\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"7581",leadTitle:null,fullTitle:"Neuroprotection",title:"Neuroprotection",subtitle:null,reviewType:"peer-reviewed",abstract:"Neuroprotection is a strategy to prevent or delay the progression of chronic neurodegenerative diseases, acute neurological disorders, or even mental disorders. The major aim of this book is to focus on different approaches to achieve neuroprotection. In this book, there are chapters discussing imidazoline ligands and opioid ligands in Alzheimer's disease, the beneficial effects of adenosine A2A receptor antagonist, adrenergic receptor agonists and antagonists modulating microglial responses, and different approaches to achieve neuroprotection against aging-associated macular degeneration. This book will give insights to scientists in the field to stimulate their research, medical professionals to review their clinical practices, and others who would like to learn more about different neuroprotective approaches.",isbn:"978-1-78984-737-6",printIsbn:"978-1-78984-736-9",pdfIsbn:"978-1-78985-925-6",doi:"10.5772/intechopen.77296",price:119,priceEur:129,priceUsd:155,slug:"neuroprotection",numberOfPages:102,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"0a01b892051ad12c316ddf17801b962e",bookSignature:"Raymond Chuen-Chung Chang and Yuen-Shan Ho",publishedDate:"August 28th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7581.jpg",numberOfDownloads:5581,numberOfWosCitations:2,numberOfCrossrefCitations:5,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:12,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:19,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 18th 2018",dateEndSecondStepPublish:"July 6th 2018",dateEndThirdStepPublish:"September 4th 2018",dateEndFourthStepPublish:"November 23rd 2018",dateEndFifthStepPublish:"January 22nd 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"33396",title:"Dr.",name:"Raymond Chuen-Chung",middleName:null,surname:"Chang",slug:"raymond-chuen-chung-chang",fullName:"Raymond Chuen-Chung Chang",profilePictureURL:"https://mts.intechopen.com/storage/users/33396/images/system/33396.jpeg",biography:"Dr. Chang is the Lab Chief for the Laboratory of Neurodegenerative Diseases in the School of Biomedical Sciences, member in The State Key Laboratory of Brain and Cognitive Sciences. He is also the Founder and Secretary of HKU Alzheimer’s Disease Research Network, organising International Alzheimer’s Disease Conference every year since 2000.\nDr. Chang’s research interest is pathophysiological changes of Alzheimer’s disease (AD) and the risk factors leading to AD. He has published over 120 peer-reviewed papers and 14 book chapters in these areas. His h-index is 34 by Scopus, 43 by Google Scholar. He is a member in the Scientific Advisory Board of International AD/PD Symposium, Scientific Review Committee in Alzheimer Association, Senior Editor for Journal of Neuroimmune Pharmacology, and Editor-in-Chief for ‘American Journal of Alzheimer’s Disease and Other Dementias. He is the member of editorial board of more than 20 different journals, and grant reviewer for different grant agencies/Foundations.",institutionString:"University of Hong Kong",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Hong Kong",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"254575",title:"Dr.",name:"Yuen-Shan",middleName:null,surname:"Ho",slug:"yuen-shan-ho",fullName:"Yuen-Shan Ho",profilePictureURL:"https://mts.intechopen.com/storage/users/254575/images/system/254575.png",biography:"Dr. Ho has long been working on aging-associated neurodegenerative diseases. She is a registered Chinese medicine practitioner with rich experience in both laboratory and clinical research. She has worked as Assistant Professor in Macau and now in the School of Nursing in Hong Kong Polytechnic University. Her research interest is to use Chinese herbal medicine and acupuncture to prevent neurodegeneration (neuroprotection). Her research focuses are not limited to the disease progression but risk factors leading to neurodegenerative diseases. She is expertise in animal experiments and pathological analysis of the brain. Her goal of research is to combine Western and Chinese medicine to elicit holistic effects on the body to exert neuroprotection. She is a member in the editorial board for 3 journals and constant grant reviewer for different journals and funding agencies.",institutionString:"Hong Kong Polytechnic University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1056",title:"Neurology",slug:"neurology"}],chapters:[{id:"66420",title:"Introductory Chapter: Concept of Neuroprotection - A New Perspective",doi:"10.5772/intechopen.85631",slug:"introductory-chapter-concept-of-neuroprotection-a-new-perspective",totalDownloads:1065,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:1,abstract:null,signatures:"Raymond Chuen-Chung Chang and Yuen-Shan Ho",downloadPdfUrl:"/chapter/pdf-download/66420",previewPdfUrl:"/chapter/pdf-preview/66420",authors:[{id:"33396",title:"Dr.",name:"Raymond Chuen-Chung",surname:"Chang",slug:"raymond-chuen-chung-chang",fullName:"Raymond Chuen-Chung Chang"},{id:"254575",title:"Dr.",name:"Yuen-Shan",surname:"Ho",slug:"yuen-shan-ho",fullName:"Yuen-Shan Ho"}],corrections:null},{id:"64457",title:"Current Therapeutic Approaches from Imidazoline and Opioid Receptors Modulators in Neuroprotection",doi:"10.5772/intechopen.81951",slug:"current-therapeutic-approaches-from-imidazoline-and-opioid-receptors-modulators-in-neuroprotection",totalDownloads:1006,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Due to brain plasticity, the nervous system is capable of manifesting behavioral variations, adapted to the influences from both external and internal environment. Multiple neurotransmitters are involved in the mediation of pathological processes at the molecular, cellular, regional, and interregional levels participating in cerebral plasticity, their intervention being responsible for various structural, functional, and behavioral disturbances. The current therapeutic strategies in neuroprotection aim at blocking on different levels, the molecular cascades of the pathophysiological mechanisms responsible for neuronal dysfunctions and ultimately for neuronal death. Different agents influencing these neurotransmitters have demonstrated beneficial effects in neurogenesis and neuroprotection, proved in experimental animal models of focal and global ischemic injuries. Serotonin, dopamine, glutamate, N-methyl-D-aspartate, and nitric oxide have been shown to play a significant role in modulating nervous system injuries. The imidazoline system is one of the important systems involved in human brain functioning. Experimental investigations have revealed the cytoprotective effects of imidazoline I2 receptor ligands against neuronal injury induced by hypoxia in experimental animals. The neuroprotective effects were also highlighted for kappa and delta receptors, whose agonists demonstrated the ability to reduce architectural lesions and to recover neuronal functions of animals with experimentally induced brain ischemia.",signatures:"Liliana Mititelu-Tartau, Maria Bogdan, Victor Gheorman, Liliana Foia, Ancuta Goriuc, Gabriela Rusu, Beatrice Buca, Liliana Pavel, Ana Cristofor, Cosmin-Gabriel Tartau and Gratiela Eliza Popa",downloadPdfUrl:"/chapter/pdf-download/64457",previewPdfUrl:"/chapter/pdf-preview/64457",authors:[{id:"67378",title:"Prof.",name:"Liliana",surname:"Georgeta Foia",slug:"liliana-georgeta-foia",fullName:"Liliana Georgeta Foia"},{id:"210127",title:"Associate Prof.",name:"Maria",surname:"Bogdan",slug:"maria-bogdan",fullName:"Maria Bogdan"},{id:"210194",title:"Prof.",name:"Gratiela Eliza",surname:"Popa",slug:"gratiela-eliza-popa",fullName:"Gratiela Eliza Popa"},{id:"210198",title:"Prof.",name:"Liliana",surname:"Mititelu-Tartau",slug:"liliana-mititelu-tartau",fullName:"Liliana Mititelu-Tartau"},{id:"221429",title:"Dr.",name:"Gabriela",surname:"Rusu",slug:"gabriela-rusu",fullName:"Gabriela Rusu"},{id:"221432",title:"Dr.",name:"Ina",surname:"Cristofor",slug:"ina-cristofor",fullName:"Ina Cristofor"},{id:"221433",title:"Dr.",name:"Liliana",surname:"Pavel",slug:"liliana-pavel",fullName:"Liliana Pavel"},{id:"258573",title:"Dr.",name:"Victor",surname:"Gheorman",slug:"victor-gheorman",fullName:"Victor Gheorman"},{id:"258575",title:"Dr.",name:"Beatrice",surname:"Buca",slug:"beatrice-buca",fullName:"Beatrice Buca"},{id:"266875",title:"Dr.",name:"Ancuta",surname:"Goriuc",slug:"ancuta-goriuc",fullName:"Ancuta Goriuc"},{id:"270957",title:"Dr.",name:"Cosmin-Gabriel",surname:"Tartau",slug:"cosmin-gabriel-tartau",fullName:"Cosmin-Gabriel Tartau"}],corrections:null},{id:"66019",title:"The Role and Development of the Antagonist of Adenosine A2A in Parkinson’s Disease",doi:"10.5772/intechopen.84272",slug:"the-role-and-development-of-the-antagonist-of-adenosine-a-sub-2a-sub-in-parkinson-s-disease",totalDownloads:1026,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Adenosine is a neuromodulator that regulates the body’s response to dopamine and another neurotransmitter in the brain that is responsible for motoric, emotion, learning, and memory function. Adenosine is a G-protein-coupled receptor and has four subtypes, which are A1, A2A, A2B, and A3. Adenosine A2A is located in the striatum of the brain. Antagonist interferes with GABA releasing, modulates acetylcholine and releases dopamine, and also facilitates dopamine receptor’s signaling. Therefore, it can reduce motoric symptoms in Parkinson’s disease. Adenosine A2A antagonist is also believed to have neuroprotective effects. Several compounds have been reported and have undergone clinical test as selective adenosine A2A antagonists, including istradefylline, preladenant, tozadenant, vipadenant, ST-1535, and SYN-115. Nonselective adenosine A2A antagonists from natural compounds are caffeine and theophylline.",signatures:"Widya Dwi Aryati, Nabilah Nurtika Salamah, Rezi Riadhi Syahdi and Arry Yanuar",downloadPdfUrl:"/chapter/pdf-download/66019",previewPdfUrl:"/chapter/pdf-preview/66019",authors:[{id:"265638",title:"Dr.",name:"Arry",surname:"Yanuar",slug:"arry-yanuar",fullName:"Arry Yanuar"},{id:"272522",title:"MSc.",name:"Widya Dwi",surname:"Aryati",slug:"widya-dwi-aryati",fullName:"Widya Dwi Aryati"},{id:"272524",title:"MSc.",name:"Rezi Riadhi",surname:"Syahdi",slug:"rezi-riadhi-syahdi",fullName:"Rezi Riadhi Syahdi"},{id:"287155",title:"Ms.",name:"Nabilah",surname:"Nurtika",slug:"nabilah-nurtika",fullName:"Nabilah Nurtika"}],corrections:null},{id:"64530",title:"Adrenergic Receptors as Pharmacological Targets for Neuroinflammation and Neurodegeneration in Parkinson’s Disease",doi:"10.5772/intechopen.81343",slug:"adrenergic-receptors-as-pharmacological-targets-for-neuroinflammation-and-neurodegeneration-in-parki",totalDownloads:1485,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Inflammation is a key component of the dopaminergic neurodegeneration seen in progressive Parkinson’s disease (PD). The presence of activated glial cells, the participation of innate immune system, increased inflammatory molecules such as cytokines and chemokines, and increased oxidative stress and reactive oxygen species are the main neuroinflammatory characteristics present in progressive PD. Therapeutic targets which suppress pro-inflammatory responses by glial cells (mainly microglia) have been shown to be effective treatments for slowing or eliminating the progressive degeneration of neurons