Common sources of radon in underground uranium mines [3].
\r\n\tWith the discovery of more unconventional heavier crude and alternative hydrocarbon sources, primary upgrading or cracking of the oil into lighter liquid fuel is critical. With increasing concern for environmental sustainability, the regulations on fuel specifications are becoming more stringent. Processing and treating crude oil into a cleaner oil with better quality is equally important. Hence, there has been a relentless and continuous effort to develop new crude upgrading and treating technologies, such as various catalytic systems for more economical and better system performance, as well as cleaner and higher-quality oil.
\r\n\r\n\tThis edited book aims to provide the reader with an overview of the state-of-the-art technologies of crude oil downstream processing which include the primary and secondary upgrading or treating processes covering desulfurization, denitrogenation, demetallation, and evidence-based developments in this area.
",isbn:"978-1-80356-681-8",printIsbn:"978-1-80356-680-1",pdfIsbn:"978-1-80356-682-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"808b0ddfb3b92e0636ae44a83ef7dbd9",bookSignature:"Dr. Ching Thian Tye",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11542.jpg",keywords:"Crude Oil Properties, Hydrocracking, Catalytic Cracking, Coking, Visbreaking, Thermal Cracking, Hydroprocessing, Hydrodesulfurization, Desulfurization, Denitrogenation, Demetallation, Dearomatization",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 22nd 2022",dateEndSecondStepPublish:"April 19th 2022",dateEndThirdStepPublish:"June 18th 2022",dateEndFourthStepPublish:"September 6th 2022",dateEndFifthStepPublish:"November 5th 2022",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Associate professor at the School of Chemical Engineering in Universiti Sains Malaysia and dedicated researcher in fuel-related catalytic process and chemical reaction engineering. Dr. Tye serves on a review panel for international and national refereed journals, scientific proceedings as well as international grants.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"304947",title:"Dr.",name:"Ching Thian",middleName:null,surname:"Tye",slug:"ching-thian-tye",fullName:"Ching Thian Tye",profilePictureURL:"https://mts.intechopen.com/storage/users/304947/images/system/304947.jpg",biography:"Dr. Tye is an associate professor at the School of Chemical Engineering in Universiti Sains Malaysia. She received her doctoral degree at The University of British Columbia, Canada. She is working in the area of chemical reaction engineering and catalysis. She has been involved in projects to improve catalysis activities, system efficiency, as well as products quality via different upgrading and treating paths that are related to petroleum and unconventional oil such as heavy oil, used motor oil, spent tire pyrolysis oils as well as renewable resources like palm oil. She serves as a review panel for international & national refereed journals, scientific proceedings as well as international grants.",institutionString:"Universiti Sains Malaysia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universiti Sains Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"64797",title:"Congenital Nasolacrimal Duct Obstruction and the Visual System",doi:"10.5772/intechopen.82546",slug:"congenital-nasolacrimal-duct-obstruction-and-the-visual-system",body:'Tears are words that need to be written (
The valve of Hasner obstruction occurs due to unfinished canalization, a process that begins in the 12th week of gestation and is completed by the 24th week. An incidence of 35–73% has been reported for imperforate NLDs in full-term infants, with a preponderance opening up spontaneously during the first couple of weeks of life [2]. The nasolacrimal duct normally canalizes from proximal to distal, so the distal portion is often last to open up. Therefore, premature infants conceivably have higher rates of CNLDO. However, because tear production does not take place almost near term, these infants mostly do not exhibit the symptoms of epiphora. Infants with CNLDO present with excessive tearing or mucoid discharge from the eyes due to blockage of the nasolacrimal duct system, which can result in maceration of the of the eyelid skin and local infections. On examination, there is an increased tear meniscus and there may be stickiness or crusting on the lashes. Secondary infection is common in CNLDO due to the stasis of lacrimal sac contents, proximity of the sinuses, and a rich lymphatic and vascular system within the submucosa of the lacrimal sac.
It is important to note that typically, CNLDO does not usually cause much discomfort to children. Affected infants are otherwise well and act normally despite the presence of noteworthy overflow of tears and mucopurulent discharge. If infants have photophobia or other signs of chronic irritation, they should be checked carefully for signs of glaucoma, keratopathy, or epiblepharon, i.e., other factors of pediatric epiphora must be ruled out. The absence of corneal and conjunctival abnormalities is an important factor in establishing a diagnosis of CNLDO. Other causes of epiphora such as acute conjunctivitis, congenital anomalies of the upper lacrimal drainage system (punctal or canalicular atresia or agenesis), entropion, and triachiasis also must be evaluated. The most important entity in the differential diagnosis of CNLDO/epiphora would be infantile glaucoma. NLDO may be confused with glaucoma by primary care physicians due to the presence of epiphora. It is important to check intraocular pressure, corneal diameters, and cup to disk ratio to rule out this condition.
It is recommended to do a fluorescein disappearance test (FDT) on all children with epiphora as it provides evidence to support a diagnosis of lacrimal outflow obstruction. Fluorescein 1% is instilled into each lower conjunctival fornix. The child sits on the parent’s lap while the cobalt blue light of a slit lamp is used to illuminates the eyes. Cobalt blue light of an ophthalmoscope can be alternatively used. The tear meniscus is evaluated at 2, 5, and 10 minutes. Each eye is graded at 0, 1, 2, or 3 (0 = fluorescein completely gone, 3 = no fluorescein gone). Normally, the fluorescein disappears by 5 minutes but the dye remains in the conjunctival cul-de-sac in children with obstruction. Mild pressure on the lacrimal sac produces regurgitation of fluorescein-stained tears, particularly in those with a mucocele. This test visibly demonstrates the nature of the problem to the parents and provides practical time to discuss the cause and management of CNLDO. The fluorescein dye disappearance test can reliably confirm lacrimal duct obstruction noninvasively, with a sensitivity of 90% and a specificity of 100% [3]. In most centers, FDT has become the preferred tool for diagnosis of CNLDO.
Approximately 90% infants with CNLDO experience spontaneous resolution before the age of 1 year. It becomes symptomatic in merely 5–6% of infants [4]. Probabilities of spontaneous resolution by 12 months of age are 80–90%, at 3 months of age, 68–75%, at 6 months of age, and 36–57% at 9 months of age [5]. Bilateral symptoms are present in 14.0–33.8% of patients with CNLDO, all of which either spontaneously resolve simultaneously or within 3 months of contralateral resolutions. In cases of bilateral CNLDO, when epiphora in one eye settles spontaneously during 10–12 months of ages, it is rational to monitor the child for further 3 months as spontaneous resolution can occur in a substantial percentage of children after 1 year of age [6].
Congenital dacryocystoceles are an uncommon variant of CNLDO, typically seen at birth or shortly after birth as a blue-colored cystic mass over the lacrimal sac. The valve of Hasner again is the most frequent site obstruction due to incomplete canalization. A congenital dacryocystocele accompanies CNLDO in approximately 0.1% of infants. Children with Down syndrome, craniosynostosis, Goldenhar sequence, clefting syndromes, hemifacial microsomia, and midline facial anomalies are at an increased risk for CNLDOs. Although most cases of CNLDO are diagnosed clinically, some conditions especially craniofacial malformations or Down syndrome, the bony obstruction at the CNLDO can be confirmed with computed tomography (CT Scans). Dacryocystocele (where both proximal and distal lacrimal system are obstructed) commonly results in dacryocystitis (or, rarely, neonatal respiratory obstruction) at birth, it necessitates surgical intervention following diagnostic imaging.
