Logical definition of needle driver operation
\r\n\t
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"60828f26feed5832a47a13caac706c08",bookSignature:"Prof. Shailendra K. Saxena",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12104.jpg",keywords:"Viral Outbreak, Viral Epidemic, Viral Pandemic, Disease Outbreak Detection, COVID-19, Nipah, Ebola, MERS, Pathogenesis, Host-Pathogen Interaction, Immunity, Antiviral",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 13th 2022",dateEndSecondStepPublish:"June 10th 2022",dateEndThirdStepPublish:"August 9th 2022",dateEndFourthStepPublish:"October 28th 2022",dateEndFifthStepPublish:"December 27th 2022",remainingDaysToSecondStep:"18 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Prof. Dr. Shailendra K. has received many awards and honors in India and abroad, including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various prestigious international societies/academies, including the Royal College of Pathologists, United Kingdom; Royal Society of MedProf. He is the vice dean and Professor at King George\\'s Medical University, Lucknow.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"12",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40120",title:"Distinction of Abnormality of Surgical Operation on the Basis of Surface EMG Signals",doi:"10.5772/50601",slug:"distinction-of-abnormality-of-surgical-operation-on-the-basis-of-surface-emg-signals",body:'Recently, minimally invasive surgery such as endoscopic surgery is taking the place of laparotomy. In the field of minimally invasive surgery, a typical commercial surgical robot, such as the da Vinci system produced by Intuitive Surgical Inc., is currently in clinical use. In the robot supported surgery, master-slave system is employed. In such master-slave systems, usually motions of the master device are detected by sensors, and the slave device is controlled to follow the behavior of the master device based on the measured information by those sensors. Therefore, even the mistaken operation will be reflected.
To perform a robotic surgery, a surgeon must have considerable skill. Operation by an unskilled surgeon may result in serious malpractice. Therefore, development of a system which urges an appropriate operation to the unskilled surgeon is in demand. As described in (Tanoue et al., 2007), for training of the robotic surgery, training box or simulator has been generally used.
Recently, in order to help surgeon\'s dexterity, force feedback to a surgeon through the master device of a surgical robot has been studied in (Ishii et al., 2011). In order to perform safe surgery, (Ikuta et al., 2007) proposed safe operation strategies, called "Safety operation space" and "Variable compliance system" for the surgical robot. The former can prevent collision between the forceps and organs. The latter can reduce the collision force between the forceps and organs.
In addition, training systems to practice operation of surgical robot through simulation using virtual reality environment (e.g. Tokuda et al., 2009), and navigation systems which guide a surgical instrument to the targeted location during the robotic surgery (e.g. Krupa et al., 2003), have been studied.
To the best of our knowledge, however, a system that recognizes and points out any singularity in a surgical operation because of the inexpertness of an unskilled surgeon has not been established yet.
In this study, to detect any singularity in a surgical operation, surface electromyography (SEMG) is employed. Our final goal is to develop such a system that recognizes and points out any singularity in a surgical operation because of the inexpertness of the unskilled surgeon on the basis of operator\'s SEMG signals during the operation of the surgical robot.
To this end, a novel method for automatic identification of a surgical operation and on-line distinction of any singularity of the identified surgical operation on the basis of the SEMG measurements of an operator and movement of the forceps, is proposed.
Use of the SEMG has attracted an attention of researchers as a method of interaction between human and machines. The amplitude property of waveform and the power spectrum based on frequency analysis are typical information which can be extracted from the SEMG signal.
In (Harada et al., 2010), to control a thumb and index finger of a myoelectric prosthetic hand independently, identification of four finger motions was executed using neural networks on the basis of the SEMG measurements.
In such SEMG based interaction systems, hand gestures are identified by measuring the activities of the musculature system using the SEMG sensors. It is well known that by measuring SEMG signals, not only hand gestures but also distinction between skilled person and unskilled person, and fatigue of the muscle can be recognized (e.g. Sadoyama et al., 1981, and Kizuka et al., 2006).
In (Chen et al., 2007), recognition of 25 kinds of hand gestures consisting of various motions of wrist and fingers, was performed using only two electrodes, and the high recognition rate was successfully obtained. On the other hand, (Nakaya et al., 2010) proposed a hand gesture identification method and a distinction method of any singularity in the identified hand gesture on the basis of the SEMG measurements.
(Kita et al., 2010) proposed a self-organizing approach with level of proficiency to perform stable classification of operation. (Tada et al., 2006) proposed a distinction method of unusual manipulation of a driver when driving an automobile, using the degree of deviation on the basis of the acceleration measurements.
On the other hand, as for the surgical operation, (Hayama et al., 2009) proposed an automatic classification method of four basic surgical operations using a sensing forceps made of a forceps and strain gauges. (Kumagai et al., 2008, and Yamashita, 2009) reported that in surgical operations, a difference arises between skilled surgeon and unskilled surgeon in the following points; the magnitude and direction of the handling force of the object, the manner of having surgical instrument, and surgeon\'s posture. (Rosen et al., 2006) proposed an evaluation method for the state transition of the forceps operation in cholecystectomy based on comparison of skilled operator and unskilled operator.
In this chapter, a novel method for automatic identification of a surgical operation and on-line distinction of the singularity of the identified surgical operation is proposed. Suturing is divided into six operations. The features of the operation are extracted from the measurements of the movement of the forceps, and then, on the basis of the threshold criteria for the six operations, a surgical operation is identified as one of the six operations.
Next, the features of any singularity of operation are extracted from operator\'s surface electromyogram signals, and the identified surgical operation is classified as either normal or singular using a self-organizing map: SOM (Kohonen, 2000).
Using the built laparoscopic-surgery simulation box with two forceps, the identification of each surgical operation and the distinction of the singularity of the identified surgical operation were carried out for a specific surgical operation, namely, insertion of a needle during suturing. Each surgical operation in suturing could be identified with more than 80% accuracy, and the singularity of the surgical operation of insertion could be distinguished with approximately 80% accuracy on an average. The experimental results showed the effectiveness of the proposed method.
Laparoscopic-surgery simulation box is shown in Fig.1. Inside of the mannequin, a rubber sheet of 1mm thickness is installed. The image of inside of the simulation box taken by the digital video camera is projected on a central monitor. An operator performs surgical operation using the two forceps, a needle driver (right hand side) and assistant forceps (left hand side) inserted into inside of a mannequin through the trocar, by looking at the monitor. The distance between the two forceps was determined based on the spatial relationship called "triangle formation" recommended in (Hashizume et al., 2005).
In this study, an operator simulates the suturing performed in a laparoscopic surgery using the simulation box.
Simulation box
As shown in Fig.2, the movement of the needle driver is measured by the haptics device PHANTOM Omni and attached four strain gauges.
Sensor allocation for needle driver
The SEMG signals are measured by three electrodes stuck on the forearm of the operator as shown in Fig.3. The electrode 1 was stuck on the musculus flexor carpi radialis, the electrode 2 was stuck on the musculus extensor carpi ulnaris, the electrode 3 was stuck on the musculus extensor carpi radialis longus, and the earth electrode was stuck on the wrist.
Allocation of surface electrode
In this study, suturing is chosen as the objective surgical operation for automatic identification, and especially “insertion of a needle” in suturing is selected as the objective surgical operation for distinction of singularity. The flow for distinction of the singularity of the surgical operation “insertion of a needle” is explained as follows.
From measurements of the SEMG signals by three electrodes, the amount of distortion by four strain gauges, and the angular velocity of gimbal and stylus by haptic device, the features are defined as follows.
For identifying the surgical operation, the features of the operation are extracted from the measurements of the movement of the needle driver. Define the features as follows.
where
The features of any singularity of operation are extracted from operator\'s SEMG signals. The SEMG signals are measured by sampling frequency Fs=2 kHz, and Fast Fourier Transform (FFT) is performed to each SEMG signal for every N=512 sampled data, which is equivalent to perform FFT every 0.256 seconds.
After filtering the SEMG signals by the fourth order Butterworth type band pass filter with 10 Hz to 1 kHz range, the full wave rectification is carried out. In addition, for normalization, the measured SEMG signal of each electrode is divided by the maximum value of the pre-measured SEMG for each operation. Define the features as follows.
Average absolute value: In order to perform pattern recognition, average absolute value of each electrode is often used, which is given as follows.
where
Center-of-gravity: In the case where the singular operation is performed, it is expected that change of the waveform can be observed in the SEMG signal. Therefore, as a value representing change of the waveform of the SEMG signal, the value of center-of-gravity is employed, which is defined as follows.
Spectrum ratio: Also, in the case where the singular operation is performed, it is expected that change of distribution of the power spectrum can be observed in the SEMG signal. Therefore, ratio of distribution of the power spectrum of the SEMG signal is also employed.
It is well known that the SEMG signal is distributed in the frequency band between 5 Hz to 500 Hz. Therefore, to see the ratio of the spectrum, frequency band is divided into 5 to 250 Hz and 250 to 500 Hz. Thus, the value of spectrum ratio is defined as follows.
where
and |
The suturing is divided into six operations as shown in Fig.4.
