element. Fagbokforlaget; 1996'},{id:"B6",body:'Måren IE, Vandvik V. Fire and regeneration; the role of seed banks in the dynamics of northern heathlands. Journal of Vegetation Science. 2009;20(5):871-888'},{id:"B7",body:'Skre O, Wielgolaski FE, Moe B. Biomass and chemical composition of common forest plants in response to fire in western Norway. Journal of Vegetation Science. 1998;9:501-510'},{id:"B8",body:'Klingsheim JM. Post-fire succession in two southern boreal coniferous forests in Norway, Hopsfjellet in Sveio and Turtermarka in Maridalen [MSc thesis]. University of Oslo; 1996'},{id:"B9",body:'Chandler C, Cheney P, Thomas P, Trabaud L, Williams D. Fire in Forestry. Vol. 1–2. N.Y.: Wiley; 1983'},{id:"B10",body:'Kimmins JP. Forest Ecology; A Foundation for Sustainable Management. 2nd ed. NJ: Prentice Hall; 1997'},{id:"B11",body:'Moe B. Botaniske undersøkelser etter skogbrannen i Sveio; suksesjoner, skogstruktur og brannkart. Fylkemannen i Hordaland, Miljøvernavd. rapport 6/94. Bergen. 1994'},{id:"B12",body:'Yli-Vakkuri P. Emergence and initial development of tree seedlings on burnt-over forest land. Acta Forestalia Fennica. 1962;74:1-51'},{id:"B13",body:'Moe B. Suksesjonsstudier etter skogbrann. In: Solbraa K, editor. Brannflatedynamikk i skog, Aktuelt fra Skogforskning. Vol. 2. 1997. pp. 25-26'},{id:"B14",body:'Øyen BH. Punktbrenning–et aktuelt hjelpetiltak ved foryngelse av. kystfuruskog? In: Solbraa K, editor. Brannflatedynamikk i skog. Aktuelt fra Skogforsk. Vol. 2. 1997. pp. 16-17'},{id:"B15",body:'Skre O. Measuring changes in biomass and shoot density in some dominant field layer species after a forest fire in western Norway. In: Woxholtt S, editor. Proceedings from the Ninth IBFRA Conference in Oslo, September 21–23, 1998. 1999. pp. 72-78. Aktuelt fra. Skogforsk 4/99: 1–83'},{id:"B16",body:'Goodnight JH. The new general linear modes procedure. In: Proceedings of the First International SAS Users Conference. Cary, NC: SAS Institute Inc.; 1976'},{id:"B17",body:'Granstrom A. Seed banks in five boreal forest stands originating between 1810 and 1963. Canadian Journal of Forest Research. 1987;60:1815-1821'},{id:"B18",body:'Schimmel J. On fire; fire behaviour, fuel succession and vegetation response to fire in Swedish boreal forests [PhD thesis]. Umeå: Swedish University of Agricultural Sciences; 1993'},{id:"B19",body:'Måren IE. Effects of management on heathland vegetation in Western Norway [PhD thesis]. University of Bergen; 2009'},{id:"B20",body:'Velle LG, Nilsen LS, Norderhaug A, Vandvik V. Does prescribed burning result in biotic homogenization of coastal heathlands? Global Change Biology. 2013;20(5):1429-1440'},{id:"B21",body:'Klingsheim JM. Revegetering og jordsmonnsutvikling de første årene etter skogbrann på Hopsfjellet i Sveio og Turteråsen i Maridalen. In: Vitensk. Mus. Rapp. Bot. Ser. 1995–1. Trondheim: Universitet i Trondheim; 1995'},{id:"B22",body:'Schimmel J, Granstrom A. Skogsbranderna och vegetationen. SkogForsk. 1991;4(91):39-46'},{id:"B23",body:'Whelan RJ. The ecology of fire. In: Cambridge Studies in Ecology. Cambridge, UK: Cambridge University Press; 1995'},{id:"B24",body:'Viro PJ. Effects of forest fire on soil. In: Kozlowski TT, Ahlgren CE, editors. Fire and Ecosystems. 1974. pp. 7-95'},{id:"B25",body:'Nygaard PH, Brean R. Dokumentasjon og erfaringer etter skogbrannen i Mykland 2008. In: Rapport Skog og Landskap 02/2014. 2014. pp. 33'},{id:"B26",body:'Vestmoen SM. Effects of forest fire on production of down woody debris in Aust-Agder County in Norway [MSc thesis]. Ås, Norway: UMB; 2011'},{id:"B27",body:'Zackrisson O, Nilsson M-C, Wardle D. Key ecological function of charcoal from wildfire in the boreal forest. Oikos. 1996;77:10-19'},{id:"B28",body:'Østlund L, Zackrisson O, Axelsson A-L. The history and transformation of a Scandinavian boreal forest landscape since the 19th century. Canadian Journal of Forest Research. 1997;27:1198-1206'},{id:"B29",body:'Kjønaas OJ, Skre O, Tau Strand L, Børja I, Clarke N, de Wit HA, et al. Understorey vegetation makes a difference: Above- and belowground carbon and nitrogen pools in a Norwegian Norway spruce chronosequence. Plant and Soil. 2010;334'},{id:"B30",body:'Kaland PE. The origin and management of Norwegian coastal heaths as reflected by pollen analysis. In: Behre KE, editor. Anthropogenic Indicators in Pollen Diagrams. Boston: A.A. Balkema; 1986. pp. 19-36'},{id:"B31",body:'Ivanova GA, Ivanov VA, Kovaleva NM, Conard SG, Zhila SV, Tarasov PA. Succession of vegetation after a high-intensity fire in a pine forest with lichens. Contemporary Problems of Ecology. 2017;10:52-61'},{id:"B32",body:'Kukavskaya EA, Ivanova GA, Conard SG, McRae DJ, Ivanov VA. Biomass dynamics of central Siberian Scots pine forests following surface fires of varying severity. International Journal of Wildland Fire. 2014;23(6):872-876'},{id:"B33",body:'Tarasov PA, Ivanov VA, Gaidukova AF. Analysis of growth dynamics and development of self-sowing Scots pine on post-fire sites. Khoinye Boreal’noi Zony. 2012;30(3–4):284-290'},{id:"B34",body:'Brockway DG, Gatewood RG, Paris RB. Restoring fire as an ecological process in hortgrass prairie ecosystems; initial effects of prescribed burning during the dormant and growing seasons. Journal of Environmental Management. 2002;65(2):135-152'},{id:"B35",body:'Brown JK, Smith JK. Wildland fire in ecosystems; effects of fire on flora. In: Gen. Tech Rep. RMRS-GTR-42-vol. 2. Dept of Agriculture, Forest Service, Rocky Mountain Research Station; 2000'},{id:"B36",body:'Ivanova GA, Conard SG, Kukavskaya EA, McRae DJ. Fire impact on carbon storage in light conifer forests of the Lower Angara region, Siberia. Environmental Research Letters. 2011;6'},{id:"B37",body:'Måren IE, Vandvik V, Ekelund A. Restoration of bracken-induced Calluna vulgaris heathlands; effects on vegetation dynamics and non-target species. Biological Conservation. 2008;141:1032-1041'},{id:"B38",body:'Engelmark O. Fire history correlations to forest type and topography in northern Sweden. Annales Botanici Fennici. 1987;24:317-324. Proceedings of the First International SAS Users Conference. SAS Institute Inc'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Oddvar Skre",address:"oddvar@nmvskre.no",affiliation:'
Norwegian Forest Research Institute, Skre Nature and Environment, Norway