within the substantia nigra. In this chapter, we will detail a specific anti-inflammatory therapy using agonists to β2-adrenergic receptors that have been shown to be effective treatments for models of dopaminergic neurodegeneration and that have had efficacy in patients with progressive PD. We will also detail the possible molecular mechanisms of action of this therapeutic in stopping or reversing inflammation within the CNS.",signatures:"Monika Sharma and Patrick M. Flood",downloadPdfUrl:"/chapter/pdf-download/64530",previewPdfUrl:"/chapter/pdf-preview/64530",authors:[{id:"181605",title:"Prof.",name:"Patrick",surname:"Flood",slug:"patrick-flood",fullName:"Patrick Flood"},{id:"183202",title:"MSc.",name:"Monika",surname:"Sharma",slug:"monika-sharma",fullName:"Monika Sharma"}],corrections:null},{id:"64777",title:"Protecting the Aging Retina",doi:"10.5772/intechopen.82330",slug:"protecting-the-aging-retina",totalDownloads:999,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Aging retina, notably the aging macula, is prone to develop degenerative diseases, such as age-related macular degeneration (AMD), the leading cause of visual loss in individuals aged 65 or above in developed countries. However, current treatments are very limited. Since degeneration, dysfunction, and death of retinal neurons are demonstrated in the pathogenesis of AMD, neuroprotective strategies could serve as a possible way to treat AMD. In this chapter, we will briefly introduce risk factors, pathophysiology, affected neurons, classification, clinical manifestation, and current treatments of AMD. Finally, neuroprotection in both AMD animal models and patients will be discussed.",signatures:"Shen Nian and Amy C.Y. Lo",downloadPdfUrl:"/chapter/pdf-download/64777",previewPdfUrl:"/chapter/pdf-preview/64777",authors:[{id:"201136",title:"Dr.",name:"Amy",surname:"Lo",slug:"amy-lo",fullName:"Amy Lo"},{id:"278470",title:"Dr.",name:"Shen",surname:"Nian",slug:"shen-nian",fullName:"Shen Nian"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"745",title:"Neurodegenerative Diseases",subtitle:"Processes, Prevention, Protection and Monitoring",isOpenForSubmission:!1,hash:"3d5795dad33257368f0b7848c22d5dd4",slug:"neurodegenerative-diseases-processes-prevention-protection-and-monitoring",bookSignature:"Raymond Chuen-Chung Chang",coverURL:"https://cdn.intechopen.com/books/images_new/745.jpg",editedByType:"Edited by",editors:[{id:"33396",title:"Dr.",name:"Raymond Chuen-Chung",surname:"Chang",slug:"raymond-chuen-chung-chang",fullName:"Raymond Chuen-Chung Chang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2041",title:"Advanced Understanding of Neurodegenerative Diseases",subtitle:null,isOpenForSubmission:!1,hash:"b56de330191b07690544d005fe678de7",slug:"advanced-understanding-of-neurodegenerative-diseases",bookSignature:"Raymond Chuen-Chung Chang",coverURL:"https://cdn.intechopen.com/books/images_new/2041.jpg",editedByType:"Edited by",editors:[{id:"33396",title:"Dr.",name:"Raymond Chuen-Chung",surname:"Chang",slug:"raymond-chuen-chung-chang",fullName:"Raymond Chuen-Chung Chang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1191",title:"Neuromuscular Disorders",subtitle:null,isOpenForSubmission:!1,hash:"6f634511340dcd5fe321e13e83a62531",slug:"neuromuscular-disorders",bookSignature:"Ashraf Zaher",coverURL:"https://cdn.intechopen.com/books/images_new/1191.jpg",editedByType:"Edited by",editors:[{id:"66392",title:"Prof.",name:"Ashraf",surname:"Zaher",slug:"ashraf-zaher",fullName:"Ashraf Zaher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3278",title:"Neurodegenerative Diseases",subtitle:null,isOpenForSubmission:!1,hash:"aa717c2801cf98db641d48414cef8ced",slug:"neurodegenerative-diseases",bookSignature:"Uday Kishore",coverURL:"https://cdn.intechopen.com/books/images_new/3278.jpg",editedByType:"Edited by",editors:[{id:"155691",title:"Dr.",name:"Uday",surname:"Kishore",slug:"uday-kishore",fullName:"Uday Kishore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"434",title:"Alzheimer's Disease Pathogenesis",subtitle:"Core Concepts, Shifting Paradigms and Therapeutic Targets",isOpenForSubmission:!1,hash:"49f4c7dbf69e8a9eaf780e37f4aae1ab",slug:"alzheimer-s-disease-pathogenesis-core-concepts-shifting-paradigms-and-therapeutic-targets",bookSignature:"Suzanne De La Monte",coverURL:"https://cdn.intechopen.com/books/images_new/434.jpg",editedByType:"Edited by",editors:[{id:"29111",title:"Dr.",name:"Suzanne",surname:"De La Monte",slug:"suzanne-de-la-monte",fullName:"Suzanne De La Monte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3296",title:"Understanding Alzheimer's Disease",subtitle:null,isOpenForSubmission:!1,hash:"b040d696d429a2a6dc90cd236f160778",slug:"understanding-alzheimer-s-disease",bookSignature:"Inga Zerr",coverURL:"https://cdn.intechopen.com/books/images_new/3296.jpg",editedByType:"Edited by",editors:[{id:"26013",title:"Prof.",name:"Inga",surname:"Zerr",slug:"inga-zerr",fullName:"Inga Zerr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3437",title:"Mood Disorders",subtitle:null,isOpenForSubmission:!1,hash:"62c54b70da87ce48e712c07601105311",slug:"mood-disorders",bookSignature:"Nese Kocabasoglu",coverURL:"https://cdn.intechopen.com/books/images_new/3437.jpg",editedByType:"Edited by",editors:[{id:"91417",title:"Prof.",name:"Nese",surname:"Kocabasoglu",slug:"nese-kocabasoglu",fullName:"Nese Kocabasoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1062",title:"Dystonia",subtitle:"The Many Facets",isOpenForSubmission:!1,hash:"81069e5ab5b7c4bb52cf7bd16d0c4cb2",slug:"dystonia-the-many-facets",bookSignature:"Raymond L. Rosales",coverURL:"https://cdn.intechopen.com/books/images_new/1062.jpg",editedByType:"Edited by",editors:[{id:"70147",title:"Prof.",name:"Raymond",surname:"Rosales",slug:"raymond-rosales",fullName:"Raymond Rosales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1360",title:"Mechanisms in Parkinson's Disease",subtitle:"Models and Treatments",isOpenForSubmission:!1,hash:"823c4dc5acbf952ba3723cae01f7f67a",slug:"mechanisms-in-parkinson-s-disease-models-and-treatments",bookSignature:"Juliana Dushanova",coverURL:"https://cdn.intechopen.com/books/images_new/1360.jpg",editedByType:"Edited by",editors:[{id:"36845",title:"Dr.",name:"Juliana",surname:"Dushanova",slug:"juliana-dushanova",fullName:"Juliana Dushanova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1359",title:"Underlying Mechanisms of Epilepsy",subtitle:null,isOpenForSubmission:!1,hash:"85f9b8dac56ce4be16a9177c366e6fa1",slug:"underlying-mechanisms-of-epilepsy",bookSignature:"Fatima Shad Kaneez",coverURL:"https://cdn.intechopen.com/books/images_new/1359.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72877",slug:"erratum-synthesis-techniques-and-applications-of-perovskite-materials",title:"Erratum - Synthesis Techniques and Applications of Perovskite Materials",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72877.pdf",downloadPdfUrl:"/chapter/pdf-download/72877",previewPdfUrl:"/chapter/pdf-preview/72877",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72877",risUrl:"/chapter/ris/72877",chapter:{id:"70923",slug:"synthesis-techniques-and-applications-of-perovskite-materials",signatures:"Dinesh Kumar, Ram Sagar Yadav, Monika, Akhilesh Kumar Singh and Shyam Bahadur Rai",dateSubmitted:"March 12th 2019",dateReviewed:"May 13th 2019",datePrePublished:null,datePublished:"June 10th 2020",book:{id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,fullTitle:"Perovskite Materials, Devices and Integration",slug:"perovskite-materials-devices-and-integration",publishedDate:"June 10th 2020",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"298428",title:"Dr.",name:"Ram Sagar",middleName:null,surname:"Yadav",fullName:"Ram Sagar Yadav",slug:"ram-sagar-yadav",email:"ramsagaryadav@gmail.com",position:null,institution:null},{id:"302651",title:"Dr.",name:"Dinesh",middleName:null,surname:"Kumar",fullName:"Dinesh Kumar",slug:"dinesh-kumar",email:"dineshiitbhu@gmail.com",position:null,institution:null},{id:"302652",title:"Ms.",name:"Monika",middleName:null,surname:"Kanwal",fullName:"Monika Kanwal",slug:"monika-kanwal",email:"monikavbspu@gmail.com",position:null,institution:null},{id:"302653",title:"Dr.",name:"Akhilesh Kumar",middleName:null,surname:"Singh",fullName:"Akhilesh Kumar Singh",slug:"akhilesh-kumar-singh",email:"aksingh.mst@iitbhu.ac.in",position:null,institution:null},{id:"302654",title:"Prof.",name:"Shyam Bahadur",middleName:null,surname:"Rai",fullName:"Shyam Bahadur Rai",slug:"shyam-bahadur-rai",email:"sbrai49@yahoo.co.in",position:null,institution:null}]}},chapter:{id:"70923",slug:"synthesis-techniques-and-applications-of-perovskite-materials",signatures:"Dinesh Kumar, Ram Sagar Yadav, Monika, Akhilesh Kumar Singh and Shyam Bahadur Rai",dateSubmitted:"March 12th 2019",dateReviewed:"May 13th 2019",datePrePublished:null,datePublished:"June 10th 2020",book:{id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,fullTitle:"Perovskite Materials, Devices and Integration",slug:"perovskite-materials-devices-and-integration",publishedDate:"June 10th 2020",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"298428",title:"Dr.",name:"Ram Sagar",middleName:null,surname:"Yadav",fullName:"Ram Sagar Yadav",slug:"ram-sagar-yadav",email:"ramsagaryadav@gmail.com",position:null,institution:null},{id:"302651",title:"Dr.",name:"Dinesh",middleName:null,surname:"Kumar",fullName:"Dinesh Kumar",slug:"dinesh-kumar",email:"dineshiitbhu@gmail.com",position:null,institution:null},{id:"302652",title:"Ms.",name:"Monika",middleName:null,surname:"Kanwal",fullName:"Monika Kanwal",slug:"monika-kanwal",email:"monikavbspu@gmail.com",position:null,institution:null},{id:"302653",title:"Dr.",name:"Akhilesh Kumar",middleName:null,surname:"Singh",fullName:"Akhilesh Kumar Singh",slug:"akhilesh-kumar-singh",email:"aksingh.mst@iitbhu.ac.in",position:null,institution:null},{id:"302654",title:"Prof.",name:"Shyam Bahadur",middleName:null,surname:"Rai",fullName:"Shyam Bahadur Rai",slug:"shyam-bahadur-rai",email:"sbrai49@yahoo.co.in",position:null,institution:null}]},book:{id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,fullTitle:"Perovskite Materials, Devices and Integration",slug:"perovskite-materials-devices-and-integration",publishedDate:"June 10th 2020",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10845",leadTitle:null,title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tMarine Ecosystems are very productive and include the open ocean, the deep-sea ocean, and coastal marine ecosystems, each of which has different physical and biological characteristics. The biodiversity of some of these ecosystems is very rich and abundant offering unique opportunities for high-yield production of proteinaceous material, being a source of high-quality foods. Biodiversity is fundamental to sustaining marine ecosystem services, such as food, maintenance of water quality, and recovery from perturbations, being threatened worldwide. The main threats to marine biodiversity are habitat loss, eutrophication, overexploitation, pollution by hazardous substances, the introduction of non-native species, and other human activities. Efforts to reduce these pressures are essential for coastal water quality, recovery of ecosystem services, global food security, and ecosystem stability. Bioindicators to assess the presence of stressors are important tools to be used as early warning signals to early detect their presence, monitor and management of these ecosystems, and thus promote ecosystem health.
