Command set for the English languages
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"}]},book:{item:{type:"book",id:"1035",leadTitle:null,fullTitle:"Type 1 Diabetes Complications",title:"Type 1 Diabetes",subtitle:"Complications",reviewType:"peer-reviewed",abstract:"This book is a compilation of reviews about the complication of Type 1 Diabetes. T1D is a classic autoimmune disease. Genetic factors are clearly determinant but cannot explain the rapid, even overwhelming expanse of this disease. Understanding etiology and pathogenesis of this disease is essential. The complications associated with T1D cover a range of clinical obstacles. A number of experts in the field have covered a range of topics for consideration that are applicable to researcher and clinician alike. This book provides apt descriptions of cutting edge technologies and applications in the ever going search for treatments and cure for diabetes.",isbn:null,printIsbn:"978-953-307-788-8",pdfIsbn:"978-953-51-6584-2",doi:"10.5772/1539",price:139,priceEur:155,priceUsd:179,slug:"type-1-diabetes-complications",numberOfPages:494,isOpenForSubmission:!1,isInWos:1,hash:"b7ba654e889d323762cc9fb4a014cdbf",bookSignature:"David Wagner",publishedDate:"November 25th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/1035.jpg",numberOfDownloads:56421,numberOfWosCitations:28,numberOfCrossrefCitations:3,numberOfDimensionsCitations:14,hasAltmetrics:0,numberOfTotalCitations:45,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 9th 2010",dateEndSecondStepPublish:"December 7th 2010",dateEndThirdStepPublish:"April 13th 2011",dateEndFourthStepPublish:"May 13th 2011",dateEndFifthStepPublish:"July 12th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"45994",title:"Dr.",name:"David",middleName:"H",surname:"Wagner",slug:"david-wagner",fullName:"David Wagner",profilePictureURL:"https://mts.intechopen.com/storage/users/45994/images/1976_n.jpg",biography:"Dr. David Wagner, PhD is an Associate Professor in the Department of Medicine, Division of Pulmonary Sciences at the University of Colorado, Denver. He is also the Immunology Section Head of the Webb-Waring Center at UCD. Training includes a PhD in Biomedical Sciences from The Quillen College of Medicine at East Tennessee State University and post doctoral fellowships at The National Jewish Medical Research Center in Immunology and Diabetes. Professional memberships include the American Diabetes Association, Immunology of Diabetes Society of the Federation of Clinical Immunological Societies (FOCIS) and American Association of Immunologists as well as a member of the Society for Luekocyte Biology. Invited Lectures include regular attendance at the Aegean Conferences: Mechanisms and Treatments for Autoimmunity. He has numerous publications in diabetes research and immunologic functions focusing on T cell development, TCR revision and pathogenic T cells.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Denver",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1013",title:"Pediatric Endocrinology",slug:"pediatric-endocrinology"}],chapters:[{id:"23936",title:"Genetic Determinants of Microvascular Complications in Type 1 Diabetes",doi:"10.5772/22065",slug:"genetic-determinants-of-microvascular-complications-in-type-1-diabetes",totalDownloads:2503,totalCrossrefCites:1,totalDimensionsCites:5,signatures:"Constantina Heltianu, Cristian Guja and Simona-Adriana Manea",downloadPdfUrl:"/chapter/pdf-download/23936",previewPdfUrl:"/chapter/pdf-preview/23936",authors:[{id:"46072",title:"Dr.",name:"Constantina",surname:"Heltianu",slug:"constantina-heltianu",fullName:"Constantina Heltianu"},{id:"92625",title:"Dr.",name:"Cristian",surname:"Guja",slug:"cristian-guja",fullName:"Cristian Guja"},{id:"92628",title:"Dr.",name:"Simona Adriana",surname:"Manea",slug:"simona-adriana-manea",fullName:"Simona Adriana Manea"}],corrections:null},{id:"23937",title:"Early and Late Onset Type 1 Diabetes: One and the Same or Two Distinct Genetic Entities?",doi:"10.5772/23706",slug:"early-and-late-onset-type-1-diabetes-one-and-the-same-or-two-distinct-genetic-entities-",totalDownloads:5119,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Laura Espino-Paisan, Elena Urcelay, Emilio Gómez de la Concha and Jose Luis Santiago",downloadPdfUrl:"/chapter/pdf-download/23937",previewPdfUrl:"/chapter/pdf-preview/23937",authors:[{id:"53259",title:"MSc",name:"Laura",surname:"Espino-Paisan",slug:"laura-espino-paisan",fullName:"Laura Espino-Paisan"},{id:"54972",title:"Dr.",name:"Elena",surname:"Urcelay",slug:"elena-urcelay",fullName:"Elena Urcelay"},{id:"54973",title:"Prof.",name:"Emilio",surname:"De La Concha",slug:"emilio-de-la-concha",fullName:"Emilio De La Concha"},{id:"54974",title:"Dr.",name:"Jose Luis",surname:"Santiago",slug:"jose-luis-santiago",fullName:"Jose Luis Santiago"}],corrections:null},{id:"23938",title:"Islet Endothelium: Role in Type 1 Diabetes and in Coxsackievirus Infections",doi:"10.5772/24389",slug:"islet-endothelium-role-in-type-1-diabetes-and-in-coxsackievirus-infections",totalDownloads:1821,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Enrica Favaro, Ilaria Miceli, Elisa Camussi and Maria M. Zanone",downloadPdfUrl:"/chapter/pdf-download/23938",previewPdfUrl:"/chapter/pdf-preview/23938",authors:[{id:"46979",title:"Dr.",name:"Maria M.",surname:"Zanone",slug:"maria-m.-zanone",fullName:"Maria M. Zanone"},{id:"57067",title:"BSc.",name:"Enrica",surname:"Favaro",slug:"enrica-favaro",fullName:"Enrica Favaro"},{id:"57071",title:"BSc",name:"Ilaria",surname:"Miceli",slug:"ilaria-miceli",fullName:"Ilaria Miceli"},{id:"57072",title:"Prof.",name:"Giovanni",surname:"Camussi",slug:"giovanni-camussi",fullName:"Giovanni Camussi"}],corrections:null},{id:"23939",title:"Type 1 Diabetes Mellitus and Co-Morbidities",doi:"10.5772/24457",slug:"type-1-diabetes-mellitus-and-co-morbidities",totalDownloads:3200,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Adriana Franzese, Enza Mozzillo, Rosa Nugnes, Mariateresa Falco and Valentina Fattorusso",downloadPdfUrl:"/chapter/pdf-download/23939",previewPdfUrl:"/chapter/pdf-preview/23939",authors:[{id:"57513",title:"Dr.",name:"Adriana",surname:"Franzese",slug:"adriana-franzese",fullName:"Adriana Franzese"},{id:"57679",title:"Dr.",name:"Rosa",surname:"Nugnes",slug:"rosa-nugnes",fullName:"Rosa Nugnes"},{id:"57680",title:"Dr.",name:"Enza",surname:"Mozzillo",slug:"enza-mozzillo",fullName:"Enza Mozzillo"}],corrections:null},{id:"23940",title:"Hypoglycemia as a Pathological Result in Medical Praxis",doi:"10.5772/24754",slug:"hypoglycemia-as-a-pathological-result-in-medical-praxis",totalDownloads:3870,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"G. Bjelakovic, I. Stojanovic, T. Jevtovic-Stoimenov, Lj.Saranac, B. Bjelakovic, D. Pavlovic, G. Kocic and B.G. Bjelakovic",downloadPdfUrl:"/chapter/pdf-download/23940",previewPdfUrl:"/chapter/pdf-preview/23940",authors:[{id:"59264",title:"Dr.",name:"Gordana",surname:"Bjelakovic",slug:"gordana-bjelakovic",fullName:"Gordana Bjelakovic"},{id:"59346",title:"Prof.",name:"Dusica",surname:"Pavlovic",slug:"dusica-pavlovic",fullName:"Dusica Pavlovic"},{id:"59347",title:"Prof.",name:"Gordana",surname:"Kocic",slug:"gordana-kocic",fullName:"Gordana Kocic"},{id:"59348",title:"Prof.",name:"Bojko",surname:"Bjelakovic",slug:"bojko-bjelakovic",fullName:"Bojko Bjelakovic"},{id:"59350",title:"Prof.",name:"Tatjana",surname:"Jevtovic Stoimenov",slug:"tatjana-jevtovic-stoimenov",fullName:"Tatjana Jevtovic Stoimenov"},{id:"59351",title:"Prof.",name:"Goran",surname:"Bjelakovic",slug:"goran-bjelakovic",fullName:"Goran Bjelakovic"},{id:"61297",title:"Prof.",name:"Ivana",surname:"Stojanovic",slug:"ivana-stojanovic",fullName:"Ivana Stojanovic"},{id:"61300",title:"Dr.",name:"Ljiljana",surname:"Saranac",slug:"ljiljana-saranac",fullName:"Ljiljana Saranac"}],corrections:null},{id:"23941",title:"Autoimmune Associated Diseases in Pediatric Patients with Type 1 Diabetes Mellitus According to HLA-DQ Genetic Polymorphism",doi:"10.5772/22646",slug:"autoimmune-associated-diseases-in-pediatric-patients-with-type-1-diabetes-mellitus-according-to-hla-",totalDownloads:1309,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Miguel Ángel García Cabezas and Bárbara Fernández Valle",downloadPdfUrl:"/chapter/pdf-download/23941",previewPdfUrl:"/chapter/pdf-preview/23941",authors:[{id:"48544",title:"Dr.",name:"Miguel Angel",surname:"Cabezas",slug:"miguel-angel-cabezas",fullName:"Miguel Angel Cabezas"},{id:"84368",title:"Dr",name:"Bárbara",surname:"Fernandez Valle",slug:"barbara-fernandez-valle",fullName:"Bárbara Fernandez Valle"}],corrections:null},{id:"23942",title:"Etiopathology of Type 1 Diabetes: Focus on the Vascular Endothelium",doi:"10.5772/20721",slug:"etiopathology-of-type-1-diabetes-focus-on-the-vascular-endothelium",totalDownloads:1122,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Petru Liuba and Emma Englund",downloadPdfUrl:"/chapter/pdf-download/23942",previewPdfUrl:"/chapter/pdf-preview/23942",authors:[{id:"40248",title:"Prof.",name:"Petru",surname:"Liuba",slug:"petru-liuba",fullName:"Petru Liuba"},{id:"57887",title:"Dr",name:"Emma",surname:"Englund",slug:"emma-englund",fullName:"Emma Englund"}],corrections:null},{id:"23943",title:"Cardiovascular Autonomic Dysfunction in Diabetes as a Complication: Cellular and Molecular Mechanisms",doi:"10.5772/20890",slug:"cardiovascular-autonomic-dysfunction-in-diabetes-as-a-complication-cellular-and-molecular-mechanisms",totalDownloads:2009,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Yu-Long Li",downloadPdfUrl:"/chapter/pdf-download/23943",previewPdfUrl:"/chapter/pdf-preview/23943",authors:[{id:"40916",title:"Prof.",name:"Yu-Long",surname:"Li",slug:"yu-long-li",fullName:"Yu-Long Li"}],corrections:null},{id:"23944",title:"Microvascular and Macrovascular Complications in Children and Adolescents with Type 1 Diabetes",doi:"10.5772/22029",slug:"microvascular-and-macrovascular-complications-in-children-and-adolescents-with-type-1-diabetes",totalDownloads:6009,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Francesco Chiarelli and M. Loredana Marcovecchio",downloadPdfUrl:"/chapter/pdf-download/23944",previewPdfUrl:"/chapter/pdf-preview/23944",authors:[{id:"45943",title:"Dr.",name:"Francesco",surname:"Chiarelli",slug:"francesco-chiarelli",fullName:"Francesco Chiarelli"},{id:"57910",title:"Dr.",name:"M. Loredana",surname:"Marcovecchio",slug:"m.-loredana-marcovecchio",fullName:"M. Loredana Marcovecchio"}],corrections:null},{id:"23945",title:"Type 1 Diabetes Mellitus: Redefining the Future of Cardiovascular Complications with Novel Treatments",doi:"10.5772/22092",slug:"type-1-diabetes-mellitus-redefining-the-future-of-cardiovascular-complications-with-novel-treatments",totalDownloads:1924,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Anwar B. Bikhazi, Nadine S. Zwainy, Sawsan M. Al Lafi, Shushan B. Artinian and Suzan S. Boutary",downloadPdfUrl:"/chapter/pdf-download/23945",previewPdfUrl:"/chapter/pdf-preview/23945",authors:[{id:"46175",title:"Dr.",name:null,surname:"Bikhazi",slug:"bikhazi",fullName:"Bikhazi"},{id:"55732",title:"Mrs",name:"Suzan",surname:"Boutary",slug:"suzan-boutary",fullName:"Suzan Boutary"},{id:"55733",title:"MSc",name:"Shushan",surname:"Artinian",slug:"shushan-artinian",fullName:"Shushan Artinian"},{id:"55734",title:"MSc",name:"Sawsan",surname:"Al-Lafi",slug:"sawsan-al-lafi",fullName:"Sawsan Al-Lafi"},{id:"55735",title:"Ms",name:"Nadine",surname:"Zwainy",slug:"nadine-zwainy",fullName:"Nadine Zwainy"}],corrections:null},{id:"23946",title:"Diabetic Nephrophaty in Children",doi:"10.5772/22285",slug:"diabetic-nephrophaty-in-children",totalDownloads:2434,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Snezana Markovic-Jovanovic, Aleksandar N. Jovanovic and Radojica V. Stolic",downloadPdfUrl:"/chapter/pdf-download/23946",previewPdfUrl:"/chapter/pdf-preview/23946",authors:[{id:"47066",title:"Dr.",name:"Snezana",surname:"Markovic-Jovanovic",slug:"snezana-markovic-jovanovic",fullName:"Snezana Markovic-Jovanovic"},{id:"91272",title:"Prof.",name:"Aleksandar",surname:"Jovanovic",slug:"aleksandar-jovanovic",fullName:"Aleksandar Jovanovic"},{id:"91307",title:"Prof.",name:"Radojica",surname:"Stolic",slug:"radojica-stolic",fullName:"Radojica Stolic"}],corrections:null},{id:"23947",title:"Understanding Pancreatic Secretion in Type 1 Diabetes",doi:"10.5772/24329",slug:"understanding-pancreatic-secretion-in-type-1-diabetes",totalDownloads:1582,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mirella Hansen De Almeida, Alessandra Saldanha De Mattos Matheus and Giovanna A. Balarini Lima",downloadPdfUrl:"/chapter/pdf-download/23947",previewPdfUrl:"/chapter/pdf-preview/23947",authors:[{id:"56719",title:"Dr.",name:null,surname:"De Almeida",slug:"de-almeida",fullName:"De Almeida"},{id:"61799",title:"Dr.",name:"Alessandra",surname:"Saldanha De Mattos Matheus",slug:"alessandra-saldanha-de-mattos-matheus",fullName:"Alessandra Saldanha De Mattos Matheus"},{id:"61800",title:"Prof.",name:"Giovanna A.",surname:"Balarini Lima",slug:"giovanna-a.-balarini-lima",fullName:"Giovanna A. Balarini Lima"}],corrections:null},{id:"23948",title:"Review of the Relationship Between Renal and Retinal Microangiopathy in Type 1 Diabetes Mellitus Patients",doi:"10.5772/20673",slug:"review-of-the-relationship-between-renal-and-retinal-microangiopathy-in-type-1-diabetes-mellitus-pat",totalDownloads:1933,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Pedro Romero-Aroca , Juan Fernández-Ballart, Nuria Soler, Marc Baget-Bernaldiz and Isabel Mendez-Marin",downloadPdfUrl:"/chapter/pdf-download/23948",previewPdfUrl:"/chapter/pdf-preview/23948",authors:[{id:"40037",title:"Prof.",name:"Pedro",surname:"Romero",slug:"pedro-romero",fullName:"Pedro Romero"},{id:"89974",title:"Dr.",name:"Nuria",surname:"Soler",slug:"nuria-soler",fullName:"Nuria Soler"}],corrections:null},{id:"23949",title:"Ocular Complications of Type 1 Diabetes",doi:"10.5772/23782",slug:"ocular-complications-of-type-1-diabetes",totalDownloads:2828,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Daniel Rappoport, Yoel Greenwald, Ayala Pollack and Guy Kleinmann",downloadPdfUrl:"/chapter/pdf-download/23949",previewPdfUrl:"/chapter/pdf-preview/23949",authors:[{id:"53717",title:"Dr.",name:"Guy",surname:"Kleinmann",slug:"guy-kleinmann",fullName:"Guy Kleinmann"},{id:"55637",title:"Dr.",name:"Daniel",surname:"Rappoport",slug:"daniel-rappoport",fullName:"Daniel Rappoport"},{id:"58067",title:"Dr.",name:"Yoel",surname:"Greenwald",slug:"yoel-greenwald",fullName:"Yoel Greenwald"},{id:"58068",title:"Prof.",name:"Ayala",surname:"Pollack",slug:"ayala-pollack",fullName:"Ayala Pollack"}],corrections:null},{id:"23950",title:"Perspectives of Cell Therapy in Type 1 Diabetes",doi:"10.5772/22261",slug:"perspectives-of-cell-therapy-in-type-1-diabetes",totalDownloads:1365,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Maria M. Zanone, Vincenzo Cantaluppi, Enrica Favaro, Elisa Camussi, Maria Chiara Deregibus and Giovanni Camussi",downloadPdfUrl:"/chapter/pdf-download/23950",previewPdfUrl:"/chapter/pdf-preview/23950",authors:[{id:"46979",title:"Dr.",name:"Maria M.",surname:"Zanone",slug:"maria-m.