The largest 8 MBR plants (adapted from Judd, 2010).
Advances in Embryo Transfer",title:"胚胎移植新进展",subtitle:"Advances in Embryo Transfer",reviewType:"peer-reviewed",abstract:"本书阐述了生殖医学相关的技术知识,以21世纪最新进展和发展趋势为重点,注重创新性、实用性。 其内容从最佳的卵巢刺激方案、授精技术新进展,到胚胎移植操作技巧、胚胎冷冻保存以及子宫内膜容受性的最新研究成果等都做了详尽的描 述。本书旨在帮助更多从事辅助生殖技术的人员了解本领域最新进展,更新此领域中科学研究和临床诊治观念,以提高诊疗水平达到最佳活产 率。
Embryo transfer has become one of the prominent high businesses worldwide. This book updates and reviews some new developed theories and technologies in the human embryo transfer and mainly focus on discussing some encountered problems during embryo transfer, which gives some examples how to improve pregnancy rate by innovated techniques so that readers, especially embryologists and physicians for human IVF programs, may acquire some new and usable information as well as some key practice techniques. Major contents include the optimal stimulation scheme for ovaries, advance in insemination technology, improved embryo transfer technology and endometrial receptivity and embryo implantation mechanism. Thus, this book will greatly add new information for readers to improve human embryo transfer pregnancy rate.
Please note that this is the official Chinese translation of the book originally published in English.",isbn:null,printIsbn:"978-953-51-1727-8",pdfIsbn:null,doi:"10.5772/59247",price:119,priceEur:129,priceUsd:155,slug:"advances-in-embryo-transfer-translation-chinese",numberOfPages:216,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"32b738c0d0cbce7a61a3ea63b5d43ed0",bookSignature:"Bin Wu",publishedDate:"October 23rd 2014",coverURL:"https://cdn.intechopen.com/books/images_new/4594.jpg",numberOfDownloads:5463,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:null,numberOfDimensionsCitations:0,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 16th 2014",dateEndSecondStepPublish:"October 7th 2014",dateEndThirdStepPublish:"January 11th 2015",dateEndFourthStepPublish:"April 11th 2015",dateEndFifthStepPublish:"May 11th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu",profilePictureURL:"https://mts.intechopen.com/storage/users/108807/images/system/108807.jfif",biography:"Bin Wu, Ph.D., HCLD is currently a scientific laboratory director at Arizona Center for Reproductive Endocrinology and Infertility, USA. He received his training in genetics and reproductive biology at the Northwest Agricultural University in China and Cornell University, New York and post-doctor training at University of Guelph, Canada. He was promoted as a professor at the Northwest Agricultural University. As an embryologist, he later joined in the Center for Human Reproduction in Chicago. Dr. Wu has membership for many professional associations, such as American Society for Reproductive Medicine; International Embryo Transfer Society; Society for the Study of Reproduction; American Association of Bioanalysts and European Society of Human Reproduction and Embryology. Also, he has obtained some significant research awards from these professional associations.",institutionString:"Arizona Center for Reproductive Endocrinology and Infertility",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"5",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"398",title:"Embryology",slug:"human-genetics-embryology"}],chapters:[{id:"47691",title:"胚胎移植新进展
Advances In Embryo Transfer",doi:"10.5772/59253",slug:"advances-in-embryo-transfer-chinese-translation",totalDownloads:5463,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Bin Wu",downloadPdfUrl:"/chapter/pdf-download/47691",previewPdfUrl:"/chapter/pdf-preview/47691",authors:[{id:"108807",title:"Ph.D.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"4588",title:"New Discoveries in Embryology",subtitle:null,isOpenForSubmission:!1,hash:"2d40aace9724b9c451a8d8168acd0169",slug:"new-discoveries-in-embryology",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/4588.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5817",title:"Embryo Cleavage",subtitle:null,isOpenForSubmission:!1,hash:"11de486fcf8fe42d4359c65e71a8f1da",slug:"embryo-cleavage",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/5817.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1577",title:"Advances in Embryo Transfer",subtitle:null,isOpenForSubmission:!1,hash:"b9d06c4d4736cf2bd3394ce91e8d3031",slug:"advances-in-embryo-transfer",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/1577.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6977",title:"Embryology",subtitle:"Theory and Practice",isOpenForSubmission:!1,hash:"4620ebf60e92b453c7e4fde00cd94515",slug:"embryology-theory-and-practice",bookSignature:"Bin Wu and Huai L. Feng",coverURL:"https://cdn.intechopen.com/books/images_new/6977.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66303",slug:"corrigendum-to-rural-landscape-architecture-traditional-versus-modern-fa-ade-designs-in-western-spai",title:"Corrigendum to: Rural Landscape Architecture: Traditional versus Modern Façade Designs in Western Spain",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66303.pdf",downloadPdfUrl:"/chapter/pdf-download/66303",previewPdfUrl:"/chapter/pdf-preview/66303",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66303",risUrl:"/chapter/ris/66303",chapter:{id:"57545",slug:"rural-landscape-architecture-traditional-versus-modern-fa-ade-designs-in-western-spain",signatures:"María Jesús Montero-Parejo, Jin Su Jeong, Julio Hernández-Blanco\nand Lorenzo García-Moruno",dateSubmitted:"September 6th 2017",dateReviewed:"October 11th 2017",datePrePublished:"December 20th 2017",datePublished:"September 19th 2018",book:{id:"6066",title:"Landscape Architecture",subtitle:"The Sense of Places, Models and Applications",fullTitle:"Landscape Architecture - The Sense of Places, Models and Applications",slug:"landscape-architecture-the-sense-of-places-models-and-applications",publishedDate:"September 19th 2018",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/6066.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221245",title:"Dr.",name:"María Jesús",middleName:null,surname:"Montero-Parejo",fullName:"María Jesús Montero-Parejo",slug:"maria-jesus-montero-parejo",email:"cmontero@unex.es",position:null,institution:null},{id:"223556",title:"Dr.",name:"Jin Su",middleName:null,surname:"Jeong",fullName:"Jin Su Jeong",slug:"jin-su-jeong",email:"jsbliss@gmail.com",position:null,institution:null},{id:"223557",title:"Prof.",name:"Julio",middleName:null,surname:"Hernández-Blanco",fullName:"Julio Hernández-Blanco",slug:"julio-hernandez-blanco",email:"juliohb@unex.es",position:null,institution:null},{id:"223558",title:"Prof.",name:"Lorenzo",middleName:null,surname:"García-Moruno",fullName:"Lorenzo García-Moruno",slug:"lorenzo-garcia-moruno",email:"lgmoruno@unex.es",position:null,institution:null}]}},chapter:{id:"57545",slug:"rural-landscape-architecture-traditional-versus-modern-fa-ade-designs-in-western-spain",signatures:"María Jesús Montero-Parejo, Jin Su Jeong, Julio Hernández-Blanco\nand Lorenzo García-Moruno",dateSubmitted:"September 6th 2017",dateReviewed:"October 11th 2017",datePrePublished:"December 20th 2017",datePublished:"September 19th 2018",book:{id:"6066",title:"Landscape Architecture",subtitle:"The Sense of Places, Models and Applications",fullTitle:"Landscape Architecture - The Sense of Places, Models and Applications",slug:"landscape-architecture-the-sense-of-places-models-and-applications",publishedDate:"September 19th 2018",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/6066.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221245",title:"Dr.",name:"María Jesús",middleName:null,surname:"Montero-Parejo",fullName:"María Jesús Montero-Parejo",slug:"maria-jesus-montero-parejo",email:"cmontero@unex.es",position:null,institution:null},{id:"223556",title:"Dr.",name:"Jin Su",middleName:null,surname:"Jeong",fullName:"Jin Su Jeong",slug:"jin-su-jeong",email:"jsbliss@gmail.com",position:null,institution:null},{id:"223557",title:"Prof.",name:"Julio",middleName:null,surname:"Hernández-Blanco",fullName:"Julio Hernández-Blanco",slug:"julio-hernandez-blanco",email:"juliohb@unex.es",position:null,institution:null},{id:"223558",title:"Prof.",name:"Lorenzo",middleName:null,surname:"García-Moruno",fullName:"Lorenzo García-Moruno",slug:"lorenzo-garcia-moruno",email:"lgmoruno@unex.es",position:null,institution:null}]},book:{id:"6066",title:"Landscape Architecture",subtitle:"The Sense of Places, Models and Applications",fullTitle:"Landscape Architecture - The Sense of Places, Models and Applications",slug:"landscape-architecture-the-sense-of-places-models-and-applications",publishedDate:"September 19th 2018",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/6066.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12218",leadTitle:null,title:"Phytochemicals",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"8cb2e6bb3d9c717bb8dc44e35ed774c2",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12218.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 7th 2022",dateEndSecondStepPublish:"March 28th 2022",dateEndThirdStepPublish:"May 27th 2022",dateEndFourthStepPublish:"August 15th 2022",dateEndFifthStepPublish:"October 14th 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"19078",title:"Aerobic Membrane Bioreactor for Wastewater Treatment – Performance Under Substrate-Limited Conditions",doi:"10.5772/17409",slug:"aerobic-membrane-bioreactor-for-wastewater-treatment-performance-under-substrate-limited-conditions",body:'\n\t\t
It is widely known that many regions in the world have scarce water resources. In these areas the groundwater aquifers are also found to be in a critical condition as a result of over-exploitation. That is why, in such regions, the reuse of wastewater is a common practice and the competent authorities undertake multiple courses of action to encourage its reuse. Legislation implementing the reclaimed wastewater reuse is likewise very demanding in terms of quality and health and safety, which has resulted in the application of new technologies for water treatment and purification. Among the new emerging technologies appears the use of micro and ultrafiltration membranes as highly efficient systems, which are economically feasible for obtaining high quality recycled water.
\n\t\t\tOver the last two decades the technology of membrane bioreactors (MBRs) has reached a significant market share in wastewater treatment and it is expected to grow at a compound annual growth rate (CAGR) of 13.2%, higher than that of other advanced technologies and other membrane processes, increasing its market value from $ 337 million in 2010 to 627 million in 2015 (BCC, 2011). Aerobic MBRs represent an important technical option for wastewater reuse, being very compact and efficient systems for separating suspended and colloidal matter, which are able to achieve the highest effluent quality standards for disinfection and clarification. The main limitation for their widespread application is their high energy demand – between 0.45 and 0.65 kWh m-3 for the highest optimum operation from a demonstration plant, according to recent studies (Garcés et al., 2007; Tao et al., 2009).
\n\t\t\tThe advantages of this process over the conventional activated sludge process are widely known (Judd, 2010), among these one of the most cited is the reduction in sludge production which results from operation at high solid retention time (SRT). However, its consequences for the structure and metabolism of the microbial suspensions need to be studied in detail.
\n\t\t\tGenerally, we would expect that microorganisms subjected to severe substrate limitation should preferentially meet their maintenance energy requirements instead of producing additional biomass (Wei et al., 2003). This substrate limitation imposed on an MBR, by operating at low food-to-microorganism ratios (F/M), should modify the activity and characteristics of the sludge and could be the key factor for determining the process performance, particularly the membrane filtration (Trussell et al., 2006).
\n\t\t\tBiokinetic models are widely used to design activated sludge process. Knowledge of biokinetics parameters allows modelling of the process including the substrate biodegradation rate and biomass growth. At low growth conditions, as is demanded in MBRs, other processes apart from microbial growth have to be taken into consideration. These have been recognized as the maintenance energy requirement, endogenous respiration and subsequent cryptic growth (Van Loosdrecht & Hence, 1999). Macroscopically they cannot be perceived, but, from a practical point of view, the global process can be described by Pirt´s equation (Pirt, 1965).
\n\t\t\tAlthough there are several experiences with membrane bioreactors working without biomass purge (Rosenberger et al., 2002a; Pollice et al., 2004; Laera et al., 2005), none of these authors apply any kinetics models to describe process performance. Furthermore, these results were obtained in similar conditions, by treating raw municipal wastewater with a high substrate concentration, and it is interesting to compare this behaviour with an MBR treating wastewater with a low organic load. Additionally, not enough is known about the morphology and extracellular polymeric substance (EPS) production for total sludge retention and low F/M ratios.
\n\t\t\tThe aim of this chapter is to summarize the current status of membrane bioreactor technology for wastewater treatment (Section 2.1). The advantages against the conventional activated sludge process and technological challenges are assessed (Section 2.2). Some design and operation trends, based on full-scale experience, are reviewed (Section 2.3). To discuss both fundamental aspects, biotreatment and filtration, some experimental results are presented. Special attention was given to the microbial growth modelling (Section 4.1.1), biomass characterisation (Sections 4.1.2 to 4.1.5) and membrane fouling mechanisms (Section 4.2). Some of these results have at the same time been compared with biomass from a conventional activated sludge process (CAS) operated in parallel.