The treatment of CNLDO is, at first, conservative. Conservative treatment consists of nasolacrimal massage, warm compresses, and topical antibiotics for secondary infections. Massage of the lacrimal sac increases the hydrostatic pressure within the sac thereby breaking open the distal membrane. The most important aspect of conservative treatment is educating the parents, providing reassurance and information about the etiology, and natural history of CNLDO. Printed leaflets that provide information for the parent are very useful. Parents should be encouraged to clean the lids and lashes with cooled boiled water or normal saline and to lightly express the contents of the lacrimal sac. This maintains flow in the system and prevents stagnation, reducing any sticky discharge. Method of the massage should be explained to the parents. Parents find this difficult and need clear instructions. They should press on the sac below the medial canthus with their little finger multiple times per day if possible. Vaseline or liquid paraffin should be applied to the periocular skin to protect and treat any areas of redness or broken skin.
Antibiotic eye drops in CNLDO should only be used when it is accompanied by signs of conjunctivitis. It is somewhat common practice in some centers that topical antibiotics are used in combination with conservative therapy for CNLDO. However, there is no evidence indicative of the fact that antibiotic eye drops appreciably facilitates the resolution of CNLDO. Conjunctival bacterial flora in CNLDO patients is almost identical to those in the normal pediatric population and the use of antibiotic eye drops may cause normal bacterial flora to be substituted with a drug resistant flora. As infants have immune system that is in flux and is not geared-up to remove resistant bacteria they may possibly become carriers of resistant bacteria. Thus, antibiotic eye drops are completely unnecessary in conservative therapy for simple CNLDO [7].
Intervention is usually done when CNLDO becomes persistent and/or once the child is older than 1 year of age. Probing the nasolacrimal duct to open the membranous obstruction at the distal nasolacrimal duct is the preferred initial management. Probing can be performed without anesthesia in the office setting, but it is usually preferred to do the procedure under general anesthesia (GA) in the operating room. The benefit of GA is less discomfort and the ability to perform additional procedures if other abnormalities are found while the child is under GA. Probing aims to solve the symptoms of epiphora/discharge by clearing up the membranous obstruction; however, it may not be able to relieve the obstruction if it is due to protrusion of the bone of inferior turbinate into the NLD or when the NLD is swollen due to inflammatory processes such as dacryocystitis. Moreover, probable complications with probing are; false passage formation, injury to the NLD, puncta, canaliculi, bleeding, laryngospasm, and rarely aspiration.
While obstruction is mostly located at the valve of Hasner, obstruction may be anywhere along the route. Surgical intervention consists of the introduction of a flexible metal probe into the nasolacrimal duct to open it. A probe is placed into the nasolacrimal duct and passed into the nose. Following probing the nasolacrimal system is irrigated to assess its patency. This is usually done with normal saline tagged with fluorescein dye. If fluorescein dye can be picked-up by suction from the pharynx, probing can be considered successful. Postoperative tobramycin-dexamethasone eye drops are used four times a day for 2–3 weeks. If after 6 weeks, there is no improvement in signs or symptoms, probing and syringing (P&S) can be repeated. Endoscopic inspection with a nasal scope during P&S is recommended; especially if it is being done the second time, to identify anatomical anomalies and to ensure accurate probe configuration. Various studies show a success rate of 90–95% after initial probing [8, 9, 10, 11].
The timing of initial probing is debatable and varies between surgeons and centers. Some surgeons recommend early intervention. Their concern is that prolonged epiphora is annoying to both child and parents. More importantly, a delay in treatment may increase the risk of infections and long-term damage to the system resulting in inferior success rates of simple probing. In countries where pediatric ophthalmic care is limited to a few urban centers; where children present late with complex CNLDO and where there is a high probability the child will not show up for a follow-up, an early probing can be justified to some extent.
Typically, it is thought that the older the child at the time of probing, the less successful the probing will be. Studies have reported variable success rates of probing and syringing when done in older children. A success rate of 94% was reported by Havins and Wilkins for probing done in children less than 8 months compared to 56% in children age 18 months and older [12]. Sturrock reported 86% success when probing was done in children less than 1 year compared to 72% between 1 and 2 years of age and 42% for more than 2 years of age [13]. Katowitz and Welsh reported success rates of 76.4% in 13–18 month old children; however, the cure rates fall to 33.3% in children over 2 years [9].
Mannor et al. found a negative association between the age and success rates of P & S. Contrary to this, Robb, Zwaan, and El-Mansoury found more than 90% success rate in late as well as very late probing [10, 14, 15]. Robb found no difference in cure rate with increasing age and noted an overall success rate of 92% varying from 88.9 to 96.8% at different age intervals up to and beyond 3 years of age [16]. Honavar reported a success rate of 75.0% up to 4 years of age, after which it fell to 42.9% in children older than 4 years [17]. Casady reported success rates of 85% for probing in children more than 18 months of age [18].
Factors besides increasing patient age that are associated with decreased success rates for probing are severe symptoms, bilateral symptoms, canalicular stenosis, atonic sac, and non-membranous CNLDO. A recent Cochrane review assessing the effects of probing for CNLDO showed that the effects and cost of immediate versus deferred P & S for CNLDO are uncertain. Patients with unilateral CNLDO may have improved success from immediate P & S in the clinic. Limiting factors in these studies were; sample sizes of participated children in these trials were small and researchers examined outcomes at different points in time. They conclude that deciding whether to perform the procedure and its best possible timing will entail well-run clinical trials [19].
If the preliminary probing and syringing fails, one may perform; as discussed before, a secondary probing or an additional procedure. Second probing can be repeated four to six after the initial procedure. Cure rates of second probing are greatly decreased because unsuccessful first probing can result in cicatricial strictures or a false passage [20]. The two main secondary procedures are balloon dacryoplasty and silicone tube intubation.
During balloon dacryoplasty, a stent with a balloon at its distal end is passed into the distal nares, the balloon is inflated (usually couple of times), then deflated and removed. The aim is to widen the distal duct and decrease obstruction. The primary advantage of balloon dacryoplasty is that no stent material is left in the lacrimal system and therefore stent removal is not required. Balloon dacryoplasty is particularly useful for patients with diffuse stenosis of the distal NLD. Success rates for balloon dacryoplasty as a primary procedure are as high as 94%; however, the procedure is costly; nevertheless it may have its benefit in intractable cases [21, 22]. Furthermore, the role of balloon dacryoplasty in the management of CNLDO needs further evaluation and assessment.
Intubation is necessary in cases with lacrimal canalicular stenosis after probing. The silicone tube prevents the formation of granulation-related obstruction around the newly patent tract. Bicanalicular or monocanalicular silicone intubation of the nasolacrimal duct can be used as a primary or secondary procedure. Intubation should take place under GA after the nose has been prepared with decongestant. It is recommended that a nasal endoscopic guidance system is used to view the inferior meatus [23]. The lacrimal system should be probed first to ensure that the tubes have an anatomical passage. Tubes come with a metal introducer and one end should be placed through the system via the upper canaliculus, into the sac and down the nasolacrimal duct into the inferior meatus from where it should be retrieved under endoscopic view. The other end of the tube is inserted in exactly the same way through the lower canaliculus. The ends are tied securely with multiple square knots inside the nose and trimmed. Postoperative treatment consists of a topical antibiotic and steroid preparation for 2–3 weeks.