Grasping: the grasping state by closing the gripper of the needle driver.
Touch: the state where the needle driver touches the objects.
Haulage: the state where the needle driver touches the object with grasping the needle disposable.
Insertion: the state where the needle disposable is inserted.
Extraction: the state where the needle disposable is extracted.
Neutral: the state where nothing is operating.
Surgical operations for suturing
In addition, to identify the state of operation of the needle driver using a threshold value, the following new features are defined using the features (1) to (3).
For identifying the surgical operation, the following values are defined.
where
Discriminant value /Operation | T1 | T2 | T3 |
1.Grasping | 1 | 0 | 0 |
2.Touch | 0 | 1 | 0 |
3.Haulage | 1 | 1 | 0 |
4.Insertion | 1 | 1 | 1(CW) |
5.Extraction | 1 | 1 | -1(CCW) |
6.Neutral | Else |
Logical definition of needle driver operation
In this study, (a)a normal operation and a (b)singular operation are defined as follows. A normal operation is a surgical operation performed in the expected manner. The singular operation is assumed to be the following surgical operations: (b-1)the surgical operation performed at a posture in which the operator’s elbow is raised, denoted as "Posture", (b-2)the surgical operation performed in the state in which the operator is straining, denoted as "Straining", and (b-3)rough surgical operation performed suddenly by the operator, denoted as "Sudden". These are illustrated in Fig.5.
Experimental situations for surgical operation
The surgical operation of (4) insertion of a needle in suturing is classified as either normal or singular by using a self-organizing map: SOM. For classifying the surgical operation, the feature vector which is input to the SOM, is defined as follows using the features (4) to (6).
Where
In each state shown in Fig.5, 20 features for normal operation and 60 features for singular operation (20 features for each singular operation) were pre-measured, and total 80 feature vectors defined by (13) are used for batch learning of the SOM. The size of the SOM was determined as hexagon lattice type of 10 x 10.
In addition, k-means method was employed to divide the map into four fields, namely, (a)Normal, (b-1)Posture, (b-2)Straining and (b-3)Sudden.
A feature vector extracted from on-line surgical operation is mapped on the map of the learned SOM, and singular operation is recognized by the distribution on the map. In addition, SOM was built using SOM Toolbox.
The one healthy 20th generation adult man was chosen as an operator, and identification of surgical operation for "suturing" and distinction of the singularity of the identified surgical operation "insertion" were performed.
In the experiment, the operator repeatedly performed the suturing process (1) to (6) classified in section 3.2, under the four situations (a)Normal, (b-1)Posture, (b-2)Straining and (b-3)Sudden. The surgical operation "suturing" performed in the experiment is shown in Fig.6. Then, rate of identification of each surgical operation in suturing and rate of distinction of the singularity in the case of (4) insertion were examined.
Suturing performed in experiment
Recognition rate for insertion is shown in Table 2.
A: Actual operation times | 19 times |
B: Recognition count | 21 times |
Times which was not counted although operation was performed. | 0 |
Times which was counted although operation was not performed. | 2 |
Difference: |A-B| | 2 |
False recognition rate: |A-B|/A*100 | 10.5% |
Recognition rate | 89.5% |
Recognition rate for insertion operation
Recognition rate for other operations is shown in Table 3.
Operation | A: Actual operation times | B: Recognition count | Recognition rate |
1.Grasping | 8 times | 9 times | 87.5% |
2.Touch | Non | ||
3.Haulage | 30 times | 36 times | 80.0% |
4.Insertion | 19 times | 21 times | 89.5% |
5.Extraction | 19 times | 22 times | 84.2% |
6.Neutral | 6 times | 6 times | 100% |
Recognition rate for automatic identification
The threshold value
Threshold | Value |
0.045 | |
0.5×10-9 | |
0.25 | |
0.2 |
Threshold values
As shown in Table 3, each surgical operation could be identified with more than 80% accuracy.
In order to classify the singularity of the surgical operation of (4) insertion, a SOM was used. The SOM was constructed by batch learning using the feature vectors of any singularity of operation pre-extracted from SEMG in the case of insertion. Fig.7 shows the constructed SOM and distribution of the mapping of the feature vectors extracted on-line from SEMG for each experimental operation of insertion. The domain of the SOM is roughly divided into two fields, which include the domain for the normal operation denoted as "Normal" and the domain for the singular operation denoted as "Singular." In addition, the domain for the singular operation is divided into three fields, namely, "Posture," "Straining," and "Sudden."
Distribution of experimental operation on SOM
The number of the hexagon counted in each field on the map is shown in Table 5.
Situation | ||||
Normal | Posture | Straining | Sudden | |
Normal field | 39 | 1 | 14 | 28 |
Posture field | 2 | 24 | 4 | 7 |
Straining field | 2 | 20 | 23 | 31 |
Sudden field | 8 | 33 | 28 | 23 |
Total count | 51 | 78 | 69 | 89 |
The number of hexagon counted in each field on SOM
Recognition rate for singularity distinction is shown in Table 6.
Recognition rate[%] | ||
Normal | 76.5 | (39/51) |
Singular | 81.8 | (193/236) |
Posture | 30.8 | (24/78) |
Straining | 33.3 | (23/69) |
Sudden | 25.8 | (23/89) |
Recognition rate for singularity distinction
As shown in Table 5, the normal and the singular operation of insertion could be distinguished with 76.5% and 81.8% accuracy, respectively. However, the accuracy of recognition of the singularity (i.e., "Posture," "Straining," or "Sudden") of the operation is approximately 30%.
As one of the reasons of this low recognition rate in the singularity distinction, the following cause is considered. In the states of "Posture", "Straining" and "Sudden", the singular operation is similar, and the difference does not appear easily in the feature vector.
In order to examine efficiency of each feature, namely average absolute value, center-of-gravity and spectrum ratio, in the feature vector defined by equation (13), singular operation was recognized by SOM using the three-dimensional feature vector which consists of each feature only. Singularity recognition rate for each feature is shown in Table 7.
From Table 7, it turns out that the average absolute value contributes to distinction of normal operation compared with the center-of-gravity and the spectrum ratio, and conversely, the center-of-gravity and the spectrum ratio contribute to the whole singularity distinction compared with the average absolute value.
Based on the above result, to raise the singularity recognition rate in each state (Posture, Straining, and Sudden), singularity distinction was performed repeatedly by combining three kinds of features in the feature vector (Average absolute value, Center-of-gravity, and Spectrum ratio) through trial and error.
As a result, the best singularity recognition rate was obtained for the following six-dimensional feature vector removing the spectrum ratio.
Then, two operators were added and the singularity distinction was performed by SOM using the feature vector defined by (14). Recognition rate for singularity distinction using the feature vector given by (14) is shown in Table 8.
Recognition rate[%] | |||
Average absolute value | Center-of-gravity | Spectrum ratio | |
Normal | 76.5 | 78.4 | 37.3 |
Singular | 80.9 | 85.2 | 84.7 |
Posture | 35.9 | 24.4 | 59.0 |
Straining | 42.0 | 39.1 | 24.6 |
Sudden | 31.5 | 30.3 | 24.7 |
Singularity recognition rate for each feature
Recognition rate[%] | ||||||
Operator A | Operator B | Operator C | ||||
Normal | 76.5 | (39/51) | 72.0 | (36/50) | 86.0 | (43/50) |
Singular | 81.4 | (192/236) | 89.3 | (134/150) | 72.0 | (108/150) |
Posture | 25.6 | (20/78) | 74.0 | (37/50) | 44.0 | (22/50) |
Straining | 31.9 | (22/69) | 96.0 | (48/50) | 82.0 | (41/50) |
Sudden | 25.8 | (23/89) | 56.0 | (28/50) | 32.0 | (16/50) |
Modified recognition rate for singularity distinction
From Table 8, for the operators B and C, the singularity recognition rate for "Posture" and "Straining" was improved.
In this study, a novel method for automatic identification of a surgical operation and on-line distinction of the singularity of the identified surgical operation was proposed. The surgical operation "suturing" was performed using two forceps, namely a needle driver and assistant forceps, in the built simulation box for laparoscopic-surgery. Then, the identification of the surgical operation for "suturing" and the singularity distinction of the identified surgical operation "insertion of a needle" were carried out.
As for the identification of the surgical operation, suturing was divided into six operations. The features of the operation are extracted from the measurements of the movement of the forceps, namely the amount of distortion measured by four strain gauges and the angular velocity of gimbal and stylus measured by haptic device PHANTOM Omni. Then, on the basis of the threshold criteria for the six operations, the surgical operation was identified as one of the six operations. Each surgical operation in suturing could be identified with more than 80% accuracy.