-zanone",fullName:"Maria M. Zanone"},{id:"46966",title:"Prof.",name:"Giovanni",surname:"Camussi",slug:"giovanni-camussi",fullName:"Giovanni Camussi"},{id:"46980",title:"Dr.",name:"Vincenzo",surname:"Cantaluppi",slug:"vincenzo-cantaluppi",fullName:"Vincenzo Cantaluppi"},{id:"46982",title:"Dr.",name:"Maria Chiara",surname:"Deregibus",slug:"maria-chiara-deregibus",fullName:"Maria Chiara Deregibus"},{id:"46991",title:"Dr.",name:"Elisa",surname:"Camussi",slug:"elisa-camussi",fullName:"Elisa Camussi"},{id:"87613",title:"Dr.",name:"Enrica",surname:"Favaro",slug:"enrica-favaro",fullName:"Enrica Favaro"}],corrections:null},{id:"23951",title:"Prevention of Diabetes Complications",doi:"10.5772/24324",slug:"prevention-of-diabetes-complications",totalDownloads:1847,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Nepton Soltani",downloadPdfUrl:"/chapter/pdf-download/23951",previewPdfUrl:"/chapter/pdf-preview/23951",authors:[{id:"56691",title:"Dr.",name:"Nepton",surname:"Soltani",slug:"nepton-soltani",fullName:"Nepton Soltani"}],corrections:null},{id:"23952",title:"The Enigma of β-Cell Regeneration in the Adult Pancreas: Self-Renewal Versus Neogenesis",doi:"10.5772/24421",slug:"the-enigma-of-946-cell-regeneration-in-the-adult-pancreas-self-renewal-versus-neogenesis",totalDownloads:3269,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"A. Criscimanna, S. Bertera, F. Esni, M. Trucco and R. Bottino",downloadPdfUrl:"/chapter/pdf-download/23952",previewPdfUrl:"/chapter/pdf-preview/23952",authors:[{id:"44182",title:"Prof.",name:"Massimo",surname:"Trucco",slug:"massimo-trucco",fullName:"Massimo Trucco"},{id:"57281",title:"Dr.",name:"Rita",surname:"Bottino",slug:"rita-bottino",fullName:"Rita Bottino"},{id:"91923",title:"Dr.",name:"Angela",surname:"Criscimanna",slug:"angela-criscimanna",fullName:"Angela Criscimanna"},{id:"91924",title:"Dr.",name:"Suzanne",surname:"Bertera",slug:"suzanne-bertera",fullName:"Suzanne Bertera"},{id:"92869",title:"Dr",name:"Farzad",surname:"Esni",slug:"farzad-esni",fullName:"Farzad Esni"}],corrections:null},{id:"23953",title:"Cell Replacement Therapy: The Rationale for Encapsulated Porcine Islet Transplantation",doi:"10.5772/24824",slug:"cell-replacement-therapy-the-rationale-for-encapsulated-porcine-islet-transplantation",totalDownloads:1916,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Stephen J. M. Skinner, Paul L. J. Tan, Olga Garkavenko, Marija Muzina, Livia Escobar and Robert B. Elliott",downloadPdfUrl:"/chapter/pdf-download/23953",previewPdfUrl:"/chapter/pdf-preview/23953",authors:[{id:"59809",title:"Dr.",name:"Stephen J M",surname:"Skinner",slug:"stephen-j-m-skinner",fullName:"Stephen J M Skinner"},{id:"60440",title:"Prof.",name:"Robert B",surname:"Elliott",slug:"robert-b-elliott",fullName:"Robert B Elliott"},{id:"60441",title:"Dr.",name:"Livia",surname:"Escobar",slug:"livia-escobar",fullName:"Livia Escobar"},{id:"71244",title:"Dr.",name:"Olga",surname:"Garkavenko",slug:"olga-garkavenko",fullName:"Olga Garkavenko"},{id:"119611",title:"Ms.",name:"Marija",surname:"Muzina",slug:"marija-muzina",fullName:"Marija Muzina"},{id:"119613",title:"Dr.",name:"Paul L J",surname:"Tan",slug:"paul-l-j-tan",fullName:"Paul L J Tan"}],corrections:null},{id:"23954",title:"Dental Conditions and Periodontal Disease in Adolescents with Type 1 Diabetes Mellitus",doi:"10.5772/22260",slug:"dental-conditions-and-periodontal-disease-in-adolescents-with-type-1-diabetes-mellitus",totalDownloads:2426,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"S. Mikó and M. G. Albrecht",downloadPdfUrl:"/chapter/pdf-download/23954",previewPdfUrl:"/chapter/pdf-preview/23954",authors:[{id:"46965",title:"Dr.",name:"Sándor",surname:"Mikó",slug:"sandor-miko",fullName:"Sándor Mikó"},{id:"57762",title:"Prof.",name:"Maria",surname:"Albrecht",slug:"maria-albrecht",fullName:"Maria Albrecht"}],corrections:null},{id:"23955",title:"Impact of Hyperglycemia on Xerostomia and Salivary Composition and Flow Rate of Adolescents with Type 1 Diabetes Mellitus",doi:"10.5772/22321",slug:"impact-of-hyperglycemia-on-xerostomia-and-salivary-composition-and-flow-rate-of-adolescents-with-typ",totalDownloads:2964,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ivana Maria Saes Busato, Maria Ângela Naval Machado, João Armando Brancher, Antônio Adilson Soares de Lima, Carlos Cesar Deantoni, Rosângela Réa and Luciana Reis Azevedo-Alanis",downloadPdfUrl:"/chapter/pdf-download/23955",previewPdfUrl:"/chapter/pdf-preview/23955",authors:[{id:"47236",title:"Dr.",name:"Ivana Maria",surname:"Saes Busato",slug:"ivana-maria-saes-busato",fullName:"Ivana Maria Saes Busato"},{id:"48532",title:"Dr.",name:"Luciana Reis",surname:"Azevedo-Alanis",slug:"luciana-reis-azevedo-alanis",fullName:"Luciana Reis Azevedo-Alanis"},{id:"48533",title:"MSc.",name:"Rosângela",surname:"Rëa",slug:"rosangela-rea",fullName:"Rosângela Rëa"},{id:"91256",title:"Mr.",name:"Carlos Cesar",surname:"Deantoni",slug:"carlos-cesar-deantoni",fullName:"Carlos Cesar Deantoni"},{id:"91423",title:"Dr.",name:"João Armando",surname:"Brancher",slug:"joao-armando-brancher",fullName:"João Armando Brancher"},{id:"91904",title:"Dr.",name:"Maria Ângela",surname:"Naval Machado",slug:"maria-angela-naval-machado",fullName:"Maria Ângela Naval Machado"},{id:"104600",title:"Prof.",name:"Antônio Adilson",surname:"Lima",slug:"antonio-adilson-lima",fullName:"Antônio Adilson Lima"}],corrections:null},{id:"23956",title:"The Effect of Type 1 Diabetes Mellitus on the Craniofacial Complex",doi:"10.5772/24104",slug:"the-effect-of-type-1-diabetes-mellitus-on-the-craniofacial-complex",totalDownloads:2620,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mona Abbassy, Ippei Watari and Takashi Ono",downloadPdfUrl:"/chapter/pdf-download/23956",previewPdfUrl:"/chapter/pdf-preview/23956",authors:[{id:"55524",title:"Dr.",name:"Mona",surname:"Abbassy",slug:"mona-abbassy",fullName:"Mona Abbassy"},{id:"56962",title:"Dr.",name:"Ippei",surname:"Watari",slug:"ippei-watari",fullName:"Ippei Watari"},{id:"56963",title:"Prof.",name:"Takashi",surname:"Ono",slug:"takashi-ono",fullName:"Takashi Ono"}],corrections:null},{id:"23957",title:"The Role of Genetic Predisposition in Diagnosis and Therapy of Periodontal Diseases in Type 1 Diabetes Mellitus",doi:"10.5772/24586",slug:"the-role-of-genetic-predisposition-in-diagnosis-and-therapy-of-periodontal-diseases-in-type-1-diabet",totalDownloads:2364,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"M.G.K. Albrecht",downloadPdfUrl:"/chapter/pdf-download/23957",previewPdfUrl:"/chapter/pdf-preview/23957",authors:[{id:"57762",title:"Prof.",name:"Maria",surname:"Albrecht",slug:"maria-albrecht",fullName:"Maria Albrecht"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"340",title:"Type 1 Diabetes",subtitle:"Pathogenesis, Genetics and Immunotherapy",isOpenForSubmission:!1,hash:"0b3ffa87d0c93e9104ffcc24e59c3199",slug:"type-1-diabetes-pathogenesis-genetics-and-immunotherapy",bookSignature:"David Wagner",coverURL:"https://cdn.intechopen.com/books/images_new/340.jpg",editedByType:"Edited by",editors:[{id:"45994",title:"Dr.",name:"David",surname:"Wagner",slug:"david-wagner",fullName:"David Wagner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2666",title:"Diabetes Mellitus",subtitle:"Insights and Perspectives",isOpenForSubmission:!1,hash:"49a714ae0be8a338523befe4ffc9352f",slug:"diabetes-mellitus-insights-and-perspectives",bookSignature:"Oluwafemi O. Oguntibeju",coverURL:"https://cdn.intechopen.com/books/images_new/2666.jpg",editedByType:"Edited by",editors:[{id:"32112",title:"Prof.",name:"Oluwafemi",surname:"Oguntibeju",slug:"oluwafemi-oguntibeju",fullName:"Oluwafemi Oguntibeju"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3829",title:"Antioxidant-Antidiabetic Agents and Human Health",subtitle:null,isOpenForSubmission:!1,hash:"148f7976e4249aa1f0180cca370e36ce",slug:"antioxidant-antidiabetic-agents-and-human-health",bookSignature:"Oluwafemi Oguntibeju",coverURL:"https://cdn.intechopen.com/books/images_new/3829.jpg",editedByType:"Edited by",editors:[{id:"32112",title:"Prof.",name:"Oluwafemi",surname:"Oguntibeju",slug:"oluwafemi-oguntibeju",fullName:"Oluwafemi Oguntibeju"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3857",title:"Glucose Homeostasis",subtitle:null,isOpenForSubmission:!1,hash:"7d6d19b59871b430fbcfc4bd297e242d",slug:"glucose-homeostasis",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/3857.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3266",title:"Type 1 Diabetes",subtitle:null,isOpenForSubmission:!1,hash:"21684525ccb8c6acd89bc43ce177f90b",slug:"type-1-diabetes",bookSignature:"Alan P. Escher and Alice Li",coverURL:"https://cdn.intechopen.com/books/images_new/3266.jpg",editedByType:"Edited by",editors:[{id:"46023",title:"Dr.",name:"Alan",surname:"Escher",slug:"alan-escher",fullName:"Alan Escher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"665",title:"Global Perspective on Diabetic Foot Ulcerations",subtitle:null,isOpenForSubmission:!1,hash:"b702efe619adff42227dadb5b4bda12b",slug:"global-perspective-on-diabetic-foot-ulcerations",bookSignature:"Thanh Dinh",coverURL:"https://cdn.intechopen.com/books/images_new/665.jpg",editedByType:"Edited by",editors:[{id:"69737",title:"Dr.",name:"Thanh",surname:"Dinh",slug:"thanh-dinh",fullName:"Thanh Dinh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1036",title:"Type 1 Diabetes",subtitle:"Complications, Pathogenesis, and Alternative Treatments",isOpenForSubmission:!1,hash:"ccb81d334cd838c9e80f3ebafb63eec0",slug:"type-1-diabetes-complications-pathogenesis-and-alternative-treatments",bookSignature:"Chih-Pin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/1036.jpg",editedByType:"Edited by",editors:[{id:"47141",title:"Prof.",name:"Chih-Pin",surname:"Liu",slug:"chih-pin-liu",fullName:"Chih-Pin Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1038",title:"Topics in the Prevention, Treatment and Complications of Type 2 Diabetes",subtitle:null,isOpenForSubmission:!1,hash:"fedb4b227715729de998791e200ef56f",slug:"topics-in-the-prevention-treatment-and-complications-of-type-2-diabetes",bookSignature:"Mark B. Zimering",coverURL:"https://cdn.intechopen.com/books/images_new/1038.jpg",editedByType:"Edited by",editors:[{id:"39545",title:"Prof.",name:"Mark",surname:"Zimering",slug:"mark-zimering",fullName:"Mark Zimering"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3340",title:"Gestational Diabetes",subtitle:"Causes, Diagnosis and Treatment",isOpenForSubmission:!1,hash:"bc0e9aaba958dcee0b00d08175fe4f23",slug:"gestational-diabetes-causes-diagnosis-and-treatment",bookSignature:"Luis Sobrevia",coverURL:"https://cdn.intechopen.com/books/images_new/3340.jpg",editedByType:"Edited by",editors:[{id:"159644",title:"Dr.",name:"Luis",surname:"Sobrevia",slug:"luis-sobrevia",fullName:"Luis Sobrevia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"814",title:"Steroids",subtitle:"Basic Science",isOpenForSubmission:!1,hash:"74304f5d822f8f45d4b48a0e00ebd375",slug:"steroids-basic-science",bookSignature:"Hassan Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/814.jpg",editedByType:"Edited by",editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"69566",slug:"corrigendum-to-a-brief-overview-of-ophthalmic-ultrasound-imaging",title:"Corrigendum to: A Brief Overview of Ophthalmic Ultrasound Imaging",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/69566.pdf",downloadPdfUrl:"/chapter/pdf-download/69566",previewPdfUrl:"/chapter/pdf-preview/69566",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/69566",risUrl:"/chapter/ris/69566",chapter:{id:"65491",slug:"a-brief-overview-of-ophthalmic-ultrasound-imaging",signatures:"David B. Rosen, Mandi D. Conway, Charles P. Ingram, Robin D. Ross and Leonardo G. Montilla",dateSubmitted:"November 6th 2018",dateReviewed:"December 12th 2018",datePrePublished:"February 5th 2019",datePublished:"September 4th 2019",book:{id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,fullTitle:"Novel Diagnostic Methods in Ophthalmology",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowinska",slug:"anna-nowinska",fullName:"Anna Nowinska"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"65491",slug:"a-brief-overview-of-ophthalmic-ultrasound-imaging",signatures:"David B. Rosen, Mandi D. Conway, Charles P. Ingram, Robin D. Ross and Leonardo G. Montilla",dateSubmitted:"November 6th 2018",dateReviewed:"December 12th 2018",datePrePublished:"February 5th 2019",datePublished:"September 4th 2019",book:{id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,fullTitle:"Novel Diagnostic Methods in Ophthalmology",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowinska",slug:"anna-nowinska",fullName:"Anna Nowinska"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,fullTitle:"Novel Diagnostic Methods in Ophthalmology",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",bookSignature:"Anna Nowinska",coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowinska",slug:"anna-nowinska",fullName:"Anna Nowinska"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6729",leadTitle:null,title:"Economics of Lifestyles Applied to Health Economics",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tIt is well known that noncommunicable diseases are responsible for nearly 40% of premature deaths all over the world. One modifiable risk factor for such mortality rates is people's lifestyles such as unhealthy diets, physical inactivity, tobacco exposure and excess alcohol use. People of all ages are affected by these diseases and premature deaths. The World Health Organization and Governments have become more concerned with these increasing and worrying statistics and have set to reduce premature deaths from noncommunicable diseases by one third by 2030. The aim of this book is to provide the reader with an overview of the current empirical work on the topics concerning health economics and lifestyles from different perspectives including the socioeconomic determinants of lifestyles, the impacts and the costs of noncommunicable diseases due to unhealthy lifestyles, the effects of public programs to promote healthy lifestyles, health insurance coverage, lifestyles and noncommunicable diseases coverage, the socioeconomic inequity associated with unhealthy lifestyles, and a particular focus is placed on the economics of the four main lifestyle diseases: cardiovascular diseases, diabetes, cancer and chronic respiratory diseases.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"ef77e9a5ebf778a9feb96f1454554d50",bookSignature:"Ph.D. Aida Isabel Tavares",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/6729.jpg",keywords:"Lifestyle economics, Health economics, Health policy, Lifestyle programs, Public health economics, Markets and regulation, Health demand,Health inequity, Preventive healthcare, Noncommunicable disease burden, Health insurance and lifestyles, Pharmaceutical industry and lifestyles, Socioeconomic determinants and impacts",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 1st 2017",dateEndSecondStepPublish:"December 20th 2017",dateEndThirdStepPublish:"February 20th 2018",dateEndFourthStepPublish:"May 11th 2018",dateEndFifthStepPublish:"July 10th 2018",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"196819",title:"Prof.",name:"Aida Isabel",middleName:null,surname:"Tavares",slug:"aida-isabel-tavares",fullName:"Aida Isabel Tavares",profilePictureURL:"https://mts.intechopen.com/storage/users/196819/images/system/196819.jfif",biography:"Aida Isabel Tavares holds a Ph.D. in Economic Analysis awarded by the Autonoma University of Barcelona in 2008. \r\nShe has been dedicated to research in Applied Health Economics and she published several articles in international peer-reviewed journals. She has also published one book in public economics. Her research areas include health economics and policy, health systems, socioeconomic determinants of health, regulation in health markets and economics evaluation. Dr. Tavares has also been teaching at different universities, specifically several courses related to microeconomics, public economics, and health economics. Currently, she collaborates with the Centre of Studies and Research in Health of the University of Coimbra in Portugal and she an Assistant Professor in Lisbon School of Economics and Management - University of Lisbon.",institutionString:"ISEG - Lisbon School of Economics & Management, University of Lisbon",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"220812",firstName:"Lada",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/220812/images/6021_n.jpg",email:"lada@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7846",title:"Universal Health Coverage",subtitle:null,isOpenForSubmission:!1,hash:"03f74e6a4e925b7368b87e813bc29e1f",slug:"universal-health-coverage",bookSignature:"Aida Isabel Tavares",coverURL:"https://cdn.intechopen.com/books/images_new/7846.jpg",editedByType:"Edited by",editors:[{id:"196819",title:"Prof.",name:"Aida Isabel",surname:"Tavares",slug:"aida-isabel-tavares",fullName:"Aida Isabel Tavares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17857",title:"Application of RFID Technology in eHealth",doi:"10.5772/23560",slug:"application-of-rfid-technology-in-ehealth",body:'\n\t\tToday’s hospitals are particularly interested in increasing the quality and efficiency of patient identification and monitoring procedures. While most patient health records are stored in separate systems, there is still a huge stack of paperwork left for health-care providers to fill out in order to comply with different regulations. Since many health care errors occur when important patient information is missing or simply not available, the electronic medical records (EMRs) may easily alleviate the distress of most doctors and nurses working in today’s care system.