Possible complications of intubation include canalicular cheese-wiring, superiorly/inferiorly dislocation, infection, and scarring of any part of the nasolacrimal drainage system. Silicone tube stents if removed too early may result in the recurrence of obstruction. Breakage or prolapse of the tube may cause corneal abrasions [24]. Retrieval of the probe is sometimes difficult during intubation and during instrumental manipulation required during it may damage the nasal mucosa and turbinate [25]. The timing of removing the tube is contentious, but the suggested time is anywhere between 6 weeks and 18 months [26]. Leaving a tube in situ for about 6 months may attain better success rates compared to removing it earlier [27]. A study reports that early removal of tube in children younger than 2 years did not reduce the success rates of intubation [28]. Long-term intubation is associated with a higher occurrence of breakage, dislodgement, migration, dislocation, or prolapse. Tubes in almost all the cases are removed under GA through the nose. The tube is cut at the medial canthus and removed under direct vision to prevent aspiration of the tube. This system is then irrigated to remove any debris and to verify patency.
Its success rate of intubation range from 62 to 100% but in general, they decrease with increasing age [29, 30]. A study reported success rates for intubation stratified by patient age. The success rate for intubation in children aged 12–24 months was 91.3%, which reduced to 85.5% in those aged 24–36 months and to 79.6% in those aged 36–48 months [31]. Several studies have explored the effectiveness of intubation as a main treatment modality in older subgroup of children because of the decrease in success rates for late probing. Although the success rate was high; none of the studies included a control group.
The bicanalicular device has a silicone tube with a flexible metal probe on each end. Each separate end is introduced into the upper or lower punctum and then retrieved from the nose. Bicanalicular stents pass through both the upper and lower canaliculus and typically create a closed circuit. Bicanacular system intubates the upper and lower canaliculi connecting via the common canaliculus or the lacrimal sac thereby intubating the entire nasolacrimal drainage system with the circuit being open or closed in the nose. Examples of Bicanacular stent include Crawford stent, Ritleng stent, Pigtail/Donut stent, and Kaneka Lacriflow stent.
Monocanalicular stents do not provide a closed loop system, but only intubates either the upper or lower canaliculus. Examples of monocanalicular stents include Monoka Stent and Jones Tube. Both monocanalicular and bicanalicular intubations are effective methods for treating CNLDO. Monocanalicular intubation has the advantage of a lower incidence of canalicular slit formation, technical ease of insertion, and easier tube removal. Moreover, the tubing does not threaten the un-probed part of the lacrimal drainage system [32]. Bicanalicular intubations may be a better treatment for the patients with incomplete complex CNLDO [33].
A met-analysis in 2016 showed that the results of immediate and deferred P & S did not vary in their success rates. There was no difference in between the success rates of balloon dilation and intubation. Monocanalicular and bicanalicular intubation had similar success and dislocation rates. Therefore, the preference of a particular procedure on the treatment of CNLDO should be discussed in detail with parents by the concerned surgeon to achieve the best possible results [34].
In cases where all above measures fail or in complex CNLDO, some surgeons perform additional procedures such as turbinate fracture or dacryocystorhinostomy (DCR). DCR is done provided the obstruction is distal to the lacrimal sac. DCR represents a last resort for patients in whom; multiple procedures have failed, complex CNLDO, or in whom there is obstruction secondary to bony obstruction, dacryocystitis, dacryocystocele, older children, or craniofacial dysmorphism. Infracture of the inferior turbinate, usually done with a periosteal elevator or a hemostat, is used to decrease the resistance of drainage in the distal nasolacrimal duct. It is mostly useful for patients who have an exceedingly tight space between the inferior turbinate and nasal wall. It also allows for better visualization of the inferior meatus during endoscopic surgery. The success rate of inferior turbinate fracture alone is 83% [35]. Although a combination of probing with intubation results in good cure rates of 88–100%, the success rate for a combined inferior turbinate fracture and probing is no different to that for simple probing [36].
Conventional/external DCR is carried out through skin incision, the lacrimal sacs are exposed, an osteotomy is made through the nasal bone, flaps are created between the lacrimal sac and the nasal mucosa and then tube is placed which serves as a stent. Laser DCR is a substitute; the ostium is created by means of a laser which is placed through the canaliculus just adjacent to the nasal bone. An endoscope is mostly used during laser DCR. Nasolacrimal stents are placed at the end of the procedure. External and endoscopic DCR have excellent success rates, comparable to those of adult DCRs [37]. Endoscopic DCR can avoid a cutaneous scar and disruption of the medial canthal anatomy, but a pediatric endoscopic DCR is technically more demanding because of the poor visualization afforded by small nostrils and closer proximity of the operative field to the base of the skull [38].
Pediatric DCR has high success rates of 88–96% for external DCR and 82–92% for endoscopic DCR [39]. Rapidly altering anatomy, ill-defined anatomical landmarks, and aggravated growth of scar tissue have been suggested as possible factors that could influence surgical outcomes in pediatric DCR. On top, because of a narrowed nasal cavity there is a propensity toward development of postoperative adhesions between the rhinostomy site and the nasal septum; the use of a silicone tubes in pediatric DCR may avert this obstruction and consequently ensure better surgical outcomes [40].
CNLDO has long been considered as a benign condition that does not influence visual development. CNLDO has been at the hub of current debate on its proposed relationship with anisometropia, strabismus, and amblyopia. The persistent tearing caused by CNLDO distorts retinal images by producing a blur, thus defocusing the retinal image thereby adversely influencing the process of physiological emmetropization. This interference with the physiological emmetropization has possibly led to frequent findings of anisometropia in various studies.
The role of focused retinal images in the physiological emmetropization has been discussed by Wright [41]. Newborns are hyperopic having a short axial length relative to the refractive power of the cornea and lens. During the first few months of life rapid growth in axial length (AL) occurs with subsequently decreases the hypermetropia. The retinal image comes in clear focus through “emmetropization.” Various studies have shown that growth of the eye after birth and the development of its refractive capabilities are dependent on vision-dependent retinal mechanisms. A basic observation is that a continuous image blur on the retinal cells in a new born can result in lengthening of the axial length thus inducing myopia. The axiom is that when we are born the AL of the eye is short; therefore, the eye is hypermetropic and image blur on the retinal tissue in early life kindles AL elongation until image clarity is achieved by proper focusing of light rays. Raviola and Wiesel concluded that when visual input is deprived, as seen in cases where there is a dense corneal opacity or ptotic/closed eyelids, the eye has a tendency toward myopia [42]. Even if the eyelids are completely closed, more than 20% of light is still passed on to the retina [43]. The influence of a blur images is so immense that (in a study done on chicks) if only half the retinal image is blurred, then only that half of the globe will lengthen [44].