\n\t\tThe current penetration in the wastewater treatment market of the membrane bioreactors gives an idea of the degree of maturity reached by this technology. The most cited market analysis report indicates an annual growth rate of 13.2 % and predicts a global market value of $ 627 million in 2015 (BCC, 2011). Actually MBRs have been implemented in more than 200 countries (Icon, 2008). Particularly striking is the case of China or some European countries with an implementation rate of over 50% and 20%, respectively.
\n\t\t\t\tThis technological maturity in urban wastewater market is also reflected in two main issues: the diversity of technology suppliers and the upward trend in plant size. Since 1990, the number of MBR membrane module products has grown exponentially until reaching over 50 different providers by the end of 2009 (Judd, 2010). However, globally, the market is dominated by three suppliers: Kubota, Mitsubishi Rayon and GE Zenon, which held about 85-90 % of the urban wastewater market (Pearce, 2008). In regard to the largest MBRs, there are 8 plants with a peak design capacity greater than 50 MLD (Table 1), all of them constructed before 2007 (Judd, 2010).
\n\t\t\t\tMBR technology is based on the combination of conventional activated sludge treatment together with a process filtration through a membrane with a pore size between 10 nm and 0.4 microns (micro/ultrafiltration), which allows sludge separation. The membrane is a barrier that retains all particles, colloids, bacteria and viruses, providing a complete disinfection of treated water. Furthermore, it can operate at higher concentrations of sludge (up to 12 g/l instead of the usual 4 g/l in conventional systems), which significantly reduces the volume of the reactors and sludge production.
\n\t\t\t\tProject | \n\t\t\t\t\t\t\tTechnology | \n\t\t\t\t\t\t\tDate | \n\t\t\t\t\t\t\tDMDF (MLD) | \n\t\t\t\t\t\t
Shending River, China | \n\t\t\t\t\t\t\tBeijing Origin Water | \n\t\t\t\t\t\t\t2010 | \n\t\t\t\t\t\t\t120 | \n\t\t\t\t\t\t
Wenyu River, China | \n\t\t\t\t\t\t\tAsahi K/ Beijing Origin Water | \n\t\t\t\t\t\t\t2007 | \n\t\t\t\t\t\t\t100 | \n\t\t\t\t\t\t
Johns Creek, GA | \n\t\t\t\t\t\t\tGE Zenon | \n\t\t\t\t\t\t\t2009 | \n\t\t\t\t\t\t\t94 | \n\t\t\t\t\t\t
Beixiaohe, China | \n\t\t\t\t\t\t\tSiemens | \n\t\t\t\t\t\t\t2008 | \n\t\t\t\t\t\t\t78 | \n\t\t\t\t\t\t
Al Ansah, Muscat, Oman | \n\t\t\t\t\t\t\tKubota | \n\t\t\t\t\t\t\t2010 | \n\t\t\t\t\t\t\t78 | \n\t\t\t\t\t\t
Peoria, AZ | \n\t\t\t\t\t\t\tGE Zenon | \n\t\t\t\t\t\t\t2008 | \n\t\t\t\t\t\t\t76 | \n\t\t\t\t\t\t
Cleveland Bay, Australia | \n\t\t\t\t\t\t\tGE Zenon | \n\t\t\t\t\t\t\t2007 | \n\t\t\t\t\t\t\t75 | \n\t\t\t\t\t\t
Sabadell, Spain | \n\t\t\t\t\t\t\tKubota | \n\t\t\t\t\t\t\t2009 | \n\t\t\t\t\t\t\t55 | \n\t\t\t\t\t\t
DMDF: Design maximum daily flow; MLD: Megalitres per day. | \n\t\t\t\t\t\t
The largest 8 MBR plants (adapted from Judd, 2010).
Although there are two main process configurations of biomass rejection MBRs, submerged or immersed (iMBR) and sidestream (sMBR), the immersed configuration is the most widely used in municipal wastewater treatment due to lower associated costs of operation (e.g., Le-Clech et al., 2005a). In this configuration, the module is placed directly into the process tank and is thus less energy-intensive. As a result, it is only necessary to create a slight vacuum inside the membrane module, measured as transmembrane pressure (TMP), for filtration. For the immersed configuration, there are basically two types of commercial membrane modules available: flat sheet (FS), which is exemplified by the Kubota technology, and hollow fiber (HF) such as those supplied by GE Zenon or Mitsubishi Rayon. HF allows a higher packing density since it has a thinner space between membranes compared to FS. However, this makes it more susceptible to membrane clogging and/or sludging, and it can also make cleaning more difficult. Regarding the membrane material used for an iMBR, fluorinated and sulphonated polymers (polyvinylidene difluoride, polyethersulfone, in particular) dominate in commercial membrane MBR products (Santos & Judd, 2010).
\n\t\t\t\tFor another approach to the analysis of technology maturity we might take a review of the research conducted on the MBR during the last decades. It is worth noting that considerable scientific interest has been aroused in recent years in this field. Santos et al. (2010) identified 1450 scientific papers published between 1990 and 2009, with a year-by-year increase of 20% from 1994 onwards. If we analyze this literature, the most cited research topic is membrane fouling (about 30%). In fact, scientific reviews have been published periodically that have analyzed in depth recent advances in the study of the mechanisms and factors that contribute to membrane fouling in MBR (Chang et al., 2002, Le-Clech et al, 2006, Meng et al., 2009, Drews, 2010). Generally, these factors have been classified in four distinct groups: nature of the sludge, operating parameters, membrane/module characteristics and feed wastewater composition. However, although membrane fouling is an important issue in MBR operation, recent surveys of full-scale practitioners (Le-Clech et al., 2005b; Santos et al. 2010) show that pre-treatment and screening, membrane and aerator clogging, loss of membrane integrity, production of biosolids and other issues related to hydraulic overloading or system design, are of concern for MBR users.
\n\t\t\tAs already stated, MBRs represent an important technical option for wastewater treatment and reuse, being very compact and efficient systems for separation of suspended and colloidal matter and enabling high quality, disinfected effluents to be achieved. A key advantage of these MBR systems is complete biomass retention in the aerobic reactor, which decouples the sludge retention time (SRT) from the hydraulic retention time (HRT), allowing biomass concentrations to increase in the reaction basin, thus facilitating relatively smaller reactors or/and higher organic loading rates (ORL). In addition, the process is more compact than a conventional activated sludge process (CAS), removing 3 individual processes of the conventional scheme and the feed wastewater only needs to be screened (1-3 mm) just prior to removal of larger solids that could damage the membranes (Figure 1).
\n\t\t\t\tConventional activated sludge process (a) and MBR in both configurations: immersed (b1) and sidestream (b2)
Notwithstanding the advantages of MBRs, the widespread implantation is limited by its high costs, both capital and operating expenditure (CAPEX and OPEX), mainly due to membrane installation and replacement and high energy demand. This high energy demand in comparison with a CAS, is closely associated with strategies for avoiding/mitigating membrane fouling (70% of the total energy demand for iMBR) (Verrech et al., 2008; Verrech et al., 2010). Fouling is the restriction, occlusion or blocking of membrane pores or cake building by solids accumulation on the membrane surface during operation which leads to membrane permeability loss. The complexity of this phenomenon is linked to the presence of particles and macromolecules with very different sizes and the biological nature of the microbial suspensions, which results in a very heterogenic system. Meanwhile, the dynamic behaviour of the filtration process adds a particular complication to the fouling mechanisms (Le-Clech et al., 2006). Furthermore, permeability loss can also be caused by channel clogging, which is the formation of solid deposit in the voids of the membrane modules due to local breakdown of crossflow conditions (Figure 2). In addition, there are other operational problems, such as the complexity of the membrane processes (including specific procedures for cleaning), the tendency to form foam (partly due to excessive aeration), the smaller sludge dewatering capacity and the high sensitivity shock loads.
\n\t\t\t\ta/b/c. Membrane module clogged. Debris can be observed located between the top headers modules forming a bridge between them (Morro Jable wastewater treatment plant, Canary Island, Spain; courtesy of CANARAGUA, S.A.)
For the immersed configuration, the operating strategy to control membrane fouling, ( impacting directly or indirectly on CAPEX and OPEX) includes the following:
\n\t\t\t\tThe fist concern, selecting an appropriate permeate flux, is determined by the classical trade-off problem: at higher fluxes CAPEX decreases while OPEX increases. High fluxes are desirable to reduce the membrane required (i.e. reduce CAPEX), however, membrane fouling increases with flux, which results in a higher membrane scouring demand and more frequent cleaning to control membrane fouling (i.e. increase OPEX). Furthermore, the correlation between membrane fouling and flux is not only influenced by hydrodynamics and cleaning protocols but also by feedwater characteristics and biological conditions. As a result, deciding a flux value depends on the analysis of empirical data obtained from pilot and full-scale experiments or available in the recent literature.
\n\t\t\t\tThe second concern is membrane scouring. Ever since the iMBR appeared, air sparging has been widely used to mitigate fouling by constant scouring of the membrane surface (Cui et al., 2003) or by causing lateral fibre movement in HF configuration (Wicaksana et al., 2006). While the membrane fouling has been studied and mathematically modelled in classic filtration regimes (crossflow and dead-end) (e.g. Foley, 2006), the effect of turbulence induced by gas sparging in iMBR systems is still being assessed (Drews, 2010). As is well known, it has a clear contribution to minimizing the fouling problem, and therefore, a deeper understanding is extremely important in order to optimise aeration mode and rate, which has been proved to be one of its major operational costs.
\n\t\t\t\tThe third concern is related to methods of physical cleaning (relaxation and backflushing) that have been incorporated as standard operation mode in MBRs. These techniques have successfully been proved to remove reversible fouling caused by pore blocking or sludge cake. For backflushing, the key parameters in the design of physical cleaning have been identified as frequency, duration, the ratio between these two parameters and its intensity (Le-Clech et al., 2006), and the same key parameters are expected for relaxation (with the exception of intensity). However, there is a knowledge gap in the inter-relationships between those parameters and the imposed permeate flux, especially when comparing both methods to obtain the same water productivity (Wu et al., 2008).
\n\t\t\t\tFinally, the fourth concern is chemical cleaning. Chemical cleaning is required when fouling cannot be removed by membrane surface scouring or physical cleaning methods. Although there are several types of chemical reagents used in membrane cleaning, in most full-scale facilities, two types of chemical reagents are commonly used: oxidants (e.g. NaOCl) for removing organic foulants (e.g. humic substances, proteins, carbohydrates), and organic acids (e.g. citric) for removing inorganic scalants. Basically, two objectives are pursued in the addition of chemical reagents: maintaining membrane permeability and permeability recovery. Maintenance cleaning is applied routinely via a chemically enhanced backflush where the reagent, at moderate concentration, is introduced with the permeate. In contrast, recovery cleaning is applied when the membrane permeability decreases until reaching non-operative values. The procedure consists of taking off the modules or draining off the membrane tanks to allow the membranes to be soaked in high concentrated reagents. Each MBR supplier has his own protocols which differ in concentrations and methods. Given its impacts on membrane lifetime and therefore on OPEX, there has recently been a growing interest in studying the influence of chemical cleaning procedures on membrane permeability maintenance and recovery (Brepols et al., 2008; Ayala et al., 2011). However, at the moment, the optimization of chemical cleaning protocols is far from being fully resolved.
\n\t\t\tAs was previously mentioned, the iMBR represents the most widely used configuration in large scale applications. This section gives some design and operation considerations including:
\n\t\t\t\tMembranes are very sensitive to damage with coarse solids such as plastics, leaves, rags and fine particles like hair from wastewater. In fact, a lack of good pre-treatment/screening has been recognised as a key technical problem of MBR operation (Santos and Judd, 2010a). For this reason fine screening is always required for protecting the membranes. Typically, screens with openings range between 1 mm (HF modules) to 3 mm (FS modules) are common in most facilities. However, data reported by Frechen et al. (2007) for 19 MBR European plants show a more conservative plant design by reducing the screen openings to 0.5-1.0 mm for both HF and FS. Regarding primary sedimentation, it was not economically viable for small-medium sized MBR plants (< 50.000 m3/d), except for cases of retrofitting or upgrading of an existing CAS. However, for larger plants, given its advantages (smaller bioreactor volumes, reduced inert solids in the bioreactor, increased energy recovery, etc.), primary clarification can be considered. Its selection should be a compromise between energy and land cost.
\n\t\t\t\tMembrane permeate flux is an important design and operational parameter that impacts significantly in CAPEX and OPEX. Typical operation flux rates for various full-scale iMBRs applied to treat municipal wastewater treatment are over 19-20 l/h m2 (Judd, 2010) with a peak flux (< 6 h) in the range 37-73 l/h m2 (Asano et al., 2006).
\n\t\t\t\t\tA recent analysis of design and operation trends of the larger MBR plants in Europe (Lesjean et al., 2009), shows a broad difference between the design and operation flux. For Kubota systems, the designed maximum daily net fluxes are 14-48 l/h m2 (mean at 32 l /h m2) while for the GE Zenon modules they are 20–37 l/h m2 (mean at 29 l/h m2). However, it is interesting to note that for both systems the operation net flux is over 18 l/h m2. Further differences are the same regardless of whether this is a new plant or a retrofit, or more or less conservative designs of a specific plant. In fact, the authors indicate that the averaged trend of the design maximum net flux and operation mean flux have moderately increased by only 3 l/h m2 during the last 6 years. Given the impact of this discrepancy over CAPEX (i.e. higher membrane surface demand) and OPEX (i.e. higher membrane replacement costs) different solutions have been proposed: a plant has been designed in parallel to conventional activated sludge systems (hybrid systems), which can absorb the peak flows, or by addition of a buffer tank for flow equalisation.