As for the singularity distinction of the identified surgical operation, when the surgical operation was identified as "insertion of a needle", general distinction of normal operation or singular operation and distinction of three kinds of the states, namely "Posture", "Straining" or "Sudden" in the singular operation, were performed by the SOM using the 6-dimensional feature vector which extracted the features from SEMG. Then, the singularity of the surgical operation of insertion could be distinguished with approximately 80% accuracy on an average. On the other hand, recognition rate of each state in the singular operation was approximately 30% to 90% accuracy depending on the individual difference. Therefore, it is difficult to distinguish three kinds of the states in the singular operation with sufficient accuracy.
However, in a complicated surgical operation such as insertion of a needle, it can be said that general distinction of normal operation or singular operation was able to be recognized with high accuracy.
In this study, operator for the experiments was only three persons. In order to demonstrate the reliability of the proposed automatic identification and singularity distinction method, it is necessary to perform verification of the proposed method by many operators. However, since SEMG depends on the individuals, it is considered that learning of the SOM for singularity distinction for every operator is required.
In addition, it is also necessary to extend the proposed identification and singularity distinction method for a surgical operation performed with not only a right hand but also both hands. As for this point, we are now applying the proposed identification method to a surgical operation of ligation performed with both hands, and the singularity distinction method to a thread knotting also performed with both hands.
Furthermore, construction of the system to avoid malpractice by presenting recognition of the singular operation to the operator and to provide safe endoscopic-surgery is left as future work.
The part of this work was supported by Grant-in-Aid for Scientific Research (23650100). The author thanks Y. Nakaya for his assistance in experimental works.
Nitrogen (N) is the most important nutrient required by most crops, and if adequately used in cropping systems can contribute to increasing food production over the long-term, which may help sustain the growing world population. Nitrogen fertilizers have been used in amounts that often exceed the crop N requirements over the years worldwide. Nitrogen fertilizer rates in vegetable production systems worldwide can be as high as 200 to 900 kg N ha−1 [1, 2]. However, high N fertilization rates may result in increased soil residual inorganic N [3] that can be lost from the soil–plant system through volatilization to the atmosphere [4] or leaching to groundwater [5]. Cover cropping is an improved management practice that can help reduce N leaching to groundwater through soil N uptake and/or by reducing N fertilizer inputs into cropping systems. However, the efficiency of cover crops in reducing N leaching varies with plant species. Nonlegumes are about three times more efficient in reducing N leaching than legumes [5] because of greater above- and belowground biomass production [3, 6]. Also, nonlegumes can establish root systems and produce dry matter under cool conditions better than legumes. On the other hand, the ability of legume cover crops in reducing N leaching is limited by the fact that legumes meet some or all of their N requirements from symbiotic N2 fixation [5].
The sustainability of the cropping systems depends on the maintenance or improvement of soil carbon (C) and N levels. Cover crops can maintain or improve soil organic C and N levels by adding large amounts of residues that provide C and N to the soil [7, 8]. An increase in soil C and N levels may result in a range of ancillary benefits to the growing plants such as improved microbial biomass and activity and soil structure [9, 10], crop growth and yield [10, 11, 12]. Cover cropping may also help mitigate greenhouse gas emissions by sequestering atmospheric C to the soil and through improving N use efficiency by crops [13, 14]. As with N leaching, the cover crops’ ability to influence soil C and N levels, crop N uptake, N use efficiency, and crop yields vary with plant species. Because of greater biomass production, nonlegumes may be more effective in improving soil C pool than legumes, while legumes with higher N concentration may be more effective in improving soil N pool and crop yields [12]. Nitrogen use efficiency from plant residues by crops including tomatoes (
Tomato is one of the most widely grown and eaten vegetables worldwide, and the second most important after potato (
Hairy vetch is a winter-hardy cover crop that can produce large biomass and accumulate about 92.1 to 187 kg N ha−1 in the open-field systems and 98.1 to 301 kg N ha−1 in greenhouse systems (Table 1
Cover crop | DW Biomass (Mg ha−1) | C applied (kg ha−1) | N applied (kg ha−1) | C/N ratio | Examination period | Reference |
---|---|---|---|---|---|---|
Hairy vetch | 4.97 | 2107 | 159 | 13.3 | 1989 | Clark et al. [11] |
4.80 | 2112 | 187 | 11.4 | 1996–1997 | Sainju et al. [12] | |
4.23 | 1688 | 136 | 12.4 | 2000–2002 | Sainju et al. [6] | |
2.19 | 1049 | 92.1 | 11.4 | 1999 | Horimoto et al. [18] | |
— | 1482 | 123 | 10 | 1992–1993 | Kuo et al. [8] | |
Rye | 6.75 | 3737 | 74.0 | 50.5 | 1989 | Clark et al. [11] |
— | 1630 | 47.5 | 35.0 | 1992–1993 | Kuo et al. [8] | |
6.37 | 2954 | 107 | 27.7 | 1996–1997 | Sainju et al. [12] | |
4.05 | 1795 | 41.6 | 43.1 | 2000–2002 | Sainju et al. [6] | |
Hairy vetch/rye | 6.63 | 2822 | 193 | 14.6 | 2000–2002 | Sainju et al. [6] |
7.96 | 3956 | 168 | 23.6 | 1989 | Clark et al. [11] | |
Hairy vetch | 4.71 | 2050 | 203 | 10.1 | 2007–2012 | Araki [19] |
6.52 | 2693 | 281 | 9.60 | 2017 | Muchanga et al. [20] | |
4.80 | 2037 | 193 | 10.6 | 2016–2017 | Muchanga et al. [21] | |
6.78 | 3018 | 301 | 10.0 | 2017 | Muchanga et al. [22] | |
2.46z | 1003 | 98.1 | 10.2 | 2018 | Muchanga et al. [22] | |
Rye | 6.19 | 2639 | 43.1 | 61.3 | 2018 | Muchanga et al. [22] |
Hairy vetch/rye | 8.02 | 3465 | 197 | 17.6 | 2017 | Muchanga et al. [22] |
6.55 | 2777 | 117 | 23.7 | 2018 | Muchanga et al. [22] |
The dry weight (DW) biomass, carbon (C) and nitrogen (N) accumulation, and C/N ratio of cover crops grown in the open-field and greenhouse systems.
Low biomass resulted from a late planting of hairy vetch (planted on 25 April 2018) due to the low survival rate of the previous hairy vetch planting (planted on 21 September 2017) caused by a high snowpack (>1 m) and a long period of snow cover.
−Aboveground biomass was not reported by the authors.
Rye is the coldest tolerant and the easiest to establish, the most productive and the earliest to head among temperate region nonlegume cover crops [26]. It can produce as much as 6.75 Mg ha−1 of aboveground biomass in the open-field systems (Table 1). Because of the C/N > 25 (Table 1) [23], rye residues breakdown slowly after application in the soil resulting in a lack of synchrony between residue-N release and crop N demand, which leads to low residue-N recovery and crop yields. Our results from a litterbag experiment under the plastic high tunnel conditions showed that only 16.5% of buried dry weight rye residues decomposed during the first 4 weeks after the initiation of the experiment, whereas, during the same period, HV showed decomposition of 59.8% of buried dry weight residues (Figure 1). A more significant rye decomposition was observed after the first 4 weeks, whereas by the end of the experiment, 12 weeks after burying, the percentage of the initial dry weight of rye residues that remained in the soil was 24.5%, higher than 1.2% of HV (Figure 1). Despite greater biomass production, rye adds fewer N amounts to the soil compared with HV [6, 11] because of low N accumulation. In some cases, the application of rye residues (C/N ratio > 25) depletes soil N availability and decreases crop yields because of N immobilization by soil microbes [11, 25].
Decomposition of 5 g dry weight of hairy vetch (HV) and RYE (RYE) residues buried at 10 cm soil depth in tomato plots during 12 weeks under the plastic high tunnel in 2018. Vertical bars represent standard errors (n = 3); only shown when larger than the symbols.
Alternatively, the biculture of HV and rye, with an intermediate C/N ratio between HV and rye (Table 1), may show a moderate decomposition speed that may result in an increased soil N availability and residue-N recovery by tomatoes. This assumption is supported by the results from a litterbag assay under the open-field conditions of Chinta et al. [27], who reported, with few exceptions, an intermediate decomposition level of residues of the biculture of HV and rye between pure HV (higher) and rye (lower) residues. Also, because of greater seeding rates, biculture of HV and rye may accumulate greater biomass and add more C to the soil than HV, and more N than rye monoculture [6, 11], thereby influencing soil C and N dynamics more significantly.