\n\t\t\tThe next step beyond the EMR is to connect and provide medical information to primary care physicians, medical and surgery specialists, anesthesiologists, nurses, assisted-living staff, patients themselves, patient’s family and so on.
\n\t\t\tHowever, each hospital may use a different system, store data in many ways and even decide upon its own data format. Furthermore, file system access and data retrieval are often governed by inconsistent parameters. Thus, the availability of medical information is seriously affected and effective communication among physicians is not achieved.
\n\t\t\tWithin this framework, the present chapter focuses on how RFID technology can be used in order to solve the problems eHealth is dealing with. After defining the EHR and EMR terms, we shall focus on presenting an RFID-based system (named SIMOPAC) that integrates RFID and multi-agent technologies in the field of health care. The purpose of this system is to make patient emergency care as efficient and risk-free as possible, by providing doctors with as much information about a patient as quickly as possible. SIMOPAC could be used in every hospital with the existing systems in order to promote patient safety and optimize hospital workflow. The SIMOPAC system will assure information exchange with electronic health record (EHR/EMR) (Smaltz & Berner, 2007; Hallvard & Karlsen, 2006) systems set up in healthcare units. This information exchange will be in accordance with the HL7 standards specifications. In the present chapter, we will focus on the RFID technology and how it could be used in emergency care in order to identify patients and to achieve real time information concerning the patients’ biometric data, which might be used at different levels of the health care system (laboratory, family physician, etc.). Within the SIMOPAC system, the access to medical information is granted by an electronic memory-based chip (RFID tag or transponder). This tag, named Personal Health Information Card (CIP, in Romanian) (Turcu & Turcu, 2008), allows patient information storage (Jonathan, 2004). We describe a general purpose architecture and data model that is designed for storing and presenting clinically significant information to the emergency care physician. Also, we present the strengths and weaknesses of this RFID-based systems used in eHealth.
\n\t\tThe most common method currently used by physicians in hospitals to record patient data is paper-based, a method considered low cost and easy to use. But there are various disadvantages concerning this practice, especially when health records must be stored for a long period of time. One disadvantage concerns the storage space: paper-based records require a significant amount of storage space in comparison with electronic/digital records. Another one refers to the costs involved: electronic storage media is cheaper then traditional storage media. More problems can occur when a patient’s paper records are stored at different levels of several health units: the process of collecting patient’s information by a health care provider proves very difficult and time consuming. In 1990, a study commissioned by the Institute of Medicine (IOM) highlighted the strength and weakness of the traditional paper-based health records. Some identified weaknesses were the disorganization, the illegibility, and the short availability (Van der Meijden, 2001). In order to eliminate the mentioned disadvantages and weaknesses the use of electronic medical records becomes imperative (I. de la Torre et al., 2010).
\n\t\t\tElectronic Health Record (EHR) and Electronic Medical Record (EMR) are two terms often used in the last years. Even though related to the same field and considered interchangeable, each of these terms describes a completely different concept and is defined in various ways. Recently, National Alliance for Health Information Technology (NAHIT), a leadership organisation that aims at enforcing the use of IT health systems in order to improve the US healthcare system has defined EMR and HER as follows:
\n\t\t\tEMR: The electronic record of health-related information on an individual that is created, gathered, managed, and consulted by licensed clinicians and staff from a single organization who are involved in the individual\'s health and care.
EHR: The aggregate electronic record of health-related information on an individual that is created and gathered cumulatively across more than one health care organization and is managed and consulted by licensed clinicians and staff involved in the individual\'s health and care.
A more elaborated definition of EHR was delineated by the Healthcare Information and Management Systems Society (HIMSS) – a professional member organization exclusively focused on providing leadership for the optimal use of healthcare information technology:
\n\t\t\tEHR: A longitudinal electronic record of patient health information generated by one or more encounters in any care delivery setting. Included in this information are patient demographics, progress notes, problems, medications, vital signs, past medical history, immunizations, laboratory data and radiology reports. The EHR automates and streamlines the clinician\'s workflow. The EHR has the ability to generate a complete record of a clinical patient encounter - as well as supporting other care-related activities directly or indirectly via interface - including evidence-based decision support, quality management, and outcomes reporting.
By considering these definitions one can conclude that an EHR is an EMR with interoperability. This attribute was also highlighted by Justin Barnes (Chairman Emeritus of the HIMSS) who believes that "the future of healthcare IT is interoperability”.
\n\t\t\tBut selecting an EMR or an EHR software proves a difficult task for a health care services provider. Mr. Barnes considers that there are three criteria to be taken into consideration while choosing between EMR and EHR systems:
\n\t\t\tCurrent-year interoperability certification standards (CCHIT- Certification Commission for Healthcare Information Technology, HL7 – Health Level Seven);
A unique workflow that matches your practice and specialty;
Excellent usability at the point of care.
Electronic medical records (EMRs) may easily alleviate the distress of most doctors and nurses working in today’s care system. Besides improving the degree of data availability among physicians and patients, they certainly increase the traceability of numerous medical details so deeply buried in traditional records. Still, despite these potential benefits that cannot be disregarded, doctors have been reluctant in adopting electronic health records.
\n\t\t\tMost hospitals have improved patient care by reducing wait times in the emergency ward when they decided to replace their paper-based process for emergency ward admission with a solution based on informatics systems. With these solutions in place, hospitals save minutes each time they admit a patient because doctors and nurses no longer fill out forms manually and improve healthcare outcomes. Thus, it has been estimated that 15 to 18 per cent of US physicians already use electronic health records (Tucci, 2008).
\n\t\t\t“Instant access to patient information is key to lifesaving care, especially in the emergency room and intensive-care unit, where delays may mean the difference between life and death”, Dr. Mark Smith said (Microsoft, 2006). Currently, Emergency Medical Service (EMS) providers rely completely on personal and medical history information provided by patients or family members. It is common knowledge that stress, physical and mental discomfort prevent most patients and family members to impart vital medical information. Problems may also arise if there are no family members around or if the patient is unconscious, incoherent or unable to talk or communicate (e.g. language difficulties).
\n\t\t\tThe next step beyond the EMR is to connect and provide medical information to primary care physicians, medicine and surgery specialists, anesthesiologists, nurse practitioners, assisted-living staff, patients themselves, patient’s family and so on.
\n\t\t\tHowever, each health unit may use a different system, store data in many ways and even decide upon its own data format. Furthermore, file system access and data retrieval are often governed by inconsistent parameters seriously affecting the availability of medical information. Hence the inefficient communication among physicians.
\n\t\t\tMicrosoft\'s Feied, a pioneer in medical training computer programs and medical intelligence software, said physician collaboration is the critical element for improving health care. He offered an impassioned testimonial. An emergency room physician who estimates he treated 80,000 patients "with my own hands", Feied said the thing that stuck out as he looked back on his career was how many times he was put in a position of "guessing over and over", "flying solo" in an information vacuum. In situations where people "die right in front of you", he said he often felt he was "one data element away" from stopping a patient from dying (Tucci, 2008).
\n\t\t\tThe market for bringing healthcare data from disparate sources into one view is growing by leaps, according to a new study from KLAS, a healthcare research firm based in Orem, Utah (Klas, M., 2009).
\n\t\t\tFor example, through Microsoft HealthVault and Google Health, Microsoft and Google have a common goal of managing vast quantities of personal health information to benefit end users. Thus, these systems encourage and support healthcare patients/consumers to control and account for their own and family health records.
\n\t\t\tAccording to (Impact, 2008), data integration – the automated aggregation and consolidation information from a variety of disparate systems and sources – across sites of care (inpatient, ambulatory, home), across domains (clinical, business, operational), and across technologies (text, video, images) – is the Holy Grail of healthcare information technology.
\n\t\t\tStill, it is necessary to find a way to get the vital medical data into the hands of those who can use it to save lives in emergency medical services, even when there is no connection to the Internet or the server is down.
\n\t\t\tHealth systems and health policies across the European Union are becoming more and more interconnected, and also more complex. The European Commission aims at improving the safety of care for patients in all EU Member States through sharing information and expertise (EC, 2006). But healthcare is provided through different systems that run at the national level.
\n\t\t\tFor the moment, introducing informatics systems within the Romanian healthcare proves to be relatively difficult, as patients data has not been shared at the level of medical entities, the medical records are not unitary and complete, and cannot be accessed online by the medical staff, when needed.
\n\t\tMedical care in Romania is not up to European standards and medical supplies are limited, especially in some rural areas. In larger cities, there are hospitals and private clinics, but in some small cities or village areas, quality health care level is low.
\n\t\t\tHospitals are organized on geographical criteria at the regional, district and local level. Tertiary care is provided in specialized units (specialized hospitals, institutes and clinical centres) and in a number of cardiovascular and other surgery departments of teaching hospitals. Inpatient care is also provided by long-term care hospitals (for patients with chronic diseases who require long-term hospitalization), medicosocial care units (institutions under local authorities that provide both medical and social care), sanatoriums (units that besides usual treatments provide natural therapies) and health centres (inpatient units that assure medical services for at least two specialties) (C. Vlădescu et al., 2008).
\n\t\t\tThe fact that primary care is provided especially by family doctors is an indicative of the low efficiency and underuse of primary and ambulatory care services. It is also a proof of the fragmentation of services and insufficient development of different levels of care.
\n\t\t\tEmergency care is provided through a network of emergency centres with a territorial dispatch system connected to hospital wards specialized in dealing with emergencies. Each district has an emergency dispatch system with a number of ambulances located in hospitals or dispatch centres and emergency wards at designated hospitals. All hospitals have to be prepared to receive emergencies, but not all of them are properly equipped for this purpose (C. Vlădescu et al., 2008).
\n\t\t\tThe emergency system is based on the traditional ambulance system and SMURD (Romanian acronym for Mobile Emergency Service for Resuscitation and Extrication) as a complementary service, with a lot of bases in the whole Romania, still expanding.
\n\t\t\tToday’s Romanian medical sector has not fully embraced the gains and benefits of information systems. Thus, the medical staff is faced with endless amounts of paperwork of former and present patients. But, healthcare costs are expected to grow due to the aging of the population and the increasing demand on health systems. Considering this, one of the Romanian government’s priorities is controlling public spending on healthcare, in part, by IT investments.
\n\t\t\tIn this context our research team proposed an integrated system for identification and monitoring of patients – SIMOPAC (C. Turcu & Cr. Turcu, 2008). This system was designed to integrate within the distributed medical information system, and privately, to solve the issues related to patient identification and monitoring. The SIMOPAC system will assure the information exchange with electronic health record (EHR/EMR) (Smaltz & Berner, 2007; Hallvard & Karlsen 2006) systems set up in healthcare units. This information exchange will be in accordance with the HL7 (HL7, n.d.) standards specifications. Within the SIMOPAC system, information needed in medical services is stored and can be accessed by means of a Personal Health Information Card (CIP, in Romanian) (C. Turcu & Cr. Turcu, 2008). This card will be implemented by using the RFID technologies (Jonathan, 2004), where information carrier is represented by a transponder (tag).
\n\t\tIn order to provide high-quality medical services to all its citizens, EU has recently proposed the interconnection of all health and medical care systems and services. Thus, this proposal aims at creating a large continental medical service space available to all European citizens and authorized medical personnel. Unfortunately, the major challenge of implementing e-Health applications in Europe is the lack of interoperability of European medical systems and services. In our attempt to address this complex issue, we have proposed an integrated system for the identification and monitoring of patients, a system that suits the Romanian medical environment and allows further adaptations to any medical environment.
\n\t\t\tToday’s Romanian medical sector has not fully benefited from all gains and advantages of information systems. Patient-related information is scattered among various medical units, the patients’ charts have no standardized form or content and are seldom complete or up-to-date; moreover, if needed, they cannot be accessed online by the medical staff. Considering these major inconveniencies, we have devised an RFID-based system, called SIMOPAC, for the distributed medical field. Employing the latest Radio Frequency Identification solutions, the system permits the real time patient identification and monitoring, ensures the collaborative problem solving in distributed environment (multi-agent technologies) and provides the communication infrastructure with multi-point connections to the medical information within the system.
\n\t\t\tThe research’s main objective was the implementation of an integrated system using RFID technologies, agents and web services in order to identify and monitor patients. Delivering multi-source real time medical information, the SIMOPAC system aims at optimizing medical decision by increasing the quality of patient-oriented medical acts.
\n\t\t\t\tThe major objectives of the research were:
\n\t\t\t\tincrease the efficiency of medical information management;
increase the quality of medical services by adopting advanced information technologies;
build and expand the Romanian health information system in accordance with EU requirements in the field of health and medical care;
eliminate all physical constraints of hardcopy documents and to grant immediate access to medical charts or patient records;
establish partnerships among research units in different fields and motivate them to cumulate their experience and expertise in joint health projects;
give assistance in providing citizens with comprehensive and reliable information.
The specific objectives of the research were:
\n\t\t\t\timplement several RFID software applications aimed at patient identification by using Personal Health Identity Cards (CIPs) that allow the extraction of vital data in medical care and emergency situations and strengthen patients’ trust in medical treatment as by considerably reducing medication errors;
implement a high-speed communication system that secures the access of the medical staff to the electronic medical records (bi-directional access) and thus allows all medical and patient-related information to be shared by all parties involved in health and medical care;
improve the communication among all health-service providers: family physicians/specialist physicians, hospitals, medical laboratories, etc.