\n\t\t\t\t\tIn a comprehensive cost analysis of a large HF MBR plant, Verrecht et al. (2010) show the impact of both solutions on plant costs over the cycle life of the plant. While comparing a hybrid system with an MBR designed to manage maximum flow conditions, results indicate that the average energy demand for the full-flow MBR is 57% higher, as a result of under-utilization of the membrane available area and excess of membrane aeration. With regard to the adding of a buffering tank, the authors pointed out that the cost of buffering would be covered by reducing the required membrane surface area. However, this solution should increase the scale size of the plant by 10% compared to CAS treating the same flow. Therefore, the authors conclude that hybrid MBR plant is the most desirable option. Examples of some full-scale facilities with this hybrid system would be the Brescia plant with GE/Zenon in Italy, or the Sabadell plant with Kubota in Spain.
\n\t\t\t\tIt is generally accepted that the optimal operation of an MBR depends on understanding membrane fouling (Judd, 2007). Abatement of fouling leads to elevated energy demands and has become the main contribution to OPEX (Verrech et al., 2008). In addition, uncertainty associated with this phenomenon has led to conservative plant designs where the supplied energy is so far to be optimised.
\n\t\t\t\t\tTraditional strategies for fouling mitigation such as air sparging, physical cleaning techniques (i.e backflushing and relaxation) and chemical maintenance cleaning have been incorporated in most MBR designs as a standard operating strategy to limit fouling. Air sparging, expressed as specific aeration demand SADm, takes a typical value for full-scale facilities between 0.30 Nm3/h m2 (FS configuration) to 0.57 Nm3/h m2 (HF configuration). Relaxation and backflushing (only for HF) are commonly applied for 30–130 seconds every 10–25 min of filtration (Judd, 2010). Frequent maintenance cleanings (every 2–7 d) are also applied to maintain membrane permeability. However, these pre-set fixed values of key parameters, based on general background or the recommendations of membrane suppliers, lead to under-optimised systems and results in loss of permeate and high energy demand.
\n\t\t\t\t\tRecently, several authors have proposed a feedback control system for finding optimal operating conditions. For example, Smith et al. (2006) have successfully validated a control system for backflush initiation by permeability monitoring. This system automatically adjusts the backflushing frequency as a function of the membrane fouling, which results in a reduction of up to 40% in the backflushing water required. Ferrero et al. (2011) have used a control system at semi-industrial pilot scale trials based on monitoring membrane permeability, which achieved a energy saving between 7 to 21% with respect to minimun aeration recommended by membrane suppliers.
\n\t\t\t\tSRT contributes to a distinct treatment performance and membrane filtration, and therefore, to system economics. Specifically, these parameters act on biomass concentration (MLSS), generation of soluble microbial products (SMP) and oxygen transfer efficiency.
\n\t\t\t\t\tIncreasing the SRT increases the sludge solids concentration and therefore, reduces bioreactor volume required. Furthermore, because of the low growth rates of some microorganisms (specifically nitrifying bacteria), a longer SRT will achieve a better treatment performance, as well as generating less sludge. In addition, it has been reported that high values of SRT can increase membrane permeability by decreasing SMP production (Trussel et al., 2006). Conversely, high solids concentration results in a higher viscosity of the microbial suspension (Rosenberger et al., 2002b), as a consequence, higher concentrations decrease air sparging efficiency and oxygen transfer rate to the microorganisms, resulting in a higher energy demand as well as increasing membrane fouling and the risk of membrane clogging. Given all of these factors, for economical reasons, most full-scale facilities are designed for MLSS range of 8-12 g/l and SRT range of 10-20 d (Asano et al., 2006; Judd, 2010).
\n\t\t\t\tAs a consequence of being a relatively new technology, limited information on the life of membranes is available. However, analysis of the oldest plants evidence that membrane life can reach, or even exceed, 10 years (Verrech et al., 2010).
\n\t\t\t\t\tRecently, Ayala et al. (2011) has reported the effect of operating parameters on the permeability and integrity of cartridges taken from full-scale MBRs. Regarding permeability, a correlation of permeability loss and operation time was found, indicating that the membrane permeability reaches non-operative value after seven years of operation. The authors also suggested a significant effect of inorganic scaling on permeability loss. The correct functioning during membrane cartridge life, determined by the strength of the welding at its perimeter, appears to be related to the total volume of water permeated and the total mass of oxidant (NaOCl) used during chemical cleanings.
\n\t\t\t\tThe experimental unit consisted of a cylindrical 220 l submerged membrane bioreactor (MBR) equipped with a submerged hollow-fibre membrane of 0.03 μm rated pore diameter and 0.93 m2 filtering surface area (ZeeWeed ZW10) supplied by GE Water & Process Technologies (Figure 3). The effluent (permeate) was extracted from the top header of the module under slight vacuum (transmembrane pressure lower than 0.12 bar). Fouling was controlled by coarse bubbling of air flow and by intermittent filtration of the permeate. The pilot plant (ZW10) was located in the wastewater treatment plant (WWTP) in Santa Cruz de Tenerife (Canary Islands, Spain).
\n\t\t\tThe reactor was fed with screened (2.5 mm) municipal wastewater. The average feed concentrations are given in Table 2. The feedwater was characterized by a high biodegradable organic fraction (BOD5/COD = 0.52-0.67). Also, suspended solids in the water had a high organic fraction (VSS/TSS = 0.85-0.95).
\n\t\t\t\tConfiguration and photograph of the pilot-MBR system, ZW10.
\n\t\t\t\t\t\t\t | COD mg/l | \n\t\t\t\t\t\t\tCODs\n\t\t\t\t\t\t\t\ta mg/l | \n\t\t\t\t\t\t\tN-NH4\n\t\t\t\t\t\t\t\t+\n\t\t\t\t\t\t\t\t mg/l | \n\t\t\t\t\t\t\tN-NO2\n\t\t\t\t\t\t\t\t- mg/l | \n\t\t\t\t\t\t\tN-NO3\n\t\t\t\t\t\t\t\t- mg/l | \n\t\t\t\t\t\t\tpH | \n\t\t\t\t\t\t\tTSS mg/l | \n\t\t\t\t\t\t
Mean | \n\t\t\t\t\t\t\t879 | \n\t\t\t\t\t\t\t262 | \n\t\t\t\t\t\t\t70 | \n\t\t\t\t\t\t\t0.07 | \n\t\t\t\t\t\t\t2.0 | \n\t\t\t\t\t\t\t8.1 | \n\t\t\t\t\t\t\t830 | \n\t\t\t\t\t\t
Max. | \n\t\t\t\t\t\t\t1316 | \n\t\t\t\t\t\t\t717 | \n\t\t\t\t\t\t\t125 | \n\t\t\t\t\t\t\t0.35 | \n\t\t\t\t\t\t\t8.0 | \n\t\t\t\t\t\t\t8.3 | \n\t\t\t\t\t\t\t2200 | \n\t\t\t\t\t\t
Min. | \n\t\t\t\t\t\t\t270 | \n\t\t\t\t\t\t\t137 | \n\t\t\t\t\t\t\t33 | \n\t\t\t\t\t\t\t0.03 | \n\t\t\t\t\t\t\t1.0 | \n\t\t\t\t\t\t\t7.7 | \n\t\t\t\t\t\t\t150 | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\ta Samples were filtered through filter paper with a nominal pore size of 0.45 μm. | \n\t\t\t\t\t\t
Mean concentrations of the feedwater
\n\t\t\t\t\tTable 3 lists operating conditions. Permeate flux was incremented from 20 to 35 l/(h m2) in successive experimental runs. In order to maintain a constant HRT independent from the imposed permeated flux in each run, a peristaltic pump extracted from the permeate tank the flow rate necessary to maintain the required HRT and the excess of permeate was returned to the bioreactor (see Figure 1). Chemical cleaning of the membrane with sodium hypochloride (250 mg/l) was performed at the end of each experimental run.
\n\t\t\t\tAir was supplied through the bottom providing oxygen and stirring. The dissolved oxygen concentration was always above 1.5 mg/l in the reactor operated at 23 ± 2 ºC.
\n\t\t\tDissolved oxygen (DO) was measured using a WTW 340i. Chemical oxygen demand (COD), ammonium-nitrogen (N-NH4\n\t\t\t\t\t+), total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS) were determined in conformity with the Standard Methods (American Public Health Association, 1992). Nitrite-nitrogen (N-NO2\n\t\t\t\t\t-) and Nitrate-nitrogen (N-NO3\n\t\t\t\t\t-) were measured by spectrophotometric methods with a HACH DR 2000. Microbial floc size was measured by Coulter LS100 (Coulter, UK). Proteins were determined as bovine albumin equivalent using the protein kit assay TP0300 supplied by Sigma, following the Lowry method (Lowry et al., 1951). Polysaccharides were measured as glucose equivalent by the Dubois` method (Dubois et al., 1956).
\n\t\t\t\tParameters | \n\t\t\t\t\t\t\tUnits | \n\t\t\t\t\t\t\tValue | \n\t\t\t\t\t\t
Sludge retention time (SRT) | \n\t\t\t\t\t\t\tdays | \n\t\t\t\t\t\t\tInfinite (without purge) | \n\t\t\t\t\t\t
Hydraulic retention time (HRT) | \n\t\t\t\t\t\t\thours | \n\t\t\t\t\t\t\t24.6 | \n\t\t\t\t\t\t
Filtration time | \n\t\t\t\t\t\t\tseconds | \n\t\t\t\t\t\t\t450 | \n\t\t\t\t\t\t
Duration of relax phase | \n\t\t\t\t\t\t\tseconds | \n\t\t\t\t\t\t\t30 | \n\t\t\t\t\t\t
Aeration rate per membrane area (SADm) | \n\t\t\t\t\t\t\tNm3/h m2\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t1.9 | \n\t\t\t\t\t\t
Permeate flux | \n\t\t\t\t\t\t\tl/h m2\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t20-35 | \n\t\t\t\t\t\t
Operating conditions of the pilot-scale MBR
The oxygen uptake rate was measured by following the dissolved concentration with a membrane oxygen electrode in a medium without substrate (SOURe, endogenous). The sludge rheological properties were determined by using the concentric cylinder rotational viscosimeter Visco Star plus (FungiLab, Spain). The width of the annular gap was 1.0 mm. Measurements were done at 25 ◦C.
\n\t\t\tBiomass concentration in the bioreactor is one of the most critical parameters in capital and operational costs of the process. It is known that increasing the biomass concentration reduces the bioreactor size and therefore, capital costs. However, high sludge concentration impacts on aeration efficiency (because of high viscosity) increasing membrane fouling propensity and, probably, membrane clogging (filling of the channels between the membranes with sludge solids). Therefore, a more frequent cleaning and higher aeration rate is necessary to maintain membrane permeability, which increments the operational costs. Therefore, fundamental knowledge of biomass development processes involved in the biological treatment of a MBR is required.
\n\t\t\t\t\t\n\t\t\t\t\t\tFigure 4 shows the typical trend of biomass evolution, expressed as total (MLSS) and volatile suspended solids (MLVSS), during the start-up and steady-state of an MBR operated without biomass purge. Biomass is developed from the microorganisms coming with the feed wastewater as the bioreactor had not been inoculated. During the initial period, biomass increased rapidly and then slower with increasing biomass concentration in the mixed liquor.
\n\t\t\t\t\tThe first concern is the MLVSS/MLSS ratio, which remained within the range between 71 and 78%. It is important to note that, despite operating in conditions of total sludge retention, this ratio remains constant throughout the experiment, indicating no significant accumulation of inorganic matter in the sludge. This may be due to the fact that a small fraction of inorganic suspended solids in the feed (5-15%) is dissolved during the process and, therefore, does not accumulate in the sludge and leaves the system with the permeate.đ
\n\t\t\t\t\tEvolution of biomass concentration (MLSS and MLVSS) in the mixed liquor with operation time.
The second concern is the stabilisation value of the biomass concentration (MLSS and MLVSS), which is expected to depend on the hydraulic retention time (HRT) and COD removal, resulted in a stationary value of utilisation rate (U). Figure 5 shows the evolution of U with operation time where it can be observed that the system evolved until reaching a nearly constant value (0.083 ± 0.004 kg COD/kg MLVSS d). A symmetrical trend can also be observed for data obtained in a previously reported research (Delgado et al., 2010) in an MBR treating biological effluent from a WWTP. In that case, the MBR was inoculated and the initial biomass evolution was characterised by a lysis process. Afterwards, a stationary vale for U was reached (0.067 ± 0.004 kg COD/kg MLVSS d) independently of the fixed HRT value.