In comparison to blurred images, if there is no stimulation of light, studies show that it slows down the progress of blurred induced myopia and AL elongation. In theory, clearing up the image blur would abolish the stimulus of image blur on AL elongation, thereby retarding AL growth and the process of emmetropization, thereby causing hypermetropia [45]. In addition to the influence of AL elongation by blurred image stimulation of the retina, it seems that intrinsic growth of the eye is disengaged from visual input. AL elongation and thickness of the choroid alterations occur in diurnal pattern. In general, AL elongates and choroid thickens during the day and dawdle downs at night signifying a circadian rhythm. This suggests that the eye has an intrinsic growth rate that will occur in the absence of visual input [46].
No cause-effect relationship linking CNLDO and anisometropia has been studied and the precise method by which CNLDO might cause refractive error, anisometropia, and amblyopia is indistinct. As discussed, the proper focusing of images on the retina early in life is vital for emmetropization. It is indefinite what part, if any; persistent tearing has on visual development, refractive status, and amblyopia. Several authors have recently described an association between CNLDO and the development of amblyopia and strabismus secondary to anisometropia [47, 48, 49]. The major visual concern in CNLDO is the presence of significant anisometropia during vital period of visual development in these infants.
CNLDO rarely, if ever, results in complete visual obstruction. Besides, early unilateral visual deprivation as discussed before has been linked with myopia not hypermetropia [42, 50]. It is postulated that accumulation of discharge, excessive tears, and antibiotic ointments may result in deformation of retinal images. This image disparity may lead to a lack of appropriate emmetropization process and as a result the repeated finding of anisometropia in the affected eye. It is also proposed that this anisometropia is refractory. However, recent studies reveal that this is not necessarily true [51], which will be discussed in a while.
An estimated 285 million people around the world are visually impaired; 19 million are children below the age of 14 years. Childhood visual impairment is estimated to be the second leading cause of the burden due to blindness [52]. Forty percent of childhood blindness is preventable; 12 million children are visually impaired merely because of refractive errors. Uncorrected refractive errors lead to amblyopia and strabismus [53, 54]. Anisometropia is one of the major causes of amblyopia. Visual disabilities in children are also more intricate compared to adults thus preventing visual impairment in children in resource-poor countries is one of the key components of VISION 2020 the Right to Sight.
The significance of anisometropia as a source of amblyopia is well documented. Amblyopia risk factors based on
Donahue suggests that 1D of anisometropia can be considered as clinically significant anisometropia [57]. Nevertheless due to individual physiologic variability’s, amblyopia can even be seen with milder degree of anisometropia. The prevalence of anisometropia in the general pediatric population ranges from 2.3 to 3.4%, based on literature review [58]. Amblyopia has been reported to occur in approximately 1.6–3.6% of the normal population [51, 58]. The prevalence is even higher in medically underserved populations with reported rate as high as 22.7% [59]. The population-based Multi-ethnic Pediatric Eye Disease Study found that 78% of African American and Hispanic children had amblyopia which was traced back to be due to anisometropia [60]. A population-based Baltimore Pediatric Eye Disease Study was conducted on the White and African-American Children. This study concluded that 32% of cases of amblyopia were attributed to anisometropia [61].
Studies on the prevalence of anisometropia (greater and equal to 1D between two eyes) reveal that 2.3–3.4% of pediatric population aged 5–11 years is affected [62, 63]. Drover et al. showed the prevalence of anisometropia to be at 1.4% in the studied pediatric population (mean age 4.2 years) [64]. Huynh et al. study conducted in Sydney, concluded an anisometropic prevalence of 1.6–2.4% (mean age 6.7 years) [65]. Shih and colleagues conducted a population survey in Taiwan and found an anisometropic prevalence ranging from 7.2 to 9.3% in older children (age, 7–18 years) [66]. Studies show that anisometropia is an identifiable amblyogenic factor in 37% of cases and present concurrently with strabismus in an additional 24% of clinical populations [67].
Apart from refractive errors, a variety of risk factors increase the likelihood of amblyopia. A study showed that 28.7% of children whose parents had known strabismus were also found to have strabismus, a known amblyopia risk factor; this suggests a hereditary risk factor [68]. Low birth weight (<2499 g) and severe mental handicap are established risk for developing amblyopia [69]. Further risk factors include capillary hemangiomas of the eyelids, ptosis, blepharophimosis, craniosynostosis, and hydrocephalus. Socioeconomic factors also increase the risk of developing amblyopia. Children from underprivileged background, such as homeless kids and those coming from homes where either parents smoke, have a high prevalence of amblyopia [70, 71].
Amblyopia is clinically significant because it is one of the main causes of visual loss in children. Amblyopia is also of central interest because it suggestive of diminished neuronal activity that occurs when normal visual growth is interrupted. Amblyopia affords an idyllic template for understanding when and how a plastic brain may be used for functional recovery. Impaired stereoscopic depth perception is the most common deficit associated with amblyopia under ordinary binocular viewing conditions. This impairment may have a substantial impact on visuomotor tasks and difficulties in playing sports in children. Furthermore, impaired stereopsis may also limit career options for amblyopes. Stereopsis is more affected in strabismic than in anisometropic amblyopia. Recovery of stereoacuity may require more vigorous treatment protocols in strabismic than in anisometropic amblyopia. Individuals with strabismic amblyopia have a very low probability of improvement with monocular training; however, they get on well with dichoptic training (promising new therapeutic approach to amblyopia, which employs simultaneous and separate stimulation of both eyes) than with monocular training and much better with direct stereo-training [72, 73].
Thus, Anisometropia primarily disturbs binocularity thereby causing reduced stereoacuity. Development of stereoacuity is interrelated to similarity in the refractive status of the fellow eyes; fine motor skills which require swiftness and precision of movements are defective in amblyopic children. Therefore, management of anisometropic amblyopia is more prolonged and complex, especially if it is accompanied with strabismus [74]. In distinction to strabismic and deprivational amblyopia, anisometropic amblyopia is more frequently asymptomatic and detected at an older age; only 15% of affected children are diagnosed before they are 5 years of age [75].
Studies demonstrate that the most important factors in treatment results are age and depth of amblyopia that are directly related to the degree of anisometropia [76]. Therefore, as the child gets older, management becomes more complex and time consuming particularly in hypermetropic anisometropes in whom a less encouraging treatment results are seen, in contrast to myopes. It is suggested that in anisometropic subjects, amblyopia is less severe in children younger than 3 years of age and improvement in visual and stereoacuity is more probable if treatment is initiated prior to this age [77, 78]. Based on repeated finding of anisometropia in CNLDO particularly in unilateral anisometropia it is vital to check refractive status of children with CNLDO to assess visually significant anisometropia at an early age to prevent these children from amblyopia and visual morbidity.
First Chalmers and later Ellis questioned the relationship between CNLDO and visual maturation. Chalmers found anisometropia in 3.8%, in eyes with CNLDO; all their subjects were hypermetropic in the affected eye [79]. Ellis found no appreciable increased incidence of amblyopia (1.6%) in a large series of 2249 patients with NLDO compared with controls. They also found no correlation between refractive error and NLDO, including no significant increase in the incidence of anisometropia [80].
In our study, the prevalence of anisometropia (greater than 1.5 D) in NLDO patients of 13.7% is approximately thrice that of the general population [81]. It is also higher than reported studies on this subject matter [47, 48, 79, 80, 81]. Similarly, a study of around 1200 CNLDO patients found twice the rate of anisometropia in the unilateral CNLDO patients (7.6%) compared with bilateral NLDO patients (3.6%) that the rate of anisometropia and amblyopia is greater in NLDO patients. Anisometropia occurred at a greater rate in unilateral NLDO patients compared with bilateral NLDO patients and occurred at a greater rate in this CNLDO cohort than expected in the general pediatric population. Several patients with anisometropia went on to develop clinical amblyopia [47].