The SIMOPAC system allows:
\n\t\t\t\taccess to medical services via RFID Medical ID Cards;
sharing of patient-related information and development of databases containing patients’ electronic medical records;
secure access to medical information databases (for both medical staff and patients), as well as the complete and speedy bi-directional transfer of information;
quick and accurate information gain on the medical status of patients transported in emergency units (ambulances) and requiring appropriate medication;
enhanced communication among all health and medical care services: family doctors, specialists, hospitals, medical laboratories, pharmacists;
automated information-flow in the medical system.
SIMOPAC employs the latest technologies and software solutions. Widely used in a variety of other applications, RFID technologies have proved considerable advantages for the medical environment. Efficient patient identification solutions have already been reported by many European and American hospitals. However, according to recent surveys, the implementation of RFID solutions in healthcare is still in its infancy. The application of this technology in hospitals is part of the view that in the hospital of the future the patient\'s life will not be saved by the latest medicine, but by computer systems.
\n\t\t\t\tWithin the next ten years, multi-agent systems will trigger major transformations in health and medical care. The decision to integrate this technology in our SIMOPAC system was taken after a close consideration of its major advantages such as intelligent, adaptive and decentralized coordination-solutions and data availability in fragmented and heterogeneous environments. Our major aim was to design and develop software agents which could dynamically extract patient-related information from heterogeneous environments within a distributed communication structure.
\n\t\t\t\tRFID technology has been considered one of today’s “hottest” technologies due to its specialized capacity to track and trace objects in real time (Castro & Wamba 2007). RFID technology is classified as a wireless Automatic Identification and Data Capture (AIDC) technology that uses electronic tags to store identification data and other specific information, and a reader to read and write tags (Mehrjerdi 2007). Tags are small chips with an antenna. There are three different types of RFID tags: passive (uses the reader’s signal to be activated), active (battery powered) or semi-passive (battery-assisted, activated by a signal from the reader).
\n\t\t\t\t\tRFID technology is also providing a high level of security and has various important advantages over similar technologies, such as barcodes. It has been successfully implemented in a variety of areas, such as: logistics operations, inventory and materials management, industrial automation etc.
\n\t\t\t\t\tHealthcare industry can also benefit from the RFID technology. Although most of the current RFID healthcare applications and systems are just in some experimental phases, the future looks promising. Thus, some studies estimate that the market for RFID tags and systems in healthcare will rise from $90 million in 2006 to $2.1 billion in 2016 (RFIDUpdate 2008). The RFID-based systems can provide a number of benefits to the healthcare industry. By attaching RFID tags to different entities in healthcare industry (people and objects), RFID technology can ensure the following: identification, tracking, location and security. These capabilities directly affect the major issues currently experienced by healthcare organizations while helping to drive down costs (RFIDHealthcare, n.d.).
\n\t\t\t\t\tThe main idea of any RFID healthcare system is to tag patients. Thus, an RFID tag attached to a patient needs to store some of the patient’s relevant information, such as: identification data, a list of chronic diseases the patient is suffering from and the most significant data of patient’s medical history. But, the common problem of any memory based system has always been that no amount of memory is ever sufficient (Peacocks, n.d.). On the other hand, it is well known that RFID tags with large memory capacity are too expensive to be used in a system with thousands of patients and the only way to keep costs low is to use passive tags with reduced memory capacity. But it is obvious that a tag with a reduced memory capacity cannot store all the relevant information related to a patient. This problem can be solved by storing the vital information on the RFID tag and the additional information into a central database, based on a tag template. The IP address of the database server could also be stored on the RFID tag, so that the additional information could be accessed by the medical staff over the Internet. This way, all relevant patient-related information will always be available for the medical staff.
\n\t\t\t\t\tAnother important feature that an RFID healthcare system should provide is the ability to integrate and exchange information with similar systems. This could be achieved by using HL7 standards. HL7, an abbreviation of Health Level Seven, regards the information exchange between medical applications and defines a specific format for transmitting health-related information. Using the HL7 standard, information is sent as a collection of one or more messages, each of which transmits one record or item of health-related information. The HL7 international community promotes the use of such standards within and among healthcare organizations, in order to increase the effectiveness and efficiency of healthcare delivery for the benefit of all (HL7_1, n.d.; Iguana & Chameleon n.d.; Shaver, 2007).
\n\t\t\t\tWhat is HL7? HL7 (Health Level Seven) is a non-profit organization that is a global authority in the field of interoperability of health information technology (*, HL7). HL7\'s more than 2,300 members represent approximately 500 corporate members, which includes more than 90 percent of the healthcare information systems vendors (Ehto, n.d.). Furthermore, HL7 “is a standard series of predefined logical formats for packaging healthcare data in the form of messages to be transmitted among computer systems” (OTech, 2007).
\n\t\t\t\t\tWhy HL7? Because “HL7 is the most widely used standard that facilitates the communication between two or more clinical applications. The prime benefit of HL7 is that it simplifies the implementation of interfaces and reduces the need for custom interfaces. Since its inception in the late 1980’s, HL7 has evolved as a very flexible standard with a documented framework for negotiation between applications. The inherent flexibility makes deploying HL7 interfaces a little more challenging at times.” (Mertz 2010).
\n\t\t\t\t\tThe HL7 messages are in fact clinical information and not only collections of data used to send information about some events in some healthcare enterprise.
\n\t\t\t\t\tOriginally developed in 1987, HL7 Version 2.x is now in use in more than twenty countries around the world. It contains messages for almost every conceivable healthcare application area, including the following: registration, orders (clinical and other), results and observations, queries, finance, master files and indexes, document control, scheduling and logistics, personnel administration, patient care planning, network synchronization, laboratory automation (OTech, 2007).
\n\t\t\t\t\tIn order to acquire all these, the HL7 standard includes: conceptual standards: RIM (Reference Information Model), document format standards: CDA (Clinical Document Architecture), clinical application standards: CCOW: (Clinical Context Object Workgroup) and messaging standard.
\n\t\t\t\t\tBut the use of intelligent agents reduces the need for knowledge about HL7 and interfaces, and thus reduces the barriers to entry for the introduction of HL7 (Long et al., 2003).
\n\t\t\t\t\tThus, ontology-based multi-agent systems provide a framework for interactions in a distributed medical systems environment without the limitations of a more traditional client server approach (Orgun & Vu, 2006).
\n\t\t\t\t\tWe consider agents (Turcu et al., 2009) that cooperate with each other in order to manage the information flow between local EMR database applications and HL7 message templates.
\n\t\t\t\tAgent technology is an emerging and promising research area, which increasingly contributes to the development of value-added information systems for different applications. An agent is a small, autonomous or semi-autonomous software program that performs a set of specialized functions to meet a set of specific goals, and then provides its results to a customer (e.g., human end-user, another program) in a format readily acceptable by that customer (Wagner, n.d.). For example, agent technology has been applied in the area of gathering information from World Wide Web heterogenous data sources. The performance evaluation of the agent-based system versus traditional systems (client-server and relational database based systems) was undertaken by some researchers (Yamamoto & Tai 2001; El-Gamal et al. 2007). The tests reveal that the agent-based systems provide better times of response as well quicker notification processing.
\n\t\t\t\t\tHealthcare systems are characterized by a wide variety of applications working in autonomous and isolated environments. The use of agent technology in healthcare system has been increasing during the last decade. Multi-agent systems become more and more important in the field of health care as they significantly enhance our ability to model, design and build complex, distributed health care software systems (Nealon & Moreno 2003)).
\n\t\t\t\tIn the last few years, most world-wide medical bodies and healthcare units have shown an increased interest in the employment of Healthcare Information and Management Systems and Electronic Medical Records (EMRs). Nevertheless, there are still many problems to be tackled upon, such as the case when patient information is not available because the unit which is supposed to offer medical assistance does not own the patient’s medical record. Furthermore, it is imperative to eliminate the duplication of medical services (e.g. laboratory tests) so that physicians may easily obtain any patient-related information that is stored in different databases within different EMR systems. Our research team developed a distributed RFID based system for patients’ identification and monitoring, named SIMOPAC. This system enables real time identification and monitoring of a patient in a medical facility, on the base of CIP. A CIP is a passive RFID tag that is storing relevant medical information regarding its carrier. The CIP provides a quick access to the actual health state of a patient and helps the medical staff in taking the best decisions, especially in case of an emergency. Thus, the risk of administrating wrong medication is highly reduced. The system is also able to integrate and exchange information with other HL7 and even non HL7 based clinical applications already developed by other companies or organizations. The presented system provides an interface to different areas of healthcare, such as: emergency services, medical analysis services, hospital services, family medicine services, etc.
\n\t\t\t\tThe different components of this scalable and robust distributed system are depicted in figure 1.
\n\t\t\t\tThe Personal Electronic Health Identity Card (PIC in English, CIP in Romanian) is a prerequisite of patient identification. SIMOPAC CIPs are designed to store patient personal data, minimum general health data, as well as other vital information indispensable in emergency situations. Employing the Domain Name System (DNS), the RFID tag permits patient identification in a SN@URI format, where SN represents the tag series corresponding to the patient’s CIP. The CIPs store the following data:
\n\t\t\t\temergency medical information (blood type, RH, allergenic substances, HIV/ AIDS and any other chronic or transmissible diseases, etc.);
patient ID + URI server keeping the medical chart;
values of 1 and 0 corresponding to a template defined within the system by the medical staff.
SIMOPAC offers reliable solutions for the distribution of patient-related information among several medical units. The system requires that all medical units own EHR/EMR information systems to store patient electronic medical records. Moreover the information systems must be compatible with 2nd version of HL7 standard. Whenever a member of the medical staff needs to consult a patient’s medical record, the multi-agent system allows the gathering of patient-related information, regardless of the patient’s location.
\n\t\t\t\tRelated to SIMOPAC architecture we can assert that this RFID-based system includes the following main modules:
\n\t\t\t\tUser management;
EMR viewer;
Tags management;
HL7 server.
These modules are shortly described in following subsections.
\n\t\t\t\tSIMOPAC System Architecture
Needless to say, security is one of the main aspects that should be taken into consideration when implementing such a distributed system. User management is a critical part of maintaining a secure system. Ineffective user and privilege management often lead many systems into being compromised (Teambusiness, n.d.).
\n\t\t\t\t\tThe User Management module was designed as a generalized system that enables the management of all users and users groups within a distributed system. It consists of different modules, each of them with its own list of entities and rights.
\n\t\t\t\t\tWithin the framework of SIMOPAC system, the User Management module provides the following main facilities:
\n\t\t\t\t\tpassword based access to the User Management application;
data encryption with the TripleDES algorithm for all important information transferred over the Internet and stored into the central database (e.g.: user names, passwords, access rights);
support for different levels of access rights. This implies that users are granted different rights to the system’s features;
management of system registered users (users visualization, adding or removing of certain users, profile modification, granting/revoking user privileges, etc.);
modules and entities management.
\n\t\t\t\t\t\tFigure 2 exemplifies the process of granting/revoking user privileges for different modules and entities of the SIMOPAC system.
\n\t\t\t\t\tGranting/revoking user rights
This module, generically named VizEMR-PC, allows patient identification based on his own CIP and displays some pre-configured information from the electronic health record of that patient. The patient identification is based on the patient’s identifier that is stored on his RFID tag and printed on the CIP. VizEMR-PC module also displays patient information in the language requested by the user.
\n\t\t\t\t\tThis module can be used when the CIP is read at a medical unit and the medical staff wants to obtain more information about the patient. VizEMR-PC provides the following main facilities:
\n\t\t\t\t\ta specialized editor that allows the design (configuration) of a report template. This template will be used for the interest information from the electronic health record of the EHR/EMR system that is integrated with SIMOPAC. The report template is created only once by skilled health personnel and contains all or only some fields of the electronic medical/health record. This template can then be translated into several foreign languages in order to facilitate cooperation between medical units from different countries and assure a good care for a patient from another country.
a report generator that will be responsible with the completion of the following tasks:
filling the report template fields with information taken from the electronic medical/health record of a patient by using HL7 dedicated commands;
generating a custom report in different formats (XML, CVS, MDB, etc.), using the language specified by the user.
In order to have access to VizEMR facilities, authorized users must first login to the application by entering their username/password. The client-server communication is secure; all the passwords that are sent over the Internet are first encrypted on the client-side. Also, the access to various facilities offered by VizEMR-PC is granted in accordance to the rights previously set for the registered user. Access rights are established by the User Management module.
\n\t\t\t\tThis component of SIMOPAC system is mainly focused on the designing of the templates used for information structuring on patients’ CIP sheet and stored on a Web server. The patient’s CIP sheet contains two different areas, each of them storing specific information about the patient. The first one contains clear-text information that is needed especially in emergency situations. This information uniquely identifies a patient and specifies if he/she is suffering from any serious illnesses. The second section of the CIP contains data that can be interpreted only with the same template that was used for writing the information into the RFID tag. This template will be available for download at an URL written on the CIP. The medical staff can have quick access to the information written on the CIP by downloading (from the same URL address) a specialized add-on application that is mainly used to communicate with the RFID reader. Moreover, the medical staff can obtain a translation of this information, if it has been previously translated by the person created the template and the CIP sheet. This translation, available in an XML format, could be easily transferred and read. On the base of these templates, the medical staff can create the CIP sheet that corresponds to one or more patients.
\n\t\t\t\t\tOne of the main advantages of template based information structuring is the fact that in order to be included on the CIP, information is translated only once. Other advantages are listed below:
\n\t\t\t\t\tthe use of a single template for a specific target group (because everyone will have the same type of data included in the CIP);
allows a better organization of data to be included on the CIP.
A template consists of a list of user defined fields. Each field is defined by name and data type. The basic data types are shown in figure 3, to which more types can easily be added.
\n\t\t\t\t\tCommon data types
As seen in figure 3, each data type has been associated with a display format that will be used by a plug-in module for the correct displaying of the information stored on the CIP. The display format can be interpreted as follows:
\n\t\t\t\t\t(A/_) - letters (A. … Z) and other displayable ASCII characters;
[+-](0...9) – the symbol + or - (optional), followed by digits;
[+-](0...9)[.(0...9)] – the symbol + or - (optional), followed by digits. The decimal point is optional and it is used for floating point numbers representation;
yyyy-mm-dd – standard representation of dates (y - year, m - month, d - day);
hh/mm/ss – standard representation of time (hh - hour, mm - minutes, ss - seconds);
yyyy-mm-dd hh/mm/ss – standard representation of date-time values.
When the system contains at least one CIP sheet associated with a particular template, the template cannot be edited anymore, but another one could be built on the base of the first one. After building the template, the next phase is the translation of the fields; this translation will be saved in an XML format and then stored into the central database. There is no restriction related to the number of translations that can be done. When a doctor consults a patient\'s CIP sheet, he is granted access to the structured information as well. Regarding to the translation of the template\'s fields, the medical staff can choose between an automated translation (performed by the plug-in application, based on localization) and a translation that was downloaded once with the template associated to the patient\'s CIP sheet (see figure 4).
\n\t\t\t\t\tSIMOPAC – CIP sheet
The template is automatically accessed through the add-on module downloadable from the official site of the SIMOPAC system. The URL is printed on the label of the RFID tag (see figure 5). After being downloaded and launched, the add-on module will perform the following actions:
\n\t\t\t\t\ttries to find an RFID reader recognized by the system;
if such a reader has been found, the add-on module accesses the SIMOPAC\'s database and downloads the template and its translation;
based on this information and using the localizing function, the add-on displays the translated template filled with all data extracted from the patient’s CIP (local RFID tag);
after patient investigation, the add-on module sends all the results/findings to the logs\' area of the SIMOPAC server.
An example of printed label of a patient’s CIP
The filling-in of the patient\'s CIP sheet, along with the creation/administration of the template(s) is to be performed by the treating doctor. If the medical unit does not use such an EMR system, it is still possible to use the SIMOPAC system, but without the facilities of an EMR system (e.g.: direct import of patients\' related data).
\n\t\t\t\t\tGenerally, the memory space on RFID tags is limited to about 1-2 Kbytes. Thus, an efficient data compression method is needed when working with large amount of data. In order to reduce the amount of memory needed to store the structured information on RFID tags, we have designed and developed several techniques of data representation, as follows:
\n\t\t\t\t\trepresentation of Floating point/Integer numbers on subintervals [a, b], with step specified. This achieves a reduction in the number of bits needed for representation;
representation of Date, Time and DateTime values by setting the startup date/time value;
specifying the list of possible values for the fields using small sets of values;
Huffman encoding of fields that frequently use the same numerical values.