'}],corrections:null},book:{id:"8985",type:"book",title:"Natural Resources Management and Biological Sciences",subtitle:null,fullTitle:"Natural Resources Management and Biological Sciences",slug:"natural-resources-management-and-biological-sciences",publishedDate:"February 17th 2021",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83880-465-7",printIsbn:"978-1-83880-464-0",pdfIsbn:"978-1-83968-600-9",isAvailableForWebshopOrdering:!0,editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"100661",title:"Dr.",name:"Gemma",middleName:null,surname:"Aiello",email:"gemma.aiello@iamc.cnr.it",fullName:"Gemma Aiello",slug:"gemma-aiello",position:null,biography:"Dr. Gemma Aiello was born in Aversa (CE), Italy, on 24 October 1964. In 1989, she graduated in Geological Sciences at the University of Naples “Federico II.” In 1993, she earned a Ph.D. in Sedimentary Geology at the University of Naples “Federico II,” Department of Earth Sciences, Faculty of Geological Sciences. She completed a two-year postdoctoral fellowship at the University of Naples “Federico II,” a CNR-CEE fellowship and several contracts at the Research Institute “Geomare Sud,” CNR, Naples, Italy. Since 1998, she has been a full-time researcher at the Italian CNR. Dr. Aiello has twenty-five years of experience in the field of sedimentary geology, marine geology and geophysics, participating in different research projects for the Italian National Research Council (CARG, Vector, Centri Regionali di Competenza). She was a contract professor of sedimentology and stratigraphy at the Parthenope University of Naples, Italy, and a teacher in formation courses of technicians in marine science and engineering in Naples, Italy.",institutionString:"Institute of Marine Sciences - National Research Council ISMAR-CNR",profilePictureURL:"https://mts.intechopen.com/storage/users/100661/images/system/100661.jpg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"7",totalEditedBooks:"4",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Institute for Coastal Marine Environment",institutionURL:null,country:{name:"Italy"}}},booksEdited:[{id:"7768",type:"book",slug:"sedimentary-processes-examples-from-asia-turkey-and-nigeria",title:"Sedimentary Processes",subtitle:"Examples from Asia, Turkey and Nigeria",coverURL:"https://cdn.intechopen.com/books/images_new/7768.jpg",abstract:"This book contains six chapters covering the sedimentary processes with examples from Asia, Turkey, and Nigeria. The book focuses on the geological characteristics, beach processes, coastal and lacustrine sedimentary archives, and the role of mangroves in controlling coastal sedimentation. In more detail, these topics are pertaining to the geological characteristics and the production response of a reservoir located offshore the Niger Delta (Nigeria), the coastal lacustrine geo-archives with the example of the Lake Bafa (Turkey), the sedimentary processes in the riparian zone of the Ruxi Tributary Channel (Three Gorges Reservoir, China), the beach morphological changes studied by means of a contour-line change model and finally, the role of the mangroves in controlling the sedimentary accretion of coastal and marine environments with the regional example of the south-eastern Asia.",editors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",title:"Edited Volume"}},{id:"7392",type:"book",slug:"new-insights-into-the-stratigraphic-setting-of-paleozoic-to-miocene-deposits-case-studies-from-the-persian-gulf-peninsular-malaysia-and-south-eastern-pyrenees",title:"New Insights into the Stratigraphic Setting of Paleozoic to Miocene Deposits",subtitle:"Case Studies from the Persian Gulf, Peninsular Malaysia and South-Eastern Pyrenees",coverURL:"https://cdn.intechopen.com/books/images_new/7392.jpg",abstract:"This book contains four chapters dealing with the investigation of facies analysis and paleoecology, chemostratigraphy, and chronostratigraphy referring to paleoecological and facies analysis techniques and methodologies. The chapters pertain in particular to Oligo-Miocene carbonate succession of the Persian Gulf (Asmari Formation), the chemostratigraphy of Paleozoic carbonates of Peninsular Malaysia through the integration of stratigraphic, sedimentologic, and geochemical data, and the chronostratigraphy of a small ice-dammed paleolake in Andorra (Spain), applying fast Fourier transform analysis, resulting in 6th-order stratigraphic cycles, which have outlined the occurrence of system tracts and unconformities controlled by glacio-eustasy. The chapters are separated into four main sections: (1) introduction; (2) facies analysis and paleoecology; (3) chemostratigraphy; and (4) chronostratigraphy. There is one chapter in the first section introducing the stratigraphic setting of Paleozoic to Miocene deposits based on different stratigraphic methodologies, including facies analysis, paleoecology, chemostratigraphy, and chronostratigraphy. In the second section, there is one chapter dealing with the Oligocene-Miocene Asmari Formation, allowing for the recognition of several depositional environments based on sedimentological analysis, distribution of foraminifera, and micropaleontological study. In the third section, there is one chapter aimed at addressing research on the chemostratigraphy of cores, allowing for a significant increase of the stratigraphic knowledge existing on the Kinta Valley (Malaysia), coupled with extensive fieldwork on Paleozoic carbonates. In the fourth section, there is a chapter dealing with the high-resolution chronostratigraphic setting of a paleolake located in Andorra (Spain) and the inference with the MIS2 isotopic stage of Atlantic and Mediterranean regions in the regional geological setting of the southeastern Pyrenees.",editors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",title:"Edited Volume"}},{id:"6104",type:"book",slug:"volcanoes-geological-and-geophysical-setting-theoretical-aspects-and-numerical-modeling-applications-to-industry-and-their-impact-on-the-human-health",title:"Volcanoes",subtitle:"Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to Industry and Their Impact on the Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/6104.jpg",abstract:"This book contains 12 chapters dealing with the studies on volcanoes, their geological and geophysical setting, the theoretical aspects and the numerical modeling on volcanoes, the applications of volcanoes to the industry, and the impact of volcanoes on the human health, in different geological settings and using several techniques and methods, including the volcanology, the seismology, the statistical methods to assess the correlation between seismic and volcanic activity (modified Ripley's K-function to regional seismicity), the field geological survey of volcanic successions, the analytical methods of petrologic analysis, the petrography of the volcanic rocks with the individuation of the modal compositions of volcanic rocks and their comparison with major elements and trace elements in variation diagrams, and the argon isotopic measurements performed through the peak height comparison (unspiked) method. The oceanographic methods have also been applied to case studies of submarine volcanic edifices located in the Canary Islands (Atlantic Ocean), including the sampling of the water column with a conductivity-temperature-depth (CTD) sensor rosette with 24 Niskin bottles, in order to determinate key physical and chemical parameters, such as the total-scale pH, the total dissolved inorganic carbon (C), the total alkalinity (A), the temperature, the salinity, and the dissolved oxygen. Problems of volcanic risk mitigation have also been treated, regarding the eruption disasters in Indonesia, a country where a high number of people live next to the volcanoes, and characterized by the lack of public awareness of the eruption disasters. Petrographic methods have been successfully applied to the study of the Cretaceous magmatism of the layered gabbroids of the Chukotka region (Pekulney Ridge, Russia), and geodynamic implications have been successfully established through geological and petrographic studies. The relationships among the mantle wedge, the convective heat and mass transfer, the infiltration metasomatism, the zoning, and the mathematical models have been applied to the comprehension of complex volcanic areas through the theoretical aspects of volcanic studies on magmatic chambers coupled with numerical modeling, including finite element models (FEMs) in the individuation of volcanic deformations.",editors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",title:"Edited Volume"}},{id:"5958",type:"book",slug:"seismic-and-sequence-stratigraphy-and-integrated-stratigraphy-new-insights-and-contributions",title:"Seismic and Sequence Stratigraphy and Integrated Stratigraphy",subtitle:"New Insights and Contributions",coverURL:"https://cdn.intechopen.com/books/images_new/5958.jpg",abstract:"This book contains six chapters dealing with the investigation of seismic and sequence stratigraphy and integrated stratigraphy, including the stratigraphic unconformities, in different geological settings and using several techniques and methods, including the seismostratigraphic and the sequence stratigraphic analysis, the field geological survey, the well log stratigraphic interpretation, and the lithologic and paleobotanical data. Book chapters are separated into two main sections: (i) seismic and sequence stratigraphy and (ii) integrated stratigraphy. There are three chapters in the first section, including the application of sequence and seismic stratigraphy to the fine-grained shales, to the fluvial facies and depositional environments, and to the Late Miocene geological structures offshore of Taiwan. In the second section, there are three chapters dealing with the integrated stratigraphic investigation of Jurassic deposits of the southern Siberian platform, with the stratigraphic unconformities, reviewing the related geological concepts and studying examples from Middle-Upper Paleozoic successions; and, finally, with the integrated stratigraphy of the Cenozoic deposits of the Andean foreland basin (northwestern Argentina).",editors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",title:"Edited Volume"}}],chaptersAuthored:[{id:"36317",title:"Seismic Stratigraphy and Marine Magnetics of the Naples Bay (Southern Tyrrhenian Sea, Italy): The Onset of New Technologies in Marine Data Acquisition, Processing and Interpretation",slug:"seismic-stratigraphy-and-marine-magnetics-of-the-naples-bay-southern-tyrrhenian-sea-italy-the-on",abstract:null,signatures:"Gemma Aiello, Laura Giordano, Ennio Marsella and Salvatore Passaro",authors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",fullName:"Gemma Aiello",slug:"gemma-aiello",email:"gemma.aiello@iamc.cnr.it"},{id:"101886",title:"Dr.",name:"Ennio",surname:"Marsella",fullName:"Ennio Marsella",slug:"ennio-marsella",email:"ennio.marsella@iamc.cnr.it"},{id:"101900",title:"Dr.",name:"Laura",surname:"Giordano",fullName:"Laura Giordano",slug:"laura-giordano",email:"laura.giordano@iamc.cnr.it"},{id:"101901",title:"Dr.",name:"Salvatore",surname:"Passaro",fullName:"Salvatore Passaro",slug:"salvatore-passaro",email:"salvatore.passaro@iamc.cnr.it"}],book:{id:"1550",title:"Stratigraphic Analysis of Layered Deposits",slug:"stratigraphic-analysis-of-layered-deposits",productType:{id:"1",title:"Edited Volume"}}},{id:"49582",title:"Geological Evolution of Coastal and Marine Environments off the Campania Continental Shelf Through Marine Geological Mapping - The Example of the Cilento Promontory",slug:"geological-evolution-of-coastal-and-marine-environments-off-the-campania-continental-shelf-through-m",abstract:"The geological evolution of coastal and marine environments offshore the Cilento Promontory through marine geological mapping is discussed here. The marine geological map n. 502 “Agropoli,” located offshore the Cilento Promontory (southern Italy), is described and put in regional geologic setting. The study area covers water depths ranging between 30 and 200 m isobaths. The geologic map has been constructed in the frame of a research program financed by the National Geological Survey of Italy (CARG Project), finalized to the construction of an up-to-date cartography of the Campania region. Geological and geophysical data on the continental shelf and slope offshore the southern Campania region have been acquired in an area bounded northward by the Gulf of Salerno and southward by the Gulf of Policastro. A high-resolution multibeam bathymetry has permitted the construction of a digital elevation model (DEM). Sidescan sonar profiles have also been collected and interpreted, and their merging with bathymetric data has allowed for the realization of the base for the marine geologic cartography. The calibration of geophysical data has been attempted through sea-bottom samples. The morpho-structures and the seismic sequences overlying the outcrops of acoustic basement reported in the cartographic representation have been studied in detail using single-channel seismics. The interpretation of seismic profiles has been a support for the reconstruction of the stratigraphic and structural setting of the Quaternary continental shelf successions and the outcrops of rocky acoustic basement in correspondence to the Licosa Cape morpho-structural high. These areas result from the seaward prolongation of the stratigraphic and structural units, widely cropping out in the surrounding emerged sector of the Cilento Promontory. The cartographic approach is based on the recognition of laterally coeval depositional systems, interpreted in the frame of system tracts of the Late Quaternary depositional sequence.",signatures:"Gemma Aiello and Ennio Marsella",authors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",fullName:"Gemma Aiello",slug:"gemma-aiello",email:"gemma.aiello@iamc.cnr.it"}],book:{id:"5096",title:"Applied Studies of Coastal and Marine Environments",slug:"applied-studies-of-coastal-and-marine-environments",productType:{id:"1",title:"Edited Volume"}}},{id:"57373",title:"Introductory Chapter: An Introduction to the Seismic and Sequence Stratigraphy and to the Integrated Stratigraphy: Concepts and Meanings",slug:"introductory-chapter-an-introduction-to-the-seismic-and-sequence-stratigraphy-and-to-the-integrated-",abstract:null,signatures:"Gemma Aiello",authors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",fullName:"Gemma