Matta et al. reviewed 375 patients with CNLDO and reported that 22% of the children with CNLDO had amblyopia risk factors [48]. Piotrowski and colleagues described a high prevalence (9.8%) of anisometropia with or without amblyopia in an 8-year consecutive case series which included 305 children with CNLDO [49]. Furthermore, Eshraghi and colleagues studied 433 cases with CNLDO that underwent probing. They reported that 5.5% had anisometropia and 9.46% had amblyopia risk factors. They also found more anisometropia in failed probing cases and theorized that structural abnormality may have a part to play in the development of anisometropia [82].
Bagheri et al. evaluated refractive state in children with unilateral CNLDO; they reported that in children aged 4 years and older, the interocular difference between spherical error and spherical equivalent was considerable as compared to children younger than 4 years [83]. Contrary to this, in our study, we found no significant association between the age (in months) of the patients and the interocular difference in sphere, cylinder, and SE of affected and non-affected eyes. However, when we observed the refractive status of children with CNLDO, we found that as the children age increased the prevalence and severity of refractive error and anisometropia increased. We also observed that difference between the affected and fellow eyes was significant in terms of spherical refractive error and spherical equivalent and that hypermetropia was more common in the eye with CNLDO. These findings illustrate that when unilateral CNLDO becomes chronic, the likelihood and severity of hypermetropia increases which as detailed, is a risk factor for amblyopia [81, 84]. This finding is clinically significant, as management and prognosis of amblyopia becomes intricate in older children.
The published literature proposes that the prevalence of anisometropia increases as the nature of the CNLDO becomes more chronic. Our study on bilateral CNLDO shows that the interocular difference in the mean spherical equivalent of children with unilateral CNLDO increases with the age of the patients. This was not the case in the patients with bilateral CNLDO. Therefore, children with chronic obstruction are more prone to be amblyogenic [85]. Hence, timely resolution of the problem is recommended to avoid visual morbidity, i.e., anisometropia and amblyogenicity.
If the anticipated association between CNLDO and anisometropia is refractory and the persistent epiphora, discharge, and topical medication in the conjunctival cul-de-sac is being held responsible in hampering the physiological emmetropization, then early resolution of CNLDO should retard the development of anisometropia and thus save the child from developing anisometropic amblyopia. However, a study found results contrary to this. Recently, Pyi Son studied 244 cases and found that early and spontaneous resolution of CNLDO is more likely to have a higher (not lower) rate of anisometropia compared to spontaneous or surgical resolution [86]. They proposed that the eye with CNLDO proceeds to emmetropization differently than the unaffected eye. Early resolution can hinder the process of emmetropization in the affected eye, making it lag behind the normal eye in achieving emmetropization. These findings negate the fact that anisometropia in CNLDO is transient and refractory. Further studies need to be done to determine the timing of resolution of CNLDO and its effect on the development, progression, and resolution of anisometropia and if present amblyopia. In most studies, including the one we conducted, they did not determine whether anisometropia persisted or not after surgical intervention or in later life. Simon reported that even after CNLDO has improved, anisometropic hypermetropia is a regular finding in patients with a history of unilateral CNLDO [87]. Nevertheless, results of all these studies consistently report high rates of anisometropia which concomitantly has amblyogenic effect.
Even though studies suggest that correction of the refractive error in anisometropia alone results in enhances quality of vision in anisometropic amblyopia, it is usually contemplated that most of cases will need added treatment because refractive error adjustment alone will not be adequate to completely manage the depth of amblyopia. Therefore, patching or pharmacological treatment is often prescribed at the same time or soon after the refractive spectacle correction is given. Concrete evidence, generally from the Pediatric Eye Disease Investigator Group, has established both number of hours per day of patching (according to age) and days per week of atropine use as good penalization technique to improve vision and stereoacuity in amblyopia [88]. The use of glasses alone has also been recognized as an excellent first-line treatment for both anisometropic and strabismic amblyopia. IPad-based dichoptic training has shown promising data for vision rehabilitation in amblyopes. Use of pharmaceutical augmentation of traditional therapies has also been investigated. Several different drugs with unique mechanisms of action are thought to improve the receptiveness to amblyopia therapy. However, no data on new treatment options from evidence-based research has surfaced which proves as being better to conventional therapies in regular clinical practice. Continued research into the use of new technology and comprehending the neuronal basis of amblyopia promises alternate or perhaps improved cures in the near future [89].
Studies mention that emmetropia is achievable in anisometropes with appropriate management [90]. However, the precise cause why studies find high prevalence of anisometropia in subjects even after CNLDO has resolved is still contentious. Nevertheless, the results endorse the fact that patients of CNLDO should be regularly reviewed for refractory status. Furthermore, as shown in our results, in older subjects, the interocular difference becomes more significant compared to younger children; this places them at high risk for developing amblyopia. They are also inclined to poor prognosis in terms of visual recovery. These facts support the benefit of early intervention in CNLDO. However, further studies with larger sample size longer follow-up time is required to establish this effect.
CNLDO should be observed and treated conservatively till the child is 1 year old. If CNLDO does not respond to conservative treatment, then they should be promptly treated with probing and syringing. In cases remission two cycles of syringing and probing, intubation is a reasonable treatment option. Surgical procedures should be reserved for complicated cases. Unilateral CNLDO is a risk factor for anisometropia particularly hypermetropic anisometropia with amblyogenic potential. Keeping in view that CNLDO is a common presentation in pediatric ophthalmology clinics, we recommend that all children with CNLDO should be regularly followed, even after the obstruction has anatomically and functionally resolved. These children should undergo cycloplegic refraction on each visit and should be monitored for the development of amblyopia and other ocular abnormalities.
Radon is a colorless, odorless, and tasteless inert gas. It can only be detected or measured with the help of special detectors. It can travel through cracks of the bedrock, soil, and through groundwater. In underground mines or underground structures, high concentrations of radon may be detected in the absence of adequate ventilation. In underground mines with uranium-bearing mineralization, radium 226 (radium’s most stable isotope) is a natural source of radiation. Other isotopes of radon, such as radon 220 and radon 219, also exist naturally; however, because of the small amount and short lifetime, other isotopes are of less concern. Radium 226 decays into radon 222, which in turn decays into its short-lived radioactive daughters in the mine atmosphere. The uranium decay chain can be summarized as shown in Figure 1.
Uranium decay chain.
Until the late 1970s, radon and its daughter products were of concern only at uranium mines. A study conducted by Daniels and Schubauer in 2017 shows that the radon exposure varied widely among several working populations, most of whom were employed in industries unrelated to the uranium fuel cycle. With the recent advancement of scientific knowledge, there has been more interest and attention to the hazards in non-uranium mines, underground structures, and residential buildings. In the absence of control measures, occupational exposures outside the uranium fuel cycle (e.g., tourist cave workers, waterworks employees) can exceed those found in most uranium workers [1].