\r\n\r\n\t
\r\n\tThe protection of biodiversity is a major target of the European Union Marine Strategy Framework Directive, requiring an assessment of the status of biodiversity on the level of species, habitats, and ecosystems including genetic diversity and the role of biodiversity in food web structure and functioning. The restoration of marine ecosystems can support the productivity and reliability of goods and services that the ocean provides to humankind, to maintain ecosystem integrity and stability. Some of the goods produced by the marine ecosystem services are fish harvests, wild plant and animal resources, water, some of the services provided recreation, tourism, breeding and nursery habitats, water transport, carbon sequestration, erosion control, and habitat provision.
Advances in the study of human spinal cord neurophysiology have been strongly based on the analysis of the electrical activity of muscles (electromyogram - EMG). The EMG measured over the skin reflects the general behavior of motor units (MUs) and hence of spinal motoneurons (MNs). It can be used, for instance, to infer changes in the behavior of neuronal circuits within the spinal cord during the performance of a motor task or in response to peripheral and/or descending inputs.
In the beginning of the 20th century, Paul Hoffmann introduced a non-invasive technique – the H-reflex – that helped to pave the way for subsequent investigations into the mechanisms of stretch reflex regulation [1]. The neuronal organization of the spinal cord is now better understood thanks to studies of reflex modulation in response to different conditionings and motor contexts, e.g., electrical or mechanical stimulation of sensory afferent pathways, magnetic or electric activation of descending tracts (DTs), passive movement of limbs and joints, voluntary isometric contractions and performance of motor tasks.
Reflexes play a fundamental functional role in motor control, as they are involved in the coordination of voluntary movements and maintenance of postural stability. This justifies the high contingent of fibers from peripheral (cutaneous, muscle and joint afferents), segmental (propriospinal interneurons), and supra-segmental (descending tracts) origins that synapse on different spinal cord elements (synaptic terminals, interneurons and MNs). This also highlights the important integrative function of the spinal cord, contrasting with the naive notion that it is only a relay station, or a pathway that simply transfers information from the brain to the muscle fibers.
Despite the relative limitations of non-invasive techniques employed in humans, it is currently possible to establish a parallel between the findings from animal preparations (such as cat) and experiments in humans (e.g., [2, 3]). In addition to the use of animal models as aids for understanding human data, another source of information comes from new multi-scale computer simulators of neuronal circuitry and muscle control [4, 5]. Moreover, with the development of these simulators, supported by anatomical and biophysical data from animal experiments, it is also possible to reinforce hypotheses formulated to explain experimental results obtained from humans (e.g., [5]).
The aim of the present chapter is to provide some conceptual and methodological background for researchers and clinicians who intend to use EMG to study human spinal cord neurophysiology. Here we will discuss different methods frequently used in the study of human neurophysiology based on surface EMG. These will be illustrated by results from both experimental studies and simulations performed in a multi-scale model of the spinal cord and leg muscles. Additionally, a brief account will be given of some processing techniques of surface EMG that are used to quantify spinal cord excitability and effects of inhibitory pathways. The methods explored in the chapter have been used in both healthy subjects and patients with a variety of neuromuscular disorders.
This brief review presents a few basic concepts related to electrical muscle activity recorded with electrodes over the skin. Methodological aspects that might influence the interpretation of experimental results are discussed. Further details concerning these basic aspects can be found elsewhere [6, 7].
In the preceding section we have referred to EMG as the electrical muscle activity recorded with surface electrodes. This electrical activity is the result of the depolarization of a number of muscle fibers. A group of muscle fibers innervated by the same spinal cord MN is called a muscle unit while the MN and the muscle unit it innervates is the motor unit (MU). During voluntary muscle activation, the number of recruited muscle fibers contributing to the EMG depends on the net excitatory drive from the brain and peripheral sensory afferents arriving onto the spinal MNs. During a mild voluntary contraction only a small fraction of MUs is recruited. As the excitatory command is increased, two distinct mechanisms take place: the MUs previously recruited increase their firing rate (rate coding) and new MUs with higher firing threshold are recruited (population coding). These basics may be found in many references, such as [8].
The activity of a single MU is easily recorded with needle electrodes inserted into the muscle (the most common is the concentric needle electrode). However, during low-intensity contraction, surface electrodes can also record activity of superficial MUs [9] as can be seen in the upper trace in Figure 1. For increased levels of voluntary contraction additional MUs are recruited (see middle trace in Figure 1). For high-intensity contraction the EMG recording tends to show a filled random pattern due to the superposition of a greater number of MU action potentials (MUAPs) known as interference pattern (bottom trace in Figure 1). Thus, the interference pattern of the EMG is associated with the asynchronous firing of different MUs. When the conditioning of an interference pattern EMG is used to infer spinal cord processes, the experimental control of the level of activity is crucial. When the strength of descending commands changes, different populations of MNs and interneurons (INs) are recruited, leading to different conditioned EMG responses.
Surface EMG recordings from soleus (SO) muscle during a weak contraction (unpublished data). Upper panel: EMG recording during a very weak contraction in which only one MU is recruited. Middle panel: when the subject was told to slightly increase the voluntary contraction, the MU previously recruited increased its firing rate (see the green arrows) and other MUs with different firing rates were recruited (red and blue arrows). The letter “S” indicates a sum of at least two distinct MUAPs. Lower panel: Interference pattern of EMG.
Some technical aspects need to be considered for an accurate recording of the EMG signal. Here we are going to briefly discuss filtering, sampling rate and electrode positioning.
The spectral composition of a signal has implications on the choice of the band-pass filter cutoff frequencies used before the analog-to-digital conversion as well as for the selection of a suitable sampling frequency (SF). Figure 2 shows the power spectrum of an EMG recorded with surface (upper panel) and needle (lower panel) electrodes during a sustained contraction. It is interesting to note the dramatic difference in the spectra of both recordings (note the different calibrations of the abscissa). For the surface EMG, band-pass filter cutoff frequencies from 10Hz to 500Hz would be appropriate and a SF of at least 1kHz would be used; however, in the second example, the 500Hz cutoff frequency (see the red area in the lower panel of Figure 2) would be clearly inappropriate due to the significant contributions of high-frequency spectral components of the signal. Therefore, when using needle EMG, the high-frequency cutoff should be higher, e.g., 5kHz-10kHz and sampling done at 20kHz-40kHz.
Power spectra of EMG signals from the SO muscle recorded with surface (upper panel) and needle (lower panel) electrodes (unpublished data). They show the frequency content (in Hz) of each signal. The green marks in the abscissa (small vertical lines) comprise the frequencies of the band-pass filter used for surface EMG. The corresponding frequency ranges are indicated in red (upper panel) and in blue (lower panel) for surface and needle recordings, respectively. It is clear in the lower panel that if we used the same frequency range of surface EMG for needle EMG a considerable amount of information would be lost (see the red area delimited by the green marks).
The choice of a suitable frequency range for the band-pass filter to be applied to the surface EMG signal needs to be done with caution according to the objectives of the study. A wrong choice of filter parameters may cause information loss and misleading interpretations of the results. For instance, if the focus is to investigate slow variations of the surface EMG signal during stepping or gait (e.g., EMG envelope), a frequency band of 10-300Hz could be adequate [10]. However, using the same recording technique to evaluate reflex components (e.g., H-reflex), the high cutoff frequency should be raised to 1kHz (with a SF of at least 2kHz) for better reproduction of the phasic EMG signal generated [10].
Generally, in surface EMG, the electrodes are located on the skin above the belly of the muscle of interest, in a region between the tendon and the innervation zone [11]. The electric currents generated by depolarization of the muscle fibers travel through the connective tissues, fat, vessels, skin (all of which comprises the volume conductor), reaching the region underneath the electrodes. The volume conductor has the property of a low-pass filter [12] and the signals reach the electrodes placed over the skin with a slower time course and decreased amplitude. On the other hand, a needle electrode is much closer to the source of the electrical activity than a surface electrode and hence it does not suffer the low-pass filtering and amplitude attenuation caused by volume conduction [6, 12]. This explains why the needle EMG signals have better signal-to-noise ratios and why their power spectra have components at higher frequencies (see the lower panel in Figure 2).