Aiello",slug:"gemma-aiello",email:"gemma.aiello@iamc.cnr.it"}],book:{id:"5958",title:"Seismic and Sequence Stratigraphy and Integrated Stratigraphy",slug:"seismic-and-sequence-stratigraphy-and-integrated-stratigraphy-new-insights-and-contributions",productType:{id:"1",title:"Edited Volume"}}},{id:"61830",title:"Introductory Chapter: Volcanoes - From Their Geological and Geophysical Setting to Their Impact on Human Health",slug:"introductory-chapter-volcanoes-from-their-geological-and-geophysical-setting-to-their-impact-on-huma",abstract:null,signatures:"Gemma Aiello",authors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",fullName:"Gemma Aiello",slug:"gemma-aiello",email:"gemma.aiello@iamc.cnr.it"}],book:{id:"6104",title:"Volcanoes",slug:"volcanoes-geological-and-geophysical-setting-theoretical-aspects-and-numerical-modeling-applications-to-industry-and-their-impact-on-the-human-health",productType:{id:"1",title:"Edited Volume"}}},{id:"66315",title:"Introductory Chapter: An Introduction to the Stratigraphic Setting of Paleozoic to Miocene Deposits Based on Paleoecology, Facies Analysis, Chemostratigraphy, and Chronostratigraphy - Concepts and Meanings",slug:"introductory-chapter-an-introduction-to-the-stratigraphic-setting-of-paleozoic-to-miocene-deposits-b",abstract:null,signatures:"Gemma Aiello",authors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",fullName:"Gemma Aiello",slug:"gemma-aiello",email:"gemma.aiello@iamc.cnr.it"}],book:{id:"7392",title:"New Insights into the Stratigraphic Setting of Paleozoic to Miocene Deposits",slug:"new-insights-into-the-stratigraphic-setting-of-paleozoic-to-miocene-deposits-case-studies-from-the-persian-gulf-peninsular-malaysia-and-south-eastern-pyrenees",productType:{id:"1",title:"Edited Volume"}}},{id:"70756",title:"Introductory Chapter: An Introduction to Sedimentary Processes - Examples from Asia, Turkey, and Nigeria",slug:"introductory-chapter-an-introduction-to-sedimentary-processes-examples-from-asia-turkey-and-nigeria",abstract:null,signatures:"Gemma Aiello",authors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",fullName:"Gemma Aiello",slug:"gemma-aiello",email:"gemma.aiello@iamc.cnr.it"}],book:{id:"7768",title:"Sedimentary Processes",slug:"sedimentary-processes-examples-from-asia-turkey-and-nigeria",productType:{id:"1",title:"Edited Volume"}}},{id:"74574",title:"Bioclastic Deposits in the NW Gulf of Naples (Southern Tyrrhenian Sea, Italy): A Focus on New Sedimentological and Stratigraphic Data around the Island of Ischia",slug:"bioclastic-deposits-in-the-nw-gulf-of-naples-southern-tyrrhenian-sea-italy-a-focus-on-new-sedimentol",abstract:"Bioclastic deposits in the Gulf of Naples have been studied and compared based on new sedimentological and stratigraphic data, particularly referring to the rhodolith layers. They represent detrital facies deriving mainly from in situ rearrangement processes of organogenic material on rocky sea bottoms. These deposits are composed of medium-coarse-grained sands and bioclastic gravels in a scarce pelitic matrix and crop out at the sea bottom in a portion of the inner shelf located at water depths between −20 m and −50 m. Below water depths of −30 m the bioclastic deposits are rhodolith, characterized by gravels and lithoclastic sands. Rhodolith deposits are often found near the Posidonia oceanica meadows and/or in protected areas near the rocky outcrops. The Ischia Bank represents an excellent natural laboratory for studying the rhodolith layers. On the Ischia Bank, below the Posidonia oceanica meadow, both bioclastic sands immersed in a muddy matrix and volcaniclastic gravels were sampled. Both the Mollusk shells and the volcaniclastic fragments, where the contribution of the silty and sandy fractions is lower than 20%, were colonized by some species of red algae, while in the marine areas with a low gradient a maërl facies was deposited.",signatures:"Gemma Aiello",authors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",fullName:"Gemma Aiello",slug:"gemma-aiello",email:"gemma.aiello@iamc.cnr.it"}],book:{id:"9879",title:"Geochemistry",slug:"geochemistry",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"101886",title:"Dr.",name:"Ennio",surname:"Marsella",slug:"ennio-marsella",fullName:"Ennio Marsella",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Research Council",institutionURL:null,country:{name:"Italy"}}},{id:"101900",title:"Dr.",name:"Laura",surname:"Giordano",slug:"laura-giordano",fullName:"Laura Giordano",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Research Council",institutionURL:null,country:{name:"Italy"}}},{id:"101901",title:"Dr.",name:"Salvatore",surname:"Passaro",slug:"salvatore-passaro",fullName:"Salvatore Passaro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Research Council",institutionURL:null,country:{name:"Italy"}}},{id:"104271",title:"Dr.",name:"Michael E.",surname:"Weber",slug:"michael-e.-weber",fullName:"Michael E. Weber",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Cologne",institutionURL:null,country:{name:"Germany"}}},{id:"105389",title:"Prof.",name:"Roberto",surname:"Balia",slug:"roberto-balia",fullName:"Roberto Balia",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Cagliari",institutionURL:null,country:{name:"Italy"}}},{id:"106172",title:"Dr.",name:"Giovanni",surname:"Leucci",slug:"giovanni-leucci",fullName:"Giovanni Leucci",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"108938",title:"Dr.",name:"Victor",surname:"Bravo-Cuevas",slug:"victor-bravo-cuevas",fullName:"Victor Bravo-Cuevas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of California Museum of Paleontology",institutionURL:null,country:{name:"United States of America"}}},{id:"109673",title:"Dr.",name:"Katia",surname:"González-Rodríguez",slug:"katia-gonzalez-rodriguez",fullName:"Katia González-Rodríguez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of California Museum of Paleontology",institutionURL:null,country:{name:"United States of America"}}},{id:"109689",title:"Prof.",name:"Rocio",surname:"Baños-Rodríguez",slug:"rocio-banos-rodriguez",fullName:"Rocio Baños-Rodríguez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma del Estado de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"109690",title:"BSc.",name:"Citlalli",surname:"Hernández-Guerrero",slug:"citlalli-hernandez-guerrero",fullName:"Citlalli Hernández-Guerrero",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma del Estado de Hidalgo",institutionURL:null,country:{name:"Mexico"}}}]},generic:{page:{slug:"translation-policy",title:"Translation Policy",intro:"
All Works published by IntechOpen prior to October 2011 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-BC-SA 3.0). Works published after October 2011 are licensed under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0), the latter allowing for the broadest possible reuse of published material.