\n\t\t\t\t\tIt is thought that the maintenance concept introduced by Pirt (1965) could be the reason for the equilibrium reached in the MBRs operated without biomass purge. Then, the utilisation rate can be described by the Pirt equation (1).
\n\t\t\t\t\twhere
At very low growth rates (i.e. steady-state conditions),
Evolution of utilisation rate with operation time for MBRs treating different types of feed wastewaters.
Therefore, the stationary value of the utilisation rate is identical to the maintenance coefficient, which suggests that, in these substrate-limited conditions, microorganisms tend to minimize their energy requirements using the available substrate to satisfy their maintenance functions. For the presented data the best fitting parameter was
The measurement of the oxygen demanded by the microorganisms is a parameter frequently used for assessing aerobic activity of microbial suspensions (Vanrolleghen et al., 1995). In this sense, Pollice et al. (2004) reported that the specific endogenous respiration rates are closely related to the organic loading rates (F/M). Table 4 shows specific endogenous oxygen uptake rates (SOURe) of sludge samples at steady-state conditions and other values reported in the literature. The SOURe is considerably lower than the typical values, which confirms the maintenance energy requirement reached.
\n\t\t\t\t\tF/M, kg COD/ kg MLVSS d | \n\t\t\t\t\t\t\t\tSOURe, kg O2/kg MLVSS d | \n\t\t\t\t\t\t\t\tReference | \n\t\t\t\t\t\t\t
- | \n\t\t\t\t\t\t\t\t0.118 | \n\t\t\t\t\t\t\t\tCoello Oviedo et al., 2003 | \n\t\t\t\t\t\t\t
0.15 | \n\t\t\t\t\t\t\t\t0.05 | \n\t\t\t\t\t\t\t\tPollice et al., 2004 | \n\t\t\t\t\t\t\t
0.08 | \n\t\t\t\t\t\t\t\t0.01-0.05 | \n\t\t\t\t\t\t\t\tRodde-Pellegrin et al., 2002 | \n\t\t\t\t\t\t\t
0.09 | \n\t\t\t\t\t\t\t\t0.0084 ± 0.03 | \n\t\t\t\t\t\t\t\tThis work | \n\t\t\t\t\t\t\t
Specific endogenous oxygen uptake rate of sludge samples
According to the literature, flocculant ability tends to be reduced when organic substrate is lacking (e.g. ). In an MBR operated under substrate-limited conditions these conditions of stress are imposed and therefore a floc distribution characterised by a greater number of small flocs is expected. In addition, particle size distribution plays an important role in the formation of the cake on the membrane surface. A cake made with small particles has higher specific resistance and, therefore, is less permeable than the cake formed by larger particles (Defrance et al., 2000). As a consequence, it is crucial to analyze the effect of the several substrate-limited conditions imposed over the particle size of the flocs and the presence of small non-flocculating microorganisms in mixed liquor.
\n\t\t\t\t\tParticle size distribution of MBR and CAS sludge samples.
Sludge morphology was analysed by optical microscope observations and by particle distribution measurements. In Figure 6 particle size distribution of a sludge sample at steady-state conditions is shown. Also, samples from a conventional activated sludge process (CAS) which treated the same influent were investigated and compared with the MBR sample. Figure 6 shows aggregates with bimodal distribution in CAS biomass, where 50 % of the particles have a size higher than 70 μm. In contrast, uniform and medium-sized flocs were observed in the MBR sludge, where 40 % of the particles were within the 15 to 50 μm range. Granulometric differences, which are a result of biomass separation by the membrane, are well documented in the literature (e.g. Cicek et al., 1999) and are attributable to effective particle retention by the membrane and high shear stress conditions due to air sparging for membrane fouling mitigation. Also, the low quantity of small non-floculating flocs (< 10 μm) could be due to the presence of higher organisms, which have traditionally been considered as predators that consume dispersed bacteria.
\n\t\t\t\t\tAlternatively, microscopic analysis of mixed liquor samples from the MBR is shown in Figure 7. The observations can be summarized into two main issues: firstly the absence of filamentous microorganisms, which can be linked to the process conditions, including high dissolved oxygen and low readily biodegradable substrate concentrations (Martins et al., 2004). Secondly, as a result of the low organic loading conditions, higher organisms were also expected. In this sense, a significant quantity of worms (type
As already stated, to operate an MBR under substrate-limited conditions enhances the presence of worms that may lead to a substantial sludge reduction and improve biomass characteristics by removing small non-floculating flocs.
\n\t\t\t\t\tHigher microorganisms found in MBR (A, B, D, F x20; C, E x40).
Rheological properties are of crucial importance due to their effect on hydrodynamic conditions near the membrane. The rheological behavior of microbial suspensions has been described in the literature as non-Newtonian pseudoplastic fluids (Rosenberger et al., 2002b). When air is dispersed in a solid-liquid suspension a change can be seen in its rheological behavior due to the change in suspension structure: with increasing shear, the structure opens and biological aggregates are reorganized resulting in a decrease in viscosity. In addition, it is accepted that the microbial suspensions have a thixotropic nature, which means that the viscosity decreases with shear rate when samples are subject to shear stress. Rheology can be described by the Bingham model, the Ostwald model and the Herschel–Bulkley model represented by Eq. (3)-(5):
\n\t\t\t\t\tIn these models
\n\t\t\t\t\t\tFigure 8 shows one example of apparent viscosity reduction with the shear intensity. It decreases down to 75% when the shear varied from 13 to 130 s−1. Additionally, plotting is shown according to the Bingham, Ostwald and Herschel–Bulkley models. In general, both the Ostwald model as well as the Herschel-Bulkley model fits quite well into the experimental data, while the Ostwald was selected because of its simplicity. From the equation of the curve (Figure 8) the parameter values for Ostwald model can be obtained:
\n\t\t\t\t\t\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
where
Furthermore, as shown in Figure 8, apparent viscosity (μa)limit can be perceived for higher values (> 130 s−1 ). It does not decrease substantially with an increasing velocity gradient. Therefore, the effect of particle concentration on the viscosity can be evaluated by fitting the (μa)limit to the sludge concentration, measured as MLSS concentration (Figure 9). As expected, microbial suspension viscosity also increased with the MLSS concentration. This behaviour is commonly accepted in the literature (e.g. Pollice et al., 2007).
\n\t\t\t\t\tTherefore, the following equation (Eq. (6)) can estimate the limit apparent viscosity as a function of the MLSS concentration.
\n\t\t\t\t\tApparent viscosity against the shear intensity.
Apparent viscosity limit (dv/dr = 264 s-1) against the MLSS
Extracellular polymeric substances (EPS) can be differentiated into two main types: bound EPS, which form the structure of the floc, and soluble EPS (often named soluble microbial products), which are soluble or colloidal form in the liquid medium. Recent studies have shown that the soluble and colloidal fraction plays an important role in membrane fouling (Drews, 2010). Their principle components are also generally recognised as proteins and polysaccharides (Sponza, 2002).
\n\t\t\t\t\tAverage soluble EPS concentration of feedwater, liquid-phase and permeate.
\n\t\t\t\t\t\tFigure 10 compares the average concentrations of proteins and polysaccharides in the feed wastewater, in the liquid-phase and in the permeate. A significant reduction in EPS can be observed in the liquid-phase in relation to feed (82% for proteins and 51% for polysaccharides), as a result of biological metabolism. On the other hand, the separation through the membrane of the polysaccharides is 31% and for the protein it is 28%, both remaining constant throughout the experimental test. These membrane retention values are similar to those found in the literature (Rosenberger et al., 2006).
\n\t\t\t\t\tA low concentration was unexpected in the liquid-phase, as the common trend is to suppose EPS accumulation resulting from polymer retention by the membrane (Masse et al., 2006). As a consequence specific microorganisms may be assumed to develop, which can degrade polysaccharides and proteins with a slow degradation rate.
\n\t\t\t\tAs noted in the experimental procedure, all stages were performed using the same sequence of filtration and relaxation (450 s and 30 s, respectively). The experimental period was divided into five phases, each one operated at constant permeate flux. Membrane fouling was followed by measuring transmembrane pressure (TMP) evolution with operation time (Figure 11). Each phase finished when a pre-established TMP was reached.
\n\t\t\t\t\tTransmembrane pressure TMP and permeate flux J evolution with operation time
The initial period (Figure 11) showed a high rate of fouling (0.011 Pa/s) despite working with relatively low permeate flux (20-23 l/h m2) and without reaching a high concentration of MLSS. This could be attributed to the initial biomass development until it obtained a high level of biological degradation. During this period, it was expected that microcolloidal and soluble species would have caused irreversible pore blocking, as a result of their small size (Di Bella et al., 2006). Afterwards, we assume that the developed biomass reaches steady-state conditions and degrades most of the colloidal and soluble matter. Therefore, feedwater characteristics and the level of physiological biomass seem to have a significant effect of fouling propensity.
\n\t\t\t\tThe fouling rate, measured as the slope of transmembrane pressure against filtration time, has been used in many works as a fouling quantification parameter in systems operated under constant permeate flux. Experimentally, it has been found that rf depends exponentially on permeate flux (Figure 12). Therefore, a threshold flux value may be identified (32 l h−1 m−2) above which the fouling increases at an unacceptable rate.
\n\t\t\t\tThe physical and chemical quality of the permeate was assessed by the analysis of turbidity, COD and nitrogen compounds.
\n\t\t\t\tThe permeate had an average turbidity value of 0.59 NTU, indicating a total retention of suspended solids and macro-colloidal matter. In addition, the low turbidity of the permeate registered during the whole experimental period showed that the membrane maintained its integrity.
\n\t\t\t\tFouling rate against permeate flux.
The organic matter content was determined by measuring the COD in feed wastewater, in the permeate and in the liquid phase of the suspension. Soluble COD (CODS) was obtained by filtering through a filter paper of 0.45 μm pore diameter. Figure 13 shows the COD of feedwater (COD feed), the soluble COD of feedwater (CODs feed), the COD of the permeate (CODp) and soluble COD of the liquid phase (CODs reactor) versus operating time. Typical fluctuations of feed wastewater can be seem in a real treatment plant. These oscillations lessened considerably in the permeate and in the liquid phase.
\n\t\t\t\tCOD evolution with operation time.
Evolution of the nitrogen compounds with operation time.
As it is shown in Figure 13, there is a significant difference between the total and soluble COD of feed due to the presence of suspended solids. It was estimated that approximately 68% of the COD of the feed is in a particulate form. If the soluble COD of feed is compared with the soluble COD of the CODs liquid phase (CODs reactor) a removal efficiency close to 86% can be obtained, mainly due to biological degradation and only 6% is due to the membrane separation process. It should be noted that the BOD5 was not analyzed because, through frequent and trustworthy analysis of the same water, the BOD5/COD ratio was confirmed to be approximately constant and equal to 0.75, so the COD analysis may be considered sufficient to determine the biodegradation produced.
\n\t\t\t\tAlso, the evolution of the ammonium nitrogen concentration in feed wastewater (N-NH4 feed) and the nitrogen compounds of the permeate ((N-NH4\n\t\t\t\t\t+)p, (N-NO2\n\t\t\t\t\t-)p, (N-NO3\n\t\t\t\t\t-)p) were measured during the experimental period (Figure 14). As can be seen, the concentrations of nitrogen-nitrate in the permeate (N-NO3\n\t\t\t\t\t-)p were in the range of 15-45 mg/l, while nitrite and ammonia were completely removed. This is interpreted as a total oxidation of ammonium to nitrate.
\n\t\t\t\tAs shown in Table 5, no bacterial contamination indicators, bacterial pathogens or parasites were detected in the permeate. This is attributed to the ultrafiltration membrane which has a pore diameter smaller than the size of bacteria and parasitic microorganisms, so that the membrane is an effective barrier. However, Table 5 shows the presence of viral indicators. Here, results indicate a great degree of removal (99.8% and 95.3% for somatic coliphages and F-RNA bacteriophages, respectively).
\n\t\t\t\t\n\t\t\t\t\t\t\t | Feed wastewater | \n\t\t\t\t\t\t\tPermeate (N = 3) | \n\t\t\t\t\t\t
Bacteriological indicators | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t |
Fecal coliform[1]\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t7.7·106\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t7.3·106\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t
Enterococci[1]\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t3.6·106\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t1.1·106\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t
Indicators of pathogenic contamination | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t |
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t
Viral indicators | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t |
Somatic coliphages[2]\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t3.2·106\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t4.3·103 ± 1.6·103\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
F-RNA bacteriophages[2]\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t2.3·105\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t1.1·104 ± 1.6·104\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Parasites | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t |
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t\tabsence | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t[1] CFU/100ml; [2] PFU/100ml; [3] No/100 ml. N= Number of samples | \n\t\t\t\t\t\t
Feed wastewater and permeate microbial results.
Permeate microbial results proved that MBR systems are able to produce permeate of high microbial quality to be used in several applications such as land irrigation, agricultural activities etc., in accordance with local standards.