The main advantage of invasive techniques such as needle or wire EMG is its high selectivity (one or very few MUs can be recorded with a high signal-to-noise ratio). Conversely, this may be a disadvantage when the purpose is to evaluate a larger number of MUs to obtain a more comprehensive view of muscle activation. In this case, surface EMG is more indicated. The main shortcomings of surface EMG are that (1) not all muscles are superficial and (2) the possibility of interference from nearby muscles’ electrical activities on the EMG signal recorded from the desired muscle. These recorded interferences are attenuated or perhaps distorted versions of the electrical activities from the nearby muscles and are known as crosstalk [13, 14]. The crosstalk effect can sometimes be minimized by a careful placement of the electrodes.
The distance between electrodes is a key factor to increase or decrease the relative selectivity of the EMG recording. Figure 3 shows an example in which the EMG activity is recorded with an array of three electrodes. When the potential difference is calculated between the more distant pair of electrodes (E1 – E3) the recording is less selective than when the electrodes are closer to each other (E1 – E2).
Surface EMG showing the effect of the distance between electrodes (unpublished data). Upper panel: EMG recorded with a distance of 2.5cm between electrodes (E1-E3). The lower panel shows the same recording with inter-electrode distance of 1cm (E1-E2).
The EMG interference pattern is useful to help understanding the conditioning effects coming from a variety of sources. These conditionings fundamentally act on the modulation of muscle activity and are context-dependent [15]. Therefore, it is possible to study the effects of a variety of inhibitory and excitatory pathways on MNs by means of EMG signal conditioning, and hence extract information on spinal cord neurophysiology.
The voluntary activity of the SO muscle (sustained low-level isometric contraction) can be modulated by the activation of the primary (Ia) afferents from the antagonist muscle spindles [15, 16]. The diagram depicted in Figure 4 shows surface transcutaneous electrical stimulation (1ms rectangular pulse) applied to the common peroneal nerve (CPN) that supplies the tibialis anterior (TA) muscle. The conditioning stimulus substantially reduces the SO muscle activity via reciprocal inhibition (RI) [16]. A typical example of the resulting EMG signals is shown in Figure 5.
Schematic showing the pathway of reciprocal inhibition (RI). The black arrow indicates the descending drive from the motor cortex to the SO muscle that generates the interference pattern shown in the oscilloscope (small rectangle in orange color). The EMG activity can be conditioned by an electrical stimulus applied to the nerve that supplies the antagonist muscle (TA). The action potentials in the Ia afferents (red arrow) activate the inhibitory Ia IN (IaIN) that generates an inhibitory post-synaptic potential (IPSP) in the membrane of the MN. Hence, after the conditioning electrical stimulus, some MNs will stop firing and the EMG interference pattern will show a transitory decrease in the amplitude (see also
Looking at one or a few sweeps of conditioned-EMG signals (left panel of Figure 5), it is not possible to determine if the inhibition is present. Note that the low voluntary muscle activity produced a very sparse MU firing in the recordings (upper traces) shown on the left panel of Figure 5. When the sweeps (a total of 50) are superimposed (lowermost signal at the left panel of Figure 5), the inhibition becomes clear (see the red horizontal bar below). Thus, several tenths (or even hundreds) of stimuli are necessary to allow the detection/quantification of the effect of RI on the SO MNs [1]. However, to quantify the amount of inhibition, additional signal processing of the EMG signal is needed: (1) subtraction of the DC level, (2) computation of the absolute value of each EMG sample, also called EMG rectification, (3) computation of the ensemble average of the several rectified conditioned-EMG signals (or sweeps). The number of sweeps to be averaged depends on the strength of the conditioning effect and the level of voluntary muscle contraction [16]. These procedures will be illustrated based on the superimposed sweeps shown at the right uppermost panel of Figure 5. The results of step (2) above are shown in the middle panel at the right of Figure 5. The bottommost trace of the right panel of Figure 5 is the ensemble average of the traces displayed just above it (step 3).
Left panel: EMG recordings of the SO showing the muscle activity before and after the delivery of an electrical stimulus to the CPN nerve (unpublished data). The traces show sparse MU firings. The rectangle in blue encompasses the stimulus artifact followed by a crosstalked activity from the antagonist (TA) muscle. An interesting observation is that the inhibition is not quite clear by the examination of a single recording. The bottom trace shows all the 50 recordings superimposed. A clear reduction in muscle activity ~40ms after the electrical stimulation is indicated by a red bar. Right panel: same traces superimposed (upper trace). All the EMG recordings were rectified (superimposed traces in the middle) and averaged (bottom trace). The red bar indicates the reduction in muscle activity due to RI induced by the procedure depicted in the schematic of
The inhibitory period indicated by the red bar under the averaged trace of Figure 5 can then be quantified either by the peak (lowest point of the recording), the mean or the RMS [7] and normalized with respect to a similar computation of the pre-stimulus period (green bar). In an alternative approach, RMS values in each sweep at the right-top corresponding to the time windows defined by the green (control) and red (inhibited) bars are computed and averaged. This yields a mean RMS value in the control period and a mean RMS value in the time interval associated with the effect of the RI. To allow comparisons between subjects one may adopt the ratio of the latter to the former as an index of the level of RI.
Besides changing the excitability of MNs, pathways converging to the spinal cord may also affect the excitability of several spinal cord elements by acting on presynaptic terminals (e.g., the Ia-MN synapse). Presynaptic effects will be discussed later.
So far, we have discussed the case of asynchronous voluntary activity of MUs that generates the EMG interference pattern. Another way to assess spinal cord processes is by means of reflex-generated compound muscle action potentials (CMAP).
A variety of reflexes (stretch reflex, cutaneous reflex, H-reflex, etc) has been studied at rest, during locomotion and during the performance of a number of motor tasks in an attempt to better understand how the central nervous system (CNS) integrates the descending signals with those coming from the periphery [1]. Ascending signals from the periphery are incorporated into motor plans in order to continuously update the CNS and generate suitable commands to muscles that will work in concert to produce a functionally relevant motor output. At the spinal cord level, the afferent influx coming from muscles, joints and skin help to sculpt motor behavior by playing a significant role in the modulation of the excitability of different reflex pathways [1].
The stretch reflex pathway is one of special interest and will be the focus of this topic. The excitability of this pathway (or parts of it) can be assessed by means of either electrical stimulation of peripheral nerve (H-reflex, F-wave and V-wave) or mechanical stimulation of the tendon (T-reflex). In what follows we will discuss the methodology of these techniques as well as their modulation in response to a variety of conditionings.
The H-reflex was first described in 1918 by Paul Hoffmann [17] and is the electrical homologous of the stretch reflex. It is elicited by a transcutaneous electrical stimulation (rectangular pulse with 1ms duration) applied to a mixed nerve that synchronously activates afferent fibers from muscle spindles (see the arrow showing the orthodromic sensory activation in Figure 6). The evoked afferent volley generates excitatory post-synaptic potentials (EPSPs) in α-MNs (hereafter referred to as MNs) that may fire action potentials if they surpass the firing threshold. These EPSPs seem to be generated mainly by the monosynaptic Ia-MN excitatory pathway but they are also influenced by oligosynaptic pathways [18]. The action potentials originating from the MNs lead to the generation of a CMAP recorded with surface EMG electrodes at the homonymous muscle. The evoked CMAP is termed H-reflex and is different from the interference pattern of EMG described in the preceding text (see sections 2 and 3), which is characterized by the asynchronous firing of MUs. The technique of H-reflex has been widely used to assess the excitability of the stretch reflex pathway and infer spinal cord mechanisms contributing towards motor control [1, 19]. In the lower limbs, the SO muscle has often been used because its electrically-elicited reflex response is relatively easy to obtain.The muscle afferents of group I (Ia and Ib) and II are also depicted in the schematic of Figure 6. However, for low intensity stimulation, group I muscle afferents (mainly Ia) are primarily activated [20].
The presence of a stable M-wave (direct motor response, see below) is desired in most studies to assure (by indirect means) a constant stimulation (see the arrow showing the orthodromic motor activation in Figure 6). Thus, any changes in H-reflex amplitude would be related to neurophysiological factors and not to alterations in stimulus efficacy, which would change the M-wave as well [21].
Schematic of the stretch reflex pathway and the mixed nerve stimulation that generates orthodromic and antidromic nerve activity (only the monosynaptic pathway from the Ia is shown). EMG trace showing an H-reflex and M-wave elicited by a transcutaneous electrical stimulus (1ms duration) applied through electrodes located over the skin at the popliteal fossa. The stimulus activates Ia afferent and motor axons from the mixed nerve (PTN) that supplies the SO muscle. The resulting H-reflex and M-wave are recorded with surface electrodes (see the schematic on the left).
With the increase of the stimulus intensity, a larger number of Ia afferents are activated leading to reflex recruitment of more MNs. The MNs in the spinal cord are synaptically recruited according to the size principle [22], i.e., the small size MUs (with low threshold for synaptic input) are recruited first. Therefore, H-reflexes of low amplitude reflect the activation of small MUs (see Figure 7). Higher amplitudes of H-reflex correspond to the activation of intermediated sized MUs along with the small ones. The increment in H-reflex amplitude reaches a limit that is not only related to the number of MNs within the pool, but also to the phenomenon of “annihilation”, i.e., action potentials in the efferent axon generated reflexively collide with the antidromic volley due to the firing of the distal part of the efferent axon by the electrical stimulus (Figure 8). Therefore, those motor axons that were activated by the transcutaneous electrical stimulation generate antidromic spikes (shown in Figure 6 as the “antidromic motor activation”) that prevent the action potentials of reflex origin from reaching the muscle (see Figure 8). As the axonal conduction velocity of efferents is lower than the afferents, there is enough time for the collision to take place in the efferent axons. The action potentials generated in the efferent axons also propagate toward the muscle (orthodromic motor activation in Figure 6 and red arrows in Figure 8) and will generate a shorter latency response (M-wave). The stimulus intensity that generates the lowest amplitude M-wave is termed motor threshold (MT). The direct motor response (M-wave) increases monotonically with stimulus intensity until its maximum (MMAX), as there is no annihilation in the distal part of the motor axons (distal to the stimulation point; see Figure 8). A supramaximal stimulus intensity will discharge 100% of the efferent axons, yielding the MMAX and blocking the generation of any H-reflex response due to the antidromic motor volley (see Figure 7).