When representing numerical values on subintervals, the template will store some additional information, as a 3-tuple (left borderline, number of values, [step]). If the distance between two consecutive values is different from 1, then it must be specified in the template, in the optional section [step] (see figure 6).
\n\t\t\t\t\tInternal representation for floating point/integer numbers
When working with a Date field, the user can specify (in the template) the date from which the actual encoding within that field begins. Thus, the value 0000 corresponds to the start date. This start date will be specified as a 3-tuple (year, [month] [day]), year being the only mandatory. If month is missing, it is assumed to be January. When day is missing, it is assumed to be the first day of the month. The value stored in such a field represents the number of days elapsed from the start date (see figure 7). Time fields will be handled in a similar manner. The value stored in such a field represents the number of seconds elapsed from the start date (see figure 8).
\n\t\t\t\t\tInternal representation of date values
Internal representation of time values
Huffman coding, a variable-length coding method, was used to allow a substantial compression ratio of the data encrypted on the RFID tag. Thus, certain fields encode information such as "diseases" and some of them may occur more often on patients\' tags than others. Figure 9 presents an example of a Huffman coding tree.
\n\t\t\t\t\tCoding tree
Our research team designed and developed a HL7 portal to integrate the SIMOPAC system with other clinical applications/systems already developed by other companies or organizations. Thus, the main purpose of this server is to acquire clinical data about patients (from different servers and applications) by using the HL7 messaging protocol. Within the framework of SIMOPAC system, the HL7 server will be primarily used to obtain the EMR of a patient that was identified by his RFID tag. There are two different ways of getting clinical data (Cerlinca et al., 2010):
\n\t\t\t\t\tusing the standard HL7 messaging protocol our HL7 Messaging Server connects to a list of medical applications and requests patient’s related data;
using simple and intuitive ASCII commands any non-HL7 application can connect to the Messaging Server and request data about a patient.
The main objective of the HL7 portal is to ensure safe and standardized communication between aware and non-aware HL7 applications and SIMOPAC system modules (Figure 10). Other objectives that we had to accomplish are:
\n\t\t\t\t\teasy integration with other modules of the system such as: plug-ins, PDA software, software agents;
compatibility with Linux, Windows 7/XP/2000 and Windows Mobile operating systems;
secure data exchange using HL7 CCOW standard authentication and encryption algorithms.
HL7 Portal integration
The HL7 Portal should provide a secure and sustained flow of medical data between various system modules, regardless of whether they support or not the messaging standard. The modules we developed for this portal are (Figure 11):
\n\t\t\t\t\tMedical Data serving module: HL7 V2/3 messaging which provides standardized communication between system’s modules and also with external medical software applications. This module can be integrated anywhere HL7 data messaging is used. The design and the implementation of this sub-module are compatible with Windows 7/XP/2000, Linux and Windows Mobile operating systems. Also it will provide, if and when needed, additional clinical information, other than the one stored on the RFID tag;
Authentication and data encryption according to HL7 CCOW, and providing the necessary confidentiality elements regarding the flow of medical data. This sub-module works only with HL7-aware applications;
Login and transfer module that uses HL7 V2 messaging in order to transfer clinical data between external HL7 servers and SIMOPAC applications. This method involves creating a TCP/IP socket connection that will connect to another socket (IP address: port) on a server, and providing thus the medical data flow. Typical connection used is HL7 LLP (Low Layer Protocol);
Data interpretation and translation module, the core of the entire portal;
Encryption key management which keeps and distributes all keys inside our software system; it also provides safe exchange of keys between the system’s modules. Furthermore, this sub-module keeps and distributes authentication and encryption algorithms types used by every module and by each partner module/external application.
HL7 Portal Architecture
HL7 Portal Facilities
\n\t\t\t\t\tThe main requests covered by the HL7 Portal are:
\n\t\t\t\t\tcompatibility with Windows 7/XP/2000 and Linux operating systems;
use of HL7 connection and authentication standards;
acquiring clinical data regarding patients by using safe HL7 connections;
encrypted exchange of data in all cases;
translation of HL7 formatted data as close as possible to the natural language;
the system architecture enables translation from/in an unlimited set of languages, as long as standard ASCII characters are used;
ensuring connection to and authentication of an unlimited number of concurrent client applications requiring patient information from HL7 medical data servers;
supported command set designed to provide complete support for gathering relevant medical data;
storage of all connections, received commands and answers in an encrypted log file.
A language barrier between patients and healthcare providers is a major obstacle in providing quality care, according to (Bischoff et al., 2003).
\n\t\t\t\t\tThe elements of originality of the HL7 portal are:
\n\t\t\t\t\tTranslation of HL7 messages parts in various foreign languages;
Enabling partial interpretation and translation of data from HL7 segments from and in any language;
Providing a simple mechanism to add new languages for data interpretation;
Providing means to obtain and process HL7 format data into non-HL7 applications;
There is no other portal that has the same functionalities as the SIMOPAC portal, designed and developed by our research team.
Even if our main goal was to provide a solution for healthcare language issues, there are some aspects that our system, in its current state, cannot solve: translation of descriptive fields, translation of doctor observations, etc. To this extent, more research is needed on EMR translation systems.
\n\t\t\t\tThis module provides the following features:
\n\t\t\t\t\tallows the interpretation of clinical data in different languages;
allows users to customize interpreted messages;
new languages can be dynamically added and then used for data interpretation;
executes commands received from client applications, and returns the corresponding clinical data, if any;
allows connections from an unlimited number of clients.
In order for this module to be fully functional, the following steps must be completed:
\n\t\t\t\t\tread the languages.txt file that contains all supported languages;
read all files used in data interpretation in different spoken languages and data initialization for each of these languages (Figure 12);
create a TCP/IP server socket for the connection of potential external application;
wait for connections and create one server socket for each client;
reply to each client for received messages and return requested data using the appropriate foreign language;
disconnect the client on request and close the corresponding thread/socket pair.
The languages.txt file is used in order to find out the available interpretation languages. Thus, this file contains all available interpretation languages identified by name and also indicates the associated language abbreviation used to find specific files. For example, the languages.txt file can contain: English (en), Francais (fr), Romana (ro).
\n\t\t\t\t\tThe files needed to interpret clinical data in English are:
\n\t\t\t\t\tHL7 specific messages files: EVN.en, MRG.en, MSA.en, MSH.en, MSH-EventType.en, MSH-MessageType.en, OBR.en, OBX.en, ORC.en, PID.en, PV1.en, QAK.en, QPD.en, RCP.en, ZDS.en.
We choose these file names because we needed to interpret the most used HL7 messages:
\n\t\t\t\t\tMSH (Message header);
MSA (Message Acknowledgement);
OBX (Observation);
OBR (Observation Request);
EVN (Event Type);
PID (Patient Identification);
PV1 (Patient Visit),
Files with translated error messages: -none-.en,
files not found-.en, -not present-.en.
\n\t\t\t\t\t\tTable 1 presents the command set for English and the corresponding returned values.
\n\t\t\t\t\tModule initialization by reading languages files
\n\t\t\t\t\t\t\t\t\tEnglish Command\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tReturns\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
login(IP, port, user, password) \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\tcommand sent by the client in order to connect through the portal to a HL7 server; \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tOK\n\t\t\t\t\t\t\t\t\t if successful or \n\t\t\t\t\t\t\t\t\t\tNOK\n\t\t\t\t\t\t\t\t\t if the connection failed; | \n\t\t\t\t\t\t\t
usePatient(SSN, language) \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\tcommand that will set the current patient; all subsequent commands from the current client will receive data on this patient; \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tOK\n\t\t\t\t\t\t\t\t\t if successful or \n\t\t\t\t\t\t\t\t\t\tNOK\n\t\t\t\t\t\t\t\t\t if the connection failed; | \n\t\t\t\t\t\t\t
getExternalID() \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\texternal identifier associated with the current patient (external to HL7 application questioned); \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tnone\n\t\t\t\t\t\t\t\t\t if there is no external ID; | \n\t\t\t\t\t\t\t
getInternalID() \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\tinternal identifier associated with the current patient (internal on HL7 application questioned); \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tnone\n\t\t\t\t\t\t\t\t\t if there is no internal ID; | \n\t\t\t\t\t\t\t
getAlternateID() \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\talternative identifier associated with the current patient (alternate to HL7 application questioned), etc. \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tnone\n\t\t\t\t\t\t\t\t\t if there is no alternate ID. | \n\t\t\t\t\t\t\t
getName() | \n\t\t\t\t\t\t\t\treturns the name of current patient; | \n\t\t\t\t\t\t\t
getMotherMaidenName() \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\treturns the patient’s mother maiden name, this may be important in order to get all information about family health history. Also may be used to distinguish between patients with the same last name. | \n\t\t\t\t\t\t\t
Command set for the English languages
This solution facilitates the addition of a new language support. The interpreter has to follow these steps:
\n\t\t\t\t\t1.adding a new line in the languages.txt file (e.g. Espanol (es));
2.creating the following files:
a.–files not found-.es, file with the following content: “!Archivos no encontrados! !Elija por favor otra lengua!”,
b.-none-.es file with the following content: “Ningunos”,
c.-not present-.es file with the following content: “No presente”;
3.translation into Spanish of all HL7 specific files.
The data will be interpreted once commands are received from external applications.
\n\t\t\t\t\tTesting
\n\t\t\t\t\tIn order to test the module, we developed a prototype for a generic client that executes all the commands described in the previous section. HL7 portal runs on a Linux machine, while the client is using a Windows platform. For testing the HL7 portal, we used three different applications, compatible with the HL7 standard: PatientOS, AccuMed EMR and the Mirth HL7 messaging server.
\n\t\t\t\t\tAll tests proved that our system complies with the specified requirements and can be successfully used to provide accurate health information in different spoken languages.
\n\t\t\t\t\tFrom the performance point of view, our design and implementation meets all requirements of typical client/server software systems. Performance testing proves that there are no significant delays and the server response time is more than acceptable.
\n\t\t\t\tSIMOPAC proposes a novel approach in patient identification and ensures the interoperability of HL7 medical information systems. Its implementation does not require any change in or re-design of existent information systems. SIMOPAC can easily integrate any other existing solutions in today’s medical establishments and provides a reliable way of identifying patients by using the latest RFID technology. Allowing the integration of other current technical solutions available in today’s medical units, SIMOPAC contributes to a considerable reduction of implementation costs. It also eliminates the import of patients’ electronic medical records into other EMR systems. Furthermore, the members of the medical staff do not need to be trained how to use the information system in order to store their patients’ medical records.
\n\t\t\t\tSIMOPAC permits the interoperability of medical information systems at an international level and especially among EU countries, irrespective of their centralized or decentralized health system organization:
\n\t\t\t\twhen a traveling citizen gets sick in some other EU country and requires an emergency service;
when a citizen travels to an EU member state in order to benefit from some requested medical service available in the visited country;
when diagnostic requests are electronically posted by individual citizens or by members of the medical staff in real-time store-and-forward telemedicine.
Since SIMOPAC does not substitute the existent information systems, it represents a viable solution for the reduction of costs involved in acquiring infrastructure components of medical information system and services. Economically, the level of interoperable health information-exchange among medical institutions is expected to reach considerable values. The actual increase of international medical contacts and the real need to exchange patient-related information in cross-border contexts pave the way towards the implementation of such systems.
\n\t\t\t\tSIMOPAC offers the following major benefits:
\n\t\t\t\tclinical benefits:
the members of the medical staff can securely access medical data stored in patients\' electronic records;
the patients’ health histories are made available to authorized staff;
the members of the medical staff can better coordinate the provision of health services by providing accurate information about their patients’ health, the history of their medical visits at any time and in any location where the system is operational;
the system stores and distributes upon request a whole-range of patient-related information;
patient-related data can be obtained on-line;
the paper consumption for keeping hardcopy documents may be considerably reduced or eliminated;
the system reduces medical errors and increases patient safety.
administrative benefits:
on-line access to information;
efficient management of medical information;
health care providers may be connected internally and externally;
the system eliminates the need to re-register patients and keep multiple healthcare records in several medical information systems.
Many errors in health care relate to lack of availability of important patient information. The use of information technology (IT) and electronic medical records (EMR) holds promise in improving the quality of information transfer and is essential to patient safety (Bates & Gawande, 2003). While the adoption of Information Technology in individual medical institutions is growing rapidly, interoperability is still a major challenge, and reaching agreement over the appropriate approach to a national EHR system has proved difficult. Thus, despite the fact that most hospitals store patient electronic medical information, these data cannot be easily shared among all healthcare systems because of its discordant formats.
\n\t\t\tThe continuous decrease of costs in RFID technology will soon enforce its use in everyday life. In this chapter, we have focused on the RFID technology and how it could be used in emergency care in order to identify patients and to achieve real time information concerning the patients’ biometric data, which might be used at different points of the health system (laboratory, family physician, etc.).
\n\t\t\tAlso, this chapter describes an RFID-based system (named SIMOPAC) that integrates RFID and multi-agent technologies in health care in order to make patient emergency care as more efficient and risk-free, by providing doctors with as much information about a patient as quickly as possible. The proposed RFID-based system could be used to ensure the positive patient identification (PPI) in a hospital. The SIMOPAC goal is to extend the procedure of patient identification beyond the hospital and country boundaries. Thus, our RFID-based system could be considered an open-loop RFID application, functioning across global hospital boundaries. The CIP will allow the identification of patients, and this RFID card will provide access to an ambulatory EMR, namely a data repository devised as a subset of a longitudinal health record. Furthermore, the CIP could be used to allow physicians to connect to the SIMOPAC server. In order to link patient identifiers to patient information, the SN@URI approach has been proposed, SN being the CIP serial number.
\n\t\t\tThe interaction of the afore mentioned system with another full EMR system will assure optimal integration. The HL7 server we have designed and developed can be used to obtain the EMR of a patient that was identified on the base of his RFID tag. Clinical data can be acquired from different servers and applications. In addition, any non-HL7 application can connect to our HL7 server and request data about a patient. Our system is able to integrate and exchange information with other HL7 and even non-HL7 based clinical applications already developed by other companies or organizations. Using multi-agent technology reduces the need for knowledge about HL7 and interfaces.
\n\t\t\tThrough the use of tag templates that can be translated into several foreign languages our system facilitates the cooperation between medical units from different countries in order to assure a good care for a patient from another country.
\n\t\t\tEvery hospital could use SIMOPAC with their existing system in order to promote patient safety and optimize hospital workflow. We have described a general purpose architecture and data model that is designed for both collecting ambulatory data from various existing devices and systems, and storing clinically significant information in order to be accessed by the emergency care physician. The SIMOPAC complexity is further amplified by the fact that most individual electronic health record systems are packaged products supplied by a variety of independent software providers and run on different platforms.
\n\t\t\tThrough the use of the RFID technology, the system we have developed is able to reduce medical errors, improve the patients’ overall safety and enhance the quality of medical services in hospitals and other medical institutions. For example, the risk of administrating wrong medication in case of emergency is highly reduced.
\n\t\t\tOur future research will focus on the development of various software modules that will use the medical information collected via RFID in order to optimize the patients’ treatment process.
\n\t\tThis work was supported in part by the Romanian Ministry of Education and Research under Grant named “SIMOPAC – Integrated System for the Identification and Monitoring of Patients” no. 11-011/2007.
\n\t\tIn the textile industry, the utilization of low environmental impact technologies that are based on sustainable raw materials presents a novel possible way for the development of functional textiles on a large scale. By-products and wastes from different sources and industries such as proteins, vegetable, agroforestry, furniture, food, footwear and automotive industries are often used as biomass or sent to landfills. However, due to the interest in by-products as a substituent for the commercially aggressive chemicals used in the textile industry, research on the valorization of these materials has remarkably increased. In this sense, several studies were carried out to enhance the performance attributes of textile goods through finishing, coating and dipping technologies with by-products and residues, thus creating an opportunity for the establishment of partnerships and circular economy business models.