Because of high N accumulation and low C/N ratio, HV adds more N to the soil and enhances N uptake and the yield of the subsequent crop better than nonlegumes or bare fallow [8, 11]. Cover crop treatments showed a 13.9 to 32.7% greater marketable yield than the bare treatment in 2017 (Table 2). The biculture of HV and rye (HV + RYE) showed the highest marketable yield. Similarly, the cover crop treatments showed 31.5 to 68.3% greater shoot biomass and N uptake compared with the bare treatment. Greater marketable yield with the biculture than with HV incorporation (HVI), although a similar total N uptake and residue-N recovered, may be explained by more efficient use of cover crop N by tomatoes throughout the growing period. Biculture with a moderate decomposition speed (C/N = 17.6 [22]) may have released more N during the period of high N demand, while HVI with fast decomposition speed (C/N = 10.2), may have released more N in the early period of tomato growth [24], a period of low N demand. This assumption is supported by a lower growth index (GI = plant length × stem diameter × number of expanded leaves [28]) in the early period of tomato growth (5 and 7 weeks after transplanting; WAT) with the biculture than with HVI (Table 3). However, the rate of increase of GI from 7 to 9 WAT was higher with the biculture (82.9%) than with HVI (68.9%), which resulted in a similar GI of the biculture to HVI at 9 WAT. The results of Sugihara et al. [24] who found more HV-derived N concentration in the 1st and 2nd tomato fruit clusters than in upper fruit clusters, also supported the assumption that HV incorporation released more N in the early period of tomato growth, which favors more shoot biomass accumulation rather than fruit set and enlargement.
Treatmentsz | Marketable | Dry weight shoot | Total N | Recovered cover crop Nx | |||||
---|---|---|---|---|---|---|---|---|---|
yield | biomass | uptakey | Total | Percentage of | |||||
Mg ha−1 | Mg ha−1 | kg N ha−1 | kg N ha−1 | N input | |||||
BARE | 101 | cw | 4.89 | c | 186 | c | ─ | ─ | |
HVI | 116 | b | 7.10 | a | 313 | a | 127 | a | 42.0 |
HVM | 115 | b | 6.43 | b | 267 | b | 81 | b | 27.0 |
HV+RYE | 134 | a | 7.47 | a | 312 | a | 126 | a | 63.9 |
BARE | 60.1 | b | 4.37 | ab | 184 | b | ─ | ─ | |
HVI | 84.3 | a | 5.96 | a | 233 | a | 49.0 | a | 50.7 |
HVM | 64.8 | b | 4.98 | ab | 195 | b | 11.0 | b | 11.4 |
RYE | 49.8 | c | 3.64 | b | 153 | c | -31 | ─ | -71.8 |
HV+RYE | 60.7 | b | 4.81 | ab | 188 | b | 4.0 | c | 3.42 |
Effects of cover crop residue management on tomato marketable yield, shoot biomass, N uptake and recovery in 2017 and 2018 (Muchanga et al. [22]).
BARE, no cover crop but fertilized with 150 kg N ha−1; HVI, hairy vetch incorporation; HVM, hairy vetch mulch; RYE, rye monoculture; HV+RYE, biculture of hairy vetch and rye. All cover crop treatments received the controlled-release N fertilizer at a rate of 150 kg N ha−1.
Nitrogen uptake from the soil and cover crops = shoot N content × shoot dry weight biomass + fruit N content × fruit total dry weight.
Calculated as the ratio of total N recovered from cover crops (N uptake in cover crop – N uptake in BARE) to the cover crop N input. Cover crop N input in HVI, HVM, and HV+RYE was 302, 300, and 197 kg N ha−1 in 2017, and 99.3, 96.8, and 117 kg N ha−1 in 2018, respectively. Rye residues (RYE) added to the soil 43.1 kg N ha−1 in 2018.
Means followed by the same letters in each column and year are not significantly different at 5% by Tukey’s honestly significant difference test.
Treatmentsz | Growth indexy | ||||||
---|---|---|---|---|---|---|---|
BARE | 4031 | 12,474 | bx | 29,185 | c | 46,074 | c |
HVI | 4344 | 15,801 | a | 34,578 | a | 58,406 | a |
HVM | 4112 | 12,634 | b | 32,577 | b | 55,906 | b |
HV + RYE | 3967 | 13,316 | b | 32,173 | b | 58,846 | a |
Significance | NS |
Tomato growth index (GI) as influenced by cover crop residue management in 2017.
BARE, no cover crop but fertilized with 150 kg N ha−1; HVI, hairy vetch incorporation; HVM, hairy vetch mulch; HV+RYE, biculture of hairy vetch and rye. All cover crop treatments received the controlled-release N fertilizer at a rate of 150 kg N ha−1.
GI = Plant length (cm) × stem diameter (mm) × number of expanded leaves. WAT, weeks after transplanting.
Means followed by the same letters in each column are not significantly different at 5% by Tukey’s honestly significant difference test.
NS, not significant.
As opposed to 2017, the marketable yield, shoot biomass, and total N uptake increased with HVI only, compared with the bare treatment, in 2018. The biculture and HV mulch (HVM) showed similar marketable yield, shoot biomass, and total N uptake to the bare treatment, whereas rye treatment (RYE) showed adverse effects on tomato yield, shoot biomass, and total N uptake due to N immobilization (Table 2). The adverse effect of rye residues resulted from their C/N ratio > 25 [23]. Soil microbes require N for their growth and if residues cannot meet their N requirements, microbes immobilize soil inorganic N, resulting in soil inorganic N depletion. Sainju et al. [12] reported 27.2 and 28.9% lower tomato yield and plant biomass, respectively, in rye than in bare plots without N fertilization in 1997. Likewise, Clark et al. [11] reported a decrease in corn grain yield by 32.7% in rye plots compared with no cover crop plots. The increased effectiveness of the biculture on marketable yield observed in 2017 was not repeated in 2018. Biculture showed no effect on shoot biomass, tomato yield, and N uptake possibly because of low residue-N recovery in 2018. Tomatoes utilized only 3.42% of the biculture N amount applied (N applied by residues was 117 kg N ha−1 [22]) (Table 2). This ineffectiveness of the biculture may be explained by the higher C/N ratio of residues in 2018 (23.7) than in 2017 (17.6) [22]. This result highlights the importance of the C/N ratio in controlling the plant residue N release, so the decision on seeding rates HV/rye should be based on the expected C/N ratio of biculture residues. Greater tomato yield with HV than with bare fallow was reported by several researchers [10, 12]. Araki et al. [17] reported greater tomato yield and plant growth with HV mulch than with bare fallow. Likewise, Muchanga et al. [21] reported greater marketable and total yields and shoot biomass with HV incorporation than with the bare fallow.
The quantity, quality, and management of cover crop residues may influence N dynamics and storage in the soil, which affects crop yield and environmental quality. Regardless of residue management (residue placement or the mixing of legumes and nonlegumes residues), the addition of cover crops residues to the soil increased significantly soil microbial biomass N (MBN) levels at 0–10 cm bulk soil by 25.4 to 121% at 4 and 8 WAT in 2017, and by 26.8 to 187% at 2 and 8 WAT in 2018, compared with the bare treatment (no cover crop but fertilized with 150 kg N ha−1) (Figure 2). In both years, HV incorporation showed the highest increment of MBN, whereas, despite a similar N input [22], HV mulch showed the least increment of MBN. This fact points out that the placement of residues in the soil may determine the cover crop N mineralization and contribution to the growing crop. The increase in MBN with cover crops than with no cover crop resulted from greater C and N inputs, especially N because it is the most limiting nutrient for microbial growth [29, 30]. However, with high levels of soil inorganic N, even residues with low N content, such as rye residues, may increase MBN levels in the early period after residue application because if plant residues do not satisfy microbes N requirements, microbes obtain N from the soil [29].
Effects of cover crop residue management on microbial biomass nitrogen at surface 10 cm bulk soil depth during the period of tomato cultivation in (A) 2017 and (B) 2018. Vertical bars represent standard errors (n = 3). Means followed by the same letters on each sampling date and year are not significantly different at 5% by Tukey’s honestly significant difference test (Muchanga et al. [
Soil N availability (soil inorganic N during the crop growing period) varied significantly (
Effects of cover crop residue management on soil inorganic nitrogen (NO3−−N + NH4+ − N) at surface 10 cm soil depth during the period of tomato cultivation in (A) 2017 and (B) 2018. Vertical bars represent standard errors (n = 3). Means followed by the same letters on each sampling date and year are not significantly different at 5% by Tukey’s honestly significant difference test (Muchanga et al. [
Increasing or maintaining soil N levels is vital for sustaining soil quality, crop growth and yield [8]. Soil N storage may vary with cover crop species due to differences in biomass production and N accumulation [32], and residue management. In 2017, HV incorporation increased significantly soil total N (STN) by 11.3% at 0–10 cm depth and 8.14% at 10–30 cm depth, compared with the bare treatment (Table 4). The biculture showed a 1.76% increase in STN compared with bare treatment at 10–30 cm depth only. In contrast, HVM showed no or negative effect on STN in 2017. In 2018, all cover crop treatments increased STN by 10.1% to 12.6% at 0–10 cm depth only, compared with no cover crop treatment. Greater STN with cover crops than without cover crops observed mostly in 2018 agreed with the results of Kuo et al. [8] and Sainju et al. [12] and may be the result of greater C and N inputs by cover crop residues. In both years, HVI was the most effective treatment in increasing STN. The positive effects of HVI on STN shown in Table 4 agreed with the results of our previous study [21] where the effects of HV (incorporation) were compared to those of livestock compost. In that study, HV incorporation showed 7.29% greater STN stock than the bare treatment (no HV and compost) and a 17.3% increase of STN stock compared with the baseline stock (initial STN stock measured before any treatment application). However, HV was not as effective as the livestock compost in building up STN stock.