Schematics illustrating the recruitment of sensory and motor fibers by transcutaneous electrical stimulus. The stimulus intensity increases from
In this scenario, the H-reflex will never reflect the activation of all the MNs within the pool, even if the stimulus intensity is increased. Instead, this reflex response reaches a maximum (HMAX) as a result of a balance between mechanisms that tend to change the reflex amplitude when the stimulus is increased. The main mechanism that increases H-reflex amplitude (assuming the subject is in a relaxed and controlled state) is the larger number of Ia axons activated by the higher intensity stimulus. The main mechanism that decreases the H-reflex amplitude in response to a stimulus intensity increase is the above mentioned collision of action potentials in the efferent axons. Other mechanisms that may also contribute to decrease the H-reflex amplitude for a higher stimulus amplitude include (1) the activation of Ib afferents (see schematic in Figure 6) [20], (2) the activation of large-diameter cutaneous afferents, (3) the firing of Renshaw cells in response to the synchronous antidromic (or orthodromic) firing of MNs in the pool [19, 23]. These longer latency mechanisms have their putative effect on H-reflex amplitude because the later phases of the H-reflex waveform (after its rise) have been associated with the longer latency oligosynaptic pathways that excite the MNs [18]. For stimulus intensities above that corresponding to HMAX (from the beginning of the descending phase of the recruitment curve, Figure 7b and c), the larger the number of efferents undergoing collision the lower the amplitude of the H-reflex (see Figure 7 and Figure 8).
It is always recommended keeping the amplitude of the test H-reflex in the ascending limb of the recruitment curve, where there is no (or very few) collision in the motor axons. The best fit for the ascending limb of the curve is a sigmoid (Figure 7d) [24]. This fitting is important to define some parameters that can be extracted from the curve, such as slope, current threshold and HMAX [10] (see ahead). It is also highly recommended using a test H-reflex amplitude within the range of 20-30%MMAX [25] because at this amplitude reflexes are more responsive to conditioning.
The H-reflex can be evoked in different conditions: at rest, during voluntary muscle contraction, in upright stance, during rhythmic movements of different limbs, during walking, running, and so on [1, 10, 26]. Usually, H-reflex evoked during contraction of the homonymous muscle shows higher amplitude compared to H-reflex evoked at rest [1, 21] (Figure 9). This happens because the MNs that were not fired by the afferent volley caused by the electrical stimulus might reach the firing threshold during contraction due to the summation of EPSPs generated by the activation of DTs. Figure 9 shows an example of H-reflex obtained at rest and during tonic voluntary isometric contraction of the SO muscle. When the level of voluntary contraction increases (more MUs are recruited), the size of the H-reflex increases in parallel [26]. Therefore, care should be taken when the objective is to study the modulation of the H-reflex during motor activity as its amplitude depends on the excitability of the MNs in the pool [21]. In practical terms, it is crucial to maintain a constant level of muscle activity throughout the experiment [1, 21].
EMG recordings from the SO muscle showing the H-reflexes elicited in two different conditions, at rest and during isometric voluntary contraction (unpublished data). The black trace represents the averaged response.
During a sustained voluntary contraction there is a momentary silence in the muscle activity (silent period) following the H-reflex, as seen in the EMG recording of Figure 10. The silent period is mainly ascribed to the after-hyperpolarization (AHP) of the MNs after the synchronous reflex activation, since the EPSPs caused by descending commands cannot ellicit another spike in the MN during its refractory period (which is related to the AHP). After this period, the constant descending drive causes the MNs to reach the firing threshold almost at the same time, i.e., when the refractory period ceases. This generates a rebound effect that can be seen in the EMG recordings of Figure 10. Other mechanisms might be involved in the generation of the silent period such as recurrent inhibition from Renshaw cells [27, 28]. This silent period has been shown to be useful, e.g. for the quantification of the degree of crosstalk between two muscles [14] and for the study of involuntary sustained muscle contraction after a train of stimuli [29].
EMG recordings (unpublished data;
Not only tonic voluntary contraction induces changes in reflex excitability. There are pre- and post-synaptic influences that affect H-reflex amplitude from a variety of sources. Presynaptic inhibition (PSI) is perhaps one of the most important mechanisms of reflex modulation [30]. By means of PSI the CNS can regulate the excitability of the stretch reflex pathway in different motor contexts. For instance, it is generally accepted that PSI increases from the standing position to walking and even more during running [26].
Even in motor tasks involving rhythmic movements of limbs that mimic patterns of locomotor movements (e.g., arm swing during walking) modulation of reflex responses can be observed. It has been suggested that arm cycling in an ergometer decreases reflex amplitude of the SO muscle by increasing the level of PSI [31]. This result has been used as an evidence for the existence of a neuronal linkage between upper and lower limbs responsible for coordinated actions during locomotion [10]. An example of reduced amplitude H-reflex is shown in Figure 11.
Comparison of H-reflex amplitude from the SO muscle at rest and during arm cycling. The constant amplit tude of the M-wave indicates that there were no changes in stimulus efficacy. The black trace represents the averaged response. Data based on [
It is also possible to explore a wider range of MUs by examining the behavior of the H-reflex evoked at different stimulus intensities during the performance of a motor task. Therefore, instead of comparing test reflex responses of a given amplitude (just like those shown in Figure 11) that would represent a single point in the recruitment curve (hence, a limited fraction of active MUs within the pool), the whole recruitment curve can be analyzed (Figure 12). Several parameters may then be extracted from the recruitment curve and compared across conditions [10, 24] and the input-output relations of the system under study can be properly examined. Figure 12 shows an example of changes in the SO recruitment curve during rhythmic arm movements using a stepping ergometer. One can notice a reduction in HMAX values as well as a right shifting of the curve, indicating changes in the threshold of reflex response (see the right panel of Figure 12). It is also possible to investigate changes in the recruitment gain by comparing the slope of the ascending curve between conditions. Note that no significant changes occurred in the M-wave curve (crosses), indicating that the stimulus efficacy was constant for both conditions.
Recruitment curves obtained in two distinct conditions, at rest (blue) and during rhythmic arm movement (red).
In an attempt to better describe mechanisms responsible for reflex modulation, protocols based on conditioning stimulation have been developed. For example, it is possible to assess the level of PSI under different conditions [33, 34]. The technique (illustrated in Figure 13a) consists in applying a conditioning electrical stimulus to the CPN (1ms rectangular pulse) and a test stimulus to the PTN with a conditioning-to-test (CT) interval of 100ms [35] (compare gray and red traces in the upper panel of Figure 13b). The reflex response conditioned by the CPN stimulus will have a lower amplitude as compared to the H-reflex elicited without conditioning due to the PSI effect. This procedure has been widely used in many research laboratories to investigate changes in the degree of PSI in different conditions.
Another pre-synaptic mechanism that affects H-reflex amplitude is post-activation depression (or homosynaptic depression - HD), which consists in a frequency-dependent reduction of reflex amplitude, i.e., when the stimuli are applied with frequencies higher than 0.1Hz (less than 10s interval) a depression in H-reflex amplitude is observed supposedly due to a reduced release of neurotransmitter in the Ia terminal [37, 38]. The HD is also exemplified in the upper panel of Figure 13b (green curve) that shows an averaged reflex response evoked at every 1s (1Hz stimulus frequency).
It is interesting to note a further decrease in H-reflex amplitude when both presynaptic mechanisms are present (PSI+HD; see the blue trace in Figure 13b). This result might be related to the increased frequency used for the conditioning stimulus (1Hz as compared to 0.1Hz used to obtain the trace in green) delivered 100ms before the test stimulus (also delivered at 1Hz to induce HD). Indeed, it was recently shown that an increased conditioning stimulus frequency enhances PSI of both H- [39] and T-reflexes [36].
In section 4.1 we presented a technique for the assessment of stretch reflex excitability based on transcutaneous electrical stimulation (the H-reflex). Here we are going to discuss another way to investigate the same pathway by using a mechanical stimulus applied to the tendon in opposition to the electrical current applied to a peripheral mixed nerve. The target again will be the SO muscle. This technique has been used by clinicians to assess the integrity of the spinal cord after injury or in neuropathologies [40]. Perhaps, the main concern about the use of this technique in scientific research is to maintain the mechanical stimulus consistent throughout the experiment. Several investigators have used an instrumented hammer [41, 42] designed to apply a somewhat controlled mechanical percussion to the tendon. An alternative approach is to use a powerful electromechanical shaker to achieve tendon mechanical stimulation [43]. The tip of the shaker is lightly pressed against the Achilles tendon to ensure reasonable stimulus reproducibility. The shaker can be controlled via software that provides the desired input waveform shape, amplitude and duration (e.g., a sinusoidal cycle with 10ms duration and excursion of ~3mm). An inbuilt accelerometer is a reliable alternative to provide a feedback from the shaker tip excursion and monitoring stimulus consistency [3, 43].
The main difference between both techniques (H and T reflexes) is that in the case of the H-reflex the stimulus bypasses the muscle spindles (it is applied directly to the nerve, see Figure 6). To generate the T-reflex the stimulus is applied distally, on the tendon of the muscle of interest. The mechanical percussion induces a brief muscle stretch leading to the activation of spindle afferents. As a consequence, the mechanical stimulus generates a burst of firing in each afferent axon (mainly in Ia afferents). In contrast, the electrical stimulation produces only one spike per axon and at a more fixed latency (less sparse spikes arriving to the MN pool) than the burst due to the tendon tap [20] (see dashed circle in Figure 13). Therefore, the effect of asynchronous afferent bursts on the Ia-MN synapses will be different from a less dispersed volley of single action potentials. The MN depolarization (sum of EPSPs) generated by a more asynchronous afferent volley would produce a long rising time course in the membrane of the MN, giving time to other inputs (e.g., Ib afferents; see also Figure 6) mediated by oligosynaptic pathways to exert influence on the membrane of the postsynaptic cell [20]. Therefore, conditioning effects on T-reflex might be different from effects observed on H-reflex. For instance, T-reflex has been shown to be less responsive to a conditioning that induces PSI compared to the H-reflex [44] (see Figure 13). Despite the relatively lower sensitivity to PSI, the T-reflex also showed a stronger inhibitory effect when the conditioning stimulus was applied at higher frequency (1Hz), as for the H-reflex (see previous section) [36]. However, postsynaptic effects (e.g., mediated by RI) may have similar strength for both reflexes (see section 5.2.1; [44, 45]) regardless of the stimulus frequency.
Another important difference is related to the sensitivity of reflex responses to the fusimotor system excitability. T-reflexes are differentially susceptible to γ-MN activity (that regulates the muscle spindle sensitivity) as compared to H-reflexes [46]. All these aspects need to be taken into account in the interpretation of results and/or comparisons between both types of reflex responses.