",metaTitle:"Translation Policy",metaDescription:"Translation of Works - Book Chapters",metaKeywords:null,canonicalURL:"/page/translation-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"
All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\\n\\n
Book Chapters
\\n\\n
All translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\\n\\n
Books and all other compilations
\\n\\n
All rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\\n\\n
A Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\n\n
Book Chapters
\n\n
All translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\n\n
Books and all other compilations
\n\n
All rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\n\n
A Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\n\n
Policy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{regionId:"4",sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17574}],offset:12,limit:12,total:12563},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:15},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:10},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:96},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"84",title:"Nuclear Chemistry",slug:"nuclear-chemistry",parent:{id:"8",title:"Chemistry",slug:"chemistry"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:106,numberOfWosCitations:104,numberOfCrossrefCitations:81,numberOfDimensionsCitations:186,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"84",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8352",title:"Use of Gamma Radiation Techniques in Peaceful Applications",subtitle:null,isOpenForSubmission:!1,hash:"9d89a5d9be18d6ee9231976f596cf415",slug:"use-of-gamma-radiation-techniques-in-peaceful-applications",bookSignature:"Basim A. Almayah",coverURL:"https://cdn.intechopen.com/books/images_new/8352.jpg",editedByType:"Edited by",editors:[{id:"178830",title:"Prof.",name:"Basim",middleName:"A.",surname:"Almayahi",slug:"basim-almayahi",fullName:"Basim Almayahi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6336",title:"Advanced Technologies and Applications of Neutron Activation Analysis",subtitle:null,isOpenForSubmission:!1,hash:"662abe626287d6cc1e9ae444e094efc0",slug:"advanced-technologies-and-applications-of-neutron-activation-analysis",bookSignature:"Lylia Alghem Hamidatou",coverURL:"https://cdn.intechopen.com/books/images_new/6336.jpg",editedByType:"Edited by",editors:[{id:"156961",title:"Dr.",name:"Lylia",middleName:"Alghem",surname:"Hamidatou",slug:"lylia-hamidatou",fullName:"Lylia Hamidatou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7443",title:"Nuclear Fusion",subtitle:"One Noble Goal and a Variety of Scientific and Technological Challenges",isOpenForSubmission:!1,hash:"c76c428580cf3eda6f92b41e7419fb5c",slug:"nuclear-fusion-one-noble-goal-and-a-variety-of-scientific-and-technological-challenges",bookSignature:"Igor Girka",coverURL:"https://cdn.intechopen.com/books/images_new/7443.jpg",editedByType:"Edited by",editors:[{id:"261397",title:"Dr.",name:"Igor",middleName:"Oleksandrovych",surname:"Girka",slug:"igor-girka",fullName:"Igor Girka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5903",title:"Principles and Applications in Nuclear Engineering",subtitle:"Radiation Effects, Thermal Hydraulics, Radionuclide Migration in the Environment",isOpenForSubmission:!1,hash:"4e0fe8a5f023e5b09d0a6f76a3f0c1fd",slug:"principles-and-applications-in-nuclear-engineering-radiation-effects-thermal-hydraulics-radionuclide-migration-in-the-environment",bookSignature:"Rehab O. Abdel Rahman and Hosam El-Din M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/5903.jpg",editedByType:"Edited by",editors:[{id:"92718",title:"Prof.",name:"Rehab O.",middleName:"O.",surname:"Abdel Rahman",slug:"rehab-o.-abdel-rahman",fullName:"Rehab O. Abdel Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5974",title:"Radon",subtitle:null,isOpenForSubmission:!1,hash:"fddac69c4b8555589b4f916069ae663d",slug:"radon",bookSignature:"Feriz Adrovic",coverURL:"https://cdn.intechopen.com/books/images_new/5974.jpg",editedByType:"Edited by",editors:[{id:"106756",title:"Prof.",name:"Feriz",middleName:null,surname:"Adrovic",slug:"feriz-adrovic",fullName:"Feriz Adrovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5196",title:"Radiation Effects in Materials",subtitle:null,isOpenForSubmission:!1,hash:"99f0555ddea93e099cc8d9df9cd6ec0f",slug:"radiation-effects-in-materials",bookSignature:"Waldemar A. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/5196.jpg",editedByType:"Edited by",editors:[{id:"118821",title:"Dr.",name:"Waldemar Alfredo",middleName:null,surname:"Monteiro",slug:"waldemar-alfredo-monteiro",fullName:"Waldemar Alfredo Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1678",title:"Radiometric Dating",subtitle:null,isOpenForSubmission:!1,hash:"1981fa77879bdb21ef62e19c832c0587",slug:"radiometric-dating",bookSignature:"Danuta Michalska Nawrocka",coverURL:"https://cdn.intechopen.com/books/images_new/1678.jpg",editedByType:"Edited by",editors:[{id:"108912",title:"Dr.",name:"Danuta",middleName:null,surname:"Michalska Nawrocka",slug:"danuta-michalska-nawrocka",fullName:"Danuta Michalska Nawrocka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"62736",doi:"10.5772/intechopen.79161",title:"Radioisotope: Applications, Effects, and Occupational Protection",slug:"radioisotope-applications-effects-and-occupational-protection",totalDownloads:4455,totalCrossrefCites:7,totalDimensionsCites:14,abstract:"This chapter presents a brief introduction to radioisotopes, sources and types of radiation, applications, effects, and occupational protection. The natural and artificial sources of radiations are discussed with special reference to natural radioactive decay series and artificial radioisotopes. Applications have played significant role in improving the quality of human life. The application of radioisotopes in tracing, radiography, food preservation and sterilization, eradication of insects and pests, medical diagnosis and therapy, and new variety of crops in agricultural field is briefly described. Radiation interacts with matter to produce excitation and ionization of an atom or molecule; as a result physical and biological effects are produced. These effects and mechanisms are discussed. The dosimetric quantities used in radiological protection are described. Radiological protections and the control of occupational and medical exposures are briefly described.",book:{id:"5903",slug:"principles-and-applications-in-nuclear-engineering-radiation-effects-thermal-hydraulics-radionuclide-migration-in-the-environment",title:"Principles and Applications in Nuclear Engineering",fullTitle:"Principles and Applications in Nuclear Engineering - Radiation Effects, Thermal Hydraulics, Radionuclide Migration in the Environment"},signatures:"Sannappa Jadiyappa",authors:[{id:"239626",title:"Dr.",name:null,middleName:null,surname:"Sannappa J.",slug:"sannappa-j.",fullName:"Sannappa J."}]},{id:"50329",doi:"10.5772/62728",title:"Irradiation Pretreatment of Tropical Biomass and Biofiber for Biofuel Production",slug:"irradiation-pretreatment-of-tropical-biomass-and-biofiber-for-biofuel-production",totalDownloads:2597,totalCrossrefCites:5,totalDimensionsCites:12,abstract:"Interest on biofuel production from biomass and biofiber has gain great attention globally because these materials are abundant, inexpensive, renewable, and sustainable. Generally, the conversion of biomass and biofiber to biofuel involves several processes including biomass production, pretreatment, hydrolysis, and fermentation. Selecting the most efficient pretreatment is crucial to ensure the success of biofuel production since pretreatment has been reported to contribute substantial portion on the production cost. The main goal of the pretreatment is to enhance digestibility of the biomass and biofiber, and to increase sugar production prior to fermentation process. To date, several pretreatment methods have been introduced to pretreat biomass and biofiber including irradiation. This book chapter reviews and discusses different leading irradiation pretreatment technologies along with their mechanism involved during pretreatment of various tropical biomass and biofiber. This chapter also reviews the effect of irradiation pretreatment on the biomass and biofiber component, which could assist the enzymatic saccharification process.",book:{id:"5196",slug:"radiation-effects-in-materials",title:"Radiation Effects in Materials",fullTitle:"Radiation Effects in Materials"},signatures:"Mohd Asyraf Kassim, H.P.S Abdul Khalil, Noor Aziah Serri,\nMohamad Haafiz Mohamad Kassim, Muhammad Izzuddin Syakir,\nN.A. Sri Aprila and Rudi Dungani",authors:[{id:"181433",title:"Dr.",name:"Mohd Asyraf",middleName:null,surname:"Kassim",slug:"mohd-asyraf-kassim",fullName:"Mohd Asyraf Kassim"},{id:"203218",title:"Dr.",name:"Muhammad Izzuddin",middleName:null,surname:"Syakir Ishak",slug:"muhammad-izzuddin-syakir-ishak",fullName:"Muhammad Izzuddin Syakir Ishak"},{id:"234728",title:"Dr.",name:"Rudi",middleName:null,surname:"Dungani",slug:"rudi-dungani",fullName:"Rudi Dungani"},{id:"365131",title:"Dr.",name:"H.P.S",middleName:null,surname:"Abdul Khalil",slug:"h.p.s-abdul-khalil",fullName:"H.P.S Abdul Khalil"},{id:"365132",title:"Dr.",name:"Noor Aziah",middleName:null,surname:"Serri",slug:"noor-aziah-serri",fullName:"Noor Aziah Serri"},{id:"365133",title:"Dr.",name:"Mohamad Haafiz",middleName:null,surname:"Mohamad Kassim",slug:"mohamad-haafiz-mohamad-kassim",fullName:"Mohamad Haafiz Mohamad Kassim"},{id:"365134",title:"Dr.",name:"N.A.",middleName:null,surname:"Sri Aprila",slug:"n.a.