Treatmentsz | STN | Changey | |||||
---|---|---|---|---|---|---|---|
0–10 cm | 10–30 cm | 0–10 cm | 10–30 cm | ||||
BARE | 3.10 | bx | 7.37 | bc | ─ | ─ | |
HVI | 3.45 | a | 7.97 | a | 11.3 | 8.14 | |
HVM | 3.20 | b | 7.25 | c | ─ | −1.63 | |
HV + RYE | 3.22 | b | 7.50 | b | ─ | 1.76 | |
BARE | 2.47 | b | 5.94 | ─ | ─ | ||
HVI | 2.78 | a | 5.99 | 12.6 | ─ | ||
HVM | 2.73 | a | 5.92 | 10.5 | ─ | ||
RYE | 2.75 | a | 5.92 | 11.3 | ─ | ||
HV + RYE | 2.72 | a | 5.80 | 10.1 | ─ | ||
Significance | NS |
Soil total nitrogen (STN) at surface 0–30 cm depth as influenced by cover crop residue management in 2017 and 2018 (Muchanga et al. [22]).
BARE, no cover crop but fertilized with 150 kg N ha−1; HVI, hairy vetch incorporation; HVM, hairy vetch mulch; RYE, rye monoculture; HV+RYE, biculture of hairy vetch and rye. All cover crop treatments received the controlled-release N fertilizer at a rate of 150 kg N ha−1.
Change (%) = (STN in cover crop – STN in BARE)/STN in BARE × 100
Means followed by the same letters in each column and year are not significantly different at 5% by Tukey’s honestly significant difference test. NS, not significant.
The cover crops and bare treatments shown in the Table 4 were fertilized with the controlled-release N fertilizer at a rate of 150 kg N ha−1 to sustain crop growth when the cover crop N supply ceases or reduces. This N fertilizer follows a sigmoidal pattern (S-type), releasing 80% of its total N slowly for 70-day after a lag period of 30-day in the soil at 25° C (LPS100, 41%N; JCAM AGRI, Tokyo, Japan). Because of its N release pattern, it was included in our experiments for developing low N input systems. The N fertilizer effects on soil C and N were examined in 2016 under plastic high tunnel conditions (Table 5). The controlled-release N fertilizer showed no effect on soil organic C (SOC) and STN at 0–10 cm depth, but HV × fertilizer interaction was significant for SOC. The N fertilizer enhanced the positive effects of HV mulch on SOC, whereas it diminished the effectiveness of HV incorporation in increasing SOC (Table 5). As opposed to fast-release N fertilizers that were reported to decrease SOC and STN [33, 34], this controlled-release N fertilizer may be used safely in greenhouse tomato production systems, preferably applying N amounts ≤ 150 kg N ha−1.
Treatmentsz | Soil N | Soil organic C | ||||
---|---|---|---|---|---|---|
Inorganic | Total | |||||
BARE-NF | 15.8 | by | 2.39 | b | 29.2 | b |
BARE-F | 19.9 | b | 2.18 | b | 29.5 | b |
HVI-NF | 15.5 | b | 2.67 | a | 32.3 | a |
HVI-F | 43.6 | a | 2.59 | a | 30.4 | ab |
HVM-NF | 21.6 | b | 2.52 | a | 30.8 | ab |
HVM-F | 50.1 | a | 2.68 | a | 31.8 | a |
Hairy vetch (HV) | *** | * | *** | |||
Fertilizer (F) | *** | NS | NS | |||
HV × F | ** | NS | *** |
Effects of hairy vetch residue management and nitrogen fertilization on soil carbon (C) and nitrogen (N) at 0–10 cm depth in 2016.
BARE-NF, no cover crop and no N fertilization; BARE-F, no cover crop with N fertilization; HVI-NF, hairy vetch incorporation without N fertilization; HVI-F, hairy vetch incorporation with N fertilization; HVM-NF, hairy vetch mulch without N fertilization; HVM-F, hairy vetch mulch with N fertilization. Controlled-release N fertilizer applied at a rate of 150 kg N ha−1.
Means followed by the same letters in each column are not significantly different at 5% by Tukey’s honestly significant difference test. NS, *, **, ***Not significant or significant at
Soil residual inorganic N may represent 50 to 80% of total fertilizer N applied to crops, more so in vegetable than field crop systems because of higher N inputs and lower N recovery of vegetable crops including tomatoes [35]. Thus, the N loss potential from the soil–plant system through volatilization and/or leaching is higher in vegetable systems. Because temperate region soils are negatively charged retaining most of NH4+ −N [32], NO3− −N leaching is more important, especially after winter when a large amount of snow melts. The use of cover crops may reduce N fertilization rates and thereby reducing N leaching potential. Moreover, the management of cover crop residues may affect the decomposition speed of the residues thereby influencing crop N uptake and residual inorganic N. Generally, the decomposition speed of residues that are incorporated in the soil is faster than that of residues that are placed on the soil surface [29, 31], therefore the net N release of surface-placed residues is delayed [36].
The effects of cover crop residue management on soil residual N (soil inorganic N levels after tomato harvest) in tomato production in a Gleysol were assessed in 2017 and 2018 in northern Japan. Because of greater N input and slow or fast decomposition speed, HVM and HVI showed 25.2 to 386% greater NO3− −N and soil inorganic N (SIN) at 0–10 cm depth in 2017 (Table 6). On the other hand, despite a higher N input (biculture residues added 117 kg N ha−1 to the soil [22]), the biculture showed NO3− −N and SIN levels similar to those of the bare treatment. Least NO3− −N and SIN levels with the biculture may be the result of higher residue-N recovery by tomatoes (Table 2) possibly due to a moderate decomposition speed of residues.
Treatmentsz | NO3−−N | NH4+ − N | SIN | Percentage of SIN-derived from cover crop N inputy | |||
---|---|---|---|---|---|---|---|
BARE | 4.59 | cx | 23.0 | b | 27.6 | c | ─ |
HVI | 9.14 | b | 25.4 | b | 34.5 | b | 2.30 |
HVM | 22.3 | a | 32.0 | a | 54.3 | a | 8.92 |
HV + RYE | 4.11 | c | 22.8 | b | 26.9 | c | −0.91 |
BARE | 20.8 | d | 5.7 | c | 26.4 | d | ─ |
HVI | 35.7 | c | 11.4 | a | 47.1 | c | 20.8 |
HVM | 73.9 | a | 10.2 | ab | 84.1 | a | 59.5 |
RYE | 47.5 | b | 12.7 | a | 60.2 | b | 78.3 |
HV + RYE | 32.0 | c | 10.0 | ab | 42.0 | c | 13.3 |
Soil inorganic nitrogen (SIN; NO3−−N + NH4+ − N) after tomato harvest at surface 10 cm depth as influenced by cover crop residue management in 2017 and 2018 (Muchanga et al. [22]).
BARE, no cover crop but fertilized with 150 kg N ha−1; HVI, hairy vetch incorporation; HVM, hairy vetch mulch; RYE, rye monoculture; HV+RYE, biculture of hairy vetch and rye. All cover crop treatments received the controlled-release N fertilizer at a rate of 150 kg N ha−1.
%SINdfCCNinput = (SIN in cover crop – SIN in BARE)/Cover crop N input ×100. Cover crop N input in HVI, HVM, and HV+RYE was 302, 300, and 197 kg N ha−1 in 2017, and 99.3, 96.8, and 117 kg N ha−1 in 2018, respectively. Rye N input was 43.1 kg N ha−1.
Means followed by the same letters in each column and year are not significantly different at 5% by Tukey’s honestly significant difference test.
As opposed to 2017, NO3− −N, NH4+ − N, and SIN levels increased by 54.2 to 218% with all cover crop treatments compared with the bare treatment in 2018. In both years, HVM showed the highest NO3− −N and SIN levels suggesting its use in greenhouse tomato production systems may represent a high risk of N leaching to groundwater after winter. As opposed to 2017, the fact the biculture increased NO3− −N and SIN levels in 2018 may be explained by the increase of its C/N ratio to 23.7, which resulted in low N recovery due to slow residue decomposition [37]. In 2017, the proportion of the seeding rates of HV/rye was 2/1 (20 kg ha−1 HV/10 kg ha−1 rye), while in 2018 was 1/1 (50 kg ha−1 HV/50 kg ha−1 rye). The reasons for using different seeding rates among the years were explained by Muchanga et al. [22]. Thus, seeding rates of HV/rye in a proportion of 2/1 (in kg ha−1) that may lead to a C/N ratio of about 17.6 are recommended. The percentage of SIN-derived from cover crop N input (%SINdfCCNinput) was lower in 2017 than in 2018 (Table 6), suggesting that more residue-N applied in 2017 was utilized by plants than in 2018. Hairy vetch mulch and rye showed higher %SINdfCCNinput than other treatments in 2018, suggesting that more residue-N was released in the late period, more so from rye than HV mulch.