F-waves are recorded routinely in clinical neurophysiological practice [47]. The F wave is a late response that occurs in a muscle following stimulation of its motor nerve, evoked by antidromic activation (“backfiring”) of a fraction of the MNs. Typically, F-waves are evoked in response to a strong electrical stimulus (supramaximal stimulation) applied to a peripheral nerve. Action potentials traveling orthodromically reach the muscle fiber, thereby eliciting a strong M-response (MMAX). The action potentials traveling antidromically (see arrows in Figure 6) reach the cell bodies of the MNs making a small fraction of them to fire. This causes orthodromic action potentials to travel back towards the muscle, generating a relatively small amplitude CMAP called F-wave. Several measurements can be done on the F responses, including peak-to-peak amplitude, duration, latency (period between stimulation and F-wave response), and persistency (number of F-waves obtained per number of stimulations). Most electrophysiologists agree that F-wave latency constitutes a valuable parameter that reflects conduction properties of motor axons, being even more reliable than distal motor conduction measurements used to detect mild or early generalized abnormalities [48]. Although the use of F waves for assessing MN excitability is controversial [49], they are sensitive to changes in MN excitability [48] and have been used to assess it in a variety of protocols [50, 51]. In contrast to the H-reflex, which is influenced by presynaptic effects (PSI and HD), the F response is not a reflex (is not elicited by Ia volley), hence its generation is related solely to the MN membrane potential, which depends on the EPSPs and IPSPs the MN is receiving. Figure 14 shows F-wave recordings from the SO muscle (in response to supramaximal stimulation to the PTN) obtained in a subject at rest.
Nine superimposed EMG signals from the SO muscle showing stimulus artifacts, M-waves (MMAX) and F-waves obtained in response to supramaximal stimulation (rectangular pulses with 0.2ms duration) delivered to the PTN of a resting subject (unpublished data). Surface stimulating electrodes were positioned with the cathode (2cm2) on the popliteal fossa and the anode (8cm2) on the patella. The stimulus intensity used to elicit F-waves was above that necessary to elicit MMAX. The same recordings are shown in
As described in section 4.1, when a supramaximal stimulus is delivered to the nerve of a relaxed muscle, an M-wave is observed in the EMG with short latency and no H-reflex is observed due to the collision (see Figure 8) between antidromic and orthodromic spikes (there could be F-waves, but they are not our focus here). However, if the subject maintains a steady voluntary contraction, and the same supramaximal stimulus is delivered to the peripheral nerve, a reflex response appears at a latency equal to the H-reflex. This reflex response, frequently referred to as a V-wave (associated with a voluntary drive), is an electrophysiological variant of the H-reflex and is used to measure the level of efferent drive [52-54].
The rationale behind the genesis of this response is that the descending drive activates a subset of MNs in the spinal cord making their axons conduct action potentials orthodromically. These action potentials collide with the antidromic volley generated at the electrical stimulation site by the supramaximal stimulus applied to the peripheral mixed nerve. Thus, this subset of MNs (recruited by the descending command) will be susceptible to be activated by the reflex afferent volley generated by the supramaximal electrical stimulus. Hence, the V-wave amplitude roughly reflects the number of spinal MNs being activated by the volitional drive, as well as the excitability associated with the stretch reflex pathway (previously discussed in section 4.1).
This electrophysiological measure has been used in several human neurophysiology studies, for instance: (1) neuronal plasticity associated with resistance training in healthy subjects [52]; (2) short-term effects of neuromuscular electrical stimulation [55]; (3) multiple sclerosis [56]. In the next section, we will present simulation results regarding the mechanisms behind the genesis of the V-wave.
In this section, we will present simulation results that are valuable to better understand some mechanisms underlying the conditioning of muscle activity discussed previously in this chapter. The simulations were carried out in a multi-scale web-based neuromuscular simulator (dubbed ReMoto) that is freely accessible at http://remoto.leb.usp.br. A complete description of the simulator may be found elsewhere [4, 5]. Briefly, the simulator provides a detailed modeling of four spinal motor nuclei that command leg muscles responsible for ankle extension (SO; medial gastrocnemius - MG; lateral gastrocnemius - LG) and ankle flexion (TA). Each nucleus encompasses a MN pool and spinal INs mediating recurrent inhibition (by means of Renshaw cells), RI (by means of inhibitory Ia INs that receive inputs from antagonist muscles), and Ib inhibition. Individual spinal neurons are modeled following biophysical data from both cat MNs and INs, including active ionic channels responsible for the genesis of action potentials (sodium and fast potassium) and afterhyperpolarization (slow potassium). MN dendrites have an L-type calcium channel yielding a persistent inward current that is activated by the presence of neuromodulators in the spinal cord [57]. Ia and Ib afferents are present in ReMoto so as to allow studies on spinal reflexes (e.g., H-reflex) generated by electrical stimulation applied to a nerve (PTN for SO, LG and MG; CPN for TA). Model parameter values (e.g., axon conduction velocity, ionic channel time constants, maximum synaptic conductances) and default numbers of elements (i.e. spinal neurons and afferents) are based on experimental data from cats or humans. Some of the parameter values were adjusted so that the dynamic behavior of an individual model matches those experimentally observed in cats or humans, for example, MN frequency-current (
The MN pool drives muscle units, which generate both electrical (MUAPs) and mechanical activity (force twitches). For each muscle, one output is the EMG, expressed as the sum of all MUAPs, and the other output is force, being the sum of the twitches of all muscle units. Muscle twitches are modeled as the impulse responses of second-order critically-damped systems [58]. MUAPs occurring at the muscle surface are modeled by first- and second-order Hermite-Rodriguez functions [59], which are randomly attributed to each MU. MUAP amplitude and durations are chosen to match intramuscular MUAPs recorded from humans. To model the MUAP recorded by bipolar surface electrodes at the muscle’s surface, each intramuscular signal is re-scaled depending on the MU positioning within the muscle cross-section [60], thus representing the spatio-temporal filtering due to the volume conductor (see section 2.2). A white Gaussian noise is added to the resultant surface EMG and this signal is band-pass filtered to mimic a real EMG signal recorded in experiments.
Volitional muscle control is represented by the generation of random trains of action potentials in the DTs, which are modeled by independent nonhomogeneous renewal point processes with Gamma-distributed ISIs. The instantaneous firing rate or the ISI of these point processes can be modulated by mathematical functions (e.g., sinusoid and ramp) in order to generate dynamic motor behaviors, such as rhythmic muscle activity.
Recently, a detailed muscle spindle model was added to the simulator’s structure, so that stretch reflex responses can be studied with the simulator [61]. This model (fully described in [62]) represents the nonlinear dynamics of three intrafusal muscle fibers (bag 1, bag 2 and chain). The combination of the fibers’ tensions yields the instantaneous activity of the Ia and II afferents. Each intrafusal fiber has an active element, which represents the static and dynamic fusimotor activity coming from gamma MNs. A single muscle spindle model lies in parallel with each muscle model so that muscle stretch and stretch velocity modulate intrafusal fiber tension and consequently the afferent activity. Primary (Ia) and secondary (II) afferent activities are translated into spike trains that are transmitted to the spinal cord through an ensemble of peripheral nerve axons with an associated distribution of conduction velocities (type II afferents are at the moment available only in a downloadable version at the website). In order to represent the ISI variability observed in afferent axons [63], each spike train is represented by a non-homogeneous renewal point process with Gamma-distributed ISIs, whose intensity is modulated by the correspondent muscle spindle output (i.e., Ia or II). In addition, a linear recruitment of afferents is adopted so that during low afferent activity only a small fraction of afferents are discharging and the increase in afferent activity (from muscle spindle model) results in the recruitment of additional afferent axons.
H and T reflexes can be studied in ReMoto by activating (electrically or mechanically) the monosynaptic pathway encompassing Ia afferents, MN pool, and muscle (including the spindle). Oligosynaptic pathways [23] that may contribute to the H and T reflexes are not yet available in the simulator. Due to its multi-scale structure one may evaluate neurophysiological mechanisms and test hypotheses that are unfeasible with human experiments. Recent results [64] of conditioning effects on H and T reflexes are presented below, with emphasis on RI, which is an important inhibitory pathway associated with the control of movements [65, 66].
The friendly interface of ReMoto allows the easy set up of H- and T-reflex simulations using the structure depicted in Figure 15. The SO motor nucleus encompasses 900 type-specified MNs (800 S-type, 50 FR-type, and 50 FF-type), which receives synaptic contacts from Ia afferents (400 with 90% connectivity) of the PTN. In order to generate test H-reflexes, electrical stimuli (1ms rectangular pulses) are delivered at the nerve in a point equivalent to the popliteal fossa (0.66m from the spinal cord and 0.14m to the muscle end-plate). Figure 16a shows the M-wave and H-reflex generated by a 13mA stimulus without conditioning, as well as the discharge times of Ia afferents and MUs that were recruited directly by the electrical stimulus (early recruited MUs) and reflexively by Ia-to-MN excitation, respectively.
Schematic diagram of the neuromuscular system used to simulate H-reflex, T-reflex and V-wave of the SO muscle. An electrical pulse with appropriate amplitude delivered to the PTN elicits a direct M-wave and a test reflex (H-reflex), which can be observed in the simulated EMG. Similarly, the V-wave can be generated after a supramaximal stimulus delivered to the PTN during a sustained voluntary contraction evoked by the activity of DTs. Test T reflexes can be observed in the EMG after the application of an idealized SO muscle stretch (
Test T-reflexes can be simulated by applying an idealized stretch (10ms triangular-shaped stretch) to muscle fibers (see the schematic in Figure 15 and the time course in the lower panel of Figure 16b) in order to evoke a response in the muscle spindle model, which reflexively activates the spinal MNs by means of Ia afferents. The upper panel in Figure 16b shows the T-reflex generated with amplitude similar to the H-reflex described in the paragraph above (~25%MMAX). It is worth noting that in these simulations a similar number of spinal MNs were recruited by the afferent volley evoked by the electrical (H-reflex) and mechanical stimulus (T-reflex), suggesting that despite the asynchronous discharge in Ia fibers during the T-reflex (see Ia afferent discharges in Figure 16b; [20]), the excitatory post-synaptic effect is similar between the electrically- and mechanically-evoked reflexes. A remarkable difference between these reflexes is the latency in which each wave is observed in the simulated EMG. The T-reflex is shifted by approximately 7ms with respect to latency of the H-reflex, which represents the conduction time between the point of mechanical (muscle tendon) and electrical (popliteal fossa) stimulations [44, 45] (see also the vertical line in Figure 13b for experimental data).
Simulated H and T reflexes (data based on [
In this set of simulations, we have evaluated the conditioning effects of the RI pathway on the amplitude of H and T reflexes. Test reflexes were evoked as described in the preceding section; nevertheless, a conditioning stimulus was applied to the CPN, which innervates the antagonist muscle (see schematic in Figure 15), in order to elicit an afferent volley to the inhibitory Ia INs (IaINs) that make inhibitory synapses on the SO MN pool. The stimulus amplitude (1ms duration) delivered to the CPN was 1.1MT (i.e. 10% above the MT). In addition, the connectivity between Ia afferents and IaINs was set at 100%, while a 20% connectivity was adopted in the IaINs-to-MNs pathway. Similarly to experimental studies, a CT interval equal to -3ms was adopted for the H-reflex simulations (i.e. the conditioning stimulus was delivered 3ms before the test stimulus). To account for the difference in reflex latencies, 7ms was added to the CT interval in T-reflex simulations [44, 45].