The dairy industry is characterized by a broad group of food products, such as milk, milk powder, butter, yoghurts, cream and cheese, but it is also a big source of solid and liquid by-products, but among those, whey is the one produced at the highest volumes in cheese industry. The world production of by-products in dairy industry is around 4–11 million tonnes per year, but Europe is the worldwide leader in cheese production and consequently the largest whey producer [1, 2]. This has a big environmental impact if they are disposed as wastes, so strategies to reuse these by-products are important, and there is a community pressure in this sense. Traditionally, some years ago, whey is used to be disposed of, but with environmental concerns and legislation to be implemented, the reuse appears with a prominent role [2]. Whey is considered one of the major pollutant by-products because of its high biological and chemical oxygen demands [2]. Whey is composed of 85–90% water, 10–15% lactose (carbohydrates), soluble vitamins, minerals (e.g. calcium, phosphorus, sodium and so on) and proteins (e.g. β-lactoglobulin, α-lactalbumin, bovine serum albumin (BSA), immunoglobulins and others) [1, 2]. Lactose is the main component, being responsible for most of the biological and chemical oxygen demands [2]. However, lactose and other nutrients essential for microbial growth confer whey a potential to produce several bioproducts. Whey proteins award health benefits such as high nutritional value, easy digestion and assimilation, which are interesting for the food industry too. It can be used for biotransformation feeds, bioproteins, prebiotics, and bioactive peptides after fermentation or enzymatic hydrolysis. On the other hand, the reduced-lactose whey, demineralized whey, and whey protein concentrates or isolates are used for food, cosmetic and pharmaceutical industries, especially for thier emulsifying, thickening, gelling, foaming and water-binding properties. More specific, these proteins of natural origin and with emulsifying capacity are used in the formulation of creams and shampoos as substitutes for synthetic surfactants. The whey protein hydrolysate also has this type of application for hair products. Another property of whey protein consists of gel formation, being used to produce protective films and coatings. These proteins, as they have low permeability to water vapour, are used in paper coating, providing good appearance and printability. β-Lactoglobulin and α-lactalbumin can be used as moisturizing and antiwrinkle agents. Lactoferrin is a good iron chelator, preventing the formation of free radicals. In the 1990s, whey protein, in the form of iron proteinate, was also used as an antianemic preparation [3]. Moreover, this by-product can be reused not only for its technological properties but also for its biological properties in terms of the body’s benefits.
Due to its biological and chemical properties, whey has several applications, depending on the biotechnological method applied to reuse this by-product. It can be used to obtain chemical products to produce functional formulations and for food, fuel health, pharmaceuticals, biomaterials and others.
Whey has been used in the food industry to produce functional food and drinks as an innovative product with health benefits. For example, whey can be used in dairy beverages: unfermented or fermented, probiotic, refreshing soft, alcoholic, diet and high protein sport [2]. Whey is also one of the main sources of the bioactive peptides that can be used as nutritional supplements because of its structure, rapid absorption and biological properties (antihypertensive activities and antioxidant properties). On the other hand, whey protein has been explored in the food industry in edible film or coating development for food preservation, for its biochemical properties, such as its edible nature and intrinsic biodegradability, suitable mechanical barrier, flexibility and the capacity to incorporate functional compounds [4].
The improvement of knowledge has also allowed the development of biomaterials from whey, for example, to produce biodegradable capsules for drug delivery. The whey protein isolates (WPI) have been used for bone regeneration to produce bioactive glasses with potential applications in bone tissue engineering.
These biomaterials have been explored for tissue engineering applications due to their chemical and biological properties, such as the ability to retain water, easy transport/entrapment of nutrients or cells, controlled biodegradability, mechanical properties and biocompatibility [5]. However, the field of action of whey is much wider and applied to other industries as an eco-friendly alternative to conventional chemicals.
Agro-industrial wastes include several different wastes from the food and agriculture industries. The amount of wastes from the food and forestry-based industries produced in the European Union (EU) is estimated to be in the order of 900 million tonnes per year. However, a large part of these wastes are considered low-value input materials instead of wastes, like sawdust that can be used to make products such as fibreboard or leaves and stalks of plants that can have other agricultural uses such as animal bedding [6]. If these wastes are released to the environment without a proper disposal procedure, they may worsen the environmental pollution and cause harmful effects on human and animal health. Table 1 shows the estimated sustainable availability of agro-industrial wastes.
Wastes | Current availability (Mtonnes/year) | 2030 availability (Mtonnes/year) |
---|---|---|
Paper industry | 17.5 | 12.3 |
Wood industry | 8 | 5.6 |
Food and garden industries | 37.6 | 26.3 |
Crop wastes | 122 | 139 |
Forestry wastes | 40 | 40 |
Agro-industrial wastes and wastes produced in the EU [6].
Recently, these wastes have been the focus of much attention due to their huge potential for exploration, not only for their wide availability and diversity but also for their intrinsic properties and functionalities, which make them an increasingly attractive feedstock for chemical, material and biofuel production [7]. Conscious consumption allied with ethical and sustainable values is increasing the consumers’ concern in the moment of purchase: “What is the nature of the raw material?”; “What is the life cycle of the product?”. This tendency has made the producers look for alternative raw material sources [8].
It was found that the typology of vegetable wastes most produced varies from year to year, with the most abundant being materials unsuitable for consumption or processing, biodegradable wastes and vegetable textile wastes [9]. The most promising vegetable and agroforestry wastes for textile application are, for example, sawdust, coffee grounds, pine bark, eucalyptus bark and others. Sawdust and composites of sawdust (in powder and in pieces) are very abundant wastes as a result of the wood processing industry such as furniture industry. Coffee grounds are highly abundant because the cultural habit of people is drinking a lot of coffee. Pine bark is a highly abundant waste that is very easy to adapt for textile coating applications, which can result in a brown powder that gives rise to coatings with a dark colour and a very attractive shade. Olive stones are also abundant, resulting from the production of olive oil or from the ginning of the olives. Almond or nutshell wastes can create coatings with very attractive colours and visual effects. Rice husk, due to its low nutritional value, is not a viable resource as food for animals, and the burning or landfill deposition of this type of waste has important environmental impacts, as it has a slow biological degradation (high silica content). Eucalyptus bark is also abundant, resulting from the paper and wood processing industries [7].
The transformation of animal skins into leather allows for the recycling of what would be an organic waste from the food industry into added-value products. In this context, the animal skin is considered a by-product, as it is not reintroduced in the same productive cycle and its reuse contributes to a more sustainable and a circular economy.
There are several applications for leather, and the manufacture of leather upholstery for furniture, airplanes and automobiles has been one of the main markets in the last two decades. Although leather waste recycling has been the subject of hundreds of studies, landfilling remains the most frequent option, wasting all resources contained in leather. Also, due to environmental restrictions, the study and development of sustainable alternatives for the recovery of this waste for the manufacture of new, more sustainable materials are urgent [10].
The valorization of leather wastes such as leather shavings aims to the reduction of the presence and usage of Cr (VI), oil, hydrocarbon, and solvent absorber; adsorbent of chlorides, fats, tannins, surfactants, and dyes, used in the tanning process. Leather powder has already been applied as an oil and crude absorber, while carding powder has been used as an adsorbent for textile dyes (more anionic than cationic) [10].
This type of waste can be physically processed by crushing and grinding methods. For certain uses, its mixture with resins and catalysts for subsequent pressing between metal moulds with various configurations and sizes can produce multilayer or composite structures. Final products are obtained with a very good appearance, without the need for any additional finishing, with good sound insulation and even good thermal insulation [11]. Applications in furniture, floors and footwear components are some of the examples. Through these processes leather wastes have been used in leather-like materials and construction materials, as additives for thermoplastic composites and as filler materials for reinforcing rubbers [10].
Leather waste can also be processed chemically (alkaline or acid hydrolysis) or enzymatically, in order to obtain collagen (by-product) for application in added-value products. Collagen consists of a fibrous, insoluble and inert protein, which after alkaline/acid/enzymatic hydrolysis is divided into gelatine and hydrolysed (soluble) collagen, by breaking the chromium-collagen bond established during the tanning phase and breaking non-covalent bonds in the protein’s structure that lead to its swelling and solubilization [12, 13].
The chemical processing of leather wastes also results in Cr (VI), which can be reintroduced upstream into the leather tanning process. Another type of chemical processing reported for the recovery of Cr (VI) involves the incineration of tanned chips and blue chips and later transformation of the ashes by converting chromium (III) oxide into sodium chromate [Cr (VI)] [14, 15].
Given that the present method of recovering collagen from leather wastes is free of complex installations and equipment, its implementation in the productive cycle of companies is economically attractive [14].
Whey exhibits many unique functional properties such as antibacterial and antioxidant activity and odour and water vapour absorber, among others. Therefore, whey has become an attractive product for its versatile applications in different fields, including textile industry. Many of these applications are also reported in the development of new functional products in the food and pharmaceutical fields, due to the properties (such as antimicrobials, antioxidants, and anticancer drugs) and structures of whey protein and its fractions. Table 2 shows some examples of applying these fractions to obtain the functionalities described.
Functionality | Description | Ref. |
---|---|---|
Antioxidant | Several studies show that whey has antioxidant properties. It is maximized with an enzymatic treatment of whey, milk or cheese and with the hydrolysate’s valorization (microbial proteases, β-lactoglobulin and α-lactalbumin). This evaluation was done with ABTS or ORAC-FL method | [16, 17, 18, 19] |
Deodorant property | Milk and whey proteins are effective in the absorption of odours, given their composition in proteins and lipids. Lactose is described by its ability to retain odours, absorbing them on its surface as the crystals form | [20, 21] |
Antimicrobial | Two of the whey fractions, lactoferrin and lactoperoxidase, present an antimicrobial activity. Lactoferrin has several antimicrobial peptides that are released after hydrolysis by proteases. Lactoperoxidase has a high antimicrobial capacity through catalytic and chemical processes | [22, 23, 24, 25, 26, 27] |
Whey, protein fraction and dairy by-product functionalities.
Another application for whey or milk fractions is related to the production of microcapsules. In fact, globular proteins had been used as a vehicle for the micro-/nanoencapsulation of bioactive compounds. Milk proteins, namely, whey protein, have been used for the microencapsulation of aromas. Using serum protein isolate and gum arabic, it is possible to encapsulate β-carotene. The same gum arabic had already been shown to be effective in promoting self-aggregation, and consequent capsule formation, of β-lactoglobulin [28, 29, 30]. Another aspect is the microencapsulation of β-lactoglobulin with another polysaccharide, chitosan, and this has a stabilizing effect on serum proteins, protecting them from denaturation at temperatures up to 90°C. Due to its structure, β-lactoglobulin can also form complexes with vitamins and nutraceuticals, such as folic acid. β-Lactoglobulin/folic acid complexes exhibit particle sizes below 10 nm and exhibit stability over a wide range of pH values [31, 32, 33].
The passage of traditional industrial processes to more sustainable patterns and a circular economy model are mandatory given the limited resources and adverse environmental effects that are noticeable today. In this sense, the establishment of bio-based economies and industrial processes, such as the textile industry, will contribute directly to substitute emission-intensive and non-renewable resources with renewable resources, as well as create innovative and functional added-value solutions [9]. Some wastes or natural additives can provide a wide range of functional properties to textiles, opening an opportunity for the development of new and innovative textile solutions. Some potential functionalities of some vegetable and agroforestry wastes and by-products are presented in Table 3.
Waste/by-product | Source | Functionalities | Ref. |
---|---|---|---|
Coffee grounds | Coffee production process | Anti-odour, antimicrobial, aromatic; UV radiation protection | [34, 35] |
Rice husks | Rice processing | Thermal insulation potential | [36] |
Eucalyptus bark | Wood processing industry | Antimicrobial, aromatic | [37, 38] |
Pine bark | To feed | Antioxidant, antimicrobial, aromatic | [39, 40] |
Pine sawdust, composite sawdust, powder and pieces | Wood processing industry | Absorbent, mechanical and structural properties | [41, 42] |
Vegetable and agroforestry wastes and by-products and functionalities.
The manufacture of leather upholstery for furniture, airplanes and automobiles has been one of the main markets in the last two decades. Currently, in Europe, 14% of all new cars have leather coverings, and an additional 4% are made in combinations of leather, textiles, composite materials and imitation leather. The world’s leading car manufacturers have focused on looking for renewable materials, recycling materials in manufacturing processes and using less toxic materials to improve car recyclability [43]. In the European footwear industry, the production of about 1–2 × 105 tonnes of leather waste per year is estimated, with the annual cost associated with its management between 4 and 10 × 106 € [44]. In the manufacture of footwear, more than 70% of the leather used is leather tanned with chromium [10].
Despite the many methodologies and systems studied and implemented in the last decades, which allowed the minimization of waste production during the manufacture of leather and its processing by user industries, such as the automotive and footwear industries, these production processes inevitably generate waste leather which can be disposed or valorized as it is or by chemical conversion into other added-value products (collagen) [10].
Native collagen and its derivatives are widely applied in the food, agrarian (fertilizer), cosmetic and biomedical industries, as well as in the textile industry, due to their biodegradability, biocompatibility, etc. [15]. In addition, collagen and its derivatives have also another set of properties that enhance their potential, not only for the direct functionalization of textile substrates but also for the development of the coating formulations (Table 4) [15, 45, 46].
Functionality | Description | Ref. |
---|---|---|
Gelling and dilating | Aggregation of molecules at 30°C to form hydrolysed collagen gels and gelatine; swelling in the presence of water | [45, 46, 47] |
Foaming | The presence of hydrophobic and hydrophilic amino acids provides excellent foaming properties, even in the absence of gelling | |
Antimicrobial | Hydrophobic amino acids penetrate the peptide chains that make up bacterial membranes, acting as a natural fungicide and bactericide | |
Antioxidant/anti-ageing | Inhibition of lipid peroxidation, elimination of free radicals and acting as transition metal ion chelating agents, protecting cells from damage caused by oxidation and helping to improve skin firmness |
Different functionalities of collagen and its derivatives and respective area of application.
The consumer demand for more environmentally responsible products with better sustainability credentials is increasingly growing, in addition to progressively more restrictive legislation regarding the environmental impact of industrial activity. Additionally, other increasingly important factors are the search for textile products with differentiated technical and functional properties and with better sustainability credentials, without compromising the appearance, touch, and comfort of the article.
These facts have led companies in the textile and clothing sector to gradually invest in an investigation strategy that leads to the adoption of sustainable policies and reduction of environmental impacts, based on the valorization of wastes and by-products of industries that are geographically close. In this scenario, the reuse of these natural by-products and wastes as a bio-resource in the demanding textile sector presents itself as an alternative.
The use of milk proteins for fibre production and application in textile industry remotes back to the beginning of the twentieth century. The conventional fibre production method consists in dissolving 20–25% milk proteins, including whey protein and its fractions, in a 2% NaOH solution to obtain a solution of adequate viscosity for fibre production by wet spinning extrusion (10–30% solid material) [48, 49]. In this process, the protein solution is pumped through a spinneret into an acid bath with a pH below the isoelectric point of the protein (4.5–4.6) to cause its coagulation [48, 50, 51]. The coagulate is afterwards stretched and drawn to increase polymer chain orientation and tensile strength of the fibre. Coagulation baths, containing aluminium salts of formaldehyde, may further increase the fibre stretching and enhance its physical properties [48, 51].
There are already several studies and patents on the production of fibres from whey proteins aiming to obtain fibres with improved mechanical properties and to use of more ecological productive processes. Kamada et al. produced fibres from β-lactoglobulin nanofibrils in the presence of alcohols, low pH and elevated temperature (hydrolysis of the protein in low molecular weight peptides for the formation of nanofibrils) [52]. Sullivan et al. produced nanofibres, by electrospinning, from WPI solutions (75%) and polyethylene oxide (PEO) (4%) and solutions of β-lactoglobulin (75%) and PEO (10%) in water [53]. Drosou et al. [54] studied the possibility to make whey protein fibres by electrospinning. However, electrospinning of nanofibres from proteins has proven to be quite challenging due to their globular nature, in most cases, the low viscosity of their aqueous solutions and potential lack of intermolecular entanglements [54]. To overcome these challenges, blends of proteins and other bio-based materials have been used. Drosou also tested some WPI/pullulan blends and was able to obtain continuous and uniform fibres [54]. The presence of the pullulan increased the viscosity of the solution, having a big impact in the process parameters. Zhong et al. adopted a similar strategy to obtain also whey protein nanofibres through electrospinning [55]. In this case the authors blended the whey protein with PEO and were not able to produce pure protein fibres. The ability of the whey protein solutions to produce fibres changed over time after dissolution [55]. Oktar et al. produced fibres from WPC blended with poly-ε-caprolactone (80 kDa) [56]. The obtained fibres showed improved mechanical properties to higher WPC concentrations (3–8% w/v). Kutzli et al. produced whey protein fibres by electrospinning, blending the proteins with enzymatically treated starch (maltodextrin) [57]. Using two different maltodextrins, with different molecular weights, the authors found that the spinnability of the solution is heavily dependent on the average size of the maltodextrin. Aman Mohammadi et al. obtained whey protein fibres by electrospinning, mixing WPI and guar gum [58].