The data from Table 5 suggests that the increase in residual SIN in HVM and HVI plots is more related to the addition of the controlled-release N fertilizer, so the rate of 150 kg N ha−1 added to HVI and HVM plots may be excessive. A further study determining a better N fertilization rate for HVI and HVM that leads to a high yield, increased soil N storage, and least residual SIN is needed.
Since neither HV nor rye can simultaneously provide N and enhance tomato yield, increase soil N storage, and reduce N leaching through residual N uptake, the use of the biculture of HV and rye in tomato production is seen as a promising practice that can provide most of the benefits [32]. The positive effects of the biculture on tomato yield and residue-N recovery observed in 2017 discussed in the previous section suggest that residue management may improve the N contribution of cover crops to tomato production, and more importantly, the N release pattern of HV and rye may change when applied together in the soil. While dynamics of N derived from HV in the soil−tomato system have been studied [24], studies on dynamics of N derived from rye in the soil−crop system are limited, possibly due to detrimental effects of rye on crop yields. A 15N tracer examination was conducted in Wagner pots in a plastic high tunnel in northern Japan to understand the reasons for the high effectiveness of the biculture in increasing residue-N recovery and tomato yield by examining the uptake and recovery, and retention in the soil of N derived from rye residues applied as a monoculture and biculture with HV. The major findings are discussed below.
Because of higher rye-derived N input, tomatoes (shoot + fruit) in the rye treatment (N input was 1943 mg N/plant [38]) accumulated more rye-derived N than those in the biculture treatment (N input was 972 mg N/plant) on all sampling dates (Figure 4A). Rye-derived N accumulation in both treatments increased from 2 to 8 WAT and then decreased afterward. This decline of rye-derived N accumulation indicates the cessation of N uptake (determined as the positive difference between rye-derived N accumulation of a given week and the preceding week). The cessation of N uptake by tomato shoot and fruit or the decline in N accumulation after 8 WAT may be the result of N partitioning to roots, a process that occurs when soil inorganic N is least [39, 40]. Rye-derived N uptake by tomatoes was 70.2% and 75.5% greater with rye than with the biculture at 0–2 and 4–8 WAT, respectively (Table 7). Rye is often regarded as a delayed-N release, so the fact that rye treatment released a high amount of N at 0–2 WAT may be explained by a C/N ratio < 25 (C/N ratio = 17.4) [23], which is lower than a normal range (25.3 to 66.9) reported by several researchers [6, 8, 10, 11]. This lower C/N ratio resulted from N fertilization with 15NH4Cl and soil N uptake (rye grew in soil with the initial NO3−−N concentration of 65.2 mg N kg−1 [38]).
Influence of residue management on rye-derived nitrogen accumulation in tomato shoot and fruit (a) and retained in the soil (B). Vertical bars represent standard errors (n = 3); only shown when larger than the symbols. *, ***significant at
Rye-derived N | |||||||||
---|---|---|---|---|---|---|---|---|---|
Treatmentsz | Input in the soil (mg N/pot) | Uptakey (mg N/plant) | Recoveryx (%) | ||||||
0–2 | 2–4 | 4–8 | 0–2 | 2–4 | 4–8 | ||||
RYE | 1943 | 144 | 114 | 265 | 523 | 7.39 | 5.87 | 13.7 | 26.9 |
HV + RYE | 972 | 84.3 | 94.9 | 151 | 331 | 8.67 | 9.77 | 15.6 | 34.0 |
*** | ** | NS | *** | *** | ** | NS | *** | *** |
Rye-derived nitrogen input in the pot, and its uptake and recovery by tomatoes (shoot + fruit) as influenced by residue management in 2018 (Muchanga et al. [38]).
RYE, 15N-labeled rye residues; HV+RYE, biculture of hairy vetch and 15N-labeled rye residues.
Determined as the positive difference of rye-derived N accumulation (Figure 4A) between a given week and the preceding week.
Rye-derived N recovery (%) = rye-derived N uptake/ rye-derived N input × 100.NS, **, *** Not significant or significant at P < 0.01, and 0.001, respectively.
As opposed to rye-derived N uptake, the biculture showed a total rye-derived N recovery of 34%, higher than 26.9% of rye treatment (Table 7). This result suggests that biculture of HV and rye may be an effective management practice to increase the N contribution from rye to tomato growth and fruit production. Consequently, if more N from residues is used by tomatoes, less supplemental N fertilizer may be needed, and the environmental problems associated with high N fertilization rates may be avoided. The biculture may provide many benefits such as enhancing tomato yield and residue-N recovery better than HV and rye monocultures and reduce residual N better than HV [41]. Several researchers [3, 25] have reported increased residual nitrate levels and leaching to groundwater with HV than with no cover crop, more so when high N fertilization amounts were added.
Although the N contribution from rye to tomato growth and fruit production increased when applied with HV to the soil, HV in the biculture may play a major role by contributing more N than rye in the early (0–4 WAT) and late periods (4–8 WAT) of tomato cultivation (Table 8). Hairy vetch and rye N contributions from 0 to 8 WAT represented 25.3% and 17.3% of the total N uptake (1914 mg N/plant [38]), respectively. Sugihara et al. [24] reported N recovery by tomatoes (shoot + fruit) of 40.3% by 4 WAT and an additional 15% at 4–10 WAT (HV-derived N uptake ceased at 10 WAT). In this study, HV contributed 9.65% more N to shoot growth and fruit production at 4–8 WAT than at 0–4 WAT, suggesting that the biculture may change the N release pattern from both cover crops: rye may release more N when mixed with HV, in turn, HV may release a similar or more N amount after 4 weeks following the transplanting than before that period.
Component of the biculture | N uptake from cover crops (mg N/plant) | Percentage of total N uptakez | ||
---|---|---|---|---|
WAT | Total | |||
0–4 | 4–8 | |||
Hairy vetch | 231 | 253 | 484 | 25.3 |
Rye | 179 | 151 | 331 | 17.3 |
* | ** | *** | ─ |
Nitrogen uptake by tomatoes (shoot + fruit) from each cover crop of the biculture (Muchanga et al. [35]).
Calculated as the ratio of the total N uptake from hairy vetch or rye to the total N uptake of the biculture (1914 mg N/plant [38]).
*, **, ***Significant at P < 0.05, 0.01, and 0.001, respectively.
Residue management and the quantity of residues applied to the soil [7, 8] may influence the amount of N retained by the soil. Rye-derived N retained in the soil was markedly higher with rye monoculture than with the biculture on all sampling dates (Figure 4B). The rye treatment showed an increasing trend of rye-derived N levels in the soil from 2 to 12 WAT, more so at 8 to 12 WAT. In contrast, the biculture showed a decreasing trend of rye-derived N levels in the soil from 2 to 12 WAT. Greater rye-derived N retention with rye than with the biculture treatment may be the result of higher rye-derived N input in rye treatment [(1943 mg N/plant) (Table 7)] than in biculture (972 mg N/plant), and also lower N mineralization rate of rye residues in RYE treatment than in HV + RYE treatment. The decreasing trend of rye-derived N in the soil with biculture suggests that slow decomposition of residues may be advantageous over fast decomposition in building up STN.
By 12 WAT, the amount of rye-derived N retained in the soil represented 52.5% and 47.0% of the total rye-derived N input in rye monoculture and biculture, respectively. The ability of the soil to retain plant-derived N is stronger than the ability of different loss mechanisms to remove it [15]. Thus, the lower rye-derived N recovery observed in both treatments resulted from increased soil N retention. Rye-derived N retained in the roots and/or lost (difference of rye-derived N input and rye-derived N uptake and retained in the soil) was estimated at 20.6% and 19.0% in rye monoculture and biculture treatments, respectively.
Adequate cover crop residue management may help increase N contribution from residues to tomato production, thereby enhancing tomato yield, reduce N fertilization rates, and maintain or improve soil and environmental quality. Regardless of residue management cover crops may maintain or increase soil N storage at surface 10 cm soil depth. Residual soil inorganic N at surface 10 cm soil depth, subject to leaching losses after tomato harvest, may increase with cover crops, more so with hairy vetch (incorporation and mulch) and rye monocultures than the biculture of hairy vetch and rye because of rapid or delayed N release. With adequate seeding hairy vetch/rye ratio (2/1), the biculture may be a better management practice to increase tomato yield and residue-N recovery, and maintain or increase soil N storage at surface 30 cm depth with no or least residual N. Biculture may promote efficient use of residue-N by tomatoes by releasing high amount of N in both the early and late periods of tomato growth. Biculture may change the N release pattern of both hairy vetch and rye residues: hairy vetch may release a similar or more N in the late (reproductive growth stage) than in the early period (vegetative growth stage) of tomato growth, while rye may release more N when applied with than without hairy vetch.
Some data were obtained from the researches supported by a Grant-in-Aid for Scientific Research (no. 18H02310) provided by JSPS (Japan Society for the Promotion of Science).