Top panels in Figure 17 (a and b) show the EMGs of the SO muscle for a control condition (red curves) and when a conditioning stimulus was applied to the CPN (black curves). RI reduced the H-reflex amplitude by ~40% of its control value (Figure 17a), whereas the amount of inhibition observed in T-reflex was ~53% of its control value (Figure 17b). This difference was not statistically significant (
Conditioning effects of the reciprocal inhibition (RI) on H and T reflexes. Data based on [
Approximately the same number of spinal MNs was de-recruited by the RI in both reflexes (see Figure 17c and d), with a more pronounced effect on high-threshold neurons. This finding (which is readily accessible in the simulator, but not in human experiments) can be explained by the higher input conductance of these cells, which yield smaller compound excitatory post-synaptic potentials (EPSP). Hence, these cells will be operating near their firing thresholds, which means that they will be more easily de-recruited by the arrival of small IPSPs (see right-side graphs in Figure 17e and f). Another result that is unique to the simulations is the recording of intracellular membrane potentials. In the lower panels of Figure 17 (e and f), the membrane potential of a single MN is shown. In a control condition (i.e. without conditioning), this MN is recruited by both electrically- and mechanically-evoked synaptic volleys (left-side graphs). Similarly, the arrival of an IPSP is effective in de-recruiting this MN in both reflexes (right-side graphs), suggesting that RI has a similar effect on these responses. In addition, the compound EPSP observed in the MN soma has a similar time course for both reflexes, reinforcing the hypothesis that post-synaptic effects are similar between H- and T-reflexes [45].
As described in section 4.4, the V-wave is believed to reflect the level of the efferent drive maintained by a voluntary command. To test this hypothesis, we have used the neuromuscular simulator described above to generate V waves in the SO muscle [68]. The structure depicted in Figure 15 (with exception of the conditioning stimulus) was also used in this simulation, with the MN pool encompassing 900 type-identified MNs and 100 independent axons representing the DTs. The spike train associated to each DT axon was modeled as Poisson point processes with a given mean intensity and the connectivity between DTs and the MN pool was fixed at 30%. At time 1s, a supramaximal electrical stimulus was delivered to the PTN evoking an MMAX and subsequently a V-wave. Changes in V-wave amplitude (normalized with respect to the MMAX) were evaluated by changes in the mean ISI of DTs, mimicking the neuronal plasticity that is supposed to occur after training [52, 55, 56].
Figure 18 shows the simulated SO EMG (upper panels) for two different intensities of the descending drive (mean ISI equal to 3.8ms in Figure 18a and 3ms in Figure 18b), which were chosen to match the ratio V/MMAX observed in the literature [52]. The increase in the ratio reflects the increase in the number of active MNs (from 233 to 426; see lower panels in Figure 18), which roughly corresponded to the number of MNs discharging before the electrical stimulation. This information cannot be accessed in human experiments, emphasizing, therefore, the relevance of mathematical modeling and computer simulations.
The reader can notice that the background EMG activity before the stimulus delivery is slightly different between the two simulated conditions. However, the interference pattern is more susceptible to nonlinear summation and cancellation of MUAPs. Therefore, the V-wave may be a more reproducible and reliable measure of the efferent drive, which can increase or decrease due to different factors, e.g, neuronal plasticity following training and hyper-excitability of spinal MNs following neurological diseases, such as stroke and amyotrophic lateral sclerosis [54, 56].
V-waves (arrows) preceded by M-waves in ReMoto simulation of SO EMG (upper panels). Raster plots of MN spikes (lower panels).
In this chapter we have discussed several aspects regarding the use of surface EMG in a variety of human neurophysiology protocols. Different conditioning effects on the interference pattern and phasic responses, which can be used to infer spinal cord mechanisms, were presented and discussed. Finally, in order to refine the understanding of some underlying mechanisms involved in motor control, as well as to facilitate the interpretation of EMG data, we have introduced a comprehensive web-based simulator of the neuromuscular system with open-access and a friendly interface. The simulation results can be used to test hypothesis raised from the analysis of experimental data and to propose new questions to be addressed in different experimental protocols. The techniques and models presented here might be useful for researchers/clinicians who intend to conduct experiments on both healthy subjects and patients with neuromuscular disorders.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{regionId:"6",sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"135796",title:"Prof.",name:"Jim",middleName:null,surname:"Van Os",slug:"jim-van-os",fullName:"Jim Van Os",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Utrecht University",country:{name:"Netherlands"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17574}],offset:12,limit:12,total:17575},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"title"},books:[{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11563",title:"A Comprehensive Review of the Versatile Dehydration Processes",subtitle:null,isOpenForSubmission:!0,hash:"91d7853d4e74d161d7a8f5913626cf94",slug:null,bookSignature:"Ph.D. Jelena Jovanovic",coverURL:"https://cdn.intechopen.com/books/images_new/11563.jpg",editedByType:null,editors:[{id:"447810",title:"Ph.D.",name:"Jelena",surname:"Jovanovic",slug:"jelena-jovanovic",fullName:"Jelena Jovanovic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11700",title:"Abdominal Trauma - New Solutions to Old Problems",subtitle:null,isOpenForSubmission:!0,hash:"8e898d70673411f9c222d429889c8967",slug:null,bookSignature:"Prof. Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11700.jpg",editedByType:null,editors:[{id:"108808",title:"Prof.",name:"Dmitry",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12147",title:"Abiotic Stress in Plants",subtitle:null,isOpenForSubmission:!0,hash:"f3d8c31029650b7ce536da7ab9d7a5a0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12147.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12329",title:"Accidents - Preventive Measures and Safety",subtitle:null,isOpenForSubmission:!0,hash:"316053101986ffc814698142444774dc",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12329.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12291",title:"Acidophiles",subtitle:null,isOpenForSubmission:!0,hash:"830753134a4180a8e6cf05774aefb9fb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12291.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11904",title:"Actinides - New Insights on Contamination, Exposure, and Analytical Techniques",subtitle:null,isOpenForSubmission:!0,hash:"a74f62997524c0c100aac1388bf529e8",slug:null,bookSignature:"Dr. Markus R. Zehringer",coverURL:"https://cdn.intechopen.com/books/images_new/11904.jpg",editedByType:null,editors:[{id:"311750",title:"Dr.",name:"Markus R.",surname:"Zehringer",slug:"markus-r.-zehringer",fullName:"Markus R. Zehringer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11820",title:"Acupuncture and Moxibustion - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"e40653fa6cd3f2c653436c4e4bd8ad1e",slug:null,bookSignature:"Dr. Wen-Long Hu, Dr. Mao-Feng Sun and Dr. Yu-Chiang Hung",coverURL:"https://cdn.intechopen.com/books/images_new/11820.jpg",editedByType:null,editors:[{id:"49848",title:"Dr.",name:"Wen-Long",surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11819",title:"Adhesives - Science, Technology, Recent Advances, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"c58b7d4c17e2a202af1dc4b906b7becb",slug:null,bookSignature:"Prof. António Bastos Pereira and Dr. Alexandre Luiz Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/11819.jpg",editedByType:null,editors:[{id:"211131",title:"Prof.",name:"António",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12358",title:"Adipose Tissue",subtitle:null,isOpenForSubmission:!0,hash:"dfc414b807392138bdc451d16fb606e4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12358.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11853",title:"Adrenal Glands - The Current Stage and New Perspectives of Diseases and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"86c26879d83ac24206ed5476b6cde7fd",slug:null,bookSignature:"Dr. Diana Loreta Paun",coverURL:"https://cdn.intechopen.com/books/images_new/11853.jpg",editedByType:null,editors:[{id:"190860",title:"Dr.",name:"Diana Loreta",surname:"Paun",slug:"diana-loreta-paun",fullName:"Diana Loreta Paun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:751},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"774",title:"Aerology",slug:"aerology",parent:{id:"118",title:"Environmental Engineering",slug:"engineering-environmental-engineering"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:100,numberOfWosCitations:137,numberOfCrossrefCitations:64,numberOfDimensionsCitations:148,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"774",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5447",title:"Aerosols",subtitle:"Science and Case Studies",isOpenForSubmission:!1,hash:"33d07546861d6fdb403e55c5f5e460b5",slug:"aerosols-science-and-case-studies",bookSignature:"Konstantin Volkov",coverURL:"https://cdn.intechopen.com/books/images_new/5447.jpg",editedByType:"Edited by",editors:[{id:"118184",title:"Dr.",name:"Konstantin",middleName:null,surname:"Volkov",slug:"konstantin-volkov",fullName:"Konstantin Volkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3831",title:"CO2 Sequestration and Valorization",subtitle:null,isOpenForSubmission:!1,hash:"99c827644ccca580b8deb69396ce04d4",slug:"co2-sequestration-and-valorization",bookSignature:"Claudia do Rosario Vaz Morgado and Victor Paulo Pecanha Esteves",coverURL:"https://cdn.intechopen.com/books/images_new/3831.jpg",editedByType:"Edited by",editors:[{id:"32930",title:"Prof.",name:"Claudia R. V.",middleName:null,surname:"Morgado",slug:"claudia-r.-v.