-sri-aprila",fullName:"N.A. Sri Aprila"}]},{id:"36652",doi:"10.5772/34662",title:"Geochronology of Soils and Landforms in Cultural Landscapes on Aeolian Sandy Substrates, Based on Radiocarbon and Optically Stimulated Luminescence Dating (Weert, SE-Netherlands)",slug:"geochronology-of-soils-and-landforms-in-cultural-landscapes-on-aeolian-sandy-substrates-based-on-rad",totalDownloads:2380,totalCrossrefCites:2,totalDimensionsCites:10,abstract:null,book:{id:"1678",slug:"radiometric-dating",title:"Radiometric Dating",fullTitle:"Radiometric Dating"},signatures:"J.M. van Mourik, A.C. Seijmonsbergen and B. Jansen",authors:[{id:"101143",title:"Dr.",name:"Jan",middleName:null,surname:"Van Mourik",slug:"jan-van-mourik",fullName:"Jan Van Mourik"},{id:"158014",title:"Dr.",name:"A.C.",middleName:null,surname:"Seijmonsbergen",slug:"a.c.-seijmonsbergen",fullName:"A.C. Seijmonsbergen"},{id:"158015",title:"Dr.",name:"B.",middleName:null,surname:"Jansen",slug:"b.-jansen",fullName:"B. Jansen"}]},{id:"61052",doi:"10.5772/intechopen.76818",title:"Introductory Chapter: Safety Aspects in Nuclear Engineering",slug:"introductory-chapter-safety-aspects-in-nuclear-engineering",totalDownloads:717,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"5903",slug:"principles-and-applications-in-nuclear-engineering-radiation-effects-thermal-hydraulics-radionuclide-migration-in-the-environment",title:"Principles and Applications in Nuclear Engineering",fullTitle:"Principles and Applications in Nuclear Engineering - Radiation Effects, Thermal Hydraulics, Radionuclide Migration in the Environment"},signatures:"Rehab O. Abdel Rahman and Hosam M. Saleh",authors:[{id:"92718",title:"Prof.",name:"Rehab O.",middleName:"O.",surname:"Abdel Rahman",slug:"rehab-o.-abdel-rahman",fullName:"Rehab O. Abdel Rahman"}]},{id:"36648",doi:"10.5772/36583",title:"Improved Sample Preparation Methodology on Lime Mortar for Reliable 14C Dating",slug:"improved-sample-preparation-methodology-on-lime-mortar-for-reliable-14-c-dating",totalDownloads:3369,totalCrossrefCites:0,totalDimensionsCites:9,abstract:null,book:{id:"1678",slug:"radiometric-dating",title:"Radiometric Dating",fullTitle:"Radiometric Dating"},signatures:"Luis Angel Ortega, Maria Cruz Zuluaga, Ainhoa Alonso-Olazabal, Maite Insausti, Xabier Murelaga and Alex Ibañez",authors:[{id:"108933",title:"Dr.",name:"Luis A",middleName:null,surname:"Ortega",slug:"luis-a-ortega",fullName:"Luis A Ortega"},{id:"109000",title:"Dr.",name:"Maria Cruz",middleName:null,surname:"Zuluaga",slug:"maria-cruz-zuluaga",fullName:"Maria Cruz Zuluaga"},{id:"109001",title:"Dr.",name:"Ainhoa",middleName:null,surname:"Alonso-Olazabal",slug:"ainhoa-alonso-olazabal",fullName:"Ainhoa Alonso-Olazabal"},{id:"109004",title:"Dr.",name:"Maite",middleName:null,surname:"Insausti",slug:"maite-insausti",fullName:"Maite Insausti"},{id:"109006",title:"Dr.",name:"Xabier",middleName:null,surname:"Murelaga",slug:"xabier-murelaga",fullName:"Xabier Murelaga"},{id:"109007",title:"Dr.",name:"Alex",middleName:null,surname:"Ibañez",slug:"alex-ibanez",fullName:"Alex Ibañez"}]}],mostDownloadedChaptersLast30Days:[{id:"62736",title:"Radioisotope: Applications, Effects, and Occupational Protection",slug:"radioisotope-applications-effects-and-occupational-protection",totalDownloads:4455,totalCrossrefCites:7,totalDimensionsCites:14,abstract:"This chapter presents a brief introduction to radioisotopes, sources and types of radiation, applications, effects, and occupational protection. The natural and artificial sources of radiations are discussed with special reference to natural radioactive decay series and artificial radioisotopes. Applications have played significant role in improving the quality of human life. The application of radioisotopes in tracing, radiography, food preservation and sterilization, eradication of insects and pests, medical diagnosis and therapy, and new variety of crops in agricultural field is briefly described. Radiation interacts with matter to produce excitation and ionization of an atom or molecule; as a result physical and biological effects are produced. These effects and mechanisms are discussed. The dosimetric quantities used in radiological protection are described. Radiological protections and the control of occupational and medical exposures are briefly described.",book:{id:"5903",slug:"principles-and-applications-in-nuclear-engineering-radiation-effects-thermal-hydraulics-radionuclide-migration-in-the-environment",title:"Principles and Applications in Nuclear Engineering",fullTitle:"Principles and Applications in Nuclear Engineering - Radiation Effects, Thermal Hydraulics, Radionuclide Migration in the Environment"},signatures:"Sannappa Jadiyappa",authors:[{id:"239626",title:"Dr.",name:null,middleName:null,surname:"Sannappa J.",slug:"sannappa-j.",fullName:"Sannappa J."}]},{id:"68785",title:"Basic Modes of Radioactive Decay",slug:"basic-modes-of-radioactive-decay",totalDownloads:1733,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This basic modes of radioactive decay review “Gamma Rays” reviews some topics related to radiation, its classification and importance. In general, gamma rays interfere with our life, so we need to comprehend radiation as fact around us all the time and all the time. We live in a naturally radioactive world, but to what extent do physicians, nurses, and medical technicians, who may have to deal with urgent cases of a radiation, know about it? This chapter will address what radiation is and what is its role. This chapter will guide us toward the knowledge of ionizing radiation and its certain forms such as alpha particles, beta particles, gamma rays, and X-rays. as well as it will review on radioactive decay (nuclear decay) as well as help us learn about radioactivity and radiation, in addition to the types of decays, which are divided into beta decay, gamma decay, electron capture, positron decay, and alpha decay. This chapter will focus on radioactive decay, the activity and units of radioactive activity, and half-life of it. The last part of this chapter discusses attenuation as the reduction in the intensity of gamma ray or X-ray beam. The most important subtitles that are scattered from attenuation are HVL mean free path, the linear attenuation coefficient, pair production, and photoelectric scattering.",book:{id:"8352",slug:"use-of-gamma-radiation-techniques-in-peaceful-applications",title:"Use of Gamma Radiation Techniques in Peaceful Applications",fullTitle:"Use of Gamma Radiation Techniques in Peaceful Applications"},signatures:"Hasna Albandar",authors:[{id:"257770",title:"Mrs.",name:"Hasna",middleName:null,surname:"Albander",slug:"hasna-albander",fullName:"Hasna Albander"}]},{id:"67539",title:"Study of Bio-Based Foams Prepared from PBAT/PLA Reinforced with Bio-Calcium Carbonate and Compatibilized with Gamma Radiation",slug:"study-of-bio-based-foams-prepared-from-pbat-pla-reinforced-with-bio-calcium-carbonate-and-compatibil",totalDownloads:1548,totalCrossrefCites:0,totalDimensionsCites:5,abstract:"Foamed polymers are future materials, considered “green materials” due to their properties with very low consumption of raw materials; they can be used to ameliorate appearance of structures besides contributing for thermal and acoustic insulation. Nevertheless, waste disposal has generated about 20–30% of total of solid volume in landfills besides prejudicing flora and fauna by uncontrolled disposal. The development of biodegradable polymers aims to solve this problem, considering that in 2012, bio-plastics market was evaluated in 1.4 million tons produced and in 