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{"933869@":null},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"12"},books:[{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",subtitle:null,isOpenForSubmission:!0,hash:"a58c7b02d07903004be70f744f2e1835",slug:null,bookSignature:"Prof. Mohamed Nageeb Rashed and Prof. Wafaa M. Abd El-Rahim",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",editedByType:null,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11457",title:"Forest Degradation Under Global Change",subtitle:null,isOpenForSubmission:!0,hash:"8df7150b01ae754024c65d1a62f190d9",slug:null,bookSignature:"Dr. Pavel Samec",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",editedByType:null,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",subtitle:null,isOpenForSubmission:!0,hash:"ab014f8ed1669757335225786833e9a9",slug:null,bookSignature:"Dr. Gopal Shukla, Dr. Jahangeer Bhat and Dr. Sumit Chakravarty",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",editedByType:null,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11665",title:"Recent Advances in Wildlife Management",subtitle:null,isOpenForSubmission:!0,hash:"73da0df494a1a56ab9c4faf2ee811899",slug:null,bookSignature:"Dr. Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",editedByType:null,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c8890038b86fb6e5af16ea3c22669ae9",slug:null,bookSignature:"Dr. Adnan Mustafa and Dr. Muhammad Naveed",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",editedByType:null,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11667",title:"Marine Pollution - Recent Developments",subtitle:null,isOpenForSubmission:!0,hash:"e524cd97843b075a724e151256773631",slug:null,bookSignature:"Dr. Monique Mancuso",coverURL:"https://cdn.intechopen.com/books/images_new/11667.jpg",editedByType:null,editors:[{id:"318562",title:"Dr.",name:"Monique",surname:"Mancuso",slug:"monique-mancuso",fullName:"Monique Mancuso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:16},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4383},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"873",title:"Biotechnology",slug:"environmental-sciences-environmental-technology-biotechnology",parent:{id:"137",title:"Environmental Technology",slug:"environmental-sciences-environmental-technology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:55,numberOfWosCitations:109,numberOfCrossrefCitations:52,numberOfDimensionsCitations:157,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"873",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7007",title:"Biosensors for Environmental Monitoring",subtitle:null,isOpenForSubmission:!1,hash:"0f0aa079c718ff38aece0a8cecb65f98",slug:"biosensors-for-environmental-monitoring",bookSignature:"Toonika Rinken and Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/7007.jpg",editedByType:"Edited by",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"413",title:"Environmental Biosensors",subtitle:null,isOpenForSubmission:!1,hash:"ac77d5b581e7145c0302087d80651749",slug:"environmental-biosensors",bookSignature:"Vernon Somerset",coverURL:"https://cdn.intechopen.com/books/images_new/413.jpg",editedByType:"Edited by",editors:[{id:"6648",title:"Associate Prof.",name:"Vernon",middleName:null,surname:"Somerset",slug:"vernon-somerset",fullName:"Vernon Somerset"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"16446",doi:"10.5772/22350",title:"Advances in Aptamer-Based Biosensors for Food Safety",slug:"advances-in-aptamer-based-biosensors-for-food-safety",totalDownloads:9619,totalCrossrefCites:11,totalDimensionsCites:26,abstract:null,book:{id:"413",slug:"environmental-biosensors",title:"Environmental Biosensors",fullTitle:"Environmental Biosensors"},signatures:"Maureen McKeague, Amanda Giamberardino and Maria C. DeRosa",authors:[{id:"47354",title:"Dr.",name:"Maria",middleName:null,surname:"DeRosa",slug:"maria-derosa",fullName:"Maria DeRosa"}]},{id:"66031",doi:"10.5772/intechopen.84139",title:"Biosensors for Determination of Heavy Metals in Waters",slug:"biosensors-for-determination-of-heavy-metals-in-waters",totalDownloads:2691,totalCrossrefCites:13,totalDimensionsCites:25,abstract:"Biosensors are nowadays a powerful alternative to conventional analytical techniques for controlling the quality of not only natural water but also process water used by the food industry during the production process, as well as wastewater prior to release into natural watercourses. The goal is to provide the required quality and safety of water from the standpoint of heavy metal contamination. The basic and most important characteristics of biosensors are high sensitivity, short response time, specificity, and relatively low production cost. Biosensors can detect the presence and measure the content of various toxic substances (pesticides, heavy metals, etc.) not only in water but also in food. Detection of contaminants, primarily heavy metals in water used in food production processes, is a potential area of biosensor application in the food industry. Biosensors can be adapted for direct and continuous (online) monitoring by measuring certain analytes that can affect the quality and safety of water. This chapter will give an overview of the development and application of biosensors in order to control the quality and safety of water from the standpoint of the presence of heavy metals.",book:{id:"7007",slug:"biosensors-for-environmental-monitoring",title:"Biosensors for Environmental Monitoring",fullTitle:"Biosensors for Environmental Monitoring"},signatures:"Amra Odobašić, Indira Šestan and Sabina Begić",authors:null},{id:"16445",doi:"10.5772/20154",title:"Biosensor for Environmental Applications",slug:"biosensor-for-environmental-applications",totalDownloads:11232,totalCrossrefCites:2,totalDimensionsCites:12,abstract:null,book:{id:"413",slug:"environmental-biosensors",title:"Environmental Biosensors",fullTitle:"Environmental Biosensors"},signatures:"Andrea Medeiros Salgado, Lívia Maria Silva and Ariana Farias Melo",authors:[{id:"37632",title:"Dr.",name:"Andrea",middleName:null,surname:"Medeiros Salgado",slug:"andrea-medeiros-salgado",fullName:"Andrea Medeiros Salgado"},{id:"37653",title:"Dr.",name:"Lívia Maria",middleName:"da Costa",surname:"Silva",slug:"livia-maria-silva",fullName:"Lívia Maria Silva"},{id:"37654",title:"Mr.",name:"Ariana",middleName:null,surname:"Farias Melo",slug:"ariana-farias-melo",fullName:"Ariana Farias Melo"}]},{id:"65873",doi:"10.5772/intechopen.84220",title:"Electrochemical Biosensors Containing Pure Enzymes or Crude Extracts as Enzyme Sources for Pesticides and Phenolic Compounds with Pharmacological Property Detection and Quantification",slug:"electrochemical-biosensors-containing-pure-enzymes-or-crude-extracts-as-enzyme-sources-for-pesticide",totalDownloads:1083,totalCrossrefCites:4,totalDimensionsCites:11,abstract:"Biosensors are chemical sensors in which the recognition system is based on a biochemical mechanism. They perform the specific component detection in a sample through an appropriate analytical signal. Enzyme-based biosensors are the most prominent biosensors because of their high specificity and selectivity; besides being an alternative to the common immunosensors, they are more expensive and present a limited binding capacity with the antigen depending on assay conditions. This chapter approaches the use of enzymes modified electrodes in amperometric biosensing application to detect and quantify pesticides and phenolic compounds with pharmacological properties, as they have been a promising analytical tool in environmental monitoring. These biosensors may be prepared from pure enzymes or their crude extracts. Pure enzyme-based biosensors present advantages as higher substrate specificity and selectivity when compared to crude extract enzymatic biosensors; nevertheless, the enzyme high costs are their drawbacks. Enzymatic crude extract biosensors show lower specificity due to the fact that they may contain more than one type of enzyme, but they may be obtained from low-cost fabrication methods. In addition, they can contain enzyme cofactors besides using the enzyme in its natural conformation.",book:{id:"7007",slug:"biosensors-for-environmental-monitoring",title:"Biosensors for Environmental Monitoring",fullTitle:"Biosensors for Environmental Monitoring"},signatures:"Flavio Colmati, Lívia Flório Sgobbi, Guilhermina Ferreira Teixeira, Ramon Silva Vilela, Tatiana Duque Martins and Giovanna Oliveira Figueiredo",authors:null},{id:"16449",doi:"10.5772/16250",title:"Biosensors Applications on Assessment of Reactive Oxygen Species and Antioxidants",slug:"biosensors-applications-on-assessment-of-reactive-oxygen-species-and-antioxidants",totalDownloads:2753,totalCrossrefCites:1,totalDimensionsCites:11,abstract:null,book:{id:"413",slug:"environmental-biosensors",title:"Environmental Biosensors",fullTitle:"Environmental Biosensors"},signatures:"Simona Carmen Litescu, Sandra A.V. Eremia, Mirela Diaconu, Andreia Tache and Gabriel-Lucian Radu",authors:[{id:"24425",title:"Dr.",name:"Simona Carmen",middleName:null,surname:"Litescu",slug:"simona-carmen-litescu",fullName:"Simona Carmen Litescu"},{id:"24427",title:"Dr.",name:"Sandra A.V.",middleName:null,surname:"Eremia",slug:"sandra-a.v.