-morgado",fullName:"Claudia R. V. Morgado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1331",title:"Air Pollution",subtitle:"Monitoring, Modelling and Health",isOpenForSubmission:!1,hash:"b1504d773138b262367e1541eea500b7",slug:"air-pollution-monitoring-modelling-and-health",bookSignature:"Mukesh Khare",coverURL:"https://cdn.intechopen.com/books/images_new/1331.jpg",editedByType:"Edited by",editors:[{id:"100180",title:"Prof.",name:"Mukesh",middleName:null,surname:"Khare",slug:"mukesh-khare",fullName:"Mukesh Khare"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"33882",doi:"10.5772/32040",title:"Air Pollution in Mega Cities: A Case Study of Istanbul",slug:"air-pollution-in-mega-cities-a-case-study-of-istanbul-",totalDownloads:10202,totalCrossrefCites:8,totalDimensionsCites:16,abstract:null,book:{id:"1331",slug:"air-pollution-monitoring-modelling-and-health",title:"Air Pollution",fullTitle:"Air Pollution - Monitoring, Modelling and Health"},signatures:"Selahattin Incecik and Ulaş Im",authors:[{id:"89902",title:"Prof.",name:"Selahattin",middleName:null,surname:"Incecik",slug:"selahattin-incecik",fullName:"Selahattin Incecik"},{id:"129507",title:"Dr.",name:"Ulaş",middleName:null,surname:"İm",slug:"ulas-im",fullName:"Ulaş İm"}]},{id:"46127",doi:"10.5772/57560",title:"CO2 Utilization: A Process Systems Engineering Vision",slug:"co2-utilization-a-process-systems-engineering-vision",totalDownloads:3738,totalCrossrefCites:5,totalDimensionsCites:13,abstract:null,book:{id:"3831",slug:"co2-sequestration-and-valorization",title:"CO2 Sequestration and Valorization",fullTitle:"CO2 Sequestration and Valorization"},signatures:"Ofélia de Queiroz F. Araújo, José Luiz de Medeiros and Rita Maria B.\nAlves",authors:[{id:"58656",title:"Prof.",name:"Ofelia",middleName:null,surname:"Araujo",slug:"ofelia-araujo",fullName:"Ofelia Araujo"},{id:"58665",title:"Prof.",name:"Jose Luiz",middleName:null,surname:"De Medeiros",slug:"jose-luiz-de-medeiros",fullName:"Jose Luiz De Medeiros"},{id:"170461",title:"Dr.",name:"Rita Maria",middleName:null,surname:"De Brito Alves",slug:"rita-maria-de-brito-alves",fullName:"Rita Maria De Brito Alves"}]},{id:"33891",doi:"10.5772/33385",title:"Methodology to Assess Air Pollution Impact on Human Health Using the Generalized Linear Model with Poisson Regression",slug:"methodology-to-assess-air-pollution-impact-on-human-health-using-the-generalized-linear-model-with-p",totalDownloads:4502,totalCrossrefCites:2,totalDimensionsCites:12,abstract:null,book:{id:"1331",slug:"air-pollution-monitoring-modelling-and-health",title:"Air Pollution",fullTitle:"Air Pollution - Monitoring, Modelling and Health"},signatures:"Yara de Souza Tadano, Cássia Maria Lie Ugaya and Admilson Teixeira Franco",authors:[{id:"95158",title:"Dr.",name:"Yara",middleName:"De Souza",surname:"Tadano",slug:"yara-tadano",fullName:"Yara Tadano"},{id:"100814",title:"Dr.",name:"Cássia",middleName:null,surname:"Ugaya",slug:"cassia-ugaya",fullName:"Cássia Ugaya"},{id:"100817",title:"Dr.",name:"Admilson",middleName:null,surname:"Franco",slug:"admilson-franco",fullName:"Admilson Franco"}]},{id:"52433",doi:"10.5772/65361",title:"Computational Fluid-Particle Dynamics Modeling for Unconventional Inhaled Aerosols in Human Respiratory Systems",slug:"computational-fluid-particle-dynamics-modeling-for-unconventional-inhaled-aerosols-in-human-respirat",totalDownloads:1709,totalCrossrefCites:5,totalDimensionsCites:12,abstract:"The awareness is growing of health hazards and pharmaceutical benefits of micro-/nano-aerosol particles which are mostly nonspherical and hygroscopic, and categorized as “unconventional” vs. solid spheres. Accurate and realistic numerical models will significantly contribute to answering public health questions. In this chapter, fundamentals and future trends of computational fluid-particle dynamics (CFPD) models for lung aerosol dynamics are discussed, emphasizing the underlying physics to simulate unconventional inhaled aerosols such as fibers, droplets, and vapors. Standard simulation procedures are presented, including reconstruction of the human respiratory system, CFPD model formulation, finite-volume mesh generation, etc. Case studies for fiber and droplet transport and deposition in lung are also provided. Furthermore, challenges and future directions are discussed to develop next-generation models. The ultimate goal is to establish a roadmap to link different numerical models, and to build the framework of a new multiscale numerical model, which will extend exposure and lung deposition predictions to health endpoints, e.g., tissue and delivered doses, by calculating absorption and translocation into alveolar regions and systemic regions using discrete element method (DEM), lattice Boltzmann method (LBM), and/or physiologically based pharmacokinetic (PBPK) models. It will enable simulations of extremely complex airflow-vapor-particle-structure dynamics in the entire human respiratory system at detailed levels.",book:{id:"5447",slug:"aerosols-science-and-case-studies",title:"Aerosols",fullTitle:"Aerosols - Science and Case Studies"},signatures:"Yu Feng, Zelin Xu and Ahmadreza Haghnegahdar",authors:[{id:"188917",title:"Dr.",name:"Yu",middleName:null,surname:"Feng",slug:"yu-feng",fullName:"Yu Feng"},{id:"195103",title:"Mr.",name:"Zelin",middleName:null,surname:"Xu",slug:"zelin-xu",fullName:"Zelin Xu"},{id:"195104",title:"Mr.",name:"Ahmadreza",middleName:null,surname:"Haghnegahdar",slug:"ahmadreza-haghnegahdar",fullName:"Ahmadreza Haghnegahdar"}]},{id:"45945",doi:"10.5772/57058",title:"Predicting the Phase Equilibria of Carbon Dioxide Containing Mixtures Involved in CCS Processes Using the PPR78 Model",slug:"predicting-the-phase-equilibria-of-carbon-dioxide-containing-mixtures-involved-in-ccs-processes-usin",totalDownloads:3595,totalCrossrefCites:3,totalDimensionsCites:9,abstract:null,book:{id:"3831",slug:"co2-sequestration-and-valorization",title:"CO2 Sequestration and Valorization",fullTitle:"CO2 Sequestration and Valorization"},signatures:"Romain Privat and Jean-Noël Jaubert",authors:[{id:"21249",title:"Prof.",name:"Jean-Noel",middleName:null,surname:"Jaubert",slug:"jean-noel-jaubert",fullName:"Jean-Noel Jaubert"},{id:"169379",title:"Dr.",name:"Romain",middleName:null,surname:"Privat",slug:"romain-privat",fullName:"Romain Privat"}]}],mostDownloadedChaptersLast30Days:[{id:"46127",title:"CO2 Utilization: A Process Systems Engineering Vision",slug:"co2-utilization-a-process-systems-engineering-vision",totalDownloads:3738,totalCrossrefCites:5,totalDimensionsCites:13,abstract:null,book:{id:"3831",slug:"co2-sequestration-and-valorization",title:"CO2 Sequestration and Valorization",fullTitle:"CO2 Sequestration and Valorization"},signatures:"Ofélia de Queiroz F. Araújo, José Luiz de Medeiros and Rita Maria B.\nAlves",authors:[{id:"58656",title:"Prof.",name:"Ofelia",middleName:null,surname:"Araujo",slug:"ofelia-araujo",fullName:"Ofelia Araujo"},{id:"58665",title:"Prof.",name:"Jose Luiz",middleName:null,surname:"De Medeiros",slug:"jose-luiz-de-medeiros",fullName:"Jose Luiz De Medeiros"},{id:"170461",title:"Dr.",name:"Rita Maria",middleName:null,surname:"De Brito Alves",slug:"rita-maria-de-brito-alves",fullName:"Rita Maria De Brito Alves"}]},{id:"46327",title:"Ocean Carbon Sequestration by Direct Injection",slug:"ocean-carbon-sequestration-by-direct-injection",totalDownloads:3288,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3831",slug:"co2-sequestration-and-valorization",title:"CO2 Sequestration and Valorization",fullTitle:"CO2 Sequestration and Valorization"},signatures:"Aaron Chow",authors:[{id:"169371",title:"Dr.",name:"Aaron",middleName:null,surname:"Chow",slug:"aaron-chow",fullName:"Aaron Chow"},{id:"170187",title:"Dr.",name:"Aaron",middleName:"C",surname:"Chow",slug:"aaron-chow",fullName:"Aaron Chow"}]},{id:"45997",title:"Carbon Sequestration in Central European Forest Ecosystems",slug:"carbon-sequestration-in-central-european-forest-ecosystems",totalDownloads:3581,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"3831",slug:"co2-sequestration-and-valorization",title:"CO2 Sequestration and Valorization",fullTitle:"CO2 Sequestration and Valorization"},signatures:"Robert Jandl and Andreas Schindlbacher",authors:[{id:"129604",title:"Dr.",name:"Robert",middleName:null,surname:"Jandl",slug:"robert-jandl",fullName:"Robert Jandl"}]},{id:"46050",title:"The Classification Indices-Based Model for NPP According to the Integrated Orderly Classification System of Grassland and Its Application",slug:"the-classification-indices-based-model-for-npp-according-to-the-integrated-orderly-classification-sy",totalDownloads:2081,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"3831",slug:"co2-sequestration-and-valorization",title:"CO2 Sequestration and Valorization",fullTitle:"CO2 Sequestration and Valorization"},signatures:"Huilong Lin",authors:[{id:"169370",title:"Dr.",name:"Huilong",middleName:null,surname:"Lin",slug:"huilong-lin",fullName:"Huilong Lin"}]},{id:"52438",title:"Aerosols Monitored by Satellite Remote Sensing",slug:"aerosols-monitored-by-satellite-remote-sensing",totalDownloads:1786,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Aerosols, small particles suspended in the atmosphere, affect the air quality and climate change. Their distributions can be monitored by satellite remote sensing. Many images of aerosol properties are available from websites as the by-products of the atmospheric correction of the satellite data. Their qualities depend on the accuracy of the atmospheric correction algorithms. The approaches of the atmospheric correction for land and ocean are different due to the large difference of the ground reflectance between land and ocean. A unified atmospheric correction (UAC) approach is developed to improve the accuracy of aerosol products over land, similar to those over ocean. This approach is developed to estimate the aerosol scattering reflectance from satellite data based on a lookup table (LUT) of in situ measured ground reflectance. The results show that the aerosol scattering reflectance can be completely separated from the satellite measured radiance over turbid waters and lands. The accuracy is validated with the mean relative errors of 22.1%. The vertical structures of the aerosols provide a new insight into the role of aerosols in regulating Earth's weather, climate, and air quality.",book:{id:"5447",slug:"aerosols-science-and-case-studies",title:"Aerosols",fullTitle:"Aerosols - Science and Case Studies"},signatures:"Zhihua Mao, Xueliang Deng, Peng Chen, Bangyi Tao, Guanying\nYang, Yanfeng Huo and Qiankun Zhu",authors:[{id:"190786",title:"Dr.",name:"Zhihua",middleName:null,surname:"Mao",slug:"zhihua-mao",fullName:"Zhihua Mao"}]}],onlineFirstChaptersFilter:{topicId:"774",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:289,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:51,paginationItems:[{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:20,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"86",type:"subseries",title:"Business and Management",keywords:"Demographic shifts, Innovation, Technology, Next-gen leaders, Worldwide environmental issues and clean technology, Uncertainty and political risks, Radical adjacency, Emergence of new business ecosystem type, Emergence of different leader and leader values types, Universal connector, Elastic enterprise, Business platform, Supply chain complexity",scope:"