\n\t\t\tMBRs have been proven as efficient and versatile systems for wastewater treatment over a wide spectrum of operating conditions. The treatment performance of the MBR is better than in conventional activated sludge process. A high conversion of ammonium to nitrate (>95%) and constant COD removal efficiency (80-98%) was achieved, regardless of the influent fluctuations. Microbial analysis of permeate showed the absence of bacterial indicators of contamination and parasitical microorganisms. At the same time, the membrane presented over 98% efficiency in the elimination of viral indicators.
\n\t\t\tParticularly interesting is the possibility of operating at maintenance energy level of the biomass, which significantly reduces sludge production. At these maintenance conditions, a minimal value for the carbon substrate utilization rate (0.07-0.1 kg COD kg-1 MLVSS d-1) was found and the system was operated successfully at permeate flux between 30 and 32 l h-1m-2 and low physical cleaning frequency. As a result of carbon substrate limited conditions, EPSs were minimized and higher organisms appeared.
\n\t\t\tBiomass development at maintenance conditions can be well described by the kinetic model based on Pirt´s equation.
\n\t\t\tAlthough there are many practical experiences for MBR design and operation, there are still some aspects that are not completely understood. Without any doubt, the most cited is membrane fouling. The complexity of this phenomenon is linked to the presence of particles and macromolecules with very different sizes and the biological nature of the microbial suspensions which results in a very heterogenic system. Meanwhile, the dynamic behaviour of the filtration process adds a particular complication to fouling mechanisms. Therefore, further investigation is required so as to ascertain which component in the suspension is the primary cause of membrane fouling.
\n\t\tCAS | \n\t\t\t\t\tConventional activated sludge process | \n\t\t\t\t
COD | \n\t\t\t\t\tChemical oxygen demand, mg O2 /l | \n\t\t\t\t
EPS | \n\t\t\t\t\tExtracellular polymeric substance | \n\t\t\t\t
F/M | \n\t\t\t\t\tFeed to microorganisms ratio, kg COD/kg MLSS d | \n\t\t\t\t
HRT | \n\t\t\t\t\tHydraulic retention time, h | \n\t\t\t\t
iMBR | \n\t\t\t\t\tImmersed membrane bioreactor | \n\t\t\t\t
J | \n\t\t\t\t\tPermeate flux, l/h m2\n\t\t\t\t\t | \n\t\t\t\t
MLSS | \n\t\t\t\t\tMixed liquor total suspended solids, mg/l | \n\t\t\t\t
MLVSS | \n\t\t\t\t\tMixed liquor volatile suspended solids, mg/l | \n\t\t\t\t
NH4-N | \n\t\t\t\t\tAmmonium nitrogen concentration, mg/l | \n\t\t\t\t
NO2-N | \n\t\t\t\t\tNitrite nitrogen concentration, mg/l | \n\t\t\t\t
NO3-N | \n\t\t\t\t\tNitrate nitrogen concentration, mg/l | \n\t\t\t\t
SADm\n\t\t\t\t\t | \n\t\t\t\t\tSpecific membrane aeration demand, Nm3/h m2\n\t\t\t\t\t | \n\t\t\t\t
SOURe\n\t\t\t\t\t | \n\t\t\t\t\tSpecific oxygen uptake rate in endogenous conditions, kg O2/kg MLVSS d | \n\t\t\t\t
SRT | \n\t\t\t\t\tSludge retention time, days | \n\t\t\t\t
TMP | \n\t\t\t\t\tTransmembrane pressure | \n\t\t\t\t
U | \n\t\t\t\t\tUtilisation rate, kg COD/kg MLVSS d | \n\t\t\t\t
This work has been funded by the N.R.C. (MEC project CTM2006-12226). The authors also want to express their gratitude to the MEC for a doctoral scholarship, to GE ZENON, to CANARAGUA and to BALTEN for their support and finally to the Water Analysis Laboratory of the ULL Chemical Engineering Department for analytical advice.
\n\t\tThe first description of giant cell arteritis dates from 1890 by Hutchinson, who described an 80-year-old man with painful and inflamed temporal arteries which prevented him from wearing his hat [1]. Forty-seven years later Horton, Magath, and Brown described similar cases and called the syndrome temporal arteritis [2]. Originally thought to be a localized, self-limiting, and benign disorder, inflammation of the temporal arteries is now recognized as part of a widespread arteritis which untreated can lead to blindness and death.
\nGiant cell arteritis (GCA), previously called temporal arteritis and also known as Horton’s disease, is defined by the 2012 Chapel Hill Consensus Conference as “arteritis, often granulomatous, usually affecting the aorta and/or its major branches, with a predilection for the branches of the carotid and vertebral arteries; often involves the temporal artery; onset usually in patients older than 50; often associated with polymyalgia rheumatica” [3]. It is the most common primary systemic vasculitis in adults, mostly seen in North America and Western Europe, with the incidence increasing with the advancing age. Women are more affected than men in a 2.5:1 ratio. GCA classically targets large vessels with predominance for the aorta and its branches. Arterial inflammation may lead to vascular damage which can result in stenosis, occlusions, and even aneurysms. Therefore, this condition is related to serious loss of function including visual loss, upper limb ischemia, and stroke. Suspicion of giant cell arteritis is a medical emergency, and patients need to be quickly diagnosed and treated to prevent irreversible consequences of vessel inflammation.
\nThe immune and pathogenetic pathways responsible for the inflammation on the arterial walls in GCA are not fully understood yet. As in other autoimmune diseases, it is believed to be an environmental-triggered response occurring in genetic-predisposed individuals. The fact that it only affects older patients suggests that age-related damage on the vessel walls also plays a role in the development of the arteritis [4].
\nThere is evidence of a cyclic pattern and yearly incidence of the onset of GCA, which led to the search for an environmental agent responsible for the initialization of the immune response. Many bacterial agents and viruses have been under research (
GCA is associated with the major histocompatibility class II (MHC-II), particularly with HLA-DRB1*04 alleles [5]. Outside the MHC region, variants on the PTPN22 locus and other genes related to vascular response to inflammation and vascular remodeling, such as plasminogen and prolyl 4-hydroxylase subunit alpha 2, also increased the risk of GCA.
\nAge-related damage on the arterial wall also has a role on the pathogenesis. There are biochemical and structural modifications in the vessel leading to loss of self-tolerance. Differences in the DNA methylation level of several genes have been reported in temporal arteries from GCA patients comparing with non-GCA controls.
\nThere is evidence that the inflammation starts in the adventitia and progresses to the other layers of the arterial wall, culminating in transmural damage. Activated dendritic cells (DCs) have a central role in the immune response of GCA. These cells are present in the adventitia and express Toll-like receptors, which are activated via pathogen-associated molecular patterns (PAMPs) or microorganism-associated molecular patterns (MAMPs). The activation of DC breaks immune tolerance and renders the arteries, considered otherwise an immune privileged site, susceptible to inflammatory injury. DCs activate CD4+ T lymphocytes through co-stimulatory molecules (CD80 and CD86) and class II MHC. DC depletion in mice models with GCA strongly decreased vasculitis lesions, emphasizing its importance on the immune response.
\nActivated DCs produce cytokines such as IL-6, IL-18, IL-23, IL-32, and IL-33, which are chemotactic for T lymphocytes. T cells that infiltrate the temporal arteries from GCA patients are enriched Th1, Th17, and Th9 cells. Th1-response polarization via IL-12 synthesizes IFN-γ, and Th17 cells produce IL-17. While Th17 cells are inhibited by glucocorticoids, the Th1 response is not, being this last one implicated in sustaining chronic disease activity in GCA [6].
\nIFN-γ seems to be important for the development of vasculitis. The cytokine panel described above is found in both GCA patients and PMR patients without GCA, but INF-γ is only present in individuals with GCA. IFN-γ expression, in fact, is associated with increased risk of ischemic complications. Vascular smooth muscle cells, induced by IFN-γ, produce chemokines (CCL2, CXCL9, CXCL10, and CXCL11), leading to the recruitment of monocytes that merge to form multinucleated giant cells, the hallmark of GCA. The chemokines recruit more immune cells, amplifying the inflammatory response. Monocytes differentiate into macrophages in the arterial wall and produce IL-6, IL-1β, and TNF-α, responsible for the systemic inflammatory response which is characteristic of GCA. Toxic substances for the arteries are also produced by macrophages, such as reactive oxygen species, matrix metalloproteinase-2 (MMP-2), and MMP-9, which destroy cellular matrix proteins and cause destruction of the media and digestion of the internal elastic lamina.
\nTh17 cells appear to be important in the initial stages of the disease, producing IL-17, IL-21, IL-22, and CCL20. IL-17 leads to the recruitment of macrophages, while IL-21 enhances the differentiation of cytotoxic cells, and IL-22 mediates hepatocyte stimulation and acute-phase amplification. CCL20 facilitates the recruitment of more DCs and T cells.
\nThe vascular smooth muscle cells in inflamed arteries are believed to acquire pro-inflammatory properties and produce several growth factors (vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), among others), causing intimal hyperplasia and vascular occlusion.
\nB cells are not present in the arterial wall of all the patients with GCA, suggesting that its effect is not crucial in the pathogenesis. However, when present, they are activated and contribute for the amplification of the immune response and inflammation.
\nFinally, defects in immune checkpoints have also been studied and appear to play a role in the immune activation observed in GCA. T cells express programmed death-1 (PD-1), which binds to its receptor in antigen-presenting cells, inducing T cell anergy and apoptosis, and the production of IL-10 by T cells or their polarization into T-reg lymphocytes. A defect in the immunoprotective PD-1/PD-L1 immune checkpoint has been reported in GCA patients.
\nHeadache is the most common symptom of GCA, and a new-onset headache (or worsening of a preexisting headache) in older adults should always raise the suspicion of this condition. The installation of the pain is usually acute/subacute. The typical pattern is a temporal headache, continuous throughout the day and resistant to standard analgesia, but it can also be felt over other cranial areas or be diffuse. Patients may also present with scalp tenderness or tongue/jaw pain. Jaw claudication, seen in 45% of the patients, is a relatively specific sign and correlates with temporal artery biopsy positivity.
\nTotal or partial visual loss affects 15–20% of patients, mostly at disease onset. The main cause is anterior ischemic optic neuropathy due to vasculitis of the posterior ciliary arteries, which are branches of the ophthalmic artery and responsible for the blood supply of the optic nerve and the choroid. The optic neuropathy leads to visual loss, which is usually painless and with rapid onset. Occasionally, posterior ischemic optic neuropathy, occlusive vasculopathy of the central artery of the retina, or cortical ischemia can cause visual loss too. Blindness is irreversible in most cases, and when one eye is affected, the other one will likely (in half of the cases) be diseased too in a few days if the treatment is not promptly started. About 10% of patients develop amaurosis fugax, visual hallucinations, or diplopia, which are considered premonitory signs and can progress to blindness in half of the cases.
\nSystemic manifestations, such as fever, weight loss, and fatigue, are frequent (42, 50, and 40%, respectively). Some patients present only with constitutional symptoms, without headache or visual changes, and in those cases, the diagnosis can be challenging. GCA can be the cause of an obscure-origin fever in older patients.
\nPolymyalgia rheumatica (PMR) is the most common extracranial manifestation of GCA, and it may also be the first clinical sign of a vasculitis relapse. It is defined by pain/tenderness in proximal arms and legs, with morning stiffness and fast improvement with low-dose glucocorticoid treatment. PMR is seen in 50% of the patients with GCA, while only 20% of the patients with PMR have clinical signs of GCA. However, in patients with PMR with persistently high inflammatory markers and insufficient response to glucocorticoids, a careful investigation may reveal an oligo-symptomatic GCA requiring more aggressive treatment. GCA and PMR are different conditions that share many common features: they occur almost exclusively in patients aged 50 years or older, have similar gender ratios, are associated with the HLA-DRB1*04 alleles and increased levels of serum acute-phase reactants, and respond to glucocorticoid therapy.
\nGCA is a systemic vasculitis with predominance for the aorta and its branches. Therefore, the patients may also present with chest pain and limb claudication. Large-vessel disease may complicate with aneurysms or stenosis development, resulting in increased mortality due to cardiovascular disease. Many patients with GCA develop clinical manifestations of large-vessel involvement, such as arm claudication (4%) and arterial bruits (21%).
\nCerebrovascular events are less common ischemic complications, seen in 15% of the patients. They are mostly due to occlusive vasculitis of the carotid or vertebrobasilar arteries. Transitory or persistent ischemic attacks are the most common neurologic manifestations, but cognitive impairment and neuropathy are other possible complications. Neuropsychiatric symptoms (dementia, mood disorders, and psychosis) affect 3% of the patients. Audio vestibular dysfunction leading to sensorineural hearing loss has also been described in GCA.
\nInfrequent clinical manifestations include tongue, scalp or lip necrosis, and facial/submandibular swelling. Unlike visual loss, ischemic necrosis tends to improve after the glucocorticoid treatment is started. Peripheral synovitis is found in 15% of the patients.