-eremia",fullName:"Sandra A.V. Eremia"},{id:"24428",title:"BSc.",name:"Mirela",middleName:null,surname:"Diaconu",slug:"mirela-diaconu",fullName:"Mirela Diaconu"},{id:"24429",title:"Prof.",name:"Gabriel-Lucian",middleName:null,surname:"Radu",slug:"gabriel-lucian-radu",fullName:"Gabriel-Lucian Radu"},{id:"47095",title:"Ms",name:"Andreia",middleName:null,surname:"Tache",slug:"andreia-tache",fullName:"Andreia Tache"}]}],mostDownloadedChaptersLast30Days:[{id:"66031",title:"Biosensors for Determination of Heavy Metals in Waters",slug:"biosensors-for-determination-of-heavy-metals-in-waters",totalDownloads:2686,totalCrossrefCites:13,totalDimensionsCites:24,abstract:"Biosensors are nowadays a powerful alternative to conventional analytical techniques for controlling the quality of not only natural water but also process water used by the food industry during the production process, as well as wastewater prior to release into natural watercourses. The goal is to provide the required quality and safety of water from the standpoint of heavy metal contamination. The basic and most important characteristics of biosensors are high sensitivity, short response time, specificity, and relatively low production cost. Biosensors can detect the presence and measure the content of various toxic substances (pesticides, heavy metals, etc.) not only in water but also in food. Detection of contaminants, primarily heavy metals in water used in food production processes, is a potential area of biosensor application in the food industry. Biosensors can be adapted for direct and continuous (online) monitoring by measuring certain analytes that can affect the quality and safety of water. This chapter will give an overview of the development and application of biosensors in order to control the quality and safety of water from the standpoint of the presence of heavy metals.",book:{id:"7007",slug:"biosensors-for-environmental-monitoring",title:"Biosensors for Environmental Monitoring",fullTitle:"Biosensors for Environmental Monitoring"},signatures:"Amra Odobašić, Indira Šestan and Sabina Begić",authors:null},{id:"68700",title:"Principle and Development of Phage-Based Biosensors",slug:"principle-and-development-of-phage-based-biosensors",totalDownloads:1384,totalCrossrefCites:2,totalDimensionsCites:6,abstract:"Detection and identification of pathogenic bacteria is important in the field of public health, medicine, food safety, environmental monitoring and security. Worldwide, the common cause of mortality and morbidity is bacterial infection often due to misdiagnosis or delay in diagnosis. Existing bacterial detection methods rely on conventional culture or microscopic techniques and molecular methods that often time consuming, laborious and expensive, or need trained users. In recent years, biosensor remained an interesting topic for bacterial detection and many biosensors involving different bio-probes have been reported. Compared to antibodies, nucleic acids and enzymes etc., based biosensors, bacteriophages can be cheaply produced and are relatively much stable to elevated temperature, extreme pH, and diverse ionic strength. Therefore, there is an urgent need for phage-based biosensor for bacterial pathogen detection. Furthermore, bearing high affinity and specificity, bacteriophages are perfect bio-recognition probes in biosensor development for bacterial detection. In this regard, active and oriented phages immobilization is the key step toward phage-based biosensor development. This chapter compares different bacterial detection techniques, and introduces the basic of biosensor and different bio-probes involved in biosensor development. Further we highlight the involvement and importance of phages in biosensor and finally we briefed different phage immobilization approaches used in development of phage-based biosensors.",book:{id:"7007",slug:"biosensors-for-environmental-monitoring",title:"Biosensors for Environmental Monitoring",fullTitle:"Biosensors for Environmental Monitoring"},signatures:"Umer Farooq, Qiaoli Yang, Muhammad Wajid Ullah and Shenqi Wang",authors:null},{id:"69216",title:"Challenges and Applications of Impedance-Based Biosensors in Water Analysis",slug:"challenges-and-applications-of-impedance-based-biosensors-in-water-analysis",totalDownloads:1184,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Monitoring of the environment is a global priority due to the close connection between the environmental pollution and human health. Many analytical techniques using various methods have been developed to detect and monitor the levels of pollutants (pesticides, toxins, bacteria, drug residues, etc.) in natural water bodies. The latest trend in modern analysis is to measure pollutants in real-time in the field. For this purpose, biosensors have been employed as cost-effective and fast analytical techniques. Among biosensors, impedance biosensors have significant potential for use as simple and portable devices. These sensors involve application of a small amplitude AC voltage to the sensor electrode and measurement of the in-/out-of-phase current response as a function of frequency integrated with some biorecognition element on the sensing electrodes that can bind to the target, modifying the sensor electrical parameters. However, there are some drawbacks concerning their selectivity, stability, and reproducibility. The aim of this paper is to give a critical overview of literature published during the last decade based on the development issues of impedimetric biosensors and their applicability in water analysis.",book:{id:"7007",slug:"biosensors-for-environmental-monitoring",title:"Biosensors for Environmental Monitoring",fullTitle:"Biosensors for Environmental Monitoring"},signatures:"Kairi Kivirand, Mart Min and Toonika Rinken",authors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"},{id:"62780",title:"Prof.",name:"Mart",middleName:null,surname:"Min",slug:"mart-min",fullName:"Mart Min"},{id:"174179",title:"Dr.",name:"Kairi",middleName:null,surname:"Kivirand",slug:"kairi-kivirand",fullName:"Kairi Kivirand"}]},{id:"63693",title:"The Modeling, Design, Fabrication, and Application of Biosensor Based on Electric Cell-Substrate Impedance Sensing (ECIS) Technique in Environmental Monitoring",slug:"the-modeling-design-fabrication-and-application-of-biosensor-based-on-electric-cell-substrate-impeda",totalDownloads:1094,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"In this research, the modeling, design, fabrication, and application of ECIS sensors in environmental monitoring are studied. The ECIS sensors are able to qualify the water toxicity through measuring the cell impedance. A novel mathematical model is proposed to analyze the distribution of electric potential and current of ECIS. This mathematical model is validated by experimental data and can be used to optimize the dimension of ECIS electrodes in order to satisfy environmental monitors. The detection sensitivity of ECIS sensors is analyzed by the mathematical model and experimental data. The simulated and experimental results show that ECIS sensors with smaller radius of working electrodes yield higher impedance values, which improves signal-to-noise ratio, which is more suitable in measuring the cell morphology change influenced by environments. Several ECIS sensors are used to detect the toxicant including, phenol, ammonia, nicotine, and aldicarb, and the decreasing cell impedance indicates the toxic effect. The gradient of measured impedance qualitatively indicates the concentration of toxicants in water.",book:{id:"7007",slug:"biosensors-for-environmental-monitoring",title:"Biosensors for Environmental Monitoring",fullTitle:"Biosensors for Environmental Monitoring"},signatures:"Xudong Zhang, William Wang and Sunghoon Jang",authors:null},{id:"65873",title:"Electrochemical Biosensors Containing Pure Enzymes or Crude Extracts as Enzyme Sources for Pesticides and Phenolic Compounds with Pharmacological Property Detection and Quantification",slug:"electrochemical-biosensors-containing-pure-enzymes-or-crude-extracts-as-enzyme-sources-for-pesticide",totalDownloads:1082,totalCrossrefCites:4,totalDimensionsCites:11,abstract:"Biosensors are chemical sensors in which the recognition system is based on a biochemical mechanism. They perform the specific component detection in a sample through an appropriate analytical signal. Enzyme-based biosensors are the most prominent biosensors because of their high specificity and selectivity; besides being an alternative to the common immunosensors, they are more expensive and present a limited binding capacity with the antigen depending on assay conditions. This chapter approaches the use of enzymes modified electrodes in amperometric biosensing application to detect and quantify pesticides and phenolic compounds with pharmacological properties, as they have been a promising analytical tool in environmental monitoring. These biosensors may be prepared from pure enzymes or their crude extracts. Pure enzyme-based biosensors present advantages as higher substrate specificity and selectivity when compared to crude extract enzymatic biosensors; nevertheless, the enzyme high costs are their drawbacks. Enzymatic crude extract biosensors show lower specificity due to the fact that they may contain more than one type of enzyme, but they may be obtained from low-cost fabrication methods. In addition, they can contain enzyme cofactors besides using the enzyme in its natural conformation.",book:{id:"7007",slug:"biosensors-for-environmental-monitoring",title:"Biosensors for Environmental Monitoring",fullTitle:"Biosensors for Environmental Monitoring"},signatures:"Flavio Colmati, Lívia Flório Sgobbi, Guilhermina Ferreira Teixeira, Ramon Silva Vilela, Tatiana Duque Martins and Giovanna Oliveira Figueiredo",authors:null}],onlineFirstChaptersFilter:{topicId:"873",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:10,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Prof.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:{name:"Henan Agricultural University",institutionURL:null,country:{name:"China"}}}]}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:170,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:170,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78617",title:"Doppler Ultrasound in the Reproduction of Mares",doi:"10.5772/intechopen.98951",signatures:"Camila Silva Costa Ferreira and Rita de Cássia Lima Morais",slug:"doppler-ultrasound-in-the-reproduction-of-mares",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:308,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"41",type:"subseries",title:"Water Science",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection",scope:"