2017 attained 6.2 million tons. Biodegradable polymers as poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are thermoplastics which can be processed using the most conventional polymer processing methods. PLA is high in strength and modulus but brittle, while PBAT is flexible and tough. In order to reduce interfacial tension exhibited by PLA/PBAT blends, it was used as compatibilizing agent 5 phr of PLA previously gamma-radiated at 150 kGy. Ionizing radiation induces compatibilization by free radicals, improving the dispersion and adhesion of blend phases, without using chemical additives and at room temperature. As a reinforcement agent, calcium carbonate from avian eggshell waste was used, at 10 ph of micro particles, 125 μm. Admixtures were further processed in a single-screw extruder, using CO2 as physical blowing agent (PBA). Property investigations were performed by DSC, TGA, XRD, SEM, FTIR, and mechanical essays.",book:{id:"8352",slug:"use-of-gamma-radiation-techniques-in-peaceful-applications",title:"Use of Gamma Radiation Techniques in Peaceful Applications",fullTitle:"Use of Gamma Radiation Techniques in Peaceful Applications"},signatures:"Elizabeth C.L. Cardoso, Duclerc F. Parra, Sandra R. Scagliusi, Ricardo M. Sales, Fernando Caviquioli and Ademar B. Lugão",authors:null},{id:"50579",title:"Radiation Effects in Textile Materials",slug:"radiation-effects-in-textile-materials",totalDownloads:2840,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"Irradiation processes have several commercial applications, in the coating of metals, plastics, and glass, in printing, wood finishing, film and plastic cross-linking, and in the fields of adhesive and electrical insulations. The advantages of this technology are well known.",book:{id:"5196",slug:"radiation-effects-in-materials",title:"Radiation Effects in Materials",fullTitle:"Radiation Effects in Materials"},signatures:"Sheila Shahidi and Jakub Wiener",authors:[{id:"58854",title:"Dr.",name:null,middleName:null,surname:"Shahidi",slug:"shahidi",fullName:"Shahidi"},{id:"87913",title:"Prof.",name:"Jakub",middleName:null,surname:"Wiener",slug:"jakub-wiener",fullName:"Jakub Wiener"},{id:"176974",title:"Prof.",name:"Mahmood",middleName:null,surname:"Ghoranneviss",slug:"mahmood-ghoranneviss",fullName:"Mahmood Ghoranneviss"}]},{id:"66397",title:"Overview of Neutron Activation Analysis",slug:"overview-of-neutron-activation-analysis",totalDownloads:1128,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"This chapter provides a comprehensive overview of physical principles, procedures, proprieties, and some scientific achievements of neutron activation analysis. The most scientific events organized by the International Scientific Committees ICAA and k0-ISC are also reported.",book:{id:"6336",slug:"advanced-technologies-and-applications-of-neutron-activation-analysis",title:"Advanced Technologies and Applications of Neutron Activation Analysis",fullTitle:"Advanced Technologies and Applications of Neutron Activation Analysis"},signatures:"Lylia Alghem Hamidatou",authors:[{id:"156961",title:"Dr.",name:"Lylia",middleName:"Alghem",surname:"Hamidatou",slug:"lylia-hamidatou",fullName:"Lylia Hamidatou"}]}],onlineFirstChaptersFilter:{topicId:"84",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems. \r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"April 13th, 2022",hasOnlineFirst:!1,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"38",title:"Pollution",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",isOpenForSubmission:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"39",title:"Environmental Resilience and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",isOpenForSubmission:!0,annualVolume:11967,editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null},{id:"40",title:"Ecosystems and Biodiversity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",isOpenForSubmission:!0,annualVolume:11968,editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",slug:"salustiano-mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",biography:"Salustiano Mato de la Iglesia (Santiago de Compostela, 1960) is a doctor in biology from the University of Santiago and a Professor of zoology at the Department of Ecology and Animal Biology at the University of Vigo. He has developed his research activity in the fields of fauna and soil ecology, and in the treatment of organic waste, having been the founder and principal investigator of the Environmental Biotechnology Group of the University of Vigo.\r\nHis research activity in the field of Environmental Biotechnology has been focused on the development of novel organic waste treatment systems through composting. The result of this line of work are three invention patents and various scientific and technical publications in prestigious international journals.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",biography:"Josefina Garrido González (Paradela de Abeleda, Ourense 1959), is a doctor in biology from the University of León and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. She has focused her research activity on the taxonomy, fauna and ecology of aquatic beetles, in addition to other lines of research such as the conservation of biodiversity in freshwater ecosystems; conservation of protected areas (Red Natura 2000) and assessment of the effectiveness of wetlands as priority areas for the conservation of aquatic invertebrates; studies of water quality in freshwater ecosystems through biological indicators and physicochemical parameters; surveillance and research of vector arthropods and invasive alien species.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",slug:"francisco-ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",biography:"Fran Ramil Blanco (Porto de Espasante, A Coruña, 1960), is a doctor in biology from the University of Santiago de Compostela and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. His research activity is linked to the taxonomy, fauna and ecology of marine benthic invertebrates and especially the Cnidarian group. Since 2004, he has been part of the EcoAfrik project, aimed at the study, protection and conservation of biodiversity and benthic habitats in West Africa. He also participated in the study of vulnerable marine ecosystems associated with seamounts in the South Atlantic and is involved in training young African researchers in the field of marine research.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}}},{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",isOpenForSubmission:!0,annualVolume:11969,editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11667",title:"Marine Pollution - Recent Developments",coverURL:"https://cdn.intechopen.com/books/images_new/11667.jpg",hash:"e524cd97843b075a724e151256773631",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 20th 2022",isOpenForSubmission:!0,editors:[{id:"318562",title:"Dr.",name:"Monique",surname:"Mancuso",slug:"monique-mancuso",fullName:"Monique Mancuso"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",hash:"cf1ee76443e393bc7597723c3ee3e26f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 4th 2022",isOpenForSubmission:!0,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",hash:"f1043cf6b1daae7a7b527e1d162ca4a8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11665",title:"Recent Advances in Wildlife Management",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",hash:"73da0df494a1a56ab9c4faf2ee811899",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 25th 2022",isOpenForSubmission:!0,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",hash:"c8890038b86fb6e5af16ea3c22669ae9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 9th 2022",isOpenForSubmission:!0,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 17th 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 22nd 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},subseriesFiltersForOFChapters:[],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"
\r\n\tIf we aim to prosper as a society and as a species, there is no alternative to sustainability-oriented development and growth. Sustainable development is no longer a choice but a necessity for us all. Ecosystems and preserving ecosystem services and inclusive urban development present promising solutions to environmental problems. Contextually, the emphasis on studying these fields will enable us to identify and define the critical factors for territorial success in the upcoming decades to be considered by the main-actors, decision and policy makers, technicians, and public in general.