\nPhysical examination is frequently normal, but it may also reveal temporal artery abnormalities such as thickness, tenderness, and hyperemia, with normal, decreased, or absent pulse. Even though temporal artery abnormality is one of the five ACR classification criteria for GCA, it is seen in less than 30% of the patients. Peripheral pulses in arms and legs may be decreased or absent as well in large-vessel disease, and arterial bruits can be heard in such patients.
\nThe American College of Rheumatology classification criteria for GCA, published in 1990, requires three or more of the following five criteria [1]: age 50 years and older [2], new onset of localized headache [3], temporal artery tenderness on palpation or decreased pulsation [4], an abnormal temporal artery biopsy, and [5] an erythrocyte sedimentation rate (ESR) of 50 mm/h or more (Table 1) [7]. These criteria are designed to be classificatory and not diagnostic, with sensitivity and specificity of 81.1% and 64.2%, respectively [8]. In the last years, new imaging techniques have emerged and can be helpful tools on diagnosis and disease activity assessment.
\n1. Age ≥ 50 years | \n1 | \n
2. New-onset headache | \n1 | \n
3. Temporal artery tenderness/decreased pulsation | \n1 | \n
4. Abnormal temporal artery biopsy | \n1 | \n
5. ESR ≥ 50 mm/1st hour | \n1 | \n
Total | \n\n |
ACR classification criteria for GCA (1990).
GCA defined if score ≥ 3.
ESR higher than 50 mm/h is one of the five criteria for GCA classification according to the ACR. However, in recent years alternative acute-phase reactants have been proposed as more sensitive markers. Recently one study analyzed 26 markers in GCA and PMR comparing with healthy controls and found that three serum markers (B cell-activating factor [BAFF], CXCL9, and IL-6) were increased in both newly diagnosed GCA and newly diagnosed PMR patients. Serum BAFF and IL-6, but not CXCL9, were attenuated upon glucocorticoid-induced remission and showed the strongest association with disease activity in both GCA and PMR patients [9]. BAFF is an important regulator of B cell responses and has been linked to the development of many autoimmune diseases. Even though these markers are not used routinely in clinical practice yet, they are promising new tools in the diagnostic approach and disease activity assessment in GCA.
\nPlatelets are also considered a serum marker for inflammation in GCA. The postulated mechanism of thrombocytosis in promoting inflammation stems from their early interaction with the endothelium in inflammatory states during which they provide adhesion molecules and chemotactic stimulation to aid in the recruitment of leukocytes and enhance the release of different inflammatory mediators [10].
\nThe most used tests for measuring inflammation in clinical practice are ESR and CRP. One study showed that the optimal cutoff value for CRP in GCA was 26.9 mg/L (sensitivity 75% and specificity 51%) and for ESR was 53 mm/h (sensitivity 66% and specificity 55%) [11].
\nEven though temporal artery biopsy is not essential for the diagnosis, one study found that sensitivity and specificity of ACR criteria for diagnosis of GCA before performing TAB were 68.5 and 58%, respectively, while sensitivity and specificity of ACR criteria after performing TAB biopsy were 89.8 and 64.5%, respectively [12]. The sensitivity rates are lower in the large-vessel phenotype of GCA, and even in patients with the temporal artery affected, skip lesions may contribute to a negative TAB.
\nTAB showing transmural inflammation is still considered the gold standard for the diagnosis of GCA and remains the most specific diagnostic test. It is a minimally invasive and well-tolerated surgical procedure that is generally performed in an outpatient surgery setting and carries a low risk of complications in experienced hands. The length of the artery needed for optimal histopathological analysis is 2 cm. For all these reasons, TAB is still recommended in all patients with a clinical suspicion of GCA. In addition to their diagnostic role, histological findings of positive TAB may have clinical and prognostic significance and thus implications for the patients’ management.
\nGCA is characterized histopathologically by mononuclear infiltrates in all layers of the arterial wall. Macrophages and T cells are present in granuloma formation, and multinucleated giant cells are localized close to the fragmented internal elastic lamina. Neutrophils, eosinophils, and plasma cells are rare. Proliferation of the intima results in occlusive vasculopathy. Neoangiogenesis is frequent and at times prominent, and fibrinoid necrosis is typically absent (Figures 1 and 2) [13].
\nHistopathological analysis of a patient from the Rheumatology Division of the University of Sao Paulo showing a transmural lymphomonocytary infiltrate and important narrowing of the vessel lumen. HE 100×. Image gently provided by the Pathological Anatomy Division of the University of Sao Paulo, School of Medicine.
Histopathological analysis of a patient from the Rheumatology Division of the University of Sao Paulo showing a transmural lymphomonocytary infiltrate and the presence of a granuloma. HE 100×. Image gently provided by the Pathological Anatomy Division of the University of Sao Paulo, School of Medicine.
The positivity of TAB declines after glucocorticoid treatment is started, and the biopsy should ideally be performed within 2 weeks from the onset of the therapy. Importantly, the therapy should never be delayed for the performance of a biopsy, especially when visual symptoms are present [14].
\nFor patients with a negative temporal artery biopsy, clinical assessment remains a mainstay of diagnosis.
\nIn 2018, the European League Against Rheumatism (EULAR) published recommendations about the use of imaging techniques in large-vessel vasculitis (LVV), which included GCA and Takayasu’s arteritis. According to these recommendations, in patients with suspected GCA, an early imaging test is recommended to complement the clinical criteria for diagnosing GCA, assuming high expertise and prompt availability of the imaging technique [15]. However, imaging should not delay initiation of treatment. The choice of the individual imaging method depends on the predominant clinical symptoms and local settings. In settings where imaging modalities are not readily available or expertise with imaging in GCA is questionable, a biopsy should still be favored in first place. Besides, if positive histology is already available, additional imaging may not be needed for the diagnosis. In centers, however, where imaging (and TAB) is readily available and performed with high quality, the task force recommends that imaging should be preferred as the first test because of low invasiveness, ready availability of imaging results, and assessment of a larger extent of potentially inflamed arteries at the same examination, therefore contributing to a lower number of false-negative results. Imaging should be performed before or as early as possible after initiation of therapy, best within 1 week, because treatment with glucocorticoids rapidly reduces the sensitivity of imaging [15].
\nIn patients in whom there is a high clinical suspicion of GCA and a positive imaging test, the diagnosis of GCA may be made without an additional test (biopsy or further imaging). In patients with a low clinical probability and a negative imaging result, the diagnosis of GCA can be considered unlikely [15].
\nUltrasound of temporal ± axillary arteries is recommended as the first imaging modality in patients with suspected predominantly cranial GCA. A noncompressible “halo” sign is the ultrasound finding most suggestive of GCA (Figure 3). High-resolution MRI of cranial arteries to investigate mural inflammation may be used as an alternative for GCA diagnosis if ultrasound is not available or inconclusive. Ultrasound, PET, MRI, and/or CT may be used for the detection of mural inflammation and/or luminal changes in extracranial arteries to support the diagnosis of large-vessel GCA (Figure 4). Ultrasound is of limited value for the assessment of aortitis [15].
\nTemporal artery duplex scan of a patient from the Rheumatology Division of the University of Sao Paulo, School of Medicine with GCA showing thickness in the vascular wall and the noncompressible “halo” sign.
PET-CT of a patient from the Rheumatology Division of the University of Sao Paulo, School of Medicine with GCA showing inflammation in the vascular wall of the aorta and subclavian, common carotid, iliac, femoral, popliteal, and tibial arteries.
In patients with a suspected flare, imaging might be helpful to confirm or exclude it. Imaging is not routinely recommended for patients in clinical and biochemical remission. In patients with large-vessel vasculitis, MRA, CTA, and/or ultrasound may be used for long-term monitoring of structural damage, particularly to detect stenosis, occlusion, dilatation, and/or aneurysms [15].
\nTreatment with oral glucocorticoid (GC) effectively induces remission and reduces the evolution to visual loss, and it should be started as early as possible when there is a clinical suspicion of GCA. The GC therapy cannot be postponed to after confirmation of the diagnosis, because once the visual loss is installed, it is rarely reversible [16].
\nOral prednisone in a daily single dose of 40–60 mg usually resolves the symptoms and normalizes acute inflammation reactants within the first 2–4 weeks of the treatment. When premonitory visual signs are present (amaurosis fugax) or when visual loss is installed, pulse therapy with daily intravenous methylprednisolone (500–1000 mg) for 3 days can be tried, even though its superiority compared to the oral prednisone regimen has not been proven in clinical trials.
\nGlucocorticoids are effective in inducing clinical remission, but the side effects of its chronical use are undesirable, especially in elderly individuals. Therefore, synthetic or biological immunosuppressants have been used as GC-sparing adjuvants to reduce the cumulative GC dose and to maintain remission after the prednisone withdrawal [17]. There is no consensus on the timing of initiating GC-sparing therapy, but indications to start it early in the disease course include the presence of significant premorbid diseases (diabetes mellitus, osteoporosis, obesity), the emergence of significant glucocorticoid-related side effects, and a relapsing course necessitating protracted CS use. After clinical remission is achieved (symptoms resolved and laboratory inflammation markers normalized), the GC taper can be started. It has to be slow, especially with lower doses. The dose can gradually be reduced by 5 mg every 2 weeks to 20 mg/day and then by 2.5 mg every 2 weeks to 10 mg/day if there are no flares of disease activity. After achieving a daily dose of 10 mg, the prednisone taper should be slowed, such that patients remain on progressively decreasing doses over the ensuing 6–12 months. Tapering by 1 mg decrements each month once the daily dose is less than 10 mg can be considered. Disease relapses are more frequent in this final phase of the GC tapering regimen [18].
\nAnti-TNF𝛼 agents have been tested and yielded disappointing results, showing no efficacy in reducing GC dose or relapse rates in GCA. There are other promising target therapies being tested, such as the JAK/STAT inhibitors, but the results are not available, and there is no data to support their use in clinical practice yet.
\nPatients with GCA are elderly and frequently have multiple comorbid conditions that can be worsened by the use of GC and immunosuppressants. Therefore, the levels of vitamin D must be higher than 30 ng/mL for all patients, and the dietary intake of calcium must be stimulated (or supplementation, if the dietary intake is insufficient) for bone protection, as well as the use of bisphosphonates if indicated.
\nLow-dose aspirin (80–100 mg/day) should be prescribed for prevention of cardiovascular events, which represent the main cause of death in this population.
\nThe most frequent causes of death in GCA patients are cardiovascular diseases followed by cancer. Combined, these conditions account for approximately two thirds of all deaths. A Norwegian cohort of 881 patients with GCA and 2577 population controls found no significant difference in the overall cumulative survival or survival at any specific time after diagnosis. In this study the mean age of death was 83.6 (SD 7.5) years for GCA patients, and survival was more than 80% in 5 years and approximately 50% in 10 years [24]. The same study found that even though the overall mortality was not reduced in GCA, these patients have an increased risk of death due to circulatory diseases and infections but a decreased risk of death due to cancer over time. The increased risk of death by circulatory diseases may be related to aneurysms and dissections, which are recognized as large-vessel complications of GCA. Therefore, it is extremely important in the management of these patients to identify and to treat other contributing risk factors for circulatory disease.
\nIntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11769",title:"Multiculturalism and Interculturalism",subtitle:null,isOpenForSubmission:!0,hash:"6c4bda24f278d74f943f2155f13f4d73",slug:null,bookSignature:"Dr. Muhammad Mohiuddin, Dr. Tareque Aziz and Dr. Sreenivasan Jayashree",coverURL:"https://cdn.intechopen.com/books/images_new/11769.jpg",editedByType:null,editors:[{id:"418514",title:"Dr.",name:"Muhammad",surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12105",title:"E-cigarettes and Health",subtitle:null,isOpenForSubmission:!0,hash:"caf66b3fd49c1338a93836fdb0133bc6",slug:null,bookSignature:"Dr. Victor Hoe",coverURL:"https://cdn.intechopen.com/books/images_new/12105.jpg",editedByType:null,editors:[{id:"267448",title:"Dr.",name:"Victor",surname:"Hoe",slug:"victor-hoe",fullName:"Victor Hoe"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11563",title:"A Comprehensive Review of the Versatile Dehydration Processes",subtitle:null,isOpenForSubmission:!0,hash:"91d7853d4e74d161d7a8f5913626cf94",slug:null,bookSignature:"Ph.D. Jelena Jovanovic",coverURL:"https://cdn.intechopen.com/books/images_new/11563.jpg",editedByType:null,editors:[{id:"447810",title:"Ph.D.",name:"Jelena",surname:"Jovanovic",slug:"jelena-jovanovic",fullName:"Jelena Jovanovic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12059",title:"Hydraulic Structures - Impact on River Flow and Sediment Transport-Dimensioning",subtitle:null,isOpenForSubmission:!0,hash:"8e41aab8223c29ce69c00e8c8f6f560d",slug:null,bookSignature:"Prof. Vlassios Hrissanthou",coverURL:"https://cdn.intechopen.com/books/images_new/12059.jpg",editedByType:null,editors:[{id:"37707",title:"Prof.",name:"Vlassios",surname:"Hrissanthou",slug:"vlassios-hrissanthou",fullName:"Vlassios Hrissanthou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12061",title:"Masonry for Sustainable Construction",subtitle:null,isOpenForSubmission:!0,hash:"85ef86d046d15e7d4b1988f1ec5dd750",slug:null,bookSignature:"Prof. Amjad Almusaed and Prof. Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/12061.jpg",editedByType:null,editors:[{id:"446856",title:"Prof.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11817",title:"Next Generation Fiber-Reinforced Composites - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"bdff63f3c5e98fc95d76217516cb1420",slug:null,bookSignature:"Dr. Longbiao Li",coverURL:"https://cdn.intechopen.com/books/images_new/11817.jpg",editedByType:null,editors:[{id:"260011",title:"Dr.",name:"Longbiao",surname:"Li",slug:"longbiao-li",fullName:"Longbiao Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12078",title:"Schiff Base in Organic, Inorganic and Physical Chemistry",subtitle:null,isOpenForSubmission:!0,hash:"ce51efbe2cae97ca3199350ef6c498ec",slug:null,bookSignature:"Dr. Takashiro Akitsu",coverURL:"https://cdn.intechopen.com/books/images_new/12078.jpg",editedByType:null,editors:[{id:"147861",title:"Dr.",name:"Takashiro",surname:"Akitsu",slug:"takashiro-akitsu",fullName:"Takashiro Akitsu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11513",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!0,hash:"8eeb7ab232fa8d5c723b61e0da251857",slug:null,bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",editedByType:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11784",title:"Bryophytes - The State of Knowledge in a World Under Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"80743b2add35e11b09c10e6895a45831",slug:null,bookSignature:"Prof. Jair Putzke",coverURL:"https://cdn.intechopen.com/books/images_new/11784.jpg",editedByType:null,editors:[{id:"324930",title:"Prof.",name:"Jair",surname:"Putzke",slug:"jair-putzke",fullName:"Jair Putzke"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:419},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4383},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"26",title:"Agricultural Engineering",slug:"agricultural-and-biological-sciences-agricultural-engineering",parent:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:231,numberOfWosCitations:53,numberOfCrossrefCitations:78,numberOfDimensionsCitations:128,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"26",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10899",title:"Postharvest Technology",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ce6f836b93e9e456c0f87a46deca8937",slug:"postharvest-technology-recent-advances-new-perspectives-and-applications",bookSignature:"Md Ahiduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/10899.jpg",editedByType:"Edited by",editors:[{id:"321606",title:"Dr.",name:"Md",middleName:null,surname:"Ahiduzzaman",slug:"md-ahiduzzaman",fullName:"Md Ahiduzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10454",title:"Technology in Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"dcfc52d92f694b0848977a3c11c13d00",slug:"technology-in-agriculture",bookSignature:"Fiaz Ahmad and Muhammad Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/10454.jpg",editedByType:"Edited by",editors:[{id:"338219",title:"Dr.",name:"Fiaz",middleName:null,surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8939",title:"Urban Horticulture",subtitle:"Necessity of the Future",isOpenForSubmission:!1,hash:"5db1ff90f7e404baf4e42cdfbe0b9755",slug:"urban-horticulture-necessity-of-the-future",bookSignature:"Shashank Shekhar Solankey, Shirin Akhtar, Alejandro Isabel Luna Maldonado, Humberto Rodriguez-Fuentes, Juan Antonio Vidales Contreras and Julia Mariana Márquez Reyes",coverURL:"https://cdn.intechopen.com/books/images_new/8939.jpg",editedByType:"Edited by",editors:[{id:"210702",title:"Dr.",name:"Shashank Shekhar",middleName:null,surname:"Solankey",slug:"shashank-shekhar-solankey",fullName:"Shashank Shekhar Solankey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8308",title:"Agricultural Economics",subtitle:"Current Issues",isOpenForSubmission:!1,hash:"138b8e4117a40c74fc41ec72d552fa9f",slug:"agricultural-economics-current-issues",bookSignature:"Surendra N. Kulshreshtha",coverURL:"https://cdn.intechopen.com/books/images_new/8308.jpg",editedByType:"Edited by",editors:[{id:"37057",title:"Dr.",name:"Surendra N.",middleName:null,surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6265",title:"Automation in Agriculture",subtitle:"Securing Food Supplies for Future Generations",isOpenForSubmission:!1,hash:"397d9aa9d63ecac6048c1c2274f35704",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",bookSignature:"Stephan Hussmann",coverURL:"https://cdn.intechopen.com/books/images_new/6265.jpg",editedByType:"Edited by",editors:[{id:"6250",title:"Prof. Dr.-Ing.",name:"Stephan",middleName:null,surname:"Hussmann",slug:"stephan-hussmann",fullName:"Stephan Hussmann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5227",title:"Urban Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"722ebe60b63f7c01577d063a3e39c36a",slug:"urban-agriculture",bookSignature:"Mohamed Samer",coverURL:"https://cdn.intechopen.com/books/images_new/5227.jpg",editedByType:"Edited by",editors:[{id:"175050",title:"Prof.",name:"Mohamed",middleName:null,surname:"Samer",slug:"mohamed-samer",fullName:"Mohamed Samer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"57703",doi:"10.5772/intechopen.71582",title:"The Fourth Industrial Revolution and Precision Agriculture",slug:"the-fourth-industrial-revolution-and-precision-agriculture",totalDownloads:3016,totalCrossrefCites:14,totalDimensionsCites:19,abstract:"The Fourth Industrial Revolution will see the convergence of artificial intelligence and data technology as a new solution to address industrial and social problems across the globe, by integrating cyber and physical fields. The Fourth Industrial Revolution will send a ripple effect of far-reaching repercussions throughout the labor-intensive field of agriculture. Combining artificial intelligence and big data will evolve into a high-tech industry that operates itself. These technologies allow for precision agriculture, such as yield monitoring, diagnosing insect pests, measuring soil moisture, diagnosing harvest time, and monitoring crop health status. In particular, the Internet of things (IoT) will measure the temperature, humidity, and amount of sunlight in production farms, making it possible for remote control via mobile devices. It will not only boost the production of the farms but also add to their value.",book:{id:"6265",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Jehoon Sung",authors:[{id:"210240",title:"Dr.",name:"Jehoon",middleName:null,surname:"Sung",slug:"jehoon-sung",fullName:"Jehoon Sung"}]},{id:"59242",doi:"10.5772/intechopen.73622",title:"Review of Variable-Rate Sprayer Applications Based on Real- Time Sensor Technologies",slug:"review-of-variable-rate-sprayer-applications-based-on-real-time-sensor-technologies",totalDownloads:2078,totalCrossrefCites:12,totalDimensionsCites:15,abstract:"Precision variable rate spray is one of the research hotspots in the field of modern agriculture spraying applications. Variable rate spraying of the canopy allows growers to apply adjusted volume rate of pesticides to the target, based on canopy size, and to apply plant protection products in an economical and environmentally sound manner. In the field of pesticide application, knowledge of the geometrical characteristics of plantations will guarantee a better adjustment of the dosage of the agrochemicals applied. This technology is integrated with intelligent real-time sensors, which have a high potential for agricultural precision spray applications. This book chapter presents the foundations and applications in agriculture of the primary systems used for real-time spray target detection of the geometrical characterization of tree plantations. Systems based on infrared, ultrasonic, light detection and ranging (LIDAR), and stereo vision sensors were discussed, respectively, on their performances to detect spray targets. Among them, laser scanners and stereo vision systems are probably the most promising and complementary techniques for achieving three-dimensional (3D) pictures and maps of plants and canopies. The advantages of data fusion applied in real-time target detection and its accuracy in density estimation of the plants were stressed.",book:{id:"6265",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Zhihong Zhang, Xiaoyang Wang, Qinghui Lai and Zhaoguo Zhang",authors:[{id:"227982",title:"Dr.",name:"Zhihong",middleName:null,surname:"Zhang",slug:"zhihong-zhang",fullName:"Zhihong Zhang"},{id:"239622",title:"Mr.",name:"Xiaoyang",middleName:null,surname:"Wang",slug:"xiaoyang-wang",fullName:"Xiaoyang Wang"},{id:"239624",title:"Prof.",name:"Qinghui",middleName:null,surname:"Lai",slug:"qinghui-lai",fullName:"Qinghui Lai"},{id:"239625",title:"Prof.",name:"Zhaoguo",middleName:null,surname:"Zhang",slug:"zhaoguo-zhang",fullName:"Zhaoguo Zhang"}]},{id:"71024",doi:"10.5772/intechopen.91133",title:"Implication of Urban Agriculture and Vertical Farming for Future Sustainability",slug:"implication-of-urban-agriculture-and-vertical-farming-for-future-sustainability",totalDownloads:1848,totalCrossrefCites:5,totalDimensionsCites:9,abstract:"Urban agriculture (UA) is defined as the production of agricultural goods (crop) and livestock goods within urban areas like cities and towns. In the modern days, the urbanization process has raised a question on the sustainable development and growing of urban population. UA has been claimed to contribute to urban waste recycling, efficient water use and energy conservation, reduction in air pollution and soil erosion, urban beautification, climate change adaptation and resilience, disaster prevention, and ecological and social urban sustainability. Therefore, UA contributes to the sustainability of cities in various ways—socially, economically, and environmentally. An urban farming technology that involves the large-scale agricultural production in the urban surroundings is the vertical farming (VF) or high-rise farming technology. It enables fast growth and production of the crops by maintaining the environmental conditions and nutrient solutions to crop based on hydroponics technology. Vertical farms are able to grow food year-round because they maintain consistent growing conditions regardless of the weather outside and are much less vulnerable to climate changes. This promises a steady flow of products for the consumers and a consistent income for growers. Various advantages of VF over traditional farming, such as reduced farm inputs and crop failures and restored farmland, have enabled scientists to implement VF on a large scale.",book:{id:"8939",slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Anwesha Chatterjee, Sanjit Debnath and Harshata Pal",authors:[{id:"312477",title:"Dr.",name:"Harshata",middleName:null,surname:"Pal",slug:"harshata-pal",fullName:"Harshata Pal"},{id:"316680",title:"Dr.",name:"Anwesha",middleName:null,surname:"Chatterjee",slug:"anwesha-chatterjee",fullName:"Anwesha Chatterjee"},{id:"316681",title:"Dr.",name:"Sanjit",middleName:null,surname:"Debnath",slug:"sanjit-debnath",fullName:"Sanjit Debnath"}]},{id:"59402",doi:"10.5772/intechopen.73861",title:"Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB",slug:"robotic-harvesting-of-fruiting-vegetables-a-simulation-approach-in-v-rep-ros-and-matlab",totalDownloads:2786,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"In modern agriculture, there is a high demand to move from tedious manual harvesting to a continuously automated operation. This chapter reports on designing a simulation and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and manipulators in robotic harvesting of sweet pepper. The objective was to provide a completely simulated environment for improvement of visual servoing task through easy testing and debugging of control algorithms with zero damage risk to the real robot and to the actual equipment. A simulated workspace, including an exact replica of different robot manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in V-REP. Image moment method visual servoing with eye-in-hand configuration was implemented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simulation experiments were used as inputs of the control algorithm in MATLAB, whose outputs were sent back to the simulated workspace and to the actual robots. ROS was used for exchanging data between the simulated environment and the real workspace via its publish-and-subscribe architecture. Results provided a framework for experimenting with different sensing and acting scenarios, and verified the performance functionality of the simulator.",book:{id:"6265",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Redmond R. Shamshiri, Ibrahim A. Hameed, Manoj Karkee and\nCornelia Weltzien",authors:[{id:"182449",title:"Prof.",name:"Ibrahim",middleName:"A.",surname:"Hameed",slug:"ibrahim-hameed",fullName:"Ibrahim Hameed"},{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"},{id:"241193",title:"Dr.",name:"Manoj",middleName:null,surname:"Karkee",slug:"manoj-karkee",fullName:"Manoj Karkee"},{id:"241194",title:"Dr.",name:"Cornelia",middleName:null,surname:"Weltzien",slug:"cornelia-weltzien",fullName:"Cornelia Weltzien"}]},{id:"69221",doi:"10.5772/intechopen.89279",title:"Social Value of Urban Rooftop Farming: A Hong Kong Case Study",slug:"social-value-of-urban-rooftop-farming-a-hong-kong-case-study",totalDownloads:1e3,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"As