Dehnret [2] reported high radon concentrations in old underground workings in Germany and protective steps taken for miners’ safety. Sahu et al. [3] reported the sources of radon, its emanation rate, and measurement techniques, particularly for underground uranium mines. Hu et al. [4] highlighted radon and radon progeny problems in Chinese uranium mines. In the United States, radon has been listed as the second major cause of lung cancer after tobacco [5]. A study of underground miners shows that 40% of lung cancer deaths may be due to radon progeny exposure [6]. MSHA has regulations for radon concentration in underground mines and sampling procedures depending on the concentration.
Considering the short half-life and the high radiation dose of radon gas and its daughter products, its mitigation in the underground environment becomes very important. In the absence of mitigation techniques, both the uranium and non-uranium mines (with uranium mineralization in the orebody) pose a serious threat to the personnel working in the underground environment.
Ventilation plays a significant role by supplying fresh air and removing the contaminated air from the working areas, thereby minimizing the radon concentrations in the mine environment. In addition, an appropriate mining method and well-designed mining sequence can also help control radon gas in the mine atmosphere [4]. In this chapter, the different radon mitigation methods that are specific to the underground mining operations are discussed.
Radium 226 decays into radon 222, which in turn decays into its short-lived radioactive daughters in the mine atmosphere. Common sources of radon emissions in underground mines are summarized in Table 1.
Sources | Remarks |
---|---|
Mine walls | In low/medium ore grades, porosity and micro-fractures are dominant factors affecting the rate of radon gas emanation. |
Broken ore | Fragmented ore provides a source of higher radon emanation due to the increased exposed surface area. |
Backfill tailings | Radon emanation rate increases with increasing water content up to a certain saturation level, and beyond the saturation level, it decreases with the increase in water content. |
Mine water | Mine water carries radon from the mineralized rocks to mine openings and transports it to a considerable distance in the mine galleries. |
Common sources of radon in underground uranium mines [3].
The concentration of radon gas is measured in units of picocuries per liter (pCi/L) or becquerels per cubic meter (Bq/m3) of ambient air. Due to difficulties in measuring radon gas concentration, potential alpha particles per liter of air are usually measured. The ratio of all the short-lived radon daughters’ activity to the parent radon gas activity is called the equilibrium factor. The equilibrium factor is 1 when both are equal. Radon daughter activities are usually less than the radon activity, and hence, the equilibrium factor is generally less than 1. In artificially ventilated scenarios such as underground mines, the equilibrium factor is in the range of 0.4 to 0.5.
In the United States, radioactivity for radon decay products is measured in terms of Working Level (WL). A WL is defined as the concentration of short-lived radon daughters, representing 1.3 × 105 MeV of potential alpha particle energy while decaying to the stable Pb-210. The worker’s prolonged exposure to radon daughters is expressed in Working Level Months (WLM). One WLM is equivalent to 1 WL exposure for 170 hours.
In underground mines as per the Mine Safety and Health Administration (MSHA) regulations, personnel shall not be exposed to air containing concentrations of radon daughters exceeding 1.0 WL. No person shall be permitted to receive exposure over 4 WLM (Working Level Months) in any calendar year. In all mines, at least one sample must be taken in exhaust mine air by a competent person to determine whether concentrations of radon daughters are present [7]. Table 2 provides the radon sampling frequency for uranium and non-uranium mines and households. Gamma radiation surveys shall be conducted annually in all underground mines where radioactive ores are mined. Gamma radiation dosimeters shall be provided to all personnel working in the area where gamma radiation exceeds 2.0 milliroentgens; annual individual gamma radiation exposure shall not exceed 5 Roentgen Equivalent Man [7].
Type of mine | Radon daughter concentration level (a) | Frequency of monitoring |
---|---|---|
a > 0.1 WL | Radon daughter concentration shall be determined at least every 2 weeks at random times in all working areas. | |
a > 0.3 WL | Radon daughter concentration shall be determined weekly in that area until the concentration reaches 0.3 WL or less for 5 consecutive weeks. | |
a < 0.1 WL (exhaust mine air sample) | Radon daughter concentration shall be determined by taking at least one sample in the exhaust mine air monthly. | |
0.1 WL < a < 0.3 WL | Radon daughter concentration shall be determined at least every 3 months at random times until the concentration is below 0.1 WL in that area and annually thereafter. | |
a > 0.3 WL | Radon daughter concentration shall be determined at least weekly in that area until the concentration drops to 0.3 WL or less for 5 consecutive weeks. | |
a < 0.1 WL (exhaust mine air sample) | No further exhaust mine air sampling is required. | |
Houses | a > 0.04 WL (equilibrium factor of 1) | The EPA (Environmental Protection Agency) guidelines recommend the installation of radon mitigation systems. |
Radon daughter exposure monitoring [7].
The measurement techniques for radon can be classified based on a) whether the technique measures radon gas
Radon gas and daughter (progeny) product measurement methods [
Active methods require electric power for measurements, whereas passive methods require no power. Measurements can be performed at specified intervals and data can be stored and read directly with active methods. In contrast, in the case of passive methods, integrated exposure concentrations can be measured, and data analysis requires special equipment. Time resolution techniques can be classified into three types, as shown in Figure 3.
Time resolution techniques for measuring radon and its daughter products [
Grab sampling technique for radon progeny involves drawing a known air volume through a filter and counting the alpha activity during or following the sampling. Usually, a known volume of air is drawn through a filter using an air sampling pump for very short sampling periods usually 5 minutes. Filters are counted for alpha particle emissions during mathematically determined periods after the sample is collected. There are three main methods available for counting these particles, namely the Kusnetz method, where the filter is counted once, and the modified Tsivoglou method, where the filter is counted three times to measure the decay. Another method, named the Rolle method, is quite popular in Canadian mines. It is similar to Kusnetz method but is more rapid, and the procedure differs only in the timing of filter counting after sample collection. Figure 4 shows one of the MSHA recommended instruments for sampling radon progeny that works based on the Kusnetz method.
Ludlum 2000 with accessories.
Schematic diagram of an ionization chamber [
A typical scintillation detector [
Apart from measuring alpha particles during the decay of
There are a few traditional approaches for predicting radon flux such as uninterrupted short-term monitoring to represent radon concentration over an extended period and laboratory investigations. These methods do not apply to all cases. Recently, Kayode et al. [11] developed an approach for predicting radon flux from fractured rocks, a discrete fracture network (DFN) model that can predict radon transport through fractures considering diffusion, advection, and radon generation with radon decay.
Some of the important techniques to mitigate radon gas in underground mines are discussed below.
The major sources of radon gas in non-uranium underground mines (with uranium mineralization) are the drift walls, floor, and roof. Shotcreting or applying radon sealants to the walls and roof effectively minimizes radon gas emissions into the mine atmosphere. The effectiveness of sealant coating in controlling the radon gas depends on the size of the capillary in which the acrylics (contained in the sealants) form barriers to prevent the escape of radon gas [12].
Isolation of mined-out areas using bulkheads is one of the popular methods of controlling radon gas emissions into the active mine workings. Bulkheads prevent the contaminated air of mined-out regions containing high radon gas concentrations from mixing with the fresh air. Loring and others [13] reported that styrofoam and shotcrete/concrete bulkheads are used in a panel cave mine for a temporary and permanent sealing purpose, respectively. These bulkheads are installed at a 60-degree layback angle of the planned cave area to minimize damage to the bulkheads during the caving process. As the bulkheads are not leak proof, bleeder pipes creating a negative pressure inside the bulkhead area and connected to the main exhaust ventilation system can also be an effective measure [13]. Figure 7 shows the typical designs of bulkheads.