As already mentioned, fibres resulting from these processes usually fail to have the mechanical properties for weaving and textile production. For this reason, whey protein fibres are often mixed with other fibres with appropriate mechanical properties (mostly cotton, silk and wool, with tensile strengths) [59].
The valorization of by-products of the dairy industry by wet spinning generates corrosive effluents rich in metal salts. This type of effluent requires appropriate conditioning and downstream steps of neutralization and precipitation of metals, which may entail large costs for its treatment and disposal (in order to avoid acidification of soils and water resources, increase of the dissolved salt content and the appearance of health problems in animals and humans resulting from untreated discards in water bodies used to supply populations) [60].
Whey proteins have also been studied for their applicability as coatings and additives in the textile industry. Pisitsak et al. (2015) studied the dyeability increase of cotton for a tannin-rich dye extracted from Xylocarpus granatum bark. Cotton fabrics were pretreated with WPI by a padding technique. The improvement in the dye absorption after protein pretreatment is ascribed to the insoluble complex formation between the tannin and the proteins present in the fabric, stabilized through hydrogen bonding and hydrophobic interactions, which makes it easy to be coloured. Besides that, both protein treatment and dyeing improved the ultraviolet (UV) shielding efficiency of the cotton fabrics [61].
Proteins are not the only milk component able to facilitate the dyeing process. Dyes are generally applied in an aqueous solution, and some of them require chemical auxiliaries to improve their water solubility and to improve the dyeing process. Bianchini et al. [62] reported a study to naturalize two synthetic azadyes through their linkage with lactose to induce their water solubility. In this study, a chromophore was transformed into a hydrosoluble species through glycol conjugation with a sugar, and a preliminary tinctorial test was carried out with polyester, cotton, acetate, wool and acrylic fabrics. Results showed several benefits since the modification of the dyes with lactose, as this improved their water solubility, allowing the elimination of surfactants and mordants, making the dyeing process easier and avoiding high temperatures and high pressures. Besides that, the new hydrosoluble dyes showed a better affinity towards different fabrics (synthetic, natural, artificial), improving efficacy and reducing waste [62].
These developments brought benefits not only in terms of textile valorization but also in terms of the use and recovery of wastes and by-products. The utilization of carbohydrates largely and cheaply available, such as D-glucose, D-galactose and lactose, normally discarded in huge quantities in the environment, with no negligible impact, brings new possibilities for efficient and more selective waste treatment by using, for instance, live micro-organisms to attack the sugar moiety and consequently the covalently bonded chromophore, or the use of enzymes able to destroy dyes [62].
In the past years, novel and innovative solutions for flame retardant systems, for replacing the traditional additives, have been explored. In particular, the availability of a formaldehyde-free flame retardant system based on natural macromolecules such as proteins could be extremely interesting for a possible industrial application [63]. Considering the environmental concern, more ecological and effective solutions have been studied, in the field of flame retardancy, since the solutions mostly used are based on halogenates or phosphorus, being persistent and bioaccumulating in the soil and even carcinogenic and/or toxic for animals and humans. In this sense, biomacromolecules have aroused interest as a green solution in this field, particularly whey proteins and caseins. In addition to being biological additives, they can have added value, as they can be considered by-products or even wastes from the agro-food industry and their recoveries and subsequent use as flame retardants may comply with the current needs of valorization of agro-food crops, avoiding their landfill confinement [57, 58].
Therefore, different novel strategies have been designed in order to enable the use of green flame retardant systems. Due to the ability of whey proteins to act as water vapour absorbers and as oxygen barriers, textiles treated with this by-product have been exploited in order to increase their thermal stability and flame retardancy [63]. For this, folded and unfolded whey protein isolates were deposited on cotton fabrics. Through thermogravimetric analysis it was observed that whey protein coatings significantly affected the thermal degradation of cotton in an inert and oxidative atmosphere. Specifically, the application of whey protein coating contributed to the delay of the thermal degradation of the textile, also resulting in a smaller total mass loss. Besides that, the treated fabrics have shown a decrease of burning rate and an increase of total burning time, determined by the flammability tests in horizontal configuration [63].
The antibacterial properties of some of the whey components have also been studied. Through the cross-linking between microbial transglutaminase (mTGase) and lactoferrin, the antibacterial properties of wool were improved to E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria. It was observed that the amount of lactoferrin deposited on the wool fabric was improved with the cross-linking reaction with mTGase, when compared to the control sample. The wool fabrics immobilized with lactoferrin exhibited approximately 70 and 60% inhibition for E. coli and S. aureus, respectively, showing a good antibacterial property [64].
The same was observed in a recent study developed by Srisod et al. [65]. It was described the utilization of WPI as reducing and stabilizing agent in a green synthesis of silver nanoparticles (AgNps) from silver nitrate. In addition, a natural tannin-rich extract was applied to cross-link the WPI/AgNps to cotton fabric through the formation of an insoluble binder. The cotton fabric treated showed an excellent antibacterial performance against S. aureus, even after 50 washing cycles, showing no toxicity to L929 cell changes to the intrinsic properties of the substrate (drapeability and tearing strength) [65].
Regarding the globular structure of whey proteins, due to their properties and structures, they have been used as a vehicle for active substances such as antimicrobials, antioxidants and drugs, among others, for the development of new functional products [66, 67, 68, 69]. This approach is widely used in several industrial sectors, providing the possibility of a controlled release of bioactive compounds. It can easily be applied to the textile industry, with the possibility to add functionality to textiles.
The antioxidant effects of vitamin E encapsulated in BSA nanoparticles in cotton have already been studied [70]. The nanoparticles, produced by ultrasonic emulsification, have a size between 200 and 300 nm and have the capacity to encapsulate 99% of the vitamin. After impregnation onto cotton fabrics, they present an antioxidant activity and wash resistance up to ten cycles [71].
Microspheres of BSA have also been tested as encapsulation agents of an antibiotic, tetracycline, in order to obtain an antibacterial coating for cotton and polyester fabrics [72]. These capsules demonstrated not only good encapsulation capacity but also gave the textiles antimicrobial properties [72].
Nonetheless, these types of applications at an industrial level have some limitations since the cost-effectiveness ratio of these biomacromolecules may not compensate until now. In addition, the durability to the laundering was not yet achieved in an effectively sustainable and long-lasting way, since these biomacromolecules have a waterborne character and these coatings come off from the textile when subjected to washing. When adding binding agents to biomacromolecules, a balance must be sought between their green characteristics and the use of chemicals that do not eradicate the sustainability of the process. In this sense, exploitation of biologically derived chemical treatments, or at least chemicals with a low environmental impact, which could make the proposed biomacromolecules more durable than they are today, while maintaining their effective functionalities, is being carried out [73, 74].
Genuine leather is made of animal skin, namely, bovine leather, tanned and finished with products of synthetic origin (chromium). It is used as a noble material for the manufacture of various products with applications in various industries, such as fashion, fashion accessories, footwear, decoration, automobiles, etc., and is the one that has the greatest expression in the market due to its excellent properties such as porosity, breathability, softness, comfort and fall, among others [75, 76]. Ecological leather refers to a leather tanning process that does not use metals such as chromium but in alternative recurs to substances of natural origin (vegetable, animal or mineral), such as vegetable tannins (polyphenols of plant origin) [77]. Though ecological leather has a lesser environmental impact than genuine leather, it still does not have the same properties of thermal resistance, colour fixation and versatility as the leather resulting from the treatment of tanning with chromium [75]. In addition, there are several ethical and environmental concerns involved in the use of genuine and ecological leather, such as the killing of animals and the high environmental impact resulting from their processing, which have triggered the growing interest on the part of the consumer in more sustainable alternative solutions to leather of animal origin ethically and environmentally. This generated a search for alternative solutions with the same performance of genuine leather, which catapulted textile industries towards sustainable innovation as a means of answering the markets’ demands.
Vegetable leather is a sustainable product of plant origin resulting from the use of vegetable wastes or by-products. There are already some alternatives of vegetable leather on the market to replace animal leather, although they do not fully reproduce the characteristics of animal leather. Of the solutions on the market, the main examples are presented.
Latex-based leather is the name given to a fabric made up of two renewable raw materials, the latex extracted from the rubber tree (Hevea brasiliensis) from the Amazonian forests and cotton. The cotton is impregnated with latex, natural rubber (primary product of the smoking of latex extracted from the rubber tree). These can be used in the production of bags, wallets, clothing, footwear and other objects usually produced in leather. The commercialization of these products has become a reason for hope for the improvement of the life of rubber tappers, their permanence in the forest and the sustainable development of the Amazon, generating work and income in indigenous and traditional communities [78, 79, 80].
The company Ananas Anam has developed an innovative, natural and sustainable non-woven leather called Piñatex™, produced from pineapple leaf fibres, considered as a vegan alternative to traditional leather. From the pineapple leaf fibres, screens are obtained, which can be dyed, printed and treated to obtain different textures [81]. The material is strong, versatile (different colours, patterns, textures, thicknesses), breathable, smooth, light, flexible, sewable, resistant to water and abrasion and resistant to ignition by cigarettes [82, 83, 84].
Products based on thin sheets of cork, laminated with a textile substrate that gives it resistance, are increasingly being introduced to the market as a sustainable vegan alternative to traditional/synthetic leather. They have characteristics equivalent to leather, such as resistance, lightness, breathability, malleability, thermal insulation and impermeability, adding the properties of low density and thermal conductivity. There are several products based on cork leather (cork sheet) on the market, created and launched by designers/brands and national reference companies, such as Bleed—We bleed for nature, Pelcor, and Artelusa, and international, such as Chanel, inter Louboutin, Stella McCartney, Yves Saint Laurent, Prada, Dior, Manolo Blahnik, Dolce & Gabbana and Gucci. These products are based on fashion accessories (wallets, belts, etc.), clothing, umbrellas, footwear, sports goods, furniture, car upholstery lining, etc. [76, 85, 86, 87, 88, 89, 90].
Wood-based leather is similar to cork but made from wood from fast-growing trees, such as oak bark, treated with non-toxic chemicals to make it durable, flexible and malleable. Wood leather can be as thick as genuine leather. Dolce & Gabbana is a market reference that has already used this material in a recent collection of bags and shoes [41]. The German shoe brand nat-2TM also recently launched a line of shoes in which up to 90% of the upper surface of the shoe is covered with wood, which is applied over an organic cotton, in order to become a flexible, soft material that allows to smell the wood and observe its natural texture [91]. Another solution is Wooden Textiles, created by Elisa Strozyk. These materials, which also bear some resemblance to leather, are obtained after cutting thin sheets of wood into pieces and adhering them to a textile substrate. The result is a material that smells like wood, but with some flexibility and softness. There are applications in decoration and furniture [92].
Vegea® is a biomaterial produced by the Italian company Vegea, founded by Gianpiero Tessitore and Francesco Merlino [86, 87]. This material, with a similar aspect to leather, valorizes residues from bagasse (skins and tales from grapes), and does not use water in its production [74]. This leather, also known as WineLeather, is already available in several colors, and it can be used for studying or obtaining different thicknesses, strengths, finishes, and textures. It is already applied in the production of clothing, bags and shoes, furniture, packaging, and automobile and transport accessories [93]. It is used to coat a textile substrate with a polymeric mixture, consisting of a cake residue flour and a derived polymer of oil extracted from grapes [94].
The German company nat-2™ developed a material similar to leather, obtained from coffee bean wastes [95, 96]. With this material a line of unisex sneakers was created, whose upper part contains recycled coffee, coffee beans and coffee plant, which constitutes up to 50% of the footwear surface, according the model. The coffee is applied in a layer, giving a soft touch and a coffee aroma. Two Mexican inventors, Adrian Lopez and Marte Cazarez, recently created a laminate based on nopal cactus (or figs), which resembles animal leather, that is breathable, environmentally sustainable and totally plant-based (cotton and Nopal blend), lasts at least 10 years and has the chemical and physical properties required by the fashion industries, furniture, leather goods and automobiles [97, 98]. The material is obtained by coating a cotton substrate with a mixture of dry (in the sun) and crushed cactus powder and protein extracted from the cactus, which serves as a natural binder [99].
Another leather-like material example is bonded leather or reconstituted leather. This consists of the preparation of a paste with ground leather wastes and binding agents, which is extruded, using a process similar to the production of paper [100]. This paste can be applied on a textile support, coated with a PU film and embossed to gain a leather-like texture [101]. The colour and pattern are checked by a surface treatment. The amount of leather fibres in bonded leather can vary, which is reflected in the quality of the material. This product is usually used in furniture, bookbinding and fashion accessories. Depending on the quality of the product, it can be a durable material, with flame retardancy, and does not develop a patina. The number of patents on reconstituted or recycled leather is extensive, without, however, mentioning the use of textile support for the application of the paste with leather wastes [102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124].
RecycLeather™ is a green technology company that produces recycled materials with the look and feel of leather, highly durable, resistant and light. The materials are obtained from leather waste, in particular, cut pieces from gloves. It consists of 60% leather waste, 30% latex (a natural binder) and 10% synthetic products, such as water and pigments [125].
EcoDomo also has some collections with recycled leather [126]. This is obtained by pulverized leather fibres, obtaining materials with a leather content of up to 70%. It is available for different applications, such as furniture, panels, flooring, etc. EmbraceTM also has different materials, similar to leather, obtained from leather waste (43–58%), blended with cotton and polyester, and a PU topcoat [127].
Hydrolysed collagen has recently been applied in the leather manufacturing process, and in the production of flexible composite sheets, with polyvinylpyrrolidone (PVP) and cellulose derivatives, for application products in the area of footwear, clothing, etc. [128, 129, 130]. The application of collagen hydrolysates in leather produc-tion consisted of its mixture with oxazolidines before application, but the obtained results were not as good as those attained by tanning [45, 46]. The application of this by-product, without chromium separation, in the manufacture of flexible composite sheets with both PVP and cellulose allowed the obtaining of composites with improved mechanical properties (composites with PVP and cellulose) and greater thermal stability (cellulose composites) [47, 131].
Gelatex is a non-woven fabric (with nanofibres) made from gelatine derived from waste from the meat and leather industries, developed by Gelatex Technologies, a start-up from Estonia [132]. It is a material with a touch similar to leather and is breathable, durable and customizable (texture, thickness, water resistance, etc.). This material won the The Green Alley Award 2019 [133].
The mobilizing project TexBoost—less Commodities more Specialties is a structuring project of the Textile Cluster: Technology and Fashion, which aims to include a set of R&D initiatives with a strong collective character and high inductor and demonstrator effect, with the central involvement of companies of the textile and clothing sector, but also of other complementary sectors of the economy [134]. TexBoost consortium, led by RIOPELE and under the technical coordination of CITEVE, involves a total of 43 entities, of which 23 are industrial companies of the entire textile industry and 15 are non-corporate entities of the research and innovation system.
The project is organized into six PPS—products, processes and services—of which it is worth highlighting the PPS5, sustainability and circular economy. This PPS5 aims the development of materials and solutions using wastes and by-products of other industries (footwear, automobile, cork, forest and milk industry) in new and innovative textile solutions.
For the first nuclear activity, vegan leather, the R&D work was focused in the development of a new generation of coated textile solutions that could be used as an alternative to natural and/or synthetic leather, using wastes and by-products of vegetable origin with new multifunctional properties combined with design and special fashion effects form the basis of this activity. The aim of this work were also to respond to one of the major trends in consumption, related to ethically and environmentally sustainable attitudes, developing products with a high potential for application in technical and functional areas, such as technofashion, eco-design, clothing, decoration, home textiles, footwear, fashion accessories, sport and protection, among others.
During the project, several agro-industrial wastes were studied, and from them, eco-friendly and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)-compliant coating formulations were developed, and 100% cotton textile substrates were coated by knife coating (Figure 1).
Vegan leather solutions based on sawdust (left) and coffee grounds (right).
The mechanical performance of the developed solutions was assessed through a series of normalized tests, namely, Veslic friction resistance (ISO 11640: 2012), Martindale abrasion resistance (ISO 17704:2004), Crockmeter friction resistance (ISO 20433:2012), colour fastness (ISO 105-B02) and coating peeling (ISO 11644:2009) (N/cm). The obtained results are summarized in Table 5. In a general way, it is possible to conclude that the developed solutions pass the performance norms and specifications.