\r\n
\r\n\tHolistic urban planning and environmental management are therefore crucial spheres that will define sustainable trajectories for our urbanizing planet. This urban and environmental planning topic aims to attract contributions that address sustainable urban development challenges and solutions, including integrated urban water management, planning for the urban circular economy, monitoring of risks, contingency planning and response to disasters, among several other challenges and solutions.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11979,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:[{id:"181486",title:"Dr.",name:"Claudia",middleName:null,surname:"Trillo",slug:"claudia-trillo",fullName:"Claudia Trillo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSAZHQA4/Profile_Picture_2022-03-14T08:26:43.jpg",institutionString:null,institution:{name:"University of Salford",institutionURL:null,country:{name:"United Kingdom"}}},{id:"308328",title:"Dr.",name:"Dávid",middleName:null,surname:"Földes",slug:"david-foldes",fullName:"Dávid Földes",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002nXXGKQA4/Profile_Picture_2022-03-11T08:25:45.jpg",institutionString:null,institution:{name:"Budapest University of Technology and Economics",institutionURL:null,country:{name:"Hungary"}}},{id:"282172",title:"Dr.",name:"Ivan",middleName:null,surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez",profilePictureURL:"https://mts.intechopen.com/storage/users/282172/images/system/282172.jpg",institutionString:"Universidad de las Américas Puebla",institution:{name:"Universidad de las Américas Puebla",institutionURL:null,country:{name:"Mexico"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:52,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:62,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:68,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:68,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:92,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:122,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:109,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:182,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Artificial Intelligence",id:"14"},selectedSubseries:null},seriesLanding:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems. \r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"April 13th, 2022",hasOnlineFirst:!1,numberOfOpenTopics:4,numberOfPublishedChapters:9,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"38",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",annualVolume:11966,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices",scope:"
\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",annualVolume:11967,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation",scope:"
\r\n\tIn general, the harsher the environmental conditions in an ecosystem, the lower the biodiversity. Changes in the environment caused by human activity accelerate the impoverishment of biodiversity.
\r\n
\r\n\tBiodiversity refers to “the variability of living organisms from any source, including terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; it includes diversity within each species, between species, and that of ecosystems”.
\r\n
\r\n\tBiodiversity provides food security and constitutes a gene pool for biotechnology, especially in the field of agriculture and medicine, and promotes the development of ecotourism.
\r\n
\r\n\tCurrently, biologists admit that we are witnessing the first phases of the seventh mass extinction caused by human intervention. It is estimated that the current rate of extinction is between a hundred and a thousand times faster than it was when man first appeared. The disappearance of species is caused not only by an accelerated rate of extinction, but also by a decrease in the rate of emergence of new species as human activities degrade the natural environment. The conservation of biological diversity is "a common concern of humanity" and an integral part of the development process. Its objectives are “the conservation of biological diversity, the sustainable use of its components, and the fair and equitable sharing of the benefits resulting from the use of genetic resources”.
\r\n
\r\n\tThe following are the main causes of biodiversity loss:
\r\n
\r\n\t• The destruction of natural habitats to expand urban and agricultural areas and to obtain timber, minerals and other natural resources.
\r\n
\r\n\t• The introduction of alien species into a habitat, whether intentionally or unintentionally which has an impact on the fauna and flora of the area, and as a result, they are reduced or become extinct.
\r\n
\r\n\t• Pollution from industrial and agricultural products, which devastate the fauna and flora, especially those in fresh water.
\r\n
\r\n\t• Global warming, which is seen as a threat to biological diversity, and will become increasingly important in the future.
",annualVolume:11968,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorialBoard:[{id:"220987",title:"Dr.",name:"António",middleName:"Onofre",surname:"Soares",fullName:"António Soares",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNtzQAG/Profile_Picture_1644499672340",institutionString:null,institution:{name:"University of the Azores",institutionURL:null,country:{name:"Portugal"}}}]},{id:"41",title:"Water Science",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection",scope:"
\r\n\tWater is not only a crucial substance needed for biological life on Earth, but it is also a basic requirement for the existence and development of the human society. Owing to the importance of water to life on Earth, early researchers conducted numerous studies and analyses on the liquid form of water from the perspectives of chemistry, physics, earth science, and biology, and concluded that Earth is a "water polo". Water covers approximately 71% of Earth's surface. However, 97.2% of this water is seawater, 21.5% is icebergs and glaciers, and only 0.65% is freshwater that can be used directly by humans. As a result, the amount of water reserves available for human consumption is limited. The development, utilization, and protection of freshwater resources has become the focus of water science research for the continued improvement of human livelihoods and society.
\r\n
\r\n\tWater exists as solid, liquid, and gas within Earth’s atmosphere, lithosphere, and biosphere. Liquid water is used for a variety of purposes besides drinking, including power generation, ecology, landscaping, and shipping. Because water is involved in various environmental hydrological processes as well as numerous aspects of the economy and human society, the study of various phenomena in the hydrosphere, the laws governing their occurrence and development, the relationship between the hydrosphere and other spheres of Earth, and the relationship between water and social development, are all part of water science. Knowledge systems for water science are improving continuously. Water science has become a specialized field concerned with the identification of its physical, chemical, and biological properties. In addition, it reveals the laws of water distribution, movement, and circulation, and proposes methods and tools for water development, utilization, planning, management, and protection. Currently, the field of water science covers research related to topics such as hydrology, water resources and water environment. It also includes research on water related issues such as safety, engineering, economy, law, culture, information, and education.
",annualVolume:11969,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"216491",title:"Dr.",name:"Charalampos",middleName:null,surname:"Skoulikaris",fullName:"Charalampos Skoulikaris",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMsbQAG/Profile_Picture_2022-04-21T09:31:55.jpg",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"300124",title:"Prof.",name:"Thomas",middleName:null,surname:"Shahady",fullName:"Thomas Shahady",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002kuIgmQAE/Profile_Picture_2022-03-18T07:32:10.jpg",institutionString:null,institution:{name:"Lynchburg College",institutionURL:null,country:{name:"United States of America"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"ofsBook.detail",path:"/welcome/aa6c008d2191dbe9980b010e924deacc",hash:"",query:{},params:{hash:"aa6c008d2191dbe9980b010e924deacc"},fullPath:"/welcome/aa6c008d2191dbe9980b010e924deacc",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()