Typical designs of bulkheads [
Mine pressurization can also play an important role in controlling radon gas emissions in underground workings, especially near-working faces. In a forced ventilation system, which is considered quite effective for control of radon gas in the mine environment, fresh air is pumped into underground workings with the help of fans; this follows the path of least resistance taking the contaminants along with it and out of the mine. In the forced ventilation system, the direction of seepage is toward the rock surface, causing less radon to be released.
Studies [13] have shown that a successful blend of positive and negative pressure systems in a panel cave mine effectively reduces the radon gas concentrations at the production level. Negative pressure on the cave top minimizes the escape of radon gas from the broken ore to the production levels. Positive pressurization in the undercut levels also reduces the escape of radon gas into the working areas. Mine pressurization greatly depends on the porosity and permeability of the broken rock/ore for its effectiveness in controlling radon concentrations in the underground environment. Figure 8 shows a typical cave ventilation system in a block/panel cave mine.
A typical cave ventilation system in a panel/block cave mine.
Computational fluid dynamic (CFD) simulation studies by Kayode et al. [15] showed the effect of an undercut ventilation system on radon gas distribution in the production drift and cave. It was observed that the air flowing through the cave transports some of the radon generated within the cave into the production drift, increasing the production drift concentration. However, in the absence of undercut ventilation, radon concentration decreases significantly within the production drift but increases inside the cave. The radon growth through the production drifts is nonlinear due to differences in the source of radon. Maintaining a negative pressure on top of the cave and undercut pressurization significantly reduces radon concentration in the production drift. However, maintaining a negative pressure on top of the cave is not very effective without undercut pressurization. An increase in air volume flow rate reduces radon concentration through the production drifts; based on the drift configuration for radon source, different empirical relationships relate airflow and working level for each drift.
The knowledge of airflow behavior and system characteristics is vital in ventilating the block cave operations and reducing radon concentrations. Using field observations and laboratory experiments (scale model studies), Pan [16] investigated the effects of porosity, material size combinations, additional fan, ventilation devices, and undercut structure on cave airflow resistance. The study found that the cave airflow resistance increases with a decrease in porosity and particle size, additional fan operation, regulator installation, and air gap reduction in the undercut drifts. An additional fan operation can contribute extra total airflow through the system, but regulators will not increase the total airflow in the system; the air gap observed in the undercut drifts might lead to less airflow through the production drifts.
Rahul et al. [17] investigated the effect of changes in the bulk porosity of the broken rock on the cave airflow resistance using the computational fluid dynamics (CFD) approach. This study reveals that porosity plays a vital role in changing the resistance offered by the broken rock to the airflow leaking into the cave. The airflow resistance increases as the porosity of the broken rock pile decreases. The resistance of the block cave mine changes dynamically with the bulk porosity of the broken rock.
Jha et al. [18] studied the utility of different fans in reducing the radon concentration within the drifts using a physical scale model and CFD simulations. It was observed that the combination of main and cave fan is optimal in minimizing the gas concentration within the drifts. Observations of the scaled model also show that a fully operational cave fan significantly reduced the gas concentrations within the drifts. The study suggests using main fan in conjunction with a cave fan to minimize the gas concentration within the drift.
Erogul et al. [19] investigated the impact of air gap geometries on cave resistance and radon emissions using the CFD approach. This study reported an interesting airflow behavior within the air gap zone; initially, the airflow resistance increases up to a certain height and drops as the air gap height increases further.
Radon gas can be adsorbed by activated carbon, commonly known as a charcoal bed. The capacity of a charcoal bed to adsorb radon depends on the temperature and moisture content of the incoming air. Karunakara et al. [20] demonstrated that a coconut shell-based activated charcoal system can be used for designing effective and reliable radon mitigation systems. Degassing properties of the charcoal indicate its reusability potential. Adsorption of radon by activated carbon can also significantly reduce ventilation air requirements. Figure 9 shows the experimental setup for studying radon adsorption in a charcoal bed.
Experimental setup for studying radon adsorption in charcoal bed [
Mine water is another source of radiation in underground mines. Artificial ground freezing is an excavation support method that involves the use of refrigeration to convert
Typical freeze wall insulation [
The choice of mining method and the type of mechanical ventilation significantly impact the control of radon gas emissions into the underground mine atmosphere. Table 3 provides the type(s) of effective ventilation systems to be used for various mining methods for controlling radon emissions in underground mines.
Mining methods | Mining types | Ventilation types |
---|---|---|
Cut and fill | Dry packing | Both forced and exhaust ventilation systems can be used. |
Hydraulic flushing | Both forced and exhaust ventilation systems can be used. Measures should be taken to control the release of radon from the seeping water. | |
Open stope | Shrinkage stoping | Downward forced ventilation can be used here to prohibit the release of radon. The air inlets are installed on the upper parts of the deposits. Local fans are installed where the amount of air introduced is inadequate. |
Breast stoping | Both forced, and exhaust ventilation systems can be used. However, the amount of air required at working faces increases as the number of mined-out areas increases. | |
Caving | Slicing | Forced ventilation and local fans should be used. |
Sublevel caving | Forced ventilation should be used. | |
Block/panel caving | The combination of forced and exhaust ventilation systems. |
Mining methods and ventilation types [4].
It is an indirect mitigation technique. In the environments where radon daughters’ concentration exceeds 1.0 WL, miners should wear respirators approved by the National Institute for Occupational Safety and Health (NIOSH). The use of personal respiratory protection against radon daughters must be limited to temporary situations where engineering controls have not been developed or for maintenance and investigative work. For exposures up to 10 WL, proper filter-type respirators are available where concentrations of radon daughters exceed 10 WL, air devices, or face masks containing absorbent material capable of removing both radon and its daughters [7].
Airborne radon progeny (daughters) has an electrical charge associated with it; so, it can be attached to dust and other particles, which can be inhaled into the lungs of mineworkers who work in the dusty environment, particularly near the working faces. Some of the best practices that can help control radon levels in the mine atmosphere include implementing appropriate dust control measures by using air filters, measuring the performance of blasting practices at the end of the shift, and minimization of main/auxiliary fan shutdowns. Abd et al. [23] showed that the radon diffusion coefficient and diffusion length reduce significantly with increased water saturation of the material. This phenomenon can be used to reduce the rate of radon diffusion into the mine air.
Several radon mitigation techniques, particularly bulkheads and sealant coating, are being successfully used in the underground mines in the United States. Activated charcoal bed and oxidizing agents are also viable options for treating the contaminated air locally, especially at the difficult mine working faces. The feasibility of the application of these agents in the challenging mine environment needs a greater in-depth study.
Even though sealant coatings and bulkheads effectively control radon gas concentrations in the active working areas, improvements to reduce the costs and design of application of sealants and bulkheads can be performed.
Activated charcoal beds present a viable option for radon mitigation, but a pilot study in the mine environment can be more helpful to understand their applicability and effectiveness.