Normative test | Coffee ground-based vegan leather | Sawdust-based vegan leather |
---|---|---|
Veslica,b | 5 | 5 |
Martindalec | 3200 rev.: A 6400 rev.: B 51,200 rev.: B | 3200 rev.: A 6400 rev.: B 12,800 rev.: B 25,600 rev.: C 51,200 rev.: C |
Crockmeterd | 5 | 5 |
Colour fastnesse | 3–4 | 3 |
Coating peeling (dry)/(N/cm) | 30 | 31.2 |
Mechanical performance evaluation of the coffee ground-based vegan leather and of the sawdust vegan leather samples.
Veslic friction resistance: flower side, degree of staining; dry skin/wet felt—50/100 cycles.
Veslic friction resistance: flower side, degree of colour change; dry skin/wet felt—50/100 cycles.
Martindale abrasion resistance: dry, abrasion degree.
Crockmeter friction resistance: flower side, degree of staining; wet and dry—ten cycles.
Light fastness: xenon lamp, flower side; colour fastness.
Regarding the second nuclear activity—alternative leather solutions—the R&D activities focused on the development of a new generation of coated textile solutions by using wastes and by-products resulting from industrial operations, such as the tanning industry, natural leather cutting (for indoor automotive) and EVA (for shoe components), here highlighting the leather wastes, with new multifunctional properties combined with fashion design and special effects. The aim was also to meet one of the major trends of current consumption, which is related to ethically and environmentally sustainable behaviour, developing products with high potential for application in technical and functional areas and in rapid expansion: technofashion, eco-design, clothing, decoration, home textiles, footwear, fashion accessories, sport and protection, among others.
During the project, leather waste was studied, eco-friendly and REACH-compliant coating formulations were developed, and 100% cotton textile substrates were coated by knife coating (Figure 2).
Alternative leather solutions based on leather waste (left) and hydrolysed collagen (right).
The mechanical performance of the developed solutions was assessed through a series of normalized tests, namely, Veslic friction resistance (ISO 11640: 2012), Martindale abrasion resistance (ISO 17704:2004), Crockmeter fiction resistance (ISO 20433:2012), and colour fastness (ISO 105-B02). The obtained results are summarized in Table 6. In a general way, it is possible to conclude that the developed solutions pass the performance norms and specifications.
Normative test | Leather waste-based alternative leather | Hydrolysed collagen-based vegan leather |
---|---|---|
Veslica,b | 3–5 | 3–5 |
Martindalec | 1600 rev.: A 3200 rev.: B 12,800 rev:B 25,600 rev:C 51,200 rev:C | 1600–3200 rev.: A 6400–51,200 rev.: B |
Crockmeterd | 2–5 | 3–5 |
Colour fastnesse | 3–4 | 4–5 |
Mechanical performance evaluation of the alternative leather samples.
Veslic friction resistance: flower side, degree of staining; dry skin/wet felt—50/100 cycles.
Veslic friction resistance: flower side, degree of colour change; dry skin/wet felt—50/100 cycles.
Martindale abrasion resistance: dry, abrasion degree.
Crockmeter friction resistance: flower side, degree of staining; wet and dry—ten cycles.
Light fastness: xenon lamp, flower side; colour fastness.
Finally, the other approach of the PPS was research and development of a new generation of coated textile solutions, using wastes and by-products of the dairy industry, with new multifunctional properties combined with design and special fashion effects. Specifically, the two main goals were functionalization of textiles with milk proteins to improve UV protection and use of milk proteins to encapsulate bioactive compounds (such as antioxidants) and subsequent functionalization of textiles.
So, in the present project, 2,2-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) method was used for the evaluation of antioxidant activity of a whey protein fraction impregnated in textile substrate. This spectrophotometric method assesses the stabilization capacity of the ABTS radical formed from certain compounds. In other words, it indicates the percentage of inhibition of the ABTS radical after contact with the compounds.
For this, microcapsules of a milk fraction were prepared with and without an antioxidant compound. These microcapsules were used to functionalize a textile substrate and analysed by ABTS method. To the textile substrate, the relative antioxidant ability to scavenge the radical ABTS+ was compared to the textile control, without functionalization. It was possible to verify that all the protein fraction gave the substrates significantly higher ABTS inhibition percentages than the controls, with a slight increase when the antioxidant is present.
Since textiles had a high antioxidant potential, the capacity of this potential was verified in terms of protecting the colours of textiles when exposed to UV radiation. In this way, the textiles were stained with a dye and exposed for 12 hours to UV radiation. It was found that after 12 hours of exposure to UV radiation, the control showed a high degradation of the stain colour. On the other hand, the functionalization of textiles delayed the process of colour photodegradation, since after 12 hours of exposure, none of the stains had yet reached the same colour reduction.
The potential for reusing natural by-products and wastes from different sources was reviewed in this chapter, describing their most attractive properties and characteristics. The most recent innovations and developments in this area were listed and presented, showing a novel possible way for the development of technical and functional textiles. The main potential applications for the valorization of whey protein by the production of textile fibres have been described, as well as by its application as a textile finish. The different applications already tested and the main products already available on the market for sustainable alternatives to produce genuine leather were also listed. Although these types of applications at an industrial level have some limitations, as cost-effectiveness ratio, permanence of the intrinsic properties of the substrates and durability to the laundering, for example, the reuse of these natural by-products and wastes as a bio-resource in the demanding textile sector presents itself as an attractive alternative.
The mobilizing project TexBoost—less Commodities more Specialties (no 24523), in PPS 5, sustainability and circular economy, a project co-financed by COMPETE 2020—Operational Program for Competitiveness and Internationalization—and in Portugal 2020 through the European Regional Development Fund (ERDF).
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5240},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15812}],offset:12,limit:12,total:118381},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"6,5"},books:[{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10750",title:"Solanum tuberosum - a Promising Crop for Starvation Problem",subtitle:null,isOpenForSubmission:!0,hash:"516eb729eadf0d1a9d1d2e6bf31e8e9c",slug:null,bookSignature:"Prof. Mustafa Yildiz and Dr. Yasin Ozgen",coverURL:"https://cdn.intechopen.com/books/images_new/10750.jpg",editedByType:null,editors:[{id:"141637",title:"Prof.",name:"Mustafa",surname:"Yildiz",slug:"mustafa-yildiz",fullName:"Mustafa Yildiz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10772",title:"Parasitic Plants",subtitle:null,isOpenForSubmission:!0,hash:"31abd439b5674c91d18ad77dbc52500f",slug:null,bookSignature:"Dr. Ana Maria Gonzalez and Dr. Hector Sato",coverURL:"https://cdn.intechopen.com/books/images_new/10772.jpg",editedByType:null,editors:[{id:"281854",title:"Dr.",name:"Ana Maria",surname:"Gonzalez",slug:"ana-maria-gonzalez",fullName:"Ana Maria Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10737",title:"Equus",subtitle:null,isOpenForSubmission:!0,hash:"258ffafc92a7c9550bb85f004d7402e7",slug:null,bookSignature:"Associate Prof. Adriana Pires Neves",coverURL:"https://cdn.intechopen.com/books/images_new/10737.jpg",editedByType:null,editors:[{id:"188768",title:"Associate Prof.",name:"Adriana",surname:"Pires Neves",slug:"adriana-pires-neves",fullName:"Adriana Pires Neves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10777",title:"Plant Reproductive Ecology - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"3fbf391f2093649bcf3bd674f7e32189",slug:null,bookSignature:"Dr. Balkrishna Ghimire",coverURL:"https://cdn.intechopen.com/books/images_new/10777.jpg",editedByType:null,editors:[{id:"206647",title:"Dr.",name:"Balkrishna",surname:"Ghimire",slug:"balkrishna-ghimire",fullName:"Balkrishna Ghimire"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10749",title:"Legumes",subtitle:null,isOpenForSubmission:!0,hash:"49d3123cde96adbe706adadebebc5ebb",slug:null,bookSignature:"Dr. Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/10749.jpg",editedByType:null,editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10751",title:"Bovine Science",subtitle:null,isOpenForSubmission:!0,hash:"9e3eb325f9fce20e6cefbce1c26d647a",slug:null,bookSignature:"Dr. Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/10751.jpg",editedByType:null,editors:[{id:"112070",title:"Dr.",name:"Muhammad",surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:24},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5252},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"16",title:"Medicine",slug:"medicine",parent:{title:"Health Sciences",slug:"health-sciences"},numberOfBooks:1511,numberOfAuthorsAndEditors:39573,numberOfWosCitations:21767,numberOfCrossrefCitations:11544,numberOfDimensionsCitations:29307,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editedByType:"Edited by",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9406",title:"Clinical Implementation of Bone Regeneration and Maintenance",subtitle:null,isOpenForSubmission:!1,hash:"875a140c01518fa7a9bceebd688b0147",slug:"clinical-implementation-of-bone-regeneration-and-maintenance",bookSignature:"Mike Barbeck, Nahum Rosenberg, Patrick Rider, Željka Perić Kačarević and Ole Jung",coverURL:"https://cdn.intechopen.com/books/images_new/9406.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editedByType:"Edited by",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9134",title:"Recent Advances in Digital System Diagnosis and Management of Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"ff00a5718f23cb880b7337b1c36b5434",slug:"recent-advances-in-digital-system-diagnosis-and-management-of-healthcare",bookSignature:"Kamran Sartipi and Thierry Edoh",coverURL:"https://cdn.intechopen.com/books/images_new/9134.jpg",editedByType:"Edited by",editors:[{id:"29601",title:"Dr.",name:"Kamran",middleName:null,surname:"Sartipi",slug:"kamran-sartipi",fullName:"Kamran Sartipi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1511,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9697,totalCrossrefCites:109,totalDimensionsCites:230,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:1995,totalCrossrefCites:79,totalDimensionsCites:180,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:8066,totalCrossrefCites:57,totalDimensionsCites:145,book:{slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]}],mostDownloadedChaptersLast30Days:[{id:"43758",title:"Anxiety Disorders in Pregnancy and the Postpartum Period",slug:"anxiety-disorders-in-pregnancy-and-the-postpartum-period",totalDownloads:39763,totalCrossrefCites:11,totalDimensionsCites:20,book:{slug:"new-insights-into-anxiety-disorders",title:"New Insights into Anxiety Disorders",fullTitle:"New Insights into Anxiety Disorders"},signatures:"Roberta Anniverno, Alessandra Bramante, Claudio Mencacci and Federico Durbano",authors:[{id:"157077",title:"Dr.",name:"Federico",middleName:null,surname:"Durbano",slug:"federico-durbano",fullName:"Federico Durbano"},{id:"166382",title:"Dr.",name:"Roberta",middleName:null,surname:"Anniverno",slug:"roberta-anniverno",fullName:"Roberta Anniverno"}]},{id:"70711",title:"Fetal Growth Restriction",slug:"fetal-growth-restriction",totalDownloads:1706,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"growth-disorders-and-acromegaly",title:"Growth Disorders and Acromegaly",fullTitle:"Growth Disorders and Acromegaly"},signatures:"Edurne Mazarico Gallego, Ariadna Torrecillas Pujol, Alex Joan Cahuana Bartra and Maria Dolores Gómez Roig",authors:[{id:"202446",title:"Ph.D.",name:"Maria Dolores",middleName:null,surname:"Gómez Roig",slug:"maria-dolores-gomez-roig",fullName:"Maria Dolores Gómez Roig"},{id:"311835",title:"Dr.",name:"Edurne",middleName:null,surname:"Mazarico",slug:"edurne-mazarico",fullName:"Edurne Mazarico"}]},{id:"70405",title:"Hemostasis in Cardiac Surgery: How We Do it with Limited Resources",slug:"hemostasis-in-cardiac-surgery-how-we-do-it-with-limited-resources",totalDownloads:2694,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1",fullTitle:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1"},signatures:"Fevzi Sarper Türker",authors:null},{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",totalDownloads:9954,totalCrossrefCites:10,totalDimensionsCites:17,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ezekwesili-Ofili",slug:"josephine-ezekwesili-ofili",fullName:"Josephine Ezekwesili-Ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",slug:"antoinette-okaka",fullName:"Antoinette Okaka"}]},{id:"59779",title:"Effective Communication in Nursing",slug:"effective-communication-in-nursing",totalDownloads:6504,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"nursing",title:"Nursing",fullTitle:"Nursing"},signatures:"Maureen Nokuthula Sibiya",authors:[{id:"73330",title:"Dr.",name:"Nokuthula",middleName:null,surname:"Sibiya",slug:"nokuthula-sibiya",fullName:"Nokuthula Sibiya"}]},{id:"64858",title:"The Neurobiology of Anorexia Nervosa",slug:"the-neurobiology-of-anorexia-nervosa",totalDownloads:892,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"anorexia-and-bulimia-nervosa",title:"Anorexia and Bulimia Nervosa",fullTitle:"Anorexia and Bulimia Nervosa"},signatures:"Ashley Higgins",authors:null},{id:"63771",title:"The Role of Catheter Reshaping at the Angiographic Success",slug:"the-role-of-catheter-reshaping-at-the-angiographic-success",totalDownloads:536,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"angiography",title:"Angiography",fullTitle:"Angiography"},signatures:"Yakup Balaban",authors:[{id:"252647",title:"Associate Prof.",name:"Yakup",middleName:null,surname:"Balaban",slug:"yakup-balaban",fullName:"Yakup Balaban"}]},{id:"61866",title:"Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants",slug:"plants-secondary-metabolites-the-key-drivers-of-the-pharmacological-actions-of-medicinal-plants",totalDownloads:5564,totalCrossrefCites:13,totalDimensionsCites:32,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Rehab A. Hussein and Amira A. El-Anssary",authors:[{id:"212117",title:"Dr.",name:"Rehab",middleName:null,surname:"Hussein",slug:"rehab-hussein",fullName:"Rehab Hussein"},{id:"221140",title:"Dr.",name:"Amira",middleName:null,surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}]},{id:"17956",title:"Sexual and Reproductive Function in Chronic Kidney Disease and Effect of Kidney Transplantation",slug:"sexual-and-reproductive-function-in-chronic-kidney-disease-and-effect-of-kidney-transplantation",totalDownloads:11790,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"after-the-kidney-transplant-the-patients-and-their-allograft",title:"After the Kidney Transplant",fullTitle:"After the Kidney Transplant - The Patients and Their Allograft"},signatures:"Mahboob Lessan-Pezeshki and Shirin Ghazizadeh",authors:[{id:"26564",title:"Prof.",name:"Mahboob",middleName:null,surname:"Lessan Pezeshki",slug:"mahboob-lessan-pezeshki",fullName:"Mahboob Lessan Pezeshki"},{id:"26571",title:"Prof.",name:"Shirin",middleName:null,surname:"Ghazizadeh",slug:"shirin-ghazizadeh",fullName:"Shirin Ghazizadeh"}]},{id:"64747",title:"Bone Development and Growth",slug:"bone-development-and-growth",totalDownloads:3711,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"osteogenesis-and-bone-regeneration",title:"Osteogenesis and Bone Regeneration",fullTitle:"Osteogenesis and Bone Regeneration"},signatures:"Rosy Setiawati and Paulus Rahardjo",authors:null}],onlineFirstChaptersFilter:{topicSlug:"medicine",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"75604",title:"Normal Puerperium",slug:"normal-puerperium",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96348",book:{title:"Midwifery"},signatures:"Subrat Panda, Ananya Das, Arindam Mallik and Surajit Ray Baruah"},{id:"75596",title:"The Use of a Dynamic Elastomeric Fabric Orthotic Intervention in Adolescents and Adults with Scoliosis",slug:"the-use-of-a-dynamic-elastomeric-fabric-orthotic-intervention-in-adolescents-and-adults-with-scolios",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96391",book:{title:"Spinal Deformities in Adolescents, Adults and Older Adults"},signatures:"Martin Matthews and James Wynne"},{id:"75582",title:"Elimination of Plasmodium vivax Malaria: Problems and Solutions",slug:"elimination-of-plasmodium-vivax-malaria-problems-and-solutions",totalDownloads:1,totalDimensionsCites:null,doi:"10.5772/intechopen.96604",book:{title:"Current Topics and Emerging Issues in Malaria Elimination"},signatures:"Liwang Cui, Awtum Brashear, Lynette Menezes and John Adams"}],onlineFirstChaptersTotal:652},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/99933/rosa-maria-de-araujo-mitre",hash:"",query:{},params:{id:"99933",slug:"rosa-maria-de-araujo-mitre"},fullPath:"/profiles/99933/rosa-maria-de-araujo-mitre",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()