cities densify, areas available for agriculture within the city become increasingly small and infeasible for mass production. In parallel, many cities have seen a rapid rise in establishing community-based micro-farming, operating within marginal spaces of uncertain ownership or regulations. Prominently in Hong Kong, more than 60 urban rooftop farms have spontaneously appeared in the last 10 years on buildings. High application rates for renting plots in these informal farms suggest a strong demand in the population. Motivations cited by participants of rooftop farms are typically social, although social values have yet to be specifically defined or objectively measured. Hong Kong Special Administrative Region Government’s new agricultural policy conceives urban agriculture as a commercially productive practice. In consequence, urban rooftop farming lies awkwardly between formal city planning and informal community practices. A study of five rooftop farms in Hong Kong found, through participant opinion surveys and cost-benefit analysis, that the social benefits to participants were multifaceted with a preference on personal socialization and that they were willing to pay for the experience. The results suggest that if the products of rooftop farming could be conceived as being social, rather than food production, individual motivations and state interests could be aligned and the available roof space activated to achieve a more sustainable city.",book:{id:"8308",slug:"agricultural-economics-current-issues",title:"Agricultural Economics",fullTitle:"Agricultural Economics - Current Issues"},signatures:"Ting Wang and Mathew Pryor",authors:[{id:"289674",title:"Ph.D. Student",name:"Ting",middleName:null,surname:"Wang",slug:"ting-wang",fullName:"Ting Wang"},{id:"289677",title:"Prof.",name:"Mathew",middleName:null,surname:"Pryor",slug:"mathew-pryor",fullName:"Mathew Pryor"}]}],mostDownloadedChaptersLast30Days:[{id:"59402",title:"Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB",slug:"robotic-harvesting-of-fruiting-vegetables-a-simulation-approach-in-v-rep-ros-and-matlab",totalDownloads:2786,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"In modern agriculture, there is a high demand to move from tedious manual harvesting to a continuously automated operation. This chapter reports on designing a simulation and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and manipulators in robotic harvesting of sweet pepper. The objective was to provide a completely simulated environment for improvement of visual servoing task through easy testing and debugging of control algorithms with zero damage risk to the real robot and to the actual equipment. A simulated workspace, including an exact replica of different robot manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in V-REP. Image moment method visual servoing with eye-in-hand configuration was implemented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simulation experiments were used as inputs of the control algorithm in MATLAB, whose outputs were sent back to the simulated workspace and to the actual robots. ROS was used for exchanging data between the simulated environment and the real workspace via its publish-and-subscribe architecture. Results provided a framework for experimenting with different sensing and acting scenarios, and verified the performance functionality of the simulator.",book:{id:"6265",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Redmond R. Shamshiri, Ibrahim A. Hameed, Manoj Karkee and\nCornelia Weltzien",authors:[{id:"182449",title:"Prof.",name:"Ibrahim",middleName:"A.",surname:"Hameed",slug:"ibrahim-hameed",fullName:"Ibrahim Hameed"},{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"},{id:"241193",title:"Dr.",name:"Manoj",middleName:null,surname:"Karkee",slug:"manoj-karkee",fullName:"Manoj Karkee"},{id:"241194",title:"Dr.",name:"Cornelia",middleName:null,surname:"Weltzien",slug:"cornelia-weltzien",fullName:"Cornelia Weltzien"}]},{id:"70662",title:"Automation and Robotics Used in Hydroponic System",slug:"automation-and-robotics-used-in-hydroponic-system",totalDownloads:2800,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Hydroponic system requires periodic labor, a systematic approach, repetitive motion and a structured environment. Automation, robotics and IoT have allowed farmers to monitoring all the variables in plant, root zone and environment under hydroponics. This research introduces findings in design with real time operating systems based on microcontrollers; pH fuzzy logic control system for nutrient solution in embed and flow hydroponic culture; hydroponic system in combination with automated drip irrigation; expert system-based automation system; automated hydroponics nutrition plants systems; hydroponic management and monitoring system for an intelligent hydroponic system using internet of things and web technology; neural network-based fault detection in hydroponics; additional technologies implemented in hydroponic systems and robotics in hydroponic systems. The above advances will improve the efficiency of hydroponics to increase the quality and quantity of the produce and pose an opportunity for the growth of the hydroponics market in near future.",book:{id:"8939",slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Alejandro Isabel Luna Maldonado, Julia Mariana Márquez Reyes, Héctor Flores Breceda, Humberto Rodríguez Fuentes, Juan Antonio Vidales Contreras and Urbano Luna Maldonado",authors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",middleName:null,surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"},{id:"215230",title:"Dr.",name:"Juan Antonio",middleName:null,surname:"Vidales Contreras",slug:"juan-antonio-vidales-contreras",fullName:"Juan Antonio Vidales Contreras"},{id:"220744",title:"MSc.",name:"Héctor",middleName:null,surname:"Flores Breceda",slug:"hector-flores-breceda",fullName:"Héctor Flores Breceda"},{id:"252026",title:"Dr.",name:"Humberto",middleName:null,surname:"Rodríguez-Fuentes",slug:"humberto-rodriguez-fuentes",fullName:"Humberto Rodríguez-Fuentes"},{id:"299825",title:"Dr.",name:"Julia Mariana",middleName:null,surname:"Márquez Reyes",slug:"julia-mariana-marquez-reyes",fullName:"Julia Mariana Márquez Reyes"},{id:"303920",title:"Prof.",name:"Urbano",middleName:null,surname:"Luna Maldonado",slug:"urbano-luna-maldonado",fullName:"Urbano Luna Maldonado"}]},{id:"77112",title:"Advancements of Spraying Technology in Agriculture",slug:"advancements-of-spraying-technology-in-agriculture",totalDownloads:610,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Plant protection activities are most important practices during crop production. Application of maximum pesticide products with the sprayer. The application of fungicides, herbicides, and insecticides is one of the most recurrent and significant tasks in agriculture. Conventional agricultural spraying techniques have made the inconsistency between economic growth and environmental protection in agricultural production. Spraying techniques continuously developed in recent decades. For pesticide application, it is not the only sprayer that is essential, but all the parameters like the type and area of the plant canopy, area of a plant leaf, height of the crop, and volume of plants related to plant protection product applications are very important for obtaining better results. From this point of view, the advancement in agriculture sprayer has been started in last few decades. Robotics and automatic spraying technologies like variable rate sprayers, UAV sprayers, and electrostatic sprayers are growing to Increase the utilization rate of pesticides, reduce pesticide residues, real-time, cost-saving, high compatibility of plant protection products application. These technologies are under the “umbrella” of precision agriculture. The mechanized spraying system, usually implemented by highly precise equipment or mobile robots, which, makes possible the selective targeting of pesticide application on desire time and place. These advanced spraying technologies not only reduces the labour cost but also effective in environmental protection. Researchers are conducting experimental studies on the design, development and testing of precision spraying technologies for crops and orchards.",book:{id:"10454",slug:"technology-in-agriculture",title:"Technology in Agriculture",fullTitle:"Technology in Agriculture"},signatures:"Fiaz Ahmad, Aftab Khaliq, Baijing Qiu, Muhammad Sultan and Jing Ma",authors:[{id:"199381",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sultan",slug:"muhammad-sultan",fullName:"Muhammad Sultan"},{id:"338219",title:"Dr.",name:"Fiaz",middleName:null,surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad"},{id:"346652",title:"MSc.",name:"Aftab",middleName:null,surname:"Khaliq",slug:"aftab-khaliq",fullName:"Aftab Khaliq"},{id:"349757",title:"Prof.",name:"Qiu",middleName:null,surname:"Baijing",slug:"qiu-baijing",fullName:"Qiu Baijing"},{id:"349778",title:"Dr.",name:"Jing",middleName:null,surname:"Ma",slug:"jing-ma",fullName:"Jing Ma"}]},{id:"77058",title:"Solar Technology in Agriculture",slug:"solar-technology-in-agriculture",totalDownloads:587,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Promotion of sustainable agriculture is one of the most priority development goal set by United Nations for achieving the food security to meet the ever-increasing global population food demand. Because of extreme importance of agriculture sector, significant technological developments have been made that played pivotal role for sustainable agriculture by value addition in agricultural products and meeting energy demands for machinery and irrigation. These developments include improved cultivation practices, processing units for agricultural products and operation of machinery and irrigation systems based on solar energy. Moreover, the emergence of new technologies and climate smart solutions with reduced carbon footprints have significantly addressed the ever-increasing fuel costs and changing climate needs. PV based solar irrigation pumps and agricultural machinery is typical example of this. Because, awareness of these technological development is essential to overcome energy issues, availability of energy to perform agricultural activities for sustainable agriculture at farm level and socioeconomic uplift of farming community to meet food requirements needs in the future. Therefore, this chapter attempts at providing the introduction of technologies for direct and indirect use of solar energy in the agriculture sector. The typical examples of direct use of solar energy like greenhouses or tunnel farming for cultivation of crops and vegetables and use of solar dryers for drying agricultural products have been comprehensively discussed. Similarly, the solar powered tubewells, tractors, and lights, etc. are few important examples of indirect use of solar energy and have also been discussed in this chapter. The indirect use is made possible by converting solar energy into electrical energy with the help of photovoltaic devices, called “solar cells”. Also radio frequency (RF)-controlled seed sowing and spreading machines are discussed, which provide an eco-friendly method. Moreover, comprehensive discussion is made on solar based technologies in general as well regional context in view of their potential to scale-up and to address anticipated issues. The use of photovoltaics in agriculture is expected to be significant contribution in the near future that require urgent planning for the potential benefits and efficient use at the farm level. Therefore, the co-existence of “agrovoltaics” will be essential for the developments of agriculture and agroindustry.",book:{id:"10454",slug:"technology-in-agriculture",title:"Technology in Agriculture",fullTitle:"Technology in Agriculture"},signatures:"Ghulam Hasnain Tariq, Muhammad Ashraf and Umar Sohaib Hasnain",authors:[{id:"324017",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ashraf",slug:"muhammad-ashraf",fullName:"Muhammad Ashraf"},{id:"343829",title:"Dr.",name:"Ghulam Hasnain",middleName:null,surname:"Tariq",slug:"ghulam-hasnain-tariq",fullName:"Ghulam Hasnain Tariq"},{id:"415545",title:"Mr.",name:"Umar Sohaib",middleName:null,surname:"Hasnain",slug:"umar-sohaib-hasnain",fullName:"Umar Sohaib Hasnain"}]},{id:"79822",title:"Stored Grain Pests and Current Advances for Their Management",slug:"stored-grain-pests-and-current-advances-for-their-management",totalDownloads:226,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"During the offseason, when fresh food is not available, humans have to consume stored grain food. Unfortunately, these stored grains are later infested with many pests. Foods stored in bags and bins are very much susceptible to infestation with several pests which can cause extensive post-harvest losses, spoilage, and less demand in markets, causing a huge economic crisis. Hence, successful management of stored grain pests becomes necessary to prevent these from insect pests. Current approaches for their management are one of the promising goals, as it includes preventive practices, monitoring, sanitation, and identification of main pathogens. Different management strategies of all the common stored grain pests viz. grain weevils, grain borers, grain moths, flour moths, mealworms, grain and flour beetles, booklice, mites, and parasites are enlisted here.",book:{id:"10899",slug:"postharvest-technology-recent-advances-new-perspectives-and-applications",title:"Postharvest Technology",fullTitle:"Postharvest Technology - Recent Advances, New Perspectives and Applications"},signatures:"Rayees Ahmad, Shafiya Hassan, Showkat Ahmad, Syed Nighat, Yendrambamb K. Devi, Kounser Javeed, Salma Usmani, Mohammad Javed Ansari, Sait Erturk, Mustafa Alkan and Barkat Hussain",authors:[{id:"319667",title:"Dr.",name:"Barkat",middleName:null,surname:"Hussain",slug:"barkat-hussain",fullName:"Barkat Hussain"},{id:"444975",title:"Dr.",name:"Rayees",middleName:null,surname:"Ahmad",slug:"rayees-ahmad",fullName:"Rayees Ahmad"},{id:"444976",title:"Dr.",name:"Shafiya",middleName:null,surname:"Hassan",slug:"shafiya-hassan",fullName:"Shafiya Hassan"},{id:"444977",title:"Dr.",name:"Showkat",middleName:null,surname:"Ahmad",slug:"showkat-ahmad",fullName:"Showkat Ahmad"},{id:"444978",title:"Dr.",name:"Syed",middleName:null,surname:"Nighat",slug:"syed-nighat",fullName:"Syed Nighat"},{id:"444979",title:"Dr.",name:"Yendrambamb",middleName:null,surname:"K. Devi",slug:"yendrambamb-k.-devi",fullName:"Yendrambamb K. Devi"},{id:"444980",title:"Dr.",name:"Kounser",middleName:null,surname:"Javeed",slug:"kounser-javeed",fullName:"Kounser Javeed"},{id:"444981",title:"Dr.",name:"Salma",middleName:null,surname:"Usmani",slug:"salma-usmani",fullName:"Salma Usmani"},{id:"444982",title:"Dr.",name:"Mohd Javid",middleName:null,surname:"Ansari",slug:"mohd-javid-ansari",fullName:"Mohd Javid Ansari"},{id:"444983",title:"Dr.",name:"Sait",middleName:null,surname:"Erturk",slug:"sait-erturk",fullName:"Sait Erturk"},{id:"444984",title:"Dr.",name:"Mustafa",middleName:null,surname:"Alkan",slug:"mustafa-alkan",fullName:"Mustafa Alkan"}]}],onlineFirstChaptersFilter:{topicId:"26",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"