The use of strong oxidizing agents to remove radon from the contaminated mine air can also be a possibility. However, high humidity and temperature conditions in the mine atmosphere might limit the applicability of a corrosive oxidizing agent inside the mine.
The authors acknowledge the financial support from the National Institute for Occupational Safety and Health (NIOSH) (200-2014-59613) for conducting this research.
",metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"
License
\\n\\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\\n\\n\\n\\nFormats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\n\n\n\nFormats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6597},{group:"region",caption:"Middle and South America",value:2,count:5902},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12537},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17560}],offset:12,limit:12,total:132762},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"5,6,13,12,21,18"},books:[{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11612",title:"Landraces",subtitle:null,isOpenForSubmission:!0,hash:"06316c41a6f6317ad2bee244dc98c6a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11612.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11649",title:"Carnivora",subtitle:null,isOpenForSubmission:!0,hash:"cfe96fa2ecf64b22057163f9896dc476",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11649.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11792",title:"Insects as Food",subtitle:null,isOpenForSubmission:!0,hash:"4f553a9813d17305dcd47eb334670001",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11792.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:46},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:14},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:107},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:87},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"1293",title:"Mobile Robot",slug:"psychology-neural-network-mobile-robot",parent:{id:"256",title:"Neural Network",slug:"physical-sciences-engineering-and-technology-robotics-neural-network"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:1,numberOfWosCitations:125,numberOfCrossrefCitations:107,numberOfDimensionsCitations:261,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1293",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5787",title:"Cutting Edge Robotics",subtitle:null,isOpenForSubmission:!1,hash:"f5caeb19605b2ebe7260f03131c26a24",slug:"cutting_edge_robotics",bookSignature:"Vedran Kordic, Aleksandar Lazinica and Munir Merdan",coverURL:"https://cdn.intechopen.com/books/images_new/5787.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"15",doi:"10.5772/10672",title:"Neural Networks in Mobile Robot Motion",slug:"neural-network-in-mobile-robot-motion",totalDownloads:3032,totalCrossrefCites:11,totalDimensionsCites:64,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Danica Janglova",authors:null},{id:"33",doi:"10.5772/4669",title:"Legged Robotic Systems",slug:"legged_robotic_systems",totalDownloads:7003,totalCrossrefCites:40,totalDimensionsCites:59,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Giuseppe Carbone and Marco Ceccarelli",authors:null},{id:"1",doi:"10.5772/4638",title:"Dynamic Modelling and Adaptive Traction Control for Mobile Robots",slug:"dynamic_modelling_and_adaptive_traction_control_for_mobile_robots",totalDownloads:4922,totalCrossrefCites:0,totalDimensionsCites:15,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Abdulgani Albagul, Wahyudi Martono and Riza Muhida",authors:null},{id:"30",doi:"10.5772/4666",title:"A Robotic System for Volcano Exploration",slug:"a_robotic_system_for_volcano_exploration",totalDownloads:5774,totalCrossrefCites:10,totalDimensionsCites:14,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Daniele Caltabiano and Giovanni Muscato",authors:null},{id:"18",doi:"10.5772/4654",title:"Autonomous Navigation of Unmanned Vehicles: A Fuzzy Logic Perspective",slug:"autonomous_navigation_of_unmanned_vehicles__a_fuzzy_logic_perspective",totalDownloads:6313,totalCrossrefCites:0,totalDimensionsCites:10,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Nikos C. Tsourveloudis, Lefteris Doitsidis and Kimon P. Valavanis",authors:null}],mostDownloadedChaptersLast30Days:[{id:"15",title:"Neural Networks in Mobile Robot Motion",slug:"neural-network-in-mobile-robot-motion",totalDownloads:3032,totalCrossrefCites:11,totalDimensionsCites:64,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Danica Janglova",authors:null},{id:"12",title:"Managing Limited Sensing Resources for Mobile Robots Obstacle Avoidance",slug:"managing_limited_sensing_resources_for_mobile_robots_obstacle_avoidance",totalDownloads:3315,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Juan Carlos Alvarez, Rafael C. Gonzalez, Diego Alvarez and Antonio M. Lopez",authors:null},{id:"2",title:"Rapid Prototyping for Robotics",slug:"rapid_prototyping_for_robotics",totalDownloads:7895,totalCrossrefCites:8,totalDimensionsCites:9,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Imme Ebert-Uphoff, Clement M. Gosselin, David W. Rosen and Thierry Laliberte",authors:null},{id:"33",title:"Legged Robotic Systems",slug:"legged_robotic_systems",totalDownloads:7008,totalCrossrefCites:40,totalDimensionsCites:59,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Giuseppe Carbone and Marco Ceccarelli",authors:null},{id:"30",title:"A Robotic System for Volcano Exploration",slug:"a_robotic_system_for_volcano_exploration",totalDownloads:5777,totalCrossrefCites:10,totalDimensionsCites:14,abstract:null,book:{id:"5787",slug:"cutting_edge_robotics",title:"Cutting Edge Robotics",fullTitle:"Cutting Edge Robotics"},signatures:"Daniele Caltabiano and Giovanni Muscato",authors:null}],onlineFirstChaptersFilter:{topicId:"1293",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"24",type:"subseries",title:"Computer Vision",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"80064",title:"Robust Template Update Strategy for Efficient Visual Object Tracking",doi:"10.5772/intechopen.101800",signatures:"Awet Haileslassie Gebrehiwot, Jesus Bescos and Alvaro Garcia-Martin",slug:"robust-template-update-strategy-for-efficient-visual-object-tracking",totalDownloads:61,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"80109",title:"Siamese-Based Attention Learning Networks for Robust Visual Object Tracking",doi:"10.5772/intechopen.101698",signatures:"Md. Maklachur Rahman and Soon Ki Jung",slug:"siamese-based-attention-learning-networks-for-robust-visual-object-tracking",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"79005",title:"Smart-Road: Road Damage Estimation Using a Mobile Device",doi:"10.5772/intechopen.100289",signatures:"Izyalith E. Álvarez-Cisneros, Blanca E. Carvajal-Gámez, David Araujo-Díaz, Miguel A. Castillo-Martínez and L. Méndez-Segundo",slug:"smart-road-road-damage-estimation-using-a-mobile-device",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"78576",title:"A Study on Traditional and CNN Based Computer Vision Sensors for Detection and Recognition of Road Signs with Realization for ADAS",doi:"10.5772/intechopen.99416",signatures:"Vinay M. Shivanna, Kuan-Chou Chen, Bo-Xun Wu and Jiun-In Guo",slug:"a-study-on-traditional-and-cnn-based-computer-vision-sensors-for-detection-and-recognition-of-road-s",totalDownloads:92,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"77617",title:"Adsorption-Semiconductor Sensor Based on Nanosized SnO2 for Early Warning of Indoor Fires",doi:"10.5772/intechopen.98989",signatures:"Nelli Maksymovych, Ludmila Oleksenko and George Fedorenko",slug:"adsorption-semiconductor-sensor-based-on-nanosized-sno2-for-early-warning-of-indoor-fires",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"ofsBook.detail",path:"/welcome/808b0ddfb3b92e0636ae44a83ef7dbd9",hash:"",query:{},params:{hash:"808b0ddfb3b92e0636ae44a83ef7dbd9"},fullPath:"/welcome/808b0ddfb3b92e0636ae44a83ef7dbd9",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()